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Figure 1: A collaboration of different data layers that were used to 

influence and create the Roman Hertfordshire predictive model. From 

left to right: land-use, modern roads, Roman roads, bedrock geology, 

digital elevation model, modern rivers, superficial bedrock, 

archaeological sites (Stacey 2020).  
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1. Introduction  

This thesis aims to apply and test the method of archaeological predictive 

modelling in the context of Roman Hertfordshire, England by using open-access 

data and applications. Through this application, the potential of integrating 

predictive models within the current English Archaeological Heritage 

Management (AHM) system will be discussed. By doing so, the benefits and 

drawbacks of archaeological predictive modelling can be identified through an 

applied case-study.  

 

1.1. Brief Introduction to Archaeological Predictive Modelling 

The act of archaeological predictive modelling has generally been defined as a 

set of techniques which are employed to predict “the location of archaeological 

sites or materials in a region” (Kohler & Parker 1986, 400). This can be done 

either inductively from “a sample of that region”, or deductively by basing 

predictions on “fundamental notions concerning human behaviour” (Kohler & 

Parker 1986, 400). This method has been employed either as a useful tool for 

archaeological research (Danese et al. 2014, 42) or as part of a cultural heritage 

management strategy as it can create areas of differing “archaeological 

potential” (Carleton et al. 2012, 3371) 

Archaeological predictive modelling has been criticised since its evolution for its 

usage within governmental land management projects in the USA, from the late 

1970’s (Kamermans et al. 2004, 5). Most criticism addresses the inductive, data-

driven approach as it is more prevalent in predictive modelling. The reductionist 

(Nakoinz 2018, 105) or ecologically deterministic mapping of the historic 

landscape has also been criticised (Kamermans et al. 2004, 6). It can also be 

argued that predictive modelling only predicts the “relative suitability” of land 

areas for historic habitation (Verhagen & Whitley 2020, 235), rather than the 

archaeological reality.  
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Questioning the underlying theory which shapes a predictive model can be 

understood through the model’s intended purpose, whether that would be for 

archaeological research or heritage management. These issues found within 

explanations of human behaviour are perhaps less relevant if the model is 

intended to be used only to predict the archaeological potential for development 

purposes, where archaeological potential is often deemed as levels of ‘risk’.  

 

1.2. The Motive for the Research 

Due to the UK’s signing of the Valetta Treaty in 1992, legislative policies were 

created to protect the archaeological environment from urban developments 

that are increasing the risks to national heritage (Council of Europe 1992, 4). 

Within England, the current legislative policies for archaeological heritage are 

within a single document, ‘The National Planning Policy Framework’ (NPPF) 

which was published in March 2012, and updated in 2019. The NPPF superseded 

earlier legislation that was put in place to implement the Valetta Treaty, such as 

the Planning Policy Statement 5: ‘Planning for the Historic Environment’ (PPS5, 

1994).  

The policies within the current framework express that designated areas of 

archaeology should be protected, as according to the Valetta Treaty, but leaves 

much room for interpretation for areas where archaeology likely exists but has 

not been formally ‘designated’ (Secretary of State for Housing, Communities and 

Local Government 2019, 56). The earlier and now out-dated policies of the PPS5 

favoured the in situ preservation of heritage assets and emphasised the role of 

the Historic Environment Records (HERs) system in England (Flatman & Perring 

2012, 4). The goal of researching and publishing archaeological findings within 

conservation strategies were also encouraged in the PPS5, whereas the NPPF 

opts for conservation by any means, preferably at a low cost (Flatman & Perring 

2012, 7). 
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Both the current and past legislative policies regarding heritage management 

provide much of the motivation to investigate what the benefits may be of using 

archaeological predictive modelling in the earlier steps of the heritage 

management system within England. The Netherlands, a nearby neighbour of 

England, have implemented predictive modelling within their heritage 

management system on a national scale. Government-backed guidelines require 

predictive values to be created for an area before a development can be 

permitted (Willems & Brandt 2004, 28). These values can provide a baseline for 

deciding which action should be taken to minimise the risks of archaeological 

disturbance, but also to minimise delays in developments due to the unexpected 

discovery of archaeological remains.  

If standard guidelines are required for the creation and publication of English 

archaeological predictive models, many of the common criticisms can be 

addressed. The implementation of these models can provide a less expensive 

form of additional guidance for both the developer and local authorities 

responsible for the protection of archaeology.  

 

1.3. Aims and Research Questions 

The main aim for this research project is to use the archaeological landscape of 

Roman Hertfordshire as a case study for investigating the application of 

archaeological predictive modelling in England for heritage management 

purposes.  

The research involves the collection of accessible, open-source data to inform 

the predictions, such as the geology, topology, elevation, hydrology and Roman 

road systems of Hertfordshire, which are collected from various sources. 

Collection of data also includes the access of known Roman archaeological data 

within Hertfordshire in order to partially create and test the final predictive 

model. Finally, the model was tested and discussed in terms of its potential 

applicability to the Archaeological Heritage Management (AHM) system within 

England.  
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The research questions that aim to be answered through the creation and 

discussion of the Roman Hertfordshire predictive model are the following:  

 

1. Does England have the open-access digital infrastructure1 to facilitate the 

creation of well-informed archaeological predictive models?  

 

2. What knowledge can be gained from the creation and output of the 

Roman Hertfordshire predictive model? 

 

i. What methodological knowledge about archaeological predictive 

modelling could be gained from the creation and output of the 

predictive model? 

 

ii. What archaeological knowledge about Roman Hertfordshire could 

be gained from the output of the predictive model?  

 

3. How can the case study of Roman Hertfordshire assess the potential of 

archaeological predictive modelling within the Archaeological Heritage 

Management system in England? 

 

1.4. Thesis Outline 

Chapter Two provides contextual information on the research areas of 

Hertfordshire, such as its suitability for the research area, the modern 

geographical characteristics and a short history of its Roman occupation. The 

chapter also provides background information on the current Archaeological 

Heritage Management (AHM) system that is used within England.  

                                                      
1 The term ‘digital infrastructure’ is used to refer to the digital data and resources which are 
available for England and have been granted open-access to the public. This infrastructure can be 
provided by companies in the UK and the EU, or by the UK government.   
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Chapter Three introduces the materials that were used to inform and model the 

Roman Hertfordshire site predictions. The origin of each data layer is given, and 

each layer explained as to its relation to the environmental or social 

development of Roman Hertfordshire. More contextual information on historic 

Hertfordshire is provided through the discussion of the elevation, soil, geology, 

hydrogeology, river system and Roman road system. The materials also include 

data on modern Hertfordshire which are also discussed for their relevance, such 

as protected areas and monuments and modern land-use. The process of ‘data 

cleansing’ the known archaeological sites in Roman Hertfordshire is explained, in 

addition to the sampling and categorising processes that took place.  

Chapter Four, explains the predictive factors that were integrated into the 

Roman Hertfordshire archaeological predictive model, along with the mixture of 

modelling methods that were employed. The chapter then assesses the 

applicability and quality of the environmental and archaeological data that was 

used in the model. A series of suggestions for future improvements that could be 

made to the selection of environmental and archaeological data are briefly 

explored.  

Chapter Five details the application of the methodology that is explained in 

Chapter Four, and clearly displays each step of the modelling process. Firstly, the 

proximity of rivers and Roman roads are evaluated for their potential in 

predicting Roman sites. Secondly, multi-criteria analysis is conducted on the 

factors of proximity to water sources and the Roman road network through a 

weighted procedure. Thirdly, the factors of optimal aspect and slope are 

integrated into the model through another instance of weighted multi-criteria 

analysis. Fourthly, site density analysis is used to identify the location of major 

and minor Roman towns in order to create proximity buffers around each area. 

The final product is then evaluated by applying the testing sample to the result 

and by calculating Kvamme’s Gain scores with the testing and modelling sample. 

Applications of the Roman Hertfordshire model are explored through the 

creation of a developer guide and proximity-based analysis by site types.  
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Chapter Six provides further discourse on the guidance provided in Chapter Five 

regarding the application of the Roman Hertfordshire predictive model. Other 

issues pertaining to the production of archaeological predictive models are also 

discussed, such as sources of funding in England and the standardisation of their 

production and publication.  

Chapter Seven provides a synopsis of three main research questions which the 

research aims to answer. It first explores whether England had the open-access 

digital infrastructure to facilitate the creation of an informed Roman 

Hertfordshire predictive model, concluding that a sufficient amount of data was 

available to the public but could have been of higher quality. The chapter then 

discusses the archaeological and methodological knowledge gained from the 

creation and final product of the predictive model, overall stating more 

knowledge was gained methodologically. Finally, the case study of the Roman 

Hertfordshire predictive model is evaluated in terms of its ability to assess the 

potential of the method within the AHM system in England. This research 

question was partially addressed through an explanation of the weaknesses of 

the method for AHM purposes, specifically within England. However, a proposed 

‘starting point’ is suggested for the method’s implementation into the current 

system, such as applying it to areas with little to no previous archaeological 

knowledge.  
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2. Hertfordshire and Archaeological Heritage 

Management (AHM) 

2.1. Characteristics of Hertfordshire 

England is divided into forty-eight ceremonial counties, or shires. Thirty-nine of 

these counties were officially established on the grounds of their cultural, 

administrative or geographical boundaries sometime in antiquity, and have thus 

come to be known as historic counties. Hertfordshire is one of these historic 

counties, located in the south-east of England (fig. 2), and was chosen to be the 

research area for the model.  

Figure 2: Map of the counties of England, with Hertfordshire highlighted in red. Based 
upon the ‘Counties (April 2019) EN BFC’ data source, with the permission of ONS 

Geography Open Data. 
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While these administrative divisions did not exist throughout much of history, it 

was important that the predictive model had a spatial boundary to ensure an 

acceptable resolution could be achieved in the final product. Therefore, it was 

decided that the archaeological predictive model would be limited by the 

modern boundaries of a singular county. It should be stated that these county 

boundaries, proposed for the boundaries of the research area, do pose 

theoretical issues to the model as site location was likely to have been influenced 

by environmental and social factors that lie outside the modern limits.   

The number of archaeological data records on the Archaeological Data Service 

(ADS) was unequally distributed across each county and time period. Therefore, 

it was my initial task to select a county which was not too large in size, but also 

had a large amount of archaeological data available among a single 

archaeological period. The amount of data for each county was determined by 

the number of search results on the ‘ArchSearch’ function on the ADS website 

(www.archaeologydataservice.ac.uk/archsearch). Observing the different search 

counts led me to consider the southern English county of Hertfordshire, finding 

that it has a long history of settlement since the Neolithic age. Hertfordshire 

stood out as having 9263 archaeological data results across all periods, with 1352 

of them dating to the Roman period. According to the Office for National 

Statistics, Hertfordshire ranks 36th of 48 by the size of counties in England at the 

size of 1,643 km2 (www.geoportal.statistics.gov.uk). Therefore, the relatively 

small size of Hertfordshire, along with a large amount of Roman archaeological 

knowledge stored by the ADS, proved the county was a good candidate for my 

predictive model case study.   

Hertfordshire borders five counties; Cambridgeshire and Bedfordshire to the 

north, Essex to the east, Greater London to the south and Buckinghamshire to 

the west (fig. 3).  
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The county of Hertfordshire consists of ten districts, namely North Hertfordshire, 

Stevenage, East Hertfordshire, Welwyn Hatfield, Broxbourne, St. Albans, 

Hertsmere, Watford, Three Rivers and Dacorum (appendix 1).  

While Hertfordshire is still considered a rural county, increasing population and 

household growth demands lead to ever expanding urbanisation of the 

landscape. This is especially accelerated by its bordering position next to Greater 

London, whom has been expanding over time. More information on the 

geological and hydrogeological characteristics of Hertfordshire is provided in the 

‘Materials’ chapter which documents the different geological formations and 

deposits that make up Hertfordshire.  

Figure 3: The five counties which border Hertfordshire. Based upon the ‘Counties 
(April 2019) EN BFC’ data source, with the permission of ONS Geography Open Data. 
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2.2. Roman Occupation of Hertfordshire 

Hertfordshire has a long history of occupation dating to the Neolithic period, 

which was characterised by the creation of long barrows as ritual monuments 

(Tereszczuk 2004, 10). This early activity was concentrated around the “proto-

Thames” and the river valleys. During the Bronze Age, “significant areas of 

woodlands” were cleared by the inhabitants, continuing through the Iron Age 

(Dacorum Borough Council 2004, 6). 

By the late 40’s AD, the Romans “almost held all of south-west Britain”, but the 

conquest of south-east Britain likely took much longer (Menard 2011, 44), 

placing the conquest of the area that is now Hertfordshire between the years of 

43-84 AD (Menard 2011, 46). This conquest of the land by the Romans brought 

major changes to the landscape of England, and what is now the area of 

Hertfordshire. Between the years of 50-60 AD, the revolt of the Iceni, a tribe of 

British Celts, resulted in the destruction of the town of Verulamium (Menard 

2011, 46), which at one point was named the third largest town in Roman 

Britannia (Lockyear & Shlasko 2017, 17). These tumultuous periods within the 

consolidation of Roman rule are closely tied to the development of the Roman 

road system (Menard 2011, 47), in addition to other forms of landscape 

modifications.  

 

2.2.1. The developing Roman landscape 

Large-scale road networks were brought to Britain for the first time in its history, 

constructing at least four major road networks that passed through the area of 

Hertfordshire. These roads connected the existing municipium at Verulamium (St 

Albans) (Historic England 2018, 1; Rogers 2013, 4) as well as the Roman towns of 

Welwyn, Braughing and Ware (Dacorum Borough Council 2004, 6) to the larger 

landscape. Landscaping for recreational purposes was introduced, probably 
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growing “an avenue of trees and shrubs” (Dacorum Borough Council 2004, 6) 

lending a hand in ‘Romanizing’ the environment. 

The first evidences of drainage systems were brought to Britain upon Roman 

conquest (Brown 1997, 269) along with other forms of water management 

(Historic England 2018, 4). Systems of Roman water management were identified 

at the Roman town of Braughing in Hertfordshire (Brown 1997, 226). Excavations 

of the Roman Gate at St Albans, Hertfordshire looked at the site of Verulamium. 

The investigation identified clear evidence of a man-made redirection of the river 

Ver in order to control flooding. The creation of this new water channel around 

the Roman town would have required cutting into solid rock and creating a levee 

(Rogers 2013, 63). Remarks have been make on the kinds of labour and expertise 

needed to enact this kind of environmental change (Rogers 2013, 119). Wooden 

water pipes were also found in Verulamium, suggesting that water access was 

facilitated not only by wells but “brought into the settlement by an aqueduct” 

(Rogers 2013, 133). This manipulation of the landscape and the creation of new 

forms of water access probably greatly affected the choice of site location within 

Roman Hertfordshire. 

 

2.2.2. Roman sites 

Through the excavation work that has taken place in the last century, many 

Roman sites have been identified within Hertfordshire. Due to increasing modern 

development, there has been a sharp increase in archaeological work 

undertaken in Britain (Holbrook 2015, 1), leading to the uncovering of Britain’s 

Roman past. Within this research, many of these finds are categorised by their 

function, pertaining to their involvement with either settlement sites, economic 

sites (agricultural or industrial), ritual sites (funerary or temples) or military sites.  

Roman settlements within Hertfordshire can be largely classified as rural 

settlements (Historic England 2018, 3; Taylor 2013, 173), with both minor and 
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major towns among them. The site of Verulamium (St. Albans) is the largest 

Roman settlement within the area of Hertfordshire (fig. 4), and is currently “the 

only certain example in England” of a Roman municipium (Historic England 2018, 

1), a status possibly granted as an upgrade from a civitas-capital (Rogers 2013, 

4). Other minor settlements included Ware, Welwyn and Baldock (fig. 4). Within 

archaeological research, there has been an emphasis on major towns in Roman 

Britain (Holbrook 2015, 1), perhaps leading to unequal surveying and discovery. 

This is perhaps through research bias or simple issues of visibility and ease of 

discovery. However, through the use of predictive modelling, perhaps a more 

equal, overview can be gained from the landscape as to their potential for 

holding Roman archaeology.  

Figure 4: Roman towns within Hertfordshire, connected by a series of major and 
minor roads. Most of the Roman settlements in Hertfordshire are referred to by their 

modern name as the Roman name is unknown.  
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Roman economic sites within Hertfordshire had an emphasis on agricultural and 

craft – both industrial and domestic – like much of Roman Britain (Taylor 2013, 

173). Villa structures were often associated with rural landscapes where 

agriculture would occur within the villa’s estate (Historic England 2018, 2; Taylor 

2013, 173). Other types of sites in the Roman countryside also included mining 

complexes (Historic England 2018, 2) in which the chalk plateau which covers 

much of Hertfordshire might have influenced this type of site location.  

Ritual sites compromised another occurrence in the Roman countryside, 

specifically temple complexes. Roman ritual-related hoards have been found in 

the village of Ashwell, four miles north of Baldock. The collection of concealed 

precious metal objects have been interpreted in multiple ways since its 

discovery. However, its burial place was “intimately linked to a ritual site” and 

made it likely the hoard was religious in nature (Jackson & Burleigh 2018, 29). It 

has been theorised that its existence is evidence of Romano-British pagan shrines 

(Jackson & Burleigh 2018, 30). Other ritual-related hoards of coins have also 

been found within the town of Baldock (Phillips et al. 2009, 113). A Romano-

Celtic temple was identified within Verulamium, constructed in the early Flavian 

period (69-79 AD) (Fulford 2015, 63), which is likely one of many in the area of 

Hertfordshire. Burials and cemeteries were normally located on “the approach 

roads” due to Roman legal requirements that graves are made outside of 

settlements (Historic England 2018, 8), however this was likely to have varied 

based on the settlement size and centrality. New-born children were also a 

known exception to this rule, often found buried within settlements (Historic 

England 2018, 8).  

Military sites are perhaps harder to define as some form of defence could have 

appeared in a settlement only after a certain period, or in ways that are not 

visible archaeologically (Historic England 2018, 8). It is likely that military sites 

were a hybrid-type of site, combining settlement or economic aspects with 

defensive elements.  
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2.3. Archaeological Heritage Management (AHM) Practices 

2.3.1. The Valletta Treaty effect 

The ‘Convention for the Protection of the Archaeological Heritage of Europe’, 

also known as the Valletta Treaty (1992), is an international convention that has 

been adopted by forty-five members of the Council of Europe (www.coe.int). It 

was made to replace the older ‘European Convention on the Protection of the 

Archaeological Heritage’, or the London Convention (1969). The London 

Convention dealt with the protection of archaeological heritage through the 

creation of “reserve zones” and focused on prohibiting “illicit excavations” 

(www.coe.int) during a time which vandalising archaeological sites was perhaps 

more commonplace.  

Over 20 years had passed since the London Convention in 1969, and the issue of 

increasing urbanisation and the demand for large-scale development projects 

created a situation where archaeology was no longer at risk by clandestine 

excavation, but at risk of destruction by major public works (Council of Europe 

1992, 1). The Valletta Treaty of 1992 sought to address a shift of priorities in 

regards to archaeological protection. The ways in which the treaty advocated for 

this new protection is central to understanding the Archaeological Heritage 

Management (AHM) practices that occur within England as well as other 

countries within Europe.  

Legislative policies were required to be made in every country who signed the 

treaty, requiring a legal system that sought protection of archaeological heritage 

(Council of Europe 1992, 4). This meant that any operation which intended to 

disturb the soils below cannot be allowed unless it was previously cleared by the 

relevant authorities. These positions of authority were created with varying 

systems in each signing country. In the case of England’s response to the treaty, 

the local authorities of each county were mostly responsible for determining 

planning permissions (Chartered Institute for Archaeologists 2017, 5; 

www.archaeologists.net/find/clientguide).  
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Another central change the treaty had created in AHM was within Article 6, 

stating that the responsibility of funding the necessitated archaeological work 

was to be placed upon the development companies (Council of Europe 1992, 6). 

