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Abstract

So far, most well-known helioscopes have to be aligned manually with
the ever-changing position of the sun in the sky. In this project, it was
assessed whether a gas- or liquid-filled transparent sphere has adequate
potential to function as a helioscope. If this would be possible, this he-
lioscope would allow for omnidirectional imaging, solving the problem
of constant manual adjustment. The numerical assessment of this gas- or
liquid-filled ball lens was done with the help of a ray-tracing simulation,
which was tested and confirmed by comparison with analytical as well as
experimental results. Then, the suitability of available materials for the ex-
perimental assessment was evaluated. The final experimental assessment
of the ball lens functioning as a helioscope was done with the help of a
miniature version of the envisioned helioscope. It was found that the res-
olution limit of the ball lens used for the experiments should be sufficient
to image a sunspot of average diameter.
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Chapter 1
Introduction: Building a
helioscope: using spherical shells
for long-distance imaging

For centuries, scientists have been trying to observe the surface of the sun.
Even though the star appears big enough in the sky to be directly seen by
an observer located on Earth, this is not possible, or at least very damaging
to our eyes. Consequently, devices have been invented through which a
sharp, yet safely visible image of the sun could be obtained. These devices
are called helioscopes.

Christoph Scheiner (1573-1650), a Jesuit priest, physicist and astronomer
located in Ingolstadt, Germany [1] was the first to design a helioscope, or,
as he termed it, a “machina helioscopica” [2] (see Fig. 1.1). He positioned
his helioscope manually, according to the current positions of the sun.

With his helioscope, Scheiner was, from time to time, able to observe spots
on the surface of the sun that were darker than the surrounding areas.
These dark spots were so-called sunspots (see Fig. 1.2). Sunspots are vis-
ible at regions on the surface of the sun where convection has been made
impossible by concentrations of magnetic field flux; this results in the sur-
face temperature of the sun being lower in these regions. The diameters of
sunspots vary between 16 km and 160 000 km. An observer on earth can,
when the dangers this causes for his eyesight are not taken into account,
see the larger sunspots without the need of a telescope.
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Figure 1.1: A schematic view of the helioscope as designed by Christoph Scheiner.
On the left, the imaging screen can be identified[1].

Figure 1.2: An image of the surface of the sun, on which multiple sunspots are
visible [3].
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Yet, it is very rare for a sunspot to appear that is large enough to observe
directly. Even the medium-sized and smaller sunspots do not appear rea-
sonably regularly, due to the 11-year long solar cycle [4].

In order to make optimal use of the occasions when sunspots are visible,
and to let as many people as possible have a chance of observing and be-
ing fascinated by them, a helioscope that would allow for omnidirectional
imaging would be ideal. This way, the sun would be observable at every
time of day, without the need to realign and readjust any optical equip-
ment.

The goal of this project is to assess the possibility of building a helioscope
by using a gas-filled transparent sphere as a large-scale lens that would
allow for omnidirectional imaging. The focal length of this lens could be
in the order of 100 m, as the refractive index of gases is close to that of air.
If placed on a rooftop, it could be used for imaging the surface of the sun
onto the ground or a suitable screen. If the resolution of the lens would
be sufficient, it might even be possible to image sunspots on the ground
in this way. For the best imaging quality of such a ball lens, a shell of at
least 1 m in diameter would be most preferable. The bigger the radius of
the ball lens, the more sunlight it collects will be focussed properly at the
focus of the lens. If the ball lens is too small, spherical aberrations could
severely influence the sharpness of the image. Something that also should
be taken into account, is the concentration of light at the image. If this is
too high, the image will be so bright that there is again a risk of damaging
eyes of observers or burning objects located in at the focus.

In this project, it will be assessed whether a gas- or liquid-filled sphere has
adequate potential to function as a helioscope. The numerical assessment
will be done in Chapter 2, with the help of a ray-tracing simulation. Then,
in Chapter 3, the available materials that are best suited for the experimen-
tal assessment will be sought after. In Chapter 4, the numerical results of
the ray-tracing simulation will be compared to results found experimen-
tally. The final experimental assessment of the ball lens functioning as a
helioscope will be done in Chapter 5, with the help of a miniature version
of the envisioned helioscope described above.

In order to assess whether such a gas- or liquid-filled lens would be able
to image a sunspot, the resolution limit of the lens should be assessed.
This gives its minimum resolvable distance. If the diameter of the sunspot
is (much) bigger than the minimum resolvable distance, we know that it
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Figure 1.3: A visualisation of the significance of the so-called “half opening an-
gle” of a ball lens.

should be possible to image it with this lens. The resolution limit is given
by the following Equation, common referred to as the Abbe limit:

dres =
λ

2 n sin θ
(1.1)

where dres is the resolution limit in meters, λ is the wavelength of the in-
coming light, n is the refractive index of the medium between the lens and
the light source and imaging plane [5], and θ is the so-called “half opening
angle”.

We assume λ = 580 nm, the wavelength of yellow light. n is in this case
equal to 1.0, the refractive index of vacuum. To compute the half opening
angle, we compute the following:

θ =
R
D

(1.2)

Where R is the radius of the lens used to image the sunspot, and D is the
distance between the lens and the sunspot. The location of this angle is
visualised in Fig. 1.3. D is equal to one “Astronomical unit”, which is
equal to 1.495978707 · 1011 m [6]. For this example, let us evaluate a hypo-
thetical ball lens with a radius of 0.5 m. If we now calculate the minimum
resolvable distance via Eq. 1.1, we find that for a ball lens of this particular
size, the minimum resolvable distance is 86.77 km. Thus, a medium-sized
sunspot should be easily resolvable by an ideal lens with this diameter.
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Chapter 2
Simulations of filled spherical
shells

In order to numerically simulate the experiments envisioned in the intro-
duction, a digital ray-tracing simulation was made. This simulation visu-
alises the path of individual rays of light that emerge from a source and
travel through an optical system.

The sign convention of the simulation has been decided upon as follows:

• The line all optical components (source, lens, screen) are on is taken
to be the z-axis, the x-axis will be the horizontal line perpendicular
to the z-axis, and the y-axis will be the vertical line perpendicular to
the z-axis and the x-axis;

• All rays will travel from left to right;

• The center of the spherical shell will be at the origin of the coordinate
system;

• The radius of curvature will be positive for a convergent surface and
vice versa;

• The incoming rays emerge from a source at the negative part of the
z-axis. In case of a Huygens source, this source is a point source from
which rays expand radially, and in case of a parallel source, each ray
emerges at different heights from a line segment left of the lens, and
stays parallel to the z-axis before hitting any optical element;
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2.1 Analytical description of the refraction in a ball lens with shell 6

Figure 2.1: A visualisation of the sign convention in a schematic diagram. A ray
(depicted by the red line) emerges from a Huygens source, travels through a ball
lens with shell, and finally hits an imaging screen.

• The ray will be traced up until a variable z-coordinate at the positive
part of the z-axis, coinciding with the position of the imaging screen
in real space;

• For simplicity, the angle the ray makes with the z-axis only has to be
defined in the (z, y)-plane for this simulation. This angle is positive
if the z-axis has to be rotated in the counter-clockwise direction in
the (z, y)-plane in order to coincide with the ray, and vice versa.

In Fig. 2.1, a visual representation of the sign convention mentioned above
is given.

2.1 Analytical description of the refraction in a
ball lens with shell

This project focuses on experiments in which all imaging components (light
source, ball lens, imaging screen, camera) are aligned in real space, and all
optical components are rotationally symmetric around the z-axis. There-
fore, when simulating these experimental setups, it suffices to implement
a two-dimensional ray tracing model.

Version of January 5, 2021– Created January 5, 2021 - 11:41

6



2.1 Analytical description of the refraction in a ball lens with shell 7

If required, the values obtained through ray-tracing could then always
be expanded to a three-dimensional equivalent by rotating the simulation
around the z-axis.

Furthermore, it suffices if the simulation neglects the rays that do enter
the shell, but never enter the space inside the spherical shell. As will be
discussed in chapter 3 of the thesis, the spherical shells that were available
for this project both had a relatively thin shell thickness compared to their
outer radii. Therefore, were the balls to be evenly irradiated, the portion
of rays that would only travel through the shell, and not through the space
encapsulated by the shell, would be negligibly small.

In Section 2.1.1 and 2.1.2, two possible methods of ray tracing will be
assessed. In the third Section, the most adequate method will be imple-
mented for the specific case of a spherical shell.

2.1.1 Analysis using ray transfer matrices

The first technique considered in order to perform ray-tracing on a spher-
ical shell, was ray transfer matrix analysis. This is a very common math-
ematical ray tracing method. With this method, one is able to describe
complex optical systems within one concise ray transfer matrix.

In ray transfer matrix analysis, a 2x2-ray transfer matrix is used to describe
each optical element of an optical system, i.e. a surface, interface, mirror or
beam travel. Each of these matrices then operates on a vector describing an
incoming light ray, in order to calculate a vector describing the outgoing
ray. A single, concise ray transfer matrix is obtained by multiplying the
matrices in consecutive order.

In order to know whether this method can be used to perform comprehen-
sive ray-tracing on a spherical shell, the constraints of the method must
be considered. Because optical objects are usually assumed to be thin,
the method of ray transfer matrix analysis is only valid for paraxial rays.
Paraxial rays are defined as rays that make a small angle θ to the optical
axis of the system, such that the approximation sin θ = θ holds. An im-
plication of a small θ is that, upon entering the ball lens, each ray has a
transverse extent that is small compared to the length of the optical sys-
tem.
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2.1 Analytical description of the refraction in a ball lens with shell 8

In imaging systems where not all rays are paraxial, ray transfer matrix
analysis may still describe the magnifications and positions of the focal
planes of the system properly, because in decent imaging systems, the
paraxial rays must still be focussed correctly. However, ray transfer matrix
analysis does not suffice to evaluate aberrations. For this, full ray-tracing
techniques are needed [7].

On the basis of this last argument, the ray transfer matrix method has
not been used to derive ray-tracing equations for the project, as it would
not have given sufficient information on the aberrations of the lens, while
these are considerably big in the case of a (thick) ball lens.

