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Abstract

Authentication of a communication channel usually requires that the par-
ties meet physically; but there is one solution if it is enough to confirm
the geographical location of a party: quantum position verification (QPV).
This is based on quantum mechanics, the no-cloning theorem, and special
relativity, the invariance of the speed of light. We shown an extension of
a QPV protocol where quantum information is communicated via the po-
larization state of single photons including the effects of photon loss and
polarization noise, and explore it by numerical simulations. Moreover, we
have designed and implemented the first steps of a QPV demonstration
using optical fibers. We have been able to calibrate the setup for horizon-
tal and vertical polarization states where a visibility of approximately 0.85
has been measured.
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Chapter 1
Introduction

Nowadays almost all financial transactions are done via online banking.
It would be helpful if we could verify that the bank’s website webserver
is located in the bank building in order to ensure safe communication.
Safe communication requires (i) protection of the communication against
eavesdroppers, and (ii) authentication of the identity of one party. The lat-
ter is much harder to achieve than the former, and usually requires either
physical (going to a physical bank to do the transaction), or relying on a
network of trust. Both are not ideal, the former is impractical and the latter
is not fully secure.

Here we explore authentication of an, initially, untrusted party by ge-
ographic credential via position verification. Whether the third party can
be trusted or not will depend on whether the party is at a claimed posi-
tion or not. Quantum Position Verification (QPV) schemes in particular
are a good candidate to safely use geographic credentials to authenticate a
communication channel[1–3].

In the general one-dimensional Quantum Position Verification scheme
there are three players. There are the two verifiers V0 and V1 and the

V0 V1P
Δ𝑥 Δ𝑥

Figure 1.1: General one-dimensional Quantum Position Verification scheme of
the two verifiers V0 and V1 with the prover P exactly in between.
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8 Introduction

prover P in the middle (fig 1.1). The goal of the quantum game is for
the verifiers to check if the prover is exactly in the middle (at the agreed
geographical position) or not. The two verifiers send out quantum infor-
mation to the prover who in turn has to perform a task. The nature of the
task depends on the protocol that is used. The result of the task is send
back to both verifiers in the form of classical information. In the limit that
all information travels at the speed of light, the time between the verifiers
sending out the information and receiving the answer from the prover is
2∆x plus the time it takes for the prover to perform the task. If the prover
is not in the position it claims (i.e. a dishonest prover) either the time for
the verifiers to receive an answer for the prover is too long, or the results
from the task do not follow the distribution of answers which would be

V0 V1E0 E1
x

t

Figure 1.2: Space-Time diagram of the scheme of two verifiers V0 and V1 with
two eavesdroppers E0 and E1. The diagonal black lines is the space-time path
travelled by the information. Each of the eavesdroppers intercepts the informa-
tion from V0 and V1 after which they separately perform a task. The outcomes are
communicated between the verifiers (yellow dashed line) and an answer for the
verifiers is formulated by combining both results. There is a possibility that the
eavesdroppers share entanglement (orange ∞), then the QPV scheme is broken.

8
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expected from an honest prover.
There is another possibility of an attack where an outside party tries

to fool the verifiers into believing they are at the position of the prover P.
We assume that this claimed position is not accessible to the malicious at-
tackers, therefore an attacker can try to position two eavesdroppers E0 and
E1 close to the location of the prover (figure 1.2). The space-time diagram
shows that now eavesdropper E0 is able to intercept some of all of the
quantum information send by V0 and the eavesdropper E1 likewise for V1.
Both eavesdroppers can perform a task on the intercepted information.
The eavesdroppers now also have the control over the classical channel
over which they can communicate the results from their performed tasks
(yellow dashed line in fig 1.2). Since the outcome of the task is in the form
of classical information, the eavesdroppers are able to save a copy of the
result as well (orange arrow). In the end, the eavesdroppers can formulate
an answer to send back to the verifiers combining each others measure-
ment outcomes. The goal of the attackers is now to emulate as good as
possible the response of an honest prover.

These colluding adversaries (the eavesdroppers operating as a team) is
the reason why the position verification schemes using classical informa-
tion only break [4]. QPV has the verifiers use quantum information, limit-
ing the attack possibilities for the eavesdroppers since the attackers are not
able to copy the intercepted information anymore (no-cloning). However,
it has been proven by Buhrman et al. [5] that it is possible for eavesdrop-
pers to fool the verifiers when they (E0 and E1) share enough entanglement
with each other. Hence, QPV is not safe against such attacks. Fortunately,
it has later been shown by Beigi and Koenig [6] that the eavesdroppers
need an exponential amount of EPR pairs (entangled states) and that QPV
is still secure if only linear amounts of EPR pairs are available. Gaining an
exponential amount of entanglement is very difficult, hence the protocols
are secure for a large range of attacks.

This research is focused on moving Quantum Position Verification from
theory to experiment by designing and setting up a demonstration of a
QPV protocol. Here, we discuss a loss tolerant protocol and show the first
calibration steps for an experimental one dimensional Quantum Position
Verification demonstration. We first start with some background theory
concerning polarization states of light and two path interference. In chap-
ter 3 we discuss a QPV protocol proposed by Lim et al.[7] and explore the
effects of loss and errors. In chapter 4 we design and discuss a first demon-
stration setup and show calibration results. At the end, in chapter 5, we
discuss the found results and provide an outlook on further research.
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Chapter 2
Background Theory

Before describing the protocol in more detail, a bit of background theory is
necessary. This chapter provides a short overview on the topics of polar-
ization states, waveplates, and the corresponding mathematics of Stokes
parameters and Mueller matrices. Moreover, the protocol will use inter-
ferometry. In particular Hong-Ou-Mandel quantum interference of single
photons and Mach-Zehnder interferometry.

Anyone with a Quantum Optics background will probably know the
topics discussed in this chapter by heart and can skip it. The following
chapters will refer back to the sections when necessary.

2.1 Bloch sphere and polarization states

Qubits are used to communicate information in the QPV protocol. In the
research discussed here in this thesis, the polarization of single photons is
used as a two-level system. Like any two-level system its state space can
be represented by a Bloch Sphere (figure 2.1)[8]. Historically, the Bloch
Sphere is known as the Poincare sphere in optics which was specifically
designed for the polarization states[9].

The polarization of light is the direction in which the electric field oscil-
lates. When light is linearly polarized, the electric field oscillates within a
plane. Circular polarization is when the electric field circles around while
a plane wave propagates.

In the case of quantum information the Bloch sphere has the compu-
tational basis {0,1} on the north and south poles of the sphere. In the po-
larization mode the horizontal (|H〉) and vertical (|V〉) polarization states
can, for instance, be considered the computational basis. On the surface of

Version of November 8, 2020– Created November 8, 2020 - 15:48
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12 Background Theory

|H⟩

|V⟩

|R⟩

|L⟩

|D⟩|A⟩
θ

ϕ

|ψ⟩

|H⟩

|V⟩

Figure 2.1: Left: Pure state |Ψ〉 on the Bloch sphere with Bloch angles φ and θ.
Right: Positions of the horizontal, vertical, diagonal, anti-diagonal, right circular
and left circular polarizations.

the Bloch sphere lie the pure states. Any pure polarization state |Ψ〉 can
be defined as a function of two Bloch angles θ and φ, shown on the left in
figure 2.1, in the following way:

|Ψ〉 = cos
(

θ

2

)
|H〉+ [cos(φ) + i sin(φ)] sin

(
θ

2

)
|V〉 (2.1)

Any state that lies inside the sphere is known as a mixed state, which
is a statistical ensemble of pure states. These mixed states cannot be de-
scribed as a vector like pure states. In this thesis we assume that all polar-
ization states are pure states only.

In this thesis we focus use the six polarization states shown on the
left in figure 2.1. The horizontal and vertical polarization states |H〉 and
|V〉 form the computational basis and the two mutually unbiased bases
(MUBs) to it: the Hadamard basis {+,-} and the {+i, -i} basis. In terms of
polarization these bases are {D,A} (diagonal and anti-diagonal) and {R,L}
(right and left circular polarized). The corresponding states from quantum
information and in terms of polarization are shown in equation 2.2.

12
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2.2 Waveplates 13

|0〉 |H〉
|1〉 |V〉

|+〉 = 1√
2
(|0〉+ |1〉) |D〉 = 1√

2
(|H〉+ |V〉)

|−〉 = 1√
2
(|0〉 − |1〉) |A〉 = 1√

2
(|H〉 − |V〉)

|+i〉 = 1√
2
(|0〉+ i |1〉) |R〉 = 1√

2
(|H〉+ i |V〉)

|−i〉 = 1√
2
(|0〉 − i |1〉) |L〉 = 1√

2
(|H〉 − i |V〉)

(2.2)

These six polarization states are all pure states. Therefore, they all can
be described in terms of the Bloch angles θ and φ (eq 2.3).

|H〉 : θ = 0 , φ = 0 |V〉 : θ = π , φ = 0

|D〉 : θ =
π

2
, φ = 0 |A〉 : θ =

π

2
, φ = π

|R〉 : θ =
π

2
, φ =

π

4
|L〉 : θ =

π

2
, φ =

−π

4

(2.3)

As stated in the introduction, the protocol investigated in this thesis
has the quantum information carried in the polarization state of single
photons. In order for us to demonstrate the protocol we need to be able to
prepare photons of different polarization which is done with waveplates.

2.2 Waveplates

Waveplates are free-space optical components made out of birefringent
material and are used to alter the polarization state of the light travelling
through it [10]. A birefringent material is optically anisotropic where the
refractive index normal to the optical axis differs form the refractive index
parallel to the optical axis. The parallel and normal axes are also known as
the fast and slow axes. The difference in refractive index results in a phase
difference between the components of the electric field which are parallel
or normal to the optical axis.

The two most used linear retarders are the half-wave (λ/2) plate and
the quarter-wave (λ/4) plate. The half-wave plate has a thickness such
that the light travelling through experiences a relative phase shift of π in
radians. When this plate is positioned at an angle τ w.r.t. the fast axis of the
light, the electric field of linear polarized light exiting the plate has rotated

Version of November 8, 2020– Created November 8, 2020 - 15:48
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14 Background Theory

over an angle 2τ. Hence, the half-wave plate rotates the direction of linear
polarized light. Further, it inverts the handedness of circular polarized
light.