This created a situation where developers could be granted planning permissions 

in an area, only to encounter unexpected discoveries during the work itself. This 

creates the problem where developers are forced to pay for the required 

archaeological excavations or to abandon the project. Without an efficient AHM 

system, this situation is likely to happen often. For the developer, this can lead to 

severe project delays and a loss of profit. For the archaeologist, the situation can 

also cause problems. Commercial development companies in Britain have come 

to provide ‘lump sum’ contracts to archaeologists to do the unexpected work 

(Heaton 2014, 246), thereby leading to underpaying for extensive excavations. It 

is thought that with a better risk management toolkit, better estimates on the 

cost of value of work can be made and would help avoid this problem (Heaton 

2014, 246).   

Other forms of legislation also exist within England, as well as the rest of the 

United Kingdom (Wales, Scotland and Northern Ireland) that aim to protect 

archaeology. One of the central legislations is ‘The Ancient Monuments and 

Archaeological Areas Act’ of 1979, which provides two main forms of protection 

for archaeology by prohibiting the disturbance of scheduled monuments and 

‘areas of archaeological importance’ (Benetti & Brogiolo 2018, 181; 

www.legislation.gov.uk/ukpga/1979). Monuments are selected to be ‘scheduled’ 

on the basis of their “national importance” which is assessed by its period, rarity, 

condition, and vulnerability (historicengland.org.uk). Areas deemed to be of 

archaeological importance are decided by the local authority by their value. Any 

disturbance to a scheduled monument or the soil of an archaeological area will 

result in a criminal offence to the parties involved.  
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2.3.2. Planning permissions and the assessment process 

The current system of planning permissions within England comes from the 

National Planning Policy Framework. The subsequent assessment process which 

follows the planning application in England is facilitated by foundations such as 

Historic England (formerly English Heritage) and the Chartered Institute for 

Archaeologists (CIFA) who have provided documentation on the standards of 

assessment. Across the rest of the United Kingdom, alternative planning policies 

are used, such as the ‘Planning Policy Wales 10’ (December 2018), the ‘Strategic 

Planning Policy Statement for Northern Ireland’ (September 2015) and the 

‘Scottish Planning Policy’ (June 2014).  

The National Planning Policy Framework (NPPF) was published in 2012 and has 

since been updated in 2019. The implementation of the NPPF was created to 

replace a wide range of planning policy statements and guidelines within a single 

document, such as the ‘Planning Policy Statement 5: Planning for the Historic 

Environment’ (PPS, 1994) and the ‘Planning Policy Guidance Note 16: 

Archaeology and Planning’ (PPG, 1990) (Flatman & Perring 2012, 4; 

www.designingbuildings.co.uk). The sentiment of the NPPF has been said to 

promote the agenda of ‘localism’, by aiming to “put power back into the hands 

of local people” (Flatman & Perring 2012, 5).  

The NPPF assigns Chapter 16 to discussing the conservation of the historic 

environment. The policy states that conservation of heritage assets should be 

equal to their significance – significance which is deemed by the local planning 

authorities (Secretary of State for Housing, Communities and Local Government 

2019, 55). If a proposed development will lead to substantial harm to a 

“designated heritage asset”, local authorities have the obligation to refuse 

planning consent (Secretary of State for Housing, Communities and Local 

Government 2019, 56).  

However, the document has been debated since its implementation in regards to 

its impact on heritage management. Direct comparisons have been made 
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between the NPPF and the PPS. For example, within the PPS the actions 

promoted should be ‘in favour of conservation of heritage assets’, while in the 

NPPF the statement has been “infamously” changed to be ‘in the favour of 

sustainable development’ (Flatman & Perring 2012, 6). The importance of 

‘designated’ heritage assets being protected is also repeated, leaving guidance 

on undesignated heritage assets unclear as to how to proceed. The likely 

outcome will encourage the practice of mostly producing ‘Desk Based 

Assessments’ for undesignated sites.  

Planning permissions are granted by the local authority on the grounds of 

gathered evidence regarding the impacted area’s historic value (English Heritage 

2015, 2). Sources of evidence are to be found on The Historic Environment 

Record (HER), the National Heritage List for England 

(www.historicengland.org.uk) or on the Heritage Gateway 

(www.heritagegateway.org.uk). Local voices are also used in planning 

permissions, using local history groups and civic societies for additional 

information on the area’s potential or value (English Heritage 2015, 2). However, 

this system has led to several English counties basing their heritage management 

on the proximity of known archaeological data (Wilcox 2014, 341) which can be 

vulnerable to various biases (Van Leusen 2002, 76; Verhagen et al. 2007, 203; 

Verhagen & Whitley 2012, 85). It is officially advised that only in cases where 

existing records do not provide enough evidence that an “appropriate 

archaeological assessment” method should be used (English Heritage 2015, 3).  

 

2.3.3. Predictive modelling and the English AHM system 

Research in 2012 on the region of East Anglia (Norfolk, Suffolk and 

Cambridgeshire) revealed that on average the current system of AHM actually 

discovers some kinds of archaeological remains in two thirds of development-

related investigations (Wilcox 2012, 355). Little has changed in the AHM system 

since 2012 which begs the question, how effective is this system in the rest of 
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England? Another point to note would be the expenses which are used in the 

process of archaeological investigations, with research suggesting it “costs the 

tax payer and developers” around £1 million per year, per county (Wilcox 2012, 

355).  

The current system of AHM in England has the potential to put both 

archaeologists and local authorities in a difficult situation where they are unable 

to assess the potential damage without a sufficient overview of the 

archaeological situation. It is for this reason that the potential of using 

archaeological predictive modelling within the existing system should be 

measured. This potential is attempted within this thesis, by using the temporal 

limits of Roman Hertfordshire as a case study. The currently accepted method of 

predictive modelling is prone to many weaknesses, but if it is harnessed with the 

appropriate level of theory, testing and standardisation then an AHM system has 

the potential to become more effective, efficient and streamlined through its 

use. 

Heritage management systems that involve predictive modelling have already 

been widely implemented in the USA, Canada and the Netherlands, and have 

been implemented to a lesser degree in Germany, the Czech Republic and 

Australia (Verhagen & Whitley 2012, 53). Some stated positives to the use of 

these models include “well-informed and transparent decision-making” 

(Lauwerier et al. 2018), the “cost-saving benefits” (Verhagen & Whitley 2012, 

50), increasing of “the yield of archaeological inventories” (Verbruggen 2009, 28) 

and can avoid the biases of known archaeological observations through 

deductive modelling techniques (Verhagen et al. 2007, 203).  

However, archaeological predictive modelling is still a highly contested method 

due to the weaknesses of its application. Attempts to reconstruct pre-modern 

landscapes with modern landscape layers are difficult when avoiding implicit 

biases (Kempf 2019, 126). The simplifications that are sometimes made when 

modelling have been called “reductionist and pragmatic” (Nakoinz 2018, 105) as 
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well as ecologically deterministic for not also modelling social factors in site 

locations (Kamermans et al. 2004, 6). The production of these predictive models 

lacks a common standard (Wilcox 2014, 345) to maintain quality, and sometimes 

lacks the mechanism to test the accuracy or reliability of the model (Kamermans 

et al. 2004, 5). 

The Netherlands offers a particularly interesting case in the implementation of 

predictive modelling within AHM through their creation and, to a certain extent, 

implementation2 of a national archaeological predictive model, the ‘Indicative 

Map of Archaeological Values’ (IKAW). The IKAW was initially produced in by The 

State Service for the Archaeological Heritage (ROB) with the expressed purpose 

to guide planning policies (Kamermans et al. 2004, 11). However, critical issues 

have been found with the national map, such as the lack of information given on 

the density, age or type of sites found (Van Leusen 2009, 52) and therefore the 

result may be seen as reductionist. The data sources which were used to create 

the map have also been heavily criticised for being too “ecologically 

deterministic” (Kamermans et al. 2004, 15), and could be biased towards the 

modern landscape (Kamermans et al. 2004, 12). In addition to this, only parts of 

the map have been tested (Kamermans et al. 2004, 13) which is unfortunately 

often the case with older archaeological predictive models (Wilcox 2014, 344; 

Verhagen & Whitley 2012, 56).  

A current manual on the use of the third edition of the IKAW was published by 

the Rijksdienst voor het Cultureel Erfgoed (Cultural Heritage Agency of the 

Netherlands) (www.cultureelerfgoed.nl) in May of 2009, including newer 

guidelines of its place within Dutch archaeological heritage management. The 

document advises the predictive model should be used as a global insight during 

the early stages of planning (Deeben et al. 2009, 4) along with other forms of 

archaeological information, and used later on in the planning process as a means 

                                                      
2 In 2004, an assessment found that three out of twelve Dutch provinces did not use the national 
predictive model (IKAW) to coordinate their policies (Kamermans et al. 2004, 17). Since 2009, the 
advised use of the IKAW is to guide planning permissions, when used in conjunction with the 
Archaeological Monuments Map (AMK) (Deeben et al. 2009, 4).  
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of determining the scope of archaeological research required (Deeben et al. 

2009, 5). Perhaps this is an ideal use of a national predictive model, as it provides 

an overview for planning authorities to consider the archaeological risk of a 

development but also demands further investigation into the specific area 

concerned.  

Ultimately, a successful archaeological heritage management system seeks to 

document and protect the known and unknown archaeology within a local 

authority. At face-value, archaeological predictive modelling can be seen as a 

useful tool to reach this goal, however the application of this tool within the 

setting of England is very novel and unheard of. The reasons for this rejection 

were astutely summarised in Wheatley’s 2004 article. Wheatley states that the 

earlier stages of inductive predictive modelling presented much theoretical and 

methodological issues and problematic biases which were very opposed within 

the UK (Wheatley 2004). These associations with the methodology continued 

regardless of the later theory-driven phases of archaeological predictive 

modelling that began to include social factors (Kamermans et al. 2004, 5) and 

model testing methods (Verhagen & Whitley 2012, 83).  

Perhaps a reconsideration of the methodology of archaeological predictive 

modelling is due within England, as well as a reassessment of its potential 

benefits to an AHM system. Through the improvement of predictive modelling by 

addressing its documented weaknesses, there may be merit in the benefits the 

method can provide the AHM system within England.  
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3. Materials 

The material collection for this project consisted of collecting relevant open-

access data which could be used to create the archaeological predictive model of 

Roman Hertfordshire. This included data on various environmental and social 

factors which could have influenced Roman site patterns, in addition to data of 

known Roman archaeological finds within the county. Data came from various 

sources and in various forms, both of which will be discussed further.  

This data was used to create ‘shapefile’ layers within the open-source desktop 

programme, QGIS (Quantum Geographical Informational System) version 3.6.0, 

with GRASS (Geographic Resources Analysis Support System) version 7.6.0. QGIS 

(3.6.0) was chosen to create the archaeological predictive model due to prior 

experience with the software and its affordability as open-access. QGIS allows 

the overlaying of both vector and raster layers which was important when using 

both an elevation model, which is raster-based, simultaneously with various 

vector-based map layers. The programme also offers the implementation of 

open-source plug-ins from the internet which allows for the use of specialised 

tools along with the software’s ‘native’ analysis capabilities. This feature was 

used with the implementation of the ‘Point Sampling Tool’ plug-in, created by 

Borys Jurgiel (www.plugins.qgis.org). This tool enabled the collection of raster 

values at specified sampling points. Besides QGIS, a spreadsheet application 

(Microsoft Excel) and database management system (Microsoft Access) were 

used for the data cleansing process as well as to create tables, graphs and 

conduct frequency counts.  

The materials which were used to make the predictive model included the 

collection of open-access data sources and the production of a total of thirteen 

QGIS layers (tab. 1). However, not all of the layers that were made were used 

explicitly to produce the predictive model. Some layers were used to add 

modern contextual information (modern roads, modern land-use and protected 

areas, archaeological areas) about preservation or to improve navigation. In 
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addition to this, some layers were created to provide contextual environmental 

information (lower bedrock, superficial bedrock, soil texture and hydrogeology) 

to the area of Hertfordshire.  

Layer Source Format Use Reclass 

Archaeological 
Roman Sites 

Archaeological Data Service (ADS) 
Query of Roman Hertfordshire on ‘ArchSearch’ 
 

CSV, Point L  

Bedrock Geology 
British Geological Survey (BGS) 
“BGS Geology 625k – Bedrock” 
 

GeoPackage, 
Polygon 

P/O  

Digital Elevation 
Model (DEM) 

European Copernicus Land Monitoring Service 
(ECLMS) 
“European Digital Elevation Model (EU-DEM) v1.1” 
 

TIFF, Raster L  

Hertfordshire 
Boundaries 

Open Geography Portal (Office for National 
Statistics) 
“Counties (April 2019) EN BFC” 
“Local Authority Districts (December 2019) UK BFE” 
 

Shapefile, 
Polygon 

L  

Hydrogeology 
British Geological Survey (BGS) 
“BGS hydrogeology 625k” 
 

GeoPackage, 
Polygon 

L,   

P/O 
 

Modern  
Land-Use 

European Copernicus Land Monitoring Service 
(ECLMS) 
“CORINE Land Cover (CLC 2018)” 
 

GeoPackage, 
Polygon 

P/O  

Modern Roads 
Ordnance Survey (OS) 
“OS Open Roads” 
 

Shapefile, 
Line 

P/O  

Archaeological 
Areas 

Data.gov.uk (North Hertfordshire District 
Council)  
“Archaeological Areas” (June 2014) 
 

WMS, 
Raster 

P/O  

Rivers 
Ordnance Survey (OS) 
“OS Open Rivers” 
 

Shapefile, 
Line 

L  

Roman Roads 
Harvard University (McCormick et al. 2013) 
“Roman Road System (Version 2008)” 
  

Shapefile, 
Line 

L  

Scheduled 
Monuments 

Historic England 
“Scheduled Monuments” 
 

Shapefile, 
Polygon 

P/O  

Soil Texture 
British Geological Survey (BGS) 
“Soil Parent Material Model” 
 

GeoPackage, 
Polygon 

L,  

P/O 
 

Superficial 
Geology 

British Geological Survey (BGS) 
“BGS Geology 625k – Superficial” 
 

GeoPackage, 
Polygon 

L  

 

L = relevance in the choice of a location in antiquity 
P/O = relevance in the preservation and observability in the present 

Table 1: The layers and data sources used to create and inform the Roman 
Hertfordshire archaeological predictive model, alphabetically ordered. The format, 

uses and reclass column explain how and why the layers were used.   
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Layers will be discussed in the context of their relevance in the choice of a 

location in antiquity, or their relevance for the chance of a site being preserved 

and observable in the present.  

The layer of known archaeological sites within Hertfordshire underwent a 

considerable amount of data cleansing which will be discussed briefly within the 

section on the use of ADS data (www.archaeologydataservice.ac.uk). A number 

of layers were also reclassified in order to make the information more relevant 

to archaeological contexts, these included archaeological sites, hydrogeology 

(groundwater), soil textures, rivers and modern land-use.  

 
 
 

3.1. Elevation and Derived Layers 

The Digital Elevation Model (DEM) used in the predictive model was provided by 

the European Copernicus Land Monitoring Service (ECLMS). It is a full-coverage 

raster with a resolution of 25 meters. It originates from a mixture of SRTM 

(Shuttle Radar Topography Mission) and ASTER (Advanced Spaceborne Thermal 

Emission and Reflection Radiometer) data which were used together by a 

“weighted averaging approach” (www.land.copernicus.eu) thus giving it better 

coverage and accuracy.  

Through this elevation model it can be seen in Figure 5 that the lowest parts of 

Hertfordshire were created by erosion from the waterways which cut into the 

higher elevated hill areas. Numerous river valleys then drain off incoming 

precipitation which feed the Thames river catchment area in the lowest elevated 

south-east of the area. The highest elevated areas in the north of Hertfordshire 

were deposited in the Quaternary by glacial meltwaters, boulder clay and glacial 

drift deposits (Tereszczuk 2004, 7). While these quaternary deposits were likely 

present in the area of Hertfordshire during the Roman era, it should be noted 

that a modern DEM can only reflect the modern landscape. Through processes of 

erosion, or alluvial and colluvial deposition near waterways or hillslopes, the 
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elevation within Hertfordshire has gradually changed. Within the Roman age, 

Hertfordshire was likely more homogenous than as we see it today, with 

shallower slopes and river banks. 

Regardless, elevation data provides derived information such as the varying 

degrees of slope across a landscape, the degree or direction of aspect and the 

appearance of hillshade. 

 

 

 

3.1.1. Hillshade 

The derived layer of hillshade provides a visual overlay of the terrain. In Figure 6, 

the hillshade layer is placed over the top of the elevation layer, giving a shaded 

relief effect. While it cannot help predict Roman site locations, the hillshade 

layer can be used with other layers to provide the same shaded effect. 

Figure 5: Digital elevation model of Hertfordshire. Based upon the ‘EU-DEM v1.1’, 
with the permission of the Copernicus Land Monitoring Service. 
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3.1.2. Slope 

The slope layer that was derived from the elevation data shows where areas of 

steep and shallow slopes occur by calculating the gradual or sudden change in 

elevation (fig. 7). Within Hertfordshire, the steepest slopes occur around the 

eroded areas along the river banks, while in the highest elevated areas of the 

hills the slope degree remains shallow to none.  

The degree of slope can impact a landscape in various ways. Animal husbandry 

or cultivating crops on steep slopes can be difficult (Wilcox 2014, 341) as the 

slope may lead to decreased water retention in the soil as the forces of gravity 

cause it to flow downwards. In addition to this, building structures on very steep 

Figure 6: Derived hillshade texture and digital elevation model of Hertfordshire. 
Based upon the ‘EU-DEM v1.1’, with the permission of the Copernicus Land 

Monitoring Service. 
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ground leads to the need to create foundations, and often impacts the layout of 

a settlement drastically. Due to this, the assumption can be made that in most 

cases in antiquity areas with a lower slope degree may have been sought after.  

 

 

3.1.3. Aspect 

The derived layer of aspect indicates which areas of a hilly landscape can receive 

the most or the least amount of solar radiation (fig. 8). As England is within the 

Northern Hemisphere, the degree of aspect which would receive the most sun 

and the least shaded time would be anything including the southern facing 

degrees. However, the aspect degree does not matter in areas where there is 

Figure 7: Derived slope model of Hertfordshire. Based upon the ‘EU-DEM v1.1’, with 
the permission of the Copernicus Land Monitoring Service. 
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very low slope, and therefore both the slope and aspect layer should be used in 

conjunction with each other.  

Within Roman Britain, settlements are often associated with the rural landscape, 

in which even towns are used as hubs for farming (Historic England 2018, 8). 

Therefore, there are many benefits for the building of sites within these southern 

facing areas as the sun is depended on for the most basic and complex systems 

of agriculture. 

 

 

3.2. Environmental Layers 

3.2.1. Soil textures 

The layer of soil textures can be relevant for the prediction of undiscovered 

archaeological sites, as well affect the preservation and observation of 

Figure 8: Derived aspect model of Hertfordshire. Based upon the ‘EU-DEM v1.1’, with 
the permission of the Copernicus Land Monitoring Service. 
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archaeology. It was provided by the ‘Soil Parent Material Model’, created by the 

British Geological Survey (BGS) group (www.bgs.ac.uk). The freely available 

version of the model was only available with a resolution of 1000 meters, and 

created a pixelated image when used for the county of Hertfordshire. Modern 

UK digital soil maps often only display basic soil properties which are not 

influenced by fertilisers or drainage systems, and therefore are able to recreate 

the properties that are similar to historic soils (Wilcox 2012, 355). 