2.1.2 Analysis using the law of Snell and the circle-line in-
tersection theorem

In this project, the ray-tracing technique ultimately used was based on two
concepts: The law of Snell and the circle-line intersection theorem. Via the
resulting ray-tracing technique, all aberrations could be accounted for, and
thus a proper ray-tracing analysis was made possible. The two concepts
used will be briefly discussed in the next two Sections.

2.1.2.1 The law of Snell

The law of Snell describes the relationship between the incoming and out-
going angle of a ray that passes through a boundary between two different
isotropic media (e.g. glass, water, air). It can be stated as follows:

sin θ2

sin θ1
=

v2

v1
=

n1

n2
(2.1)

where, for the respective media, θ is the angle the ray makes with the
normal of the interface, v is the velocity of light in the respective medium,
and n is defined as the refractive index, a unitless quantity representing
the refracting properties of the respective medium [8]. In Fig. 2.2, a visual
representation of the law of Snell is shown.

From now on, the incoming and outgoing angles as defined by the law of
Snell, θ1 and θ2, will be referred to as α and β respectively.
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2.1 Analytical description of the refraction in a ball lens with shell 9

Figure 2.2: This Figure shows the refraction of a ray of light at the boundary
(interface) between medium 1 and medium 2 [8]. When applying the law of Snell,
it becomes clear that if the refractive index of the second medium is larger than
that of the first medium, the ray in the second medium is closer to the normal.

2.1.2.2 The circle-line intersection theorem

Suppose one has a line determined by two point coordinates (x1, y1) and
(x2, y2). To find the intersection of this (infinite) line with a circle of radius
r and center (0, 0), the following method can be used.

First, we define
dx = x2 − x1 (2.2)

dy = y2 − y1 (2.3)

dr =
√

d2
x + d2

y (2.4)

D =

∣∣∣∣x1 x2
y1 y2

∣∣∣∣ (2.5)

The points of intersection of the circle and the line will now be given by
the coordinates

x =
D dy ± sgn∗(dy)dx

√
r2d2

r − D2

d2
r

(2.6)
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2.1 Analytical description of the refraction in a ball lens with shell 10

y =
−Ddx ± |dy|

√
r2d2

r − D2

d2
r

(2.7)

with the function sgn∗(x) defined as

sgn∗(x) ≡
{
−1 for x < 0
1 otherwise.

(2.8)

The incidence of the circle and the line is therefore determined by the dis-
criminant

∆ ≡ r2d2
r − D2 (2.9)

for which the following three cases may occur [9]:

∆ incidence
∆ < 0 no intersection
∆ = 0 tangent
∆ > 0 intersection

Table 2.1: Different cases for the discriminant.

2.1.3 Ray-tracing through a spherical shell

In Fig. 2.3, a possible trajectory of a ray (depicted in red) through a ball
lens with shell is shown. For the refractive indices of the three different
media depicted, we assume that n2 > n3 > n1. The (z, y)-coordinates of
the source and the angle of incidence are input values for the ray-tracing
system, which have to be translated to the corresponding output values:
the (z, y)-coordinates of the point where the ray exits the lens and the angle
of departure of the ray with respect to the z-axis.

During its trajectory, the ray hits an interface four times in total, before
exiting the spherical shell. At each interface, by appying the law of Snell,
the outgoing angle of the ray can be calculated for each corresponding
incident angle. Then, the coordinates of the following trajectory can be
obtained by implementing the circle-line intersection theorem. In Fig. 2.3,
the three different parts of the trajectory of the ray in the ball lens are de-
picted by the line segments KL, LM and MN.
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2.1 Analytical description of the refraction in a ball lens with shell 11

Figure 2.3: Possible trajectory of a ray through a ball lens with shell.

2.1.3.1 Calculating the angles of refraction

Fig. 2.4 shows the direct application of the law of Snell on the first in-
terface. The incoming and outgoing angles of the ray with respect to the
normal of the interface are labeled α and β respectively.

Each time the ray refracts at an interface of the sphere shell, the α and β
that correspond to that refraction are angles that are relative to the surface
normal, which is dependent on the height at which the ray hits the inter-
face. These angles correspond to the angles θin and θout, the angles the ray
makes with the z-axis before and after the interface. The key to translating
θin to α and β to θout is the angle depicted in Fig. 2.4 as γ, which is the
angle the normal of the interface makes with the horizontal axis.

The value of γ is dependent on the transversal coordinate of the point of
incidence. This is visible in Fig. 2.5, where it can clearly be seen that the
value of γ is larger for the point L (see Fig. 2.5) than for the point K (see
Fig. 2.4).

The angle γ is defined as a function of the z- and y-coordinates of the point
of incidence:

γ =
zin

|zin|
sin−1

(yin

R

)
(2.10)

where the argument ( zin
|zin|

) determines the sign of gamma, based on whether
the point of incidence of the ray is to the left or to the right of the center of
the ball.

Version of January 5, 2021– Created January 5, 2021 - 11:41

11



2.1 Analytical description of the refraction in a ball lens with shell 12

Figure 2.4: Refraction at point K via the law of Snell.

Figure 2.5: Refraction at point L via the law of Snell.
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2.1 Analytical description of the refraction in a ball lens with shell 13

The calculation of θout using the law of Snell can be done for each point
according to the following protocol. First, we take an incident ray with a
transversal coordinate smaller than the outer radius of the spherical shell.
We define

α = θin − γ (2.11)

then, using the law of Snell (Eq. 2.1) we can calculate β:

β = arcsin
(

n1

n2
sin α

)
(2.12)

and by translating back to γ we find the value for θout:

θout = β + γ (2.13)

2.1.3.2 Calculating the coordinates of the points of incidence

Each time the coordinates have to be calculated of the next point of inci-
dence of the ray at an interface of the ball lens, the line-circle intersection
theorem is used. This theorem, as it is outlined in Section 2.1.2, needs a few
input variables. Specifically, the radius of the lens interface the ray will hit,
as well as the coordinates of two points on the line coinciding with the tra-
jectory the ray followed right before hitting this interface are needed as
input. One of the two points on this line is always known already, namely,
the former point of incidence of the ray at an interface.

For example, to calculate the coordinates of point L as shown in Fig. 2.3,
apart from the radius of the circle point L is on, the coordinates of two
points on the line that coincides with line segment KL are also needed as
input variables. As explained above, one can use the coordinates of point
K as the first of the pair of points. If, conversely, the coordinates of point
K are to be calculated, the coordinates of the origin of the ray (the light
source) can be used as the first input point in the line-circle intersection
theorem.

The second point on the line that coincides with the previous trajectory of
the ray can be calculated using the most recent value for the angle the ray
makes with the horizontal axis. This angle, along with the coordinates of
the first point on the line, can be used to generate coordinates of a second

Version of January 5, 2021– Created January 5, 2021 - 11:41

13



2.1 Analytical description of the refraction in a ball lens with shell 14

point on the line. To do this, we note the mathematical definition of the
slope of a straight line:

tan θ = m (2.14)

where θ is the angle that line makes with the horizontal axis, and m is the
slope of the line [10]:

m =
y2 − y1

z2 − z1
(2.15)

Here, z1 and y1 are the coordinates of a known point on the line.

Thus, a second point on the line can be defined as follows:

y2 = (z2 − z1) tan θ + y1 (2.16)

Where the choice for z2 is arbitrary. Thus, one can also generate a second
point on the line once one has the coordinates of a first point on the line
and the angle the line makes with the horizontal axis. This way, two points
on the line that coincides with the trajectory of the ray, which are needed
input variables for the circle-line intersection theorem, can be generated
each time the coordinates of the point where the ray was refracted at the
previous interface, as well as its angle of departure, are known.

The line-circle intersection theorem then outputs either the coordinates of
two intersection points, the coordinates of a single point if the line is tan-
gent to the sphere, and two imaginary sets of coordinates if the line does
not intersect the sphere.

If the calculation outputs the coordinates of two real intersection points
of the line and the sphere, the right set of coordinates needs to be cho-
sen, since there is no use for the coordinates of the intersection point that
doesn’t correspond with the coordinates of the next point of incidence in
the trajectory of the ray.

To pick the right coordinates, one needs to consider which of the four pos-
sible points of incidence of the ray is being calculated:

1. The point where the ray hits the outer shell when entering the spher-
ical shell for the first time: point K in Fig. 2.3;

2. The point where the ray hits the inner shell after having travelled
through the shell for the first time: point L in Fig. 2.3;
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2.2 Digital implementation of ray-tracing programme 15

3. The point where the ray hits the inner shell again after having trav-
eled through the inner sphere of the spherical shell: point M in Fig.
2.3;

4. The point where the ray hits the outer shell again after having trav-
elled through the shell again: point N in Fig. 2.3.

Assuming the ray travels from left to right, in the first two cases, the point
with the lower longitudinal coordinate needs to be chosen. In cases 3 and
4, the point with the higher longitudinal coordinate then needs to be cho-
sen.

2.2 Digital implementation of ray-tracing programme

The digital ray-tracing simulation was made in Python using iPython Note-
book. The main part was created using the following functions, of which
some are used as subroutines:

refract

This subroutine is the numerical equivalent of the process explained under
Section 2.1.3.1. It can apply the law of Snell to an incoming ray, to find the
angle the outgoing ray makes with the horizontal axis.

circle_line_intersection

This subroutine is the numerical execution of the process explained under
Section 2.1.2.2. It can apply the circle-line intersection theorem to a circle
with given radius and a line with a given angle relative to the horizontal
axis and one given set of coordinates of a point on the line.

ball_with_shell

This subroutine traces the path of a single ray through the ball lens with
shell, by alternately performing the refract and circle_line_intersection
subroutines until the coordinates of the point where the ray departs from
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2.2 Digital implementation of ray-tracing programme 16

the spherical shell and the angle the ray makes with the horizontal axis
have been calculated, which will then be the values this subroutine re-
turns.

In the following list, the process of finding and matching the right coor-
dinates for the next point of refraction is outlined, for each of the four
possible refraction points discussed in the list under Section 2.1.3.2.