The quarter-wave plate has a thickness such that the light through the
plate experiences a relative phase shift of π/2 in radians. When linear
polarized light travels through such a plate, oriented at 45◦ to an optical
axis, it is rotated to circular polarized light and vise versa.

The results waveplates have on polarization states can be mathemati-
cally described with the use of Mueller matrices and Stokes parameters.

2.3 Mueller matrices and Stokes parameters

Stokes parameters are used to describe the polarization state of electro-
magnetic fields[11]. There are four stokes parameters which are linked
to the intensity of the field for different polarizations (eq 2.4). S0 is the
total intensity, S1 is the intensity difference between horizontal and vertical
polarized light, S2 is the difference between diagonal and anti-diagonal
and, S3 is the difference between right-handed and left-handed polarized

light. For pure polarization states
√

S2
1 + S2

2 + S2
3 = I where I is the total

intensity measured. 
S0
S1
S2
S3

 =


IH + IV
IH − IV
ID − IA
IR − IL

 (2.4)

From equation 2.4, one can define the six polarization states:

|H〉 =


1
1
0
0

 |V〉 =


1
−1
0
0

 |D〉 =


1
0
1
0



|A〉 =


1
0
−1
0

 |R〉 =


1
0
0
1

 |L〉 =


1
0
0
−1


(2.5)

Any operation on these Stokes vectors are written as Mueller matrices
[11], named after their developer Hans Mueller. In this thesis we use two
types of Mueller matrices. The first one is the rotation matrix R(τ) with

14
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2.3 Mueller matrices and Stokes parameters 15

which the reference frame can be rotated from a local frame to the lab
frame.

R(τ) =


1 0 0 0
0 cos (2τ) sin (2τ) 0
0 − sin (2τ) cos (2τ) 0
0 0 0 1

 (2.6)

The second type of Mueller matrix used is the operation performed by
a linear retarder M(δ). The retardance (δ) is the phase difference induced
between the field travelling along the fast and slow axes (as discussed in
the section on waveplates). The operation of a linear retarder where the
fast axis is set to 0◦ is given by equation 2.7[11].

M(δ) =


1 0 0 0
0 1 0 0
0 0 cos(δ) sin(δ)
0 0 − sin(δ) cos(δ)

 (2.7)

When the fast axis of the linear retarder is rotated by an angle τ w.r.t.
the lab frame a combination of the rotation matrix and the matrix for a lin-
ear retarder is used to describe the change in polarization. First one rotates
the reference frame to a local frame, then the operation of the retarder is
applied after which the reference frame is rotated back to the lab frame.
The Mueller matrix which describes this sequence of operations is given
by equation 2.8.

R(τ)M(δ)R†(τ) =
1 0 0 0
0 cos2(2τ) + sin2(2τ) cos(δ) cos(2τ) sin(2τ)(1− cos(δ)) − sin(2τ) sin(δ)
0 cos(2τ) sin(2τ)(1− cos(δ)) sin2(2τ) + cos2(2τ) cos(δ) cos(2τ) sin(δ)
0 sin(2τ) sin(δ) − cos(2τ) sin(δ) cos(δ)


(2.8)

For a half-wave plate and a quarter-wave plate the retardance is π,
π/2 respectively. This means that for these two specific linear retarders
the Mueller matrix is written as:

Version of November 8, 2020– Created November 8, 2020 - 15:48
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16 Background Theory

R(τ)M(π)R†(τ) =
1 0 0 0
0 cos2(2τ)− sin2(2τ) 2 cos(2τ) sin(2τ) 0
0 2 cos(2τ) sin(2τ) sin2(2τ)− cos2(2τ) 0
0 0 0 −1

 (2.9)

R(τ)M
(π

2

)
R†(τ) =

1 0 0 0
0 cos2(2τ) cos(2τ) sin(2τ) − sin(2τ)
0 cos(2τ) sin(2τ) sin2(2τ) cos(2τ)
0 sin(2τ) − cos(2τ) 0

 (2.10)

2.4 Hong-Ou-Mandel interference

In the Quantum Position Verification protocol, that will be discussed in
more detail in the next chapter, the prover performs a projection on a Bell-
State. By performing this measurement the idea of quantum interference
is used. Quantum interference between two single photons is also known
as Hong-Ou-Mandel (HOM) interference[12].

This type of interference uses a 50:50 beam splitter where two photons
arrive one each at the two inputs. The operation on the Fock (photon num-
ber) state is: (

a†
0

a†
1

)
=

1√
2

(
1 i
i 1

)(
a†

2
a†

3

)
(2.11)

Where a† is the creation operator for inputs 0 and 1 of the beam splitter
and outputs 2 and 3. The multiplication with the imaginary number i, is a
result of a π/2 phase change when the photon is reflected [13].

First there are two distinguishable (blue and orange) photons arriving
at the beam splitter (figure 2.2). The blue photon arrives at input 0 (from
the right) and the orange photon arrives at input 1 (from above). There are
four possible outcomes: either both photons get transmitted, one is trans-
mitted and the other reflected or both are reflected. Under the schematic
representation of the four outcomes in figure 2.2 the mathematical expres-
sions corresponding to the outcomes are written. Here |1b〉2 means that
one blue coloured photon has ended up in output 2 of the beam splitter.

16
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2.4 Hong-Ou-Mandel interference 17

1

2
1b 2 1o 3

i

2
0 2 1b1o 3

i

2
1b1o 2 0 3

1

2
1o 2 1b 3+ −+

1

0

2

3

1

0

2

3

1

0

2

3

1

0

2

3

Figure 2.2: Schematic representation of the 4 possible outcomes of one blue pho-
ton and and one orange photon arriving at a 50:50 beam splitter. Below the math-
ematical expressions of the outcomes first in terms of the transmission and reflec-
tion coefficients and then the corresponding outcome for the 50:50 beam splitter
(equation 2.11).

The mathematical expressions of the outcomes where both photons are
reflected and both photons are transmitted are different from each other.
This logical, since the two photons have different colours.

Now, instead of a blue photon and an orange photon, both photons are
orange. Providing that in every other mode (timing, polarization, orbital-
angular momentum, etc) the two photons are exactly the same, they are
completely indistinguishable (figure 2.3). In this case there is no way to
tell if both photons are reflected or both photons are transmitted. Because

1

2
1 2 1 3

1

√2
0 2 2 3

1

√2
2 2 0 3

1

2
1 2 1 3+ −+

1

0

2

3

1

0

2

3

1

0

2

3

1

0

2

3

Figure 2.3: Schematic representation of the 4 possible outcomes of one orange
photon arriving at each of the inputs of the 50:50 beam splitter. Below the mathe-
matical expressions of the outcomes first in terms of the transmission and reflec-
tion coefficients and then the corresponding outcome for the 50:50 beam splitter
(equation 2.11).
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18 Background Theory

the states are of opposite sign, the probability to generate an outcome
where both outputs of the beam splitter receive one photon cancel each
other out. As a result, both photons move to one of the two outputs of
the beam splitter together. This phenomenon is Hong-Ou-Mandel inter-
ference. However, the cases of both transmitted or both reflected is only
true when the two photons arriving at the beam splitter are completely
indistinguishable in every way.

For Hong-Ou-Mandel interference we usually talk about single pho-
tons. The goal for this research is to build a demo experiment of QPV. We
have not reached the point where we use single photons yet and used co-
herent light. Therefore, instead of Hong-Ou-Mandel interference we used
a slightly different form of interference: Mach-Zehnder interference.

2.5 Mach-Zehnder interference and Visibility

The Mach-Zehnder interferometer (fig 2.4) is named after Ludwig Mach,
who proposed the idea of such a device, and Ludwig Zehnder who refined
the idea. In the Mach-Zehnder interferometer the light of a single source is
send onto a beam splitter, splitting the light into two paths. The two paths
are recombined at a second beam splitter. The interference pattern of the
recombined light is then measured at one of the outputs[13][10].

Figure 2.4: Schematic representation of a Mach-Zehnder interferometer. The light
of one source is split by the first beam splitter (upper left) into a transmitted beam
(orange) and a reflected beam (blue). The two paths are recombined at a second
beam splitter (lower right) and the resulting interference pattern is measured at
one of the outputs.

18
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2.5 Mach-Zehnder interference and Visibility 19

The interference pattern consists of interference fringes. The contrast
of these interference fringes depends on how indistinguishable the light
arriving at the second beam splitter is. Historically, the tuning of the in-
distinguishablity is performed by changing the path length of one of the
arms. However, like mentioned in the previous section on HOM interfer-
ence, the indistinguishablity also depends on other characteristics of light
such as polarization.

The contrast of the interference fringes is known as interferometric vis-
ibility (or just visibility). The visibility V can be determined by measuring
the maximum Imax and minimum Imin intensity values while changing the
phase between the two paths (eq 2.12). If all other characteristics of the
light are completely the same the maximum intensity must be the total
intensity at the output and the minimum intensity should be zero. As a
result the visibility should be 1. Any loss of overlap between the photon
states in the two paths leads to a smaller value for the visbility[13].

V =
Imax − Imin

Imax + Imin
(2.12)

Version of November 8, 2020– Created November 8, 2020 - 15:48
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Chapter 3
Protocol and Simulations

The goal of Quantum Position Verification is to confirm if the prover P
can be trusted by checking the geographic credentials. The space-time
diagram of the studied one dimensional QPV scheme where two verifiers
V0 and V1 confirm the position of prover P is shown in figure 3.1. Apart
from assuming that the system is 1D, the assumption is made that the
claimed position of the prover (the position that needs to be confirmed) is
exactly between the two verifiers.

Like stated before in the introduction, the verifiers send quantum infor-
mation to the prover who performs a set task. This nature of the quantum
information and the task performed by the prover differ from protocol to
protocol. The protocol discussed in this thesis has been proposed by Lim et
al. where photons are used as single qubits [7]. This protocol is discussed
in depth in this chapter. Moreover, we have performed simulations on this
protocol to investigate the effects of error and loss are on the protocol and
shortly discuss a small extension of the Lim protocol.

