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Abstract

The hexapod made by Janssen Precision Engineering (JPE) is tested for
optical purposes. Equations describing the movements of the platform
are derived and tested using interferometric techniques and imaging

systems. A Python program for the hexapod motion control is developed
and implemented, and its limitations are discussed. Several technical

features, most notably the piezo actuators of the hexapod, are examined.
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Chapter 1
Introduction

In the last decade, the interest in interactions between matter on the atomic
or molecular scales and optical resonators has significantly increased [1]
[2] [3]. Using so-called microcavities, consisting of two mirrors at most
a few micrometers apart, one is able to observe several unique quantum
phenomena, of which the Purcell effect is the most prominent [4].

Building these cavities, however, is far from trivial; for not only are the
mirrors required to be aligned within nanometer precision, a positional
stability in the (sub)nanometer regime is needed as well [2] [3].

One of the devices that can (partially) meet these requirements is the
hexapod of Janssen Precision Engineering (JPE). In our research we will fo-
cus our attention on the movements of the movable hexapod platform. We
use the geometry of the system to derive equations describing its motion
and test these using both a Michelson interferometer and a basic imaging
setup. We will also discuss several technical features of the JPE hexapod,
turning our attention mainly to the piezo actuators used for the platfrom
movements. Most importantly, we will develop a program with which the
motion of the hexapod can be controlled, in the meantime also considering
its limitations. Lastly, we will suggest several improvements which can be
made to our characterization experiments and provide a helpful guide to
using the hexapod.
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Chapter 2
Theoretical Considerations

Before we discuss our experiments, we deem it necessary to briefly review
the relevant physical concepts and provide a solid theoretical framework
for our project.

In the course of our research we made extensive use of the Michelson
interferometer, which we will describe in some detail here. Furthermore,
we will provide a short summary of the basic properties and working prin-
ciples of the JPE hexapod.

2.1 The Michelson interferometer

Invented by Albert Abraham Michelson in the late nineteenth century, and
most famously employed in his experiment with Edward Morley in 1887
to detect the existence of the aether, the Michelson interferometer is widely
used today in the fields of optics and spectroscopy. Taking advantage of
path length differences between different light rays from a coherent light
source to create interference patterns, the Michelson interferometer can be
applied to measure either wavelengths or physical displacements with a
remarkably high precision [5]. With the advent of the laser the accuracy
and ease of using the Michelson interferometer improved even further,
and it is now considered an indispensable tool in modern physics research,
as evidenced by its successful application in the detection of gravitational
waves in 2015 [6]. Common setups for the modern Michelson interferom-
eter are drawn in Figures 2.1 and 2.2 .
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4 Theoretical Considerations

Figure 2.1: A modern setup of the Michelson interferometer; particulary well-
suited for creating circular fringe patterns.

Figure 2.2: A modern setup of the Michelson interferometer: particularly well-
suited for creating Fizeau fringes.

Using either one of these setups as a reference, the principle idea of
the Michelson interferometer is fairly easy to grasp. A light wave from
a quasi-monochromatic source, in our case a laser, is divided in two by
the beam splitter, with one part going straight ahead towards mirror M1,
and the other part proceeding in the orthogonal direction, towards mirror
M2 [7]. After reflection from the mirrors parts of the reflected waves pass
through the beam splitter, and travel towards the detector, where they in-
terfere with one another [7]. One can create several different types of in-
terference patterns with the Michelson interferometer, of which two will
be discussed here.

4
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2.1 The Michelson interferometer 5

2.1.1 Circular fringes

We first consider circular fringe patterns, such as the one shown in Figure
2.3. These patterns can be created with the setup of Figure 2.1. It is fairly
straightforward to understand how this pattern is formed. The lens in
the M1-arm curves the (approximately) plane light waves coming from
the laser, turning them into (approximately) spherical waves, whereas the
waves travelling towards M1 stay planar. At the detector the plane and
spherical waves interfere with one another, resulting in a circular fringe
pattern, as can be seen from symmetry.

Figure 2.3: Circular fringes created by a Michelson interferometer during the
course of one of our hexapod characterization experiments on 14 November 2019.

In our experiments we are only interested in changes in the center of
this interference pattern resulting from the movement of the mirror M2
along the direction of the incident laser beam there.

To understand what happens, we first note that in the center of the
pattern the spherical wave can be described as a plane wave [8]. Using the
interference principle, we then see that a displacement ∆d of mirror M2
will result in a fringe shift of [8] [9]

∆m =
2∆d

λ
, (2.1)

where ∆m is the amount of fringes passing through the center, and where
λ is the wavelength of the light. Conversely, this relation allows us to
determine ∆d by simply counting how many fringes have passed along a
central point, a fact which we will use in our experiments.
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6 Theoretical Considerations

2.1.2 Fizeau fringes

The second type of fringes we will consider are known as Fizeau fringes,
and are shown in Figure 2.4. They can most easily be created using the
setup of Figure 2.2. We note that there are no lenses used in this setup, for
reasons which will become clear in the following discussion.

Now, an observer positioned at the detector will simultaneously see
mirrors M1 and M2 in the beam splitter [7]. This allows us to redraw the
interferometer as if all the elements were in a straight line [7], as shown
in Figure 2.5. Note that M′1 corresponds to the image of mirror M1 in
the beam splitter [7]. As seen in the figure, the mirrors are inclined with
respect to each other, making a small angle α [5][7], and we immediately
see that the fringe separation distance ∆x between two consecutive fringes
is given by [7]:

∆x =
λ

2α
. (2.2)

Defining our x- and y-axes as being orthogonal to each other and to the
z-axis, as defined previously, we can use this formula to determine small
angular displacements around these axes, which we will use in some of
the hexapod characterization experiments.

Figure 2.4: Vertical Fizeau fringes created by a Michelson interferometer in the
course of one of our hexapod characterization experiments on 16 December 2019.

6
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2.2 Outline of the JPE hexapod 7

Figure 2.5: Sketch of the origin of the Fizeau fringes. Here the fringes will be
parallel to the line orthogonal to the plane in the figure.

2.2 Outline of the JPE hexapod

Having discussed the Michelson interferometer rather thoroughly, we will
now provide a short summary of the basic properties of the JPE hexapod.
For a more detailed description we advise the reader to contact Janssen
Precision Engineering.

2.2.1 Working principle

As can be seen from the technical drawing of the hexapod, made by Har-
men van der Meer of the Fijnmechanische Dienst and shown in Figure 2.6,
the hexapod consists of a platform with six legs, which can effectively be
expanded or contracted using the six piezo motors (or actuators) placed
there. Note that we have added the word ”effectively” to indicate that the
length of the legs itself stays fixed, but their effective length changes when
the motors either push the ends of the legs upwards or pull them down-
wards with respect to the base plane. Since each leg can in principle move
separately from all others, the movable platform has a total of six degrees
of freedom.
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8 Theoretical Considerations

Figure 2.6: A technical drawing of the JPE Hexapod made by Harmen van der
Meer. The upper platform, connected to the six legs, is the movable platform of
the hexapod. The plane surrounded by the green ring is the base plane (or base
platform).

