
Quantum feature space learning: characterisation and

possible advantages

Thesis

submitted in partial fulfillment of the
requirements for the degree of

master of science
in

theoretical physics

Author : Dyon van Vreumingen
Student id : s1348434
Supervisor : Dr. V. Dunjko
In collaboration with : C. Gyurik MSc.
Second corrector : Dr. Thomas o’Brien

Leiden, The Netherlands, October 27, 2020

Quantum feature space learning: characterisation and

possible advantages

Dyon van Vreumingen

Huygens-Kamerlingh Onnes laboratory, Leiden university
P.O. Box 9500, 2300 RA Leiden, The Netherlands

October 27, 2020

ABSTRACT

Quantum machine learning is currently regarded as one of the most

promising candidates for solving problems that appear out of reach us-

ing classical computers. Recently, a novel subfield of quantum learning

was opened up by Havĺıček et al. [1], who proposed a quantum learning

algorithm which is closely related to support vector machines, yet which

can be implemented on currently available quantum hardware. In this

thesis, contribute to quantum machine learning by presenting new results

on the capabilities of this algorithm, placing it in the perspectives of clas-

sical learning theory and quantum complexity. As the follow-up research

which has since been published mainly focusses on details of experimental

implementation, results in this direction are still lacking. Specifically, we

compare the hyperplane (explicit) and kernel (implicit) formulations of

the classifier algorithm, study its generalisation performance in the frame-

work of statistical learning theory, and pin down the precise requirements

for a quantum advantage using this algorithm. To this end, we apply

the so-called representer theorem, known from the study of kernel meth-

ods in machine learning, to show training set optimality of the implicit

formulation under regularised error measures. Furthermore, we show a

tight upper bound on the fat shattering dimension of this type of quan-

tum classifier, and discuss the implications for generalisation performance.

Lastly, we carry out a complexity theoretic study showing that classical

intractability of evaluating quantum kernels implies also the intractability

of these quantum classifiers. We argue that despite this fact, we cannot

claim that there exist problems which are hard to learn classically, but

not quantumly, in the PAC learning sense, and subsequently describe the

complexity theoretic requirements of quantum CLF learning to achieve

quantum learning supremacy.

Keywords Quantum machine learning, support vector machine, com-

plexity theory, computational learning theory

Contents

1 Introduction 7

2 Quantum computing 9
2.1 Quantum states and measurement 9
2.2 Quantum computation 14

3 Quantum machine learning 17
3.1 Supervised learning 17
3.2 Variational quantum circuit learning 20

4 Feature space supervised learning 25
4.1 Continuous linear functional classifiers 25
4.2 Explicit and implicit classifiers 28
4.3 Generalisation performance 32

5 Quantum feature space learning 39
5.1 Quantum CLF classifiers 39
5.2 Comparison between quantum explicit and implicit classifiers 43
5.3 Generalisation performance of quantum CLF learning 48

6 A path to quantum advantage 55
6.1 Quantum complexity 55
6.2 Defining computational hardness 61
6.3 Connecting classification functions, classifiers and kernels 65
6.4 Hardness of learning 67

7 Conclusion and outlook 75

References 79

5

Chapter 1
Introduction

When a few decades ago it was discovered that a computer reliant on quan-
tum mechanics had the potential to solve problems out of reach for classical
computers [2, 3], it opened up a new, large research field now known as quan-
tum computing. Further interest in this field was sparked by the discovery
of quantum algorithms such as Grover’s [4] and Shor’s [5], which promised
quadratic and even exponential speedups in fundamental problems like un-
structured search and prime factorisation. Ever since, much effort has been
put into the identification of the capabilities of quantum computers, which
led to the theory of quantum complexity [6], as well as the understanding
and harnessing of the sources of quantum speedup [7]. A specialisation in
this area is quantum machine learning [8], which seeks to exploit proper-
ties of quantum computing to either accelerate classical machine learning,
or improve its learning performance. Since the proposal of an exponential
quantum speedup in matrix inversion [9], several quantum machine learning
algorithms have been put forward [10, 11], which capitalise on this result to
show possibilities for speedups in machine learning. The problem with such
algorithms, however, is that they are not suitable to run on the quantum
hardware that is available today. Currently available quantum hardware falls
into the noisy intermediate-scale quantum (NISQ) regime: that is, chips with
few (on the order 103) functional qubits, limited interaction between qubits,
and noise caused by quantum decoherence and gate errors [12, 13]. Because
of this, most of the quantum machine learning research in recent years has
focussed on NISQ compatible algorithms, employing low-qubit, short-depth
circuits [14] without the need to compute quantum states to delicate preci-
sion. One such work is that by Havĺıček et al. [1], which introduces a NISQ
supervised classification algorithm that is shown to be closely related to sup-
port vector machines [15]. Because of this relationship, the algorithm may be

7

8 Introduction

regarded as a quantum relative to classical SVMs, which allows one to apply
the extensive theory of SVMs and hyperplane learning [16] to understand the
potential benefits of this learning model. This is indeed the objective of our
research: we consider classical learning theory in the context of hyperplane
learning, and build upon the work of Havĺıček et al. using the theory to scru-
tinise the properties and capabilities of their quantum learning model under
different learning circumstances. Lastly, we consider possible paths for the
quantum learning model to distinguish itself from classical models, in terms
of quantum advantage.

Our work is structured as follows. Chapter 2 provides a description of
quantum mechanics and shows how it gives rise to quantum computing. In
chapter 3, we briefly discuss the concept of supervised machine learning,
and subsequently introduce the quantum machine learning model from the
work of Havĺıček et al. [1]. In chapter 4 we formalise SVM-like supervised
learning, by using elements of functional analysis as the mathematical foun-
dation of the learning model to define the classifiers to be considered in this
work. In addition, we discuss theory of generalisation performance applied
to these classifiers. Next, we consider the quantum version of this learning
model in chapter 5, relating to the previous chapters in its definition, and
discuss the properties and implications of the hyperplane and kernel repre-
sentations of the model. This chapter also extends concepts of generalisation
performance to these quantum classifiers. Then, in chapter 6, we discuss
quantum complexity theory, and use this to explore paths towards quantum
advantage of the quantum learning model, clarifying statements made by
Havĺıček et al. with regards to such advantage. This chapter also highlights
the distinction between evaluating classifiers and solving learning problems,
and discusses the requirements for quantum learning supremacy, which turn
out to be stronger than the mere classical infeasibility of evaluating quantum
classifiers. Finally, we present our conclusions in chapter 7.

8

Chapter 2
Quantum computing

In this chapter, we give a concise description of quantum computing which
will enable us to discuss supervised quantum machine learning in the follow-
ing chapters. Through a brief discussion of quantum mechanics providing the
definition of quantum states, manipulation of these states and measurement
(section 2.1), we establish a quantum computational model, highlighting as-
pects that we require for the discussion of quantum feature space learning
(section 2.2)..

2.1 Quantum states and measurement

In classical mechanics, systems are usually described in terms of dynamically
changing variables such as position, velocity, angular momentum and the
like. Quantum mechanical systems, however, are different: their properties
are described by what we call a wave function, or simply a state. A quantum
state is a function Ψ(x, t) that is dependent on space and time, and satisfies
the Schrödinger equation:

i~
∂

∂t
Ψ(x, t) =

[
− 1

2m

∂2

∂x2
+ V (x, t)

]
Ψ(x, t), (2.1)

with units chosen so that ~ = 1. Assuming the potential V is independent
of time, this equation can be split into a time-dependent part,

i~
∂φ(t)

∂t
= Eφ(t), (2.2)

and a space-dependent part

− 1

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x) = Eψ(x), (2.3)

9

10 Quantum computing

where the constant E is an energy [17]. The complete wave function is then
given by

Ψ(x, t) = φ(t)ψ(x). (2.4)

From eq. 2.3, it is apparent that at any point in time, the solution space –
that is, the space of allowed wave functions – is a Hilbert space. After all,
the operator H := (−1/2m)∂2/∂x2 + V (x), which can be identified as the
hamiltonian of the system, is a linear map on the set of wave functions; hence,
eq. 2.3 is an eigenvalue equation, whose solutions may be expressed through
the eigenbasis of H. To indicate that ψ is an element of a (complex) Hilbert
space and therefore a vector itself, we write it as a ket |ψ〉. Its conjugate
transpose is the bra 〈ψ|. For reasons related to measurements (which we
discuss shortly), we must restrict ourselves to states of unit norm:

〈ψ|ψ〉 = 1. (2.5)

The time-dependent part, on the other hand, has solution

φ(t) = e−iEtφ(0) (2.6)

for some constant φ(0), which yields the complete wave function solution

|Ψ(x, t)〉 = e−iEt|ψ(x)〉 (2.7)

where we absorbed φ(0) into |ψ(x)〉. Since this equality holds for any eigen-
state |ψ〉 of H and corresponding eigenenergy E, we may succinctly write it
as

|Ψ(x, t)〉 = e−iHt|ψ(x)〉. (2.8)

One can show that any hamiltonian H is necessarily hermitian, and therefore
e−iHt is unitary. We have thus arrived at the time evolution principle, which
asserts that the quantum states of the same system at two different points
in time are related through a unitary transformation:

|Ψ(x, t′)〉 = U(t′ − t)|Ψ(x, t)〉. (2.9)

Note that unitary operators preserve the norm of the wave function.
Later on, we will see that it will be convenient to express a quantum state

as a density matrix :

ρ = |ψ〉〈ψ|. (2.10)

10

2.1 Quantum states and measurement 11

We see that ρ is a positive-semidefinite hermitian operator, and has unit
trace (since tr ρ = 〈ψ|ψ〉 = 1. It has eigenvalues 1 (for eigenstate ψ) and
0 (all states orthogonal to ψ). In other words, ρ is a rank-one projection,
and therefore idempotent: ρ2 = ρ. Density matrices of this form are called
pure states, and have a one-to-one correspondence to a state vector |ψ〉 up
to global phase. On the other hand, an ensemble of states {(ρi, pi)} whose
probabilities pi add up to 1 is called a mixed state, and its density matrix
equals

ρ =
∑
i

piρi. (2.11)

Any mixed state is still positive-semidefinite, hermitian and has trace 1,
however is no longer generally idempotent, since

tr ρ2 =
∑
i

p2
i < 1 (2.12)

if ρ is not a pure state.
Next, let us review how multiple quantum states are joined together.

Let H and K be Hilbert spaces; then the joint space is formed through the
Kronecker product or tensor product H⊗K. If {|i〉} and {|j〉} are bases of
H and K respectively, then states in H⊗K are expressed in the joint basis
{|i〉 ⊗ |j〉} of H⊗K:

|ψ〉 =
∑
ij

ψij |i〉 ⊗ |j〉. (2.13)

For convenience, we usually write |ψ〉|φ〉 in place of |ψ〉 ⊗ |φ〉. The tensor
product has the useful property that any joint operator is evaluated sepa-
rately on each subspace:

(U ⊗ V)(|ψ〉 ⊗ |φ〉) = U|ψ〉 ⊗ V|φ〉. (2.14)

In quantum mechanics, this construction of composite systems gives rise to
the curious phenomenon of entanglement. Consider two quantum systems in
Hilbert spaces H and K with eigenbases {|ψ1〉, |ψ2〉} and {|φ1〉, |φ2〉} respec-
tively. If now, for instance, the joint state of the two systems is |ψ1〉|φ1〉,
we can clearly separate the state claiming that the first system is in state
|ψ1〉 and the second is in state |φ1〉. Such a state is called separable or
disentangled. However, the joint state

|Ψ〉 =
1√
2

(|ψ1〉|φ1〉+ |ψ2〉|φ2〉) (2.15)

11

12 Quantum computing

is also a valid quantum state. For this state, there exists no single tensor
product of individual states (i.e. states in either H or K) that is equal to
Ψ; hence Ψ is called inseparable or entangled. As such, we cannot say that
either of the two systems is in a certain state; we can only reason about the
joint system being in a joint state. In essence, the two systems have become
one through entanglement.

Lastly, we must know how to extract knowledge from quantum states,
or more simply put, how to measure them. There are a few different inter-
pretations on how measurements occur in quantum mechanics, and we will
follow the Copenhagen interpretation, which is the most commonly followed
interpretation of quantum mechanics.

Formally, a quantum state is measured through hermitian operators.
That is, when a quantum state |ψ〉 interacts with a measurement device
(we shall skip any philosophical discussion on what this precisely means),
this device will always measure the state in the eigenbasis of some operator
O, and return an eigenvalue of this operator. More precisely, measurement
of a generic state, expressed as a superposition over an eigenbasis,

|ψ〉 =
∑
k

ak |λk〉 (2.16)

returns eigenvalue λk with probability |ak|2. Note that since O is hermitian,
its eigenvalues – and therefore all possible measurement outcomes – are real,
which is precisely what one would expect to obtain from a measurement.
Furthermore, note that

〈ψ|ψ〉 =
∑
k

|ak|2 = 1, (2.17)

which motivates restricting the norm of quantum states to unity, as men-
tioned earlier – after all, probabilities must always sum to one.

However, this is not the entire story. Curiously, the wave function itself
is also influenced by the measurement, in contrast to classical mechanics.
According to the Copenhagen interpretation, the wavefunction upon mea-
surement collapses to the eigenstate corresponding to the eigenvalue that
was found. In other words, besides producing an eigenvalue outcome, a mea-
surement applies a projector to the state measured,

|ψ〉 7→ |λk〉〈λk|ψ〉
|〈λk|ψ〉|

(2.18)

with probability |ak|2. Note the normalisation factor |〈λk|ψ〉| appearing in
the denominator to ensure that the result is still a state of unit norm. But

12

2.1 Quantum states and measurement 13

since 〈λk|ψ〉 = ak, we have that the probability of obtaining outcome λk after
measurement is given by the overlap between |λk〉 and |ψ〉:

P(λk | |ψ〉) = |〈λk|ψ〉|2. (2.19)

What’s even more curious is that this behaviour also occurs with entangled
states. Consider the entangled state in eq. 2.15: if we measure the first
system through the normalised projector

√
2 |ψ1〉〈ψ1|, the resulting state after

measurement is |Ψ〉 = |ψ1〉|φ1〉. Apparently, measurement of the first system
also influences the second system!

With the probability distribution given by the overlaps |〈λk|ψ〉|2, one can
compute the expectation value of an observable under a state |ψ〉 (that is,
the mean of eigenvalue outcomes expected after repeated measurements of
the same state):

E(O | |ψ〉) =
∑
k

λk P(λk | |ψ〉)

=
∑
k

λk |〈λk|ψ〉|2 =
∑
k

λk 〈ψ|λk〉〈λk|ψ〉

= 〈ψ|O|ψ〉, (2.20)

by the eigendecomposition O =
∑

k λk |λk〉〈λk|.
If instead we are working with density matrices, the probability of λk is

written

P(λk | ρ) =
∑
i

pi P(λk | ρi) =
∑
i

pi P(λk | |ψi〉〈ψi|)

=
∑
i

pi〈λk|ψi〉〈ψi|λk〉 =
∑
i

pi tr[|λk〉〈λk|ρi]

= tr[|λk〉〈λk|ρ], (2.21)

and thus the expectation value reads

E(O | ρ) =
∑
k

λk P(λk | ρ) =
∑
k

λk tr[|λk〉〈λk|ρ]

= tr[Oρ]. (2.22)

With the necessary quantum machinery in place, we shall now consider how
this gives rise to a quantum computational model.

13

14 Quantum computing

2.2 Quantum computation

In classical computation, the fundamental unit of information is a bit, which
can take on the value 0 or 1. Bit strings are formed by joining multiple
bits together, and such bitstrings can be manipulated to implement logical
operations; a sequence of such manipulations is what we call an algorithm.

In quantum computing, the fundamental unit of information is a quan-
tum bit, or qubit for short: a two-level system whose eigenbasis is written
{|0〉, |1〉}. This choice of basis is called the computational basis, and is usually
interpreted as the eigenbasis of the Pauli-Z matrix

Z =

[
1 0
0 −1

]
. (2.23)

where Z|0〉 = |0〉 and Z|1〉 = −|1〉. This representation of a qubit immedi-
ately unveils a distinction between classical bits and quantum bits: a qubit
can be in a superposition of zero and one, since any state

|ψ〉 = a0|0〉+ a1|1〉 (2.24)

with |a0|2 + |a1|2 = 1 is a valid quantum state.
Multiple qubit systems can be joined together through the tensor product

as discussed above, to form qubit strings. For such qubit strings, we shall
write the entire string as a single ket: for example, |000〉 = |0〉|0〉|0〉. Now
for a system consisting of n qubits, the generic joint state shall be written

|ψ〉 =
∑

z∈{0,1}n
az|z〉 (2.25)

where |z〉 stands for the qubit string corresponding to the bit string z. Note
that the dimension of n-qubit Hilbert space grows exponentially in n.

To manipulate qubit string states, we make use of the unitary evolution
principle of quantum mechanics: namely that two states are separated in
time by a unitary operator. From a computational perspective, this means
that any manipulations on qubit strings must be carried out using unitary
operators. In analogy to to logic gates on classical bit strings, we call these
manipulations unitary gates. Similarly, a sequence of unitary gates acting on
a set of qubits is a quantum circuit.

Frequently occuring single-qubit gates, which take as input a single qubit
and outputs a single qubit, are the Pauli gates

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, (2.26)

14

2.2 Quantum computation 15

and the Hamamard gate

H =
1√
2

[
1 1
1 −1

]
(2.27)

(not to be confused with the hamiltonian H we introduced earlier) which has
the interesting property that

X = HZH. (2.28)

Furthermore, the framework of quantum computing allows for continuous
extensions of these gates. In particular, note that the Pauli operators are
hermitian; thus the complex exponentials of these operators are valid unitary
gates1:

RX(θ) := e−iθ/2 X = cos
θ

2
I − i sin

θ

2
X =

[
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

]
, (2.29)

RY(θ) := e−iθ/2 Y = cos
θ

2
I − i sin

θ

2
Y =

[
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

]
, (2.30)

RZ(θ) := e−iθ/2 Z = cos
θ

2
I − i sin

θ

2
Z =

[
e−iθ/2 0

0 eiθ/2

]
, (2.31)

for θ ∈ [0, 4π]. However, since RΣ(2π) = −I with Σ ∈ {X,Y, Z}, and a global
sign is unobservable (since measurement probabilities are invariant under a
global phase change), we can restrict ourselves to θ ∈ [0, 2π]. These three
operators, which are called the Pauli rotation matrices, are so important
because they generate the group SU(2) of unitary rotations in C2. That is,
every single-qubit unitary, which is an element of SU(2) up to global phase,
can be expressed as a product of Pauli rotation gates:

Rθ = exp[−i(θ1X + θ2Y + θ3Z)]. (2.32)

Now, since these gates act on single qubits, they cannot create entanglement;
after all, if |ψ〉|φ〉 is a disentangled state, and is acted upon by single-qubit
unitaries U ⊗ V, then the resulting state U|ψ〉 ⊗ V|φ〉 is still disentangled.
Therefore we also require multiple-qubit gates. The most commonly appear-
ing of these are the controlled-X, also called CNOT, and controlled-Z gates,
which are two-qubit unitaries:

CX =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ; CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (2.33)

1In fact, one may regard a rotation gate RΣ(θ), for Σ ∈ {X,Y, Z}, as a time-evolved
unitary under the hamiltonian Σ and time θ/2.