3.1 Lim Protocol

The QPV protocol proposed by Lim et al chooses photons as their single
qubits. The quantum information in this scheme is stored in the polar-
ization of the single photons send out by the verifiers. Here the prover
makes use of a Bell-State Measurement to deduce whether the verifiers
have send photons of equal or opposite polarization. A schematic of a
Bell-State measurement with linear optics is shown on the right of figure
3.1. The photons from the verifiers arrive at a 50:50 beam splitter (BS) from
paths 0 and 1. Depending on whether the photons are distinguishable or

Version of November 8, 2020– Created November 8, 2020 - 15:48
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22 Protocol and Simulations

measurement

zi zi
∗

V0 P V1

H0 H1V0 V1

Polarizing
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3 2
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𝑥
+
𝑡 𝑜

𝑣
𝑒
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ℎ
𝑒
𝑎
𝑑

Figure 3.1: Left: Verification scheme. Right: Bell-State measurement performed
by honest prover. The photons arrive at paths 0 and 1 respectively and go through
the 50:50 beam splitter (red) to the polarizing beam splitters where they are either
transmitted or reflected which is detected by single photon detectors.

not quantum Hong-Ou-Mandel interference happens.
After the first beam splitter the photons go through paths 2 and 3 to

the polarizing beam splitters (PBS) where they are either transmitted or
reflected to one of the two single photon detectors (H0, V0, H1, V1). It
is important to note that only the polarization states from the Mutually
Unbiased Bases (MUBs) from the measurement basis are used. In this pro-
tocol the measurement basis is {H,V}, meaning that the polarization state
of the photons arriving at the PBS are split in their horizontal and vertical
component. The MUBs from {H,V} are {D,A} and {R,L} which are there-
fore the only four polarization states used by the verifiers. When one of
these four polarization states hits a PBS measuring in {H,V} the photon
will either be reflected or transmitted with probability 1/2.

The Lim protocol, from choosing the polarization state to verification,
can be divided into 5 steps: preparation phase, measurement by honest
prover, eavesdropper check, quota check and verification.

1) Preparation phase: The verifier V0 uses a random bit to determine
the basis ({D,A} or {R,L}) and communicates the result with V1 over a
private channel. Then both verifiers take a random classical bit and from
its result choose one of the two polarization states. The photons are sent to
the prover at the same time, after the photons have been prepared in the
chosen states.

22
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3.1 Lim Protocol 23

2) Measurement by honest prover: When the photons arrive, the prover
performs the Bell-State measurement (schematic drawn on the right in fig-
ure 3.1) and projects the incoming state onto one of the Bell-states. The
measurement performed by the honest prover is a projection measure-
ment on a Bell-state.

The photons arriving at the prover are of either equal or opposite polar-
ization. In the case of equal polarization both photons either go into path
2 or path 3 due to HOM interference. As stated before, the PBS reflects
or transmits an photon from one of the four possible states with probabil-
ity 1/2. Therefore, there are three possible outcomes in this situation. Both
photons are reflected and one V detector clicks, both photons are transmit-
ted and one H detector clicks or one photon is transmitted and the other
reflected and both single photon detectors on the same side click. The last
outcome gives a coincidence count and shows that both photons had ar-
rived at the prover. For this result, we assign z = 0. The first two outcomes
only give one detection event which, assuming the detectors used are not
photon number resolved, cannot be distinguished from a situation where
one of the two photons was lost before arriving at the prover. Because
no information can be gathered from such a detection event, this result is
considered inconclusive (z = ø).

When the incoming photons are of opposite polarization, no interfer-
ence takes place at the 50:50 BS. Here there is the possibility for one photon
to be directed into path 2 and the other into path 3. When this happens the
H detector on one side and the V detector on the other side click. For this
detection event, we assign z = 1. When both photons are directed into the
same path only one detector will click and is considered an inconclusive
result with z = ø.

The honest prover sends the result back to the verifiers over a classical
channel where the information travels with the speed of light.

3) The eavesdropper check: When the verifiers receive the result from
the honest prover they check two things. The first is the timing of the re-
sult. The time between the verifiers sending the quantum information and
receiving the classical information is two times the distance plus an over-
head time (space-time diagram figure 3.1). The time it takes for the prover
to perform the Bell-State measurement is included into this overhead time.
The other requirement is that both verifiers must receive the same answer
from the prover. If either one of these conditions is not met, there is a high
probability that eavesdroppers are present and the verifiers abort the pro-
tocol immediately. If both conditions are met, the verifiers continue and
prepare another photon state to send. The first three steps of the protocol
are repeated m times.
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4) The quota check: The verifiers count the amount of conclusive re-
sults sent back by the prover after all m iterations are received. This sum s
must be larger or equal to a set threshold nth. This threshold is set to half
of the iterations, since the probability an honest prover measures an con-
clusive result is 1

2 . If the number of received conclusive answers is smaller
than the set threshold, the protocol is seen as not successful and is aborted.

5) Verification: All inconclusive results are discarded and a random
subset of size nth is taken. The verifier V1 communicates his set of random
classical bit values, which determined the polarization state of the photons
on his side, with the verifier V0 over the private channel. V0 then uses the
information to count the instances when the received answer is incorrect
(r). Verification is considered successful when:

δ =
r
s
≤ δth = 1− PLOCC

max (3.1)

Where PLOCC
max is the maximum guessing probability of LOCC attackers

which is 3/4. The LOCC attackers are explained in more detail in section
3.1.1. Hence, the amount of incorrect answers divided by the amount of
conclusive answers must be smaller or equal to 1/4.

3.1.1 LOCC attackers

There is a possibility that there is no prover, but there are attackers who
want to fool the verifiers into believing that they are in the middle (the
claimed position). In order for the attackers to receive all the information
communicated with the prover, there has to be an attacker for every veri-
fier in the scheme. One group of attackers are LOCC attackers who have
access to a subset of generalized quantum measurements known as local
operation and classical communication (LOCC)[14]. Here in this thesis we
assume that all attackers fall into this group.

An attack the LOCC can perform is that both eavesdroppers try to mea-
sure the polarization state of the incoming photon and communicate the
results with each other. With the classical information shared between
the eavesdroppers they both send an answer back to the verifiers (for a
space-time diagram including the eavesdroppers see figure 1.2) Since the
photons are prepared by the verifiers in one of the two bases, the eaves-
droppers can guess the correct bases to measure in with probability 1

2 . If
the correct basis is chosen, the measured result will always be correct. If
the attackers have chosen the wrong basis, they can guess the correct re-
sult with probability 1

2 . Therefore the maximum guessing probability of
the LOCC attackers is:
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PLOCC
max =

1
2

(
1 +

1
2

)
=

3
4

(3.2)

The error made by the attackers is 1/4 (1 minus the guessing probabil-
ity) and as a result the error made by any honest prover must be smaller
than this value.

3.2 Simulation

We have done simulation in order to estimate the success probability of
the protocol under varying conditions. In the simulation we made two
assumptions: the polarization of the photons is always a pure state and
the eavesdropper check is ignored, i.e. the classical information from the
prover are always within the set time and both verifiers always receive
the same information. As a result of the first assumption, the polarization
states are defined as:

|Ψ〉 = cos
(

θ

2

)
|H〉+ [cos(φ) + i sin(φ)] sin

(
θ

2

)
|V〉

|Φ〉 = cos
(

θ

2

)
|H〉+ [cos(ω) + i sin(ω)] sin

(
θ

2

)
|V〉

(3.3)

The combination of the basis choice and outcome of the random classi-
cal bit determine the Bloch sphere angles in equation 3.3.

To simulate the measurement by the honest prover, the probabilities
for the three possible outcomes (z = 0, z = 1 and z = ø) were determined
as a function of the Bloch angles. In order to make this derivation a bit
more comprehensible equation 3.3 is simplified to:

|Ψ〉 = a |H〉+ b |V〉
|Φ〉 = u |H〉+ v |V〉

(3.4)

Where a, b, u, v ∈ C. Then, using a combination of the transformation
matrix of a 50:50 beamsplitter and the density matrix formalism, the prob-
abilities for the three measurement outcomes are defined as:

P0 =
1
2

[
|a|2|v|2 + ab∗u∗v + a∗buv∗ + |b|2|u|2

]
P1 =

1
2

[
|a|2|v|2 − ab∗u∗v− a∗buv∗ + |b|2|u|2

]
Pø =

1
2

[
2|a|2|u|2 + 2|b|2|v|2

] (3.5)
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Where a∗ is the complex conjugate of a and |a|2 = aa∗. The full deriva-
tion of the outcome probabilities is found in appendix A. All together the
outcomes correspond to the calculated probabilities. In the ideal situation,
half of this list is the correct conclusive outcome and the other half are in-
conclusive results. After the creation of the list, one outcome/one element
of the list is chosen randomly and is the result which the prover sends
back.

The Lim protocol assumes ideal conditions, i.e. all prepared polariza-
tion states are exactly as intended and remain unchanged during trans-
port from the verifier to the prover and that the photons are not lost in the
quantum channel. However, in an experiment neither assumption, our
simulation considers errors in the polarization state and loss.

3.2.1 Non-ideal polarization states

In the experiment there is a probability that the polarization of the photons
send by the verifiers are changed in their polarization state before arriving
at the prover. These changes in polarization state can lead to the prover
sending back an incorrect answer, hence increasing the error rate.

In order to quantify this error we have defined an error coefficient R.
If R = 0 there is no error and the photons are in the expected polarization
state. If R = 1 the input received by the prover would be the exact op-
posite of what was intended by the verifiers. For example, if the verifiers
would want to send two photons of equal polarization, the prover would
receive two photons of opposite polarization. As a result the honest prover
would only send back the result z = 1 instead of the expected z = 0.