The basic working principle of the piezo actuators can be considered as
the electric equivalent of the stick-slip effect [10]. A ”fast” voltage pulse is
sent to rapidly expand the piezo, and is then followed by a ”slow” voltage
pulse to contract it gradually. The combined effect of this pulse train are
very small net contractions or expansions. We refer to these net displace-
ments as motor steps. It should be noted that piezo’s are subjected to the
effect of hysteresis [11], which in practice means that the actual size of a
single motor step is rather unpredictable.

The hexapod also contains optical readers, which essentially provides
us with a kind of ruler to determine the position of a leg (with respect to
some predefined origin). We will often refer to the distance between two
consecutive markers of the optical readers as an optical step. In general,
several motor steps are required to travel one optical step.

2.2.2 Electronical aspects

Before deriving the platform displacement equations, we give a very brief
sketch of the electronics underlying the hexapod, with a particular focus
on the external driver which is used to generate the voltage pulses.

According to ing. Arno van Amersfoort of the Electronics Department,
the driver-piezo circuit can be considered analogous to the electric circuit

8
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2.2 Outline of the JPE hexapod 9

R1

R2
C1

S1

S2

V

Figure 2.7: Drawing of a circuit analogous to the driver-piezo circuit used for the
hexapod control. Here C1 refers to the piezo, which is essentially a capacitor. In
our particular setup we have R1 equal to 18 Ω and R2 ∼ 2 kΩ. The capacitance of
the piezo is not known.

shown in Figure 2.7. The actual circuit, of course, is far more complex,
containing electronic elements not shown here, including transistors. Fo-
cusing on this figure, we note that there are two switches in this circuit,
conveniently named S1 and S2. When the ”fast” voltage pulse is sent, S1
is closed and S2 is open. When the ”slow” voltage pulse is sent, it is the
other way around. Note that, according to Arno, the circuit is designed in
such a way that the ”fast” and ”slow” pulses are almost each others mir-
ror image (with respect to the voltage axis); whereas the ”fast” pulse starts
with a sharp rise in the voltage followed by a slow decline, the ”slow”
pulse rises slowly in the voltage first to decline sharply afterwards. They
are, however, not exactly mirrored, for then the net displacement of the
piezo would equal zero. By changing the resistors, one can alter the pulses
in such a way that the pulses become either more or less ’similar’ (more
meaning they increasingly resemble mirror images), which corresponds to
smaller or bigger average motor steps respectively. For more details, we
suggest the reader to contact Arno.
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Chapter 3
Calculation of Platform
Displacements

We will now describe the geometry of the JPE hexapod and the movement
of the platform under expansion/contraction of the six legs of the hexa-
pod. This description is based on a single A4 document that JPE provides
on their website and on technical drawings that Harmen van der Meer
made from a 3D-drawing that he received from JPE. We have added the
mathematical framework to this description.

3.1 Geometry and parameters

Referring to Figure 3.1 the situation can be described as follows: There are
six legs, all connected to a circle of radius RB on a base. The base defines
the z = 0 plane; the center of the base circle defines the origin. The upper
ends of the legs are connected to a circle of radius RP on a platform. In
its ’rest position’ this platform is located in the z = zP plane. The in-
plane positions of the six legs on each circle are characterized by an angle:
αB > 60◦ for the base and αP < 60◦ for the platform. The connection of
each leg to the base and platform is modeled as if it is flexible, like a ball
or point contact.

Figure 3.1 also shows the labeling of the end points of the six legs: PB1−
PB6 for the lower ends on the base circle and PP1 − PP6 for the upper ends
on the platform circle. We will perform most of our analysis on leg 1 and
use symmetry arguments to relate these results to the other five legs. The
position of the lower end of leg 1 on the base circle is characterized by
the angle αB/2 that it makes with the negative y-axis. The position of the
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12 Calculation of Platform Displacements

upper end of leg 1 on the platform circle is characterized by a similar angle
αP/2.

Figure 3.1: Geometry of the JPE hexapod in three dimensions. This figure was
provided by JPE.

It is convenient to introduce the following additional parameters:

• s =
√

s2
⊥ + s‖2 is the length of each leg in its rest position.

• s⊥ = zP is the projection of the leg on the vertical direction, denoted
as ⊥ to indicate that it is perpendicular to the base plane.

• s‖ is the projection of the leg on the base plane; s‖ has a direction and
is actually a vector S‖.

• β is the angle between the projected base vector PBi and the projected
leg Si ≡ PPi− PBi, where i = 1, 2, ... , 6. This angle is shown in Figure
3.2.

• ϕ is the angle between vector Si and the base plane, such that sin ϕ =
s⊥/s and cos ϕ = s‖/s.

12
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3.2 Preliminary calculations 13

Figure 3.2: Projection of the movable platform on the base plane. Several of the
important parameters are shown.

3.2 Preliminary calculations

The length of each leg in rest follows from simple vector algebra. We can
for instance use the rest positions of the end points of a leg to write S1 ≡
PP1−PB1 = ((RB sin αB/2−RP sin αP/2), (RB cos αB/2−RP cos αP/2), zP)
as a 3D vector and calculate its length. We can also start from s⊥ = zP and
use the projected triangle in Figure 3.2 to find the projected length s‖ via
the cosine rule

s‖
2 = R2

B + R2
P − 2RBRP cos [(αB − αP)/2] (3.1)

Starting from the symmetric rest position, we will derive the effect of
six fundamental displacement and rotation operations on the vector posi-
tions of all end points Pi ≡ PPi for i = 1, ... , 6. (base positions are fixed).
We consider only small movements dPi of the platform points and use
first-order Taylor expansions when needed. The corresponding effective
length changes of the six legs follow by projection:

dsi =
Si · dPi

si
= sin ϕ dPi,⊥ + cos ϕ cos χi dPi,‖ (3.2)

where χi is the angle between the in-plane Si,‖ and in-plane movement
dPi,‖.
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14 Calculation of Platform Displacements

3.3 Six basic operations

We will consider six basic displacement operations: translations in x, y, z
and rotations θx, θy, θz.

To find the leg displacements corresponding to those operations we
first note that that the symmetry group of the hexapod configuration con-
tains, among other things, the 120◦-rotations around the z-axis and the
reflections in the yz-plane. By considering the effect of these symmetry
transformations on the operations themselves, one can then find the inter-
relations between the leg displacements. For example, the reflection in the
yz-plane shows that the translation in y yields ds1 = ds2, ds3 = ds6 and
ds5 = ds4.

To find the expressions for the dsi in terms of the parameters mentioned
in 3.1 we then use basic Euclidean plane geometry. Several helpful figures
for deriving the following results have been included in Appendix A.