15

16 Quantum computing

These gates can be interpreted as follows: given two qubits, if the first is
in state |1〉, then a X or Z gate respectively is applied to the second qubit.
And since we work in a Hilbert space, the gates act linearly on superposition
states. For example:

CX

(
1√
2

(
|0〉+ |1〉

)
|1〉
)

=
1√
2

(
CX|01〉+ CX|11〉

)
=

1√
2

(|01〉+ |10〉). (2.34)

Notice how the initial state 1/
√

2(|0〉+|1〉)⊗|1〉 is separable, but the resulting
state after applying CX is not. From this example we see that multi-qubit uni-
taries can create entanglement, whereas single-qubit unitaries cannot, which
necessitates the use of the former. In fact, the set of single-qubit unitaries
together with the CX gate is known to be universal [18] in that any quan-
tum circuit can be expressed using finitely many such gates. However, the
complete decomposition may require a number of gates that is exponential
in the number of qubits [19].

Clearly, after all gates in a quantum circuit have been applied, one will
want to obtain an output from the ciruit by measuring the resulting state.
Typically, the state is measured in the computational basis; thus the measure-
ment projectors are |z〉〈z| for z ∈ {0, 1}n. Since one may be more interested
in (the bit string corresponding to) the output eigenstate rather than its
eigenvalue – values which are free to pick by choice of the observable –, we
will regard a measurement outcome as either an eigenstate or an eigenvalue
depending on context.

16

Chapter 3
Quantum machine learning

In this chapter, we give a brief discussion on supervised machine learning,
by describing what is meant by classification, loss functions, generalisation
and data representation. With these notions, we can interpret the quantum
supervised learning algorithm proposed in the work of Havĺıček et al., which
we subsequently introduce. In doing so, we give a summary of their paper,
including a precise description of the learning algorithm, and setting the
stage for the extension of their work we present in the following chapters.

3.1 Supervised learning

The goal of machine learning is the construction of algorithms which deduce
patterns in given data and build a model that approximately describes the
data in terms of these patterns, in such a way that this model can generalise
well to new, unseen data. That is, the model should roughly capture the
structure that new data will have, based on patterns in old data, so that it
can make predictions on new data within a reasonable margin of accuracy.
Machine learning is typically divided into two branches: unsupervised and su-
pervised learning (a third branch often mentioned is reinforcement learning,
which we will not consider in this work). Unsupervised learning deals with
the task of finding structure in data about which little or nothing is otherwise
known. An example is clustering, where the learner must find a partition of a
set of points in a (possibly high-dimensional) vector space which groups the
points by proximity, according to some distance measure. With supervised
learning, on the other hand, all (or most) data points are supplied with addi-
tional information. The task is then, given a data point as input, to output
a value of such additional information which corresponds to the input point.

17

18 Quantum machine learning

More concretely, the model one seeks to find is a function that maps input
data points to the desired output, as inferred from the given input-output
pairs. The most commonly practiced method of supervised learning is classi-
fication, where input data is partitioned into classes, and the algorithm must
learn to assign the correct class label to as many data instances as possible.
This could be a separation into two classes (binary classification) or more.
In order to learn the function, the input data from which the algorithm must
be accompanied with the correct class label for each instance. Hence, the
input data is usually called the training set of training data; the labels then
form the additional information for classification methods.

To clarify what precisely training means, let us describe classification in
a more mathematical fashion. Let X be the set from which the input data
is drawn, let Y be a label set, and say there is some ground truth mapping
from X to Y that determines the correct label y ∈ Y for every x ∈ X .
The objective of a learning algorithm is now to find a hypothesis function
c : X → Y from a given set of hypothesis functions (the hypothesis family)
such that, ideally, the output c(x) matches the correct label y ∈ Y for any
x ∈ X . To this end, a training set T ⊆ X × Y containing correct input-
output pairs is supplied; this is the only information available to the learning
algorithm for inferring a good function. A good hypothesis then minimises
some measure of error on this training set, which implies that at least on the
provided data, it classifies accurately. A straightforward example of such an
error measure is the number of misclassified instances:

ET [c(·)] =
∑

(x,y)∈T

1c(x)6=y, (3.1)

where 1π is the indicator function, which maps a proposition π to 1 if it is
true, and to 0 if it is false. In the case of binary classification with labels
Y = {+1,−1}, eq. 3.1 can be simplified to

ET [c(·)] =
1

2

∑
(x,y)∈T

|c(x)− y|. (3.2)

An often observed phenomenon in machine learning is overfitting, where a
learned hypothesis captures the training data too well. That is, it classifies
(almost) all points in the training set correctly, but thereby mimics the train-
ing data to such an extent that it fails to capture the general structure in the
data, which impedes generalisation to future data. See figure 3.1. Since more
complex models are more likely to overfit, it is common practice in supervised
learning to augment the error measure with a regularisation term, which de-
pends only on one or more properties of c(·) itself that are independent of

18

3.1 Supervised learning 19

+1

–1

+1

–1

(a) (b)

Figure 3.1. (a) An overfitted model. The classification boundary is too complex
and places too much emphasis on outliers in the training set. It is more likely
to misclassify future data points. (b) A simpler, less overfitting model. Despite
misclassification of some training set outliers, the overall structure of the data is
better captured, thus the model will likely generalise better to new data.

the data. If the regularisation term is chosen such that it becomes small for
simple models, minimisation of the augmented error measure ensures that
the chosen model both classifies the training data well and simultaneously
does not heavily overfit. The general term for an error measure which may
be augmented with a regularisation term is a loss function. We will discuss
generalisation performance in more detail in section 4.3.

Usually, hypothesis families are parametrised, i.e. the functions in the
family are expressed in terms of a set of continuous parameters θ. Training
such a model then translates to optimising these parameters to achieve a
minimal loss value. In case this loss value is differentiable in θ1, an optimal
solution, i.e. a solution that minimises the loss value, typically satisfies the
condition

∂

∂θ
LT [cθ(·)] = 0. (3.3)

where LT is the loss value on the training set T . Indeed, many training
algorithms make use, in either basic or more sophisticated ways, of such gra-
dient computations [20]. However, often there exist multiple configurations
of θ which satisfy eq. 3.3, which do not minimise LT ; such configurations
are called local minima, whereas the optimal solution is called the global
minimum.

1Note that the error in eq. 3.2 is not differentiable since Y is not continuous and hence
c(x) is not a continuous function. However, a common method, which we will encounter
shortly, is to define cθ(x) as a thresholded value of an underlying continuous function
fθ(x); an error measure incorporating fθ(x) is typically differentiable in this case.

19

20 Quantum machine learning

Before we continue to describe the type of classification model we study in
this research, it is worthwhile to note that many learning algorithms, in order
to produce an accurate predictive model, build an internal representation of
the data at hand. This representation can be regarded as a collection of ex-
tracted features that characterise the data; for instance, when distinguishing
images of handwritten digits 0 and 1, the presence of a hole in the middle
may function as a feature that is characteristic of the digit 0. Typically, the
representation is a map from the original data space to some representation
space with a higher (or lower) dimension, finding a useful representation may
be included in the learning procedure. For example, neural networks map
their input into a number of neuron layers before making a decision on which
label to choose [21]. The principle of representation building applies to a
collection of other learning procedures, including support vector machines
(SVMs) [15], principal component analysis [22] (which may be used in ei-
ther a supervised or unsupervised fashion) and dictionary learning [23]. We
will see that such representations come naturally to the method of quantum
machine learning we study in this work.

3.2 Variational quantum circuit learning

At the current moment, a ubiquitous method to implement machine learn-
ing on quantum computers is variational quantum circuit learning. This
method revolves around the use of parametrised quantum gates, such as the
parametrised Pauli gates described in section 2.2. Quantum circuits consist-
ing of such parametrised gates are called parametrised quantum circuits, or
variational circuits in reference to the variational quantum eigensolver [24],
which was one of the first manifestations of variational learning. The main
idea of variational learning is that one may define a loss value dependent on
some outcome probability or expectation value of a quantum circuit setup;
and since the circuit is parametrised, so is the loss value, which can thus be
minimised accordingly. For example, the variational eigensolver seeks to find
the ground state of a hamiltonian H by optimising over a set of parametrised
quantum states |ψ(θ)〉. Since these parametrised states may be prepared by
applying a parametrised circuit U(θ) to the all-zero state |0〉, the loss value,
which is the expected energy 〈H〉, may be expressed as

L(θ) = 〈0|U†(θ)HU(θ)|0〉. (3.4)

Then, by minimising L(θ) over the parameters θ, one obtains a state |ψ∗〉 =
U(θ∗)|0〉 which is close to the ground state of H.

20

3.2 Variational quantum circuit learning 21

Variational learning extends well beyond finding ground states, and is an
instinctive basis for quantum machine learning, for two reasons. First of all, it
is similar to many classical machine learning algorithms, e.g. neural networks,
which can also be regarded as a form of parametrised circuits; therefore one
can use a large body of prior knowledge about classical machine learning
to describe variational learning. Secondly, variational learning is applicable
to small circuits, which makes it very suitable for implementation on NISQ
processors.

One approach to variational learning, which is the main work that our
research builds on, is that of Havĺıček et al. [1]. In their paper, they describe
a parametrised quantum learning approach that is similar to SVMs, for the
task of binary classification. Here, the representation of a data point x ∈ Rm

is a quantum state |Φ(x)〉; the operation which maps a data point to such
a state is called the feature map. This feature map is a parametrised circuit
UΦ(x), applied to the state |0〉, whose parameters are dependent on the
entries of x. More precisely, the authors define their feature map circuit as
follows:

UΦ(x) = VΦ(x)H⊗nVΦ(x)H⊗n (3.5)

where n is the number of qubits, H is the Hadamard gate, and

VΦ(x) = exp

(
i
∑
S⊆[n]

φS(x)
∏
i∈S

Zi

)
. (3.6)

with Zi being the Pauli Z gate applied to the i-th qubit, and φS(x) ∈ R a
coefficient (possibly continuously) depending on x. This setup was chosen
specifically with NISQ processing capabilities in mind: the preparation cir-
cuit UΦ is a shallow circuit (since many of the Z gates can be applied in
parallel), and in their experiment, the authors choose the sets S in eq. 3.6
such that the qubit interactions are sparse (|S| ≤ 2) and short-range.

Classification of each data point is carried out by measuring the expec-
tation value of a variational observable F(θ) = W†(θ)DW(θ) in the state
|Φ(x)〉, where W(θ) is a parametrised circuit, and D is a fixed diagonal ob-
servable relative to the Z basis. If the estimated expectation value, after
a number of repeated measurements, is larger than some threshold d, the
predicted label given by the classifier is +1; otherwise, it is −1. That is, the
output of the quantum process is a random variable c̃(x) which estimates the

21

22 Quantum machine learning

classification value2

c(x) = sgn
(
〈0|U†Φ(x)W†(θ)DW(θ)UΦ(x)|0〉 − d

)
. (3.7)

In order to train the circuit, the authors define the loss value

LT (θ) =
1

|T |
∑

(x,y)∈T

P(c̃(x) 6= y), (3.8)

which is minimised using a gradient descent algorithm (note that the prob-
ability values are continuous in θ).

At first sight, the connection between this variational learning algorithm
and SVMs seems far away. Nonetheless, the authors show a remarkable re-
semblance between the two methods. Indeed, if we write ρΦ(x) = |Φ(x)〉〈Φ(x)|,
we notice that

〈Φ(x)|F(θ)|Φ(x)〉 = tr[F(θ)ρΦ(x)]. (3.9)

Let us analyse this expression a bit more. First, both F(θ) and ρΦ(x) are
hermitian for any θ and x; furthermore, the set H(2n) of 2n × 2n complex
hermitian matrices is a real vector space. Indeed, there exist bases, such as
the normalised Pauli basis P = 2−n/2{I,X,Y, Z}⊗n such that every element
of H(2n) can be written as a linear combination of these basis elements.
Note that H(2n) is a 4n-dimensional space. The inner product in this space
is given by the Frobenius inner product on matrices:

〈A,B〉 = tr[AB]. (3.10)

If we expand A and B in the basis P , where Pi denotes the i-th element
of P , we can see that this inner product is equivalent to the standard inner
product in R4n :

tr[AB] = tr

[∑
i

aiPi

∑
j

bjPj

]
=
∑
ij

aibj tr[PiPj] =
∑
ij

aibjδij

=
∑
i

aibi. (3.11)

2This value would be attained if infinitely many repreated measurements were allowed.
We discuss the relationship between the number of measurements and the estimation
accuracy in chapter 6.

22

3.2 Variational quantum circuit learning 23

The identity tr[PiPj] = δij follows from tr[Σ] = 0 for Σ ∈ {X,Y, Z}, and

tr[P2
i] = 2−n tr[I⊗n] = 1. (3.12)

In summary, the expectation value 〈Φ(x)|F(θ)|Φ(x)〉 is precisely the inner
product between the normal vector of a 4n-dimensional hyperplane w(θ) with
entries wi(θ) = tr[F(θ)Pi], and the 4n-dimensional representation ρΦ(x); this
inner product combined with a thresholding function is a standard descrip-
tion of SVM classifiers.

Since we are looking to produce a quantum classifier which labels as many
points correctly as possible, finding a hyperplane that gives rise to such a
classifier is an optimisation process. In fact, this optimisation process has an
alternative formulation, as described by Havĺıček et al. Instead of considering
hyperplanes, one can also formulate the problem in terms of inner products
between feature vectors; this inner product is called the kernel, denoted k(·, ·).
The authors show that the natural kernel form for this variational learning
setup reads

k(x,x′) = tr[ρΦ(x)ρΦ(x′)] = |〈Φ(x)|Φ(x′)〉|2 (3.13)

in accordance with the inner product in eq. 3.10, and that the corresponding
classifier is given by

c(x) = sgn

(∑
(x′,y′)∈T

αx′y
′ k(x,x′) + b

)
(3.14)

where αx ≥ 0. We will derive this expression for general (including classical)
SVMs in section 4.2, and the link to the quantum formulation in section 5.1.
Note that the optimisation of the kernel classifier is no longer a variational
process: since the only free parameters in eq. 3.14 are the coefficients αx′ ,
the optimisation of these parameters can be moved to a classical computer,
while the kernels are evaluated on a quantum computer.

We thus have two representations of this quantum classifier; following the
paper by Schuld and Killoran [25], who proposed the same type of quantum
classifier in their work published independently from that of Havĺıček et al.,
we shall call the hyperplane representation the explicit form, and the refer
to the kernel representation as the implicit form. This distinction now begs
the question: what is the relationship between quantum explicit and implicit
classifiers? Does one have an advantage over the other? We discuss these
questions in section 5.2.

Havĺıček et al. argue that, in order to achieve any quantum advantage
at all through this learning method, the kernel k(·, ·) ought to be hard to

23

24 Quantum machine learning

estimate classically; otherwise we might as well run the entire process on a
classical computer. They thus remark that a hard-to-estimate kernel could
provide a source of quantum advantage. In this context, they give motivation
for the application of their quantum learning method through a conjecture
that the kernel defined by eq. 3.13 and the feature map in eq. 3.5 is hard
to estimate. This conjecture is based on the resemblance of the feature map
to a quantum circuit used by Rötteler [26] to show the existence of an oracle
relative to which P is separated from BQP. Since this quantum circuit can
efficiently solve the so-called hidden shift problem for bent Boolean functions
with help of an oracle, which is not possible using a classical computer, this
suggests that some form of advantage in terms of efficiency could be achieved
by using this feature map. However, this is not a complete proof; but since
this is a highly involved complexity theoretic question, any further discussion
is out of the scope of this work.

Besides the papers of Havĺıček et al. and of Schuld and Killoran, recently a
number of papers [27, 28] have been published which discuss quantum kernels
in the same sense for binary quantum classification. These, however, mainly
focus on details regarding the implementation of specific kernels, which is an
objective different from that of our work.

In the following chapters, we formalise and elaborate the algebraic the-
ory between explicit and implicit classifiers, both in a general (chapter 4)
and the quantum (chapter 5) setting, including discussions on generalisation
performance. Furthermore, we elaborate on possibilities for quantum advan-
tage in chapter 6, by giving a precise definition of hardness, and discussing
consequences for learning.

24

Chapter 4
Feature space supervised learning

The aim of this chapter is to formalise the mathematical description of linear
classifiers which are presented in quantum form by Havĺıček et al. To this
end, we use functional analysis to define such classifiers (section 4.1), which
naturally leads to the distinction between hyperplane and kernel classifiers,
and reveals a useful property known as the representer theorem (section 4.2).
Subsequently, we discuss an important aspect of machine learning, namely
generalisation to unseen data, from the perspective of statistical learning
theory with linear classifiers (section 4.3). These notions will be revisited in
chapter 5, where we will use them in order to characterise learning properties
of quantum hyperplane and kernel classifiers.

4.1 Continuous linear functional classifiers

We shall work from the ground up, putting into place first the mathematical
framework describing the representation of the classification method. The
representation space is a Hilbert space (i.e. a vector space endowed with
an inner product), and the core of our classifiers is a continuous linear func-
tional. As we will later see, this type of representation has nice mathematical
properties, and connects well to what can be achieved on NISQ devices in
terms of supervised learning (chapter 5).

Definition 4.1. Let F be a Hilbert space with inner product norm ‖f‖F =√
〈f, f〉F . A continuous linear functional is a linear map L : F → R which

is bounded in the sense that

∃M ∈ R>0 : ∀f ∈ F : |L(f)| ≤M ‖f‖F . (4.1)

Such functionals have the following useful property.

25

26 Feature space supervised learning

Theorem 4.2 (Riesz representation theorem [29, theorem 2.14]). All con-
tinuous linear functionals L from a Hilbert space F to the real numbers can
be expressed as L(f) = 〈f, φ〉F for some φ ∈ F .

Clearly, the space of continuous linear functionals from F to R is isomor-
phic to F . This is the dual space of F .

Consider now Hilbert spaces of functions f : X → R, where X is any set.
In such Hilbert spaces, there exists for all x ∈ X an evaluation functional δx
which maps a function f to its function value f(x). This notion leads to the
definition of a reproducing kernel Hilbert space.

Definition 4.3. A Hilbert space F of functions f : X → R is a reproducing
kernel Hilbert space (RKHS for short) if its evaluation functional δx : f 7→
f(x) is a continuous linear functional for all x ∈ X .

From theorem 4.2 it follows that every function f in an RKHS F has, for
all x ∈ X , an evaluation of the form

f(x) = 〈f, φx〉F (4.2)

for some φx ∈ F that is dependent on x. We call φx a feature function or
feature vector for x. Such a feature function shall be our representation of a
point x. Note that the space of all feasible representations is the dual space
of F .

Now, a RKHS is a special kind of Hilbert space, which allows for a
neat functional relationship between two points in the representational space,
called a kernel.