In short, a change in R leads to a shift in the probabilities to measure
one of the two conclusive results (z = 0 or z = 1). In the case of equal
polarization the probability to measure the correct answer is P0 = 1/2
when there is no error. If the error is maximum, the probability to measure
the correct answer is zero. Therefore, in the case of equal polarization the
relation between R and P0 is:

Pi=0 =
1
2
(1− R) (3.6)

As shown in equation 3.5, these probabilities are depending on the
Bloch sphere angles of the two states. The error in the polarization state
can be visualized by adding two Bloch angles γ and ε and change the ex-
pression of |Φ〉 in equation 3.3 to:
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|Φ〉 = cos
(

θ + γ

2

)
|H〉+ (cos(ω + ε) + i sin(ω + ε)) sin

(
θ + γ

2

)
|V〉
(3.7)

Here γ and ε are corrections on the expected Bloch angles θ and ω. We
assume that one of the two verifiers only produces the intended polariza-
tion state. Hence, the expression of |Ψ〉 remains unchanged and the angles
γ and ε are the relative phase between the states |Ψ〉 and |Φ〉.

A relation between the Bloch angles and the error coefficient is found
by putting equation 3.7 into the expression of P0 (eq: 3.5). And solve for
the case of equal polarization state (eq: 3.6). The result of the derivation
is given by equation 3.8. A full derivation of this expression is given in
appendix B.

cos(γ) cos(ε) = 1− 2R (3.8)

This relation is the same when one would look at the case of oppo-
site polarization. The expression is also symmetric for both γ and ε and
therefore only define the error through changing γ while keeping ε = 0.

3.2.2 Loss of photons

In experiments there is a high probability that a single photon is lost some-
where. The probability that a photon send by the verifier is received by the
prover is given by the transmission coefficient η. If one of the two photons
is lost, the honest prover will only measure one detection event and the
result will be considered inconclusive. When both photons are lost, the
prover measures nothing and this is also considered an inconclusive re-
sult. The probability that one photon is lost and the other transmitted is
2η(1− η). The probability that both photons are lost is (1− η)2.

If η = 1, the honest prover only measures an inconclusive result with
probability 1/2 due to the nature of the projection measurement. If η = 0,
no photons arrive at the position of the prover and the prover measures
only inconclusive results.Taking this into account, the probability of mea-
suring an inconclusive result as a function of the transmission coefficient is
given by equation 3.9. Here Pø is the probability of an inconclusive answer
as defined in equation 3.5.

P̃ø(η) = Pø

[
1 + 2η (1− η) + (1− η)2

]
(3.9)

P̃i=0,1(η) = Pi=0,1 · η2 (3.10)
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Similarly the probability to measure z = 0 or z = 1 as a function of
transmission is given by equation 3.10. Here Pi=0,1 is the probability P0 or
P1 as function of polarization given by equation 3.5.

The inclusion of photon loss also leads to a need to redefine the thresh-
old set for the the quota check (nth). In the Lim protocol this is set to half of
the iterations, but with loss of photons this threshold cannot be reached.
Therefore, the threshold must also be depending on the transmission co-
efficient.

nth(η) =

(
1− P̃ø(η)

)
·m =

1
2

η2 ·m (3.11)

3.2.3 Simulation results

By using the formalism for the polarization error and photon loss we have
simulated the success rate of the protocol as a function of both effects. Like
in the protocol, the creation of the state and the measurement by the prover
are repeated m times. Only here we assumed that both verifiers receive the
answer from the prover in time and both receive the same answer, there-
fore always succeeding the eavesdropper check. Then the quota check and
verification steps are performed as described in the protocol. The whole
protocol is repeated 9 more times and the success rate is determined by
averaging over these 10 attempts.

Figure 3.2.a shows the result of the simulation. Here the success rate
of the protocol (the average of running the protocol 10 times) is plotted
as a function of both the transmission η and the error R. The protocol
run in this simulation was 500 iterations long and the quota threshold nth
was set as a function of transmission (eq 3.11). The black line drawn is
the boundary where R = 1/4. This is the maximum error for which the
honest prover can be distinguished from a dishonest one.

The region where η is close to zero and the success rate of the protocol
is zero, is an artefact from the simulation. The calculated value of nth in
this region becomes smaller than 1. In the simulation any value smaller
than 1 would be considered 0 and the protocol would always be a success.
This would also be an artefact and choosing the lesser of two evils, we
have set the protocol to fail if the value of nth < 1.

For a high transmission there is some spread in success rate of the pro-
tocol as function of the error coefficient. This spread increases when the
photon loss increases. The divergence in success rate for lower transmis-
sion is a direct result of how the verification check is defined in the proto-
col (eq 3.1). The amount of incorrect answers r can be approximated as the
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probability of an incorrect answer multiplied nth, the size of the random
subset. In other words r ≈ Rnth, since a subset of size nth is taken from the
set of conclusive results. The amount of conclusive results s depends on
the amount of iterations and the transmission coefficient in the same way
as nth, hence s ≈ nth. In conclusion, equation 3.1 can be approximated as:

r
s
≈ Rnth

nth
= R ≤ 1

4
(3.12)

The quota check succeeds when the amount of conclusive answers is
equal to or larger than the set threshold nth. Therefore, there is a possibility
that s > nth. To take this into account we define s = nth + ∆ where ∆ is the
number of answers with which the amount of conclusive answers exceeds
the threshold. Now equation 3.1 should be rewritten as:

a) b)

c) d)

Figure 3.2: Success rate of the Lim protocol as a function of R and η. The black
line is where R = 1

4 , the limit in error for an honest prover. a) nth follows equation
3.11, m = 500, rate is averaged over 10 repetitions. b) similar to a, but m = 100.
c) similar to a, but rate is averaged over 20 repetitions. d) nth = 10, m = 5000,
rate is averaged over 10 repetitions. The grey-red areas on the left in a-c is where
nth = 0 and the simulation stops functioning.
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r
s
≈ Rnth

nth + ∆
≤ 1

4
→ R ≤ 1

4

(
1 +

∆
nth

)
(3.13)

Here ∆ is a small number and when the transmission is high nth >> ∆.
In this case the error coefficient for which the protocol might still give a
success to the protocol is close to 1/4. However, when the transmission
decreases, and the amount of iterations done in the protocol remains the
same, nth decreases as well. The limit nth ≈ ∆ is reached for sufficiently
low η. As a result, the boundary for R is set to 1/4, increases with decreas-
ing nth and the protocol has a possibility to be successful even if the error
is much larger than 1/4.

The cause of the spread can be shown more clearly by doing the same
simulation, but going through less iterations than before. The result of
this simulation is shown in figure 3.2.b where everything is equal to the
simulation in a, but the amount of iterations has been decreased from 500
to 100. The value of nth in this new simulation is also 5 times smaller. By
reducing the number of iterations, the impact of a nonzero ∆ increases and
the spread of success rate as function of R is larger even for full transmis-
sion. The zero success rate region on the left of the figure is larger, because
nth becomes smaller than 1 for a higher transmission.

The success rate in the simulation is determined by repeating the pro-
tocol ten times for each combination of η and R. Therefore, the success rate
plotted is not absolute and the result of the simulation can have small de-
viations between runs. In order to check if the amount of repetitions over
which the result is averaged leads to artefacts, we performed the same
simulation as for figure 3.2.a, but the amount of repetitions is increased
from 10 to 20. The result of the simulation is shown in figure 3.2.c. Com-
paring the two graphs shows that the shape and size of the features are
comparable and are only a bit more blurred with the increased repetitions.

When performing the experiment, the transmission of the quantum
channels should be determined before the protocol is started. For this
transmission, the number of iterations m should also be chosen. This leads
to a fixed value of nth. We performed the simulation for a fixed threshold
nth = 10 and number of iterations m = 5000. This simulation is done over
a smaller range in η and the outcome is shown in figure 3.2.d.

In this case the verifiers assume that the quantum channels used have
a transmission of approximately 6%. The simulation shows that when
the actual transmission is larger than the expected value, the protocol can
give a successful verdict even though the error is larger than the set value
of 1/4. This is again caused by the verification check. Again we do the
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approximations that r ≈ Rnth and s ≈ 1
2 η2m. Then substituting this into

equation 3.1 and filling in nth = 10 and m = 5000 leads to:

r
s
=

Rnth
1
2 η2m

=
10R

2500η2 ≤
1
4

(3.14)

For an honest prover R cannot be larger than 1/4, otherwise one cannot
make the distinction between the honest and dishonest prover. As a result
nth/ 1

2 η2m should not be differ much from 1.
In conclusion, we have looked at the success rate as a function of both

the photon loss and the polarization error. Both factors lead to a change in
the answer distribution expected for an honest party. The loss of photons
results in a higher probability of an inconclusive answer than expected in
the Lim protocol. The polarization error leads to the probability of the
prover answering incorrectly. This is not expected in the theoretical case
described in the Lim protocol where the prover only gives back a conclu-
sive and correct answer or an inconclusive answer.

From the simulations we see that the limiting factor is the transmission
of the quantum channels. If the set threshold for conclusive results re-
ceived is too low or when the transmission coefficient fluctuates too much,
it is possible for the protocol to succeed even if the error exceeds the set
1/4. In this case, there the verifiers will not be able to distinguish between
an honest and dishonest prover. In order to set a high enough threshold
for the quota check (nth) at high photon loss, the protocol must go through
many iterations and the protocol will take a longer time. And if necessary,
the transmission of the channel needs to be stabilized.

3.3 Slight extension of the Lim protocol

In the Lim protocol the verifiers are able to choose between the bases
{D,A} and {R,L}. But what if the verifiers were also allowed to choos
the third Mutually Unbiased Basis {H,V}?

In this case any LOCC has to choose between three different bases, and
can only do so with probability 1/3. In the case they choose the correct ba-
sis, they can return the correct answer with probability 1 like before. How-
ever, now there are two possible situations where they choose the incorrect
basis in which case they can only guess the correct result with probability
1/2. Therefore, the maximum guessing probability would change into:

PLOCC
max =

1
3

(
1 +

1
2
+

1
2

)
=

2
3

(3.15)
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Apart from a lower guessing probability, adding the {H,V} basis pro-
vides an extra measure to detect any presence between the verifiers and
the honest prover. When the honest prover receives two photons with
equal polarization and polarized in the same basis in which the result is
measured (in this case the {H,V} basis) only one detection event takes
place. For example, both verifiers produce an H-polarized photon and
send it to the prover. Due to HOM-interference both photons go into one
of the two paths together and are both transmitted through the polarizing
beamsplitter resulting in an inconclusive outcome. Contrary to the pho-
tons of equal polarization form one of the other two bases the probability
of measuring a conclusive result is zero (assuming there is no error).