1. z = translation in z-direction
Displaces all platform points by the same amount dPi,⊥ = dz (no in-
plane movement). The corresponding changes in the leg lengths are
all equal:

ds1 = ds2 = ds3 = ds4 = ds5 = ds6 = sin ϕ dz (3.3)

2. θz = rotation around z-axis
Displaces all platform points by the same amount dPi,‖ = RPdθz
in the tangential direction (no out-of-plane movement). The corre-
sponding change in the leg length depends on cos ϕ, via the in-plane
projection, and on the angle χ1 = β + (αB − αP)/2 between the tan-
gential displacement dPi,‖ and the projected leg Si,‖ via:

ds1 = − ds2 = ds3 = − ds4 = ds5 = − ds6 =

= cos ϕ sin [β + (αB − αP)/2] RPdθz = cos ϕ
RB

s‖
sin [(αB − αP)/2] RPdθz

(3.4)

where we used the law of sines to obtain the final equation.

3. y = translation in y-direction
Displaces all platform points by the same amount dPi,‖ = dy in the
(in-plane) y-direction (no out-of-plane movement). The correspond-
ing changes in the leg length are dsi = cos ϕ cos χidPi,‖, where the

14
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3.3 Six basic operations 15

angle χi between Si‖ and dPi‖ is different for the different i’s, such
that:

ds1 = ds2 = cos ϕ cos (−β− αB/2) dy = cos ϕ cos (β + αB/2) dy
ds3 = ds6 = cos ϕ cos (β + αB/2− 120◦) dy
ds5 = ds4 = cos ϕ cos (β + αB/2 + 120◦) dy

(3.5)
where we have added the first (double) equation to show that the
angle of S1 ≡ PP1 − PB1 with the positive y-axis is defined in the
usual way.

4. θy = rotation around y-axis
Displaces all platform points in the out-of-plane direction by an amount
dPi,⊥ ∝ RPdθy that scales with distance from the y-axis (no in-plane
movement). The corresponding changes in the leg length are:

ds1 = −ds2 = − sin ϕ sin (−αP/2) Rp dθy = sin ϕ sin (αP/2) Rp dθy

ds3 = −ds6 = sin ϕ sin (αP/2− 120◦) Rp dθy

ds5 = −ds4 = sin ϕ sin (αP/2 + 120◦) Rp dθy
(3.6)

5. x = translation in x-direction
Displaces all platform points by the same amount dPi,‖ = dx in the
(in-plane) x-direction (no out-of-plane movement). The correspond-
ing changes in the leg length are:

ds1 = −ds2 = cos ϕ cos (90◦ − β− αB/2) dx = cos ϕ sin (β + αB/2) dx
ds3 = −ds6 = cos ϕ sin (β + αB/2− 120◦) dx
ds5 = −ds4 = cos ϕ sin (β + αB/2 + 120◦) dx

(3.7)

6. θx = rotation around x-axis
Displaces all platform points in the out-of-plane direction by an amount
dPi,⊥ ∝ RPdθx that scales with distance from the x-axis (no in-plane
movement). The corresponding changes in the leg length are:

ds1 = ds2 = − sin ϕ sin (90◦ − αP/2) Rp dθx = − sin ϕ cos (αP/2) Rp dθx

ds3 = ds6 = − sin ϕ cos (αP/2− 120◦) Rp dθx

ds5 = ds4 = − sin ϕ cos (αP/2 + 120◦) Rp dθx
(3.8)
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16 Calculation of Platform Displacements

Finally, we note that operation 5 (displacement in x-direction) can also
be synthesized from two modified displacement in the y-direction, using
the following trick: (i) create the two operations for displacement along
axes oriented at±120◦ with respect to the y-axis, (ii) subtract these two op-
erations, (iii) divide by

√
3 to obtain the sought-for x-displacement. Like-

wise, operation 6 (rotation around x-axis) can be synthesized from two
two rotations around the ’y ±120◦’ axes. We have performed both synthe-
ses and checked that the result are the same as the ones mentioned above.

3.4 Checks and symmetries

Looking back at the obtained results we note that:

• The three operations z, θx, and θy displace the end points in the out-
of-plane direction and therefore scale with sin ϕ = s⊥/s, whereas
the three operations θz, x and y displace the end points in-plane and
therefore scale with cos ϕ = s‖/s.

• The operations z, y and θx are even/symmetric under reflection in
the yz mirror plane, whereas the operations θz, θy and x are odd/anti-
symmetric under this mirror operation.

• We had expected that the six operations are orthogonal to each other,
i.e. that the six-element displacement vector sA′ of any base opera-
tion A’ is orthogonal to the displacement vector sB′ of any other base
operations B’. We checked this. We found that any even operation is
naturally orthogonal to any odd operation due to the relation:

cos (γ) + cos (γ + 120◦) + cos (γ− 120◦) = 0 , (3.9)

which applies for any angle γ and is also valid when the cosine func-
tion is replaced by the sine function. However, the orthogonality be-
tween sy and sθy is only satisfied when cos (β + αB/2− αP/2) = 0.
For the set of the three odd vectors, two of the three orthogonality re-
lations are again satisfied by the above relation. Yet the orthogonality
between sx and sθx is now only satisfied when sin (β + αB/2− αP/2) =
0. Hence we find that the complete set of six basis operations is not
orthogonal. We do not understand why this is so.

16
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3.5 Matrix formulation 17

3.5 Matrix formulation

All the relations derived in Section 3.3 can be succinctly summarized in
matrix form, yielding the equation

A∆r = ∆s, (3.10)

where we have ∆r = [dx, dy, dz, dθx, dθy, dθz]T, ∆s = [ds1, ds2, ds3, ds4, ds5,
ds6]T, and A the ’Cartesian-to-leg’ transformation matrix. Here T refers
to the transpose operation, since ∆r and ∆s are column vectors. A is a
6x6 matrix whose columns can directly be found from the equations in
Section 3.3. For instance, the fifth column vector, corresponding to θy, of
A is simply given by [a, -a, b, −c, c, −b]T, with a = sin ϕ sin(αP/2)Rp,
b = sin ϕ sin(αP/2− 120◦)Rp and c = sin ϕ sin(αP/2 + 120◦)Rp.

We can also consider inverting Equation 3.10, obtaining ∆r from ∆s:

∆r = Ã∆s, (3.11)

where Ã is the inverse matrix of A. The inverse Ã can readily be found
by using the quasi-orthogonality of the column vectors of A together with
the Gram-Schmidt theorem [12]. We will, however, not go over the details
here.

3.6 Practical aspects

The 3D-drawings show that the connection of each leg to the base and
platform is not a simple ball or point contact, but actually comprises two
2D joints that bend in orthogonal directions. For simplicity, we will treat
each pair of joints as a single point contact at the average position. Fig-
ure 3.3 shows that the associated parameters are RB = 31.59+33.15

2 mm
= 32.37 mm, RP = 21.65+19.83

2 mm = 20.74 mm, and zP = 22.91 mm.
Figure 3.4 shows that the average angular positions correspond to αB =
120◦ − 60.83◦ = 59.17◦ and αP = 120◦ − 85.83◦ = 34.17◦. Substitution of
these parameters in Eq. (3.1) yields s‖ = 12.94 mm and s = 26.31 mm,
making sin ϕ = 0.871 and cos ϕ = 0.491. The angle β can be found with
the law of sines. Specifically, sin(β) = RP

s‖
sin((αB − αP)/2) = 0.347.
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18 Calculation of Platform Displacements

Figure 3.3: Technical drawing, by Harmen van der Meer, of the hexapod plat-
forms, showing the different platform radii.