Definition 4.4. Let F be a Hilbert space of functions f : X → R. A
function k : X × X → R is said to be a reproducing kernel, or kernel for
short, of F , if

(1) ∀x ∈ X : k(·, x) ∈ F , and

(2) ∀x ∈ X : ∀f ∈ F : 〈f, k(·, x)〉F = f(x).

Following this definition, a kernel k must satisfy 〈k(·, x), k(·, y)〉F = k(x, y).

Theorem 4.5 (Sejdinovic and Gretton [30, proposition 29]). A Hilbert space
of functions F is a RKHS if and only if it has a kernel k. This kernel is
unique.

Corollary 4.6. Every RKHS has a unique kernel k : X × X → R of the
form

k(x, y) = 〈φx, φy〉F ∀x, y ∈ X (4.3)

where φx and φy are feature functions for x and y respectively.

26

4.1 Continuous linear functional classifiers 27

Proof. From theorem 4.2 and condition 2 in definition 4.4 we have

∀f ∈ F : ∀x ∈ X : 〈f, φx〉F = f(x) = 〈f, k(·, x)〉F , (4.4)

implying that k(·, x) = φx, and therefore

k(x, y) = 〈k(·, x), k(·, y)〉F = 〈φx, φy〉F . (4.5)

Q.E.D.

If the input space X is a compact metric space (like e.g. RN), there
is another route to a RKHS and feature functions, known as Mercer’s con-
dition. We shall briefly state without proof the relevant theorem and its
consequences.

Theorem 4.7 (Mercer’s condition [31]). Let X be a compact metric space
and k : X × X → R a continuous positive-semidefinite kernel in the sense
that

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0 (4.6)

for all finite sequences of points x1, . . . , xn ∈ X and all c1, . . . , cn ∈ R. Then
there exist orthonormal functions ei such that

k(x, y) =
∑
j

λiei(x)ei(y) (4.7)

and, taking φx =
∑

i

√
λiei(x), we have

k(x, y) = 〈φx, φy〉, (4.8)

hence the space of these functions is a RKHS.

Having established the mathematical formulation of the representational
space we will be working with, we are now ready to give the definition of a
continuous linear functional classifier, which is defined on a binary label set
Y = {+1,−1}.

Definition 4.8. A continuous linear functional (CLF) classifier is a function
cf : X → {+1,−1} of the form

cf (x) = sgn(f(x)− d) (4.9)

with d ∈ R and f an element of a RKHS F , i.e. f(x) = δxf with δx : F → R a
continuous linear evaluation functional. We call f the classification function
of cf .

27

28 Feature space supervised learning

4.2 Explicit and implicit classifiers

We now proceed to introduce more practical expressions of CLF classifiers in
the form of explicit and implicit classifiers. We will construct our classifiers by
defining the underlying RKHS according to a prior chosen finite-dimensional
feature map. In this chapter, we establish all notions in a classical setting,
aided by examples from a maximum-margin classifier (also known as support
vector machine or SVM); in chapter 5, we make the transition to quantum
CLF classifiers.

Definition 4.9. An explicit classifier cφ or feature classifier on a training
set T ⊆ X × Y is a CLF classifier whose classification function space F is a
real, finite-dimensional Hilbert space with the standard vector dot product
and whose classification function evaluation is determined by a feature map
φ : X → F : x 7→ φ(x) as

f(x) = w·φ(x). (4.10)

As such, the classifier is of the form c(x) = sgn(w·φ(x)− d).

That is, the set of classifiers is the set of separating hyperplanes in feature
space that assigns +1 to points on one side of the plane, and −1 to points
on the other side.

The following lemma asserts that this type of classification function forms
as RKHS and thus inherits all the useful properties of such a space.

Lemma 4.10. The classification function space F of an explicit classifier is
a RKHS as long as there exists some M ∈ R such that ‖φ(x)‖F ≤M ∀x ∈ X .

Proof. The vector space Rn endowed with the standard inner product is a
Hilbert space; therefore F is as well. To see it is also a RKHS, observe that
by the Cauchy-Schwarz inequality

|δxf | = |w·φ(x)|
≤ ‖w‖ · ‖φ(x)‖
= ‖f‖F · ‖φ(x)‖F
≤ ‖f‖F · sup

x∈X (T)

‖φ(x)‖F

≤M ‖f‖F , (4.11)

implying that δx is a continuous linear evaluation functional. Q.E.D.

28

4.2 Explicit and implicit classifiers 29

As we discussed before, one can regularise the error measure to limit over-
fitting and thereby increase generalisation performance. For CLF classifiers,
we shall make use of function norm regularisation. We call the combination
of an error measure and regularisation a regularised risk functional, whose
minimum is to be considered the optimal classification function on a training
set T .

Definition 4.11. A regularised risk functional on a training set T and a
RKHS F is a functional R : F → R of the form

R[f] = E
(
{(x, y, cf (x)) : (x, y) ∈ T }

)
+ s(‖f‖F) (4.12)

where cf (·) is a (CLF) classifier with classification function f(·), E is any
arbitrary error measure with respect to T , and s is a strictly monotonically
increasing function of the norm of f .

We shall later give a motivation for this particular choice of regularisation,
and discuss how it affects generalisation performance.

Let us now consider a widely used example of a feature classifier, namely
the support vector machine.

Example 4.12. A support vector machine (SVM) is a CLF classifier in the
Hilbert space of RN with the standard inner product. In the explicit formu-
lation of a SVM, its classification function f is given by an N -dimensional
normal vector w which describes a hyperplane in RN . Its entries and the
offset d ∈ R are trained to separate a training set T by a maximal margin:
i.e. a hyperplane whose distance

D((w, d), φ) =
|w·φ− d|
‖w‖

(4.13)

to the closest point of either class is maximal. Under the conditions

y(w·φ(x)− d) ≥ 1 ∀(x, y) ∈ T , (4.14)

the training set is linearly separated by the hyperplane, by a margin of 2/‖w‖.
As such, a maximal-margin separating hyperplane can be found by maximis-
ing 2/‖w‖, or equivalently minimising 1/2 ‖w‖2, under the conditions in eq.
4.14. This can be formulated as a minimisation of the primal cost lagrangian

LP (w, d, α) =
1

2
‖w‖2 −

∑
(x,y)∈T

αx[y(w·φ(x)− d)− 1] (4.15)

29

30 Feature space supervised learning

where αx ≥ 0 are the Lagrange multipliers introduced to assure the conditions
of eq. 4.14 are met. Note that for all d ∈ R, α ∈ RT

≥0, LP is indeed a
regularised risk functional on w, as the first term is a strictly monotonically
increasing function of ‖f‖ and the second term is a valid error function of f
on T .

The second type of classifier, the implicit kind, is closely related to the
explicit classifier, but is expressed directly in terms of the kernel of the un-
derlying RKHS.

Definition 4.13. An implicit classifier ckφ or kernel classifier on a training
set T is a finite-dimensional Hilbert space CLF classifier whose function
evaluation is of the form

f(x) =
∑

(x′,y′)∈T

αx′ kφ(x′, x) (4.16)

where αx′ ∈ R, and the kernel kφ is given by the finite-dimensional inner
product:

kφ(x, x′) = 〈φ(x), φ(x′)〉F = φ(x)·φ(x′) (4.17)

with φ a feature map as in definition 4.9.

Henceforth, by slight abuse of notation, we shall write x ∈ T to mean
(x, y) ∈ T if y does not appear in the corresponding expression.

Now, following example 4.12, a SVM can be expressed as an implicit
classifier.

Example 4.14. The SVM classifier transforms elegantly into an implicit
classifier when we impose on the primal lagrangian the minimisation condi-
tions ∂/∂wLP = 0, ∂/∂dLP = 0:

∂

∂w
LP = w −

∑
(x,y)∈T

αxyφ(x) = 0

⇒ w =
∑

(x,y)∈T

αxyφ(x), (4.18)

∂

∂d
LP = −

∑
(x,y)∈T

αxy = 0. (4.19)

Plugging these conditions back into eq. 4.15, we obtain the dual lagrangian:

LD = −1

2

∑
(x,y)∈T

∑
(x′,y′)∈T

αxαx′yy
′ φ(x)·φ(x′) +

∑
(x,y)∈T

αx. (4.20)

30

4.2 Explicit and implicit classifiers 31

Here, the kernel k(x, x′) := φ(x) · φ(x′) straightforwardly appears. The
classification function c(x) becomes

c(x) = sgn

([∑
(x′,y′)∈T

αx′y
′φ(x′)

]
·φ(x)− d

)

= sgn

(∑
(x′,y′)∈T

αx′y
′ k(x′, x)− d

)
. (4.21)

So far, there seems to be little motivation to choose either the explicit
or the implicit formulation of CLF classifiers, since both evaluate functions
in the same RKHS. However, there is a gain in computational complexity
that can be made by using the implicit formulation. To see this, consider the
following feature map containing the scalar products between every element
of an input vector x ∈ RN :

φ(x) =
[
x1x1 · · · x1xN · · · xNx1 · · · xNxN

]>
, (4.22)

which is a vector in RN2
. Using the explicit model, one will be evaluating

inner products between functions w ∈ RN2
and feature vectors φ(x), which

has a complexity on the order O(N2). The inner product of two feature
vectors, on the other hand, can be cast into a more convenient form:

φ(x)·φ(x′) =
∑
ij

xixjx
′
ix
′
j =

(∑
i

xix
′
i

)2

= (x·x′)2. (4.23)

It is apparent that, by first computing the inner product x ·x′ and subse-
quently squaring the result, one requires only O(N) operations to compute
an implicit classifier on the same RKHS and training set. Similar complexity
gains can be shown for other types of kernels, such as radial basis func-
tion kernels [32], whose feature space is of infinite dimension. In fact, one
can show using Mercer’s condition (theorem 4.7) that the set of radial basis
functions corresponds to a RKHS.

Besides complexity, another important result was established by Schölkopf
et al. [33], regarding minimisation capabilities of CLF classifiers.

Theorem 4.15 (Representer theorem [33, theorem 1]). Consider a RKHS F
with its corresponding kernel k. Given a training set T and a regularised risk
functional R, any function f∗ ∈ F that minimises R admits a representation

f∗(x) =
∑
x′∈T

βx′ k(x′, x) (4.24)

with βx′ ∈ R ∀x′ ∈ X .

31

32 Feature space supervised learning

In other words, a CLF classifier that achieves a minimum regularised
risk on any training set T can be expressed as an implicit classifier. We
have seen a special case of this in example 4.14, where the minimisation
conditions imply the existence of an implicit form, which was found when
moving from the primal lagrangian to the dual. Note that, even though any
implicit classifier can always be expressed as an explicit classifier – take

w =
∑
x′

βx′φ(x′) (4.25)

so that w · φ(x) =
∑

(x,x′) βx′ k(x′, x) –, the converse does not hold true,
which makes the existence of an implicit form nontrivial. Indeed, the form in
eq. 4.25 restricts w to the linear subspace spanned by the feature vector set
{φ(x′) : x′ ∈ T }, and as such, any explicit classifier with w outside this linear
subspace cannot be represented as an implicit classifier with this training
set. Still, any explicit classifier that is guaranteed to minimise a regularised
risk functional can be expressed as an implicit classifier. Note however that
the theorem does not necessarily hold for types of regularisation other than
norm regularisation. In any case, the representer theorem will be key in the
discussion of quantum CLF classifiers (section 5.2), where they will give rise
to a distinction between explicit and implicit classifiers.

4.3 Generalisation performance

In the above, we have focussed mainly on the mathematical structure of our
representation, and minimisation of risk on a training set. But generalisation
performance is at least as important: indeed, we began this chapter noting
that a classification model should generalise to unseen data points to be of
any use. We used a regularisation term (definition 4.11), which manifested
itself as a margin in the SVM context, for the purpose of limiting overfit-
ting; this section will provide an argument for why this provides the desired
generalisation behaviour.

A common way to view generalisation performance is through the prin-
ciple of structural risk minimisation, which was described by Vapnik and
Chervonenkis [34]. According to the principle, it is assumed that the data
to be classified, together with its correct labels, comes from a joint proba-
bility distribution p(x, y). That is, the training set T is a sample from this
distribution, and any feature data is expected be drawn from p as well. In
this setting, a model with good generalisation performance is a classifier c(·)

32

4.3 Generalisation performance 33

(a) (b)

Figure 4.1. A line in R2 shattering points. (a) There exists an arrangement of
three points in R2 (namely any placement such that the points are not colinear)
such that for every label assignment, there is a line that correctly labels all three
points. Hence the family of all lines can shatter three points. (b) With four points,
there exists a label assignment which cannot be decided by a line, no matter the
arrangement of the points. Therefore the family of all lines cannot shatter four
points.

which minimises the total risk R, that is the expected error E over p:

R := E(E) =

∫
X×Y

E(c(x), y) dp(x, y). (4.26)

Clearly, for learning problems, p is not known – otherwise we wouldn’t need to
use any learning algorithms at all. In a learning setting, the only information
available is the training set. What we can compute however, is a quantity
called the empirical risk Remp which is the average error that c(·) achieves
on the training set:

Remp
T = 〈E〉T =

1

|T |
∑

(x,y)∈T

E(c(x), y). (4.27)

Usually, a classifier is said to generalise well on a distribution if the gener-
alisation risk Rgen = R− Remp is upper bounded. Vapnik showed that such
an upper bounded can be given for families of classifiers, which depends on
the geometrical structure of the family. Let us consider more precisely what
this means.

A family of classifiers is said to shatter a set of points in the decision space
if for every possible label assignment there exists a classifier instance in this
family which labels each point correctly. Then, the Vapnik-Chervonenkis

33

34 Feature space supervised learning

dimension, or VC dimension for short, of a classifier family, is the maximum
number of points for which there exists a geometrical arrangement such that
the points in this arrangement are shattered by the family. Take for example
the family of all separating hyperplanes in R2, which are lines. As can be
seen in figure 4.1, this family shatters at most three points; therefore its VC
dimension is 3. In fact, it can be shown with relative ease [35] that the VC
dimension of separating hyperplanes in RN is at most N + 1. This gives
an immediate bound on the VC dimension of implicit classifiers: since every
new point is projected into the space spanned by the feature vectors φ(x′),
the VC dimension of an implicit classifier with Nf feature vectors weighted
by nonzero αx′ is at most Nf + 1 ≤ |T |+ 1.

In essence, the VC dimension defines an expressivity measure of a family
of classifiers: the number of points that can be classified correctly using a
classifier family is always upper bounded by the maximum number of points
shattered by this family, i.e. its VC dimension. As such, we can regard
families of high VC dimension to be complex and highly expressive, whereas
those with low VC dimension are simple and less expressive.

While high expressivity is beneficial for the classification of complex data
sets, there is a tradeoff between expressivity and generalisation performance,
as we mentioned in section 3.1. As shown by Vapnik [36], the VC dimension
can be used to express this tradeoff in a precise, formal way: he shows that,
given the VC dimension h of the classifier family in question, the generalisa-
tion risk on data from a distribution p can be upper bounded as follows:

Rgen ≤

√
h[log(2|T |/h) + 1] + log(4/δ)

|T |
, (4.28)

with probability 1 − δ, provided T is drawn from the same distribution p.
We directly see that a high VC dimension – i.e. high model expressivity –
comes with a high upper bound on the generalisation risk, and thus a small
likelihood of good generalisation performance.

Fortunately however, it turns out that a tighter bound can be achieved
on the VC dimension through a regularisation term natural to hyperplane
classifiers. This regularisation term is in fact the margin, which we encoun-
tered earlier as the minimum distance between a separating hyperplane and
a point of either class. Using this margin, the following bound on the VC
dimension of hyperplane classifiers was shown.

Theorem 4.16 (Vapnik [16, theorem 8.3]). A subset of hyperplane classifiers
with classification function f : RN → R taken from a real N-dimensional
RKHS F , classifying points φ ∈ RN subject to ‖φ‖F ≤ r (with ‖ · ‖ the

34

4.3 Generalisation performance 35

standard inner product norm on RN), that satisfies the constraints

inf
φ
|〈f, φ〉 − d| = 1 (4.29)

and ‖f‖F ≤ a has the VC dimension h bounded above by

h ≤ min(r2a2, N) + 1. (4.30)

Since a hyperplane satisfying the condition in eq. 4.29 separates the set
of points with margin γ = 1/a (see example 4.12), we may also write

h ≤ min(r2/γ2, N) + 1. (4.31)

According to this result, classifiers that achieve a large margin are expected
to perform better in terms of generalisation, because they have a lower VC
dimension. This is the main motivation to maximise the margin of SVM
classifiers, which appeared as a regularisation term in example 4.12.

However, as nice as this improved result seems, unfortunately one cannot
directly insert the VC dimension bound of eq. 4.31 into the generalisation
risk bound of eq. 4.28. This is for the subtle reason that we cannot guarantee
any future data points (such as those in the test set) to lie outside the margin
γ and inside the sphere of radius r, which is an assumption made in the proof
of theorem 4.16 [16, 37, 38]. In particular, if at least one point of the future
data were to fall inside the margin, we would have to adjust the model to
have a smaller margin to fit this test point, thus increasing its VC dimension.

Clearly, we require a generalisation bound that circumvents this problem.
One such bound was shown, shortly after the publication of Vapnik’s original
bound, by Shawe-Taylor et al. [39]. In their proof, the authors introduce an
extension to the VC dimension, called the fat shattering dimension.

Definition 4.17 (Shawe-Taylor et al. [39, definition 4.1]). Let F be a set of
real valued functions. We say that a set of points X is γ-shattered by F if
there are real numbers sx indexed by x ∈ X such that for all binary strings
y indexed by x ∈ X, there is a function fy ∈ F satisfying

fy(x)

{
≤ sx − γ if yx = −1,
≥ sx + γ if yx = +1.

(4.32)

The fat shattering dimension fatF of the set F is a function from the positive
real numbers to the integers which maps a value γ to the size of the largest
γ-shattered set, if this is finite or infinity otherwise.

35

36 Feature space supervised learning

The fat shattering dimension is sometimes regarded as an ‘effective VC
dimension’ since it plays a very similar role to the original VC dimension. In
fact, if γ = 0, we recover the original VC dimension (note that, for separating
hyperplanes, the VC dimension requires the sx to be identical for all x).
Interestingly, the fat shattering dimension of a set of hyperplanes separating
points by a margin γ turns out to have a very similar expression to that in
eq. 4.31, which further strengthens the connection between the two notions.
This is captured in the following theorem.

Theorem 4.18 (Shawe-Taylor et al. [39, corollary 5.4]). Let F be the set of
linear functions of the form

f(φ) = 〈f, φ〉 − d (4.33)

with ‖f‖ = 1, restricted to points in a ball of N dimensions of radius u about
the origin and with thresholds |d| ≤ u. Then the fat shattering dimension of
F can be bounded by

fatF(γ) ≤ min{9u2/γ2, N + 1}+ 1. (4.34)

Subsequently, it is shown that this fat-shattering dimension can be used
directly to bound the generalisation risk of a set of hyperplane classifiers.

Theorem 4.19 (Shawe-Taylor et al. [39, definition 4.9]). Consider a set
of real-valued functions F having fat shattering dimension bounded above by
fatF(γ). If a classifier with classification function f ∈ F separates all points
in a training set T correctly and by margin γ, then with confidence 1− δ the
expected generalisation risk is bounded above by

Rgen(T , k) ≤ 2

T

(
k log

(
8eT

k

)
log(32T) + log

(
8T

δ

))
(4.35)

where k = fatF(γ/8) and T = |T |.

