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Abstract

The hydrodynamic properties of self-propelled particles have, in the past,
been approximated by a multipole expansion. As it becomes easier to
produce synthetic swimmers in various shapes and sizes, a proper under-
standing of this hydrodynamic basis will likely be important. In this thesis,
simulation was used to explore the diffusive behavior of the first-order term
in the presence of a wall. To quantify this behavior, the characteristic rota-
tion time and effective diffusion coefficient were determined for a range of
values of the first-order expansion coefficient α. It is shown that for low α
the particle diffuses in three dimensions, while for high alpha it diffuses in
two dimensions as it is locked parallel to the wall.
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Chapter 1
Introduction

When one places a particle in a fluid, the resulting motion can be separated
into passive and active motion. A passive colloid will be subject to ran-
dom fluctuations that make it perform a random walk. This phenomenon,
called Brownian motion, has been extensively studied. A more recent field
of study is that of active particles, which are capable of performing directed
motion. This directed motion can be driven by various mechanisms. For
self-propelled particles, a subset of active particles, the particles use up
energy from their environment on an individual level.
In biological systems, active and particularly self-propelled motion is very
common. This type of movement is not exclusive to living objects, though.
The study of active particles is relevant both as a way to better understand
the active motion seen in biological systems, and to make the construction
of artificial active systems possible.

1.1 Motivation

Research into active particles started with living cells, such as bacteria[1]
and sperm cells[2]. More recently, synthetic swimmers such as bimetal-
lic Janus rods[3], artifical flagella[4] and catalytically propelled Pt-coated
swimmers[5] were realized.
Due to advancements in 3D-printing, it is now possible to print particles
with a sub-micrometer resolution. The production of catalytically pro-
pelled active particles by 3D printing was recently investigated[6]. This
method makes it possible to create self-propelled particles with a wide
variety of shapes. It will therefore be useful to establish a strong basis for
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8 Introduction

the behavior of active particles of different shapes and sizes.
Simulation is an attractive way to approach this problem, as the relevant
effects can be incorporated one at a time.

1.2 Overview

The aim of this thesis is to review the existing hydrodynamic theory of
active particles, and to make it more easily applicable to experiments. In
particular, we focus on the hydrodynamic interactions between a swimmer
and a nearby no-slip wall. Using multipole expansion[7], we demonstrate
that swimmers crossover from three- to two-dimensional diffusion.

8

Version of December 17, 2020– Created December 17, 2020 - 11:34



Chapter 2
Methods

2.1 Nomenclature

µ = (dynamic) viscosity of the surrounding fluid
~x0 = particle position
~x = position of a point in the fluid
v0 = active velocity in infinite fluid
~p = direction of active velocity
~v = total particle velocity
~u =velocity field of surrounding fluid
p = pressure field of surrounding fluid
a = radius of sphere/semimajor axis length of ellipsoidal particle
b = semiminor axis length of ellipsoidal particle
e = b

a = eccentricity of ellipsoidal particle
Γ = 1−e

1+e
θ = out-of-plane angle of particle with respect to the x-y plane
φ = in-plane angle of the particle with respect to the x axis
ξ = rapidly fluctuating noise
D = diffusion coefficient
τr = rotation time
α, β,γ, τ = multipole expansion coefficients (see subsection 2.2.2)
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10 Methods

2.2 Theory

Figure 2.1: Schematic illustration of the relevant coordinates.

This thesis considers the active diffusion of a particle which is axisymmet-
rical about its direction of motion ~p. Such a particle is characterized by
five coordinates. These are the center-of-mass coordinates ~x0=(x0, y0, z0),
and the spherical coordinates θ,φ that give the orientation of the vector ~p.
The particle is moving near a boundary, represented as an infinite plane at
z = 0 spanning the x-y-plane. The spherical coordinates are chosen such
that φ is the angle in the x-y plane and θ is the azimuthal angle. Although
the convention for spherical coordinates is to set θ = 0 when the vector
lies along the z axis, it is more convenient here to set θ = 0 when ~p lies in
the x-y plane. Thus, ~p in Cartesian coordinates takes the form

~p = (cosθ cosφ, cosθ sinφ, sinθ) (2.1)

Subsection 2.2.1 describes the equations of motion for an infinite fluid,
first for a passive particle and then for an active particle. Subsection

10
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2.2 Theory 11

2.2.2 describes how this motion is influenced by hydrodynamics, both in
an infinite fluid and near a wall. Finally, subsection 2.2.3 describes the
simplifications that are used to obtain equations of motion for an active
particle near a wall.