Figure 3.4: Technical drawing, by Harmen van der Meer, of the hexapod plat-
forms, showing the different platform angles.

Figure 3.5 shows the mechanism used to change the effective leg length.
In the two planes set by the 2D joint these arm lengths are virtually iden-
tical at 26.8 mm and 26.78 mm, respectively. This is somewhat larger than

18
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3.6 Practical aspects 19

the value s = 26.31 mm mentioned above, maybe due to the double-joint
construction. Furthermore, the leg length doesn’t really change, but the
bottom part of the leg is pushed upwards or downwards via a lever with
a range of 1.5-2.0 mm.

Finally, we note that the top of the platform is located h = 15− 16 mm
above the middle of the six pairs of upper joints (exact height difficult
to judge from figure). This elevated location will not affect the z and θz
operations, and the x and y displacements also remain pure. However,
the ∆θy rotation will now also produce an extra displacement ∆x = h∆θy.
Likewise, the ∆θx rotation will now produce an extra displacement ∆y =
−h∆θx. These couplings can be removed by subtracting the spill-overs
from the original rotation operations, thus resulting in two modified pure
rotation operators.

Figure 3.5: Technical drawing, by Harmen van der Meer, of the hexapod joints
and the leg displacement mechanism.
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Chapter 4
Hexapod Control

In this chapter we describe the hexapod control program, which we use to
move the platform. We also discuss several characteristic features of the
piezo actuators, as well as a method to decrease the average motor step
size.

4.1 Hexapod control program

Together with ing. Arno van Amersfoort we made a program to control
the movements of the hexapod platform. A picture of the user interface of
this program is included as Figure 4.1.

The upper left block shows the current leg positions snow in terms of
optical steps. Note that these leg positions are defined with respect to
some ’origin’ position which was set by Arno. The hexapod remembers
this origin position, even after turning the program on and off. For more
details we refer the reader to Arno.

The upper right block gives the current platform position rnow with
respect to some reference position, which need not be the origin (the user
can choose any possible leg position as a reference point), in terms of the
Cartesian coordinate set {x, y, z, θx, θy, θz}. The Cartesian coordinates are
directly calculated from the leg positions, or, stated more accurately, from
the difference between the current leg positions snow and the leg positions
of the reference position sre f . We can neatly summarize this calculation as

rnow = Ã(snow − sre f ), (4.1)

using the terminology of the previous chapter. We haven chosen not to
include the possibility of changing the reference position in the interface
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22 Hexapod Control

itself; this needs to be done directly in the code itself.
In the middle block, the user can change the voltage and the frequency

with which pulses are sent to the piezo actuators. Note that for safety
reasons the user can only change the voltages to values in-between 35 and
200 V, and the frequencies to values in-between 1 and 600 Hz. According
to both JPE and Arno, one can best use voltages of 100 to 130 V and pulse
frequencies of 100 to 300 Hz at room temperature. We emphasize that one
should be particularly careful with the voltage, as values far above 130V
can damage the piezo’s.

In the bottom left block the user can insert the Cartesian coordinates he
or she wants the platform to have with respect to the reference position.
Pressing the Start-button will then result in the platform moving towards
the desired position rdesired. This can again be stated mathematically as

∆sneeded = A(rdesired − rnow), (4.2)

where ∆sneeded is the leg displacement vector. The legs will thus move
towards snow + ∆sneeded.

Finally, the bottom right block allows the user to move the legs by indi-
vidual motor steps, as opposed to optical steps, which can be of use when
one needs to fine-tune, for instance, the alignment of the mirrors in a mi-
crocavity.

Figure 4.1: The user interface of the hexapod control program.
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4.1 Hexapod control program 23

4.1.1 Discreteness of the optical steps

While the mathematics seems relatively straightforward, one should pay
attention to the fact that the leg positions are given in terms of optical
steps, and therefore can only take on integer values. Of course, it is pos-
sible to add individual motor steps, thereby expanding the set of possible
positions, but, because of the unpredictability of the step size, one then
loses information regarding the actual position of the platform. While this
discreteness does not pose a problem for calculating the platform position
(in Cartesian coordinates) from the leg positions, at least not when one
knows the size of an optical step, the other way around is not trivial. This
is because not every Cartesian position corresponds to a possible leg posi-
tion (due to the integer restriction), whereas every given leg position does
have a corresponding Cartesian position.

To deal with this problem we first calculate the amount of optical steps
∆sneeded needed to go to the desired Cartesian position using Equation 4.2,
and then round the entries in ∆sneeded off to integer values. Note that the
upper right block in the user interface will still display the correct Carte-
sian position after the platform movement, since this is directly calculated
from the leg positions.

One notable problem arising from the discreteness of the optical steps
is that it is, in general, not possible to reach pure x-, y-, θx- and θy-positions
(with respect to some reference position). To understand why this is the
case one needs to consider the column vectors of A corresponding to the
mentioned Cartesian coordinates. Ignoring the plus and minus signs, each
column contains three different expressions. Filling in the values for the
several constants in these expressions, one finds three different numbers
for each column, {a, b, c}, for which there does not exist a number γ such
that γa, γb and γc are all integer. This means that there is no ∆sneeded with
only integer entries such that it yields a pure x-, y−, θx- or θy-displacement.
Note that this problem does not arise for z- or θz-displacements, for then,
apart from the plus and minus signs, the columns each contain only one
expression.

4.1.2 Important remarks

It is important to note that the origin has been calibrated a total of three
times, mainly based on electronical considerations which will not be dis-
cussed here. The first calibration, by ing. Arno van Amersfoort, took place
around 7 October 2019, a month before our first experimental tests of the
hexapod. The second calibration, again by Arno, was carried out around
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24 Hexapod Control

22 November 2019. During these calibrations information regarding the
position of the old origin with respect to the new one was lost.

For the sake of clarity, we will add labels (a) and (b) to figures of exper-
imental data. Experiments with the label a took place before the second
calibration, those with label b after this date. The leg positions mentioned
there are taken relative to the position of the origin at that time.

One would expect that the optical step size is the same regardless of
the position, and hence no problems should arise from these calibrations.
However, this needs to be tested experimentally, which we will discuss in
Chapter 5.

Finally, a third calibration took place in January 2020, by Corné Koks,
with the origin now defined as the highest point one can (safely) reach.
However, our last experiments took place around the 20th of December,
making this calibration irrelevant for the experiments discussed here.

4.2 Typical behaviour of the piezo actuators

While the characteristics of the piezo actuators used are not of great impor-
tance for our project, we deem it helpful to provide a very rough sketch
of their typical behaviour, most notably their apparent dependence on the
leg position.