In antiquity, environmental patterning of archaeological sites have been 

assumed to be affected the distances to water sources, elevation and the soil 

conditions of the area, among other factors (Brandt et al. 1992, 269). Well-

drained, loamy-textures soils are typically best suited for use as agricultural land 

(Wilcox 2014, 344), and therefore would likely have sites occurring in these 

areas. Within the Roman period, it is known that soil type was a factor in Roman 

rural settlement location (Verhagen et al. 2014, 382), and therefore may also be 

the case within Roman Hertfordshire. Therefore, information on the soil textures 

present within Hertfordshire was an important addition to the model. The 

original model contained fifteen types of soil textures, but to better represent 

the soil conditions in the Roman period a new classification scheme was created. 

A simpler scheme was used which grouped soil textures into five groups, clay, 

loam, sand, silt and mixed soils. These were grouped by the predominant texture 

in each original soil class. However, due to the poor resolution of the model 

version explicit use in the predictive model would be unreliable.  

In regards to the preservation of undiscovered archaeological sites, certain soil 

types are more at risk of large-scale soil excavation or agricultural activity which 

can dramatically damage or disturb the context of material (Lauwerier et al. 

2018). The type of agricultural activity can determine the extent of this damage, 

with annual tillage affecting the top 30cm of the soil (Lauwerier et al. 2018). The 

chemical composition of the soil type can also have an effect on the preservation 

of certain archaeological materials (Hopkins 2004, 169). For example high levels 
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of preservation can be found in waterlogged, anoxic conditions, whereas low 

levels of preservation can be present in acidic, sandy soils (Hopkins 2004, 171).  

Within Hertfordshire, a majority of the soil has a loamy texture (68%, fig. 9), 

located in areas of higher elevation. In the modern age, much of the area is 

located on the chalk escarpment which is known as the Chiltern Hills (Tereszczuk 

2004, 9). These calcareous soils were likely formed over millennia by the white 

chalk bedrock layer from the Upper Cretaceous and influenced by the clay and 

till superficial layers from the Quaternary period. Much of the soils are deep and 

well drained (Tereszczuk 2004, 8). The mixed soil group is made up of a majority 

of ‘sand to sandy loam’ soils and constitutes around 20% (tab. 2) of the total soil 

textures in Hertfordshire. The small clay group, located mostly at the north-

western part of the county, is associated with Jurassic or cretaceous clay and 

other associated drift (Tereszczuk 2004, 8). The silt group, covering the lower 

Figure 9: Distribution of reclassified soil textures in Hertfordshire. Based upon the 
‘Soil Parent Material Model’, with the permission of the British Geological Survey. 
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6.5% of the county (tab. 2), contains clayey material with impended drainage 

(Tereszczuk 2004, 9).  

 

 

 

3.2.2. Geology  

Two bedrock layers were collected for references of soil and elevation contexts, 

the lower bedrock and the superficial bedrock. Both were provided by the British 

Geological Survey (BGS) group (www.bgs.ac.uk). These layers are important for 

understanding the underlying factors of the environment that was present in 

Hertfordshire in antiquity. The formations which created the bedrock layers 

influence the elevation, soil composition and waterways that further influence 

many other factors in the landscape, both environmentally and socially. In some 

cases, the superficial bedrock layer could be used to predict where industrial 

extraction sites could have been located archaeologically.  

The lower bedrock layer (fig. 10) constitutes the main mass of solid rocks that 

form the crust of the earth. This is present among the whole of England, fully 

covering the surface of the island, and is only partially covered by the superficial 

layers. The ages of the associated formations within Hertfordshire range from 

the oldest gault formation and upper greensand formation formed in the Early 

Cretaceous (145-100 Ma) to the Thames group layers which date to the Eocene 

Soil Texture 

Groups
Area (km²) %

Loam Group 1119.614 68.1%

Silt Group 107.276 6.5%

Sand Group 74.356 4.5%

Clay Group 16.395 1.0%

Mixed Group 326.117 19.8%

Total 1643 km² 100%

Table 2: Percentage and area of reclassified soil textures in Hertfordshire. 
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(56-33.9 Ma) (appendix 2). The Thames group with marine origins covers the 

older Lambeth group.   

  

The layer of superficial geology (fig. 11) includes the most recent forms of 

geological deposits, dating to the geological time period, the Quaternary (2.6 

Ma) (appendix 3). During this era, the temperature cooled and glaciers covered 

the middle and north of Britain. Most deposits are shallow, unconsolidated 

sediments of gravel, sand, silt and clay. Due to the layering of geology, the 

superficial deposits are the closest to the surface before the soil layer, and only 

partially cover the lower bedrock in the area of Hertfordshire. Layers of glacial 

sand and gravel underlie the majority of the mixed soil texture group, likely due 

to the glaciers depositing an amalgamation of different soil minerals after 

Figure 10: Bedrock geology of Hertfordshire. Based upon the ‘BGS Geology 625k’ 
model, with the permission of the British Geological Survey. 
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melting. The alluvial deposits are located where main river channels are located 

in Hertfordshire, containing clay, silt and sand. The adjacent river deposits 

contain sand and gravel. The silt soil texture group likely was formed from the 

lower bedrock deposit from the Thames group as the superficial layers have little 

coverage in the south of Hertfordshire.  

 

 

3.2.3. Hydrogeology 

The hydrogeology layer (fig. 12) was also provided by the British Geological 

Survey (BGS) group (www.bgs.ac.uk). This layer indicated the aquifer potential 

from geological formations. Other layers were offered by the BGS, such as a 

water permeability layer, but the hydrogeology layer was instead chosen to be 

more representative of the groundwater in antiquity (www.bgs.ac.uk).  

Figure 11: Superficial geology of Hertfordshire. Based upon the ‘BGS Geology 625k’ 
model, with the permission of the British Geological Survey. 
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By including this layer, levels of high, medium or low groundwater can be 

established which may be useful in predicting the locations of archaeological 

sites as well as the preservation of such archaeology. The “first evidence of 

extensive drainage in Britain was from the Roman period” (Brown 1997, 269) so 

drainage systems could have been used to partially control the groundwater 

levels in parts of the landscape. It is difficult to assume site location based on this 

data without previously known preferences of low or high groundwater, as both 

could have been advantageous in site location. 

The hydrogeology layer was reclassified to simplify the levels of groundwater to 

areas that are wet, damp or dry. The underlying superficial and lower bedrock 

deposits would have influenced the level of groundwater, and the extent of the 

groundwater would have continuous influence on the soil textures. With this in 

mind, it can be seen that the areas where loam-textures soils occur is also where 

Figure 12: Based upon the ‘BGS Hydrogeology 625k’, with the permission of the 
British Geological Survey. 
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the groundwater is almost entirely classified as wet (75%, tab. 3). The 

groundwater level is dry mostly in the lower southern parts of Hertfordshire 

where the Thames and the Lambeth group deposits are located (24%, tab. 3). 

The areas considered ‘damp’ constitute less than 1% of the area of Hertfordshire, 

so in terms of groundwater, there are mostly the two extremes of wet and dry. 

 

 

3.2.4. River system 

A layer showing where water was located in the Roman period was a needed 

inclusion to the predictive model as water access, or the proximity to water 

bodies, is one of the main environmental factors that is likely to influence site 

location in antiquity (Danese et al. 2014, 43; Brandt et al. 1992, 269). This need 

was met by the rivers system data, provided by the Ordnance Survey (OS) 

(www.ordnancesurvey.co.uk). However, rivers are in a constant state of 

movement and change (Rogers 2013, 89), altering the course by which it takes 

through the landscape. In order to use this modern river layer for a Roman 

context, the layer was reclassified into what the main branches were in order to 

separate them for analysis (fig. 13). Both the elevation layer and the bedrock 

layers were used to try and determine these older river branches, and much of 

the original river layer was ultimately used for water proximity analysis.  

Groundwater level Area (km²) %

Wet 1234.09 75.1%

 Damp 9.61 0.6%

Dry 400.05 24.3%

Total 1643 km² 100%

Table 3: Percentage and area of reclassified groundwater levels in Hertfordshire. 
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Water is not only needed for human survival, but also directly related to 

subsistence economies like agriculture. Water has also been known to have 

cultural values attached to its location and the places through which water has 

flowed (Rogers 2013, 14). In early antiquity, natural sources of freshwater water, 

such as lakes, ponds and rivers, were used to fill this need of water access. 

However, in Roman Britain alternative ways of accessing and controlling water 

was achieved. Due to this, the supply, distribution and storage of water has 

formed an important part of Roman urban studies (Rogers 2013, 6). Water mills, 

man-made channels, canals and wells have been identified in the literature 

about Roman Britain (Brown 1997, 260; Historic England 2018, 4), as well as in 

the archaeological dataset in Roman Hertfordshire. Through the deliberate 

irrigation and drainage of the landscape, areas that humans would have deemed 

unsuitable for habitation were now able to be settled. This development in 

Figure 13: Reclassified main rivers and river branches in Hertfordshire. Based upon 
the ‘OS Open Rivers’ layer, with the permission of the Ordnance Survey. 
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Roman British society would therefore have affected predicted locations for 

undiscovered sites.  

 

3.3. Roman Roads 

Social elements of the landscape can impact site location patterns, with roads 

included as a main element (Brandt et al. 1992, 269; Kamermans et al. 2004, 6). 

Within the Roman era, road networks connected the empire in a scale that was 

unseen before in antiquity. Within Hertfordshire, it has been deemed that 

occupation and activity was “clearly influenced by the road” (Fulford 2015, 75). 

There are also a characteristically large number of roadside settlements within 

the Roman period which focus on major roads (Historic England 2018, 2). 

Therefore, the layer of Roman roads that were constructed in Hertfordshire (fig. 

14) was used in creating the predictive model of Roman Hertfordshire, with the 

idea that proximity to these roads would be a factor in site location.  

Figure 14: Major and minor Roman roads in Hertfordshire. Based upon the ‘Roman Road 
Network (2008 version)’ layer, with the permission of Harvard University. 
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The data source was created using the 2008 digital version of the Roman roads 

by McCormick et al. (2013), published by Harvard University as a part of ‘The 

Digital Atlas of Roman and Medieval Civilizations’ (darmc.harvard.edu). It 

features both minor and major roads in Roman Britain and across the Roman 

Empire, based on the ‘Barrington Atlas of the Greek and Roman World’ by 

Richard Talbert, published by Princeton University Press in 2000. A high level of 

certainty was given to all of the roads that appear within Hertfordshire, 

according to the data source.  

This network of roads linked “developing urban and commercial centers” 

(Tereszczuk 2004, 10), making the transport links attractive to settlers in the 

area. People from the North, outside of Hertfordshire, would also pass through 

this area of Britain while travelling to London (Londinium) along the “main 

strategic road” of Ermine Street, connecting London with the north of the island 

(Tereszczuk 2004, 11) (fig. 15). Stane Street was said to have linked centers like 

Verulamium to Colchester (Fulford 2015, 75), while Watling Street would have 

linked Verulamium to London.  

 

 

 

Figure 15: Named Roman streets in Hertfordshire which connected the area to other 
centers, such as Londinium (London) and Colchester. 
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3.4. Modern Layers 

3.4.1. County and district boundaries  

The county of Hertfordshire is made up of ten districts, of which North and East 

Hertfordshire constitute the largest parts (fig. 16). The district and county 

boundary polygon data was provided by the Office for National Statistics and 

hosted on the Open Geography Portal (www.geoportal.statistics.gov.uk). While 

the county limits of Hertfordshire did not exist within the Roman era, a 

predictive model suitable for Archaeological Heritage Management (AHM) 

purposes in mind should be linked to modern contexts. This poses various issues 

regarding the validity of the assumptions made within the model, as it would 

then fail to consider factors which occurred outside the modern boundaries of 

Hertfordshire. However, some limitations must be placed on predictive models 

by means of its research boundaries.  

Figure 16: The ten districts within Hertfordshire. Based upon the ‘Counties (April 2019) 
EN BFC’ data source, with the permission of ONS Geography Open Data. 
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The county boundary was used to clip every layer extent to limit the data to the 

research area of Hertfordshire. However, a layer displaying district boundaries 

was also needed as the accessible data of legally protected areas were limited to 

the district of North Hertfordshire. Therefore, reference of where the North 

Hertfordshire boundary is located was useful for displaying the protected areas.  

 

3.4.2. Modern land-use and roads  

Research bias and the state of preservation serve as two factors which can affect 

the discovery of archaeological sites, both of which are impacted by the modern 

usage of land. Differences in land use can account for one of the research biases 

which occurs in search for new archaeology sites, along with differences in 

survey conditions, collection methods and individual differences (Van Leusen 

2002, 76). In regards to the preservation of archaeology, risks can be defined as 

the product of hazards, vulnerability and exposure (Danese et al. 2014, 42).   

Anthropic hazards is a main risk to the preservation of archaeology, through 

events like urban sprawl and large-scale infrastructure (Danese et al. 2014, 42).  

Investigations have been conducted on the extent of this risk posed by building 

foundations, finding that the load-bearing layer is often the same which contains 

archaeological remains (Bouwmeester et al. 2017, 150). It is therefore crucial 

that areas of different modern land use are known in order to account for both 

the biases and archaeological risks.  

It is for this reason that the modern land use layer, provided by the European 

Copernicus Land Monitoring Service (ECLMS) (www.land.copernicus.eu), was 

reclassified to best serve as a basis for the five main types of land use occurring 

in Hertfordshire (fig. 17). It can be seen in this layer that much of the land is used 

as cropland (72.4%) and has a significant level of urban sprawl (21.4%) (tab. 4).  

 



46 
 

 

 

 

 

Modern Landuse Area (km²) %

Urban area 352.42 21.4%

Cropland 1189.12 72.4%

 Forest and heathland 94.51 5.8%

Waterbodies 4.52 0.3%

Roads and tracks 2.79 0.2%

Total 1643 km² 100%

Figure 17: Reclassified modern land-use in Hertfordshire. Based upon the ‘Corine Land 
Cover (CLC) 2018’ data source, with the permission of the Copernicus Land Monitoring 

Service. 

Table 4: Percentage and area of modern land-use in Hertfordshire. 
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A layer displaying the modern roads constructed in Hertfordshire was provided 

by the Ordnance Survey (OS) (www.ordnancesurvey.co.uk). This was used to 

both add navigational references to the predictive model, as well as to provide 

additional information on the preservation of unknown and known 

archaeological sites (fig. 18). Commonly, predictive models have been used for 

“large-scale highway planning purposes” (Verhagen & Whitley 2012, 54; 

Podobnikar et al. 2001, 544) in other countries, and therefore references of 

existing roads may indicate to developers the suitable areas for highway 

development which do not require expensive archaeological research.  

 

 

Figure 18: Placement of modern roads around modern land-use in a part of Hertfordshire. 
Based upon the ‘Corine Land Cover (CLC) 2018’ data source, with the permission of the 

Copernicus Land Monitoring Service, and the ‘OS Open Roads’ layer, with the permission of 
the Ordnance Survey. 
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3.4.3. Protected areas and scheduled monuments  

Local protections on archaeology and historical monuments are important 

elements to include in the display of an archaeological predictive map. Within 

England, planning permissions for development projects are often granted 

through the decisions of the Local Authority (www.archaeologists.net; English 

Heritage 2015, 1) and therefore a rudimentary knowledge of the areas where 

any kind of development is not possible would likely save time and money. Two 

layers were collected to display these protected areas: a layer of scheduled 

monuments which was provided by Historic England (historicengland.org.uk) and 

data on the ‘Archaeological Areas’ in North Hertfordshire, provided by the North 

Hertfordshire District Council (www.data.gov.uk) (fig. 19).  

Figure 19: Archaeological areas (in North Hertfordshire) and scheduled monuments in 
Hertfordshire. Based upon the ‘Archaeological Areas’ data source, with the permission of 
the North Hertfordshire District Council, and the ‘Scheduled monuments’ layer, with the 

permission of Historic England. 
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The scheduled monuments layer displays the size and location of any kind of 

“nationally important archaeological sites” within the boundary of Hertfordshire 

(historicengland.org.uk). Scheduling is the oldest form of heritage protection in 

England, originating from the 1882 Ancient Monuments Protection Act. The layer 

includes monuments that date before and after the Roman period so that there 

is awareness for all protected monuments in the area.  

The layer of ‘Archaeological Areas’ are designated as such for their 

archaeological importance under the Ancient Monuments and Archaeological 

Areas Act 1979 (www.data.gov.uk). Unfortunately, the archaeological areas from 

the other districts of Hertfordshire could not be found, so the protected 

archaeological areas were only used as accompanying background information, 

rather than directly informing the predictive model to ensure consistency.  

 

3.5. Archaeological Data 

The archaeological data which was used for the predictive model of Roman 

Hertfordshire came from the open-access archaeological database, the 

Archaeological Data Service (ADS). Since the organisation’s establishment in 

York, England in 1996, the ADS has become “the United Kingdom’s national 

digital data archive for archaeology”, and is the “longest serving repository for 

archaeological data in the world” (Richards 2017, 227). It holds archaeological 

records that can be used spatially through its inclusion of coordinates, as well as 

archaeological literature which are collected by various heritage agencies in the 

UK (Wright & Richards, 2018, 61-62). The ‘ArchSearch’ function on the main ADS 

website is an “integrated online catalogue” (www.archaeologydataservice.ac.uk) 

that allows the searching of over 1.3 million metadata records from over 30 

historical inventories (Wright & Richards, 2018, 62). Its function to query data on 

the basis of site type, site location, site date and archaeological source enables 

the selection of specific data for re-analysis.  

http://www.data.gov.uk/
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The ADS database stores a total of 1352 records within Hertfordshire which date 

to the Roman period. A request was made to employees of the ADS team in 

order to receive the full result of the query of Roman sites within Hertfordshire. 

This was necessary to by-pass the sample-limit they impose on site users.  

 

3.5.1. Data cleansing  

After receiving the requested data in the form of a CSV (Comma-Separated 

Values) file, the data was imported into Microsoft Excel. A measure of data 

cleansing was necessary before it could be imported into QGIS (fig. 20). This 

included separating data into more individual columns. In order to use the data 

spatially within QGIS, X and Y coordinates needed to be separated into individual 

columns. However, additional columns were also made for the attributes 

‘Named Location’, ‘Grid References’, ‘Civil Parish’, ‘District’, ‘Subject’, 

‘Bibliographic References’, ‘URL’, ‘Depositor ID’, ‘Creator’ and ‘Publisher’. The 

fields containing the ‘Title’ and ‘Description’ were already separated in the 

original format.   

Figure 20: Sample of the ‘Location’ column in the original CSV file export from the 
Archaeology Data Service, displaying the mix-up of attributes. 
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The data was imported into Microsoft Access where an auto-numbering ‘ID’ was 

generated for all 1352 records. Queries were written for each newly created field 

using the ‘InStr’ function. This generated the location of the data that was to be 

placed into a new field. To determine the location of the data which was in no 

specific order, the query aimed to return the position character which marks the 

beginning of the data and the character length of the data (fig. 21).   

All coordinates listed in the data used the ‘British National Grid’ coordinate 

reference system (EPSG: 27700), but assigning the correct X and Y coordinate to 

their respective fields added a level of difficulty in the data cleansing process as 

Named Location ‘Start’:  
InStr(dataromancsv.Location,"Named Location:")+15 

Named Location ‘Length’:  
InStr(Mid(dataromancsv.Location,InStr(dataromancsv.Location, 
"Named Location:")+15,Len(dataromancsv.Location)),";")-1 

 

Figure 21: Example of the queries written in Microsoft Access to obtain the location of 
specific data through the starting character position and character length. 
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the difference was not initially clear. To address this, the two coordinates were 

first entered into place-holder fields, named ‘NUM1’ and ‘NUM2’, in their 

original order in the data. 

After observing the coordinates which were correctly located in Hertfordshire 

(fig. 22), both the ‘NUM1’ and ‘NUM2’ fields were sorted by those greater than 

400,000 (as X coordinates) and those lesser than 400,000 (as Y coordinates).  

Once the data was sufficiently organised, the full dataset was imported into QGIS 

and remaining anomalies and outliers were looked for. This cleaning process 

removed 41 records, all of which either were outside the Hertfordshire 

boundaries or did not have coordinate data. Therefore, the remaining 1311 

Roman archaeological records now were organised and spatially checked.  