So in the case where there are eavesdroppers present, there is a possible
situation where the verifiers receive a conclusive answer while sending
out either H-polarized or V-polarized photons. Upon receiving such an
answer the verifiers will afterwards know that a third party was present
and can declare the verification to be unsuccessful.
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Chapter 4
Experimental setup

In the previous chapter we discussed the proposed Lim QPV protocol and
performed simulation to explore it. Now we move from theory to experi-
ment. In this chapter we show the first demonstration setup for Quantum
Position Verification. This setup uses fiber based polarization controllers
which are discussed in more depth. After discussing the calibration pro-
cess for the polarization states send out by the verifiers, the results of this
calibration are shown.

4.1 Setup

The setup can be divided into two sections: the verifiers and the prover.
For the verifiers it is important that they are able to change the polariza-
tion state at will. The prover performs a Bell-State Measurement (BSM)
discussed in the previous chapter.

The research presented in this paper is a step towards a demo experi-
ment of QPV and does not operate with single photons yet, for now a co-
herent light source (laser) is used. Moreover, in this project we use optical
fibers instead of performing the experiment in free space. The reason for
this decision is that in fibers, photons are able to travel over large distances
without it taking up much space. However, the ”problem” with using op-
tical fibers instead of free space is that the maximum velocity through a
fiber is 2/3 the speed of light. Consequently, this setup does not comply
with the relativistic constraint set in QPV.

A schematic representation of the build setup is shown in figure 4.1.
The setup starts with a combination of the laser (λ = 830 nm) and a polar-
izer placed in free space. This polarizer is used to be sure that all photons
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FPCMPC

MPC

H1

V1 V0

H0

PBS PBS

50: 50 BS

50: 50 BS

Laser

Polarizer

Figure 4.1: Schematic representation of the build fiber based QPV demonstration
setup. The setup consists of a coherent light source (purple box), two verifiers
represented by the motorized polarization controllers (MPC) and the Bell-state
measurement performed by the prover (inside orange dashed box) with an addi-
tional fiber based manual polarization controller (FPC).

are of the same polarization in the beginning. This part of the setup will be
removed when using either a SPDC (Spontaneous Parametric Down Con-
version) or quantum dots as single photon source, since all photons from
these sources have the same polarization state.

For simplicity, we only use one light source for both verifiers, therefore
the light is split into two paths by a 50:50 fibersplitter after the light was
coupled into a single-mode fiber. The two light beams are sent to the ver-
ifiers who are represented by Motorized Polarization Controllers (MPC).
These MPCs are fabricated by Thorlabs (Thorlabs MPC320) and use a com-
bination of bending and twisting of the single-mode fiber to alter the po-
larization state of the light. The next section of this chapter provides a
more in-depth examination of these MPCs.

Like in the original protocol, after the verifiers have altered the polar-
ization state of the light, the information is send to the prover who per-
forms a probabilistic BSM. The full BSM is framed by the orange dashed
line. It starts with another 50:50 fibersplitter (Thorlabs TW850R5A2) where,
depending if the incoming light is of equal or opposite polarization, HOM
interference takes place. After the fibersplitter, the photons are coupled
out of the single-mode fibers and travel towards the two free-space po-
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4.2 Fiber Polarization Controller 35

larizing beamsplitters (Thorlabs PBS202). At the outputs of the PBS, the
light is coupled back into multi-mode fibers which are attached to pho-
todiodes (Thorlabs TW850R5A2). We used these photodiodes instead of
single-photon detectors, since we used a coherent light source. In one
of the two outputs of the fibersplitter there is a manual Fiber Polariza-
tion Controller (FPC) from Thorlabs (Thorlabs FPC560). The single-mode
fibers after the second fibersplitter alter the polarization state of the pho-
tons travelling through it. The FPC is there to make sure that the change
in polarization state is equal in both paths.

4.2 Fiber Polarization Controller

In the setup we used fiber based polarization controllers, which are either
motorized (MPC) or manually driven (FPC). These devices consist of three
paddles which can rotate independently from each other. A single-mode
fiber is threaded through the device where it is bend in loops around each
paddle. The combination of the loops made in the single-mode fiber and
the twisting of the fiber due to the rotation of the paddles create stress-
induced birefringence in the fiber. The birefringence alters the polarization
state of the incoming light like waveplates which are made of birefringent
materials. Therefore, these devices are used for the verifiers to continu-
ously switch between polarization states as is needed in the protocol.

In this section we will briefly discuss stress-induced birefringence and
show that the three paddles of these fiber based polarization controllers
act similar to a sequence of waveplates: λ/4, λ/2 and λ/4 which can be
rotated independent from each other.

4.2.1 Stress-induced birefringence

The stress-induced birefringence in a single-mode fiber is caused by bend-
ing and twisting of the fiber. Bending a single-mode optical fiber into loops
leads to a result comparable with the effect of a linear retarder with retar-
dance δ [15]. The retardance created for one paddle depends on several
properties of both the light and the fiber used. This dependence is shown
in equation 4.1, where δ is the retardance in radians, a is the fiber photo-
elastic coefficient (0.133 for silica fiber) [16], N is the number of loops, d is
the fiber cladding diameter, λ is the wavelength of the light and D is the
diameter of the loops.
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δ(radians) = 2π2a N
d2

λD
(4.1)

The type of single-mode fibers used are 780-HP fibers from Thorlabs.
From this we know that the fiber cladding diameter is d = 125 ± 1µm.
Furthermore, we know that the paddles have a diameter of 18mm and
that the wavelength of the laser is λ = 830nm. The goal is to create two
λ/4 plates with one λ/2 plate in between. The number of loops always
needs to be an integer value for obvious reasons. For an approximation of
a λ/2 plate N = 1 and for a λ/4 plate N = 3. With this information the
expected retardance for both a λ/2 plate (δ2) and for a λ/4 plate (δ4) were
calculated.

δ2 = 2π2 0.133 ∗ 1 ∗ (125µm)2

826nm ∗ 18mm
≈ 0.88π (4.2a)

δ4 = 2π2 0.133 ∗ 3 ∗ (125µm)2

826nm ∗ 18mm
≈ 2.63π (4.2b)

Rotating the MPC paddles results in the twisting of the single-mode
fiber [17, 18]. This rotation creates a local reference frame with an angle
τ w.r.t. the lab reference frame. As a result there is a rotation of 2τ of
the fast axis of the polarization before and after the paddle. This rotation
is also known as the geometrical contribution of the birefringence axis.
There is a slight difference between the angle τ during the experiment and
in the theory when using the MPC. The MPC can only move between 0◦

and 170◦, but they have defined to have the fast axis of the fiber aligned
with the loops when the angle made by the MPC is 85◦. This means that
the angle with which the birefingence axis is rotated corresponds to the
rotation angle of the MPC paddle (we will call τlab) as τ = τlab − 85◦.

There is a second contribution known as the photoelastic contribution.
A twist of the fiber with angle τ leads to a rotation of the polarization state
with angle θ. The relation between the angles τ and θ is given by equation
4.3 where α is a constant depending on the refractive index n and elasto-
optical coefficient p44.

θ = ατ; α = −n2p44 (4.3)

There are several values found in literature for α. Ulrich et al. [17] say
that α = 0.16 and Tentori et al. [18] calculated a value of α = 0.92. This
contribution is not taken into account in the following section, since the
elasto-optical coefficient for single-mode fibers we used has to be deter-
mined experimentally.
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Figure 4.2: The first step in the calibration process where only one of the two
Motorized fiber Polarization controllers is attached. The intensity of the light is
measured at the outputs H1 and V1 of the Polarizing Beam Splitter while the
three paddles of the MPC are rotated.

The combination of the retardance from bending the single-mode fiber
and the geometric contribution from twisting the fiber is comparable to
the effect waveplates have on the incoming polarization state. Therefore,
we represent each paddle with the Mueller matrix from equation 2.8. It
is possible for each paddle to have a different value of τ and the first and
third paddle have a different retardance than the second paddle. Hence
the full MPC is given by the following combination of matrices:

MMPC = R(τ1)M(δ4)R†(τ1)R(τ2)M(δ2)R†(τ2)R(τ3)M(δ4)R†(τ3) (4.4)

The output of the MPC for certain settings can be modeled when the
input Stokes vector is known via the relation ~Sout = MMPC~Sin.

4.2.2 MPC measurements

The first step in the calibration process of the demo-experiment is the cali-
bration of one of the two MPCs. Figure 4.2 shows a schematic representa-
tion of this step. The intensity of the light are detected at positions H1 and
V1 behind the PBS while the three paddles of the MPC are rotated. The
first (τ1) and third (τ3) paddle are moved from 0◦ to 170◦ in increments of
10◦. For each combination of τ1 and τ3, the second paddle (τ2) is rotated
over the full range in 5◦ increments.

The intensity of the light as function of τ2 for a fixed combination of τ1
and τ3 is displayed by the circles in figure 4.3. First the measurement was
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performed for the horizontal polarized output of the PBS (blue circles).
Then the measurement was performed again for the vertical polarized in-
put of the PBS (orange circles). The intensity was measured with the use
of a Thorlabs PM100D. The average sum over both outputs was calculated
(I0 ≈ 212µW) over which the measured intensities were normalized. Since
τ1 and τ3 are kept constant, this data displays the effect of rotating a λ/2
plate for a unknown input polarization.

From the measured intensities of the H and V polarization we calcu-
lated the values the Stokes parameters S0 and S1. From equation 2.4 we
know that S0 is the sum of the intensities measured at H1 and V1, while
S1 is the difference. The other two Stokes parameters S2 and S3 cannot
be extracted from the data, since these are only dependent on the inten-
sity of diagonal or circular polarized light and we have only measured in
the {H,V} basis. These calculated values were also normalized over the
average sum of both outputs. S0 is quite constant meaning that the laser
remains constant over the time one of these measurements take which is
several minutes.