On the advise of ing. Arno van Amersfoort we altered the circuit dis-
cussed in Section 2.2.2 and shown in Figure 2.7 by replacing the 18 Ω re-
sistor with one from 100 Ω. According to Arno, this would then result in
a decrease of the average size of a motor step. To check this we used a
feature of the hexapod program which allows us to move the legs over a
whole range of optical steps, in the meantime keeping track of the amount
of motor steps it takes a leg to travel one optical step. The results are
shown in Figures 4.2 and 4.3.

Again, while not providing a very thorough analysis, we note that the
amount of motor steps going into an optical step seems to increase when
changing to a 100Ω resistor. This would suggest that the average size of a
motor step decreases.

More importantly, Figure 4.3 provides an example of the typical po-
sitional dependence of the behaviour of the piezo actuators. Due to the
particular design of the hexapod, the piezo being connected to a spring
construction, the motor steps, as a function of position, will follow a bath-
tub curve. When a hexapod leg is around its lowest position(s), the decou-
pling of the piezo from the spring (and hence the leg) will result in a sharp
increase of the amount of motor steps needed to travel one optical step

24
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4.2 Typical behaviour of the piezo actuators 25

Figure 4.2: The amount of motor steps per optical step as a function of the leg
position for the 18 Ω resistor ( a). We applied pulses of 140 V and 200 Hz. This
experiment took place around 14 November 2019. (a)

Figure 4.3: The amount of motor steps per optical step as a function of the leg
position for the 100 Ω resistor (b). We applied pulses of 140 V and 200 Hz. This
experiment took place around 1 December 2019. (b)

Version of January 25, 2020– Created January 25, 2020 - 10:44

25



26 Hexapod Control

when trying to reach even lower positions. Pushing this too far can
even result in complete decoupling of the piezo and the leg, which one
should avoid at all times. Similarly, around the highest positions the piezo
actuator is pushing against the limits of its support, resulting in the other
steep slope of the bathtub curve. When calibrating the origin, one strives
to position it far away from the steep slopes.

While the behaviour of the piezo actuators can be very interesting and
enlightening to analyze, we decided to instead focus on the platform move-
ments, which will be discussed in the next chapter.

26
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Chapter 5
Experimental Tests of Platform
Movements

We are now ready to check the platform movement equations derived in
Chapter 3. We use a Michelson interferometer to determine the z-, θx- and
θy-displacements. To characterize rotations around the z-axis and transla-
tions along the x- and y-axes we image an USAF1951 Test Target onto a
CCD.

5.1 Interferometric experiments

As discussed in Chapter 2, the Michelson interferometer can be used to
measure displacements along the z-axis and rotations around the x- and y-
axes with an extremely high accuracy. We use two slightly different experi-
mental setups of the Michelson interferometer, one for the z-displacements
and one for the θx- and θy-displacements.

Before discussing the exact setups, it is worthwhile to go over some of
the equipment we used for these experiments. We used the JDS Uniphase
1101/P helium-neon laser at a wavelength of 633 nm for the z-displacement
experiment, whereas the Melles Griot Stabilizing 05-STP-903 helium-neon
laser, also operating at 633 nm, was used for the θx- and θy-experiments. In
both experiments we made use of the DMK41 BUO2 CCD Camera of The
Imaging Source, which has a maximal frame rate of 15 fps and a pixel size
of 4.65 µm in both the horizontal and vertical directions. The limitations
of both the lasers and the camera will be discussed throughout Sections
5.1.2 to 5.1.4. Lastly, we used two mirrors, highly reflective (T = 0.5%)
for wavelengths of 633 nm, of LO Laseroptik GmbH as M1 and M2 in the
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28 Experimental Tests of Platform Movements

Michelson interferometer. Note that we also used a mirror of this type as
the 45◦ mirror, as will be discussed in the next section.

5.1.1 Setups

The setup for the measurements along z is shown in Figure 5.1. With this
setup we are able to create a circular fringe pattern, as discussed in Chap-
ter 2. We note that the setup used in our experiment is in principle iden-
tical to the setup for circular fringes considered there; the mirror M3 has
only been included to deflect the laser beam, which was necessary due to
space limitations, whereas the two lenses placed in-between M3 and the
beam splitter simply serve as a collimator to limit the divergence of the
laser beam.

Figure 5.1: Setup used for the measurement of z-displacements around 7 Novem-
ber 2019. The distance from the beam splitter to M1 is 12 ± 0.5 cm, whereas the
distance from the beam splitter to M2 is 25 ± 1 cm.

28
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5.1 Interferometric experiments 29

Figure 5.2: Hexapod setup for the z-, θx- and θy-experiments. Note that for θx and
θy we use the exact same configuration (same mirrors), only then we place the
hexapod in the other arm of the Michelson.

Having created the circular fringe pattern, we use the CCD to record
the changes in this pattern resulting from the movements of the hexapod
platform, which contains M2, in the z-direction. We then analyze how the
pixel intensity in the center of the pattern changes as a result of the dis-
placements, and from this we can derive the actual displacement distance,
as will be described in Section 5.1.2. Note that the actual size of the ring
pattern, which is dependent on the relative positions of the lens in the M1-
arm and the CCD, is irrelevant here; we are only concerned with changes
in the pattern.

To ensure that no reflected laser light travels back into the laser, which
can negatively affect its performance, we make use of the large distance
between M3 and the beam splitter, which is around 60 cm in our exper-
iment. Even for angles smaller than 0.01 rad between the incident and
reflected beams will we then be able to block the reflected light with a
screen. It is much easier, however, to use a Faraday isolator, which is what
we have done in subsequent experiments.

Before discussing the setup for the θx- and θy-experiments, we briefly
consider the procedure used to ensure that the laser beam travels parallel
to the z-axis, as shown in Figure 5.2. We use a special 45 ◦ (± 0.1◦) mirror
mount made by Ruud van Egmond of the Fijnmechanische Dienst to de-
flect the incoming laser beam towards M2. Tuning the setup in such a way
that the beam reflected from M2 travels back towards the beam splitter, we
are assured that the angle of the beam with respect to the z-axis is smaller
than 0.01 rad.

The setup for the θx- and θy-displacements is shown in Figure 5.3. We
use it to create Fizeau fringes, and we observe that this setup is practically
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30 Experimental Tests of Platform Movements

the same as the Fizeau-setup discussed in Chapter 2. The only additions in
our setup include a collimator and a Faraday isolator, for reasons already
discussed. Furthermore, we note that the hexapod is now located in the
M1-arm of the Michelson interferometer, which was again purely done
out of space considerations. For reasons mentioned in Sections 2.1.2 and
5.1.3 we place the hexapod in such a way that the y-axis of the movable
platform is aligned with the M1-arm of the Michelson interferometer. We
also ensure that the laser beam reflected from the 45◦ mirror is again very
nearly parallel to the z-axis. Tilting the platform around either the x- or
the y-axis will then alter the fringe density, allowing us to determine the
angular displacement around said axes.