Within the remaining data, the ‘Subject’ field still contained multiple entries for 

each record. This was likely to be due to the way the ADS stores multiple finds 

within a single site or excavation. For the purposes of categorising the site types 

and analysing them separately from each other, records with multiple subject 

Figure 22: First spatial importation of site points within QGIS, using the original order of 
coordinates found within the original ADS data.  

Incorrect 

coordinate 

order 

 

 Correct 

coordinate order 
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entries were duplicated in order to achieve only one ‘subject’ per record. The 

duplicated records were not assigned new unique ID numbers, keeping the 

original in its place. This was done so that duplicate records could be grouped 

together, if needed. This increased the number of records from 1311 to a total of 

4358 records, however this did not add points with new coordinates. 

 

 

3.5.2. Split sampling data 

The archaeological data was partitioned randomly into two groups to ensure an 

unused ‘test group’ was available to estimate the accuracy of the final product. 

Therefore, the model was ‘trained’ with around 80% of the data while the 

remaining 20% of data was used to cross validate the assigned areas of high and 

low predictive values. In order to decide upon the ratio of training and testing 

data, two competing concerns were considered. With less training data it is 

possible that less variance would be visible during the creation of the predictive 

model and thereby weaken its accuracy and detail. However, with less testing 

data the capabilities of the sample to determine the performance of the 

predictive model may be rendered unrepresentative. Due to these concerns, 

achieving a proportionate balance between the two variances was important.  

The final ratio of 80:20 was decided upon due to the rule stated by the Pareto 

principle. The Pareto principle, also known as the 80/20 rule, states that “a small 

number of causes (20%) is responsible for a large percentage (80%) of the effect” 

(Lipovetsky 2009, 271) and therefore such a ratio would produce a 

representative sample of data. The principle was initially coined in relation to 

distributions found within economics but heuristically became related to other 

distributions in life, such as wealth, crime and eventually mathematics 

(Lipovetsky 2009, 276). The 80/20 division to create a training and a testing 

sample is also commonly used in the field of machine learning for archaeological 

site detection (Verschoof-van der Vaart et al. 2020, 293). In addition to this, the 

total number of data records was large enough to confidently remove 20% of 
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data from the creation of the model and remain sufficient. The Pareto principle 

was therefore deemed appropriate to proportionately divide my archaeological 

data into a training and testing group.  

The ID number, which was generated during data cleansing, was used within a 

selection query using Microsoft Access. By using the assumption that all of the ID 

values will end in any number between 0 and 9, we can separate 80% sample of 

the data if we only select those ID records which end in a number larger than 1 

(2, 3, 4, 5, 6, 7, 8, 9). Therefore, the remaining 20% of the data will have ID 

numbers which end in any number equal or less than 1 (0, 1). This selection 

process was expressed within the queries seen in Figure 23. 

 

This method succeeded in separating the data as randomly as possible by 

indiscriminately selecting auto-incrementing ID values which were given to 

unsorted data with no specific ordering. However, instances of duplicate ID 

values meant that the training and test samples could not amount to exactly 80% 

and 20%. This was deliberately done so that records which were duplicated 

Figure 23: The two selection queries which were used to indiscriminately select 80% of 
the archaeological data by selecting records with an ID that ends in a number above 1. 
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earlier in the process remained within the same group. When ‘new’ duplicate 

records were generated for the multiple “Subject” entries within each original 

record the duplicate records kept their original ID values. Therefore, some ID 

values occurred more frequently than others, but still essentially belonged to 

one single record. Despite this, the method of selecting by ID ultimately assigned 

the training group 79.5% of the data (n = 3466), and the testing group 20.5% (n = 

892) (fig. 24).  

 

Figure 24: Distribution of the model data sample (n = 3466) and testing sample (n = 892) 
displayed within the boundaries of Hertfordshire.  
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3.5.3. Categorising subjects 

Categorising the 80% sample of data was crucial if any observations were to be 

made on the basis of site type. For example, if the proximity to water was to be 

investigated for influences of site location, the nature of the site would likely 

affect how much water was needed there. At a Roman ritual site, the main 

activity which would have taken place there would have been worshipping, with 

few people residing there permanently. For this reason, landscape characteristics 

other than the proximity to water could have played a more important role in 

deciding the site location. Alternatively, settlement sites would theoretically 

place a high importance of proximity to water sources and may therefore need 

to be investigated separately from other site types. To do this, these site 

categories would have to be pre-decided on the basis of the 360 unique 

‘subjects’ within the data. 

Categorising the different subjects began with creating a list of unique values 

within the 3466 records. This was done using the vector analysis tool ‘List unique 

values’ in QGIS. This list was imported into Microsoft Excel where each subject 

was individually placed into one of six groups: settlement, economic, military, 

ritual, water sources or miscellaneous.  

The settlement group (fig. 25) contained subjects which had identified 

settlement structures such as baths, towns and villas (appendix 4), settlement-

related objects such as amulets, ceramics and beads (appendix 5), infrastructure 

such as enclosures, bridges and roads (appendix 6), as well as unknown structure 

remains such as bricks, mosaics and architectural fragments (appendix 7).  

The economic group (fig. 26) contained subjects related to agricultural 

processing like corn driers, mills and ovens (appendix 8), agricultural land such as 

barns, farms and vineyards (appendix 9), industrial production such as quarries, 

workshops and kilns (appendix 10), in addition to industrial objects like lithic 

material, coin moulds  and crucibles (appendix 11).  
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Figure 25: Settlement sites (n = 2017), as classified in appendices 4-7. 

Figure 26: Economic sites (n = 320), as classified in appendices 8-11. 
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Within the military group (fig. 27) were subjects related to military structures 

such as forts, moats and towers (appendix 12) as well as military objects like 

axes, horseshoes, arrowheads and weapons (appendix 13). 

 

 

The ritual group (fig. 28) contained subjects that were grouped as religious 

structures included ritual pits, shrines and temples (appendix 14), as well as 

funerary sites such as cremations, urns and mausoleums (appendix 15).  

The group of water sources (fig. 29) included subjects which were related to 

Roman water management, such as arched brick culverts, canals and drainage 

ditches (appendix 16).  

 

Figure 27: Military sites (n = 53), as classified in appendices 12 and 13. 
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Figure 28: Ritual sites, as classified in appendices 14 and 15. Figure 28: Ritual sites (n = 318), as classified in appendices 14 and 15. 

Figure 29: Water source sites (n = 62), as classified in appendix 16. 
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As for the group of miscellaneous subjects, this category contained both 

unreliable and uncategorised sites (fig. 30). It appeared that most of the subjects 

within this group were duplicate points within the same records as other 

subjects that were more descriptive than being sites, layers or finds – these were 

categorised as uncategorised subjects (appendix 17). Meanwhile, the unreliable 

observations included subjects that likely dated to later than the Roman period, 

such as air raid shelters, Methodist chapels and motte-and-bailey castles 

(appendix 18). 

 

 

  

Miscellaneous 

Figure 30: Miscellaneous sites (n = 696), as classified in appendices 17 and 18. 
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4. Methodology  

A detailed explanation of the methods and theories used in the creation of a 

predictive model is crucial for the reproducibility, critique and use of the model 

(Wilcox 2014, 340). Therefore, the different methods that were used to create 

the Roman Hertfordshire predictive model will be explained in this chapter, and 

the resulting application of these methods will be presented in the ‘Results’ 

chapter.  

Deductive modelling offers the modeller the opportunity to predict sites on the 

basis of theoretical locational rules (Danese et al. 2014, 43) which are based on 

archaeological knowledge or theory. It is seen by some that using a deductive, 

theory-driven framework is a better way to model than the alternative of 

inductive models (Verhagen et al. 2007, 203). Inductive, or correlative, models 

are created through the extrapolation of locational rules which are derived from 

patterns within a dataset of known sites. The resulting model from this 

technique can therefore lack an external testing mechanism (Kamermans et al. 

2004, 5) and often exclude the influence of social factors due to their difficulty to 

model (Verhagen et al. 2007, 204). Therefore, the Roman Hertfordshire 

predictive model was primarily created using a deductive approach, which forms 

predictions on the basis of “prior anthropological and archaeological knowledge” 

(Kamermans et al. 2004, 5). Inductive modelling, based on site density was also 

used, but only minimally impacted the final model.  

 

4.1. Predictive Factors 

The predictive model implemented both environmental and social factors which 

could have affected the choice of site location and can indicate areas where 

settlement was highly suitable during the Roman period in Hertfordshire.  
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The environmental factors that were considered included the proximity from 

water sources, which accounted for the main river courses within Hertfordshire 

as well as any previously-identified Roman sources of water access such as 

aqueducts, pipes or wells. Areas in the closest proximity to both Roman water 

sources and main rivers (within 1km) were given a ‘Very High’ archaeological 

prediction and areas over 5km from water were assigned a ‘Very Low’ predictive 

value. Other environmental factors were used to assign a ‘Very High’ 

archaeological prediction, which had both a southern-facing aspect and a shallow 

slope below 10 degrees. 

The social factors that were integrated into the model’s site predictions included 

the proximity from the Roman-built road networks that travelled through the 

boundaries of Hertfordshire and connected the geographical region to other 

parts of Roman Britain. The wider areas in the closest proximity to the roads 

(within 1km) were given a ‘Very High’ archaeological prediction, whereas areas 

over 5km away from the roads were given a ‘Very Low’ prediction. Lastly, site 

densities of known archaeological data were analysed in order to identify where 

potential major and minor Roman towns were located. This analysis was 

integrated as ‘Very High’ areas of archaeological prediction.   

 

4.2. Modelling Methods 

4.2.1. Deductive methods 

The deductive mode of modelling was implemented through the use of multi-

criteria analysis. This type of analysis allows for the inclusion of multiple factors 

which are presumed to have had impacted Roman site location through the use 

of a weighted system. (Brandt et al. 1992, 272). Both environmental and social 

factors were included in the predictive model through this method. The 

weighted analysis of the criteria occurred in two phases, the first phase included 

the weighing of three types of proximities (0-1km, 1-5km, over 5km) from Roman 
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water sources and roads. The assigned weight of the closest Roman road 

proximity (0-1km) was consistently higher than the weight of the river 

proximities. These weights were then combined at the end of this first phase. 

The second phase included the reclassification of the aspect and slope values to 

only give a moderate amount of weight to areas which were southern-facing and 

had a slope degree of under 10. No amount of weight was given to areas that did 

not meet these requirements. These two phases of deductive modelling were 

combined.  

 

4.2.2. Inductive methods 

The inductive phase of model building did not utilise the weighted system, but 

rather aimed to integrate the influence of Roman town locations. Site density 

analysis was conducted for the modelling sample data using a heat map. This 

heat map was then used to identify two classes of Roman settlements, major or 

minor. Minor densities were given influence zones of 1000 meters around the 

point, while major densities were given influence zones of 2000 meters. These 

zones were added to the deductively-created model as areas of ‘Very High’ 

predictive values.  

The use of site density analysis on the Roman Hertfordshire dataset poses 

potential issues with the outcome of this method. As site density analysis can 

only be conducted inductively, its reliance upon the known archaeological data 

allows for observation biases to impact the outcome. The way archaeological 

data is often collected is nearly always non-randomly (Van Leusen 2002, 76), and 

this allows biases to occur within the data. For example, both the method in 

which the data was collected (Wilcox 2014, 344) and the research questions 

which prompted the discoveries (Verhagen & Whitley 2012, 56) can 

simultaneously impact the types of sites that are discovered. However, 

environmental factors may also play a role in this bias, such as through 

differences in modern land-use and soil textures (Van Leusen 2002, 76). These 
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extraneous factors impact the basis of an inductive predictive model from its 

inception, thereby causing predictive values to be based on unrepresentative 

data and led to unfounded patterns.  

To avoid these issues associated with the inductive method within the predictive 

model of Roman Hertfordshire, a predominantly deductive method was used. 

Known site data was then used in the creation of the model either to ensure the 

continuous improvement and accuracy of the different model versions through 

the count of sites per area, or to inductively infer where Roman towns were 

located within Hertfordshire in the final stages of the model’s creation. As all 

potential biases should be understood, an assessment is required for both the 

environmental data and the archaeological data used to create and inform the 

predictive model.  

 

4.3. Environmental Data Assessment 

The environmental data used to inform and build the Roman Hertfordshire 

predictive model may have included biases towards the modern landscape, 

making it less applicable to the landscape in Roman Britain. This is especially 

relevant within the soil textures model, which included poor resolution data and 

may have been influenced by fertilisers or soil displacement. Carbonate content 

and soil depth were included in the soil data which has modern applications. 

Similarly, the layer of groundwater data included information only relevant to 

modern contexts, such as the flow mechanics and principal aquifers within the 

UK. A simplification was created for the soil textures and groundwater, 

reclassifying the attributes into broader, basic categories that were more likely 

applicable within the Roman period as they were based off of the underlying 

geology. The river vector layer was taken from modern contexts, but edited to 

include only the major branches of the river. However, it is possible that the river 

was located in a different place during the Roman era, and therefore puts 

questionable doubt upon the proximities of areas to water. More research may 
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be required to understand the extent of river movement since this period, within 

this region of East England.  

 

4.3.1. Future suggestions 

In addition to describing and judging the quality of the environmental data, other 

forms of more relevant data can be included. Such forms include LIDAR elevation 

models which remove the elevation of vegetation, geological borehole 

databases, historical maps and remote sensing images (Verhagen et al. 2009, 22). 

These additional sources of data can be used in combination with the traditional 

modern environmental sources, where available.  

 

4.4. Archaeological Data Assessment 

Variables of depth and preservation which affect archaeology can impact their 

representation in the archaeological dataset, and therefore lead to the creation 

of predictive models that only take into account parts of the archaeological 

reality. These variables can be assessed with modern land-use, soil and 

groundwater data to account for this observational bias in the resulting model.  

A way to analyse, and possibly correct, these biases is through a masking layer 

which can be created with all of the known sites within an area (Verhagen et al. 

2009, 22). The modern land-use, soil textures and groundwater of the areas 

researched can be compared to the areas which contained no found sites. If 

there is an over-representation of a certain type of area, the source of the bias 

within the data could be identified and addressed in this way. It may also be 

assumed that if the distribution of sites is similar to the area distribution of 

certain soils or groundwater, then those layers likely are not the cause of the 

observational bias. It should not be assumed that this result indicates the lack of 

an observational bias entirely as other factors, such as method of observation, 

may contribute to this.  



66 
 

In the case of the Roman Hertfordshire predictive model, a 500 meter buffer was 

made around all known Roman sites within the area (n=4358). This buffer layer 

was cut from the boundary extent of Hertfordshire and given a translucent 

symbology, allowing a view of the areas which had identified Roman sites and 

those which had not. Using the 500 meter buffer around each site, a total of 

22.6% of the area was ‘researched’, while the large majority had not found any 

roman sites (tab. 5)   

 

The masking layer was then applied to the modern land-use, soil group and 

groundwater maps. The area of each value within each map was calculated for 

the areas researched and were compared to the areas not researched.  

 

4.4.1. Soil types 

The researched areas appeared to not be overtly affected by the soil types 

present in the area of Hertfordshire (fig. 31). A fairly equal distribution of Roman 

sites (fig. 32, appendix 19) were identified among each of the five soil groups, 

according to their percentage of the total area of researched and non-researched 

soil. The most Roman sites were found within loamy soils (66.4%), however the 

highest soil distribution within Hertfordshire also is loamy soils. This high 

frequency is represented in both the researched and non-researched area 

(68.6%). The silt, sand and clay group had similarly small proportions within the 

researched and non-researched areas.  

 

Researched area
Non-researched 

area

372.089 km² 1271.669 km² 

22.6% 77.4%

Table 5: Area and percentage of the ‘researched’ areas and ‘non-researched’ areas in 
Hertfordshire, with researched areas determined by a 500 meter buffer around all known 

Roman sites (n = 4358). 
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4.4.2. Groundwater 

The groundwater areas fairly proportionate in the wet, damp and dry areas 

among both researched and non-researched areas (fig. 33). The similar levels of 

groundwater, with around 4% in difference between the two groups, suggests 

Figure 31: Distribution of non-researched areas in Hertfordshire (grey layer) and the 
underlying soil textures. 

Figure 32: Frequency chart of researched and non-researched areas by their soil texture. 
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that groundwater may not have been a large bias within Roman site observations 

(fig. 34). This is perhaps the case because the high amounts of wet groundwater 

areas within Hertfordshire promote a generally good level of preservation of 

archaeology (appendix. 20). However, around 20% of area that was researched 

and not researched were ‘dry’, indicating less of a groundwater bias even on the 

basis of generally good preservation.   

Figure 33: Distribution of non-researched areas in Hertfordshire (grey layer) and the 
underlying groundwater level. 

Figure 34: Frequency chart of researched and non-researched areas by their 
groundwater level. 



69 
 

4.4.3. Modern land-use 

Within the layer of modern land-use, observational bias is likely present (fig. 35). 

This is due to the increase of development-driven archaeological projects after 

the creation of the Valetta Treaty. In regards to Roman archaeology in 

Hertfordshire, most sites were found within urban areas and croplands 

(appendix. 21). More of the urban areas were researched (35.4%) than not 

(17.4%), and the opposite is the case for areas of cropland (fig. 36).  

The proportion of forest and heathland areas were fairly equal, which was also 

the case for the very few sites located in modern-day water bodies and areas of 

roads and tracks. Due to this unequal proportion of researched and non-

researched urban areas, the archaeological data was likely biased towards 

development-driven archaeology. While not completely absent, research-

motivated fieldwork has commonly been scarcer in modern town centres 

(Holbrook 2015, 2). Another potential reason for this proportion is the 

Figure 35: Distribution of non-researched areas in Hertfordshire (grey layer) among their 
modern land-uses. 
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preservation of archaeology within cropland areas. Ploughing the land can cause 

disturbance of underlying archaeology, and therefore would make it more 

difficult to identify. However, surface-level archaeology may be visible from 

cropmarks visible in the open cropland.  

 

4.4.4. Future suggestions 

Future recommendations for addressing the quality of archaeological input data 

include using sophisticated statistical methods to measure the weight of data 

biases, such as Bayesian statistics or Dempster-Shafer modelling (Verhagen et al. 

2009, 22). Pre-emptive strategies can also be taken to improve the way of 

gathering and registering archaeological data in a national database (Verhagen et 

al. 2009, 22). Although, it must be taken into consideration that improving 

representability of data through methods of data-gathering may not be easy to 

implement in a country as large and geographically diverse as England. 

Figure 36: Frequency chart of researched and non-researched areas by their modern 
land-uses. 
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5. Results 

5.1. Application of the Methodology  

The initial assumption was made that being closer to the road and river system 

would have produced positive side-effects in terms of habitability (Kamermans et 

al. 2004, 6). For most site types, but especially settlement and economic sites, 

water sources would have been needed within a reasonable distance (Brandt et 

al. 1992, 269). Therefore, the weighted system took this into account by valuing 

the close-distance zone from water with the highest weight, thereby increasing 

the area’s archaeological predictability. The first step of applying the 

methodology stated previously was to individually explore the factors of water 

distance and road distance, and their presumed ability to predict the location of 

Roman aged sites in Hertfordshire.  

 

5.1.1. Evaluating the proximities of rivers and roads 

It was important to first evaluate the river and road factors individually before 

combining them into the model. This was done through the creation of two 

proximity rasters which were then evaluated with the site point data for their 

potential influence on site location.  

As both the river and road layers were in the format of line-based vectors, the 

‘Rasterize’ procedure was used to convert each layer into raster grid-based cells 

(pixels). This procedure created a new rasterized version of the Roman roads and 

river systems, with each cell being marked as either ‘0’ indicating a blank cell, or 

‘1’ indicating the presence of water or road (fig. 37). With this new raster data, 

proximity raster layers were generated, also known as Euclidean distances (fig. 