1. The point where the ray hits the outer shell when entering the spher-
ical shell for the first time: point K in Fig. 2.3: take the smallest
z-coordinate. If θin is positive, take the smallest y-coordinate, and
vice versa;

2. The point where the ray hits the inner shell after having travelled
through the shell for the first time: point L in Fig. 2.3: take the small-
est z-coordinate. If θin is positive, take the smallest y-coordinate, and
vice versa;

3. The point where the ray hits the inner shell again after having trav-
eled through the inner sphere of the spherical shell: point M in Fig.
2.3: take the biggest z-coordinate. If θin is positive, take the biggest
y-coordinate, and vice versa;

4. The point where the ray hits the outer shell again after having trav-
elled through the shell again: point N in Fig. 2.3: take the biggest
z-coordinate. If θin is positive, take the biggest y-coordinate, and vice
versa.

Huygens_source

This function collects the output values of the ball_with_shell subrou-
tine for a given number of rays that make evenly increasing angles with
the horizontal axis and are all emerging from a variable point. This vari-
able point thus emits rays like a Huygens source.

parallel_source

This function collects the output values of the ball_with_shell subrou-
tine for a given number of evenly spaced incoming rays that are parallel
to the horizontal axis.

The source code of the program, along with explanatory comments, can
be found under Appendix 1.
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2.3 Ray-tracing simulation results 17

2.2.1 Limitations of digital implementation

The ray-tracing simulation does not work for rays that exit the inner circle
of the simulated circular lens on the left of the y-axis. This is because it has
not been worked out properly how the angles α and β are defined in terms
of γ, θin and θout in this case. Also, the ball_with_shell function does not
always pick the right z- and y-coordinates of the next refraction point in
the above named circumstances.

The consequence of this is that these rays will not be fully traced, just
like the rays that only travel through the shell that are also left out of the
simulation. This proved not to be a problem, because of the same reason
why it was not a problem to leave out the rays only travelling through the
shell. As will be discussed in chapter 3 of the thesis, the available spherical
shells both had a relatively thin shell thickness compared to their outer
radii. Therefore, were the balls to be evenly irradiated, the portion of rays
that would exit the ball before passing the (x, y)-plane dissecting the ball
at z = 0, would be negligibly small for realistic thin-shell spheres.

2.3 Ray-tracing simulation results

Now, to see if the simulation works correctly, we study five distinct cases
of different combinations of refractive indices. In each of the cases, the
refractive indices of the inner ball, the ball shell and the space outside the
ball (from now on, these will be referred to as n3, n2 and n1 respectively),
will take on different values. A plot for each of the five cases can be found
in Fig. 2.6-2.10. In Section 2.3.3, the simulation will be compared numer-
ically to an analytical formula that was found in a 2019 study by Elagha,
which describes the refraction of rays in ball lenses with shells.

The invariable conditions under which each of the five cases were studied,
were as follows.

• Rs = 0.1 m, Rb = 0.07 m, n1 = 1.0.

• The number of incoming rays was 30; for case 1 and 2, the height of
incoming rays varied between −Rb and Rb; for the rest of the cases,
the height of incoming rays varied between −0.06 m and 0.06 m.
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2.3 Ray-tracing simulation results 18

Figure 2.6: Result of ray-tracing simulation for case 1: n2 > n3 > n1. Here the
case of a spherical shell (n2 = 1.6) in air (n1 = 1.0), filled with water (n3 = 1.33)
is studied. It is visible that the rays converge after having travelled through the
ball lens.Thus, the ball lens acts as a convergent lens in this situation.

Figure 2.7: Result of ray-tracing simulation for case 2: n2, n3 > n1. In this case,
n2 = n3 = 1.6. the ball lens refracts the rays in the same way as a ball lens of
radius Rs without a shell, a “homogenous ball lens” that has the same refractive
index everywhere would. It is clearly a convergent lens.
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2.3 Ray-tracing simulation results 19

Figure 2.8: Result of ray-tracing simulation for case 3: n3 > n1, n2. In this case,
n2 = n1 = 1.0. The ball lens refracts the rays in the same way as a ball lens of
radius Rb without a shell, a “homogenous ball lens” that has the same refractive
index everywhere. This refractive index is n3 = 1.33. It is clearly a convergent
lens.

Figure 2.9: Result of ray-tracing simulation for case 4: n1 = n2 = n3 = 1.0. In
this case, none of the rays are refracted, and thus all rays traverse in the same
way as when there would be no ball lens. The ball lens is neither convergent nor
divergent.
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2.3 Ray-tracing simulation results 20

Figure 2.10: Result of ray-tracing simulation for case 5: n2 > n1, n3. Here the
case of an empty (or air-filled; n1 = n3 = 1.0) spherical shell (n2 = 1.6) in air is
studied. It is visible that the rays diverge after having travelled through the ball
lens. Thus, the ball lens is a divergent lens in this case.

Note that the empty spherical shell in air is a negative lens (case 5; Fig.
2.10), whereas the spherical shell in air filled with a substance with a re-
fractive index of 1.33 (case 1; Fig. 2.6), e.g. water, acts as a positive lens. In
Section 2.4, this finding will be studied in a more in-depth way. An analyt-
ical formula will be derived for the focal length of the ball lens for varying
values of Rs, Rb, n1, n2 and n3.

2.3.1 Determination of focal length and spherical aberra-
tions

In order to assess the spherical aberrations of the simulated ball lens, the
points where parallel incoming rays intersect the z-axis after travelling
through a homogenous ball lens (a ball lens for which the refractive index
of the inner ball is the same as that of the “shell”) have been compared
to the effective focal point of that ball lens. The effective focal length has
been defined as follows for a homogenous ball lens (a ball lens that has the
same refractive index everywhere).
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2.3 Ray-tracing simulation results 21

Figure 2.11: Visual representation of the effective focal length (EFL) and back
focal length (BFL) of a ball lens [11]. The lens diameter is given by D, the diameter
of the incoming beam of light is labeled as d, and the cross-section of the ball lens
itself is labeled P, it being an optical element with lens power P.

EFL =
n D

4(n− 1)
(2.17)

where the effective focal length (EFL) is the distance between the center
of the ball lens and its focal point, n is defined as nball lens

noutside
, and D is the

diameter of the ball lens.

In Chapter 3, the so-called back focal length (BFL) will be used. This has
been defined as follows for any ball lens with a known EFL and diameter
D[11]:

BFL = EFL− D
2

(2.18)

A visual representation of the EFL and BFL of a ball lens can be found in
Fig. 2.11.

In Fig. 2.12, the z-coordinate of the point where the ray intersects the z-
axis after passing through a homogenous ball lens with a refractive index
of 1.5 is plotted against the initial height of a set of equally spaced incident
rays. The red dot represents the effective focal point calculated using Eq.
2.17. The values for the simulation variables have been chosen as follows:

• The size of the polystyrene ball (see Chapter 3) has been used: Rs =
0.1 m, Rb = 0.0977 m. For the ball lens, the following refractive
indices have been chosen in order to make it homogenous: n1 = 1.0,
n2 = 1.5, n3 = 1.5.

• For the Huygens source simulation, the distance between the Huy-
gens source and the center of the ball lens has been chosen as 1.0 m.
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2.3 Ray-tracing simulation results 22

Figure 2.12: Simulation of effective focal length and spherical aberrations. The
“focal point” of a single ray (the point where it intersects the z-axis after travelling
through the ball lens) is found to be closer to the ball lens the higher a ray enters
the ball lens. This is due to spherical aberrations.

The incoming angle of rays emitted by the Huygens source (labeled
θin and θ0 in the constructed simulation and Eq. 2.20 respectively)
have been varied between 0.1 rad and −0.1 rad;

• In the ray-tracing simulation, 100 data points have been generated.

In Fig. 2.12, it is clearly visible that the further from the z-axis the incom-
ing parallel ray enters the ball, the greater the distance will be between the
point of intersection with the z-axis and the effective focal point of the ball
lens. This difference is due to spherical aberrations. The rays in the parax-
ial approximation intersect the z-axis at points that are relatively very close
(almost identical) to the effective focal point. The parabolic fit shows that
the dislocation of the focal point for each of the rays due to aberrations can
be described by a second-order polynomial. The Equation for the parabola
was found as follows (note: due to convention, the horizontal coordinate
is labelled as z and the vertical coordinate as y):

1
m y = −4.906

m2 z2 + 0.1508
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2.3.2 Determination of virtual image and spherical aberra-
tions

The fact that the empty spherical shell functions as a diverging lens (see
Fig. 2.10), implies that there will be no actual focus points where rays in-
tersect after they have traveled through the lens. However, if the diverging
ray paths that emerge from the back of the lens are extended to the front of
the lens, we do find “imaginary” focus points where rays do intersect. The
collection of these “imaginary” focus points of a diverging lens is called its
virtual image [12].

Fig. 2.13 shows the position of the virtual image of the empty ball lens with
shell, for varying shell thicknesses. Each coloured scatter plot represents
the simulation results for a ball lens with a different shell thickness. In the
legend, the value for the inner radius of the spherical shell (Rb) is given;
the outer radius of the spherical shell (Rs) is, in this simulation, always
equal to 10 cm. Rays that have a virtual image positioned inside of the
ball lens are excluded. Hence, results in this plot do not include y-values
higher than −10 cm (which is equal to −Rs). An aperture with a radius of
π
10 in front of the ball lens was used in the simulation. The minimum of
each scatter plot represents the effective focal length of the virtual image
for a certain Huygens source.

In all cases, a parabola fits the simulation results very well. This agrees
with the finding that all spherical aberrations of the ball lens with shell are
parabolic.