Notice how this theorem provides an expression for the generalisation risk
independently from future data, as the value of k is computed for a selected
f ∈ F which classifies T correctly, and the margin γ it achieves in doing so,
before being inserted in expression 4.35. As such, this theorem is in a correct
form to allow new points: unlike the generalisation risk bound in theorem
4.28, theorem 4.19 only conditions on a fixed set of points being separated
by some margin γ, instead of all future points. This makes the fat shattering
dimension suitable for direct insertion into eq. 4.35. From inequality 4.34,
then, we see that the benefit of achieving high margin still remains: the

36

4.3 Generalisation performance 37

higher the margin, the lower the fat shattering dimension and the lower the
upper bound on the generalisation risk. However, a difference between eqs.
4.35 and 4.28 is that the latter is a square root dependence, where the former
is linear.

In chapter 6, we consider how quantum hyperplane classifiers compare to
classical ones in terms of fat shattering dimension and generalisation perfor-
mance.

37

Chapter 5
Quantum feature space learning

In this chapter, we combine the concepts of classical supervised feature space
learning from chapter 4 with the theory of quantum computing as discussed
in chapter 2 in order to precisely define the quantum counterpart of CLF
classifiers which, like the classical versions, can be expressed both in the ex-
plicit and implicit formulations. In doing so, we follow the work of Havĺıček
et al., who describe quantum explicit and implicit classifiers as discussed in
chapter 3. The objective of this chapter is to build upon this work, provid-
ing a thorough construction of these classifiers, and a comparison between
quantum explicit and implicit classifiers. Section 5.1 introduces the classifiers
describing the feature space, the classification function formulations and dis-
cusses the conditions in which the classifiers can be evaluated on a quantum
computer, aided by the example of a quantum SVM. Subsequently, section
5.2 provides a comparison between the two types of classifiers in terms of the
structure of their respective classification function spaces under computabil-
ity conditions, with a discussion on training set classification performance
and connections to other known NISQ learning algorithms. Lastly, in sec-
tion 5.3 we apply the notions of generalisation from section 4.3 to quantum
CLF classifiers. We derive a tight upper and lower bound for the fat shatter-
ing dimension of general quantum CLF classifiers, and discuss consequences
for the choice of a classifier that generalises well to new data.

5.1 Quantum CLF classifiers

We shall now define quantum CLF classifiers, considering the explicit formu-
lation first.

Definition 5.1. A quantum explicit classifier is an explicit classifier cΦ

39

40 Quantum feature space learning

whose function space is the space H(2n) of quantum observables on n qubits,
equipped with a feature map Φ which maps x ∈ X onto the subset of n-qubit
pure density matrices through a polynomial size quantum circuit.

The feature map Φ maps x to a pure state ρΦ(x) = |Φ(x)〉〈Φ(x)|. In the
feature space, ρΦ(x) has unit norm, since ‖ρΦ(x)‖H =

√
tr[ρΦ]2 = 1 for all

x.
From this definition, we can see that the space of quantum explicit clas-

sification functions is a RKHS by lemma 4.10, since ‖ρΦ(x)‖H = 1 ∀x.
Furthermore, we observe that a quantum explicit classifier can indeed be
evaluated using a quantum computer. Firstly, the feature map may be re-
alised as a unitary transformation UΦ(x) on the initial state |0〉, so that
ρΦ(x) = UΦ(x)|0〉〈0|U†Φ(x). Secondly, the inner product in observable space
is represented by the computation of the expectation value of a quantum
observable H ∈ H(2n) for a system in the state ρΦ(x):

f(x) = tr[HρΦ(x)]

= 〈Φ(x)|H|Φ(x)〉. (5.1)

We see that the observable H plays the same role as the normal vector w
of the separating hyperplane appearing in the classical explicit classifier con-
struction. However, the fact that it is a matrix gives rise to a particular
parametrisation. After all, by the spectral theorem we may write any her-
mitian observable H as a spectral decomposition W†DW with W a unitary
operator and D =

∑
z λ(z)|z〉〈z| a real diagonal matrix. Therefore we have

f(x) = 〈0|U†Φ(x)W†DWUΦ(x)|0〉. (5.2)

The operator W can be parametrised as a sequence of continuous unitary
gates. Expression 5.2 then gives us a straightforward way to implement the
quantum classifier: after preparation of the state |Φ(x)〉 = UΦ(x)|0〉, we can
measure the expectation 〈H〉 by applying Wθ via a quantum circuit, per-
forming a measurement in the computational basis, and computing λ(z) on
the outcome z. Repetition of this preparation and measurement process then
yields an approximate expectation value for f(x). Since Wθ is parametrised,
one can implement a learning procedure by optimising the circuit for a given
loss function in the sense of eq. 3.3.

However, the requirement of efficient evaluation imposes restrictions on
this class of quantum classifier. After all, if one allows full freedom in the
choice of the observable H, computing and therefore optimising the quantum
classifier may require exponential time in the number of qubits. For one, λ(z)
may not be computable in polynomial time; therefore to ensure this quantum

40

5.1 Quantum CLF classifiers 41

learning method is feasible, one must restrict themselves to observables whose
eigenvalue function λ is efficiently computable. But what is more important
is the implementation of W may require exponentially many gates in the
number of qubits; that is, full freedom in the choice of observables includes
superpolynomial circuits whose expectation value is not BQP-computable.
This places a stringent condition on the choice of observables.

Lastly, we require that the feature map unitary UΦ(x) be a poly-time
circuit for all x. While this is not a restriction on the function space itself, it
does mean that the set of all such unitaries is smaller than U(2n) for growing
n, since general n-qubit unitaries may require exponentially many gates as
mentioned in chapter 2. As such, the range of points in feature space is
limited.

For completeness, let us look at the quantum formulation of the explicit
SVM as in example 4.12.

Example 5.2. We can extend the notion of a SVM to quantum explicit
classifiers, as a classical SVM is an example of an explicit classifier. We can
follow the same steps, except the primal lagrangian of an observable H is
now given by

LP (H, d, α) =
1

2
‖H‖2 −

∑
(x,y)∈T

αx[y (tr[HρΦ(x)] + d)− 1]. (5.3)

We observe that this quantum model can be trained to find a maximum mar-
gin hyperplane; indeed, the quantum primal lagrangian, whose minimum
yields a maximum margin hyperplane, can be evaluated using a quantum
computer. The second term involves an explicit classification function evalu-
ation which we know can be carried out; the first term, then, is the squared
norm of H and is equal to

‖H‖2 = 〈H,H〉 = tr[HH] = tr[D2]

=
∑

z∈{0,1}n
λ2(z) (5.4)

with λ(z) the eigenvalue of H corresponding to the eigenstate |z〉, being the
z-th diagonal entry of D.

We have seen the norm of the classification function before, in the defini-
tion of a regularised risk functional (4.11), and it occurs here in the form of
‖H‖ playing the role of the inverse margin. This creates a problem: in order
to compute the squared norm of H, a sum of exponentially many (squared)
eigenvalues must be calculated, which in general requires exponential time.

41

42 Quantum feature space learning

In order to circumvent this, one must choose H such that
∑

z λ
2(z) admits

an analytical expression which can be evaluated in time O(poly(n)); for in-
stance, one could use observables of at most polynomial rank, i.e. with only
polynomially many nonzero eigenvalues. This, however, comes at the cost of
even further restricting the freedom of observable choice.

To include maximisation of the margin in the optimisation procedure, the
diagonal D must be parametrised. A simple way to do this, while adhering
to the restrictions we just put forward, is to fix D beforehand – as in the
description of explicit classifiers by Havĺıček et al. – and allow it to scale by
a factor a which can vary throughout the optimisation process. This ensures
that for any observable H encountered, there exists a scaling a∗H such that at
least one point lies precisely on the margin. Another way could be to employ a
paramterised family of observables whose sum of squared eigenvalues remains
poly-time computable after scaling every individual eigenvalue (which is true
for polynomial-rank observables in any case).

To address the issue of exponentially costly evaluation, we now introduce
the related class of quantum implicit classifiers, whose definition follows nat-
urally from the previous considerations.

Definition 5.3. A quantum implicit classifier is an implicit classifier ckΦ

whose kernel kΦ is given by

kΦ(x, x′) = tr[ρΦ(x)ρΦ(x′)] = |〈Φ(x)|Φ(x′)〉|2, (5.5)

and which is therefore expressed as

ckΦ
(x) = sgn

(∑
x′∈T

αx′ tr[ρΦ(x)ρΦ(x′)] + d

)
. (5.6)

Note that this type of classifier implicitly implements the observable

H =
∑
x∈T

αxρΦ(x). (5.7)

The kernel may be evaluated for a sample x using a quantum computer, by
estimating the overlaps |〈Φ(x)|Φ(x′)〉|2 for all xi in the training set, which
can be done by preparing the states U†Φ(x′)UΦ(x′)|0〉 and measuring the
probability of finding the all-zero outcome. In this formulation, we see that
no unitary W and diagonal D are present. Thus the use of this classifier
eliminates the need to prepare a possibly exponentially complex parametrised
circuit and to calculate a possibly exponentially expensive sum of eigenvalues.

42

5.2 Comparison between quantum explicit and implicit classifiers 43

In addition, the squared norm of the implicit observable reads

‖H‖2 =
∑
x∈T

∑
x′∈T

αxαx′ tr[ρΦ(x)ρΦ(x′)]

=
∑
x∈T

∑
x′∈T

αxαx′ kΦ(x, x′) (5.8)

which can be evaluated in polynomial time if T contains sufficiently few
points. In practice, one could even compute all kernel values kΦ(x, x′) be-
forehand, storing them in a table, and calculate ‖H‖2 from this table and
the values αx.

However, the polynomial constraints on the feature map now directly re-
strict the function space of implicit classifiers, since its classification function
is induced by the feature map. Furthermore, since any training procedure
should consider each point in a training set at least once, T must be of size
polynomial in n for learning to be efficient; this then assures that computa-
tion of ckΦ

(x) requires only polynomially many kernel evaluations.

5.2 Comparison between quantum explicit and

implicit classifiers

With the definitions of quantum explicit and implicit classifiers in place,
there is more room for comparison between the two. Indeed, as we have seen,
restrictions on the choice of the observable in the explicit model renders the
two formulations more distinct in comparison to the classical case. This raises
new questions: how do the classification function spaces of quantum explicit
and implicit classifiers relate? Can we express quantum implicit classifiers as
explicit ones? In other words, how does the representational power of these
classifier types compare? We consider these questions in this section.

In this context, we point out that using the representer theorem to create a
distinction between quantum explicit and implicit classifiers was mentioned
by Schuld and Killoran [25]. The aim of this section is to work this out
more precisely, and give an insight into the difference between the structural
properties of quantum explicit and implicit classifiers.

We commence with a comparison of complete explicit and implicit func-
tion spaces, disregarding any polynomial restrictions discussed earlier. To
this end, consider the function space FΦ,H = {fΦ

H |H ∈ H,H ⊆ H(2n)} of
all quantum explicit classification functions equipped with the feature map
Φ : x 7→ ρΦ(x) and characterised by an observable H ∈ H; and the space
FkΦ,T = {fkΦ,T

α | α ∈ R|T |} of quantum implicit classification functions with

43

44 Quantum feature space learning

kernel kΦ as in definition 5.3. Note that FkΦ,T is dependent on T as the sum
of kernels of any implicit classifier runs over all elements of T . The following
theorem then establishes the inclusion relationship between the unrestricted
function spaces.

Theorem 5.4. For any n-qubit feature map Φ and training set T , FkΦ,T is
a linear subspace of FΦ,H(2n).

Proof. As noted earlier, an implicit classifier implements the observable H =∑
(x,y)∈T αxρΦ(x). If |T | ≥ dimH(2n) = 4n, H may be of rank 4n, and

FkΦ,T = FΦ,H(2n); in this case, FkΦ,T is of maximum cardinality since if we
add an element x̃ to T , the enlarged set {ρΦ(x̃)} ∪ {ρΦ(x)}(x,y)∈T still spans
a space no larger than H(2n). On the other hand, restricting T to fewer
elements, or choosing Φ so that the ρΦ(x) are no longer linearly independent,
results in the set of training feature vectors spanning only a subspace of
H(2n), implying strict inclusion. As such, since FΦ,H(2n) is a linear space
(because H(2n) is), FkΦ,T ⊆ FΦ,H(2n) for any n-qubit Φ and training set T .
Q.E.D.

Next, consider minimum-risk classification functions fΦ,T ,R
∗ ∈ FΦ,H and

fkΦ,T ,R
∗ ∈ FkΦ,T , with respect to a regularised risk functional R as in defini-

tion 4.11. Observe that fΦ,T ,R
∗ is related to the training set through R, as it

must satisfy a minimum risk on T . Again assuming full freedom in the choice
of H (i.e. H = H(2n)), a connection between the two types of minimum-risk
classifiers is provided by the representer theorem (theorem 4.15), which leads
directly to the following statement.

Lemma 5.5. For any feature map Φ and training set T , the minimum-
risk element fΦ,T ,R

∗ of the space FΦ,H(2n) of quantum explicit classification
functions, with respect to a regularised risk functional R on T and FΦ,H(2n),
is contained in the corresponding space of quantum implicit classification
functions FkΦ,T , and is the minimum-risk element fkΦ,T ,R

∗ of FkΦ,T .

Proof. FΦ,H(2n) is a RKHS by lemma 4.10 and thus obeys the representer
theorem, implying that fΦ,T ,R

∗ has a kernel representation and is therefore
an element of FkΦ,T . Since FkΦ,T ⊆ FΦ,H(2n) by theorem 5.4, fΦ,T ,R

∗ is also
the minimum-risk element fkΦ,T ,R

∗ of FkΦ,T . Q.E.D.

In other words, even though a set of implicit classification functions FkΦ,T

may be a (strict) subset of a set of explicit functions FΦ,H, it always contains
the minimum-risk element for any Φ and T . Restrictions on the observable
set H, then, may only increase the risk value R[fΦ,T ,R

∗] of the minimum-risk
element of FΦ,H. We can express this result as follows.

44

5.2 Comparison between quantum explicit and implicit classifiers 45

Theorem 5.6. Let Φ be a feature map, T a training set, FΦ,H ⊆ FΦ,H(2n)

a set of quantum explicit classification functions, FkΦ,T ⊆ FΦ,H(2n) a set of
quantum implicit classification functions and R a regularised risk functional
on T and FΦ,H(2n). Let fΦ,T ,R

∗ ∈ FΦ,H and fkΦ,T ,R
∗ ∈ FkΦ,T be the minimum-

risk elements with respect to R of FΦ,H and FkΦ,T respectively. Then

R[fΦ,T ,R
∗] ≥ R[fkΦ,T ,R

∗] (5.9)

for any Φ, T and R.

We can illustrate this theorem by imposing a specific restriction on H, for
example to the subspace of H(2n) orthogonal to the subspace spanned by the
feature density operators of an implicit classifier. For example, consider the
feature map given by UΦ(x) = RX(φ(x)). The corresponding feature density
operators are

ρΦ(x) =
1

2
(I − sinφ(x)Y + cosφ(x)Z) (5.10)

and hence all observables HΦ “spanned” by this feature map are of the form
HΦ = aII + aYY + aZZ. Then, if H = {aXX | aX ∈ R}, FkΦ,T is clearly no
longer included in FΦ,H. This can also be seen in a more roundabout way
from the fact that

tr[aXXρΦ(x)] = aX〈0|RX(−φ(x))XRX(φ(x))|0〉 = aX〈0|X|0〉 = 0 (5.11)

(note that RX and X commute), which shows that observables in H cannot
distinguish between any feature density operator, implying that a minimum
risk cannot be achieved by an observable in H, and hence FkΦ,T * FΦ,H by
the representer theorem. Note that if we add aII to an observable H ∈ H,
the resulting observable still makes no distinction between density matrices
since tr[Iρ] = 1 for any ρ. As such, the same argument can be made for any
explicit observable sets that are orthogonal to HΦ = {HΦ} only with respect
to the non-identity components. Of course, if H is only partially orthogonal
to HΦ, it still does not include HΦ, but it may contain the minimum-risk
element depending on the labels and the error measure.

Besides this artificial restriction, there is a case that may occur in practice:
namely that in the decomposition H = W†DW, the diagonal is fixed up
to a scaling factor – a scenario we mentioned earlier in the discussion of
evaluation complexity of explicit classifiers. In this case, it turns out that
generally FkΦ,T * FΦ,H for the reason that FΦ,H is not a linear space. To see
this, take two such observables H and H′ which we write H = W†DW and
H′ = (W′)†D(W′)† with W,W′ elements of some parametrised circuit set

45

46 Quantum feature space learning

W ⊆ U(2n). If this set of observables forms a linear space, then the equation
aH + bH′ = cH′′ = c(W′′)†DW′′, with a, b, c ∈ R and W′′ ∈ W must hold.
For this however, the eigenvalues of H and H + H′ have to match, which is
unlikely, since H and H′ typically diagonalise in a different basis [40]. This
is illustrated by the fact that for a single qubit, even when all unitaries W
are allowed (i.e. W = U(2)) and D = diag(k, l), the eigenvalues of aH + bH′

can be shown to be of the form

λ± =
1

2
(a+ b)(k + l)±

√
(k − l)2 r(a, b, θ, θ′) (5.12)

where θ, θ′ are the parameters of W,W′ respectively, and r is an oscillating
function of θ and θ′. This shows a match for general θ, θ′ if and only if
k = l, or D = kI, a trivial case.

Besides comparison between explicit and implicit in terms of the repre-
senter theorem, there is another important point to be made. In machine
learning, one typically seeks to find a classification model that, while display-
ing good performance on the training set, is as simple as possible, in order
to prevent overfitting and enhance generalisation performance. The natural
way to simplify an implicit classifier, then, is to set some of the coefficients
αx to zero; this method is used by SVMs, which set αx to zero for any feature
vector that does not lie precisely on the margin (the vector with nonzero αx
are called support vectors). An explicit classifier can mimic this by using
an observable of low rank: after all, the rank of an implicit observable (eq.
5.7) is at most the number of elements with nonzero αx. However, explicit
classifiers offer an additional route to simplification, namely via structural
restrictions in the observable, either via the diagonal measurement operator
D, or the parametrised circuits W. This is something implicit classifiers lack
by definition, and which therefore gives explicit an edge when it comes to
generalisation performance.

In summary, we have the following main findings.

• The set of all quantum implicit classification functions (and hence clas-
sifiers) on the Hilbert space H(2n) with respect to a feature map Φ is
contained in the set of all quantum explicit classification functions on
H(2n) with Φ.

• Nonetheless, a classifier that minimises a regularised risk functional
(definition 4.11) can always be expressed as an implicit classifier.

• For restricted subsets of quantum explicit classification functions which
do not contain the set of quantum implicit classification functions in-
duced by a training set T , such as sets that form no vector space or

46

5.2 Comparison between quantum explicit and implicit classifiers 47

those that are (partially) orthogonal to the implicit set, the minimum-
risk explicit classifier is not guaranteed to attain the same risk value as
the minimum-risk implicit classifier.