0.5
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0.5

1.0

S

50 0 50
2(deg)

0.5
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1.0

I/
I 0

Figure 4.3: Circles: Measured intensity (normalized) as function of second MPC
paddle angle. The orange data was measured behind V1, the blue data behind
H1. The other paddles were kept at constant angles τ1 = −75◦, τ3 = +5◦. Stars:
calculated stokes parameters S0 (brown) and S1 (pink) as a function of second
MPC paddle angle.
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Figure 4.4: Stokes parameter S1 as a function of the MPC paddle angle w.r.t. the
fast axis τ2 modeled for a device with perfect retardance (i.e. δ2 = π, δ4 = π/2)
(blue circles) and for one with imperfect retardance (δ2 = 0.87π, δ4 = 2.62π)
(orange stars). The input was diagonally polarized in both cases and the other
two paddle angles were kept constant at τ1 = −75◦ and τ3 = +5◦. For perfect
retardance the maxima are at the same height and are 90◦ apart and the same
between two minima. For imperfect retardance the maxima/minima are not of
equal height and their spacing is also not exactly 90◦.

It is expected for a λ/2 waveplate that when the plate is rotated by 90◦

the polarization is equal. This would mean that the value of S1 should be
the same after a 90◦ rotation. However, this is clearly not the case since
none of the (local) maxima or minima of S1 are at the same value. Also the
spacing between two local maxima is 95◦ and the spacing between two
minima is 85◦. The cause for this behaviour is that the paddles that we
use are not perfect waveplates. Their retardance (see equation 4.2) differs
from the perfect π and π/2 expected for λ/2 and λ/4 plates respectively.

In order to emphasize the impact imperfect retardance has on the effect
the MPC has on changing the polarization state, we have modeled the
MPC Mueller matrix acting on the stokes vector of diagonally polarized
light. The result of this simulation is displayed in figure 4.4 where the
value of Stokes parameter S1 is plotted as function of MPC paddle angle
τ2. The blue circles represent the effect of an MPC where the retardance is
the perfect δ2 = π and δ4 = π/2. The orange stars represent the effect of
an MPC paddle where the retardance matches the values from equation
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4.2 which are the expected values for the MPC in the experiment. From
this figure we can conclude that the behaviour of Stokes parameter S1 in
the measurement is a direct result of the imperfect retardance.

The goal of this more in depth assessment of the Motorized fiber Po-
larization Controllers was to get a better understanding of what happens
inside the device, but also to see if we would be able to predict for which
angles (τ1, τ2, τ3) would result in one of the six interesting polarization
states (|H〉, |V〉, |D〉, |A〉, |R〉, |L〉). The parameters which remain un-
known are the Stokes parameters (S1, S2, S3) of the input polarization state.
The parameter S0 is always set to 1, since it represents the total intensity.
Even though a polarizer is used in the setup, the polarization changes into
an unknown state due to the travel through the optical fibers.

By fitting the MPC Mueller matrix to the measured data we try to ex-
tract the unknown input polarization state. The result for one set of data
is shown in figure 4.5 where the output Stokes parameter S1 is plotted
as function of angle τ2. The pink stars is the measured data from figure
4.3. From this measured data the input Stokes parameters were extracted

50 0 50
2(deg)

1.0

0.5

0.0

0.5

1.0

S 1

Figure 4.5: Stokes parameter S1 as a function of MPC second paddle angle τ2.
The measured data (pink stars) was fitted with the use of the Mueller matrix
MMPC to extract the input Stokes parameters S′1, S′2 and S′3. These parameters
were put back into the Mueller matrix to calculate the output Stokes parameter
S1 as function of MPC angle τ2 (blue circles). The other MPC angles were set to
fixed values τ1 = −75◦ and τ3 = +5◦. And the input Stokes parameters used for
the model were S′1 = 0.69, S′2 = 0.72 and S′3 = −0.07.
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S′1 = 0.62± 0.05, S′2 = 0.64± 0.06 and S′3 = −0.02± 0.05. From the fit we
have chosen a set of Stokes parameters which would form a pure state (i.e.
S2

1 + S2
2 + S2

3 = 1). With this set, S′1 = 0.69, S′2 = 0.72 and S′3 = −0.07, the
output Stokes parameter S1 was calculated as a function of MPC angle τ2
(blue circles).

The shape of the fit is quite similar to the measured data, but still is far
off. There are several possible reasons why the fit does not follow the data
closely. First of all, the total intensity fluctuates over the measurement as
can be seen in figure 4.3. Moreover, the retardance δ2 and δ4 were calcu-
lated from given parameters, but have not been experimentally extracted.
Therefore, there is the possibility that the used values in the fit are slightly
off. Consequently, the fit would not follow the data either.

In the fit we have also assumed that the fast axis of the fiber (or the
light through the fiber) is aligned with the 0◦ point defined for the MPC. If
this assumption is incorrect, then the outcome of the fit will also change.

In conclusion, using the Mueller matrices for linear retarders has as-
sisted in creating an understanding of what happens inside the MPC de-
vice. However, due to the unknown input Stokes parameters it is difficult
to predict for which combination of τ1, τ2 and τ3 leads to a certain polar-
ization state. These devices have to be calibrated experimentally.

4.3 Calibration

In the previous section we have shown that bending and twisting an op-
tical fiber alters the state of polarization. While this phenomenon is uti-
lized in the MPCs it is also present in the fibers outside of the MPC. As a
result the polarization state (which is known just after the polarizer) is
scrambled into an unknown state throughout the setup. We described
these unknown changes to the state of polarization with the use of uni-
taries. These unitaries are shown in figure 4.6.1 where U1 to U7 corre-
spond to changes due to any unwanted stress-induced birefringence in the
single-mode fibers. The unitaries UBS1 and UBS2 contain the operations
performed by a 50:50 beamsplitter and the unitaries UMPC1, UMPC2 and
UFPC are the operations performed by the fiber polarization controllers.

The setup needs to be calibrated to know the settings for which paddle
angles of the Motorized fiber Polarization Controllers (the verifiers in the
protocol) send out certain polarization states. In this thesis the setup has
only been calibrated for the horizontal and vertical polarization states and
only for a coherent light source.

The first step in this calibration process in shown in figure 4.6.2. This is
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Figure 4.6: Schematic representation of the setup without the laser and polarizer
part displaying: 1) All the unitaries acting on the polarization state of the light
travelling through the system. 2) The first step in the calibration where one MPC
is characterized by measuring the intensities at outputs H1 and V1 while rotating
the three angles. 3) The second step of the calibration where the FPC is calibrated.
The MPC is set to a single polarization (either H or V) and the intensities are mea-
sured at outputs H0 and V0. The FPC paddles are rotated until H0 and V0 give
the same output as was measured at H1 and V1. 4) The final step in the calibra-
tion process where the second MPC is reattached and its paddles are rotated until
maximum visibility has been detected. The visibility is measured by measuring
the intensities behind the outputs H1 and V1.

the MPC measurement described in the previous section where the inten-
sities of the light through a single MPC are measured at outputs H1 and
V1. The red line depicts the path taken by the light from the source to the
outputs (the light travels from left to right). As explained before, the inten-
sity of the H and V polarization components of the light are measured as
a function of the three paddle angles τ1, τ2 and τ3. From this measurement
the set of angles is found where the light is either H or V polarized.

For example, if the light travelling through MPC2 for a certain set of
paddle angles τ leads to a maximum intensity measured at V1 and mini-
mum intensity at H1 it would mean that:

U4 UBS2 U6 UMPC2 U5 UBS1 U1 |Ψ〉 = |V〉 (4.5)

From this it is clear that only the state which arrives at the PBS is known.
Consequently, the state which in this thesis we will call vertically polar-
ized means that the light was vertically polarized when arriving at the
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polarizing beamsplitter. This does not mean that the state of polarization
of the same light has to be vertically polarized when arriving at the second
fibersplitter.

For the prover to be able to perform the Bell-State measurement and to
return the correct result the state arriving at the two PBS must be the same.
In other words, if the light is fully reflected by the PBS into detector V1,
then the light should also be fully reflected by the other PBS into detector
V0. As a result the unitaries transformations in both paths between the
second fibersplitter and the two polarizing beamsplitters must be equal
(eq 4.6).

U8 UFPC U7 |Ψ〉 = U4 |Ψ〉 (4.6)

This condition is achieved in the second step of the calibration process
(fig 4.6.3). First the angles for the MPC are set that the output behind H1
and V1 displays the result for either H or V polarized light. Then the in-
tensities are measured behind the other PBS at outputs H0 and V0. By
manually rotating the three paddles of the FPC the same outcome is gen-
erated for the other PBS.

The third and final step in the calibration process is to add the other
MPC to the system (see fig 4.6.3). The intensities are again measured at
outputs H1 and V1. The MPC which was already attached (MPC2) has its
paddles set such that the light is vertically polarized. Then the paddles
of the newly attached MPC (MPC1) are rotated while the paddles of MPC
remained fixed.

The setup in combination with using a coherent light source results in
a Mach-Zehnder type of interference. The visibility of the interference is
maximum when the coherent light arriving at the second fibersplitter is
indistinguishable. Hence, changing the polarization by rotating the pad-
dles of MPC1 while keeping MPC2 constant changes the visibility of the
interference. By monitoring the visibility while changing the paddles of
MPC1 we found the maximum value which suggests that the polarization
from both MPC1 and MPC2 is equal. Then the same steps are done for the
horizontal polarization.

4.4 Results

In this section we characterise the loss in the setup and calibrate it for hori-
zontal and vertical polarization states. To characterise the loss through the
setup, the power has been measured at different points through the setup.
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Figure 4.7: Schematic representation of the setup (for labels see figure 4.1), with
the positions where the power was measured are annotated by the letters A-L.

These positions are highlighted in figure 4.7 and the result is displayed
in table 4.1. We measured the power using a Thorlabs PM100D and only
one MPC (MPC1) was attached to the setup during these measurements.
The table also displays the percentage of the measured power is with re-
spect to the source (position A), after coupling the light from free-space to
single-mode fiber (position D) and in front of the PBS (postion H).