2.3.3 Comparison of the numerical simulation to the ana-
lytical result of Elagha

In a 2019 paper by Elagha, the following Equations for ball lenses with
shells have been found to describe a ray emerging from a Huygens source
on the z-axis and a parallel incident ray travelling through a ball lens with
shell. The Equation for a ray emerging from a Huygens source on the z-
axis, located at a distance K0 from the center C at (0, 0), of a symmetric
monocentric lens having N spherical shells centered at C, is stated as fol-

Version of January 5, 2021– Created January 5, 2021 - 11:41

23



2.3 Ray-tracing simulation results 24

Figure 2.13: Virtual image for different shell thicknesses.

lows:

1
B1

=
1
r1

sin

[
2

N

∑
i=1

(
sin−1 r1

Ri ∏i
p=1 µp−1

− sin−1 r1

Ri ∏i
p=1 µp

)
− θ0

]
(2.19)

where:

• The incident ray makes an angle θ0 with the optical axis and a final
image I is formed at a distance B1 from C;

• r1 is given as follows: r1 = K0 sin θ0, where K0 is the distance of the
Huygens source from the center of the ball lens;

• N is the number of spherical shells of the lens centered at (0, 0);

• Ri is the radius of the ith shell encountered when travelling out from
the center of the lens;

• µp is is the relative refractive index at the pth surface encountered
when travelling out from the center of the lens, i.e., µp =

np
np−1

, where

µ1 = n1
n0

= n1
1 = n1.
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In this project, a ball lens with two spherical shell interfaces is studied. For
this case, Eq. 2.19 reduces to

1
B1

=
1
r1

sin
[

2
(

sin−1 r1

R1
− sin−1 r1

R1µ1
+ sin−1 r1

R2µ1
− sin−1 r1

R2µ2µ1

)
− θ0

]
(2.20)

For the Equation of a parallel incoming ray at a height h, set the angle
θ0 = 0 and r1 = h; Eq. 2.20 then reduces to [13]:

1
B1

=
1
h

sin
[

2
(

sin−1 h
R1
− sin−1 h

R1µ1
+ sin−1 h

R2µ1
− sin−1 h

R2µ2µ1

)]
(2.21)

In Fig. 2.14 and Fig. 2.15, values of z-axis intersection points of rays ob-
tained through the simulation that was constructed for this project are
compared with values obtained through the application of Eq. 2.19 to the
specific case of a ball lens with two spherical shell interfaces. In Fig. 2.14,
the angle that a ray emitted from a simulated Huygens source makes with
the z-axis is plotted against the z-coordinate where those rays intersect the
z-axis after passing through the ball lens. In Fig. 2.15, the y-coordinate of
parallel incoming rays is plotted against the z-coordinate where the rays
intersect the z-axis after passing through the ball lens.

The simulation parameters have been set as follows:

• The properties of the polystyrene ball (see Chapter 3) filled with wa-
ter have been used: Rs = 0.1 m, Rb = 0.0977 m, n1 = 1.0, n2 = 1.6,
n3 = 1.33.

• For the Huygens source simulation, the distance between the Huy-
gens source and the center of the ball lens has been chosen as 1.0 m.
The incoming angle of rays emitted by the Huygens source (labeled
θin and θ0 in the constructed simulation and Eq. 2.20 respectively)
have been varied between 0.1 rad and −0.1 rad;

• For the parallel source simulation, the incoming height of parallel
rays (labeled yin and h in the constructed simulation and Eq. 2.21
respectively) have been varied between −0.0977 m and 0.0977 m;

• In both ray-tracing simulations, 100 data points have been generated.
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Figure 2.14: z-axis intersection points found by simulation and found by Elagha
for a Huygens source.

Figure 2.15: z-axis intersection points found by simulation and found by Elagha
for a parallel source.
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It was found that the values obtained through the ray-tracing simulation
were equal within numerical accuracy to those obtained through the ap-
plication of Eq. 2.19 to the specific case of a ball lens with two spherical
shell interfaces.
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Chapter 3
Discussion of available materials
for imaging experiments

In the introduction, the idea of the helioscope in the form of a gas-filled
glass sphere that would allow for omnidirectional imaging was introduced.
In order to be able to image real sunspots, a high imaging quality of the
ball lens would be needed. For the best imaging quality of the spheri-
cal shell, a polished glass shell of at least 1 m in diameter would be most
preferable, consisting of one piece and containing two holes for supply
and drainage of its contents. Yet, in reality, no spherical shell that met all
these requirements could be found. It was especially hard to find a spher-
ical shell with a matching diameter; it was easier to find spherical shells
with smaller diameters. Thus, it was decided to aim for experimenting
with a miniature version of the helioscope described in the introduction.

Another practical constraint was the room available for proper imaging.
In order to test the lens power (as would be done in the experiment dis-
cussed in chapter 5), it was preferable to work in a dark space, and let the
light source the ball would image be the only light in this space. A suit-
able room, being about 8 m in length, was found. Yet, this meant that the
focal length of the lens should be shrunk from 100 m (for the helioscope
described in the introduction) to about 1.5 m, maximum 2.0 m. With a fo-
cal length of such a magnitude, imaging experiments could be done where
the lens could function as a relay lens, imaging an object located at 2 f on
an image plane located at 2 f on the opposite side of the lens [14].
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3.1 Consideration of different available ball lenses and lens components 29

In Section 3.1, the ball lenses that were available for this project will be
introduced. In order to find the most suitable spherical shell and substance
encapsulated by it, a formula will then be derived in Section 3.1.1 that
relates the focal length of a ball lens with shell to its size, thickness and the
refractive indices of the shell, the filling and the space outside the ball lens.
The possible combinations of ball lens and filling will then be assessed
numerically using this formula. It was found that putting the ball lens in
an aquarium would be beneficial, as this would make it possible to switch
from using a gas to fill the ball lens, to using a liquid for this, which proved
to be much easier. Finally, it was found to be beneficial to use an aperture
in front of the aquarium.

3.1 Consideration of different available ball lenses
and lens components

Two different spherical shells were available for the project. Both consisted
of two halves, which were initially not yet attached to one another. The
first spherical shell was made of polystyrene and will from now on be
referred to as the “polystyrene ball lens”. The second was made of BK7
glass and will from now on be referred to as the “BK7 ball lens”.

The polystyrene ball lens (see Fig. 3.1) had a diameter of 20 cm and a
shell thickness of 2.3 mm. The material was well polished, which would
make for relatively sharp images. Furthermore, the two halves, made of
polystyrene, a very lightweight material, could easily be joined together
by means of epoxy glue. Drilling two holes in the shell for water sup-
ply and drainage would also be relatively easy, as the material was fairly
flexible.

The BK7 ball lens (see Fig. 3.2) had a diameter of 43.3 cm and a shell
thickness of 14.6 mm. It was a lens that had previously been in use at the
bottom of the Mediterranean sea, as part of the KM3NeT neutrino tele-
scope [15]. The material was not well polished, which meant that imaging
through this lens would make for relatively less sharp images. Glueing
the two halves together would be quite a challenge, as the material (thick
shell of BK7 glass) was quite heavy, and maybe the shell would not be able
to withstand the pressure of a liquid or gas inside the ball lens. There was
also a risk of shattering the shell if two holes were to be drilled in the shell
for water supply and drainage.
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Figure 3.1: The polystyrene ball lens in some different sizes [16].

Figure 3.2: The BK7 ball lens.
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3.1 Consideration of different available ball lenses and lens components 31

3.1.1 Derivation of focal length formula via evaluation of
vergence

In this Section, a formula for the focal length of any ball lens with shell will
be derived via so-called vergence tracing. The found formula for the focal
length will then be used to assess what refractive index of the substance
inside the spherical shell would be desirable for each of the available ball
lenses. This information can then be used to further investigate which of
the two ball lenses would be most suitable for the project, as this also de-
pends upon how easy it is to find or make a substance with the refractive
indices that are desirable for each of the ball lenses.

The vergence of a lens situated in air is defined as follows:

V =
n
f

(3.1)

where V is the vergence, measured in dioptres (m−1), n is the refractive
index of the lens and f is the focal length of the lens in m, where we define
V > 0 when the focus is to the right of the source location. A parallel
ray has a vergence of 0 m−1, since its focus is located at infinity. In this
derivation, spherical wavefronts are thus assumed. For thick lenses (e.g.
the ball lens with shell), vergence tracing is only valid for paraxial rays, in
this case that means rays with a small angle θ to the optical axis.

In order to use vergence tracing, two actions have to be defined.

1. Propagation of the ray over a distance d through a medium with a
refractive index n. This action corresponds to translating the distance
to the focus. Mathematically, it is defined as follows:

V’ = n
( n

V
− d
)
−1 (3.2)

or, in comparable form,

V’ =
(

1
V
− d

n

)
−1 (3.3)

Where V is the vergence before the propagation, V′ is the vergence
after the propagation, n is the refractive index of the medium, and d
is the propagation distance. The sign of d is negative if the ray moves
closer to the focus, and vice versa.
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2. Refraction through an optical element with lens power P. This action
changes the vergence as follows:

V’ = V + P (3.4)

The lens power of a thin spherical lens can be deduced from the lens-
maker’s Equation, which is known as the following [17]:

1
f
=

(
n1

n2

)(
1

R1
− 1

R2

)
(3.5)

In this formula, 1
f is actually equal to the lens power P of the lens. For

a spherical lens, R1 = −R2 = R; the first radius of (convex) curvature is
equal to the second radius of (concave) curvature for a perfectly round ball
lens. Thus, Eq. 3.5 can be simplified as follows for a thin spherical lens:

P =
1
f
=

2(n2 − n1)

R
(3.6)

with R = Rball lens.

for a thick spherical lens like the ball lens of this project, the convex and
concave spherical interfaces of the lens have to be evaluated separately,
and propagation through the ball lens should also be taken into account.

For a single convex spherical interface between n1 and n2, the lensmaker’s
Equation reduces to

P =
n1 − n2

R
(3.7)

as R2 in Eq. 3.5 is set to infinity.

For a single concave spherical interface between n2 and n1, set R1 to infin-
ity in Eq. 3.5; the Equation then reduces to

P = (n1 − n2)
−1
−R

=
n1 − n2

R
(3.8)

Note this expression is equal to Eq. 3.7.
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3.1.1.1 Ball lens with vergence

The vergence trajectory through a ball lens with radius R and refractive
index n is as follows:

V0 = 0→ P1 : V1 → propagation over 2R in n : V2 → P2 : V3

where Vi → x : Vi+1 means that Vi+1 is the new vergence calculated by
performing action x on Vi. P1 and P2 are equal to Eq. 3.7, as seen in the
previous Section. Thus, via Eq. 3.4, V1 and V3 can be calculated from V0
and V2 respectively. In the case of a homogenous ball lens in air, n1 is
equal to 1.0, and n2 is equal to n, the refractive index of the ball lens. The
propagation through the ball lens with refractive index n and radius R
makes for the following operation on the vergence V1:

V2 =

(
1

V1
− 2R

n

)
−1 (3.9)

To transform the resulting vergence V3 back to a focal distance, calculate
f = 1

V3
. The procedure outlined above results in the following expression:

f =
(−2 + n)R

2(n− 1)
(3.10)

This proves to be equal to Eq. 2.18, the back focal length of a ball lens. This
makes sense, as the f calculated through this vergence tracing procedure
is also measured from the second spherical interface (“back”) of the ball
lens.