Of course, these findings are conditioned on the use of a regularised risk
functional, whose regularisation term is limited to a monotonically increasing
function of the function norm. For other choices of a regularisation term, for
example one that decreases in the value of the norm at some point, or is not
expressible in terms of the norm at all, these results do not hold.

Lastly, let us make a connection between the two types of quantum CLF
classifiers and other quantum machine learning methods. We have seen that
the set of quantum explicit classification functions is in fact the set of super-
vised variational quantum classification functions: indeed, such algorithms
typically encode data points x into a state |Φ(x)〉 and optimise an expecta-
tion value represented by a variational circuit and a measurement observable
(cf. eq. 5.1). This approach is for example very common in the description
of quantum neural networks [41, 42]. Now, such classification methods could
witness an improvement in classification performance by expressing them as
implicit classifiers. That is to say, from the representer theorem (theorem
4.15) and corollary 5.5 we know that the optimal variational classifier with
respect to some regularised error is be contained in the space of correspond-
ing kernel representations; as such, casting a classifier into an implicit form
circumvents the restrictions in the variational circuit that may prevent it
from reaching a global optimum. Nonetheless, there are still reasons to opt
for certain restricted explicit classification function sets. One could be to
follow a known ansatz; for example, the multi-scale entanglement renormal-
isation anzatz (MERA) has been studied as an efficient representation of
many-body states [43] and its structural properties have been applied with
success in supervised quantum learning [44]. Another incentive could be to
achieve approximate optima with few resources by applying shallow-circuit
observables.

However, for a large class of restricted variational learning schemes, namely
those that seek to optimise the expectation value of some fixed problem
hamiltonian (including well-known algorithms such as the variational quan-
tum eigensolver [24] and the quantum approximate optimisation algorithm
[45]), this is not applicable: we have seen that this class of functions is not a
linear space, and hence we cannot use the representer theorem to construct a
corresponding implicit model. Indeed, the optimum classifier would fall out-
side the set of fixed-hamiltonian circuits, and would therefore solve a problem
that is different from the original.

47

48 Quantum feature space learning

5.3 Generalisation performance of quantum

CLF learning

As we argued in the previous chapter, besides knowledge about classification
performance on training sets, we also require an idea of the generalisation
performance to paint a complete picture of the learning capabilities of quan-
tum CLF classifiers. In section 4.3, we introduced generalisation performance
in the context of statistical learning theory, which we will now apply to these
classifiers. In particular, we will consider the fat shattering dimension of
quantum CLF classifiers (definition 4.17), which directly gives us insight
into their expected generalisation error though theorem 4.19.

The fat shattering dimension of quantum learning was studied by Aaron-
son [46]. In his paper, he introduces quantum state learning in relation to
quantum state tomography. The idea is that, for some unknown state ρ,
one seeks to accurately estimate the output probabilities tr[ρE] for as many
measurements E as possible without precisely determining ρ itself, given a
set of measurement probabilities tr[ρEi] for measurements E1, . . . ,Em. In
this sense, this approach to quantum state learning is almost identical to
quantum CLF learning. As such, the notion of the fat shattering dimension
can be applied to quantum state learning, and Aaronson gives the following
upper bound.

Theorem 5.7 (Aaronson [46, theorem 2.6]). Let m and n be positive integers
with m > n, and let P be the set of n-qubit density matrices. Suppose a set of
observables E = {E1, . . . ,Em} with eigenvalues in [0, 1] is γ-shattered by P;
that is, there exist ρy for all y ∈ {0, 1}m, as well as real numbers s1, . . . , sm,
such that for all y ∈ {0, 1}m and i ∈ {1, . . . ,m},

tr[ρyEi]

{
≤ si − γ if yi = 0,
≥ si + γ if yi = 1.

(5.13)

Then n/γ2 = Ω(m).

In this theorem, we can easily recognise the fat shattering dimension: if
we identify y = y1 . . . ym as a sequence of labels, then T = {(Hi, yi)}mi=1

is a training set to be γ-shattered; an upper bound on the number m of
observables that can be γ-shattered by P is then the fat shattering dimension
fatP(γ). Thus, fatP(γ) = O(n/γ2) by inversion of the lower bound from the
theorem.

This result however is not in the form that suits our quantum classifica-
tion setting: it describes classification of observables using quantum states,
while we are concerned with classifying quantum states using observables.

48

5.3 Generalisation performance of quantum CLF learning 49

One might think that this issue could be easily fixed by switching the role
of ρy and Ei in eq. 5.13. However, this is not possible, since the relation
between the two is asymmetric. That is, the quantifiers cannot be simply
switched, as the index of ρy runs over all bitstrings of length m, while that of
Ei runs from 1 to m. As such, shattering states with observables is a differ-
ent problem than shattering observables with states, and the fat shattering
dimension in theorem 5.7 cannot be applied directly to quantum CLF learn-
ing1. Besides this, there is another, more intuitive reason against this bound
in quantum CLF learning: considering the bound for classical CLF classifiers
in theorem 4.18, which may generally scale in the dimensionality, it seems
very unlikely that a bound with only logarithmic dependence would appear
in the quantum case, at least for unrestricted families of observables. After
all, the only restriction of quantum CLF learning is that the data points be
pure density matrices, while in quantum state learning the classifier family
is restricted. More precisely, it was shown by Ambainis et al. that quan-
tum states can only store a linear amount of information in the number of
qubits [47] – and this in fact forms the basis of the fat shattering dimension
for quantum state learning in theorem 5.7; however for unrestricted observ-
ables, which are 4n-dimensional vectors in the space of hermitian operators,
we know that an exponential amount of information in n can be stored.
Furthermore, while quantum state learning allows more freedom in the data
points (measurement observables versus quantum states), the space of quan-
tum states is still of exponential dimensionality. Together, we should expect
a higher degree of expressivity for quantum CLF learning as compared to
quantum state learning.

We shall now show that this intuition is indeed correct. To this end, we
first revisit theorem 4.18, which establishes a bound on the fat shattering
dimension of general CLF classifiers. This theorem is not quite in the form
we would like for our quantum setting, since it conditions on the norm of the
hyperplane being unity, whereas in the quantum setting, it is the points (the
feature space density matrices) that have unit norm, while the hyperplanes
(the observables) may scale freely. Fortunately, the conversion of the theorem
to this setting is easy.

Lemma 5.8. Let the set F of linear functions and the dimensionality N be as
in theorem 4.18, but with ‖f‖ ≤ v, and points restricted to unit sphere about

1While in fact one can adapt the bound to CLF learning, this results in a bound that
is loose (in the worst case, exponentially in n), and we can show a better bound following
a different path.

49

50 Quantum feature space learning

the origin. Then the fat shattering dimension of F can be upper bounded by

fatF(γ) ≤ min{9v2/γ2, N + 1}+ 1. (5.14)

Proof. Let us first consider the restricted family F̃ of functions with identical
norm, i.e. ‖f‖ = v for all f ∈ F̃ . Suppose F̃ γ-shatters a set of points
φ1, . . . , φk in a ball of unit radius. Then the set of functions F̃ ′ of functions
with unit norm γ-shatters the set of points φ′1, . . . , φ

′
k where φ′i = vφi, since

〈f ′, φi〉 = 〈f/v, vφi〉 = 〈f, φi〉 for all φi. Therefore, since the points φ′1, . . . , φ
′
k

lie inside a ball of radius v, we have by theorem 4.18 that

fatF̃(γ) ≤ fatF̃ ′(γ) ≤ min{9v2/γ2, N + 1}+ 1. (5.15)

To obtain or desired result, first restrict φ1, . . . , φk to have unit norm (i.e.
from the unit ball to the unit sphere). Since the fat shattering dimension
cannot increase through any restriction on the data points, the bound in eq.
5.15 remains valid. Furthermore, since this bound is monotonically increasing
in v, allowing functions with norm ‖f‖ < v will not increase the fat shattering
dimension (since these functions can never shatter more points by the same
margin), and hence fatF(γ) ≤ fatF̃(γ), which proves our result. Q.E.D.

We thus have the following upper bound on the fat shattering dimension
of quantum CLF classifiers.

Theorem 5.9. Let H be a set of n-qubit quantum CLF classification func-
tions on density matrices with matrix norm at most ν. Then the fat shattering
dimension of H can be upper bounded by

fatH(γ) ≤ min{9ν2/γ2, 4n + 1}+ 1. (5.16)

Generally, we can take H to be a family consisting of observables of rank
at most r and with eigenvalues λ1, . . . , λr such that |λi| ≤ |λmax| for some
λmax. In this formulation, we can express this bound in a somewhat more
practical way. Namely, for any matrix H, ‖H‖2 =

∑r
i=1 λ

2
i ; since λ2

i ≤ λ2
max,

we have ‖H‖2 ≤ rλ2
max and thus

fatH(γ) ≤ min{9rλ2
max/γ

2, 4n + 1}+ 1. (5.17)

It is natural to consider observable families whose largest (absolute) eigenval-
ues are bounded. For example, in the work of Havĺıček et al., the observable
family has only eigenvalues +1 and −1, and thus the fat shattering dimen-
sion of this family is upper bounded by fatH(γ) = O(min{r/γ2, 4n}) (in fact,
this family also has a fixed rank r = 2n).

50

5.3 Generalisation performance of quantum CLF learning 51

Moreover, we can prove that this upper bound is tight, which we shall do
by showing a corresponding lower bound. The main idea behind the proof of
the lower bound is that we can adapt Vapnik’s result [36] (see theorem 4.16),
which was shown by using the vertices of a symmetric simplex as data points,
to quantum CLF learning through the fact that orthogonal pure states form
the vertices of a symmetric simplex in complex space. From this connection
we can directly show the lower bound by applying a statement by Burges
[37, theorem 6], which is a more accessible formulation of Vapnik’s result.

Lemma 5.10. Let φ1, . . . , φN be points of unit norm in RN−1, with N = 2n,
which form the vertices of a symmetric (N − 1)-simplex. Suppose the set F
of linear functions f ∈ RN−1 with norm v γ-shatters the points φ1, . . . , φk
where k ≤ N . Denote uN = 1/

√
1− 1/N . Then the set H of n-qubit

observables with norm uNv γ-shatters the set of n-qubit pure states {ρi}ki=1

where ρi = |i〉〈i|.

Proof. Suppose a function f ∈ F separates φ1, . . . , φk by margin γ under
some assignment y, that is

〈f, φi〉
{
≤ si − γ if yi = −1,
≥ si + γ if yi = +1.

(5.18)

We can embed the symmetric (N − 1)-simplex in RN through the bijection
φi ↔ ei where the ei are standard basis vectors of RN . Now consider the set
F ′ of linear functions f ∈ RN of norm uNv, and take the vector f ′ ∈ RN

with entries f ′i = 〈f, φi〉. It can be readily seen that f ′ has the correct
norm, from the fact that the vertices φi satisfy 〈φi, φj〉 = −1/(N − 1) for
i 6= j. Furthermore, f ′ separates e1, . . . , ek by margin γ under y, because
〈f ′, ei〉 = 〈f, φi〉 for i = 1, . . . , N .
Lastly, consider the set H of n-qubit observables with norm uNv, and note
that F ′ and H can be directly related through the bijections ei ↔ ρi and

f ′ ↔ H = diag(f ′1, . . . , f
′
N). (5.19)

Then ‖H‖ = ‖f ′‖ = uNv and H separates ρ1, . . . , ρk by margin γ under y,
since tr[Hρi] = 〈f ′, ei〉 for i = 1, . . . , N . Therefore, if F γ-shatters φ1, . . . , φk,
then H γ-shatters ρ1, . . . , ρk. Q.E.D.

Theorem 5.11. The fat shattering dimension of the set H of n-qubit ob-
servables H with ‖H‖ ≥ ν shattering n-qubit pure states satisfies

fatH(γ) ≥ min{ν2(1− 2−n)/γ2, 2n}. (5.20)

51

52 Quantum feature space learning

Proof. The result as described by Burges [37, theorem 6] states that the set
F of functions in RN−1 with unit norm γ-shatters k vertices of a symmetric
(N − 1)-simplex, lying on a sphere of radius v, if v2/γ2 ≥ k − 1. Thus
the set F ′ of functions with norm v γ-shatters k unit-norm vertices of a
symmetric (N − 1)-simplex under the same condition. Therefore, by lemma
5.10, k orthogonal n-qubit pure states are γ-shattered by the set H̃ of n-
qubit observables with norm ν = uNv if ν2/u2

Nγ
2 ≥ k − 1; in other words,

the maximum number of pure states that can be γ-shattered by H̃ can be
written bν2/u2

Nγ
2c+1. Since we can have at most N = 2n orthogonal n-qubit

pure states, we find that the fat shattering dimension of H̃ is lower bounded
by

fatH̃(γ) ≥ min{ν2(1− 2−n)/γ2, 2n}. (5.21)

Since allowing observables with norm larger than ν does not decrease the fat
shattering dimension (the enlarged set still contains the observables of norm
ν that realise a separation), this directly implies the theorem. Q.E.D.

We can also write this bound in the fashion of eq. 5.17. This time,
we note that ‖H‖ ≥ rλ2

min>0, where λmin>0 is the smallest nonzero absolute
eigenvalue, and hence

fatH(γ) ≥ min{rλ2
min>0(1− 2−n)/γ2, 2n}. (5.22)

What exactly can be learnt from these bounds? Firstly, we note that the
set of unrestricted quantum CLF classifiers is very expressive, in that it can
shatter exponentially many states in the number of qubits. After all, the
rank of general n-qubit observables may scale as O(2n). The other side of
the coin is that, at first sight, this also seems to imply poor generalisation
performance: looking at expression 4.35, we obtain a bound scaling exponen-
tially in n when we insert the lower bound on the fat shattering dimension of
theorem 5.11 (since any training set must be of size O(poly(n))). In this sense
however, quantum CLF classifiers are no worse than classical CLF classifiers
that operate in spaces of exponential dimensionality; as such, we should look
deeper to find a distinction between classical and quantum CLF classifiers in
terms of generalisation.

Let us have a closer look at theorem 4.19. It states, in the quantum
setting, that if some observable H from a family H classifies a set of T points
correctly with margin γ, then we obtain an upper bound for the generalisation
risk through eq. 4.35 using this particular γ and the fat shattering dimension
ofH. Note that the requirement to classify a set of T points is much less strict
than the requirement to shatter these points: correct classification demands

52

5.3 Generalisation performance of quantum CLF learning 53

a separation for only one, fixed label assignment, while shattering demands
a separation for all possible label assignments. We should therefore relax the
condition of shattering to compare generalisation performance of quantum
and classical CLF learning; this allows us to cleverly pick a useful training
set and a label assignment for which one can construct a separation such
that the ratio between the fat shattering dimension and the training set size
is more favourable.

The question then becomes whether quantum CLF learning offers a higher
degree of freedom in the construction of such a separation, and therefore a
higher likelihood of low generalisation risk. There are two indications that
this is indeed the case. The first of these is that, besides free scaling of
the observable which one can also apply in classical CLF learning, quantum
observables have another property which we can use as a regularisation pa-
rameter: the rank. It is a free parameter, since it is part of the choice of
the observable family, and it directly affects the fat shattering dimension as
can be seen from eqs. 5.17 and 5.22. Interestingly, we can produce some
intuition that a higher rank can lead to a lower margin. Namely, consider
the restriction of observables to those of unit rank and norm ν. Imagine
we are given T feature states ρΦ(x); in the worst case, these states may be
(approximately) orthogonal. For orthogonal states, the maximum margin γ
achieved is ν/T : we can see this by noting that the maximum margin is the
maximum smallest inner product tr[HρΦ(x)] with any feature state ρΦ(x),
which is found when

H = ν|T+〉〈T+| (5.23)

with

|T+〉 = T−1/2
∑
x∈T+

|Φ(x)〉 (5.24)

where T+ = {(x, y) ∈ T : y = +1}. Secondly, consider observables with
rank at most T (and norm ν). Again, the T states which can be shattered
with maximum margin might be mutually orthogonal. Now for any label
assignment – i.e. every partition of the training set T into the +1 class T+

and the −1 class T− – there is a straightforward choice for an observable
which correctly classifies these points, namely

H = ν

(∑
x∈T+

ρΦ(x)−
∑
x′∈T−

ρΦ(x′)

)
. (5.25)

Because the states ρΦ(x) are orthogonal, this observable classifies the training
set with margin 2ν, which is an improvement by a factor 2T . For this case,

53

54 Quantum feature space learning

an increase in rank resulted in an increase in margin; however it remains
to be determined whether this also applies to observables of general rank.
Furthermore, in order to assess the value of quantum CLF classifiers in this
regard, one needs to know the precise relationship between the rank and the
achievable margin – that is, whether down the line a higher rank contributes
to a lower generalisation risk bound or not. This question we leave open for
future investigation.

The second indication that quantum CLF classifiers may exhibit bet-
ter generalisation performance is that likely, quantum computers offer more
freedom in the choice of the feature map for which the computation of the
classifier is tractable. So far, we have disregarded the feature map in the
study of generalisation performance, considering only the most general ar-
rangements of points in quantum Hilbert space. But when our task is to
classify a set of points with a single label assignment, the feature map be-
comes crucial to arrange the points in such a way that a separation can
be made with a high margin on many points. Here, a quantum computer
could offer an advantage: while it is known that quantum computers can
mimic all classical computations (as we will discuss in the next chapter), and
therefore a quantum computer can reproduce all classical feature maps, the
discorvery of quantum speedups [5, 9] suggests that there may be additional
feature maps for which a quantum computer can efficiently compute expec-
tation values. For these reasons, quantum feature maps have become a focal
point for the investigation of quantum learning advantage [48]. Still, little is
known about how such classically intractable feature maps influence gener-
alisation performance under regularisation conditions, and we leave this for
future work. For now, we shall focus our attention on the precise description
of classical hardness in the quantum CLF learning setting, which we study
in the next chapter.

54

Chapter 6
A path to quantum advantage

In this chapter, we consider the possibility for quantum advantage in learn-
ing using quantum CLF classifiers in place of their classical counterparts,
elaborating on the claim by Havĺıček et al. that an advantage could be
provided by quantum feature maps with induced kernels that are hard to
estimate. To this end, we first set up a framework of quantum complexity
theory (section 6.1); with these notions laid out, the first step in the discus-
sion of advantage is to give a rigorous definition of computational hardness
for quantum classification functions (section 6.2). From such a definition,
it will turn out straightforward to formally prove the equivalence between
computational hardness of evaluating quantum classification functions (both
explicit and implicit), and hardness of computing the predicted label from
corresponding classifiers. We subsequently show that hardness of the kernel
is sufficient to guarantee hardness of quantum CLF classifiers (section 6.3),
thus verifying the claim. In section 6.4, we connect this result to previous
quantum complexity considerations, and discuss possible hardness of learning
procedures involving quantum classifiers, which is a different matter – and in
fact a more general question – than mere evaluation of quantum classifiers.