37). The proximity values were limited to 5000 meters away from the source of 

data, producing graduating values of distance for each cell within the layer 

extent, maxing out at 5000 meters in distance.  
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The distance categories, weight, and overall importance of each factor’s 

proximity was then assigned through reclassification (tab. 6). The reclassing of 

distances was done using the QGIS ‘Raster Calculator’, through which an 

expression was written to separate and assign weights to three proximity groups 

(fig. 38). This process was applied to both the rivers and roads proximity rasters.  

Figure 37: Results of the ‘Rasterized’ processing of the original vector files and the 
proximity rasters created from these rasterised layers. 

‘Rasterized’ River Layer ‘Rasterized’ Roman Road Layer 

Resulting proximity rasters 

Table 6: Distance categories and weights applied to the river and road proximity rasters.  

Distance 

Categories
Weight

Distance 

Categories
Weight

0 - 1 km 100 0 - 1 km 100

1 - 5 km 50 1 - 5 km 50

>5 km 10 >5 km 10

River Proximity Roman Road Proximity
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The sample of known Roman archaeological sites (n = 3466) was layered on top 

of each of the reclassified proximity rasters in order to observe the count of sites 

within each of the three proximity categories (fig. 39 and fig. 40) in order to test 

its predictive value. The size (km2) of each category was also calculated so as to 

take into account the category’s proportion of the total area, in addition to the 

proportion of sites that are located in the area (tab. 7 and tab. 8).  

 

Figure 38: The reclassification query for the road proximity raster as shown in the QGIS 
‘Raster Calculator’, and the resulting distance groups coloured by their weights. 
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Figure 39: Reclassified river proximity raster with the layer of known Roman sites 
(n = 3466). 

Figure 40: Reclassified road proximity raster with the layer of known Roman sites (n = 
3466). 
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Table 7 and 8 display the predictive potential of both of the proximity rasters for 

the rivers and Roman roads by using the known sites as a basis for site location 

preferences. In both of the proximity rasters, the 0-1km distance category 

locates a majority of the site sample, suggesting closer proximity to rivers and 

roads was favoured and influenced site location. When paying closer attention to 

the proportion of the areas of each distance category, the 0-1km area around 

the Roman roads appear to predict more sites (49%, tab. 8) within a smaller 

proportion of the total area (23%, tab. 8). The 0-1km area around the rivers 

locate more sites (67%, tab. 7) than the road proximity area, but does so within a 

larger area that constitutes almost half of the total research area (49%, tab. 7).  

In addition to this, the nature of the river and road factors differ within the 

landscape and thus their influences in site location would also differ. The rivers 

Table 7: The area (km2) and count of known sites in each proximity category from the 
river, expressed as the proportion of the total area (1643.7 km2) and site count (n = 3466). 

Table 8: The area (km2) and count of known sites in each proximity category from the Roman 
road, expressed as the proportion of the total area (1643.7 km2) and site count (n = 3466). 

Distance
Number of 

known sites

Site      

%
Area (km²)

Area     

%

0 - 1 km 2313 67% 769.0 47%

1 - 5 km 1136 33% 834.0 51%

>5 km 17 0% 40.7 2%

Total: 3466 sites 100% 1643.7 km² 100%

River Proximity

Distance
Number of 

known sites

Site      

%
Area (km²)

Area     

%

0 - 1 km 1691 49% 369.9 23%

1 - 5 km 1404 41% 971.8 59%

>5 km 371 11% 302.1 18%

Total: 3466 sites 100% 1643.7 km² 100%

Roman Road Proximity
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signify an established environmental influence, which may have in the past been 

socially-influential through water transportation. Meanwhile, the Roman roads 

signify a newer, social influence in the landscape – one which may have also 

altered the influence of the river systems in the landscape.  

Therefore, due to a higher surface area coverage by the river layer and the 

differing nature of the two factors, a direct comparison of their predictive 

potential is difficult to make. However, it can be stated through this evaluation 

that both layers can be combined to infer site location, and therefore possess 

key predictive capabilities. 

 

5.1.2. Weighted proximity to roads and water sources  

During this step of the modelling process, the two evaluated factors of water 

proximity and road proximity were to be combined, representing both a social 

and environmental factor in predicting Roman site location. Selected 

improvements were made to the proximity rasters before the layers were 

combined into the first prototype of the Roman Hertfordshire predictive model. 

One improvement made included an improved water proximity raster which 

takes into account water access from the main river system as well as other 

Roman water sources. As well as this, both proximity rasters were reclassified 

again to assign altered weights to each distance category.  

Within the dataset, the site category of ‘water sources’ was created by grouping 

the records of water-associated structures which were identified as dating to the 

Roman era (fig. 41). The group contains archaeological ‘subjects’ such as wells 

and brick culverts (appendix 16). By merging the layers of various Roman water 

sources and the river system, the representation of which areas were in close 

proximity to water became more specific to the Roman era by taking into 

account the man-made infrastructure which enabled wider access to water.  
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The previously used ‘rasterized’ river layer was merged in QGIS with the 

‘rasterized’ water sources point layer that displayed the locations of the Roman 

water sources. This was done using the QGIS Raster Calculator to create a single 

raster layer with both instances of water access. The merged layer was then 

processed into a proximity raster with a maximum distance of 5000 meters, 

using the same process as used in the making of the original river proximity 

raster. The result included moderate yet sufficient differences from the previous 

water proximity raster (fig. 42).  

Figure 41: Known sites of water sources, dating to the Roman period (n = 62). 

Figure 42: Improved proximity raster of water sources which includes both the main 
rivers and identified Roman water sources.  
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It appeared from the previous evaluation that, within Roman Hertfordshire, the 

flooding of land nearby to a river did not appear to be a concern in regards to 

site location. This was likely due to the drainage techniques practised by the 

Romans, marking the “first evidence of extensive drainage in Britain” (Brown 

1997, 269). Therefore, the weight of the closest proximities to water remained 

the highest.  

However, it was decided that the proximity of the road systems should hold 

greater weight in the multi-criteria analysis because of the connections roads 

came to provide to key centers in the Roman era. This could have provided an 

incentive for close proximity to either major or minor roads for both residential 

and commercial sites. For example, ‘Watling Street’ passes through the major 

Roman town, Verulamium, in Hertfordshire and travels south-eastwards to the 

major commercial center of Londinium (fig. 43), while ‘Stane Street’ was said to 

have linked centers like Verulamium to Colchester (fig. 43) (Fulford 2015, 75), the 

largest center in Roman Britain. This social factor was likely to have impacted the 

locations of economic and settlement sites, and perhaps ritual or burial site 

locations also.  

Figure 43: Roman roads which passed through the area of Hertfordshire.  
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Due to these theoretical viewpoints, the reassignment of weights for each 

distance category was undertaken for both the water and road proximity raster 

layers (tab 9). The result of these new weights and their visualisation in QGIS are 

displayed in Figure 44.  

 

 

Both of the newly reclassified layers were used in the multi-criteria analysis 

through the merging of the weighted cells in the QGIS ‘Raster Calculator’. The 

result was multiplied by the raster boundary to discard cell values outside of the 

extent of Hertfordshire. This produced the first version of the Roman 

Hertfordshire predictive model, ‘Model 1’ (fig. 45), in which cells within 0-1km 

proximity of the roads and rivers had overlapped to produce the highest 

predictive value areas (tab. 10).  

Weighted Water Proximities Weighted Roman Road Proximities 

Table 9: Adjusted distance categories and weights applied to the water and road 
proximity rasters.  

Distance 

Categories
Weight

Distance 

Categories
Weight

0 - 1 km 80 0 - 1 km 120

1 - 5 km 50 1 - 5 km 90

>5 km 10 >5 km 30

Water Proximity Roman Road Proximity

Figure 44: Reclassified weights of the water and Roman road proximities. 
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The resulting raster model was digitised into separate vector polygons while 

using the raster model as a basis. Each predictive category was merged into a 

single attribute in order to calculate the total count of known sites within each 

category (tab. 11). The known site count within the ‘Very High’ and ‘High’ areas 

Weight Predictive value

200 Very High

160 High

120 Medium

80 Low

40 Very Low

Model 1

Table 10: Total weight of each predictive value in Model 1.   

Figure 45: First version of the Roman Hertfordshire predictive model (Model 1), 
created by multi-criteria analysis of proximity to water and Roman roads. 
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totalled 72.4% of the site sample, whilst covering around half of the area of 

Hertfordshire (53%, tab. 11).However, the ‘Very High’ category constituted only 

14.1% of the total area but counted 45.2% of the known sites within this small 

percentage. This is an important point to note, as a predictive model should not 

only aim to be correct, but also precise in its predictions. If a model predicts over 

half of a given area is ‘Very High’ in archaeological prediction, it creates difficulty 

in the extent of research that can be done over such a large area. Therefore, it is 

necessary to attempt to narrow down as far as possible areas which show the 

highest level of archaeological value. The ‘Very Low’ predictive category 

contained no site occurrences, however it only constitutes 1% of the total area, 

making it clearly the smallest category.  

 

 

With that being said, additional site location factors should be integrated into 

the multi-criteria analysis in order to take into account alternative influences. For 

example, while the distance from roads would be an important factor for all site 

types, elevation-derived layers also have the potential to predict which areas 

were optimal in landscape for site location.  

 

Predictive 

value

Number of 

known sites

Site      

%
Area (km²)

Area     

%

Very High 1566 45.2% 232.141 14.1%

High 944 27.2% 638.949 38.9%

Medium 598 17.3% 466.905 28.4%

Low 358 10.3% 289.768 17.6%

Very Low 0 0.0% 15.999 1.0%

Total: 3466 sites 100% 1643.758 km² 100%

Table 11: The total count of sites (n = 3466) and area within each predictive 
category in Model 1.  
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5.1.3. Weighted aspect and slope 

The second version of the Roman predictive model of Hertfordshire builds upon 

the first model through the integration of the derived layers of slope and aspect 

in Hertfordshire. The integration of slope and aspect would benefit the ranking 

of areas for Roman site prediction by their ability to identify optimal areas for 

construction. The theoretical assumptions used to identify these optimal areas 

included both the degree of slope at, or below, 10 degrees and a southern-facing 

aspect degree. In areas where the slope was below 2 degrees, the aspect could 

be facing any direction as the land would be flat enough to not limit solar 

radiation. 

In the northern hemisphere, where England is located, the northern side of 

slopes would often be shaded and would receive drastically less solar radiation. 

The importance of solar radiation that is successfully received from the sun is 

“the primary energy source that drives many of the earth's physical and 

biological processes”, and therefore would be important when deciding the 

location of sites (www.pro.arcgis.com). This factor is especially the case for 

agricultural sites since abundant sunlight (in addition to water access) is needed 

for the cultivation of crops. However, these conditions would also have been 

optimal for construction of structures, whether residential or commercial in 

nature, as well as for animal husbandry. These conditions may have not been 

sought after for ritual-related or military sites, as often high elevations and line-

of-site were associated with such structures (Verhagen et al. 2007, 206), or ease 

of access (Wilcox 2014, 341). To represent this theoretical assumption in my 

predictive model, both the slope and aspect raster layers were re-classed using 

the QGIS ‘r.reclass’ tool.  

Firstly, the aspect layer had one type of reclassification which aimed to only 

select parts of the landscape that were south-facing. To do this, a rule file was 

written within Notepad which classified that all cells with values between 0 and 

111 should equal ‘0’, values between 112 and 247 should equal ‘1’, and finally 
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that values between 248 and 360 should also equal ‘0’. The rule system was 

created on the knowledge that during the aspect layer’s creation, each raster cell 

was assigned a value that reflects its direction on a 360 degree axis. In order to 

only include the southern-facing areas, the diagram seen in Figure 46 was used 

to include all south-east, south and south-west-facing cells (112-247 degrees). 

Within the ‘r.reclass’ tool, the aspect layer and the rule file was selected as the 

terms for the layer’s reclassification. This procedure resulted in the layer seen in 

Figure 47, in which the white cells have an aspect value that is south-facing. 

 

 

 

 

 

 

 

 

Figure 46: Diagram illustrating how the degrees of aspect determine the cardinal direction of 
a hill or mountain face in the Northern hemisphere (left image: www.pro.arcgis.com). 

Flat -1

North 0 - 22.5

Northeast 22.5 - 67.5

East 67.5 - 112.5

Southeast 112.5 - 157.5

South 157.5 - 202.5

Southwest 202.5 - 247.5

West 247.5 - 292.5

Northwest 292.5 - 337.5

North 337.5 - 360

Figure 47: Southern-facing aspects and the rule used to define the reclassification. 
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The slope raster layer was used to make two separate reclassified layers with the 

‘r.reclass’ tool: one in which the value of ‘1’ is given to cells where the slope 

value is 2 degrees or less (fig. 48), and another where the value of ‘1’ is given to 

cells where the slope value is 10 degrees or less (fig. 49). For this, two rule files 

were written which stated each condition, with those cells not fitting the 

requirements being classified as ‘0’.  

  

Figure 48: Slopes of 2 degrees or less, and the rule used to define the reclassification. 

Figure 49: Slopes of 10 degrees or less, and the rule used to define the reclassification. 
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Now that both of the slope layers and the aspect layer were reclassified, they 

were to be merged into one layer with the conditions that cells should have a 

value of ‘1’ if they are south-facing and their slope value is less than 10 degrees, 

or if their slope value is less than 2 degrees. This was expressed in the QGIS 

‘Raster Calculator’ as:  

 

 

 

 

The expression written above combined these layers and produced Figure 50, 

which displays the values that met either of the two conditions as a white cell 

with the value of ‘1’. After this process, the assigned weight can be added to 

both the factors of slope and aspect, thus representing the influence of the 

terrain on Roman site location.  

( "aspect_south@1" = 1 AND "slope_less_10@1" = 1 ) OR 

"slope_less_2@1" = 1 

Figure 50: Model of optimal slope and aspect, with white cells not exceeding 10 degrees 
in slope and having a southern-facing aspect when solar radiation may be limited by 

the placement of the slope. 
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In order to combine this layer of optimal slope and aspect to the result of the 

previous predictive model version, a weight must be assigned to all cells with the 

value of ‘1’. Deciding what the weighted value would be of the layer was a 

difficult task as the relevance of aspect and slope is highly dependent on the site 

type. However, for this model a generalised weight of ‘30’ was chosen. This was 

decided because when the new weighted layer is merged with Model 1, the 

score is only able to promote a cell’s value to the next predictive group if it is in 

the higher tier of the previous group it was in. This would allow the influence of 

the terrain’s slope and aspect to influence the weighted system while not 

skewing the overall result.  

The weight was assigned using an expression in the QGIS ‘Raster Calculator’, 

adding the aspect and slope weighted cells to the values of the previous 

predictive model layer, containing reclassified proximities to Roman roads and 

water sources. The result was also multiplied by the boundary raster so as to 

remove out-of-bounds pixel values:  

 

The output of this multi-criteria analysis (fig. 51) appeared to need visual 

simplification for its use as a predictive model, as the model’s representation of 

predictive values should aim to remain a generalisation of the archaeological 

situation. In addition to this, as the number of unique weighted values within the 

raster cells increased, categorising of each value into a predictive group was 

needed. In the final product, the influence of the slope and aspect of the terrain 

should not be directly noticeable, as it was decided more weight would be put on 

the proximity of areas to water sources and Roman roads.  

Once the raster output layer was categorised as five main predictive values, it 

was decided against manually digitising the layer in order to produce the model 

in vector format. Instead, multiple QGIS and GRASS (Geographic Resources 

Analysis Support System) procedures were used to create the vector layer and 

generalise the result. 

( "deductive_predictive_model2@1" + "weight_30_as@1" ) * "boundary@1" 
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 The ‘Polygonize’ conversion tool was used to initially transform the raster pixels 

into vector polygons. A new attribute field was created for this vector layer, 

specifying the predictive value, ranging from ‘Very High’ to ‘Very Low’, and the 

symbology was categorised through this new field. This still left many 

separations in the polygons of each group, originating from the conversion of 

raster to vector. The separated polygons were fixed by editing separate 

selections of each group at a time and using the ‘Merge Selected Features’ 

digitising tool to create a single field for each of the predictive values (fig. 52).  

Manual selections of certain areas was necessary to remove traces of pixels, such 

as from the ‘Low’ valued area in the west of Hertfordshire. From a wide-view, 

the model seemed to have smoother edges, however pixilation remained around 

the edges of each area. In order to reduce the pixilation caused by the original 

raster layer, the GRASS tool ‘v.generalize’ was used in conjunction with the 

“snakes” generalization algorithm selected with a maximum tolerance value of 

‘1’ (fig. 53). 

Figure 51: Uncategorised raster output layer of the merging of the weighted proximities 
from water and Roman roads with the weighted optimal slope and aspect raster.  
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Through the various processes the polygon layer had been put through, the 

boundary edges of the model became fractured and was unable to fit the full 

extent of the Hertfordshire boundary. This was an issue for a few reasons, one 

being that the presentation of the model on close inspection is visibly worse. A 

second reason to fix this issue was that it likely would affect the count of known 

sites within the areas of the polygons, as well as impact the accuracy of the area 

Figure 52: The before and after of the ‘Polygonized’ raster layer once the predictive 
value categories had been merged.  

Figure 53: The before and after of the smoothing process, using the ‘generalize’ tool. 
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calculations for each predictive group – which is needed for the Kvamme’s Gain 

test of reliability and accuracy (Kvamme 1988, 329). In order to address this 

issue, the nodes of each bordering polygon were edited manually to extend the 

layer beyond the Hertfordshire boundary. During this process, small pixels that 

were found also were removed and blended into the surrounding predictive 

values. The extended polygons were then trimmed to match the extent of the 

county using the ‘Clip’ tool (fig. 54).  

This version of the predictive model added more nuanced areas of medium, low 

and very low predictive values, especially in the central outskirts of 

Hertfordshire. More areas which were previously classified as ‘Low’ are now in 

the ‘Medium’ category (fig. 55) which is shown by the increased area percentage 

of the ‘Medium’ category from 28% in model 2, to 35% in this version (tab. 12). 

The ‘Low’ category naturally decreased in area by around 8%.  

The impact these area changes had on the known site count can be seen 

especially in the ‘Medium’ and ‘Low’ categories. The ‘Medium’ category 

increased in site count by around 6%, while the ‘Low’ category decreased both in 

size and site count by 5% and 6% respectively. It would be beneficial for the 

model’s precision to locate a higher percentage of sites within the ‘Very High’ 

category, while not increasing the area percentage substantially. However, it 

must be kept in mind that any change in predictive values should be based in 

theory that does not simply derive itself from the collected dataset as it may or 

may not be representative of all Roman sites.  

Figure 54: Before and after of the editing of the borders of the predictive modelling, 
using the ‘clip’ tool. 
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Predictive 

value

Number of 

known sites

Site      

%
Area (km²)

Area     

%

Very High 1533 44.2% 210.939 12.8%

High 951 27.4% 640.730 39.0%

Medium 815 23.5% 582.021 35.4%

Low 167 4.8% 194.555 11.8%

Very Low 0 0.0% 15.517 0.9%

Total: 3466 sites 100% 1643.758 km² 100%

Table 12: The total count of sites (n = 3466) and area within each predictive 
category in Model 2. 

Figure 55: Second version of the Roman Hertfordshire predictive model (Model 2), 
created by multi-criteria analysis of proximity to water, proximity to Roman roads and 

optimal slope and aspect. 
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5.1.4. Site densities and Roman towns 

Thus far, the Roman site observations had not yet been explicitly used in the 

theory behind the Hertfordshire predictive model. This ensures that unrelated 

factors to site location preferences, such as modern-day observation bias, does 

not impact the predictive model to a large extent. However, due to the large 

amount of known sites within Hertfordshire that have been identified as Roman, 

the density of the sites can be used to infer where Roman towns may have been 

located.  