2.2.1 Equations of motion for an active particle

Fundamentals of Brownian motion

When a particle is suspended in a fluid, it is pushed around by the random
motion of the surrounding molecules. These collisions make the larger
particle perform a random walk. This is called Brownian motion, and is
described in 1D by the equation

dxk

dt
= ξk(t) (2.2)

where ξk(t) is rapidly fluctuating noise and xk is a generic coordinate.
In general, it is not necessary to know ξk(t) in full. Instead, it is often
sufficient to know only its first and second moments. Let it be assumed
that there is no drift, that there is no correlation between the noise at
different time points and that the statistical properties of the noise do not
change overtime. The mean of the noise is then:

〈ξk(t)〉 = 0 (2.3)

and its autocorrelation function is a delta function:

〈ξk(t1)ξk(t2)〉 = 2Dkδ(t1 − t2) (2.4)

where Dk is the diffusion coefficient.
For diffusion in multiple dimensions, Equation 2.2 becomes a vector equa-
tion:

d~xk

dt
= ~ξk(t) (2.5)

The mean-squared displacement

Integration of equation 2.2 over time gives the displacement xk(t) of the
particle:

xk(t) =
∫ t

0
dt′

dxk(t′)
dt′

=

∫ t

0
dt′ξk(t′) (2.6)
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12 Methods

Because the average displacement of the particle is always 〈xk(t)〉 = 0 in
the absence of drift, the mean-squared displacement 〈x2

k(t)〉 is instead used
to characterize diffusion. It follows from Equation 2.4 that

〈x2
k(t)〉 = 2Dkt (2.7)

For a d-dimensional vector ~xk, the mean-squared displacements of the
components are added together:

〈|~xk|
2(t)〉 =

d∑
i=1

〈xk,i(t)2
〉 (2.8)

so if diffusion is isotropic, the mean-squared displacement in d dimensions
is

〈|~xk|
2(t)〉 = 2dDt (2.9)

The Langevin equations for an active particle in an infinite fluid

An active particle is a particle that, in addition to Brownian motion, has
a velocity v0~p. While the velocity v0 will be assumed constant, the unit
vector ~p is subject to rotational diffusion. The simplest case of this is the
2D case, where ~p = (cosθ, sinθ) and the equations of motion are

d~x0

dt
= v0~p(θ) + ~ξx(t)

dθ
dt

= ξθ(t)
(2.10)

Since two angles θ, φ describe the orientation of a 3D vector, the full set of
equations of motion for an active particle in 3D is

d~x0

dt
= v0~p(θ,φ) + ~ξx(t)

dθ
dt

= ξθ(θ, t)

dφ
dt

= ξφ(θ, t)

(2.11)

The equations for the rotational diffusion have a θ dependence here be-
cause θ,φ are lab frame coordinates rather than body frame coordinates.
This is discussed in more detail in Section 2.3.
The combination of an active velocity v0~p with rotational diffusion results

12
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2.2 Theory 13

in a trajectory that is ballistic at short timescales and diffusive at long
timescales. This is called a persistent random walk. The equations may be
simplified by leaving out ~ξx(t), as it only adds a random walk on top of
this persistent random walk.

Derivation of the mean-squared displacement for an active particle

The mean-squared displacement for a 2D active particle is[8]:

〈|~x0|
2
〉 = 4Dt + v2

0

∫ t

0
dt1

∫ t

0
dt2〈~p(t1) · ~p(t2)〉

= 4Dt + v2
0

∫ t

0
dt1

∫ t

0
dt2〈~p(0) · ~p(t2 − t1)〉

(2.12)

Working out the velocity-velocity correlation 〈~p(0) · ~p(∆t)〉:

〈~p(0) · ~p(∆t)〉 = 〈cosθ(0) · cosθ(∆t)〉+ 〈sinθ(0) · sinθ(∆t)〉
= 〈cosθ(∆t)〉

= 〈eiθ(∆t)
〉 − i〈sinθ(∆t)〉 = 〈eiθ(∆t)