6.1 Quantum complexity

In chapter 2, we precisely established a quantum computational model: given
some input state, a quantum computer capable of implementing quantum
gates performs operations on the input state and returns an output upon
measurement. This is similar to a Turing machine – the most common the-
oretical model used to describe computing machines –, which is given a bit
string as input, performs a number of operations on the input, and either

55

56 A path to quantum advantage

accepts or rejects. The capabilities of computing machines, then, are defined
by the decision problems they can solve; a set of such problems is called
a complexity class. For example, the set of decision problems that can be
solved – more precisely, the languages L ⊆ {0, 1}∗ that can be decided – by a
deterministic Turing machine in time polynomial in the size of the input, is
denoted P. It is appropriate, in order to compare the capabilities of classical
and quantum computers, to consider similar concepts for quantum comput-
ers. The most common complexity class used to describe quantum computers
is the class BQP. It is the set of languages that can be decided probabilisti-
cally (as a quantum computer is an inherently probabilistic machine) within
bounded error, using polynomial-time quantum circuits.

Definition 6.1. A uniform family of polynomial-time quantum circuits is
a set of quantum circuits {Un}, such that Un acts on n qubits, and there
exists a (classical) Turing machine which on all inputs n ≥ 1 computes a
description of Un in time polynomial in n.

Definition 6.2. BQP is the set of languages L ⊆ {0, 1}∗ for which there
exists a uniform family of polynomial-time quantum circuits {Un} such that
for all z ∈ {0, 1}n, {

|〈z|Un|1〉|2 ≥ 1/2 + δ if z ∈ L,
|〈z|Un|1〉|2 ≤ 1/2− δ if z /∈ L.

(6.1)

for some 0 < δ ≤ 1/2 with δ = Ω(1/poly(n)), where |1〉 denotes the 1 state
on the first qubit.

We can alter this definition a bit: note that we can write |z〉 = Uz|0n〉,
where Uz consists of Pauli X gates applied to the i-th qubit if zi = 1. Since
the circuit implementing Uz can be constructed trivially in time O(n), we
may absorb Uz into Un, and the resulting set {Un} remains a uniform poly-
time family, for any z ∈ {0, 1}n. This, then, changes the language in question:
we’re now deciding languages over the set of uniformly poly-time quantum
circuits1 Un – or rather, the bitstrings that describe these circuits – instead
of bitstrings z ∈ {0, 1}n. Hence we may regard BQP as the set of quantum
circuit languages L such that{

|〈0n|Un|1〉|2 ≥ 1/2 + δ if Un ∈ L,
|〈0n|Un|1〉|2 ≤ 1/2− δ if Un /∈ L.

(6.2)

1Here we mean that if we take one circuit Un from this set for every size n, then the
resulting set {Un}n≥1 must be a uniform family of poly-time circuits.

56

6.1 Quantum complexity 57

Note that, strictly speaking, we have defined a promise class, since we explic-
itly excluded circuits for which 1/2− δ < |〈0n|Un|1〉|2 < 1/2 + δ. To reflect
this, the class is sometimes (more appropriately) referred to as PromiseBQP.
We shall however refer to it as simply BQP by abuse of notation.

Now, since our quantum computer is probabilistic in nature, this decision
problem generally cannot be solved with certainty; the best we can do is
sample from the distribution given by |〈0n|Un|1〉|2, and output the majority
answer. The probability, then, that the output is the correct answer, can be
found using the following theorem.

Theorem 6.3 (Chernoff-Hoeffding bound). Consider a set of K independent
random variables {X1, . . . , XK}. If we know Xi ∈ [a, b] then let ∆ = b − a.
Let M = K−1

∑K
i=1Xi. Then

P[|M − E(M)| ≤ ε] ≥ 1− 2 exp

(
−2Kε2

∆2

)
. (6.3)

We say that an expectation E(M) is estimated to additive error ε if we
can sample M such that |M − E(M)| ≤ ε.

Now, let Xi be the outcome after the i-th time we run the quantum circuit
and measure the output qubit; if we are promised that either |〈0n|Un|1〉|2 ≥
1/2 + δ or |〈0n|Un|1〉|2 ≤ 1/2− δ, then the majority answer will be correct if
|M −E(M)| ≤ δ. Hence, if we take K = Ω(1/δ2) (note that ∆ = 1 since the
outcome is either 0 or 1), we can be certain to obtain a correct answer with
at least constant probability (with respect to δ)2. Therefore, we shall express
BQP as the set of decision problems as in eq. 6.2 which can be decided with
at least constant probability in time O(poly(n, 1/δ)) = O(poly(n)).

From the description of quantum circuits, we have that P ⊆ BQP: after
all, one can construct the so-called Toffoli gate,

|x y z〉 7→ |x y z ⊕ (x ∧ y)〉 (6.4)

from a constant number of single-qubit unitaries and CNOT gates [49]; by
setting z = 1, one obtains a NAND gate, which is universal for classical com-
putation. Therefore, by restricting itself to computational basis states (giving
measurement probabilities of either 0 or 1, thus becoming deterministic), a
quantum computer can mimic all classical computations.

Besides P, there is a class of problems that can be viewed as the classical
counterpart to BQP. It is called BPP, and it contains problems of the form

2That is, if we take K ≥ c/δ2 for some constant c, we can make the probability of error
arbitrarily small by choosing c arbitrarily large.

57

58 A path to quantum advantage

in definition 6.2, except the outcomes must be generated by a classical prob-
abilistic Turing machine. By probabilistic we mean that the machine has
access to a “coin flipper” at any point in the computation. While it is easy
to see that P ⊆ BPP, the converse is unknown; nonetheless, it is assumed to
be true, and this assumption is strengthened by the fact that the construc-
tion of (a specific kind of) pseudorandom generators is sufficient to show
P = BPP [50]. In any case, it turns out that a quantum computer can solve
all problems in BPP: simply put, every time the probabilistic classical Turing
machine flips a coin, the quantum computer uses a Hadamard gate to create
randomness. Therefore we have P ⊆ BPP ⊆ BQP. Again, it is unknown
whether BQP ⊆ BPP; however, since the discovery of quantum algorithms
with no known classical (probabilistic) counterpart, such as Shor’s factoring
algorithm [5], it is widely believed that this is not the case. Throughout the
rest of this chapter, we shall assume that BQP * BPP.

As discussed in the previous chapters, though, we are interested in com-
puting expectation values, which are real numbers. While we have so far
assumed the computation of expectation values to be a naturally feasible
task for quantum computers, we have never shown formally that this is in-
deed the case; doing so will be the objective of the remainder of this section.
Besides tying loose ends together, this analysis will also ease the discussion
of computational hardness in the context of quantum learning.

When we speak of computing expectation values, we wish to obtain the
value 〈ψ|O|ψ〉 given an observable O and a state |ψ〉. However, just as
with BQP problems, we cannot expect to do this for any O and |ψ〉; like
unitary circuits, there must be a description that is uniformly poly-time (in
the number of qubits) for both. To make more sense of this, let us write
down the usual decomposition, where |ψ〉 is prepared from |0〉 by a unitary
U and O eigendecomposes as W†DW, in the computational basis:

〈ψ|O|ψ〉 = 〈0|U†W†DWU|0〉. (6.5)

We see that at the very least, both U and W must be taken from a uniform
family of poly-time quantum circuits for the expectation value 〈ψ|O|ψ〉 to be
efficiently computable on a quantum computer. But there is another point:
since the outputs from our quantum circuits are computational basis states,
we need to be able to efficiently map these states to their respective eigen-
values, in order to compute any expectation value. These two requirements
lead to the definition of uniformly poly-time observables.

Definition 6.4. A uniform family of polynomial-time observables is a set
of n-qubit observables {On} with eigendecompositions On = UnDnU†n such
that

58

6.1 Quantum complexity 59

(1) there exists a deterministic Turing machine which on all inputs n ≥ 1
computes a description of Un in time O(poly(n)); and

(2) the function λn which maps z ∈ {0, 1}n to the z-th diagonal element
of Dn (i.e. the z-th eigenvalue of On in the computational basis) is
computable in time O(poly(n)) on all inputs z ∈ {0, 1}n.

For convenience, we have absorbed W into U as both are unitary and
necessarily uniformly poly-time circuits.

In order to connect the task of computing expectation values to the quan-
tum complexity class BQP, we define a class of decision problems called
“expectation-BQP”, denoted EBQP, which we shall express in terms of lan-
guages over observables in analogy to eq. 6.2.

Definition 6.5. EBQP is the set of all languages L over the set of uniformly
poly-time observables such that{

〈0n|On|0n〉 ≥ +δ if On ∈ L,
〈0n|On|0n〉 ≤ −δ if On /∈ L

(6.6)

for some strictly positive δ = Ω(∆On/poly(n)), where ∆On is the difference
between the largest and smallest eigenvalue of On.

The intuition for this restriction on δ stems from the fact that, considering
the Chernoff-Hoeffding bound, the allowed error should scale at least with
the outcome gap ∆ in order to achieve constant success probability with
sufficiently few measurements. (Note in the definition of BQP, we imposed
this restriction with ∆ = 1.)

Let us now consider the relationship between BQP and EBQP. First, let
L ∈ BQP, let {Un} be as in eq. 6.2, and identify

On = Un|1〉〈1|U†n − 1/2; (6.7)

then

|〈0n|Un|1〉|2 = 1/2 + 〈0n|On|0n〉. (6.8)

Thus, if we define a language L′ as in eq. 6.6 with the same δ, then On ∈ L′
if and only if Un ∈ L. Note that {On} is a uniform family of poly-time
observables since {Un} is a uniform family of poly-time circuits, and the
eigenvalue function λn corresponding to the diagonal operator |1〉〈1| − 1/2
can be computed in time O(1). Since λn(z) ∈ [−1/2, 1/2], we have ∆On = 1,
and thus δ = Ω(∆On/poly(n)), which implies that L′ ∈ EBQP. Hence L is

59

60 A path to quantum advantage

decided in polynomial time by a machine that decides all languages in EBQP,
and therefore BQP ⊆ EBQP.

We can reverse the argument. Let {On} be as in eq. 6.6, and let
L ∈ EBQP. Note that any poly-time observable On can be expressed in
its eigendecomposition

On =
∑

z∈{0,1}n
λzUn|z〉〈z|U†n (6.9)

where Un is a uniformly poly-time quantum circuit and λz is computable
from z in polynomial time. This means that

〈0n|On|0n〉 =
∑

z∈{0,1}n
λz〈0n|Un|z〉〈z|U†n|0n〉 =

∑
z∈{0,1}n

λz|〈0n|Un|z〉|2. (6.10)

Because Un is uniformly poly-time, we can use a BQP machine (a machine
that decides all languages in BQP, i.e. a quantum computer) to sample from
the distribution

P(z) = |〈0n|Un|z〉|2 = 〈0n|Un|z〉〈z|U†n|0n〉 (6.11)

by measuring every qubit (which requires time O(n)). Then, we can compute
an estimation of the expectation value 〈0n|On|0n〉 by sampling many multi-
qubit outcomes, computing the eigenvalue corresponding to the outcome and
averaging the result. According to the Chernoff-Hoeffding bound, and the
fact that the eigenvalues λn(z) can be computed in time O(poly(n)), this
estimate can be made up to additive error at most δ with at least constant
probability in time O(poly(n,∆On/δ)); since L ∈ EBQP requires that δ =
Ω(∆On/poly(n)), the time needed is O(poly(n)). Given the promise that
the expectation value be either above +δ or below −δ, L is thus decided
by the BQP machine with at least constant probability in polynomial time
by accepting if the result is positive, and rejecting if it is negative. As
such, L ∈ BQP, which implies that EBQP ⊆ BQP; combined with the other
direction, we find that EBQP = BQP.

From the above reasoning, it is clear that all problems which ask to esti-
mate expectation values up to some additive error in polynomial time, with-
out deciding whether they fall above or below some threshold, can be solved
by a machine that solves all problems in BQP. After all, given a procedure
that solves a decision problem as in eq. 6.6, a classical deterministic ma-
chine can compute the expectation value 〈0n|On|0n〉 through binary search
with an initial guess g by invoking this procedure O(log(|g−〈0n|On|0n〉|/δ))
times; and since all numbers used in the computation must be stored in

60

6.2 Defining computational hardness 61

at most O(poly(n)) bits for the computation to be feasible in polynomial
time, it is guaranteed that log(|g − 〈0n|On|0n〉|/δ) = log(2O(poly(n))/δ) =
O(poly(n) + log(1/δ)) = O(poly(n, 1/δ)). Hence, a deterministic Turing ma-
chine that has oracle access to a machine that solves all BQP problems, also
solves all such estimation problems. In the following, we shall make a slight
abuse of notation, and consider BQP in the sense of real-valued estimation
problems instead of decision problems.

6.2 Defining computational hardness

We shall now proceed to give appropriate definitions of computational hard-
ness for quantum CLF classification functions and classifiers. To this end, we
shall firstly revisit the construction of quantum CLF classifiers as defined in
chapter 5, in order to better fit them into the context of quantum complex-
ity as discussed in the previous section, which is required to properly define
computational hardness.

Let us begin with quantum explicit classification functions. We shall for-
mally consider such functions in terms of classification function descriptions,
one for each qubit number n. We define a description Fn on n qubits to be
a 4-tuple (φ, U ,W ,D) containing

• a feature angle vector map φ : X → [0, 2π]m : x 7→ φ(x),

• a feature unitary operator map U : [0, 2π]m → U(2n) : φ 7→ U(φ),

• a variational unitary operator map W : [0, 2π]p → U(2n) : θ 7→ W(θ),

• a real computational basis diagonal observable D ∈ H(2n).

We demand that the set {Fn}n≥1 be uniformly poly-time computable, i.e.
there must exist a Turing machine which computes the maps φ, U and W
on input n and the respective map inputs in time O(poly(n)). Furthermore,
we require that the diagonal entries of D be computable in time O(poly(n)).
Then, a classification function instance fθ(·) of description Fn is a function

fθ(x) = 〈0n|U†φ(x)W
†
θDWθUφ(x)|0n〉 (6.12)

such that φ(x) = φ(x), θ ∈ [0, 2π]p, Uφ = U(φ) and Wθ = W(θ). Since
{Fn}n≥1 is uniformly poly-time computable, the problem of approximately
evaluating fθ(x) for any x and θ is in BQP.

In order to be able to think about classical hardness of producing such
estimates, we first need to define precisely a family of classification functions.

61

62 A path to quantum advantage

Definition 6.6. Let Fn be a quantum explicit classification function descrip-
tion for all n ≥ 1, and let Fn be the set of all classification function instances
of Fn. Then a family of quantum explicit classification functions is the set
{Fn}n≥1.

We shall now define classical hardness of families of explicit classification
functions.

Definition 6.7. A family G = {Fn} of quantum explicit classification func-
tions described by descriptions {Fn} is classically hard if there exists no
classical algorithm which, for all n ≥ 1, can evaluate all classification func-
tion instances f(·) ∈ Fn on all inputs x ∈ X up to additive error ε in time
O(poly(n,∆D, 1/ε)).

In other words, a quantum explicit classification function family G is
classically hard if the problem of estimating any evaluation of a function in
G is in BQP \ BPP.

For the hardness definition of implicit classifiers, we can make an almost
carbon copy of the definitions for explicit classifiers; the main difference is
the classification function description. In particular, we define a quantum
implicit classification function description Fn on n qubits to be a 4-tuple
(φ, U , T , α), containing

• a feature angle vector map φ : X → [0, 2π]m : x 7→ φ(x),

• a feature unitary operator map U : [0, 2π]m → U(2n) : φ 7→ U(φ),

• a training set T ⊆ X × Y of cardinality O(poly(n)),

• a weight vector α ∈ R|T |.

which again must be uniformly poly-time computable.
Then, a classification function instance f(·) of description Fn is a function

f(x) =
∑
x′∈T

αx′ |〈0n|U†φ(x′)Uφ(x)|0n〉|2 (6.13)

= 〈0n|U†φ(x)OT,αUφ(x)|0n〉 (6.14)

where

OT,α =
∑
x′∈T

αx′Uφ(x′)|0n〉〈0n|U†φ(x′). (6.15)

such that φ(x) = φ(x) and Uφ = U(φ).

62

6.2 Defining computational hardness 63

Note that the gap ∆ appearing in definition 6.7 is given for implicit
classifiers, depending on the training set feature maps Uφ(x′), by

∆OT,α ≤ α+ − α− =
∑
x′∈T

|αx′|, (6.16)

where α+ is the sum of all positive αx′ , and α− is the sum of all negative αx′ .
The extreme case ∆OT,α = α+ − α− occurs when, for all states Uφ(x′)|0n〉,{

|〈0n|Uφ(x′i)
Uφ(x′j)

|0n〉|2 = 1 if sgn(αx′i) = sgn(αx′j),

|〈0n|Uφ(x′i)
Uφ(x′j)

|0n〉|2 = 0 if sgn(αx′i) 6= sgn(αx′j),
(6.17)

since in this case the observable OT,α becomes

OT,α = α+U+|0n〉〈0n|U†+ + α−U−|0n〉〈0n|U†− (6.18)

for some U+,U− such that U+|0n〉 and U−|0n〉 are orthogonal. In all other
cases, nonorthogonality between the states Uφ(x′)|0n〉 implies a smaller gap

∆OT,α. Further note that, if we first estimate the kernels |〈0n|U†φ(x′)Uφ(x)|0n〉|2
to some additive error ε̃ and subsequently compute the weighted sum (eq.
6.13), the resulting error is bounded by ε̃∆OT,α; as such we can estimate
f(x) to additive error ε by estimating all individual kernels to error ε̃ =
ε/∆OT,α, which requires O(poly(∆OT,α, 1/ε)) measurements per kernel. This
is precisely in line with the fact that, provided φ and U are uniformly
poly-time computable, OT,α is a uniformly poly-time observable (and so is

U†φ(x)OT,αUφ(x)), which assures that the problem of estimating f(x) is in
BQP.

A family of quantum implicit classification functions is defined in a similar
fashion to families of quantum explicit classifiation functions, only using an
implicit classification description. This straightforwardly gives a definition
of classical hardness with regard to implicit classification functions: like in
the explicit case, a quantum implicit family G is classically hard if the task
of estimating any evaluation of a function in G is in BQP \ BPP.

Now, in order to obtain a classification result from the evaluation of a
classification function, we require a function σ which takes the output of
the classification function and maps it onto one of the labels −1 or +1; the
composition σ ◦ f then forms the classifier from a classification function. We
require that σ be efficiently computable on a classical machine. In accordance
with the previous chapters, we consider threshold functions of the form

σ(f(x)) = sgn(f(x)− d) (6.19)

63

64 A path to quantum advantage

for some offset d ∈ R, which are clearly efficiently computable classically.
This modification from a real-valued to a binary output changes the nature
of the problem: instead of an estimation problem, we are now concerned with
a decision problem. For this reason, it is in order to give separate definitions
of classifier families and classifier hardness. After all, while the two types of
problems are closely related, they are not equivalent.

Definition 6.8. Given a (either explicit or implicit) classification function
family G = {Fn}n≥1, a classifier family corresponding to G is a family of
pairs C = {(Fn, σn)}n≥1, where σn is a threshold function with some offset
d ∈ R.