Figure 5.3: Setup used for the measurement of θx- and θy-displacements around
16 December 2019. The distance from the beam splitter to M1 is 51 ± 1.5 cm,
whereas the distance from the beam splitter to M2 is 49 ± 0.5 cm

5.1.2 Displacements in the z-direction

Having built the z-setup, we displace all the legs of the hexapod by a single
optical step, followed by a rest period of around six seconds, doing nine-
teen optical steps in total. This rest period allows us to easily distinguish
between consecutive platform displacements, as can be seen from Figure
5.4. We can count the amount of fringes ∆m passing through the center
by noting that two consecutive peaks in Figure 5.4 correspond with ex-
actly one fringe. We read off ∆m within an accuracy of 1/12th of a fringe.
We can then calculate the platform displacement using the formula intro-
duced in Section 2.1.1,

∆z = ∆m
λ

2
, (5.1)
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5.1 Interferometric experiments 31

with ∆z the platform displacement and λ the wavelength of the laser.
Hence in Figure 5.4 we see three consecutive individual platform displace-
ments, each with a displacement distance equal to 633 nm. Put differently,
we see a total displacement of 1899 nm over a range of three steps.

Figure 5.4: Segment of the measurement for the z-displacements, where we plot
the pixel intensity in the center of the interference pattern as a function of time.
The rest period is around six seconds, and consecutive platform movements can
easily be distinguished from one another. (a)

A plot over the whole range of steps is shown in Figure 5.5. From the
linear fit we find the size of a single z-displacement to be equal to 654 ±
3 nm. Referring to Equation 3.3, with sin ϕ = 0.871, this would suggest
an optical step size of 570 nm ± 3 nm. We should note that that these
error bars are purely due to statistics; the actual uncertainty is larger due
to systematic errors, as we will see soon.

However, when we look at our original plot of the pixel intensity, we
see that ten individual steps, including those shown in Figure 5.4, corre-
spond to steps of 633 nm. Within our reading accuracy of 1/12th of a
fringe one then finds these ten steps to have an average z-displacement of
633 nm, within an error of ± 4 nm. This would in turn imply an optical
step size of 551 ± 4 nm for these steps.
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32 Experimental Tests of Platform Movements

Figure 5.5: The measured z-displacements, in µm, as a function of the platform
displacements, given in optical steps. The slope of the linear fit has a value of
0.654 µm per optical step and a standard error of 0.003 µm per optical step. (a)

It is very important to determine the causes of this discrepancy. It
might simply be the result of noise creeping in during some parts of the
measurement, making it more difficult to read off the correct displacement
of the other nine steps, as can be seen clearly in Figure 5.6. However, it
could also prove to be a more fundamental issue, namely that the optical
readers might not be evenly spaced, hence making the optical step size
dependent on the exact absolute position of the legs. For this reason we
will, in the remaining experiments, determine from the experimental data
the optical step size which yields the most correspondence with our the-
oretical predictions. We will refer to this as the actual optical step size.
Assuming the optical readers are truly evenly spaced and our model is
correct, one expects to find a linear relation between the experimental re-
sults and the theoretical predictions as well as the same actual step size for
all experiments, within their respective errors bars, of course.
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5.1 Interferometric experiments 33

Figure 5.6: Segment of the measurement for the z-displacements; a plot of the
pixel intensity in the center of the interference pattern as a function of time. There
appears to be a significant amount of noise, its amplitude being of the same order
of magnitude as the signal itself. (a)

Delving a bit deeper then into the possible sources of the noise, we
note that the laser used is not completely frequency-stable, the output fre-
quency changing in a predictable pattern over time. While we only con-
ducted our experiments after the laser had been turned on for a significant
amount of time (> 10 minutes), thereby minimizing the frequency fluctu-
ations as much as possible, the length difference of 13 ± 1 cm between
the two arms still made our interferometer susceptible to this effect. As a
quantitative example, a frequency change of 1 GHz will result in a shift of
about 0.9 fringes in our setup. This problem can easily be avoided by en-
suring that the arms of the interferometer are of the same length. As a gen-
eral rule the arm length difference should be much smaller than the length
of the laser. Secondly, we did not take any measures to reduce acoustic
vibrations, which could also be a source of noise. In that case, however,
we would expect the noise to be present at all times, whereas Figure 5.4
implies that there are significant periods of time in which there is virtu-
ally no noise at all during the measurement, at least not of an amplitude
comparable to that of our signal.

Since we count a fringe shift of around 2 fringes in the rest periods of
our measurements, and a fringe shift of around 38 fringes in the move-
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34 Experimental Tests of Platform Movements

ment periods, we roughly estimate our systematic error (due to drift) to
be around 5%, or ± 29 nm.

Deeming the arm length difference to be the most likely source of noise,
we tried to repeat the experiment in December with a frequency-stable
laser, the Melles Griot 05-STP-903, with a slightly altered setup. We used
the setup of Figure 5.3, with the addition of a lens with a focal length of 40
cm in the M2-arm.

It should be noted that this experiment took place after the second cal-
ibration around the absolute leg position (143, 4226, 6466, 1579, 16, 517),
with respect to the origin of the second calibration. The previous exper-
iment, however, was carried out before this calibration, and somewhere
around (-50,-50,-50,-50,-50,-50), with respect to the origin of the first cali-
bration. In the new experiment we also increased our stepping range to a
thousand optical steps, in order to get as clear as possible an idea of the
spacing between the optical readers.

Two slices of this measurements are shown in Figures 5.7a and 5.7b.
We were unable, however, to make a plot analogous to Figure 5.5, mainly
due to the occurrence of strange behaviour, as shown in Figure 5.7b. In
this figure it is rather ambiguous whether we should count these steps as
a full fringe shift, or no shift at all. It should be noted that we used voltage
pulses of 100Hz (and 100V) on the piezo’s here, as opposed to pulses of
10Hz (and 100V), as in the previous experiment. This will result in a hexa-
pod leg travelling a distance of an optical step in a much shorter amount
of time. Since our CCD can only take 15 frames per second, the strange
behaviour seen in Figure 5.7b is most likely the result of undersampling.
Due to time restraints we were unable to continue this research, but it is
very important that this will be investigated further in the future. We sug-
gest replacing the current CCD with one which has a frame rate at least a
several factors higher, in order to avoid undersampling.

Figure 5.7: Segments of the measurement for the z-displacements around the ab-
solute platform position of (143, 4226, 6466, 1579, 16, 517); a plot of the pixel in-
tensity in the center of the interference pattern as a function of time. (b)
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5.1 Interferometric experiments 35

5.1.3 Displacements in the θx-direction

Before continuing, we note that the θx- and θy-experiments both took place
after the second calibration, around the absolute leg position of (-450,-450,-
450,-450,-450,-450).

To accurately measure the rotations about the x-axis, we use the setup
as drawn in Figure 5.3. It is important that the mirrors are adjusted in
such a way that we have almost completely horizontal fringes, like those
shown in Figure 5.8. When this is the case a rotation of the hexapod mir-
ror around the x-axis will only change the distance between consecutive
fringes, ∆d, but not their orientation. With the hexapod control program to
rotate the movable platform around the x-axis and the ImageJ-program to
measure the new fringe separation distance, we can find the new angle α
between the hexapod mirror and mirror M2 using the formula introduced
in Chapter 2,

α =
λ

2∆d
, (5.2)

where λ is the wavelength of the laser.