 
Through this knowledge, an area within these zones can be seen as very high in 

archaeological predictive value. The presence of Roman towns represents a 

socially-driven, and perhaps economically-driven, influence on site locations 

(Brandt et al. 1992, 269). For some sites, a location in close proximity to a center 

would have been intentional, and therefore potentially able to predict. To model 

this factor, heat map symbology was used on the point layer containing the 80% 

sample of known Roman sites (fig. 56).  

Figure 56: Heat map symbology that was used on of known Roman sites (n = 3466) with 
modern name labels on the most distinguishable heat spots. 
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The heat map symbology uses density analysis to determine where the largest 

concentrations of points are located and displays this through the use of ‘heat 

spots’. The heat spots were used as a reference to make two series of points in a 

new layer: one being major towns that are indicated by the most vivid heat 

spots, and the second being the minor towns that are indicated by a less defined 

heat spot. The Roman site data field called “Civil Parish” contained the modern 

town names where each observation was found, this field was used to name 

each major and minor heat point. The network of roads which were imposed 

after Roman invasion linked smaller developing urban and commercial centers, 

including Welwyn, Braughing, Ware and Baldock (Tereszczuk 2004, 10). There is 

little written about the developing centers which are identified as minor Roman 

centers on the heat map, therefore further explanation will only be given for the 

two major Roman centers located in St. Albans and Baldock.  

Verulamium (modern-day St. Albans) was the third largest town in the Roman 

province of Britannia (Lockyear & Shlasko 2017, 17) and was located on the river 

Ver within Hertfordshire (Fulford 2015, 61). The center had direct links to other 

large Roman centers, such as Londinium (Roman-era London) and Colchester 

(Fulford 2015, 75), through the road system. The town steadily grew after its 

Roman invasion, with one of the earliest stone buildings appearing in 

Verulamium being a forum-basilica (Lockyear & Shlasko 2017, 19). A large town 

wall surrounded the center, with Roman bath houses and a theatre located 

within its boundary (Lockyear & Shlasko 2017, 19).  

Baldock was another possibly large town within Roman Hertfordshire, also 

becoming one of the largest settlements in Roman Britannia (North 

Hertfordshire Museum 2019, 6). Extensive use of the Roman roads that pass 

through Baldock was evidenced by the layer of soil build-up identified over the 

road material, as well as the secondary fills of the roadside ditches (Phillips et al. 

2009, 94). A series of boundary ditches marked the extent of the settlement 

(Phillips et al. 2009, 89).  
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The two major heat points were given a 2000 meter round buffer, using the 

vector ‘Buffer’ tool. All minor heat points were given a 1000 meter round buffer, 

setting its sphere of influence to be half as far. The two point layers were then 

merged into one and then subtracted from the last instance of the predictive 

model by using the vector geometry process ‘Difference’. The output of that 

process was then merged with the point layer again to create no overlapping 

geometry. The buffered points were then selected, along with the other 

polygons in the ‘Very High’ predictive value category and merged using the 

‘Merge Selected Features’ tool (fig. 57).  

 

 

Figure 57: The four-step process to include the influence of Roman towns in the model. (1) 
Adding buffers around major towns (2000m) and minor towns (1000m). (2) Using the 

‘difference’ tool to remove these areas from Model 2. (3) Adding the buffers back into the 
model. (4) Merging the buffers to the ‘Very High’ predictive category. 

1 2 

4 3 
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The addition of the buffered points to the final model slightly increased the area 

of the ‘Very High’ predictive category (13.6%) in aim of including areas in close 

proximity to Roman towns (fig. 58). The other influencing factors which were 

integrated into the model previously include proximity to Roman roads and 

water sources, as well as certain aspect and slope degrees. The influences of 

other environmental factors, displayed in the layers of groundwater and soil 

textures, will be discussed within the results chapter. However as for the lack of 

inclusion of soil and groundwater in the predictive model, prior to the creation of 

the predictive model, both layers were looked at spatially in terms of possible 

influences of known site locations. As a large majority of the area of 

Hertfordshire had high levels of groundwater (75%) and loam-textured soils 

(68%), associations with site locations could not be made.  

Figure 58: Third and final version of the Roman Hertfordshire predictive model (Model 
3), created by multi-criteria analysis of proximity to water, proximity to Roman roads, 

optimal slope and aspect and close proximity to major and minor Roman towns. 
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The increased area proportion of the ‘Very High’ category (12.8%, tab. 12 to 

13.6%, tab. 13) also showed a marginal increase in the prediction of known sites, 

from 44.2% (tab. 12) to 46.8% (tab. 13). This change altered the mostly the ‘High’ 

predictive category, decreasing both the area size (39%, tab. 12 to 38.3%, tab. 

13) and number of sites (27.4%, tab. 12 to 25.6%, tab. 13). Overall, the addition 

of the buffered town areas could be seen as an improvement in the accuracy of 

the ‘Very High’ category, however it cannot be known if this reflects the location 

of unknown Roman sites within Hertfordshire from the results in Table 13 alone.  

 

 

 

5.2. Evaluating the Predictive Model 

The process of testing an archaeological predictive model insinuates that there is 

a predefined measurement of what a ‘good’ model is, available for comparison. 

This is not entirely the case as it is difficult to decide the requirements of a good 

model without its context and purpose in mind (Verhagen & Whitley 2012, 84). 

Certain ‘universal’ requirements of a good predictive model were stated by 

Verhagen (2009), whom includes features that go beyond testing of 

performance. Verhagen states that a good model provides an “explanatory 

Predictive 

value

Number of 

known sites

Site      

%
Area (km²)

Area     

%

Very High 1621 46.8% 223.869 13.6%

High 886 25.6% 630.337 38.3%

Medium 792 22.9% 579.485 35.3%

Low 167 4.8% 194.555 11.8%

Very Low 0 0.0% 15.517 0.9%

Total: 3466 sites 100% 1643.758 km² 100%

Table 13: The total count of sites (n = 3466) and area within each predictive 
category in the Roman Hertfordshire predictive model. 
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framework” for the observed site densities, is “transparent” in its model-

building, provides the “best possible prediction” with the current data set while 

is also able to “perform well in future situations” and specifies “the uncertainty 

of predictions” (Verhagen 2009a, 63). Only two of these criteria relate to the 

performance of the model, while the majority of requirements address the way 

the model is published. This suggests that what is meant by a ‘good model’ goes 

beyond its abilities, but still remains an important aspect in its evaluation. The 

performance of a predictive model is able to be tested through various means, 

such as expert judgement (Verhagen 2009b, 74), independent data sets 

(Verhagen 2009b, 78), split sampling (Verhagen 2009a, 65) or statistical methods 

(Verhagen 2009b, 78).  

 

5.2.1. Split sampling 

According to Verhagen and Whitley (2012), a good predictive model displays 

“repeated consistency between model output and measured response” 

(Verhagen & Whitley 2012, 84). Split sampling is a method in which a random 

portion of the known dataset is withheld from model-building in order to 

validate its predictions (Verhagen 2009a, 65). It is not a perfect method for 

validation purposes as it does not use truly independent data, but is able to show 

whether a model can remain consistent with new data (Verhagen 2009b, 92). 

Only 80% of the dataset (n = 3466) was used in the model-building phase of the 

Roman Hertfordshire predictive model. The remaining 20% of dataset (n = 892) 

can subsequently be used to see the consistency in the model’s predictions.  

Appendix 22 shows the final predictive model with the entire sample of known 

archaeological sites (n = 4,358). Remarkably, the test data appeared to have a 

better accuracy rate than the model data it was partially built from (tab. 14). 

Fewer known sites appear within the ‘Very High’ category of the model data 

(46.8%, tab. 14) than in the test data (54.9%, tab. 14), reaching the threshold of 

predicting over half of the sites within the highest category. This result suggests 
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the model is able, and somewhat accurate, in predicting archaeologically-known 

Roman sites which were not used to create the model. However, a further way 

to test the model would be to collect entirely new independent data from 

surveying or trial trench testing. This form of testing also disregards the precision 

of the model. The ability to predict 40% of sites within 20% of a given area is 

more meaningful than predicting 50% of sites within 40% of the area. For this 

reason, an alternative statistical method is more effective to assess the model’s 

performance. 

 

 

5.2.2. Kvamme’s Gain 

There are various statistical methods that attempt to assess a predictive model’s 

performance, including the Kj parameter (Verhagen 2009b, 76), gross error or 

wasteful error tests (Verhagen 2009b, 113) or Kvamme’s Gain equation (Kvamme 

1988, 329). These statistical tests aim to determine the ‘performance’ of a 

predictive model by combining its accuracy and precision – two criteria of a 

‘good’ model (Verhagen 2009b, 112). In combination with each other, accuracy 

ensures there is a high rate of correct prediction, while precision ensures the 

Predictive 

value

Number of 

known sites
%

Number of 

known sites
%

Very High 1621 46.8% 490 54.9%

High 886 25.6% 173 19.4%

Medium 792 22.9% 200 22.4%

Low 167 4.8% 29 3.3%

Very Low 0 0.0% 0 0.0%

Total: 3466 sites 100% 892 sites 100%

Model Sample (80%) Test Sample (20%)

Table 14: Testing the accuracy of the Roman Hertfordshire predictive model using 
both the model sample (n = 3466) and the test sample (n = 892). 
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model’s ability to limit the areas of high archaeological probability “as narrowly 

as possible” (Verhagen 2009a, 64). Model performance criteria is not defined 

(Verhagen 2009a, 64), so it is assumed that for use in heritage management a 

model needs both qualities.  

Kvamme’s Gain is the “most widely used method” to test model performance 

(Verhagen 2009b, 76) by combining the criteria of accuracy and precision into 

one comparable ‘gain’ score (Verhagen 2009a, 64). The equation divides the 

percentage of the area a predictive zone covers by the percentage of the site 

count within the zone (Kvamme 1988, 329). The answer is then subtracted from 

1 to provide the ‘gain’ of the predictive zone. A ‘high gain’ can result from a 

predictive map whose high predictive areas are small, but includes a large 

proportion of the site count within them. Low probability zones therefore should 

have a ‘low gain’ (Verhagen 2009b, 76). The ideal distribution of gain scores 

would therefore be the highest (closest value to 1) for high predictive categories 

and the lowest (below -1) for the lowest predictive categories. 

 

To validate the final product of the Roman Hertfordshire predictive model, the 

unused test sample of data was used to produce Kvamme’s Gain scores for all of 

the predictive categories. This provides further validation of the model because it 

was not built with this sample of data in mind. In addition to this, a Kvamme’s 

Gain score was calculated with the model-building sample as well as with the full 

data sample. This provides a comparison of performance depending on the data 

applied to the predictive model.  
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Table 16 shows both the proportion figures on the left-hand side, with the area 

proportion in white and the site count proportion in light grey. The test sample 

produces the highest gain figure for the ‘Very High’ predictive category (0.75, tab 

15), and the lowest levels of gain for the rest of the categories: -0.98, -0.57 and -

2.64, respectively. Therefore, the model is validated to work with a small sample 

of unused data. The ‘Very Low’ category was unable to produce gain figures with 

any data sample as the proportion of sites counted remained at zero. The gain 

remained high for the full data sample (0.72, tab 15), further demonstrating the 

accuracy and precision of the final model.  

 

For the purpose of transparency, Kvamme’s Gain was also calculated from the 

full data sample for each of the three model builds (tab. 16). The comparison of 

each model by their gain scores shows the progression of the model’s 

performance throughout its creation. The table clearly demonstrates that Model 

2 and Model 3 resulted in the highest gains for the ‘Very High’ value, and the 

lowest gains for the ‘Very Low’ value. This supports the claim that these two 

models perform the best in terms of accuracy and precision.  

Predictive 

value

0.14 0.14 0.14

0.47 0.55 0.48

0.38 0.38 0.38

0.26 0.19 0.24

0.35 0.35 0.35

0.23 0.22 0.23

0.12 0.12 0.12

0.05 0.03 0.04

0.01 0.01 0.01

0.00 0.00 0.00

-0.98

-0.57

-2.64

-

100% sample       
(n= 4358)

0.72

-0.58

-0.55

-1.63

-

High

Medium

Low

Very Low -

-1.46

-0.50

-0.54

Very High

Model sample        
(n= 3466)

0.71

Test sample        
(n= 892)

0.75

Kvamme's Gain

Table 15: Comparison of the Kvamme’s Gain scores for the final Roman Hertfordshire 
predictive model using the model sample, test sample and entire sample. Top left of column: 

area proportion. Bottom left of column: proportion of sites. Right column: Kvamme’s Gain 
score. 
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Comparatively, Model 3 showed a decrease in gain score of the ‘High’ category 

at -0.58 from the score of -0.46 from Model 2. This may have occurred due to the 

slight decrease in sites observed within the ‘High’ area without the area size 

increase equally. The decrease in score could therefore indicate the ‘High’ 

category in Model 3 is less accurate than in Model 2, calling into question 

whether the alterations made within Model 3 can be justified. However, it 

should be kept in mind that these scores may not be representative of how new, 

independently-collected data would impact the performance of Model 3.   

 

 

5.3. Applications of the Roman Hertfordshire Predictive Model 

The Roman Hertfordshire model, through its presentation with the full sample of 

known Roman sites (appendix 22) or with modern roads (appendix 23) is meant 

for use by developers and spatial planners who are attempting to understand the 

archaeological situation in an area. The accompanying guide (appendix 24) aims 

Predictive 

value

0.14 0.13 0.14

0.47 0.45 0.48

0.39 0.39 0.38

0.26 0.27 0.24

0.28 0.35 0.35

0.18 0.23 0.23

0.18 0.12 0.12

0.10 0.04 0.04

0.01 0.01 0.01

0.00 0.00 0.00

-0.46

Kvamme's Gain

Model 1 Model 2

0.70 0.72

Very Low

Low

Very High

High

Medium

- -

Model 3

0.72

-0.58

-0.55

-1.63

-

-0.62 -0.52

-0.83 -1.63

-0.49

Table 16: Comparison of the Kvamme’s Gain scores for Model 1, Model 2 and Model 3 
(the Roman Hertfordshire predictive model) using the entire sample (n = 4358). Top left of 

column: area proportion. Bottom left of column: proportion of sites. Right column: 
Kvamme’s Gain score. 
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to advise the user on the method of intervention that may be suitable for 

developments within different predictive value zones. Specific information is 

given to guide the planning process, taking into account the size, depth and 

archaeological value of the area. A guide on the intended applications of an 

archaeological predictive model is needed in order to avoid its misuse and 

misunderstanding. While a predictive model may look like a map, it is important 

that the model is not viewed, and used, as if it displays infallible knowledge of 

archaeological potential. Therefore, an understanding of the methods used to 

define the predicted archaeological risk zones is imperative to its usage in 

archaeological heritage management.  

The methodological approaches which were used to create the model should be 

documented, as there are many different general approaches (Kamermans et al. 

2004, 5). This has been done for the Roman Hertfordshire model in the previous 

sections. The aim of a predictive model can also impact the intended uses of the 

model, and can be either correlative or explanatory in nature. Correlative aims 

usually lead to models which only predict the presence of archaeological 

material in the present, while explanatory aims include understanding, or 

explaining, human behaviour observed in the past (Kamermans et al. 2004, 6; 

Van Leusen 2002, 102). The predominant aim of the Roman Hertfordshire 

predictive model was to create a model to be used for archaeological heritage 

management, and therefore a correlative aim was sufficient for this purpose. 

However, the model can also be used academically for explanations of site 

patterns which it can provide through proximity analysis. 

  

5.3.1. Proximity-based analysis 

Archaeological predictive models may not only serve the purpose of predicting 

the level of archaeological risks in the modern landscape, but also may be used 

to explain patterns in human behaviour within the landscape (Kamermans et al. 

2009, 10). This can be done by analysing different environmental and social 
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factors in more detail to understand trends which occurred in the data. Analysis 

can be conducted on the basis of site function or the historical period being 

investigated (Danese et al. 2014, 43). In professional predictive models, many 

time periods are included so analysis of each period is important to understand 

period-specific patterns. Analysis by site type is also very important, as certain 

site functions require different needs from the landscape. According to Verhagen 

(2009), all good models should provide this explanatory framework for the 

observed site densities, regardless of their academic uses (Verhagen 2009a, 63) 

as it can usually explain the factors which influenced the predictions. However, 

this kind of academic assessment can run the risk of becoming too inferential as 

analysis heavily relies on the known data being representative. 

As only one historical time period was included in the Roman Hertfordshire 

predictive model, this type of in-depth analysis of the period has already been 

achieved. However, sites can be analysed by their specific function, such as 

settlements, economic, ritual or military sites, in order to analyse the potential 

influence of landscape factors on their location. The landscape factors which 

were analysed for influence include water access proximity, road proximity, 

elevation and the proximity to the Roman city of Verulamium. These factors 

were chosen to represent how both social and environmental could affect 

different site types.  

Analysis of each factor was conducted through the use of the ‘Point Sampling 

Tool’, installed as a plug-in within QGIS. This tool allowed the quick collection of 

proximity values of point data to any given raster layer. A rasterized layer of the 

water sources and roads were reused from the model building. To calculate 

distance from the city of Verulamium, a 2km buffer area was created around the 

central point of the city and was rasterised. The elevation was already provided 

in a raster format within the EU DEM. All four raster layers were used to create 

four proximity rasters without a specified limit of proximity that would then be 

used in the Point Sampling Tool. The point data used in this analysis included the 

model-building data sample (n = 3466) as they were previously grouped by site 
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type. However, since only settlement, economic, military and ritual site types 

were included in the analysis, there was a total of 2708 sites used.   

The tool selected the proximity rasters of the water sources, roads and city of 

Verulamium and the data sample of each site type group individually, creating a 

list of proximity values from the subject. The elevation raster was also used in 

this tool, creating a list of elevation values at each point. The data for each input 

raster was copied into a Microsoft Excel spreadsheet, where values were 

organised by their site type (fig. 59). Minimum and maximum values were 

determined and the appropriate class limits were created in order to produce 

frequency charts and graphs. Data for each of the four factors were displayed on 

the same graph, making for a visual comparison between site types.  

Frequency analysis showed that sites of all types were influenced by the location 

of the Roman roads (fig. 60). The graph suggests that military sites may have 

been the least influenced by the location of roads, perhaps due to a higher 

priority being given to more strategic locations away from the populated roads. 

However, while the role of Roman roads in military campaigning within Roman 

Figure 59: View in Microsoft Excel of the listed distances (m) from the Roman roads to 
sites of different types (settlements, economic, military and ritual). 
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Britain is not well understood, it is likely that the Roman armies in the field did 

not directly depend on roads for transport (Menard 2011, 41). The suggested 

lack of road-influence could also have been due to the lack of identifiable military 

sites (n = 53) in proportion to other site types. Settlement sites are represented 

the most in the known data, but also appeared to have the strongest connection 

to road proximity in the proximity graph. 

Within 500m of the roads, there were 628 settlement-related sites, which 

decreased to 450 sites between 500m and 1000m. This number decreased the 

longer the distance of the roads became, with a small increase at 3500-4000m. 

Economic and ritual sites appeared to decrease in site count at a similar rate and 

distance from roads, suggesting that both economic and ritual sites required 

transport routes more so than military sites within the Roman period. In regards 

to the ritual sites, it is known that Roman law required most burials to be located 

outside the city walls and therefore often became concentrated “on the 

approach roads” outside the city (Historic England 2018, 8). Economic sites 

Figure 60: Frequency graph showing the count of sites (according to site type) at various 
distances (m) from the Roman roads (n = 2708).  
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would have also needed direct routes to trading centers within Roman towns 

and cities.  

Within the data, distance from water appeared to be even more of a stronger 

influence to all site types than the distance from roads (fig. 61). Site distances 

from water sources beyond 6000m appeared to be non-occurring in the data. 

Similarly to road proximity, military sites appeared to be the least influenced by 

water access among the other site types. However, this could also support the 

idea the sample size of the military sites is too small to make conclusive 

judgements. Economic and ritual sites also remained similar in their proximity to 

water sources, which could be more related to their often close proximity to 

towns which would have considered both road and water access. Settlement 

sites were strongly correlated to close proximity to water, with over 50% (1236 

sites) of settlement-related sites being located within 500m from any water 

source.  