〉

(2.13)

using that θ(0) = 0.
Since θ(∆t) is an integral of random noise (see Eq. 2.6 with k = θ), it is
Gaussian distributed with a variance 2Dθt (Eq. 2.8). This means that the
velocity-velocity correlation becomes a Gaussian integral:

〈~p(0) · ~p(∆t)〉 =
1

√
4πDθ∆t

∫
∞

−∞

dθ exp
1
2

(
θ2

2Dθ∆t
+ iθ

)
= e−Dθ|∆t|

(2.14)

Substituting this back into Equation 2.12, one obtains

〈|~x0|
2
〉 = 4Dt + v2

0

∫ t

0
dt1

∫ t

0
dt2e−Dθ|t2−t1|

= 4Dt + 2v2
0τ

2
r

( t
τr

+ e−t/τr − 1
) (2.15)

where τr is the rotation time.
In general, the rotation time is defined as the characteristic decay time of
the velocity-velocity correlation:

〈~p(0) · ~p(t)〉 = e−t/τr (2.16)
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14 Methods

so in this case, τr = D−1
θ .

The derivation of the 3D mean-squared displacement is very similar. In
that case, because there is rotational diffusion in two directions, one obtains
for the velocity-velocity correlation:

〈~p(0) · ~p(∆t)〉 = 〈cosθ(∆t)〉〈cosφ(∆t)〉 = e−(Dθ+Dφ)∆t (2.17)

so the 3D mean-squared displacement is

〈|~x0|
2
〉 = 6Dt + 2v2

0τ
2
r

( t
τr

+ e−t/τr − 1
)

(2.18)

with τr = (Dθ+Dφ)
−1. For an axisymmetrical particle, rotational diffusion

is isotropic, so Dφ = Dθ.

2.2.2 Hydrodynamic stress on a moving particle

Stokes drag in an infinite fluid

The fluid flow at low Reynolds numbers is described by the linearized
Navier-Stokes equations:

∇ · ~u = 0

∇p = µ∇2~u
(2.19)

where ~u(~x) is the velocity field of the fluid, p(~x) is the pressure field and µ
is the viscosity.
From the velocity and pressure fields of the fluid follows the hydrodynamic
stress tensor:

σi j(~x) = −p(~x)δi j + µ

(
∂ui(~x)
∂x j

+
∂u j(~x)
∂xi

)
(2.20)

Integration of this stress tensor over the particle surface gives the hydro-
dynamic drag:

~Fd =

	
dS σ · ~n (2.21)

For an axisymmetrical particle moving with some velocity ~v in an infinite
fluid, one finds that this force is a drag in the direction opposite the velocity.
For a sphere, this drag is described by the well-known Stokes law:

~Fd = −6µa~v (2.22)

14
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2.2 Theory 15

For an active particle, the active force ~Fa competes with the hydrodynamic
drag. The balance between these two forces sets the active velocity v0:

v0 =
Fa

6µa
(2.23)

When the particle approaches a boundary, the translational symmetry in
one direction is broken, causing the hydrodynamic stress to become more
complex.

Near a boundary: the method of images

For a particle moving near a solid wall, the fluid needs to obey the bound-
ary conditions at the wall. Let it be assumed that the boundary has the
no-slip condition ~u(z = 0) = 0. One way to solve this boundary problem
is to set a mirror image of the particle at the other side of the boundary. The
fields from the particle and those from its mirror image then cancel each
other out at the boundary. This is called the method of images. Blake[9]
used this method to work out the velocity and pressure fields caused by a
point force (called a Stokeslet) in proximity of a boundary.

2.2.3 Simplification of hydrodynamic stress near a wall

To find the force on the particle, one must first determine the velocity field
~u(~x) and pressure field p(~x) that result from its movement. From this one
can find the stress tensor σ(~x). By integrating the product of the fluid stress
tensor with the surface normal over the particle surface, one finds the total
force(Eq.2.21).
It is very time-consuming to carry out this full calculation for a specific
particle shape and propulsion mechanism. In this section, two simplifi-
cations will be laid out, namely the multipole expansion of the fluid field
and Faxén’s laws for the velocity of the particle in a fluid.