Figure 5.8: Almost horizontal Fizeau fringes created with the Michelson interfer-
ometer during the θx-measurements on 16 December 2019. To be more precise,
the fringes are slightly tilted, making an angle of -1◦ with respect to the horizon-
tal. (b)

By determining α before and after the rotation we can determine the
experimentally observed angular displacement, and compare this with the
angular displacement as predicted from the movement of the platform.
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The results are shown in Figure 5.9. From this figure we find an actual step
size of 520 ± 2 nm. In the next section we will check whether we observe
similar behaviour when investigating the rotations around the y-axis.

As for any systematic errors in the measurement, we note that the
fringes at the starting point of the measurement, corresponding to the an-
gular displacement of 0 µrad in the computer program, are not perfectly
horizontal, but slightly tilted at roughly -0.5◦ (not the one shown in Figure
5.8!). Notice that we have defined the signs of the angles in accordance
with the right hand rule, with the thumb pointing out of the image cor-
responding to a positive angle, as in Figure 5.8 for instance. The tilt ’de-
creases’ to a minimum of about -11◦ when moving in the direction of the
positive θx-displacements, and increases to a maximum of approximately
2◦ when going towards the negative displacements. By better aligning the
mirrors, the accuracy of this experiment can be improved.

Figure 5.9: Comparison of the theoretically predicted angular displacements, as-
suming an optical step size of 570 nm, with the experimentally determined an-
gular displacements for θx. The slope of the linear fit has a value of 0.912, with a
standard error of 0.004, which indicates that the actual optical step size is
520 ± 2 nm. (b)
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5.1 Interferometric experiments 37

5.1.4 Displacements in the θy-direction

Using an analogous approach as in Section 5.1.3, with the only difference
being that we now of course use a vertical fringe pattern, we arrive at the
results shown in Figure 5.10. We now find an actual optical step size of
519 ±4 nm. This falls within the limit of the error bars of the θx result,
which indicates that we can apply the platform displacement equations to
calculate the actual displacements for the θx- and θy-operations.

Similarly to the θx-experiment, the fringes here are not completely ver-
tical, the initial tilt being around 1◦ (with respect to the vertical). This rises
up to 8◦ in the positive direction, and decreases to approximately -4◦ in
the negative direction. Since the tilting angles for θy are slightly larger
than those for θx, this might explain why we also have a slightly larger
standard error here.

Figure 5.10: Comparison of the theoretically predicted angular displacements,
assuming an optical step size of 570 nm, with the experimentally determined
angular displacements for θy. The slope of the linear fit has a value of 0.910, with
a standard error of 0.007, which indicates that the actual optical step size is
519 ±4 nm. (b)
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5.2 Imaging experiments

5.2.1 Setup

Whereas the displacements along the z-axis and the rotations around the
x- and y-axes can easily be measured with the Michelson interferometer,
the other ’Cartesian’ directions require a different approach. To completely
characterize our coordinate set, we build an imaging system as drawn in
Figure 5.11. The basic idea of this setup/experiment is relatively straight-
forward. We place an USAF1951 Test Target, as pictured in Figure 5.12,
on the movable platform of the hexapod, and use an aspheric lens with a
focal length f of 8 mm to obtain a magnified image of the test target on the
camera. Note that we place our camera such that the vertical axis of the
camera lens is parallel to the y-axis of the hexapod, so that displacements
along the y-axis will be seen as vertical movements in the videos/photos.

The magnification m of the image can be calculated by measuring the
image distance s′ between the lens and the camera and applying the thin
lens equation, 1

s +
1
s′ =

1
f with s the object distance between the lens and

the USAF target, in conjunction with the magnification formula, |m| =
| − s′

s | = |1−
s′
f | [9]. Another way to determine the magnification is by

measuring the distance spanned by a line pair (meaning a black and a
white line) of the USAF target using the ImageJ-program and comparing
this with the known line pair density of that element.

For the x- and y-displacement experiments we measured a distance of
33 ± 1 cm between the lens and the CCD , yielding a magnification of 40
± 1. Here we have ignored the additional minus sign resulting from the
inversion of the image due to the lens. Using the second method, however,
we found a magnification of 22.8 ± 0.6. We deem the latter method more
reliable, since we did not adequately check whether we truly placed the
CCD at the image distance. Based on the result of the second method and
the magnification formula, we estimate the actual image distance to be 19
± 0.4 cm. For the θz-displacements we solely relied on the second method,
and found a magnification of 12.0 ± 0.1.

Having determined the magnifications, we move the platform along
either the x- or y-axis, or rotate it around the z-axis, and record the move-
ment of the USAF Test Target with the CCD-camera, the same as used in
the interferometric experiments. Next we calculate the distance travelled
by comparing the position of a particular object in the video, for instance a
white line, in the first frame with its position in the last frame of the video,
where we again make use of ImageJ. We then compare this distance with
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5.2 Imaging experiments 39

the one predicted from the leg displacements of the hexapod, providing
an accurate test for our theory.

Before discussing the results, we mention that the x- and y-experiments
were both performed around the platform position (-50,-50,-50,-50,-50,-50),
and before the second calibration. The θz-experiment was performed after
the second calibration, around (-450,-450,-450,-450,-450,-450).

Figure 5.11: Experimental setup for the measurement of displacements in x, y
and θz. The experiments for x and y were carried out around 17 November 2019,
whereas the θz-experiment took place on 28 November 2019

Figure 5.12: The Thorlabs R1DS1N USAF1951 Test Target.
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5.2.2 Displacements in the x-direction

The results for the movements in the x-direction are shown in Figure 5.13.
Note that we perform this experiment with a method somewhat similar to
the z-displacement experiment, using only single platform displacements,
in this case multiples of (-15,15,19,3,-3,-19). Adding the displacements to-
gether, just as in Section 5.1.2, we arrive at the given plot.

Using only the data from Figure 5.13 we find an actual optical step size
of 683± 4 nm. However, the error bar increases when we take into account
the inaccuracy of ± 0.6 in the magnification. By calculating the slopes of
the fits corresponding to the magnifications of 22.2 and 23.4 one then finds
683 ± 19 nm.

Figure 5.13: Comparison of the theoretically predicted displacements, assuming
an optical step size of 570 nm, with the experimentally determined displacements
for x, assuming a magnification of 22.8. The slope of the linear fit has a value of
1.198, with a standard error of 0.007, indicating that the actual optical step size is
683 ± 4 nm. (a)

We note that this value for the actual optical step size is 30% higher
than those for θx and θy. We want to emphasize again that this experiment
took place before the second calibration, as opposed to those corresponding
to the x- and y-rotations. Since the y-translations took place on the same
date and around the same platform position, we deem it more valuable
to compare the results of that experiment with the actual step size found
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here. If they do not match, we expect there to be a flaw in our platform
displacement calculations for x and y.