The polarizer was rotated while monitoring the power at position B
and was set in the position where the measured power was at its maxi-
mum (11.4mW). This maximum is only 78.6% of the power measured in
position A, implying that the light source is not fully polarized in one sin-
gle direction. Most of the power was lost in coupling the light from free-
space into a single-mode fiber. Fortunately, the free-space part behind the
source is only needed for coherent light. The single photon sources (SPDC
or quantum dots) create photons in a single pure polarization state. There-
fore, this part of the setup can be discarded when transitioning to such a
light source.

The intensity of the light before and after a fibersplitter (between po-
sitions D and E and F and G) is (more than) halved. This halving of the
power is due to the fibersplitters splitting the light into two paths 50:50.
This is only the case when one of the two MPCs is not attached to the sys-
tem. When both MPCs are attached, the power is only halved for the first
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4.4 Results 45

fibersplitter, but at the second fibersplitter there would be two inputs with
equal intensity. In this case the intensity in point G would be similar to the
intensity at position F.

Behind the Polarizing Beamsplitter the light is split into its horizon-
tal and vertical component. Therefore, in principle the power measured
at positions I and K should together be the value measured at position
H. However, this is clearly not the case. The cause of this discrepancy is
due to the efficiency of the PBS. The reflection efficiency of the PBS is ap-
proximately 99.5%, while its transmission efficiency is approximately 90%.
When taking this into account the power measured at position K should
be around 70% of the power at H instead of 63.4%. Then the sum of the
power measured behind the PBS would be equal to the power before the
PBS.

For the first step of the calibration process only one MPC is attached
to the setup. By performing the MPC measurement we have found the
paddle angles for which the light is either vertically or horizontally polar-
ized when arriving at the PBS. These angles τ for MPC2 are displayed in
table 4.2 together with the intensity measured by the photodiodes. The
measured intensities are compensated for the background values of the
photodiodes (−0.0106 for H1 and −0.0054 for V1).

Position Power % w.r.t. source % w.r.t. D % w.r.t. H
A 14.5mW 100%
B 11.4mW 78.6%
C 9.46mW 65.2%
D 1.79mW 12.3% 100%
E 691µW 4.8% 38.6%
F 447µW 3.1% 25.0%
G 221µW 1.5% 11.8%
H 205µW 1.4% 11.5% 100%
I 62.5µW 0.43% 3.49% 30.5%
J 55.0µW 0.37% 3.07% 26.8%
K 130µW 0.90% 7.26% 63.4%
L 127µW 0.88% 7.09% 62.0%

Table 4.1: Table of the power measured at different positions in the setup. These
positions are shown in figure 4.7. The measured power at each position is also
expressed as percentage w.r.t. the source, position D when the light is coupled
back into the single mode fiber after the polarizer and position H where the light
is coupled out of the single mode fiber before travelling into the PBS.
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Pol τ1 τ2 τ3 IH1 IV1
V −26◦ +85◦ −85◦ 0.000 0.115
H +33◦ −39◦ −82◦ 0.096 0.001

Table 4.2: Table of angles τ of MPC2 with the intensities measured at outputs
H1 and V1 where the measured polarization is either vertical or horizontal. The
intensities were measured with the use of the Thorlabs photodiodes PDA10A-EC.

The second step in the calibration process was rotating the manual
Fiber Polarization Controller (FPC) such that the transformation on the
polarization state in the path to H1 and V1 is equal to the transformation
in the path to H0 and V0. The angles for this are more difficult to obtain
quantitatively and are therefore not mentioned in the thesis. The MPC2
was set such that vertical polarized light was detected, i.e. the intensity
measured at H1 was 0. The proposed method to calibrate the FPC is to
first rotate the second paddle until a minimum value is obtained at H0.
Then the two outer paddles are moved sequentially until a further min-
imum is found. It is a method that needs several iterations most of the
time.

The final step in the calibration process is to reattach MPC1 and to find
out where for this polarization controller the polarization is either equal or
opposite to the polarization state created by MPC2. It is important to have
performed the previous two steps completely before moving to the final
step. Disconnecting and reconnecting the single mode fibers results in
changes in the transformation unitary U2 (see figure 4.6.1) and the system
needs to be recalibrated. The MPC2 was set to create vertical polarized
photons. The intensity of the light is again measured behind outputs H1
and V1 with the use of the photodiodes.

When connecting the MPC1 to the rest of the setup, two changes ap-
pear in the intensity measured. First of all, the intensity measured in-
creases and secondly the intensity fluctuates. The increase in intensity
is caused by the fact that now the second fibersplitter has both inputs

MPC1 MPC2
Pol τ1 τ2 τ3 τ1 τ2 τ3

V +1◦ −1◦ +0◦ −26◦ +85◦ −85◦

H −47◦ −2◦ +42◦ +33◦ −39◦ −82◦

Table 4.3: Table of angles τ for both Motorized Fiber Polarization Controllers
where the output polarization is measured to be either horizontal or vertical.
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and both outputs in operation instead of only one input and two outputs.
Hence, the intensity of the light is not only split into two paths as in the
first step of the calibration. Instead the light of the two paths are interfer-
ing. This leads to the cause of the fluctuations in intensity. When there is
overlap in the state of light, the two paths interfere inside the 50:50 fiber-
splitter. The interference fringes are caused by the phase difference be-
tween the two paths. In our case it is the thermal fluctuations which cause
the phase difference, this enables us to evaluate the interference contrast.

By luck, the unitaries operating on the light travelling between the
source and MPC1 changed the polarization state very close to vertical po-
larization. Therefore, the changes on the paddles are very small for the
vertical state as shown in table 4.3. In this table the angles τ for both MPC1
and MPC2 are displayed for the vertical and horizontal polarization state.

The combination of angles τ of MPC1 for the horizontal polarization
state were found by rotating the paddles while keeping the angles of MPC2
fixed for vertical polarization. In this case, there should be no overlap in
the polarization state of the light from both polarization controllers. As a
result, there should be no interference fringes. The fluctuation of the inten-
sity was monitored while rotating the paddles of MPC1. This result was
then verified by rotating MPC2 into its horizontal state configuration and
the interference fringes returned as expected.

The measured interference fringes are displayed in figure 4.8. The in-
tensity at output H1 (blue) and V1 (orange) were measured in 10 second
time increments. The fringes were monitored for four different MPC con-
figuration combinations: (VV case) both MPCs set for the vertical state
(4.8.a), (VH case) MPC1 set for the vertical state and MPC2 for the hori-
zontal state (4.8.b), (HV case) MPC1 set for the horizontal state and MPC2
for the vertical state (4.8.c) and (HH case) both MPCs set for the horizontal
state (4.8.d). The plotted intensities have been compensated for the asym-
metric efficiency of the PBS and the background of the photodiodes.

From the measured data we obtained the visibility of the interference
fringes by dividing the difference between the maximum and minimum
intensity by the sum of them (eq 2.12). When the polarization state at both
inputs of the fibersplitter are equal (figures 4.8.a and 4.8.d) the interference
fringes are large for the one polarization while the intensity on the other is
almost 0. For the vertical polarization the average value measured at H1
is 0.002, while the output V1 oscillated between 0.032 and 0.465 giving a
visibility of VVV ≈ 0.87. For the horizontal polarization the average value
measured at V1 is 0.003, while the intensity at H1 oscillated between 0.026
and 0.451 resulting in a visibility of VHH ≈ 0.85.

In both the VV and HH cases the visibility is not 1, meaning that the
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light arriving at the two inputs of the fibersplitter is not completely in-
distinguishable. However, the lack of overlap can not be explained when
only looking at the polarization states. In both cases the intensity of the
opposite polarization state is close to zero and barely fluctuates over time.
This suggests that the lack of overlap is caused in another mode of the
photon state. The timing of the light at the inputs for example, since the

a) b)

c) d)

Figure 4.8: Intensity measured at outputs H1 (orange) and V1 (blue) as a func-
tion of time. Both MPCs are connected and the oscillations as function of time
are a result of phase changes due to thermal fluctuations. a) MPC1 and MPC2 set
to vertical polarization (VV case). The intensity at output V1 fluctuates between
0.032 and 0.465 resulting in a visibility of VVV ≈ 0.87, while the average inten-
sity at H1 is 0.002. b) MPC1 set to vertical and MPC2 to horizontal polarization
(VH case). The intensity at V1/H1 oscillates between 0.116 and 0.153, and 0.105
and 0.146 respectively, resulting in visibilities VVH,V ≈ 0.14 and VVH,H ≈ 0.16. c)
MPC1 set to horizontal and MPC2 to vertical polarization (HV case). The inten-
sity at V1/H1 oscillates between 0.106 and 0.148, and 0.087 and 0.169 respectively,
resulting in visibilities VHV,V ≈ 0.17 and VHV,H ≈ 0.32. d) MPC1 and MPC2 set to
horizontal polarization (HH case). The intensity at output H1 fluctuates between
0.021 and 0.451, resulting in a visibility of VHH ≈ 0.85, while the intensity at V1 is
0.003.
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single-mode fibers are never of the exact same length the timing of the
photons arriving at the fibersplitter can be off. This also leads to a phase
difference and reduces the visibility.

When the polarization at both inputs of the second fibersplitter are or-
thogonal ( the VH and HV cases), there should be no overlap in the pho-
tonstates and, as a result, the visibility should be close to zero. For the VH
case (figure 4.8.b), where MPC1 is set to the vertical polarization configura-
tion and MP2 to horizontal polarization, the light at output V1 fluctuated
between 0.116 and 0.153, resulting in a visibility of VVH,V ≈ 0.14. The light
at output H1 fluctuated between 0.105 and 0.146, resulting in a visibility
of VVH,H ≈ 0.16. These visibilities are very close to each other, but are not
quite zero. This is most probably caused by another mode space of the
photon state as discussed for the HH and VV cases.