Figure 61: Frequency graph showing the count of sites (according to site type) at various 
distances (m) from water sources (n = 2708).  
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Most sites were either in close proximity to Verulamium, or were above 8500m 

away (fig. 62). The high proportion of sites of each type within 1000m were likely 

the only sites influenced by the location of Verulamium. The economic and ritual 

sites were likely connected to the city in some manner, whether it was for trade, 

worship or for burial sites outside of the city walls. The other cluster of sites 

further away from Verulamium were likely connected to other Roman towns 

within Hertfordshire, such as Baldock, Braughing, Ware and Welwyn (Tereszczuk 

2004, 10). With the creation of road systems, close proximity to certain centers 

may not have been as much of a priority as roads would provide travel links to 

many centers. The catchment area of influence therefore grew with the creation 

of zones, making a town’s location near these roads of high importance.  

 

The elevation of all of the site types were most frequently between 75-100 

meters above sea level (fig. 63). This is clearly the case for known settlement 

sites, where over half of sites were between this range. Economic and ritual sites 

had a shallow curve within elevation levels, however also peaking in frequency at 

Figure 62: Frequency graph showing the count of sites (according to site type) at various 
distances (m) Verulamium (n = 2708).  
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the 75-100 meter mark. This distribution was likely affected by the modern 

elevation data used, as Hertfordshire appears relatively flat except for slight 

elevation within the Chiltern Hills in the North of the county. The elevation of the 

terrain was likely not a highly contributing factor in site location in the Roman 

period within this area of England, as it remains to be relatively low in elevation.  

 

 

 

 

 

 

 

 

  

Figure 63: Frequency graph showing the count of sites (according to site type) at various 
elevations (m) (n = 2708).  
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6. Discussion 

Archaeological predictive modelling is a tool of convenience. Its implementation 

within heritage management can lead to quicker decision-making in situations of 

spatial planning, therefore lessening the risk of disturbance of archaeology. 

However, a strong benefit of predictive modelling is the potential it has for 

saving money and time on excavations that may be deemed excessive. Inductive 

predictive maps have been produced and used quickly and simply within the 

Netherlands for more than 15 years (Verbruggen 2009, 28). This has been 

possible due to the availability of an “extensive dataset” of archaeological find 

spots (Archis), detailed soil maps and the use of the GIS application. However, it 

has been stated that the Dutch national predictive maps are “heavily distorted by 

an overrepresentation of sites on or close to the surface” (Verbruggen 2009, 28).  

It should not be denied or dismissed that predictive modelling is prone to serious 

issues if assessments are not made of the methods and data used in the 

production of the model. This is because, by the very nature of prediction, our 

assumptions of the unknown can only ever come from the known.  

Before implementation of predictive modelling could successfully be integrated 

into the English AHM system, the wider issues of funding and standardisation of 

archaeological predictive models should also be discussed.  

 

6.1. Guidance for the Roman Hertfordshire Model 

The Roman Hertfordshire predictive model aims to predict site locations in order 

to protect unknown archaeology. The main way in which the model can achieve 

this is to also ‘predict’ how much intervention is needed before construction in 

order to prevent unnecessary damage, providing transparent decision-making 

(Lauwerier et al. 2018). Archaeology must be dealt with in the most efficient way 

by both the developer, archaeological contractor and the authorities in order to 
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achieve this goal (Kamermans et al. 2009, 10). For these reasons, a guide 

(appendix 24) was made to accompany the Roman Hertfordshire predictive 

model to suggest appropriate methods of intervention on the basis of the size of 

development and the predictive value of the area. However, a discussion should 

be had on the thought process behind this guidance, and the potential 

alterations which could improve them in the future.  

Ideally, predictive models would aid in the decision-making process within the 

AHM system by providing more direct guidance than is already suggested by the 

current documentation (Kamermans et al. 2009, 10), such as can be found within 

the ‘Historic Environment Good Practice Advice in Planning’ from 'English 

Heritage (Historic England, since 2015). This can be achieved through a series of 

‘rules’ for action depending on the predictive value of the area, size of the 

proposed development and the depth of soil disturbance required. Continued 

improving of our knowledge on the extent and depth of soil disturbance can lead 

to a more responsible and efficient approach to these issues (Lauwerier et al. 

2018) in addition to the refinement of a predictive model over the course of 

time. Therefore both the current state of the model and its accompanying guide 

are subject to updates and alterations over time.  

The guidelines for methods of intervention would be applied in situations where 

the development project is likely to disturb the top soil layer, which is typically 

30 cm in depth. This can be from digging, laying foundations, or the placement of 

a load-bearing layer which can alter the soil layer which contains archaeology 

(fig. 64). Development projects which would not disturb 30cm below the ground 

may not need any form of intervention as it would not pose a high risk of 

archaeological disturbance.  
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It is assumed in the guide (appendix 24) that developments which are intended 

to be small, in accordance to their predictive value areas, would not pose a high 

level of risk to archaeology. The advice placed great importance on the 

assignment of an area’s given predictive value. A development of over 50,000 m2 

without any more of an intervention than a desk assessment is dangerous if the 

values are completely incorrect. It is for this reason that even the ‘Low’ valued 

areas should perhaps require both a desk assessment and core sampling 

procedures before planning permission would be granted.  

Certain alterations could be made to the rules to differentiate between areas 

with urban or rural modern land use which could account for potential 

disturbances that have already occurred. However, it is better to err on the side 

of caution when assuming which soils have or have not already been disturbed 

Figure 64: Diagram of the alteration of the underlying archaeological layer due to the 
laying of foundations or load-bearing layers (after Bouwmeester et al. 2017, 150). 
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as there is no suitable method to estimate the extent of disturbance (Lauwerier 

et al. 2018).  

Within the higher valued areas, perhaps more lenient methods of intervention 

could be suggested for developments that are below the size restrictions as it 

could lead developers to use these sizes as a standard to entirely avoid any extra 

expenses at the hands of archaeologists. However, it should be stated that if any 

remains of archaeology are found at any point during the advised method of 

intervention, further action must be taken. The levels of preliminary intervention 

may only help developers gauge an idea of how much expenses should be 

expected for archaeological excavations within a given area.  

In situations where archaeological remains are found, an evaluation of the 

preservation of the discovered archaeology should be undertaken by specialists. 

If the archaeology is deemed to be in reasonably good form, the developer must 

decide if preservation in situ can be accommodated in the construction plans or 

if the development can take place elsewhere. If the remains are unable to 

remain in situ, or the preservation is not deemed to be good, excavation of the 

material should take place within the area of development. 

 

6.2. Funding for Predictive Modelling 

The answer of funding the creation of either regional or national archaeological 

predictive models is paramount to their potential adoption within the English 

AHM system. The cost-saving benefits of predictive models within heritage 

management is a large benefit of the method (Verhagen & Whitley 2012, 50; 

Verhagen et al. 2014, 379). Within the Netherlands, successes were first seen in 

the form of small-scale, broad inductive models (Verbruggen 2009, 27). These 

would have been dramatically cheaper and easier to create than the large-scale 

detailed deductive models that are now created within regions of the 

Netherlands (Verbruggen 2009, 27). This period of ‘adjustment’ allows for the 
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trial of archaeological predictive modelling without significant costly attachments 

to the method. However, if large-scale models are created there would be a 

short-term rise in costs, with some amount of years of use needed before the 

costs would have paid-off. In 1999, the state of Minnesota in the U.S. spent $4.5 

million on the creation of the Minnesota archaeological predictive model, but it 

is now said to be saving the U.S. state roughly $3 million per year as compared to 

the previous system of heritage management (Wilcox 2014, 342). Within 

England, an alternative candidate for the funding of predictive models, besides 

the state, could be the development company themselves, of which the models 

could be reused after the specific instance. This is possible as developers are 

already expected to fund an archaeological investigation, decided by the local 

authorities (Wilcox 2012, 353).  

However, the application of predictive modelling varies drastically depending on 

the scale, detail and archaeological situation. It is possible that the application of 

such a method would not be the same in any two places. It is possible that 

predictive models would only need to be reinstated in certain parts of England, 

such as is the case within the Canadian wilderness regions. Areas within Canada 

that are known to lack archaeological data are modelled for their predictive 

capabilities, which is especially used in the large forested areas (Wilcox 2014, 

343). Within England, this selective method of modelling would likely impact 

areas outside of Hertfordshire, between urban areas within large rural 

landscapes. However, this could also be applied to areas where archaeology is 

even more at risk, such as within areas of off-shore mineral extraction off the 

coast of the North Sea and the English channel (Wilcox 2014, 343). Due to 

modern sea-level rising, much of the coastal areas inhabited once by man are 

under the water off of these coasts. Mineral extraction often threatens these 

areas, and archaeological remains can be encountered within the various strata 

of a minerals extraction site (Historic England 2020, 12). The level of preservation 

can also be extraordinarily high, such as was the unsuspected case at Must Farm 

Quarry, Cambridgeshire, where waterlogging and charring preserved a Late 
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Bronze Age settlement of round stilted wooden structures (Historic England 

2020, 12). It is possible that these chance discoveries do not have to be 

accidental, with the guidance of predictive modelling in unrecorded, at-risk areas 

(Wilcox 2012, 353). With smaller predictive models, there is the chance to fund it 

privately. Within the Netherlands and Canada, smaller models are produced by 

private companies and then funded by the developer (Wilcox 2012, 356). 

One issue is how much to fund predictive models, but another issue regards who 

should fund them and which consequences this may have on the resulting 

models. Kamermans et al. (2009) remarked that it is “undesirable” that 

archaeological predictive models should be produced by archaeological 

companies (Kamermans et al. 2009, 11). At a surface level, it would make sense 

that archaeological companies are in charge of using expert judgement and 

archaeologically-related theories to produce archaeological predictions. 

However, it is possible that with the underlying knowledge that a larger area 

with high archaeological predictions generates more excavation work the 

intention to increase profits and control can be realised (Meffert 2009, 33). 

Therefore, the responsibility must be handed to people who are least likely to 

gain from motivated modelling. In the Netherlands, the creation of predictive 

models are the responsibility of ‘independently operating’ government 

institutions (Kamermans et al. 2009, 11) such as the Cultural Heritage Agency of 

the Netherlands (RCE), formerly known as the RACM (The National Service for 

Archaeology, Cultural Landscape and Built Heritage) (Kamermans et al. 2009, 12). 

The RCE can profit from larger areas of high archaeological value, however since 

it is operated by the state there are measures in place to keep motivations as 

neutral as possible. As well as this, local authorities should look further at 

aspects of site type rarities, nature and quality of remains and landscape genetics 

in addition to the predictive model values.  

Ideally, a specialised government department of cultural heritage within the UK 

would be the most obvious candidate for the creation of national or regional 

predictive models. However, the department which handles heritage is the 
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Department of Culture, Media and Sport (DCMS) since 1997, formerly the 

Department of National Heritage (Benetti & Brogiolo 2018, 179). The DCMS 

allocated funding for archaeological heritage management to non-governmental 

institutions like Historic England (English Heritage) or The Royal Commission for 

Historic Monuments. Historic England could be a contender for predictive 

modelling within England, but is not independently operating from the free-

market. Perhaps a remedy would be for the creation of predictive models by 

Historic England, and a checking phase would be undertaken by a senior member 

of the DCMS before approval of the predictive model is granted.  

 

6.3. Reproducibility and ‘Open Science’ 

The data which was collected to inform and produce the Roman Hertfordshire 

predictive model was entirely possible due to the open accessibility of 

archaeological and environmental data from internet sources. A majority of the 

digital data was repurposed to use within the modelling process, such as the 

reclassification of environmental layers and the data cleansing of the 

archaeological site data from the Archaeological Data Service (ADS). This was 

only possible because of the publication of this digital data by various sources, 

most significantly from the digital archaeological repository collated by the ADS. 

Research on the re-use of ADS data was conducted by Huggett (2018), and found 

that while it was difficult to evaluate the level of re-use (Huggett 2018, 94) it was 

commonly repurposed in a way in which the data was not originally collected for 

(Huggett 2018, 96). The internet allows for a wider access of such recorded data 

and thereby creates new opportunities for a variety of interpretations.  

Open licensing of data also promotes re-use and repurposing, which was the 

case all of the environmental sources used in this project. For example, the ‘BGS 

Geology’ model by the British Geological Survey was provided in four forms, 

varying by their price and licencing. The lowest resolution form of the model 

(‘BGS Geology 625k’) was used in the project as it is “free for commercial, 
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research and public use under the Open Government Licence” 

(www.bgs.ac.uk/products/digitalmaps) with an acknowledgement of the creators 

of the model.  

The citing of re-used data sources are also a matter of discussion in the ‘Open 

Science’ debate, with no agreed-upon standard on how to properly and 

effectively acknowledge the archaeological data used. Huggett (2018) stated a 

reason for the “lack of means to evaluate levels of re-use” of ADS data was due 

to the limited or informal manner that digital data is cited (Huggett 2018, 95). An 

ethical consequence of this is a “perceived lack of credit” that may accompany 

the sharing of archaeological data by researchers (Marwick & Pilaar Birch 2018, 

1). The preparation, costs and lack of standards involved in digital data sharing 

would likely dissuade individual researchers from considering the option 

(Marwick & Pilaar Birch 2018, 4). An incentive for an individual researcher to 

publish their data online can be partly intangible, with the aim that it can be used 

again to increase their work’s productivity. However, ensuring appropriate credit 

is given to the researcher provides a more tangible benefit to the prospect of 

sharing their data (Marwick & Pilaar Birch 2018, 3).  

A standard for citing data could be achieved through the promotion of DOI usage 

(Digital Object Identifiers) for digital data citing. However, the use of DOIs are not 

always suitable to cite many individual records, as is the case when exporting a 

database. For example, the ADS repository lists a DOI in association with each 

ADS Archive and report and therefore provides a more stable source of credit 

than a regular URL (www.archaeologydataservice.ac.uk/about). Use of their 

records requires acknowledgement of its DOI, however the repository was used 

within this research to export an entire dataset of records. The selection was 

made by filtering the location and time period, overall providing the use of 4358 

records that were provided by a range of researchers. Neither the ADS’ Q&A 

page nor the Leiden University guidelines suggested a manner in which to 

reference thousands of records besides adding the URL of the ‘ArcSearch’ 

webpage to the ‘Internet Sources’ section at the end of this research. This is 
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perhaps not the most suitable way give appropriate credit as the metadata and 

individual providers of each record are unable to be cited.  

The open accessibility of the data layers gathered from various established 

sources (Ordnance Survey, British Geological Survey, UK Government, University 

of York and Harvard University) also ensures that the Roman Hertfordshire 

predictive model could be reproduced in the future, using either the same or 

alternate methods. This is an important aspect of digitally-based archaeological 

research as open accessibility, and thus reproducibility, ensures the opportunity 

for improvement.  

 

6.4. Standards for Predictive Modelling 

Each predictive model is as unique as the landscape it was modelled from, which 

is likely a contributing reason for little generalised standards for the creation or 

output of predictive models. It can be assumed that almost all kinds of 

archaeological predictive models will include defined areas of an assigned value 

that was either inductively or deductively determined, with a legend explaining 

what each colour-coding indicates on the final map. Beyond this assumption, the 

presentation and publication of predictive models vary greatly. This is an 

alarming issue for predictive modelling, as certain digital standards and metadata 

are needed for continued use of the model. It should therefore be discussed the 

possibility of forming standards for predictive models, if their implementation 

would enter the English AHM system.  

There is also the option of forming ‘best practices’ for predictive modelling. This 

is often proposed in opposition to standards, which is a form of template or a 

guideline that creates a basis of comparison. Best practices can be defined as a 

method or technique that is the most accepted, or is prescribed as being the 

most correct or effective. While both seek to control the quality of the modelling 

process, standardisation is perhaps most suitable for archaeological predictive 
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modelling due to the varying nature of the task. The location of the research 

area, temporal or geographical scale, data quality, budget and experience of the 

researcher can all have large impacts on the modelling process and outcome. 

This would make it unrealistic to assume one modelling method would be the 

most effective for all predictive modelling projects. With that being said, a 

general level of uniformity in the presentation or evaluation of archaeological 

predictive models would be beneficial to the method. For example, it is widely 

agreed upon that models should be tested (Nakoinz 2018, 105; Wilcox 2014, 344; 

Verhagen 2009a, 63; Verhagen & Whitley 2012, 83), and therefore there could 

be a development of standards that include the publishing of test results 

alongside the model.  

 

6.4.1. General standards 

The standards that should be applied to all predictive models within a given 

country should first follow a general standard which includes basic information 

that must always be included in a model’s approval and publication. Within 

British Columbia, Canada, these basic standards (Wilcox 2014, 345) exist as a 

suggestion for their application in other countries who also use predictive 

modelling in their heritage management.  

Firstly, technical standards must be maintained which include a national map 

projection for each model and a suitable, universal file format. Both of these 

elements are crucial to avoid a situation where two independently-made models 

are produced in alternate projections and cannot be merged, such as can be seen 

during the creation of the national Dutch Indicative Map of Archaeological 

Values (IKAW) model (Meffert 2009, 33).  

Secondly, quotes of scores are expected to be provided for the Kvamme’s Gain 

expression, and archaeological site density within each category. This could then 
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ensure an extra level of quality assurance upon publication, in addition to 

providing context on risk assessment (Wilcox 2014, 345).  

Metadata about the author and their contact details ensures the accountability 

of the model’s predictions as well as an opportunity to open up ways of contact 

upon further reuse of the model. Contextual metadata should be included 

alongside the model, such as descriptions of the geology and topology of the 

area, and an assessment of the archaeological and environmental data that was 

used. Transparent descriptions of the methods and theory behind the predictive 

values is also needed to increase understanding of the model and repeatability 

(Wilcox 2014, 346). Perhaps a research mask of the area could also be included 

over a display of the model, to visually account for the non-researched areas.  

 

6.4.2. Standards for predictive modelling for AHM 

General standards included basic information which must be given alongside the 

model. The standards for the act of predictive modelling for Archaeological 

Heritage Management (AHM) should detail different expectations within the 

process of modelling. The Dutch Archaeological Quality Standards (KNA) 

(Willems & Brandt 2004, 17) details the standard process of creating regional 

predictive models for desk-based assessments within heritage management. It 

provides some suggestions for a standard system of predictive modelling which 

could be integrated into the current English AHM system.  

The models are created by the collaborated effort of junior, mid-level, and senior 

archaeologists (Willems & Brandt 2004, 28). Firstly, information should be 

requested for the background and creation of the model. Within the KNA, this 

information includes the national Dutch IKAW, geographical maps, soil maps, 

geomorphological maps, contour maps and remote sensing maps (Willems & 

Brandt 2004, 41). Modern maps on current land-use, historical maps or 

groundwater data should also be found to aid in the modelling process. No 
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specific method of modelling is recommended within the standards, which is 

likely because the most suitable method would be dependent on the size, terrain 

and available data. Further information is requested from the developers, 

detailing the level of disturbance within the short and long-term. Short-term 

information is gauged by questions about the nature and size of the proposed 

development, the depth and method of soil removal required, the amount and 

location of displaced soil. Long-term information is gathered from questioning 

about the eventual creation of watercourses and pavements, as well as future 

plans of the development (Willems & Brandt 2004, 37). The model is then 

created, usually by a Junior Archaeologist who assigns areas and the expected 

archaeological values to the research area (Willems & Brandt 2004, 28). This 

version is externally checked by a Senior Archaeologist who signs off the map to 

the developer seeking planning-permission (Willems & Brandt 2004, 35).  