Faxén’s laws

Faxén’s laws provide an approximation of the drag on the particle that
is described by Equation 2.21. Provided that a � ∇2~u(~x0), the induced
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16 Methods

velocity of the particle from the hydrodynamic flow is[7]

~vind = ~u( ~x0) +O(a2
∇

2~u(~x0))

Ωind =
1
2
∇× ~u(~x0) + Γ~p× (~p · (∇~u(~x0) + [∇~u(~x0)]

T))/2 +O(a2
∇

2(∇× ~u)|~x0
)

(2.24)

The multipole expansion of fundamental singularities

Because of the linearity of the Navier-Stokes equations at low Reynolds
numbers, solutions can be expressed in terms of singularity solutions.
This approach was described in detail by Spagnolie& Lauga(2012)[7]. A
brief description is given here.
In an infinite fluid, the disturbance of the velocity field caused by a point
force

~f (~x) = f~p δ(~x− ~x0) (2.25)

takes the form

~u(~x) =
f

8πµ|~x− ~x0|

(
~p +

[~p · (~x− ~x0)](~x− ~x0)

|~x− ~x0|2

)
=

f
8πµr

(
~p +

[~p ·~r]~r
r2

) (2.26)

with ~r = ~x− ~x0. For an extended particle exerting a force ~f (~x) on the fluid,
the solution contains an integral over the particle surface[10]:

~u(~x) =
1

8πµ

	
δS

dS(~y)G(~x− ~y) · ~f (~y) (2.27)

where G is the Oseen-Green tensor, defined as

Gi j =
1
r

(
1 +

rir j

r2

)
(2.28)

so that the dot product of G(~x− ~x0) with f
8πµ~p gives the velocity field at the

point ~x originating from a point force f~p applied at the point ~x0.
With exception for a limited class of highly symmetric surfaces, the integral
2.27 cannot be expressed in terms of elementary functions. Yet, through

a Taylor expansion of the Oseen-Green tensor G, one can cast the velocity
field ~u as a superposition of elementary flows resulting from increasingly

16
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2.2 Theory 17

symmetric distributions of point forces. In analogy with electrodynamics,
the latter is referred to as multipole expansion.
In addition, one can always add solutions to the homogeneous equation,
which in this case is the Laplace equation ∇2~u = 0. These are referred to
as source terms, and are set by the boundary conditions that are imposed
by the finite size of the particle.
The solution for the velocity field of an axisymmetric particle can thus be
expanded as:

~u(~x) = α~GD(~p, ~p) + β~D(~p) + γ~GQ(~p, ~p, ~p) + τ~RD(~p) +O(|~x− ~x0|
−4) (2.29)

where ~GD is the force dipole solution, ~D is the source dipole solution, ~GQ is
the force quadrupole solution and ~RD is the rotlet dipole solution which is
present for chiral particles. Full expressions for these fundamental singu-
larity solutions are given in section 2.1 of Spagnolie&Lauga[7]. α, β, γ and
τ are coefficients of the multipole expansion, the value of which depends
on the particle’s geometry and propulsion mechanism.

Induced particle velocity near a wall

The fluid field of axisymmetrical particle in an infinite fluid must obey
cylindrical symmetry. This means that such a particle can only experience
a hydrodynamic force along its axis of movement, and a torque if the
particle is chiral. This symmetry is broken when the particle approaches
a wall. Still, because there is translational invariance in the x-y plane, the
proximity to the wall does not change the particle motion in an arbitrary
way. It can only influence the out-of-plane angle θ or the height z0, or
induce an additional drag in the x-y-plane. This last effect will not be
considered here, as it only influences the translational diffusion in the
x-y-plane. The new Langevin equations in this situation are

d~x0

dt
= v0~p(t) + ~vind(θ, z, t)

dθ
dt

= Ωind(θ, z, t) + ξθ(θ, t)

dφ
dt

= ξφ(θ, t)

(2.30)

The fluid field in the proximity of a boundary is found using the method
of images. This may be done separately for each term in the multipole
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18 Methods

expansion. The approximate induced velocity and angular velocity are
then found using Faxén’s laws. For the force dipole term, the induced
velocity and angular velocity are[7]:

~vind = a2v0
3α
8z2 (1− 3 sin2 θ)ẑ

Ωind = a2v0
3α
8z3

(
1 +

Γ
2

)
θ

(2.31)

2.3 Simulation

The multipole expansion that is described by Spagnolie& Lauga[7] makes
it possible to set up a simulation of an active particle’s behavior near a wall,
without the need for a full fluid simulation. Such a simulation is described
in this section.