Contrary to the VH case, the visibilities for the HV (figure 4.8.c) case
differ much more from each other. At V1 the intensity fluctuates between
0.106 and 0.148 giving a visibility of VHV,V ≈ 0.17 which is still close to
the visibilities VVH,V and VVH,H. However, the visibility at H1, where the
intensity fluctuated between 0.087 and 0.169, is twice the value of VHV,H ≈
0.32. This difference is unexpected and we cannot account for the cause as
of yet.

In conclusion, we are able to build a setup intended for QPV and cal-
ibrate it for horizontal and vertical polarized light. The overlap between
the photon states is large for equal polarization and relatively small for the
opposite polarization.
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Chapter 5
Conclusion and Discussion

In this thesis we described the first steps for a demonstration experiment
for a Quantum Position Verification (QPV) scheme. QPV uses a combi-
nation of quantum mechanics (no cloning theorem) and special relativity
(information cannot travel faster than the speed of light). We assumed a
one-dimensional system where there are two verifiers V0 and V1 and one
prover P who is exactly in the middle. The discussed protocol has been
proposed by Lim et al. [7] and it utilizes the polarization state of single
photons as the carrier of quantum information. This particular protocol
requires the prover perform a probabilistic projection onto a Bell-State.

We expanded the existing protocol to account for the effects caused
by photon loss in the quantum channels and errors in the polarization
state and simulated the success rate as a function of both. From these sim-
ulations we can conclude that high photon loss can lead to problematic
scenarios such as the verifiers not being able to distinguish the error pro-
duced by an honest or dishonest prover. The simulations also show that
when the verifiers set the quota threshold (nth) at a fixed level, the verifiers
need to have accurate knowledge on and control of the transmission of the
used channels.

In our first steps towards experimental QPV, we have build a fiber
based setup using a coherent light source (see figure 4.1). The Motorized
fiber based Polarization Controllers (MPC), which represent the verifiers
in the setup, have been investigated. We measured the intensity for hori-
zontal and vertical polarization from which we calculated the Stokes pa-
rameter S1. The measured data was then compared to the theory of stress-
induced birefringence in single-mode optical fibers.

Due to the fact that stress-induced birefringence happens everywhere
inside single-mode fibers there was the problem that after the initial free-
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space polarizer the polarization state of the light was unknown. Hence,
we designed a three step calibration process to calibrate the actions of the
verifiers (the MPCs). By performing the calibration for horizontal and ver-
tical polarization states, we have shown that with the current setup we are
able to produce an overlap of approximately 85% between the equal po-
larization states at the input of the Bell-State projection. This overlap is
sufficiently accurate to distinguish an honest prover from the LOCC at-
tackers, because a visibility of 0.85 leads to an error rate of 0.15 remaining
below the minimum error of the attackers of 1/4.

The first next step towards experimental Quantum Position Verifica-
tion will be to calibrate the existing setup for other polarization state (diag-
onal and anti-diagonal linear polarized light, right-handed and left-handed
circular polarized light).

At some point, the coherent light source needs to be switched to a sin-
gle photon source. Here the decisions on which single photon source and
if it is only a single photon source or a combination of a single photon
source and a weak coherent light source need to be made. When we switch
to single photons, the verifiers will need to be able two switch between po-
larization states fast, since the source can create single photons in the MHz
regime. The MPCs are definitely not fast enough and therefore faster ways
to modify the polarization states for single photons need to be used, such
as electro-optic modulators.

While working on the experimental side of QPV we are also searching
for a protocol where Quantum Position Verification is used in combination
with Quantum Key Distribution (QKD). In this case the QPV would be
used to authenticate a communication channel between the verifiers and
the prover and share a key at the same time.
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Appendix A
Density Matrix Formalism

For the two input states we have the following pure polarization states:

|Ψ〉 = a |H〉+ b |V〉
|Φ〉 = u |H〉+ v |V〉

(A.1)

where a, b, u, v ε C. A 50:50 beamsplitter has two input paths (0,1) and has
two output paths (2,3). The photon from path 0 is described by the state
|Ψ〉 and the photon from path 1 is described by |Φ〉. We take these two
photons to be distinguishable for the time being. Hence, the joined input
state can be described as:

|in〉 = au |H0H1〉+ av |H0V1〉+ bu |V0H1〉+ bv |V0V1〉 (A.2)

here the subscript shows the path the photon takes and the first term in
the ket is the photon belonging to |Ψ〉 and the second term belongs to |Φ〉.

The transformation of the state due to the 50:50 beamsplitter is defined
in the following way:

â†
0 =

1√
2
(â†

2 + iâ†
3)

â†
1 =

1√
2
(iâ†

2 + â†
3)

(A.3)

where â† is the creation operator. In order to take the polarization into
account in this formalism we define the creation operator of a horizontal
polarized photon is such a way that: |H0〉 = â†

0,H.
Using the input state and the transformation equations results in the
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54 Density Matrix Formalism

following output state:

|out〉 =
1
2

au (i |H2H2〉+ |H2H3〉 − |H3H2〉+ i |H3H3〉)

+
1
2

av (i |H2V2〉+ |H2V3〉 − |H3V2〉+ i |H3V3〉)

+
1
2

bu (i |V2H2〉+ |V2H3〉 − |V3H2〉+ i |V3H3〉)

+
1
2

bv (i |V2V2〉+ |V2V3〉 − |V3V2〉+ i |V3V3〉)

(A.4)

|out〉 = 1
2
(

i[au |H2H2〉+ au |H3H3〉+ bv |V2V2〉+ bv |V3V3〉]
+i(av + bu)[|H2V2〉+ |H3V3〉]
+(av− bu)[|H2V3〉 − |V2H3〉])

(A.5)

Since this output state consists of 16 terms, the corresponding density
matrix is of size 16x16. Due to this size the full density matrix is not shown.

The (diagonal) elements of the density matrix are the probabilities to
have one of the three possible answers dictated by the protocol (z=0,1,ø).

z = 0 : ρH2V2 + ρV2H2 + ρH3V3 + ρV3H3

z = 1 : ρH2V3 + ρV3H2 + ρH3V2 + ρV2H3

z = ø : ρH2H2 + ρH2H3 + ρH3H2 + ρH3H3

+ρV2V2 + ρV2V3 + ρV3V2 + ρV3V3

(A.6)

Remember that this formalism was for two photons which were dis-
tinguishable. However, in the experiment the photons are indistinguish-
able giving rise to the possibility of quantum interference. As a result,
not all off-diagonal elements of the density matrix can be discarded. The
cross-terms like |H2V2〉 〈V2H2| also need to be added to the outcome prob-
abilities. Moreover, the values for the diagonal terms of |H2H2〉, |V2V2〉,
|H3H3〉, |V3V3〉 in the density matrix need to be multiplied by a factor two
due to the fact that â†

2,H â†
2,H |0, 0〉 =

√
2 |2H, 0〉 =

√
2 |H2H2〉 for indistin-

guishable photons.
Taking this into account, the probabilities for the three answers of the

bell-state measurement are:

54

Version of November 8, 2020– Created November 8, 2020 - 15:48



55

z = 0 :
1
2
(|a|2|v|2 + ab∗u∗v + a∗buv∗ + |b|2|u|2)

z = 1 :
1
2
(|a|2|v|2 − ab∗u∗v− a∗buv∗ + |b|2|u|2)

z = ø :
1
2
(2|a|2|u|2 + 2|b|2|v|2)

(A.7)
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Appendix B
Error coefficient

This chapter is a more detailed derivation of the relation between the po-
larization states and the defined error coefficient R.

An error in the measurement by the honest prover is possible when
the polarization states are not perfectly orthogonal. In order to simulate
this, two tunable phases (γ and ε) are added to the expression of |Φ〉. The
expression for |Ψ〉 remains unchanged.

|Φ〉 = cos
(

θ + γ

2

)
|H〉+ (cos(ω + ε) + i sin(ω + ε)) sin

(
θ + γ

2

)
|V〉

In this derivation we assumed that both verifiers want to sent out a
diagonal polarized photon. This means that the conclusive result send
back by the honest prover is z=0 with probability 1

2 . Therefore, only P0 is
used in this derivation. Inserting |Ψ〉 and |Φ〉 into P0 gives the following:

P0 =
1
2

[
cos2

(
θ

2

)
sin2

(
θ + γ

2

)
+ cos

(
θ

2

)
(cos φ− i sin φ) sin

(
θ

2

)
cos

(
θ + γ

2

)
(cos(ω + ε) + i sin(ω + ε)) sin

(
θ + γ

2

)
+ cos

(
θ

2

)
(cos φ + i sin φ) sin

(
θ

2

)
cos

(
θ + γ

2

)
(cos(ω + ε)− i sin(ω + ε)) sin

(
θ + γ

2

)
+ sin2

(
θ

2

)
cos2

(
θ + γ

2

)]
Since both verifiers send out D-polarized photons we can state that

θ = π
2 , φ = 0 and ω = 0 leading to:
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58 Error coefficient

P0 =
1
2

[
1
2

sin2
( π

2 + γ

2

)
+

1
2

cos
( π

2 + γ

2

)
sin
( π

2 + γ

2

)
[cos(ε) + i sin(ε)]

+
1
2

cos
( π

2 + γ

2

)
sin
( π

2 + γ

2

)
[cos(ε)− i sin(ε)] +

1
2

cos2
( π

2 + γ

2

)]

P0 =
1
4

[
1 + 2 cos

( π
2 + γ

2

)
sin
( π

2 + γ

2

)
cos(ε)

]
=

1
4
[1 + cos(γ) cos(ε)]

We defined R in such a way that R = 0 (no error) means that the proba-
bility of measuring the correct answer is 1

2 . When there is maximum error
R = 1, the probability of measuring the correct answer should be 0. There-
fore, the relation between P and R can be defined as:

Pi=0,1 =
1
2
(1− R)

And as a result the relation between the angles γ and ε and the error
coefficient R is:

cos(γ) cos(ε) = 1− 2R

Please note that this expression is symmetric for γ and ε. Hence, for
simplicity’s sake, ε = 0 in the simulations. Also note that, even though
the derivation is for P0, the expression is exactly the same for P1, since in
that case ω = π.
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