3.1.1.2 Sphere shell lens with vergence

Now, the vergence trajectory through a ball lens with shell, with inner ball
radius Rb and shell radius Rs, will be calculated. The refractive indices of
the inner ball, the ball shell and the space outside the ball are labeled n3,
n2 and n1 respectively. The vergence trajectory looks as follows:

V0 = 0→ Ps : V1 → propagation over Rs − Rb in n2 : V2 →

Pb : V3 → propagation over 2Rb in n3 : V4 → Pb : V5 →
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propagation over Rs − Rb in n2 : V6 → Ps : V7

It is assumed that Rs > Rb, and all variables are larger than zero. From Eq.
3.7, it follows that:

Ps =
n2 − n1

Rs
(3.11)

and
Pb =

n3 − n2

Rb
(3.12)

The change in vergence due to propagation over the mentioned distances
in the corresponding media can be found through Eq. 3.3.

Via the vergence trajectory outlined above, V7 was calculated, and the back
focal distance was found by calculating

fb f l =
n1

V7
(3.13)

To translate this to the effective focal distance, calculate

f = fb f l + Rs (3.14)

This results, after simplification, in the following expression for f:

f (Rs, Rb, n1, n2, n3) =
−n2n3RbRs

2(−n2n3Rb + n1n3(Rb − Rs) + n1n2Rs)
(3.15)

Eq. 3.15 will be used in Section 3.1.1.3 to characterize the focal length
of the polystyrene and BK7 ball lens filled with substances with different
refractive indices n3.

3.1.1.3 Focal length characterisation of both available lenses

In Fig. 3.3 and Fig. 3.4, the effective focal length, as calculated through the
steps under Section 3.1.1.2, is plotted against the refractive index of the
substance in the polystyrene and BK7 ball lens respectively.

The data points that are to the left of the asymptote correspond to negative
values for f, meaning that a ball filled with a substance of these refractive
indices will produce a virtual image and is thus a diverging lens. Thus,
one can clearly see that an empty spherical shell (n3 = 1.0) is a diverging
lens.
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Figure 3.3: The focal length f of the polystyrene ball lens for different values of
n3, the refractive index of the substance in the ball lens.

Figure 3.4: The focal length f of the BK7 ball lens for different values of n3, the
refractive index of the substance in the ball lens.
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At values for n3 where f goes to ±∞, paraxial rays entering the ball lens
are approximately parallel to the z-axis when exiting the ball lens.

It is also visible that the curve flattens faster for the polystyrene ball lens
than for the BK7 ball lens. This can be explained by the fact that the BK7
ball lens has a bigger radius; as seen in Eq. 2.17, for a homogenous ball
lens, the focal distance scales linearly with the diameter of the ball lens. To
prove that this is also the case for nonhomogenous ball lenses, a simula-
tion has been made where the size of the outer radius of the polystyrene
ball lens varies between 0 and 1 m. The inner radius is scaled up by a scal-
ing constant, equal to the actual outer radius of the polystyrene ball lens
divided by its actual inner radius. Three cases for n3 have been plotted.
The result of the simulation can be found in Fig. 3.5. This graph shows
that the focal distance scales linearly with the radius of the ball lens, not
only for a homogenous ball lens (this has been shown in Eq. 2.17), but also
for a filled spherical shell that functions as a converging lens.

Futhermore, the scaling constant for the inner radius of the polystyrene
ball lens is almost the same as that for the inner radius of the BK7 ball
lens:

BK7 ball lens : Rb/Rs = 0.966

Polystyrene ball lens : Rb/Rs = 0.977

Thus, in approximation, one could say that the BK7 ball lens is a scaled-up
version of the polystyrene ball lens, with the substance the shell is made
of as the only difference.

The implication of these two findings is that the focal lengths for varying
substances of n3 inside the (bigger) BK7 ball lens will be relatively big
compared to those of the (smaller) polystyrene ball lens. For the BK7 lens,
one thus has to use substances of relatively high n3 to get the same focal
length as the polystyrene ball lens.

3.1.1.4 Final choice of ball lens

The polystyrene ball lens in the end became the lens both the experiment
described in chapter 4 and that described in chapter 5 would be done with.
The two halves were glued together using epoxy glue, and two holes were
drilled in the shell, to enable the supply and drainage of water (see Fig.
3.6).
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Figure 3.5: The focal length f of the polystyrene ball lens for different values of Rs,
the outer radius of the spherical shell, for three different cases of n3, the refractive
index of the substance in the ball lens. Rb, the inner radius of the spherical shell,
is scaled by a scaling constant equal to 1.024.

Figure 3.6: The glued-together polystyrene ball lens, filled with water.
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Figure 3.7: The focal length f of the polystyrene ball lens for different values of
Rb, the inner radius of the spherical shell, for three different cases of n3, the refrac-
tive index of the substance in the ball lens. Rs, the outer radius of the spherical
shell, is kept at a constant value of 0.1 m.

3.1.2 Consideration of an aquarium as element of compound
lens

As was shown in Section 3.1.1.1 and Fig. 2.10, the empty sphere shell acts
as a diverging lens. Thus, to make it a converging lens, a high-index sub-
stance is needed to fill the spherical shell with. In Fig. 3.3, it is visible
that the substance should have a refractive index of approximately 1.02
in order to be able to perform small-scale long distance imaging exper-
iments ( f = 1.5 m and such). Unfortunately, there were no safe gases
available that had a refractive index that matched this value. Another so-
lution would be to make the shell thinner: in Fig. 3.7, it is visible that
the shell thickness scales approximately linearly with the position of the
asymptote. However, making the shell thinner was not a practical solu-
tion for this short project. Therefore, the decision was made to “switch
to liquids” and achieve the desired fraction of n3

n1
not by using some gas

for n3 but by putting the ball in an aquarium filled with pure water, thus
making n1 = 1.33. A new ( f , n3)-graph was made that accounted for this
situation (see Fig. 3.8). The solution the ball would be filled with now had
to have a refractive index in the range of 1.378− 1.382 in order to achieve
small focal lengths ( f = 1.5 m ± 0.05 m). This is confirmed in Fig. 3.9.
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Figure 3.8: The focal length f of the polystyrene ball lens in water (n1 = 1.33), for
different values of n3, the refractive index of the substance in the ball lens. Rb, the
inner radius of the spherical shell, is scaled by a scaling constant of 1.024.

Figure 3.9: Detail of the graph in Fig. 3.8, values of f ranging from 1.45 to 1.55
m. are marked in blue, the corresponding values for n3, lying between 1.378 and
1.382, are marked in red.
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3.1 Consideration of different available ball lenses and lens components 40

Figure 3.10: The polystyrene ball lens, here filled with sugar solution, inside the
aquarium.

3.1.2.1 Choice of aquarium

An aquarium of 25x25x40 cm was bought and filled with pure water, and
the polystyrene ball was put inside in order to create the compound lens
shown in Fig. 3.10.

3.1.2.2 Simulating an aquarium

In order to incorporate an aquarium in the simulation, the refractions cir-
cled in yellow in Fig. 3.11 were added to the simulation. These refractions
were easy to calculate, as the angle the incoming ray made with the z-axis
could immediately be plugged into Eq. 2.1 as θin, as well as the refractive
indices n1 = 1.0 and naquarium = 1.33 to get θout which was the new angle
the ray made with the z-axis. The air-aquarium refraction locations were
taken to be −0.2 m and 0.2 m respectively, which meant the approxima-
tion was made that the ball was located in the middle of the aquarium.
The position of the aquarium on the y-axis was between −0.1 m and 0.1
m.

An example simulation can be found in Fig. 3.12, where the properties of
the polystyrene ball filled with a substance of n3 = 1.38 have been simu-
lated. A Huygens source is, in this case, located 4.0 m from the middle of
the ball lens.

Version of January 5, 2021– Created January 5, 2021 - 11:41

40



3.1 Consideration of different available ball lenses and lens components 41

Figure 3.11: Schematic overview of trajectory of ray in aquarium.

Figure 3.12: Simulation of trajectory of rays through the compound lens.
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3.2 Consideration of different solutions as ball lens filling 42

Figure 3.13: A few sugar concentrations and their corresponding refractive in-
dices [18]. The linear fit has the equation n = 0.0019 C + 1.3280, with n the re-
fractive index and C the sugar concentration in mass-percent (%).

3.2 Consideration of different solutions as ball
lens filling

For the experiment which will be discussed in chapter 5, a compound lens
is needed which has a focal distance of around 1.5 m. As seen in Section
3.1.2, the refractive index of the substance inside the ball lens that corre-
sponds with such a focal distance lies between 1.378 and 1.382. To find
a substance with such a refractive index, two different methods will be
considered: using a sugar solution and a salt solution.

3.2.1 Imaging using sugar solution

In Fig. 3.13, it becomes clear that a sugar solution can be prepared to ob-
tain the desired refractive index for the small-scale long-distance imaging
experiment. The refractive index of the solution grows linearly with the
sugar concentration, following the expression stated in the caption. Using
this expression, the sugar concentration can be directly plotted against the
focal length. This is done in Fig. 3.14.
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3.2 Consideration of different solutions as ball lens filling 43

Figure 3.14: A graph of the focal length of the polystyrene ball lens in water, filled
with a sugar solution of varying sugar concentration. The point where the lens
is neither converging nor diverging, marked by the characteristic asymptote, is
situated at a sugar concentration of 4%.

At first, the long-distance imaging experiment was thought to be done in
a long hallway, thus allowing for focal lengths of around 5.00 m. Thus, the
amount of sugar that needed to be dissolved was estimated for this focal
length. The result of this can be found in Fig. 3.15.

This process was executed and the result, at first, was a clear sugar so-
lution in the ball, enabling for sharp imaging inside the aquarium filled
with pure water. Yet, cases began occurring where the sugar solution got
cloudy in the ball lens. This process went according to the steps outlined
below.

1. There was no problem with the imaging quality of the ball or solu-
tion, until the ball was accidentally dropped, causing a small crack
in the shell. This crack was then sealed using 5-minute epoxy glue
of the brand Griffon.

2. After this, the sugar solution inside the ball started to get cloudy each
time it was left overnight or over the weekend. White big flakes were
visible in the cloudy solution.