2.3.1 General properties

The numerical simulation used for this thesis was constructed in Python
(ver 3.8.3). It makes use of the numpy package, the pyplot and Axes3D
modules from the matplotlib package, and the optimize and Rotation
modules from the scipy package.

Natural units

To simplify the notation, the quantities in the simulation are expressed
in natural units. Following Spagnolie&Lauga[7], lengths are expressed
in units of a, velocities in units of v0 and forces in units of µav0. Other
relevant units follow from this choice of natural units: for instance, time is
expressed in units of av0

−1.

2.3.2 Simulating the trajectory of an active particle

The Langevin equations for an active particle in an infinite fluid in 2.11 are
written in terms of a continuous time t. Since the simulation must work
with discrete time steps, the equations must be rewritten as

~x0, i+1 = ~x0, i + ~p(θi,φi)∆t
θi+1 = θi + ξθ,i(θi)

φi+1 = φi + ξφ,i(θi)

(2.32)

18
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2.3 Simulation 19

It should be remarked that the noise terms ξ in these equations are not
the same as in Equation 2.11. Because these discrete equations describe
position rather than velocity, the noise terms are time integrals of those in
Equation 2.11. This means that the values ξk, i are pulled from a Gaussian
distribution with variance 2Dk∆t, with k = θ,φ.

Value of rotational diffusion coefficient

In body frame coordinates, an axisymmetrical particle experiences isotropic
rotational diffusion with a diffusion coefficient Dr = Dθ′ = Dφ′ . For a
sphere, the rotational diffusion coefficient is given by the Stokes-Einstein
relation:

Dr =
kBT

8πµa3 (2.33)

where kBT is the thermal energy and µ is the viscosity of the surrounding
fluid. Converted to natural units, this becomes

Dr =
kBT

8πµa2v0
(2.34)

Thus, the relative strength of rotational diffusion becomes smaller with
increasing particle size or velocity.
When the eccentricity is not equal to 1, the rotational diffusion coefficient
is expected to deviate from the prediction of a sphere. For this simulation,
the value for a sphere was used.

A note on rotational diffusion in different inertial frames

The noise terms ξθ and ξφ depend on θi because the simulation works
with lab frame coordinates.
A 3D particle can carry out three Euler rotations. These three Euler ro-
tations fully define the orientation of the particle. If one chooses to use
lab frame coordinates, the three rotations are around the fixed axes x, y, z.
On the other hand, if one uses body coordinates, the inertial frame rotates
along with the particle. For the first rotation, the body and lab frames
coincide.
Let the initial orientation of the particle (θ = 0, φ = 0) be along the x
axis. With the coordinates as defined in Figure 2.1, one must first rotate
the particle by θ around the y axis, then by φ around the z axis to obtain
the desired orientation.
Rotational diffusion, on the other hand, is understood in body frame coor-
dinates θ′,φ′. While the first rotation angle θ′ coincides with θ in the lab

Version of December 17, 2020– Created December 17, 2020 - 11:34

19



20 Methods

frame, the second rotation by φ′ is around the axis z′ in the rotated inertial
frame. Thus, the rotational diffusion needs to be transformed from one
coordinate system to another, as dictated by the equations:

ξθ,i(θi) = ξθ′,i + ∆θ(θi, ξφ′,i)

ξφ,i(θi) = ∆φ(θi, ξφ′,i)
(2.35)

where ξθ′,i, ξφ′,i are pulled from a Gaussian distribution with variance 2Drt.
∆θ and ∆φ are fully determined by the set of equations:

tan ∆φ =
1

cosθi
tan ξφ′,i

sin ∆φ =
1

cos(θi + ∆θ)
sin ξφ′,i

sin(θi + ∆θ) = sinθi cos ξφ′,i

(2.36)

When ξ′φ, i is small, ∆φ and ∆θ can be expressed directly as:

∆φ ≈ arctan
ξφ′,i

cosθi

∆θ ≈ cotθi −
√

cot2 θi + ξ2
φ′,i

(2.37)

The exact transformation is done efficiently using the Rotation module
from the scipy package.

2.3.3 Boundary correction

Steric wall-particle interaction

The particle must be prevented from going through the wall. At low
Reynolds numbers, inertia is negligible. Thus, the steric interaction be-
tween the particle and the wall will simply make the particle halt when
it touches the wall. This was implemented by setting z0 to the minimum
height zmin whenever it falls below that point.
For a spherical particle, zmin is simply the radius. For an ellipsoidal particle
zmin is dependent on θ:

zmin =
√
(a sinθ)2 + (b cosθ)2 (2.38)

where a is the semimajor axis and b is the semiminor axis.