As for the flaws in our experimental data itself, we first point out that
we have taken fewer data points. Adding more data will give a completer
characterization of the x-displacements, allowing a more rigorous compar-
ison with our theoretical predictions. Secondly, and of less importance, the
platform displacements used do not correspond to pure x-translations, at
least from a theoretical point of view. The platform equations predict that
a displacement of (-15,15,19,3,-3,-19) will yield slight rotations around the
y-axis of about 10 µrad and rotations of 30 µrad around the z-axis. How-
ever, since we conducted our experiments only a few micrometers away
from the center of the platform, we expect this last issue to have an effect of
less than 0.01% on our data. We emphasize again that the impossibility of
pure x-,y, θx- and θy-operations here is purely a result of the leg positions
only being able to take on discrete values.

5.2.3 Displacements in the y-direction

The results for the movements in the y-direction are shown in Figure 5.14.
The method we use is equivalent to the one described in the previous sec-
tion, the only difference being that we now use multiples of (13,13,7,-19,-
19,7) as our platform displacements.

Again taking into account the uncertainty in the magnification, we find
an actual optical step size of 641 ± 17 nm. We see that this is in disagree-
ment with the results for x. We therefore strongly suspect our calculations
for x and y to be flawed.

It should be pointed out that this need not necessarily be the result of
the equations corresponding to x- and y-translations being entirely incor-
rect. We analyzed the video of the movements to determine whether the
motions were truly along the x- and y-axes. We found an angle of 1.2◦ ±
0.8 ◦ with respect to the x-axis for the x-motion, and an angle of 0.6◦ ±
0.7◦ with respect to the y-axis for the y-motion. This would suggest that
our movements are along the correct axes, the discrepancy between the-
ory and experiment simply being a matter of disagreement in the distance
size. Perhaps different scaling factors need to be added to the x- and y-
equations, but we did not delve any further into this matter due to time
restraints.
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42 Experimental Tests of Platform Movements

Figure 5.14: Comparison of the theoretically predicted displacements, assuming
an optical step size of 570 nm, with the experimentally determined displacements
for y, assuming a magnification of 22.8. The slope of the linear fit has a value of
1.124, with a standard error of 0.006, indicating that the actual optical step size is
641 ± 3 nm. (a)

5.2.4 Displacements in the θz-direction

Unfortunately, we did not manage to obtain useful results for the rotations
around the z-axis. We will give a brief summary of the method used, and
provide several suggestions for improvement.

Since our aspheric lens has a numerical aperature (NA) of 1/2, by the
Abbe diffraction limit we have a minimum resolvable distance of [13]

d =
λ

2NA
= λ, (5.3)

with the wavelenght λ around 0.5 µm for visible light.
Now, a rotation around the z-axis of ∆θz will result in an object, for

instance a white line, a distance R away from the center of the movable
platform being displaced by an amount of R∆θz. To make the rotations as
visible as possible, we choose an element on the USAF Target as far away
from the center as possible, in our case Element 6 of Group 3, which is at
a radius of 0.16 ± 0.01 mm. As can be seen from Figure 5.15, the rotations
are barely visible (large error bar), giving a total displacement 2.3 ± 0.8

42
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5.2 Imaging experiments 43

pixels which corresponds to 0.89 ± 0.31 µm. This in turn gives a rotation
angle θz of 5.6 mrad ± 2 mrad, which corresponds to an actual optical
step size of 310 ± 110 nm. For these reasons, as well as the very limited
amount of useful (visible) measurements taken, we deem the results of this
experiment to be unreliable.

At the time of these measurements the available platform position range
was still relatively small, extending from (0,0,0,0,0,0) to (-1000,-1000,-1000,-
1000,-1000,-1000), and we were thus not able to produce larger rotations.
In our setup then it was also difficult to improve the magnification, for
we could only change the position of the lens by hand, which is time-
consuming and inaccurate when submillimeter precision is required.

Due to time restraints and differing priorities, we were unable to carry
out the experiment properly. We offer two suggestions which can be im-
plemented quite straightforwardly in the setup, as shown in Figure 5.11.
First of all, we suggest building a simple system which enables the ex-
perimenter to tune the distance between the lens and the platform using
micrometer screws. Secondly, it might be helpful to consider the use of an-
other target plate, specifically one where the pattern extends further out of
the center.

(a) Before the rotation (b) After the rotation

Figure 5.15: Platform displacement of (100,-100,100,-100,100,-100), corresponding
to a predicted rotation angle in-between 9.71 and 10.14 mrad (optical step sizes of
536 nm and 560 nm respectively). The actual displacement seen in this figure has
a magnitude of 2.3 pixels ± 0.8 pixels. (b)
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Chapter 6
Concluding Discussion and
Outlook

While we have made progress by introducing a mathematical model to
describe the platform movements and developing a computer program
with which we can control the motion of the hexapod, a lot of uncertainties
remain. Although our model seems in agreement with the experimental
results for θx and θy, the other coordinates yield less hopeful results. Most
importantly, we have very little information about the θz-operation. Since
we were unable to perform the different coordinate experiments before
and after the second calibration, limited statements can be made about the
validity of our model.

Further testing is therefore required. We suggest to first fully charac-
terize the optical step size for the range of all available leg positions, using
the z-setup (with a frequency-stable laser and equal arm lengths), to test
whether the assumption of a constant step size is valid. When this is done,
we recommend repeating the discussed experiments to test whether our
(idealized) model is truly applicable. Other effects, such as the expected
coupling between θx and y as well as θy and x can then also be tested. To
do so, we recommend using the imaging system, and check whether ro-
tations around said axes will result in the coupled translations discussed.
Finally, limitations due to design can be tested, yielding then a very accu-
rate characterization of the JPE hexapod.
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Appendix A
Additional Figures for Platform
Displacements

Figure A.1: Geometry for the translation along z. Due to the joint construction
of the hexapod a leg will slightly tilt when pushed upon by the motor, as drawn
in the figure. Assuming a small tilt, one has ε = ϕ, from which the z-equation
follows directly.

Version of January 25, 2020– Created January 25, 2020 - 10:44

49



50 Additional Figures for Platform Displacements

Figure A.2: Geometry for the rotation around z. In the small angle approximation
of our model dP1// = RPdθz.

Figure A.3: Geometry for the translation along y for leg 1. The y-equation for leg
1 follows directly from the triangle with sides dy and ds1//. Similar figures can be
drawn for the other legs.
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Figure A.4: Geometry for the rotation around y. In the small angle approxima-
tion, there is only out-of-plane movement. Then dsi⊥ = RYidθy, where RYi is the
distance from PPi to the y-axis.

Figure A.5: Geometry for the translation along x for leg 1. The x-equation for leg
1 follows directly from the triangle with sides dx and ds1//. Similar figures can
be drawn for the other legs.
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52 Additional Figures for Platform Displacements

Figure A.6: Geometry for the rotation around x. In the small angle approxima-
tion, there is only out-of-plane movement. Then dsi⊥ = RXidθx, where RXi is the
distance from PPi to the x-axis.
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