This process of modelling could be improved by including a standard which 

recommends certain actions to be taken within differently valued areas. This 

would be to ensure the developer and local authorities use the predictive value 

of the model in the way it was intended. Through the integration of these 

general standards and modelling process standards, a stream-lined production of 

well-contextualised predictive models could be created for use in English 

Archaeological Heritage Management.  
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7. Conclusion 

To conclude, the Roman Hertfordshire predictive model acts as a case study for 

the collation and use of English-based open data in predicting archaeological site 

patterns. This case study aims to assess the potential of archaeological predictive 

modelling within the Archaeological Heritage Management (AHM) system in 

England, whilst also gaining an insight into the archaeological situation of 

Hertfordshire in the Roman age. These three research questions will be 

answered, in reference to the analysis and evaluations made throughout this 

thesis.  

 

1. Does England have the open-access digital infrastructure to facilitate 

the creation of well-informed archaeological predictive models?  

 

The data collection process for Roman Hertfordshire suggested that there is 

considerable amounts of open-access data for the area of England, provided 

both by private companies in the UK and the EU as well as by the UK government 

data services. Both social and environmental factors were able to be integrated 

into predictions, and multiple layers were acquired for the assessment of the 

landscape. However, the model was limited due to the low resolution of the soil 

map layer, in addition to environmental layers that are oriented to represent 

only the modern Hertfordshire landscape. A reasonably large sample of known 

Roman archaeological data was accessed from the Archaeological Data Service, 

but lacks information on areas which have been excavated but no archaeology 

was found. The inclusion of this information could aid in the creation of 

predictive models, as well as accounting for observational biases in 

archaeological data. Overall, this assessment supports the conclusion that 

England possesses the digital infrastructure needed to facilitate the creation of a 

reasonably well-informed model, such as the Roman Hertfordshire predictive 

model. However, higher resolution data sources and alternative archaeological 

information could have strengthened the predictive abilities of the final model.  
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2. What knowledge can be gained from the creation and output of the 

Roman Hertfordshire predictive model? 

The creation and subsequent evaluation of the Roman Hertfordshire model 

allowed for a practical view of the theory and methods used in predictive 

modelling. The case study only represents the Roman period of archaeology, but 

the methods can be applied to other time periods in order to produce a better 

model for AHM. In addition to this, the scale of Hertfordshire proved to be fairly 

large and so the areas of predicted values were generalised. This wide-scale 

extent of the research area led to the resolution of certain environmental layers 

being less of an issue than it would have been if the predictive model was a 

fraction of the size of Hertfordshire. The evaluation of the model also highlighted 

the importance of using a testing method which takes into account both the 

accuracy and precision of the predictive categories. It is very simple to compare 

two site count proportions and not take into account the proportionate size of 

the area as a defining factor. Kvamme’s Gain provides a simple way to compare 

and validate these two requirements of a predictive model whilst being 

understandable to someone who is not experienced with statistical testing.  

Archaeologically, the predictive model can only confidently inform about the 

Roman Hertfordshire site patterns as based on preferred proximity to water, 

roads and towns and the predicted optimal slope and aspect for solar radiation. 

Therefore, most archaeological interpretations from this model alone would 

likely not be conclusive, but it may indicate areas where archaeological 

knowledge could be gained about Roman-age Hertfordshire. These would 

include areas near the current-day main rivers and within the vicinity of modern 

towns such as St. Albans, Baldock, Ware, Welwyn, Braughing and Bishop’s 

Stortford.  
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3. How can the case study of Roman Hertfordshire assess the potential of 

archaeological predictive modelling within the Archaeological Heritage 

Management system in England? 

The discussion of the model provides an assessment of the standards that need 

to be implemented for archaeological predictive models within England if the 

method was to be integrated into the first stages of the AHM system. Matters of 

sources of funding the creation of the models continues to pose an opposition to 

its use in the AHM system, but may ultimately lessen the amount of money 

wasted within the process of protecting archaeology over the long-term. The 

parties whom should be responsible for predictive modelling is also unclear, but 

a strong candidate would be within the organisation of Historic England with an 

overseer from the Department for Digital, Culture, Media and Sport.  

Therefore, after the creation of the Roman Hertfordshire predictive model and 

the considerations that needed to be made about its interpretation, the 

technique of archaeological predictive modelling has strong potential benefits 

for its implementation in the English AHM system. However, further 

consideration must be taken to create standards for testing and applying these 

models in order to protect unknown archaeology.  

The integral criticisms which predictive models are prone to receive within the 

England can be temporarily addressed through the creation of these national 

standards that must be adhered to for creation and publication. In order to 

address the need for funding, gradual implementation of the method should be 

enacted within rural and off-coast areas that have small samples of known 

archaeological sites. The predictive aspect would be the most effective in these 

areas as current AHM methods which relies partly on prior archaeological 

knowledge would be less suitable. Any costs associated with the production of 

the models in areas of little archaeological knowledge would be a worthy 

endeavour as the model would provide a basis of guidance for off-shore mining 

and planning permissions. This predictive model could then continue to become 

more refined as more knowledge is obtained.  
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8. Abstract 

In this thesis, the potential of archaeological predictive modelling within 

England’s Archaeological Heritage Management (AHM) system is assessed 

through the case study of Roman-age Hertfordshire, in south-east England. The 

case study involves the creation of an archaeological predictive model from the 

bottom-up, using only open-access data. An assessment is also made on the 

quality of the open-access digital infrastructure within England, as well as on the 

knowledge that can be gained from the creation and product of the model.  

A detailed description of the collected data provides information about the 

environment (elevation, soil, geology, hydrogeology and river system), the social 

aspects of the landscape (Roman road network and towns) in addition to the 

modern-day factors which impact planning permissions (land-use, modern roads, 

protected areas and scheduled monuments). The quality of the environmental 

data is evaluated for its applicability to the Roman landscape in Hertfordshire. 

Archaeological site data (n = 4358), provided by the Archaeological Data Service 

(ADS), is categorised into site types (settlements, economic, ritual, military, 

water sources and miscellaneous). The representability of the archaeological 

data is evaluated for potential observational biases. 

The Roman Hertfordshire predictive model is created using deductive techniques 

(weighted multi-criteria analysis) and an inductive technique (site density). The 

final product predicts five areas of archaeological potential within Roman 

Hertfordshire, ranging from ‘Very High’ to ‘Very Low’. The model is evaluated for 

its predictive abilities by an unused testing sample of archaeological sites. The 

accuracy and precision of the model’s predictions are tested using Kvamme’s 

Gain equation, producing a high-yielding score of 0.72. The applications of the 

Roman Hertfordshire predictive model are discussed in the context of its uses 

within the modern development process. Proximity-based analysis of the 

different site types is explored in regards to water sources, Roman roads and 

Verulamium (St. Albans). The elevation of different site types are also analysed.  
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Figures 

Figure 1: A collaboration of different data layers that were used to influence 
and create the Roman Hertfordshire predictive model. From left to 
right: land-use, modern roads, Roman roads, bedrock geology, 
digital elevation model, modern rivers, superficial bedrock, 
archaeological sites (Stacey 2020). 
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Figure 2: Map of the counties of England, with Hertfordshire highlighted in 
red. Based upon the ‘Counties (April 2019) EN BFC’ data source, 
with the permission of ONS Geography Open Data. 
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Figure 3: The five counties which border Hertfordshire. Based upon the 
‘Counties (April 2019) EN BFC’ data source, with the permission of 
ONS Geography Open Data. 
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Figure 4: Roman towns within Hertfordshire, connected by a series of major 
and minor roads. Most of the Roman settlements in Hertfordshire 
are referred to by their modern name as the Roman name is 
unknown. 
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Figure 5: Digital elevation model of Hertfordshire. Based upon the ‘EU-DEM 
v1.1’, with the permission of the Copernicus Land Monitoring 
Service. 
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Figure 6: Derived hillshade texture and digital elevation model of 
Hertfordshire. Based upon the ‘EU-DEM v1.1’, with the permission 
of the Copernicus Land Monitoring Service. 
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Figure 7: Derived slope model of Hertfordshire. Based upon the ‘EU-DEM 
v1.1’, with the permission of the Copernicus Land Monitoring 
Service. 
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Figure 8: Derived aspect model of Hertfordshire. Based upon the ‘EU-DEM 
v1.1’, with the permission of the Copernicus Land Monitoring 
Service. 
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Figure 9: Distribution of reclassified soil textures in Hertfordshire. Based 
upon the ‘Soil Parent Material Model’, with the permission of the 
British Geological Survey. 
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Figure 10: Bedrock geology of Hertfordshire. Based upon the ‘BGS Geology 
625k’ model, with the permission of the British Geological Survey. 
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Figure 11: Superficial geology of Hertfordshire. Based upon the ‘BGS Geology 
625k’ model, with the permission of the British Geological Survey. 
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Figure 12: Based upon the ‘BGS Hydrogeology 625k’, with the permission of 
the British Geological Survey. 
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Figure 13: Reclassified main rivers and river branches in Hertfordshire. Based 
upon the ‘OS Open Rivers’ layer, with the permission of the 
Ordnance Survey. 
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Figure 14: Major and minor Roman roads in Hertfordshire. Based upon the 
‘Roman Road Network (2008 version)’ layer, with the permission of 
Harvard University. 
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Figure 15: Named Roman streets in Hertfordshire which connected the area 
to other centers, such as Londinium (London) and Colchester. 
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Figure 16: The ten districts within Hertfordshire. Based upon the ‘Counties 
(April 2019) EN BFC’ data source, with the permission of ONS 
Geography Open Data. 
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Figure 17: Reclassified modern land-use in Hertfordshire. Based upon the 
‘Corine Land Cover (CLC) 2018’ data source, with the permission of 
the Copernicus Land Monitoring Service. 
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Figure 18: Placement of modern roads around modern land-use in a part of 
Hertfordshire. Based upon the ‘Corine Land Cover (CLC) 2018’ data 
source, with the permission of the Copernicus Land Monitoring 
Service, and the ‘OS Open Roads’ layer, with the permission of the 
Ordnance Survey. 
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Figure 19: Archaeological areas (in North Hertfordshire) and scheduled 
monuments in Hertfordshire. Based upon the ‘Archaeological 
Areas’ data source, with the permission of the North Hertfordshire 
District Council, and the ‘Scheduled monuments’ layer, with the 
permission of Historic England. 
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Figure 20: Sample of the ‘Location’ column in the original CSV file export from 
the Archaeology Data Service, displaying the mix-up of attributes. 
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Figure 21: Example of the queries written in Microsoft Access to obtain the 
location of specific data through the starting character position and 
character length. 
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Figure 22: First spatial importation of site points within QGIS, using the 
original order of coordinates found within the original ADS data. 
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Figure 23: The two selection queries which were used to indiscriminately 
select 80% of the archaeological data by selecting records with an 
ID that ends in a number above 1. 
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Figure 24: Distribution of the model data sample (n = 3466) and testing 
sample (n = 892) displayed within the boundaries of Hertfordshire. 
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Figure 25: Settlement sites (n = 2017), as classified in appendices 4-7. 57 

Figure 26: Economic sites (n = 320), as classified in appendices 8-11. 57 
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Figure 27: Military sites (n = 53), as classified in appendices 12 and 13. 58 

Figure 28: Ritual sites (n = 318), as classified in appendices 14 and 15. 59 

Figure 29: Water source sites (n = 62), as classified in appendix 16. 59 

Figure 30: Miscellaneous sites (n = 696), as classified in appendices 17 and 18. 60 

Figure 31: Distribution of non-researched areas in Hertfordshire (grey layer) 
and the underlying soil textures. 
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Figure 32: Frequency chart of researched and non-researched areas by their 
soil texture. 
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Figure 33: Distribution of non-researched areas in Hertfordshire (grey layer) 
and the underlying groundwater level. 
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Figure 34: Frequency chart of researched and non-researched areas by their 
groundwater level. 
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Figure 35: Distribution of non-researched areas in Hertfordshire (grey layer) 
among their modern land-uses. 
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Figure 36: Frequency chart of researched and non-researched areas by their 
modern land-uses. 
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Figure 37: Results of the ‘Rasterized’ processing of the original vector files and 
the proximity rasters created from these rasterised layers. 
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Figure 38: The reclassification query for the road proximity raster as shown in 
the QGIS ‘Raster Calculator’, and the resulting distance groups 
coloured by their weights. 
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Figure 39: Reclassified river proximity raster with the layer of known Roman 
sites (n = 3466). 
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Figure 40: Reclassified road proximity raster with the layer of known Roman 
sites (n = 3466). 
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Figure 41: Known sites of water sources, dating to the Roman period (n = 62). 77 

Figure 42: Improved proximity raster of water sources which includes both 
the main rivers and identified Roman water sources. 
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Figure 43: Roman roads which passed through the area of Hertfordshire. 78 

Figure 44: Reclassified weights of the water and Roman road proximities. 79 

Figure 45: First version of the Roman Hertfordshire predictive model (Model 
1), created by multi-criteria analysis of proximity to water and 
Roman roads. 
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Figure 46: Diagram illustrating how the degrees of aspect determine the 
cardinal direction of a hill or mountain face in the Northern 
hemisphere (left image: www.pro.arcgis.com). 
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Figure 47: Southern-facing aspects and the rule used to define the 
reclassification. 
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Figure 48: Slopes of 2 degrees or less, and the rule used to define the 
reclassification. 
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Figure 49: Slopes of 10 degrees or less, and the rule used to define the 
reclassification. 

84 

Figure 50: Model of optimal slope and aspect, with white cells not exceeding 
10 degrees in slope and having a southern-facing aspect when solar 
radiation may be limited by the placement of the slope. 
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Figure 51: Uncategorised raster output layer of the merging of the weighted 
proximities from water and Roman roads with the weighted 
optimal slope and aspect raster. 

87 

Figure 52: The before and after of the ‘Polygonized’ raster layer once the 
predictive value categories had been merged. 
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Figure 53: The before and after of the smoothing process, using the 
‘generalize’ tool. 
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Figure 54: Before and after of the editing of the borders of the predictive 
modelling, using the ‘clip’ tool. 
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Figure 55: Second version of the Roman Hertfordshire predictive model 
(Model 2), created by multi-criteria analysis of proximity to water, 
proximity to Roman roads and optimal slope and aspect. 
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Figure 56: Heat map symbology that was used on of known Roman sites (n = 
3466) with modern name labels on the most distinguishable heat 
spots. 
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Figure 57: The four-step process to include the influence of Roman towns in 
the model. (1) Adding buffers around major towns (2000m) and 
minor towns (1000m). (2) Using the ‘difference’ tool to remove 
these areas from Model 2. (3) Adding the buffers back into the 
model. (4) Merging the buffers to the ‘Very High’ predictive 
category. 
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Figure 58: Third and final version of the Roman Hertfordshire predictive 
model (Model 3), created by multi-criteria analysis of proximity to 
water, proximity to Roman roads, optimal slope and aspect and 
close proximity to major and minor Roman towns. 
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Figure 59: View in Microsoft Excel of the listed distances (m) from the Roman 
roads to sites of different types (settlements, economic, military 
and ritual). 
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Figure 60: Frequency graph showing the count of sites (according to site type) 
at various distances (m) from the Roman roads (n = 2708). 
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Figure 61: Frequency graph showing the count of sites (according to site type) 
at various distances (m) from water sources (n = 2708). 
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Figure 62: Frequency graph showing the count of sites (according to site type) 
at various distances (m) Verulamium (n = 2708). 
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Figure 63: Frequency graph showing the count of sites (according to site type) 
at various elevations (m) (n = 2708). 
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Figure 64: Diagram of the alteration of the underlying archaeological layer 
due to the laying of foundations or load-bearing layers (after 
Bouwmeester et al. 2017, 150). 
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‘Miscellaneous’ site type. 
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Soil Texture Groups Area (km²) % Soil Texture Groups Area (km²) %

Loam Group 247.111 66.4% Loam Group 872.503 68.6%

Silt Group 17.383 4.7% Silt Group 89.893 7.1%

Sand Group 19.006 5.1% Sand Group 55.350 4.4%

Clay Group 1.046 0.3% Clay Group 15.349 1.2%

Mixed Group 87.543 23.5% Mixed Group 238.574 18.8%

Total 372.089 km² 100% Total 1271.669 km²  100%

Soil of Researched Areas Soil of Non-Researched Areas

Soil Texture Groups Area (km²) % Soil Texture Groups Area (km²) %

Loam Group 247.111 66.4% Loam Group 872.503 68.6%

Silt Group 17.383 4.7% Silt Group 89.893 7.1%

Sand Group 19.006 5.1% Sand Group 55.350 4.4%

Clay Group 1.046 0.3% Clay Group 15.349 1.2%

Mixed Group 87.543 23.5% Mixed Group 238.574 18.8%

Total 372.089 km² 100% Total 1271.669 km²  100%

Soil of Researched Areas Soil of Non-Researched Areas

Appendix 19: Comparison of the soil textures among researched and non-researched areas. 

Appendix 20: Comparison of the groundwater levels among researched and non-researched areas. 

 

Groundwater level Area (km²) % Groundwater level Area (km²) %

Wet 290.199 78.0% Wet 943.894 74.2%

 Damp 3.113 0.8%  Damp 6.498 0.5%

Dry 78.777 21.2% Dry 321.277 25.3%

Total 372.089 km² 100% Total 1271.669 km²  100%

Groundwater of Researched Areas Groundwater of Non-Researched Areas

Groundwater level Area (km²) % Groundwater level Area (km²) %

Wet 290.199 78.0% Wet 943.894 74.2%

 Damp 3.113 0.8%  Damp 6.498 0.5%

Dry 78.777 21.2% Dry 321.277 25.3%

Total 372.089 km² 100% Total 1271.669 km²  100%

Groundwater of Researched Areas Groundwater of Non-Researched Areas

Appendix 21: Comparison of the land-use among researched and non-researched areas. 

 

Modern Landuse Area (km²) % Modern Landuse Area (km²) %

Urban area 131.582 35.4% Urban area 220.840 17.4%

Cropland 218.809 58.8% Cropland 970.314 76.3%

 Forest and heathland 18.884 5.1%  Forest and heathland 75.623 5.9%

Roads and tracks 1.228 0.3% Roads and tracks 1.565 0.1%

Waterbodies 1.496 0.4% Waterbodies 3.020 0.2%

Total 372.089 km² 100% Total 1271.669 km²  100%

Modern Land Use of Researched Areas
Modern Land Use of Non-Researched 

Areas

Modern Landuse Area (km²) % Modern Landuse Area (km²) %

Urban area 131.582 35.4% Urban area 220.840 17.4%

Cropland 218.809 58.8% Cropland 970.314 76.3%

 Forest and heathland 18.884 5.1%  Forest and heathland 75.623 5.9%

Roads and tracks 1.228 0.3% Roads and tracks 1.565 0.1%

Waterbodies 1.496 0.4% Waterbodies 3.020 0.2%

Total 372.089 km² 100% Total 1271.669 km²  100%

Modern Land Use of Researched Areas
Modern Land Use of Non-Researched 

Areas
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Appendix 22: The Roman Hertfordshire predictive model, with Roman sites (n = 4358). 
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Appendix 23: The Roman Hertfordshire predictive model, with modern roads from the 
‘OS Open Roads’ layer from permission of the Ordnance Survey. 
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Appendix 24: Advised intervention guide, based on the predictive values of the Roman 
Hertfordshire predictive model and the size of proposed development. 

Predictive 
value

Size of 
Development

Advised Method of Intervention

> 50 m2 

Geophysical survery of the development area. 

Core sampling and trial trenches within the 

development area +10% more in the wider 

area.

< 50 m2 No action

> 100 m2 

Core sampling and trial trenches within the 

development area +10% more in the wider 

area.

< 100 m2 No action

> 1,000 m2 Coring sampling and trial trenches within the 

development area.

< 1,000 m2 No action

> 25,000 m2 Desk assessment and core sampling within the 

development area.

< 25,000 m2 No action

> 50,000 m2 Desk assessment of the development area.

< 50,000 m2 No action

Very Low

Low

Medium

High

Very High

* 

*Advised methods of intervention are applicable to developments which will disturb the soil 
approximately 30cm or more beneath the surface.  