20
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2.3 Simulation 21

Force dipole contribution

Using the expressions in Equation 2.30, the incorporation of the dipole
term into the simulation is rather straightforward:

~x0, i+1 = ~x0, i + ~p(θi,φi) +
3α
8z2

i

(1− 3 sin2 θi)ẑ∆t

θi+1 = θi +
3α
8z3

i

(
1 +

Γ
2

)
θi∆t + ξθ,i(θi)

φi+1 = φi + ξφ,i(θi)

(2.39)
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Chapter 3
Results

The Langevin equations in Equation 2.39 were solved numerically for a
range of values of α. The active velocity was set to v0 = 1µms−1 and the
semimajor axis to a = 1µm, these being typical values for the particle size
and velocity. The temperature was set to room temperature (T = 300 K),
and the viscosity to that of water (µ = 1× 10−3 Pa s). All simulations used
time steps ∆t = 0.1a/v0 = 0.1 s. Although the numerical computation
used natural units, the results shown here were converted back to SI units,
so that they can more easily be compared to experimental results.

3.1 Qualitative observations of particle trajectory

For α = 0, the particle trajectories show the expected diffusive behavior.
At short timescales the particle moves ballistically, while at long timescales
rotational diffusion makes it diffuse isotropically. When α is high enough,
the particle aligns parallel to the boundary and diffuses in 2D.
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Figure 3.1: Examples of particle trajectories for α = 0 (left) and α = 18 (right),
iterated over n = 100000 steps or 10000 seconds.

3.2 Quantification by mean-squared displacement
and velocity-velocity correlation

The particle trajectories were quantified by the determination of the mean-
squared displacement 〈|~x0|

2(t)〉 and the velocity-velocity correlation 〈~p(0) ·
~p(t)〉. For both of these functions, the statistical average was taken by
dividing the trajectory into blocks and taking the average over all blocks.
The resulting plots for different values of α are shown in Figure 3.2. The
total number of iterations for these computations was n = 1000000. For
the mean-squared displacement a block size ∆n = 1000 was used, while
for the velocity-velocity correlation the block size was ∆n = 100.

Figure 3.2: Examples of MSD and velocity correlation plots from which the diffu-
sion coefficient and rotation time are determined, respectively.

24
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3.3 Determination of diffusion coefficient and rotation time 25

3.3 Determination of diffusion coefficient and ro-
tation time

From the mean-squared displacement and velocity-velocity correlation
functions, the effective diffusion coefficient and rotation time were deter-
mined. The rotation time τr is related to the velocity-velocity correlation
through the exponential relationship

〈~p · ~p〉 = e−t/τr (3.1)

while the translational diffusion coefficient D was determined from the
mean-squared displacement at long timescales:

〈|~x0|
2
〉 = 6Dt (3.2)

Both for the mean-squared displacement and the velocity-velocity correla-
tion, the trajectory was cut up into blocks for which |~x0|

2(t) and ~p(0) · ~p(t)
were determined individually. The average was then taken over all blocks.
The mean-squared displacement was fitted with the relation:

〈|~x0|
2
〉 − 〈|~x0|

2
〉|t0 = 6D(t− t0) (3.3)

where t0 = 10τr, as the mean-squared displacement is in the linear regime
at this lagtime.
For the fitting of the velocity-velocity correlation, a semilog scale was used:

ln 〈~p · ~p〉 = −
t
τr

(3.4)

In the chosen range of α, a transition is observed between 2D and 3D
diffusive behavior for the rotation time and diffusion coefficient(Figure
3.3). This is as expected, since the induced angular velocity tends to make
the particle align parallel to the wall(see Eq.2.30).
In the long-time limits of Equations 2.15 and 2.18, the translational diffusion
coefficient is related to the rotation time by the linear relation:

D =
1
3

v2
0τr (3.5)

There is no significant deviation from this linear relation in the observed
crossover between 3D and 2D diffusion, as demonstrated in Figure 3.4.
The value of α where the transition from 3D to 2D takes place is expected
to depend on the velocity v0, semimajor axis a and the eccentricity e. A
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larger velocity v0 or semimajor axis a should lower the value of α at which
the transition takes place, as this lowers the relative rotational diffusion
coefficient(see Eq.2.34). A lower eccentricity also makes the transition shift
to a lower value of α, as the induced angular velocity is higher in this
case(Eq.2.30). Values for e = 0.8 are also included in Figure 3.3 to illustrate
this shift.