3. At some point, brown flakes had also appeared in the ball, they could
already be seen just when a new sugar solution was poured into the
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3.2 Consideration of different solutions as ball lens filling 44

Figure 3.15: Detail of the focal length, glucose-graph that was used to determine
the amount of sugar that should be dissolved to create the right solution. The full
volume of the ball was filled in two separate servings of 1.5 L sugar solution.

ball. Part of the newly prepared solution was then kept in the bot-
tle that was used for mixing and pouring the solution, in order to
investigate the cause of the problem.

4. The solution in the ball got cloudy again overnight, and also, the
solution in the ball smelled musty. It would, therefore, be possible
that some form of microbial life had developed on the inner shell
wall and feeded itself off of the sugar in the solution. However, the
solution in the mixing bottle had stayed clear, which opposes this
hypothesis. This clear sample sugar solution was then poured into a
glass bottle and a bit of the hardened epoxy that had been used for
fixing the small crack in the ball lens was put into this glass bottle,
to investigate whether the solution would get cloudy due to being
exposed to this kind of epoxy.

5. The next morning, the solution in the glass bottle had indeed be-
gun to get cloudy. This solution got more and more cloudy as time
passed. Thus, it is probable that the used 5-minute epoxy was (partly)
responsible for the sugar solution getting cloudy. Some reaction could
for example have taken place between the sugar and the epoxy whereby
new polymers were formed.

The aquarium water had in the meantime also gotten cloudy; it could be
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3.2 Consideration of different solutions as ball lens filling 45

Figure 3.16: A few (NaCl) salt concentrations and their corresponding refractive
indices [19]. The linear fit has the Equation n = 0.0017 C + 1.3351 , with n the
refractive index and C the sugar concentration in mass-percent (%).

possible that this is due to some bacteria or fungi infiltrating and feeding
off of some small amount of sugar solution that must have somehow got-
ten into the aquarium water, for example via the crack in the ball that was
glued shut with epoxy. This suspicion is based on what was found when
the aquarium was emptied completely: a smelly, slushy residue was left
at the bottom of the aquarium.

In the end, it was decided to discard sugar solutions as a substance to use
in the ball lens for this imaging experiment.

3.2.2 Imaging using salt solution

In Fig. 3.16, it becomes clear that a sodium chloride (NaCl) salt solution
can also be prepared to obtain the desired refractive index for the small-
scale long-distance imaging experiment. The refractive index of the solu-
tion grows approximately linearly with the salt concentration, following
the expression stated in the caption. Using this expression, the salt con-
centration can be directly plotted against the focal length. This is done in
Fig. 3.17.
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3.3 Consideration of apertures 46

Figure 3.17: A graph of the focal length of the polystyrene ball lens in water, filled
with a sugar solution of varying sugar concentration. The point where the lens
is neither converging nor diverging, marked by the characteristic asymptote, is
situated at a sugar concentration of 0.165%.

The suitable salt concentrations in order to achieve refractive indices vary-
ing from 1.45 to 1.55 turned out to range from 24.75% to 26.25%, as can be
seen in Fig. 3.18.

At room temperature, one liter of water can dissolve about 357 g of salt,
which is equal to a concentration of 26.3% [20]. The aim in the experiment
was to reach a concentration of 25%.

Considering this information, it was decided to use salt to create a solution
and fill the space encapsulated by the spherical shell with this instead.

3.3 Consideration of apertures

As can be seen in Fig. 3.12, The focal point of the compound (ball lens
in aquarium) lens is not very clearly bound to a single spot. However,
this sharpness of the focus can be improved by adding an aperture before
the compound lens (that is, before the first aquarium wall). By using an
aperture, a part of the spherically aberrated rays that do not travel neatly
through the focus can be excluded from the image. Fig. 3.19 shows a
histogram of the transversal coordinates of rays at the focal plane of the
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3.3 Consideration of apertures 47

Figure 3.18: Detail of Fig. 3.17 that was used to determine the amount of salt that
should be dissolved to create the right solution.

lens, after they have passed through an aperture of variable size and the
filled ball lens. The effective focal length was determined by using Eq.
3.15.

Note that the individual histograms have been normalized, but with dif-
ferent bin sizes.

The width of the gaussian fit on each of the histograms is depicted by the
transparent box on each of the fit curves. In the end, the aperture with a
10 cm diameter was used for the experiment discussed in chapter 5. It was
placed in front of the aquarium wall. This aperture caused an image made
by the lens of a beam of parallel rays to have a maximum width of 1.39 cm
on the imaging screen.
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Figure 3.19: Comparison of the effect of three different apertures on the width of
the image of a parallel source at the effective focal point of the lens.
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Chapter 4
First experiment: imaging through
empty polystyrene ball lens

In order to test the quality of the simulation and determine the order of
magnitude of the mean squared error of the simulation, the following ex-
periment was conducted. Two photos were made of a checkerboard, one
with and one without the polystyrene ball lens between the camera and
the checkerboard. The pixel locations of the grid points on the checker-
board were then recorded using photo editing software. A digital ver-
sion of the grid was then plotted by importing these pixel locations in an
iPython Notebook.

An equivalent of this experimental “grid point plot” was made using the
ray-tracing simulation discussed in Chapter 1. Then, after having ob-
tained two experimental grids and two simulated equivalents, the respec-
tive grids were fitted onto each other, and the mean squared error of the
location of the grid points was calculated.

4.1 Experiment in real space

In order to assess the displacement of the locations of the grid points in
real space due to the lens, a photo has to be taken by a camera. In this
experiment, a webcam was used for this. Webcams have a CCD chip on
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4.1 Experiment in real space 50

Figure 4.1: Schematic overview of the first experiment.

Figure 4.2: Resulting photo of experiment 1. In this case, there is no lens between
the checkerboard and the camera.

which all rays passing through the camera lens fall. This is where the
resulting photo is formed.

It is important to align the checkerboard, ball lens and camera. A schematic
overview of the experiment can be found in Fig. 4.1.

The checkers on the checkerboard used had a width and height of 3.5 cm.
The distance between the checkerboard and the lens was 59 cm. The dis-
tance between the lens and the camera was 72 cm. The resulting photos
can be found in Fig. 4.2 and Fig. 4.3.

These photos were then opened in a photo editing programme to trace the
pixel locations (x- and y-coordinates) of each of the gridpoints. In the case
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4.2 Simulated experiment 51

Figure 4.3: Resulting photo of experiment 1. In this case, the empty polystyrene
ball lens is in front of the checkerboard.

Figure 4.4: Resulting scatter plot of the grid point locations recorded from Fig.
4.2 and Fig. 4.3.

of this project “Gimp” was the photo editing programme used for this.
Finally, the pixel locations had to be visualised in a scatter plot where each
grid point is a separate dot located at the location of its pixel coordinates,
relative to the origin, which is taken to be the middlemost pixel of the
photo of the checkerboard. The scatter plot can be found in Fig. 4.4.

4.2 Simulated experiment

In order to simulate the experiment, all grid points were (two-dimensionally)
simulated in the plane coinciding with the checkerboard location. The off-
set of the ball relative to the checkerboard was taken into account as well;
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4.2 Simulated experiment 52

Figure 4.5: Location of the two incoming angles used to simulate the rays
going through the ball lens (θin, lens) and the rays not going through the ball
lens(θin, no lens).

in Fig. 4.3, it can be seen that the ball has a small offset to the right and to
the lower checkerboard border.

Now that the grid points had been correctly simulated, each of the grid
points was separately taken as a Huygens source in the ray-tracing sim-
ulation that was designed for this project. The distance between the grid
point and the center of the checkerboard was taken as the transversal co-
ordinate (the y-axis in the ray-tracing simulation).

The right incoming angle of the ray emerging from the Huygens source
(grid point) needed to be found; for the ray passing through the ball lens,
this is the incoming angle corresponding to the certain ray trajectory that
goes first through the ball lens, and afterwards, through the lens of the
camera. For the unrefracted ray this angle corresponds simply to the angle
the ray that directly hits the camera makes with the z-axis. A schematic
overview of these two angles is given in Fig. 4.5.

When θin, lens and θin, no lens had been found, the location where the re-
fracted and unrefracted rays hit the CCD plate was calculated (the loca-
tion of the CCD plate was taken to be 55 mm from the lens of the camera).
For this, the one-dimensional transversal coordinate was translated back
to a two-dimensional location using the angle the original grid point made
with the center of the checkerboard.
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Figure 4.6: Locations of the grid points on the CCD plate; the orange grid points
have travelled through the ball lens, the blue grid points have not.

Finally, all locations of the grid points on the CCD plate were plotted in a
single graph; this graph can be found in Fig. 4.6.

4.3 Comparison

In order to compare the simulation results to the experimental results, the
simulated grid without lens was firstly linearly fitted onto the experimen-
tal grid (see Fig. 4.7). The found fit parameters were also used to fit the
simulated grid with lens over its experimental counterpart (see Fig. 4.8).
The simulated and experimental positions of the grid points on the unre-
fracted grid (see Fig. 4.7) were found to coincide within numerical accu-
racy.

For the refracted grid (see Fig. 4.8), the uppermost row and the outermost
columns of grid points were discarded in the comparison, in order to com-
pare the two grids effectively; in the experiment, some of the grid points
in the upper corners of the checkerboard had been measured “outside” of
the ball lens, which made it difficult to compare the entire experimentally
found grid with the simulated grid. The resulting grid can be found in
Fig. 4.9. The mean squared error for the x-coordinates of the refracted grid
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4.4 Discussion of experiment 54

Figure 4.7: Comparison of the measured and (fitted) simulated grid points, in the
situation where there is no lens between the checkerboard and the camera.

points was found to be equal to 3.1 pixel2, and the mean squared error for
the y-coordinates of the refracted grid points was found to be 3.7 pixel2.
The mean squared error is relatively low, which proves that the simulation
accurately predicts the refraction of rays through the ball lens.

4.4 Discussion of experiment

A few points of discussion regarding the experiment suggest themselves:

• The polystyrene ball is made up of two loose ends, which are con-
nected by tightening the two sides onto each other. this might cause
the unexpected displacement of the outermost gridpoints.

• Also, the camera quality was not optimal, making it hard to locate
the exact pixels corresponding with the gridpoints.