It is necessary to specify a separate threshold function for every n, since
definition 6.6 (and similarly for implicit classification functions) allows dif-
ferent codomains of the functions f(·) ∈ Fn for different n. After all, if the
offset d lies outside the codomain of a function f(·) (i.e. d > f(x) ∀x or
d < f(x) ∀x), the decision problem of computing σ(f(x)) becomes trivial:
the answer is either +1 or −1, for all x. For this reason, we shall call a clas-
sifier family well-formed if, for all n, the offset d of σn lies in the codomain
of the functions f(·) ∈ Fn.

The intuition for the definition of classifier hardness stems from the (by
now well-known) process for obtaining a classification result: a quantum
computer computes an estimate of an expectation value up to some error
and feeds this into the threshold function σ. For a classifier family to be
classically hard, there should exist no classical algorithm which can simulate
this entire process efficiently for all inputs x and classification function f(·).
We formalise this in the following definition.

Definition 6.9. Let C be a classifier family corresponding to classification
function family G = {Fn}. Then C is classically hard if there exists no
classical algorithm which, for all n ≥ 1 and f(·) ∈ Fn with f(x) ∈ [a, b] ∀x ∈
X , can compute σ(f̃(x)) such that f̃(x) ∈ [a, b] and |f̃(x)− f(x)| ≤ ε on all
inputs x ∈ X , in time O(poly(n,∆, 1/ε)), where ∆ = b− a.

Given uniformly poly-time computability properties of the classification
function description which gives rise to a classification function family G,
we expect a quantum computer to be able to compute f̃(x) in the sense
of the above definition, and therefore to compute the classification result
σ(f̃(x)). Therefore, the condition that C is classically hard again entails
that the problem of computing σ(f̃(x)), for any x and f with respect to C,
lies in BQP \ BPP. Note that, for the reasons discussed above, C must be
well-formed in order to be classically hard.

64

6.3 Connecting classification functions, classifiers and kernels 65

6.3 Connecting classification functions, clas-

sifiers and kernels

With precise hardness definitions in place, we are now in a position to con-
tinue the analysis of quantum advantage in the context of quantum CLF
classifiers, by first laying the connection between classification functions and
their corresponding classifiers. Through the following theorem, we show that
classical hardness of classification function families and classifier families is
equivalent, which is a step usually glanced over in contemporary literature,
including the work of Havĺıček et al.

Theorem 6.10. Let G be a family of explicit or implicit classification func-
tions and C a well-formed family of classifiers corresponding to G. Then C
is classically hard if and only if G is classically hard.

Proof. If G is not classically hard, then we can use a classical computer to di-
rectly calculate any f(x), to within ε additive error in time O(poly(n,∆, 1/ε))
and use it as the input to σ. Since σ is classically efficiently computable, so is
σ(f(x)) up to the same error, and hence C is not classically hard. Inversion
of this statement yields the only if direction.

The other direction follows from the fact that any machine which can
compute σ(f̃(x)) such that |f̃(x)− f(x)| ≤ ε in time O(poly(n,∆, 1/ε)), can
decide the following comparison problem, given the threshold d ∈ [a, b] of σ:{

if f(x) + ε > d then yes

if f(x)− ε < d then no
(6.20)

If a classical machine can efficiently find a solution to the above decision
problem for some d ∈ [a, b], it can do so for all d ∈ [a, b] simply by shifting
f(x). Therefore, one can then compute an estimate of f(x) up to additive
error ε through binary search, with at most O(log(∆/ε)) such comparisons3.
Since O(poly(n, log(∆/ε))) can be absorbed into O(poly(n,∆, 1/ε)), we find
that f(x) can be efficiently classically estimated. In conclusion, we observe
that G is not classically hard if C is not classically hard, and hence by
inversion of this statement, we proved the if direction. Q.E.D.

Informally, this result states that if one cannot efficiently classically es-
timate certain quantum CLF classification functions up to some error, one

3If f(x) ∈ [a, b] with ∆ = b− a, then in the worst-case, the initially picked d and f(x)
are at most ∆ apart. Then, the number of comparisons K required to find f̃(x) such that
|f(x)− f̃(x)| ≤ ε is found from the condition 2−K∆ ≤ ε, which implies K = O(log(∆/ε)).

65

66 A path to quantum advantage

cannot classically efficiently compute the corresponding classifier up to that
error either.

To show that classical hardness of estimating quantum kernels provides
classical hardness of computing quantum CLF classifiers, we need to take
one last step. Here, by kernel hardness we mean the existence of a classically
hard family of quantum implicit classification functions with a single term
(which are kernels multiplied by a scalar). Now, the above analysis only
shows that kernel hardness implies hardness of implicit “classifiers” whose
training set contains a single point; however, a problem with only one point
to classify is not a well-defined classification problem. As such, we need
to show that under the condition of quantum kernel hardness, there exist
families of quantum implicit classifiers induced by training sets with at least
two points, which are classically hard.

To this end, take a training set T = {(x0,+1), (x1,−1)} and an induced
classifier

c(x) = sgn(α0 tr[ρ(x0)ρ(x)] + α1 tr[ρ(x1)ρ(x)]− d). (6.21)

For correct labelling, we require that α0 > α1 and α1 < d < α0. Note
that the second requirement follows immediately if this family of classifiers
is well-formed. If the requirements are met, there always exist inputs x such
that either α0 tr[ρ(x0)ρ(x)] or α1 tr[ρ(x1)ρ(x)] equals d; this brings us back
to the single-point case, which we assumed was hard. As such, the family
containing classifiers of this type is classically hard if and only if the family
of kernels tr[ρ(xi)ρ(x)] is classically hard. Now, we point out that a similar
argument can be given for classifiers induced by training sets with more
than two points: it may still occur that all but one of the terms sum to d,
which gives the same hardness property. Lastly noting that, as we argued in
chapter 5, implicit classifiers are a special case of explicit classifiers, we can
summarise the analysis in the following statement.

Corollary 6.11. There exist families of quantum CLF classifiers (either
explicit or implicit) that are classically hard, if and only if there exists a
family of quantum kernels which cannot be evaluated efficiently classically.

As a final observation, we remark that for a family of quantum explicit
classifiers to be possibly classically hard contingent on kernel hardness, the
observable Hθ = W†

θDWθ must act on the space of the feature states for at
least one θ, i.e. ∃x ∈ X , θ ∈ [0, 2πm] : 〈Φ(x)|Hθ|Φ(x)〉 6= 0. But since this
is required for the explicit classifier to be able to classify any set of feature
vectors at all, this is not an issue.

66

6.4 Hardness of learning 67

6.4 Hardness of learning

Through the complexity theoretic study of the previous sections, we have
worked out a possible source of quantum advantage in using quantum CLF
classifiers: namely, if it can be shown that BQP * BPP, we can be certain
that there is no classical algorithm which estimates all quantum kernels ef-
ficiently, and therefore it will be impossible to evaluate all quantum CLF
classifiers efficiently on a classical machine. After all, if one can efficiently
estimate the overlap between any two (efficiently preparable) states in a clas-
sical manner, from the descriptions of the circuits that generate them, then
BQP = BPP. But is this really an advantage for learning? Or, in other words,
does such “quantum advantage” provide any motivation for using quantum
CLF classifiers at all? In machine learning, we’re not interested in classifiers
simply for the sake of evaluating them, but for the reason that they solve
classification problems. As such, the question we should ask is: can quantum
classifiers efficiently solve classification problems that classical classifiers can-
not? Do there exist classification problems which are so difficult they force
us to use a quantum classifier? Havĺıček et al. do not explicitly consider this
question in their paper, but given its importance in motivating the use of
quantum classifiers, we will modestly discuss the topic in this section.

To be able to say anything meaningful on this matter, we first need to
define precisely what we mean by a classification problem. Typically, such
problems are described by the model of probably approximately correct learn-
ing, or PAC learning for short [51]. Let X be an input set and Y = {+1,−1}
a label set. In the PAC learning context, a concept class Y is a set of
functions y : X → Y , one of which is the unknown ground truth to be
learnt. Then, a learner L for Y is an algorithm which outputs a hypothesis
c : X → Y . This learner L is said to be a (ε, δ)-PAC learner for Y if, for
every ε, δ ∈ [0, 1], y(·) ∈ Y and every distribution D over X , when given a
training set T ⊂ X × Y with x drawn from D as input4, L outputs with
probability at least 1− δ a hypothesis h(·) such that

P
x∼D

[h(x) 6= y(x)] ≤ ε (6.22)

with at most O(poly(n, 1/δ, 1/ε)) examples. Informally, a hypothesis that is
the output of an (ε, δ)-PAC learner is allowed to err, as long as it does so suf-
ficiently infrequently – preferably on points that occur with low probability.

This definition, however, is not compatible with quantum classification
complexity as discussed in the previous sections, since we considered quantum

4Strictly speaking, D is an ensemble {Dn}n≥1 of distributions over n-bit strings. As
such, in eq. 6.27, x is drawn from the n-bit distribution Dn for every n.

67

68 A path to quantum advantage

classifiers in the context of worst-case complexity classes, and PAC learnabil-
ity is not a worst-case statement. As such, let us proceed with a nonstandard,
worst-case definition of learning: as a special case of PAC learning, we shall
require a worst-case learner to output a hypothesis that classifies all new
points correctly with certainty, i.e. ε, δ = 0, using O(poly(n)) examples
drawn from any distribution D.

When comparing worst-case computational capabilities of quantum and
classical computers, one typically considers the complexity classes BQP and
BPP, as we have done in section 6.1. However, because classification problems
allow the use of training sets containing oracle-given examples, it is more
intuitive, when asking how quantum and classical computers compare in
terms of learning, to consider a complexity class that takes into account
such examples. One such complexity is P/poly: this is the class of problems
solvable by a classical machine, in polynomial time, which besides the input
is given an O(poly(n))-sized advice string for each instance size n that may
not depend on the input. For classification problems, we can identify the
training set, which we require to be of polynomial size, as the advice. Here,
it is worthwhile to note that, in fact, BPP/poly = P/poly. The direction
P/poly ⊆ BPP/poly is trivial; the other direction follows from a result known
as Adleman’s theorem [52, 53], which states that BPP ⊆ P/poly. It is easy
to see that a P/poly machine M which decides any language L ∈ BPP also
decides all languages L′ ∈ BPP/poly, because the advice string given to the
BPP/poly machine M ′ that decides L′ is of polynomial size, and can therefore
be appended to the advice string given to M .

In order to compare quantum and classical worst-case learning, then, we
should consider how BQP and P/poly relate. Of interest here are problems
that are BQP-complete: these are the problems in BQP such that, if some
machine M can decide one such problem, then a P machine with access to
the oracle M can solve all problems in BQP. One such problem is the ap-
proximation of the Jones polynomial, which plays a big role in the simulation
of topological quantum field theory [54–57]. More precisely, there exist uni-
form families of polynomial-time quantum circuits {Un} (cf. definition 6.1),
such that the problem of deciding whether |〈z|Un|1〉|2 is greater or smaller
than 1/2 ± δ for all z ∈ {0, 1}n is BQP-complete; therefore, if a classical
polynomial-time algorithm can decide this problem with O(poly(n))-sized
advice, it can do so for all uniform families of polynomial-time quantum
circuits, and hence BQP ⊆ P/poly5.

5BQP ⊆ P/poly is in fact believed not to hold. One argument is that it would imply
Factoring ∈ P/poly, and would thus break most cryptography schemes, which are defined
against P/poly adversaries [58].

68

6.4 Hardness of learning 69

With this in mind, we can determine the relationship between BQP and
P/poly on the condition that a classical computer is capable of learning ev-
erything (in the sense of the worst-case definition given above) that a quan-
tum computer can learn. The latter is precisely the set of ground truths
y(·) = cnθ∗(·) where cnθ∗(·) is some quantum CLF classifier from a classifier
family C, one for every qubit number n, such that the set comprising the
underlying classification functions {fnθ∗(x)}n≥1 can be realised as a uniform
family of polynomial-time observables for every x. Indeed, if C is chosen arbi-
trarily from the set of all possible quantum CLF classifier families, this is the
best a quantum computer can do: by theorem 6.10, evaluating a classifier c(x)
is precisely as hard as evaluating the underlying classification function f(x);
and since the choice of cnθ∗(x) is arbitrary, there exist classifier choices such
that estimating expectation values for the family {fnθ∗(x)} is a BQP-complete
problem. After all, we can identify fnθ∗(x) = 〈x|Un|1〉〈1|U†n|x〉 = |〈x|Un|1〉|2,
where {Un} describes a BQP-complete quantum circuit family. Therefore, if
there exists a classical poly-time algorithm which can worst-case learn any-
thing that a quantum computer can possibly learn – that is, it can learn to
simulate any poly-time quantum circuit without being given the circuit de-
scription – using polynomially many samples as advice, then BQP ⊆ P/poly.

To a careful reader however, worst-case classification of the concept con-
taining all quantum circuits, using polynomially many examples drawn from
any distribution, may seem like a very tall order. Is it possible at all? If
not, then this invalidates the above reasoning, claiming quantum learning
supremacy on the condition that BQP * P/poly. This question is answered
by a result from the work of Arunachalam et al. [59]: namely, in their paper
they show that, under the condition that the learning with errors problem
LWE [60] is not in BQP, which is widely believed to be true, there exists no
quantum polynomial-time PAC learner for the boolean circuit class TC2

0.

Let us decompose this statement. First, TC2
0 is the set of boolean func-

tions y : {0, 1}n → {0, 1} that can be computed by a circuit B which satisfies
the following:

• B contains O(poly(n)) gates;

• each gate is an unbounded fan-in not, and, or or majority gate maj,
where maj(x) = 1 if and only if

∑
i xi ≥ n/2;

• B is of depth at most 2.

Here, TC2
0 is the concept class in the context of PAC learning. Furthermore,

a quantum PAC learner, as defined in the paper, is a learner that has access

69

70 A path to quantum advantage

to a quantum computer, as well as a quantum training set of the form∑
x

√
p(x)|x, c(x)〉. (6.23)

Then, the authors state that, conditioned on LWE /∈ BQP, there exists no
quantum learner which runs in time O(poly(n)) and is a PAC learner for TC2

0.
The consequence of this is that, under the made assumption, the concept class
of all quantum circuits is not classically efficiently PAC learnable. After all,
quantum learning with quantum examples is no harder than classical learning
with classical examples, and TC2

0 is a restricted class of classical circuits,
which is no harder to learn than an unrestricted class of quantum circuits.
Yet, there exists no poly-time quantum PAC learner which can perform this
task, which implies that learning the class of all possible quantum circuits
is certainly out of reach for classical poly-time algorithms. This stringent
result therefore breaks the above argument for quantum learning supremacy
conditioned on BQP * P/poly, and shows that the concept class that captures
all possible quantum CLF classifiers is not a suitable candidate to consider
in the quest for such supremacy (either in a PAC or worst-case learning
context).

The comparison between classical and quantum learning changes how-
ever when we restrict the concept class from the set of all quantum circuits
to something smaller. Consider a concept class C that contains the following
two concepts: c(·) : {0, 1}n → {0, 1} which is expressible as a BQP-complete
circuit, and c̄(·) which is the negation of c(·). A quantum computer can
straightforwardly PAC learn (or even zero-error learn) this concept in poly-
nomial time with a single example (x, y(x)), by simply evaluating c(x) and
outputting the hypothesis c(·) if y(x) = c(x) and c̄(·) otherwise. For this
class to be efficiently classically zero-error learnable however, there would
have to exist a classical algorithm which, with a set of O(poly(n)) examples
as advice, evaluates c(x) correctly in polynomial time for any input x. The
existence of such an algorithm would imply BQP ⊆ P/poly, since the evalua-
tion of c(x) is BQP-complete; as such we find that, if BQP * P/poly – which
is generally believed to be true – then there exist concept classes which can
be efficiently zero-error learnt quantumly, but not classically.

Still, zero-error performance is an unreasonable requirement for learning,
and it is more useful to consider this class from a PAC viewpoint. Now,
efficient classical PAC learnability of this class requires an advised classical
algorithm which evaluates c(x) correctly on average. One way to describe
average-case complexity is to follow (an equivalent of) Levin’s definition [61,
62]. It defines an algorithm A to be on-average polynomial-time with respect
to a distribution D if there exists a polynomial P (n) and constant c > 0 such

70

6.4 Hardness of learning 71

that, for all t > 0,

P
x∼D

[tA(x) ≤ t] ≥ 1− P (n)/tc, (6.24)

where tA(x) is the time needed for the algorithm to process x. An algorithm
which satisfies this property in fact has median polynomial runtime. By
rearranging terms, we may also write the condition as

P
x∼D

[tA(x) ≤ (P (n)/ε)1/c] ≥ 1− ε (6.25)

for all ε > 0. With this in mind, imagine a set A of classical algorithms AT ,
one for each training set T , which map x ∈ {0, 1}n to 0 or 1. Assume that,
for all D, if T is sampled according to D, then with probability at least 1− δ
the algorithm AT correctly evaluates a ground truth y(·) ∈ C and satisfies the
average-case polynomial-time condition in eq. 6.25. Then consider the set A′
which contains, for every AT , a truncated algorithm A′T , which returns the
answer of AT if AT runs within time (P (n)/ε)1/c, and a generic “incorrect
answer” if AT exceeds this runtime. We find that

P
x∼D

[A′T (x) 6= y(x)] ≤ ε (6.26)

(cf. eq. 6.22) and thus a learner L which samples T and maps T to A′T
is an (ε, δ)-PAC learner for C, which implies that C is efficiently classically
PAC-learnable.

If we could reverse this argument, we would have a complexity-theoretic
condition for quantum learning supremacy: namely if there exists no classical
on-average polynomial-time algorithm which correctly evaluates y(·) ∈ C,
then C is not classically PAC learnable and hence there exists a class that
can be PAC learnt with a quantum algorithm but not classically. However,
if we wish to show that PAC learnability requires the existence of an on-
average poly-time algorithm, we run into a problem: namely, an on-average
polynomial-time algorithm must compute c(x) correctly for all x, regardless
of the time needed to do so. What’s in the way here is the fact that we cannot
verify the correctness of a hypothesis returned by a PAC learner (assuming
BQP 6= BPP). If we could, we could also construct an algorithm which runs
the PAC learning algorithm, keeps its output if it is correct, and otherwise
runs a brute-force simulation of the quantum circuit (which is guaranteed
to output the correct result); and this algorithm would be an on-average
poly-time algorithm. But since this is not possible, the requirement that an
on-average poly-time algorithm exist is in fact too strong for PAC learning.
Therefore, the negated requirement, namely that no such algorithm exist, is

71

72 A path to quantum advantage

too weak to claim quantum learning supremacy in the PAC context, and we
should look for an alternative definition.

The average-case complexity definition that best fits the PAC context is
that of heuristic schemes [61]. If L is a language and D a distribution over
inputs, then an algorithm A is a heuristic scheme for (L,D) if

• for all n, x ∈ {0, 1}n and ε > 0, A runs in time O(poly(n, 1/ε)) on
input x;

• for all n and ε > 0,

P
x∼D

[A(x) 6= L(x)] ≤ ε (6.27)

where L(x) = 1x∈L.