• It was especially hard to locate the pixel locations of the outermost
grid points that were refracted through the lens, as the checkers were
heavily bent at these points. This can be seen clearly in Fig. 4.3.
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Figure 4.8: Comparison of the measured and (fitted) simulated grid points, in the
situation where there is a ball lens between the checkerboard and the camera. In
the experiment, some of the grid points in the upper corners of the checkerboard
had been measured “outside” of the ball lens; hence the inconstant location of the
orange grid points in the upper corners.

Figure 4.9: Comparison of the measured and (fitted) simulated grid points, in
the situation where there is a ball lens between the checkerboard and the camera.
Cropped version of Fig. 4.8; the uppermost row and the two outermost columns
have been removed, in order to make a realistic estimation of the mean squared
error.
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Chapter 5
Second experiment: long-distance
imaging through filled polystyrene
ball lens in aquarium

In order to assess what the quality of the compound lens is, we calculate
its diffraction limit by solving Eq. 1.1 for this lens. The half opening angle
θ, for this lens, is equal to the arctangent of the aperture radius Raperture =
0.05 m divided by 2 f − daquarium. This is visualised in Fig. 5.1.

The expected focal length of the lens is 1.5 m. The minimum and maxi-
mum wavelengths of visible light are approximately 400 nm and 600 nm
respectively [21]. With the help of this data, the resolution limit for “2 f -
2 f -imaging” (see Fig. 5.1) was estimated to be 11.2 μm for light of 400 nm,
and 16.8 μm for light of 600 nm.

In order to test the lens quality experimentally, a graphical form of the
Rayleigh criterion was used to assess the results of an imaging experiment.
Namely, according to the Rayleigh criterion, two images are just resolvable
when the center of the diffraction pattern of one is directly over the first
minimum of the diffraction pattern of the other [22]. The first and second
diffraction pattern intersect at a height that is equal to half of each of the
maxima.

Thus, when an image is made by the compound lens of two light sources
that are a certain distance apart from each other, an intensity plot can give
information on whether the diffraction limit of the lens has been reached.
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Figure 5.1: Visualisation of the “half opening angle” θ = arctan
(

Raperture
2 f−daquarium

)
of

the ball lens for imaging a source located at a distance of 2 f before the ball lens
on an image plane located at a distance of 2 f behind the ball lens.

5.1 Experimental procedure

First, a salt solution of 25% salt was prepared. As seen in chapter 3, this
concentration of salt in solution corresponds to a refractive index of 1.38.
This solution was then put into the polystyrene ball lens. An aquarium of
25x25x40 cm was filled with demineralized water and the filled ball lens.
An aperture with a diameter of 10 cm was put in front of the aquarium
wall. A flashlight consisting of a strip of LED lights was used as the light
source. Two small holes were pricked into a piece of aluminium foil us-
ing the sharp point of a pair of compasses, one sheet of aluminium foil
contained two small holes that were 3 mm apart, and one sheet of foil con-
tained two small holes that were 6 mm apart. These two aluminium foil
pieces were alternately wrapped around the strip of light in order to create
two separate sources of light, at 3 and 6 mm spacing. This light source was
placed at 3 m distance of the compound lens, corresponding to a length of
two times the estimated focal distance of the compound lens. On the other
side of the compound lens, at 3 m distance, a briefcase stood upright, with
a sheet of paper attached to it. This sheet of paper was used as the imaging
plane. A schematic overview of the experiment can be found in Fig. 5.1.
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Figure 5.2: Photo of the imaged two sources at 3 mm distance.

Figure 5.3: Photo of the imaged two sources at 6 mm distance.

5.2 Results

The found focal length differed slightly from the calculated focal length: a
focal length of 1.43 m was found. The resulting photos of the illuminated
imaging screen can be found in Fig. 5.3 and Fig. 5.2.

Fig. 5.4 shows an intensity plot of the photo of the image of the sources at 6
m spacing. In this plot, it is visible that the resolution limit has not yet been
reached, as the intersection point of the gaussian fits of the two sources is
lower than the half maximum of each of the gaussians. In Fig. 5.5, the
intensity plot of the photo of the image of the sources at 3 mm, it is visible
that the sources are not completely resolvable; the intersection point of the
gaussian fits of the two sources is higher than the half maximum of each
of the gaussians.
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Figure 5.4: Intensity plot of the imaged two sources at 6 mm distance.

Figure 5.5: Intensity plot of the imaged two sources at 3 mm distance.
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Chapter 6
Discussion

In this thesis, the idea of using a ball lens with shell as a helioscope has
been explored. The possibility of imaging sunspots with this lens was
assessed.

In the introduction, it was shown that a ball lens with a radius of 0.5 m
could image sunspots that were over 87 km in diameter. If we calculate
the resolution limit of the polystyrene ball lens via Eq. 1.1, plugging in its
radius of 0.1 m and a distance of 1 astronomical unit into 1.2 to find the
right half opening angle, and choosing λ = 580 nm (yellow light) and n =
1.0 (vacuum of empty space), we find the minimum diameter of a sunspot
it could image, which is 433.83 km. Imaging a medium-sized sunspot with
the polystyrene ball lens should thus in theory definitely be possible.

Yet, as shown in Chapter 5, the resolution limit found experimentally for
2 f -2 f -imaging is a lot bigger than the value found through theory. Thus,
the found image is probably highly influenced by lens errors, and does not
give accurate information on the diffraction limit of the lens.

The most plausible explanation for the lens errors is that the water might
have become a bit more cloudy in the period that the experimental setup
was completely ready, but the experiment was not conducted yet; this pe-
riod lasted for four weeks. Another plausible cause of the lens errors is
that the surface of the polystyrene ball was not perfectly round, as well as
slightly bruised in some areas, which might also impact the overall lens
resolution.
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Overall, the ball lens with shell was assessed as a device suitable for imag-
ing the sun, however, the clarity and durability of the substance the ball
lens is to be filled with should be taken into consideration when building
a helioscope using a ball lens with shell, as this may cause lens errors that
are very large and that might gravely blur an image.
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Chapter 8
Appendix 1

Listing 8.1: The Python code describing the five main functions used in the ray-
tracing simulation.

# ray t r a c i n g through curved s u r f a c e
import numpy as np
import m a t p l o t l i b . pyplot as p l t
%m a t p l o t l i b i n l i n e

def r e f r a c t ( inc_z , inc_y , inc_ the ta , R , n_1 , n_2 ) :
# i n c = incoming

i f abs ( inc_y ) >=R :
return Fa lse # t h e r a y s t h a t on ly t r a v e l

th rough t h e s h e l l a r e not i n c o r p o r a t e d in
t h i s ray − t r a c i n g program

e lse :
alpha = −np . s ign ( inc_z ) *np . a r c s i n ( inc_y/R) +

i n c _ t h e t a # a l p h a = a n g l e o f
i n c i d e n t ray with r e s p e c t t o s u r f a c e normal

i f abs ( ( n_1/n_2 ) *np . s i n ( alpha ) ) > 1 . 0 :
return Fa lse

e lse :
beta = np . a r c s i n ( ( n_1/n_2 ) *np . s i n ( alpha ) )

# c a l c u l a t e d v i a s n e l l ’ s law
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out_ theta = beta + np . s ign ( ( inc_z ) ) *np .
a r c s i n ( inc_y/R)

return out_ theta

def c i r c l e _ l i n e _ i n t e r s e c t i o n ( inc_z , inc_y , R , t h e t a ) :
# two p o i n t s on t h e l i n e :
z_in_1 = inc_z
y_in_1 = inc_y
y_in_2 = R*np . tan ( t h e t a ) +inc_y −inc_z *np . tan (

t h e t a )
z_in_2 = R

# p r o p e r t i e s f o r t h e l i n e − s p h e r e i n t e r s e c t i o n :
d_z = z_in_2 −z_in_1
d_y = y_in_2 −y_in_1
d_r = np . s q r t ( ( d_z ) * * 2 + ( d_y ) * * 2 )
D = z_in_1 * y_in_2 −z_in_2 * y_in_1

d i s c r = R* * 2 * d_r **2 −D* * 2 # d i s c r i m i n a n t

i f d i s c r <=0.0 :
return Fa lse # t h e r a y s t h a t on ly t r a v e l

th rough t h e s h e l l a r e not i n c o r p o r a t e d
in t h i s ray − t r a c i n g program

e lse :
# r e s u l t s o f t h e c i r c l e − l i n e i n t e r s e c t i o n :
z_1 = (D* d_y − d_z *np . s q r t (R* * 2 * d_r **2 −D

* * 2 ) ) /d_r * * 2
z_2 = (D* d_y + d_z *np . s q r t (R* * 2 * d_r **2 −D

* * 2 ) ) /d_r * * 2
y_1 = ( −D* d_z + np . abs ( d_y ) *np . s q r t (R* * 2 *

d_r **2 −D* * 2 ) ) /d_r * * 2
y_2 = ( −D* d_z − np . abs ( d_y ) *np . s q r t (R* * 2 *

d_r **2 −D* * 2 ) ) /d_r * * 2

# match t h e r i g h t r e s u l t t o t h e r i g h t p o i n t
( p o i n t o f i n c i d e n c e and p o i n t o f

d e p a r t u r e )
return ( np . array ( [ z_1 , z_2 ] ) ,np . array ( [ y_1 ,

y_2 ] ) )
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def b a l l _ w i t h _ s h e l l ( R_s , R_b , n_1 , n_2 , n_3 , source_z ,
source_y , source_theta , stoppoint , ra yco lo r ) :

i n c _ t h e t a = source_ the ta # a n g l e o f t h e e m i t t e d ray
= incoming a n g l e

# f i n d i n g t h e l e f t i n t e r s e c t i o n p o i n t o f t h e ray
with t h e o u t e r s h e l l

i f not c i r c l e _ l i n e _ i n t e r s e c t i o n ( source_z , source_y ,
R_s , i n c _ t h e t a ) :

return
zvalues_os , yvalues_os = c i r c l e _ l i n e _ i n t e r s e c t i o n (

source_z , source_y , R_s , i n c _ t h e t a )
# match t h e r i g h t v a l u e s f o r z and y
inc_z = np . amin ( zvalues_os )
i f i n c _ t h e t a < 0 . 0 :

inc_y = np . amax ( yvalues_os )
e lse :

inc_y = np . amin ( yvalues_os )

# f i r s t r e f r a c t i o n ; o u t s i d e t o o u t e r s h e l l
i n t e r f a c e

out_ the ta_s1 = r e f r a c t ( inc_z , inc_y , inc_ the ta ,
R_s , n_1 , n_2 ) # o u t g o i n g a n g l e a f t e r f i r s t
s h e l l r e f r a c t i o n

# i f not o u t _ t h e t a _ s 1 :
# r e t u r n

# f i n d i n g t h e i n t e r s e c t i o n p o i n t o f t h e ray with
t h e i n n e r b a l l ( a f t e r f i r s t r e f r a c t i o n )

# ray p o s i t i o n : l e f t from l e n s c e n t e r
i f not c i r c l e _ l i n e _ i n t e r s e c t i o n ( inc_z , inc_y , R_b ,

out_ the ta_s1 ) :
return

zvalues_sb , yvalues_sb = c i r c l e _ l i n e _ i n t e r s e c t i o n (
inc_z , inc_y , R_b , out_ the ta_s1 ) # i n t e r s e c t i o n
s h e l l t o b a l l ( sb )

# match t h e r i g h t v a l u e s f o r z and y

Version of January 5, 2021– Created January 5, 2021 - 11:41

69



70

inc_z_b1 = np . amin ( zvalues_sb ) # incoming z−
c o o r d i n a t e a t i n n e r b a l l ( l e f t from l e n s c e n t e r
)

i f out_ the ta_s1 < 0 . 0 :
inc_y_b1 = np . amax ( yvalues_sb ) # incoming y−

c o o r d i n a t e a t i n n e r b a l l ( l e f t from l e n s
c e n t e r )

e lse :
inc_y_b1 = np . amin ( yvalues_sb )

# s e c o n d r e f r a c t i o n ; s h e l l t o b a l l i n t e r f a c e
# ray p o s i t i o n : l e f t from l e n s c e n t e r
out_theta_b = r e f r a c t ( inc_z_b1 , inc_y_b1 ,

out_theta_s1 , R_b , n_2 , n_3 ) # o u t g o i n g a n g l e
a f t e r b a l l r e f r a c t i o n

# i f not o u t _ t h e t a _ b :
# r e t u r n

# f i n d i n g t h e i n t e r s e c t i o n p o i n t o f t h e ray with
t h e i n n e r b a l l ( a f t e r s e c o n d r e f r a c t i o n )

# ray p o s i t i o n : r i g h t from l e n s c e n t e r

i f not c i r c l e _ l i n e _ i n t e r s e c t i o n ( inc_z_b1 , inc_y_b1 ,
R_b , out_theta_b ) :

return

zvalues_bb , yvalues_bb = c i r c l e _ l i n e _ i n t e r s e c t i o n (
inc_z_b1 , inc_y_b1 , R_b , out_theta_b ) #
i n t e r s e c t i o n b a l l t o b a l l ( bb )

# match t h e r i g h t v a l u e s f o r z and y
inc_z_b2 = np . amax ( zvalues_bb ) # s e c o n d incoming z−

c o o r d i n a t e a t i n n e r b a l l ( r i g h t from l e n s
c e n t e r )

i f out_theta_b > 0 . 0 :
inc_y_b2 = np . amax ( yvalues_bb ) # s e c o n d

incoming y− c o o r d i n a t e a t i n n e r b a l l ( r i g h t
from l e n s c e n t e r )

e lse :
inc_y_b2 = np . amin ( yvalues_bb )
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# t h i r d r e f r a c t i o n ; b a l l t o s h e l l i n t e r f a c e
# ray p o s i t i o n : r i g h t from l e n s c e n t e r
out_ the ta_s2 = r e f r a c t ( inc_z_b2 , inc_y_b2 ,

out_theta_b , R_b , n_3 , n_2 ) # o u t g o i n g a n g l e
a f t e r s e c o n d s h e l l r e f r a c t i o n

i f inc_z_b2 < 0 . 0 : # t h e programme doesn ’ t work
p r o p e r l y f o r r a y s with a z− c o o r d i n a t e s m a l l e r
than z e r o

# f o r t h e p o i n t where t h e ray
comes out o f t h e i n n e r b a l l

and e n t e r s t h e s h e l l .
return

# f i n d i n g t h e i n t e r s e c t i o n p o i n t o f t h e ray with
t h e o u t e r s h e l l ( a f t e r t h i r d r e f r a c t i o n )

# ray p o s i t i o n : r i g h t from l e n s c e n t e r
i f not c i r c l e _ l i n e _ i n t e r s e c t i o n ( inc_z_b2 , inc_y_b2 ,

R_s , out_ the ta_s2 ) :
return

zvalues_bs , yvalues_bs = c i r c l e _ l i n e _ i n t e r s e c t i o n (
inc_z_b2 , inc_y_b2 , R_s , out_ the ta_s2 ) #
i n t e r s e c t i o n b a l l t o s h e l l ( bs )

# match t h e r i g h t v a l u e s f o r z and y
inc_z_s2 = np . amax ( zvalues_bs ) # s e c o n d incoming z−

c o o r d i n a t e a t o u t e r s h e l l ( r i g h t from l e n s
c e n t e r )

i f abs ( out_ the ta_s2 ) >np . pi / 2 . :
inc_z_s2 = np . amin ( zvalues_bs )

i f out_ the ta_s2 > 0 . 0 :
inc_y_s2 = np . amax ( yvalues_bs ) # s e c o n d

incoming y− c o o r d i n a t e a t o u t e r s h e l l ( r i g h t
from l e n s c e n t e r )

e lse :
inc_y_s2 = np . amin ( yvalues_bs )

# f o u r t h r e f r a c t i o n ; s h e l l t o o u t s i d e i n t e r f a c e
# ray p o s i t i o n : r i g h t from l e n s c e n t e r
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out_ theta = r e f r a c t ( inc_z_s2 , inc_y_s2 ,
out_theta_s2 , R_s , n_2 , n_1 ) # o u t g o i n g a n g l e
a f t e r l a s t r e f r a c t i o n

i f inc_z_s2 < 0 . 0 : # t h e programme doesn ’ t work
p r o p e r l y f o r r a y s with a z− c o o r d i n a t e s m a l l e r
than z e r o

# f o r t h e p o i n t where t h e ray
comes out o f t h e s h e l l and
e n t e r s t h e a r e a o u t s i d e t h e

l e n s .
return

return inc_z_s2 , inc_y_s2 , out_ theta

def huygens_source ( R_s , R_b , n_1 , n_2 , n_3 , source_z ,
source_y , source_theta , stoppoint , R_h , aperture ,
dens i ty ) :

# t h e f u n c t i o n " b a l l _ w i t h _ s h e l l _ p l o t "
a u t o m a t i c a l l y p i c k s out on ly t h o s e r a y s e m i t t e d

# by a huygens s o u r c e t h a t have p o s i t i v e z−
c o o r d i n a t e s a t t h e p o i n t o f l e a v i n g

# t h e i n n e r b a l l t o e n t e r t h e o u t e r s h e l l ( t h i r d
r e f r a c t i o n ) and a t t h e

# p o i n t o f l e a v i n g t h e o u t e r s h e l l t o e n t e r t h e
o u t s i d e a r e a ( f o u r t h r e f r a c t i o n ) .

r e s u l t _ a r r a y = np . zeros ( ( 1 , 4 ) )
r e s u l t = np . zeros ( ( 1 , 4 ) )
# / s o u r c e _ t h e t a / / ou t_z / / out_y / / o u t _ t h e t a /

for source_ the ta in np . l i n s p a c e ( −np . a r c s i n (
source_y/R_h ) −aperture , −np . a r c s i n ( source_y/R_h )
+aperture , dens i ty ) :

i f b a l l _ w i t h _ s h e l l ( R_s , R_b , n_1 , n_2 , n_3 ,
source_z , source_y , source_theta , stoppoint ,
ray co lo r ) :

out_z , out_y , out_ the ta = b a l l _ w i t h _ s h e l l (
R_s , R_b , n_1 , n_2 , n_3 , source_z , source_y ,
source_theta , stoppoint , r ayco l or )

r e s u l t [ 0 , : ] = np . array ( [ source_theta ,
out_z , out_y , out_ theta ] )
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r e s u l t _ a r r a y = np . append ( r e s u l t _ a r r a y ,
r e s u l t , a x i s = 0)

return r e s u l t _ a r r a y [ 1 : , : ]

def p a r a l l e l _ s o u r c e ( R_s , R_b , n_1 , n_2 , n_3 , source_z ,
source_y , source_theta , stoppoint , R_h , aperture ,
dens i ty ) :

# t h e f u n c t i o n " b a l l _ w i t h _ s h e l l _ p l o t "
a u t o m a t i c a l l y p i c k s out on ly t h o s e r a y s e m i t t e d

# by a huygens s o u r c e t h a t have p o s i t i v e z−
c o o r d i n a t e s a t t h e p o i n t o f l e a v i n g

# t h e i n n e r b a l l t o e n t e r t h e o u t e r s h e l l ( t h i r d
r e f r a c t i o n ) and a t t h e

# p o i n t o f l e a v i n g t h e o u t e r s h e l l t o e n t e r t h e
o u t s i d e a r e a ( f o u r t h r e f r a c t i o n ) .

r e s u l t _ a r r a y = np . zeros ( ( 1 , 4 ) )
r e s u l t = np . zeros ( ( 1 , 4 ) )
source_ the ta = 0
# / s o u r c e _ t h e t a / / ou t_z / / out_y / / o u t _ t h e t a /

for source_y in np . l i n s p a c e ( − aperture , aperture ,
dens i ty ) :

i f b a l l _ w i t h _ s h e l l ( R_s , R_b , n_1 , n_2 , n_3 ,
source_z , source_y , source_theta , stoppoint ,
ray co lo r ) :

out_z , out_y , out_ the ta = b a l l _ w i t h _ s h e l l (
R_s , R_b , n_1 , n_2 , n_3 , source_z , source_y ,
source_theta , stoppoint , r ayco l or )

r e s u l t [ 0 , : ] = np . array ( [ source_y , out_z ,
out_y , out_ the ta ] )

r e s u l t _ a r r a y = np . append ( r e s u l t _ a r r a y ,
r e s u l t , a x i s = 0)

return r e s u l t _ a r r a y [ 1 : , : ]
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