Furthermore, HeurP is the set of pairs (L,D) for which there exists a heuris-
tic scheme that can be computed by a deterministic Turing machine (and
similarly for the class HeurBPP). Thus, the difference between the class of
on-average polynomial algorithms and algorithms for HeurBPP is that the
latter are allowed to err with a probability ε under D and must run in poly-
nomial time, while the former can run in superpolynomial time, but must
return a correct answer for every input.

We can now use the same reasoning as with on-average poly-time algo-
rithms. Define the language L = {x : y(x) = 1}, and let B be a set of
algorithms BT . Then if for all D,

P(BT is a heuristic scheme for (L,D)) ≥ 1− δ (6.28)

with T sampled according to D, then a learner L which samples T and maps
T to BT is an (ε, δ)-PAC learner for C.

Interestingly, with this definition of average-case complexity, we can re-
verse the argument: suppose there exists a distribution such that there
exists no classical algorithm B which is a heuristic scheme for (L,D), i.e.
(L,D) /∈ HeurBPP. Then the assumption that C is classically PAC learnable
leads to a contradiction. Namely, it requires that for all distributions and all
concepts c(·) ∈ C (including the concept c such that c(x) = L(x)) there exists
a classically computable hypothesis h which satisfies eq. 6.22 (and which a
learner must be able to find with probability at least 1 − δ). But this is
impossible assuming (L,D) /∈ HeurBPP. Therefore, under this assumption,
C is not classically PAC learnable. As such, if one were to find a language
L ∈ BQP and a distribution D such that (L,D) /∈ HeurBPP, then this would
be sufficient to claim quantum PAC learning supremacy. After all, in this

72

6.4 Hardness of learning 73

case one could construct a concept class CL = {L(·), L̄(·)} that is efficiently
PAC learnable with a quantum learning algorithm, but not classically.

The question remains then, whether there exists a pair (L,D) for which
the above condition holds. In particular, it is likely that we cannot link
the existence of such a pair to a worst-case complexity statement such as
BQP ⊆ P/poly in the same straightforward manner. After all, it is known
that the reductions from worst-case hardness to average-case hardness would
imply a collapse of the polynomial hierarchy for many complexity classes,
including NP [63], and the situation may be equally complex in the quantum
case [64]. Thus the statement BQP * P/poly is unlikely to imply anything
about the existence of concept classes that are efficiently PAC learnable with
a quantum computer, but not classically. Nonetheless, based on recent re-
sults showing average-case hardness of quantum circuit sampling [65, 66] and
an average-case separation between quantum and classical shallow circuits
[67], we conjecture that no efficient classical algorithm exists which decides
a BQP-complete problem with examples, and hence there is a BQP-complete
language L such that (L,D) /∈ HeurBPP for some distribution D. Under this
condition, there exist concept classes that are quantumly PAC learnable, but
not classically, without additional assumptions about average-case hardness.

In conclusion, we find that the problem of characterising PAC learning
of quantum CLF classifiers is twofold. Firstly, as we have seen, statements
providing an average-case hardness of BQP-complete problems for classical
machines would have direct implications for a separation between quantum
and classical PAC learning – that is, it would prove a directly applicable form
of quantum learning supremacy6. Secondly, the mere existence of quantumly
but not classically learnable concept classes does not give any indication
about the properties of these classes. That is, more research would be needed
to precisely characterise the border between the classical and the quantum
learnable; insights in this direction would give a clear motivation for the
physical realisation of quantum learners, as well as precise guidelines on which
classification problems quantum learning is bound to provide an advantage.
All in all, it is apparent that there will be ample opportunity for future
research that addresses the power of quantum computing in machine learning
problems.

6During the time of the writing of this thesis, a result was shown by Liu et al. [68], which
proves a separation between classical and quantum PAC learning with CLF classifiers
under the condition that the discrete logarithm problem, which is contained in BQP,
cannot be efficiently solved on a classical computer.

73

Chapter 7
Conclusion and outlook

In this thesis, we have extended the work of Havĺıček et al., scrutinising the
properties of the quantum counterpart to SVM learning which they propose.
We have worked out this quantum learning model by precisely defining the
explicit and implicit formulations of quantum CLF classifiers, with discus-
sions on the feasibility of implementing of both types and the restrictions
one encounters in doing so. We have compared quantum explicit and im-
plicit classifiers, including their training set classification performance under
a regularised risk functional. Further, we have characterised the general-
isation performance of these quantum CLF classifiers in terms of the fat
shattering dimension, as well as possible sources for quantum supremacy
with such classifiers, which we have discussed in a learning complexity set-
ting. In section 5.1 we have seen that, while the set of quantum explicit
classifiers is richer than the set of quantum implicit classifiers, and therefore
offers more freedom in the choice of classifiers, this freedom can be har-
nessed only in a restricted way, since the most general explicit classification
function evaluations require runtime exponential in the number of qubits.
Implicit classifiers, on the other hand, only depend on the underlying kernel,
which must be evaluated at most polynomially many times in the size of the
training set. Section 5.2 has shown, by invoking the representation theorem,
that quantum implicit classifiers induced by a training set can always achieve
a minimum regularised risk value on this training set, while for certain re-
stricted sets of explicit classifiers, this is not the case (theorem 5.6). What
makes explicit classifiers interesting, however, is that the greater richness of
such classifier sets allows one to simulate other quantum learning algorithms,
such as fixed-hamiltonian optimisation procedures. Moreover, explicit classi-
fiers offer different methods for model simplification than implicit classifiers,
namely through constraints on the parametrised circuit, which may further

75

76 Conclusion and outlook

reduce overfitting.

Next, in section 5.3, we have given a bound on generalisation perfor-
mance of quantum CLF classifiers, by showing a tight upper bound on their
fat shattering dimension (theorems 5.9 and 5.11). We found that the fat
shattering dimension of general quantum CLF classifiers with norm at most
ν classifying pure states by margin γ is upper bounded by

fatH(γ) ≤ min{9ν2/γ2, 4n + 1}+ 1 (7.1)

which is tight, following from the lower bound

fatH(γ) ≥ min{ν2(1− 2−n)/γ2, 2n} (7.2)

for observables with norm at least ν. We point out that the use of quantum
CLF classifiers as opposed to classical ones introduces a new regularisation
parameter, the observable rank, and that we have indications that observ-
ables of higher rank have the possibility to correctly classify more points or
with higher margin, promising additional freedom in achieving better gener-
alisation performance with regard to theorem 4.19. Furthermore, we argue
that a greater richness of quantum feature maps could enhance generalisation
performance as well.

Besides these properties of quantum CLF classifiers, we have considered
computational hardness of evaluating quantum CLF classifiers. Using precise
definitions of computational hardness in this learning setting, we have shown
that, both for explicit and implicit classifiers, computational hardness of
evaluating the underlying expectation values and kernels respectively implies
hardness of computing the classifier itself, and vice versa – a property that
is often assumed in literature without proof (section 6.3). Furthermore, this
shows that the existence of quantum kernel families which are classically hard
to evaluate, implies the existence of quantum CLF classifier families that are
classically hard.

However, this fact alone does not imply any form of quantum learning
supremacy, as we point out in section 6.4. While we argue that necessarily
BQP ⊆ P/poly if there exist classical learning algorithms which can solve all
classification problems that can be solved by quantum learning algorithms
(which is a worst-case statement), this is a requirement too strong to reflect
common practice in machine learning, which asks only for good classification
and generalisation performance in average case learning, as described by the
PAC learning principle. In this context, we note that there must exist a
language L ∈ BQP and a distribution D such that (L,D) /∈ HeurBPPOL,D ,
where OL,D is an oracle that returns random examples (x,1x∈L) drawn from

76

77

D, to guarantee the existence of a concept class which can be efficiently
PAC-learnt on a quantum computer, but not using a classical computer.

We leave open a number of questions for future work. Firstly, while we
discussed generalisation performance of quantum CLF classifiers through the
fat shattering dimension, it is still not completely clear what implications this
has on generalisation performance of quantum CLF classifiers in practice, as
compared to that of classical SVMs. More precisely, it would be fruitful
to have a clear picture of the influence that the observable rank, acting as
a regularisation parameter, has on the margin and the size of training sets
that can be classified correctly. The same question holds for quantum feature
maps, and whether there exist feature maps which guarantee better training
set classification in the same time than classical feature maps.

Next, in the context of quantum learning supremacy, it would be very
valuable to gain more knowledge about the question whether the complexity
theoretic statement revolving around HeurBPP which we formulated holds,
as this answers the question whether there exists a form of quantum learning
supremacy. However, seeing as similar questions, such as whether BPP =
BQP and P = NP, have to this day not been answered, we suspect this to
be a very difficult open problem that will not see a solution soon. Lastly,
extending the question, it would be fruitful to be able to precisely draw
the boundary between classically and quantumly efficiently PAC learnable
problems. After all, this would provide key motivations to employ quantum
algorithms for learning in practical settings. However, as we mentioned, this
is a highly complex topic, and decisive results may remain out of reach in
the near future.

77

References

[1] V. Havĺıček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala,
J. M. Chow, and J. M. Gambetta, Supervised learning with quantum-
enhanced feature spaces, Nature (2019).

[2] P. Benioff, The computer as a physical system: A microscopic quantum
mechanical Hamiltonian model of computers as represented by Turing
machines, Journal of Statistical Physics (1980).

[3] R. P. Feynman, Simulating physics with computers, International Jour-
nal of Theoretical Physics (1982).

[4] L. K. Grover, A fast quantum mechanical algorithm for database search,
in Proceedings of the Annual ACM Symposium on Theory of Computing,
1996.

[5] P. W. Shor, Algorithms for quantum computation: discrete logarithms
and factoring, in Proceedings 35th Annual Symposium on Foundations
of Computer Science, pages 124–134, 1994.

[6] E. Bernstein and U. Vazirani, Quantum complexity theory, SIAM Jour-
nal on Computing (1997).

[7] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M.
Martinis, D. A. Lidar, and M. Troyer, Defining and detecting quantum
speedup, Science (2014).

[8] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and
S. Lloyd, Quantum machine learning, 2017.

[9] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear
systems of equations, Physical Review Letters (2009).

79

80 REFERENCES

[10] S. Lloyd, M. Mohseni, and P. Rebentrost, Quantum algorithms for su-
pervised and unsupervised machine learning, (2013).

[11] P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum support vector ma-
chine for big data classification, Physical Review Letters (2014).

[12] J. Preskill, Quantum computing in the NISQ era and beyond, Quantum
(2018).

[13] D. Willsch, M. Nocon, F. Jin, H. De Raedt, and K. Michielsen, Gate-
error analysis in simulations of quantum computers with transmon
qubits, Physical Review A (2017).

[14] K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-
depth quantum circuits, Physical Review Letters (2017).

[15] C. Cortes and V. Vapnik, Support vector networks, Machine Learning
(1995).

[16] V. N. Vapnik, Statistical learning theory, Wiley-Interscience, 1998.

[17] D. J. Griffiths and D. F. Schroeter, Introduction to Quantum Mechanics,
Cambridge University Press, 3rd edition, 2018.

[18] V. V. Shende, S. S. Bullock, and I. L. Markov, Synthesis of quantum-logic
circuits, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2006).

[19] R. Iten, R. Colbeck, I. Kukuljan, J. Home, and M. Christandl, Quantum
circuits for isometries, Physical Review A (2016).

[20] H. B. Curry, The method of steepest descent for non-linear minimization
problems, Quarterly of Applied Mathematics (1944).

[21] J. Schmidhuber, Deep learning in neural networks: an overview, 2015.

[22] T. Howley, M. G. Madden, M. L. O’Connell, and A. G. Ryder, The effect
of principal component analysis on machine learning accuracy with high-
dimensional spectral data, Knowledge-Based Systems (2006).

[23] D. Needell and J. A. Tropp, CoSaMP: Iterative signal recovery from in-
complete and inaccurate samples, Applied and Computational Harmonic
Analysis (2009).

80

REFERENCES 81

[24] A. Peruzzo, J. McClean, P. Shadbolt, M. H. Yung, X. Q. Zhou, P. J.
Love, A. Aspuru-Guzik, and J. L. O’Brien, A variational eigenvalue
solver on a photonic quantum processor, Nature Communications
(2014).

[25] M. Schuld and N. Killoran, Quantum Machine Learning in Feature
Hilbert Spaces, Physical Review Letters (2019).

[26] M. Rötteler, Quantum algorithms for highly non-linear Boolean func-
tions, in Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms, 2010.

[27] D. K. Park, C. Blank, and F. Petruccione, The theory of the quan-
tum kernel-based binary classifier, Physics Letters, Section A: General,
Atomic and Solid State Physics (2020).

[28] C. Blank, D. K. Park, J. K. K. Rhee, and F. Petruccione, Quantum clas-
sifier with tailored quantum kernel, npj Quantum Information (2020).

[29] G. A. Garreau and W. Rudin, Real and complex analysis, The Statisti-
cian (1987).

[30] D. Sejdinovic and A. Gretton, What is an RKHS?, Technical report,
University of Oxford, 2012.

[31] J. Mercer, Functions of positive and negative type, and their connection
with the theory of integral equations, Proceedings of the Royal Society
of London. Series A, Containing Papers of a Mathematical and Physical
Character (1909).

[32] J. Vert, K. Tsuda, and B. Schölkopf, A primer on kernel methods, Kernel
Methods in Computational Biology, 35-70 (2004) (2004).

[33] B. Schölkopf, R. Herbrich, and A. J. Smola, A generalized represen-
ter theorem, in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 2001.

[34] V. Vapnik and A. Chervonenkis, Theory of pattern recognition, Nauka,
Moscow, 1974.

[35] T. M. Mitchell, Machine learning, McGraw-Hill, New York, 1997.

[36] V. N. Vapnik, The nature of statistical learning theory, Springer, 2000.

81

82 REFERENCES

[37] C. J. C. Burges, A tutorial on support vector machines for pattern recog-
nition, Data Min. Knowl. Discov. 2, 121 (1998).

[38] J. Mount, How sure are you that large margin implies low VC dimen-
sion?, Technical report, 2015.

[39] J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony,
Structural risk minimization over data-dependent hierarchies, IEEE
Transactions on Information Theory (1998).

[40] A. Knutson and T. Tao, Honeycombs and sums of Hermitian matrices,
Notices Amer. Math. Soc. 48 (2000).

[41] E. Farhi and H. Neven, Classification with quantum neural networks on
near term processors, (2018).

[42] K. Beer, D. Bondarenko, T. Farrelly, T. Osborne, R. Salzmann,
D. Scheiermann, and R. Wolf, Training deep quantum neural networks,
Nature Communications 11, 808 (2020).

[43] G. Vidal, Class of quantum many-body states that can be efficiently sim-
ulated, Physical Review Letters (2008).

[44] E. Grant, M. Benedetti, S. Cao, A. Hallam, J. Lockhart, V. Stojevic,
A. G. Green, and S. Severini, Hierarchical quantum classifiers, npj
Quantum Information (2018).

[45] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate opti-
mization algorithm, page 1 (2014).

[46] S. Aaronson, The learnability of quantum states, Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences
(2007).

[47] A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani, Dense quantum
coding and quantum finite automata, Journal of the ACM (2002).

[48] S. Lloyd, M. Schuld, A. Ijaz, J. Izaac, and N. Killoran, Quantum em-
beddings for machine learning, (2020).

[49] V. V. Shende and I. L. Markov, On the CNOT cost of Toffoli gates,
Quantum Information and Computation (2009).

[50] O. Goldreich, In a world of P=BPP, Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) (2011).

82

REFERENCES 83

[51] L. G. Valiant, A theory of the learnable, Communications of the ACM
27, 1134 (1984).

[52] L. Adleman, Two theorems on random polynomial time, in Proceedings -
Annual IEEE Symposium on Foundations of Computer Science, FOCS,
1978.

[53] C. Bennetts and J. Gill, Relative to a random oracle A, PA 6= NPA 6=
coNPA with probability 1, SIAM J. Comput. (1981).

[54] D. Aharonov, V. Jones, and Z. Landau, A polynomial quantum algo-
rithm for approximating the Jones polynomial, Algorithmica (New York)
(2009).

[55] M. H. Freedman, A. Kitaev, and Z. Wang, Simulation of topological
field theories by quantum computers, Communications in Mathematical
Physics (2002).

[56] M. H. Freedman, M. Larsen, and Z. Wang, A modular functor which is
universal for quantum computation, Communications in Mathematical
Physics (2002).

[57] E. Witten, Quantum field theory and the Jones polynomial, Communi-
cations in Mathematical Physics (1989).

[58] S. R. Buss, Bounded arithmetic, cryptography and complexity, Theoria
63, 147 (2008).

[59] S. Arunachalam, A. B. Grilo, and A. Sundaram, Quantum hardness of
learning shallow classical circuits, (2019).

[60] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé, Classical
hardness of learning with errors, in Proceedings of the Annual ACM
Symposium on Theory of Computing, 2013.

[61] A. Bogdanov and L. Trevisan, Average-case complexity, Foundations
and Trends in Theoretical Computer Science (2006).

[62] L. A. Levin, Average case complete problems, SIAM Journal on Com-
puting (1986).

[63] A. Bogdanov and L. Trevisan, On worst-case to average-case reduc-
tions for NP problems, in Proceedings - Annual IEEE Symposium on
Foundations of Computer Science, FOCS, 2003.

83

84 REFERENCES

[64] N.-H. Chia, S. Hallgren, and F. Song, On basing one-way permuta-
tions on NP-hard problems under quantum reductions, Quantum 4, 312
(2020).

[65] M. J. Bremner, A. Montanaro, and D. J. Shepherd, Average-case com-
plexity versus approximate simulation of commuting quantum computa-
tions, Physical Review Letters (2016).

[66] A. Bouland, B. Fefferman, C. Nirkhe, and U. Vazirani, Quantum
supremacy and the complexity of random circuit sampling, in Leibniz
International Proceedings in Informatics, LIPIcs, 2019.

[67] F. Le Gall, Average-case quantum advantage with shallow circuits, in
Leibniz International Proceedings in Informatics, LIPIcs, 2019.

[68] Y. Liu, S. Arunachalam, and K. Temme, A rigorous and robust quantum
speed-up in supervised machine learning, (2020).

[69] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Quantum finger-
printing, Physical review letters (2001).

[70] S. Hanneke and A. Kontorovich, Optimality of SVM: novel proofs and
tighter bounds, Theoretical Computer Science (2019).

[71] H. Nishimura, Quantum Computation with Supplementary Information,
Ipsj Digital Courier 1, 407 (2005).

84

	Introduction
	Quantum computing
	Quantum states and measurement
	Quantum computation

	Quantum machine learning
	Supervised learning
	Variational quantum circuit learning

	Feature space supervised learning
	Continuous linear functional classifiers
	Explicit and implicit classifiers
	Generalisation performance

	Quantum feature space learning
	Quantum CLF classifiers
	Comparison between quantum explicit and implicit classifiers
	Generalisation performance of quantum CLF learning

	A path to quantum advantage
	Quantum complexity
	Defining computational hardness
	Connecting classification functions, classifiers and kernels
	Hardness of learning

	Conclusion and outlook
	References