Figure 3.3: Diffusion coefficient and rotation time for the chosen range of values
of α, for eccentricities e = 1 and 0.8.

Figure 3.4: Relation between the translational diffusion coefficient and rotation
time for the range of α shown in Fig. 3.3.

26
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3.4 Analytical calculation

To complement the results of numerical simulation, we now aim to estab-
lish an analytical model for the 3D/2D transition. This is done by finding the
Fokker-Planck equation, which describes the time evolution of the proba-
bility P of a certain configuration. We use the notation ~R = (x0, y0, z0,θ,φ)
for the coordinates of the particle. The correlation functions that are used
to characterize the system, namely the mean-squared displacement and
the velocity-velocity correlation, are then obtained from the integrals:

∂〈|~x0|
2(t)〉
∂t

=

∫
d~R |~x0|

2∂P(~R, t′)
∂t

∂〈~p(0) · ~p(t)〉
∂t

=

∫
d~R ~p(θ = 0,φ = 0) · ~p(θ,φ)

∂P(~R, t)
∂t

(3.6)

These integrals are taken over the whole phase space, with the probability
obeying the normalization constraint:∫

d~R P(~R, t) = 1 (3.7)

For our system where we truncate the multipole expansion to the first
order, we have obtained the Fokker-Planck equation:

∂P
∂t

= −
∂
∂x

(v0 cosθ cosφP) −
∂
∂y

(v0 cosθ sinφP) −
∂
∂z

[
v0

(
sinθ−

3a2α

8z2 (1− 3 sin2 θ)

)
P
]

+
∂
∂θ

[
3v0a2α

8z3

(
1 +

Γ
2

)
θP

]
+ Dθθ

∂2P
∂θ2 + Dφφ

∂2P
∂φ2 , (3.8)

However, we have not yet been able to fully work out the correlation
functions.
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Chapter 4
Discussion

The multipole expansion coefficient α can only be determined exactly
through a full numerical calculation. However, it is fixed for a given
particle geometry and propulsion mechanism, and one can predict how
the results change when the semimajor axis α or velocity v0 are changed.
Some reservations do need to be made when comparing the results from
Chapter 3 to experimental findings. These are given in this chapter.

4.1 Limitations of simulation

The simulation must work with discrete time steps ∆t. This discrete nature
of the simulation will impact the results for large forces and velocities.
In particular, the hydrodynamic torque that causes the particle to align
parallel to the wall will overshoot if the time step ∆t is too large. Thus, an
effect can be seen where the particle stops aligning to the wall and goes
back to 3D diffusion as the involved forces become larger. This is purely
an artifact of the simulation, as the particle will once again align parallel
to the wall when a sufficiently small time step is used.

4.2 Higher-order terms

The higher-order terms in the multipole expansion can only be neglected if
the particle is far enough away from the wall. After the force dipole term,
the three second-order terms are the next most relevant to consider. These
are the source dipole, the force quadrupole and the rotlet dipole term.
The source dipole and force quadrupole contributions both result in a
constant rotation in θ, and an attraction to or repulsion from the wall
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depending on θ. The rotlet dipole is relevant for chiral particles, and
results in circular movement in the x-y plane.
In this thesis α was varied. One can similarly vary the other coefficients
β,γ, τ to explore the higher-order terms.

4.3 Application to experiments

There are two obvious types of applications to which the hydrodynamic
description considered in this thesis is relevant. First, it is relevant to self-
propelled particles that naturally tend to move near a boundary. Examples
of these are sperm cells approaching an egg cell, or synthetic swimmers
that travel through veins to carry medicine[11]. Second, particles that are
observed under a microscope may swim close to a substrate by neces-
sity. We make special note of one type of synthetic self-propelled particle,
namely catalytic Pt-coated swimmers, which were the initial motivation
for this thesis. For such swimmers, it must be noted that other effects may
play a role. In particular, it has been shown that the propulsion mechanism
has an electrodynamic component[12].

30
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Chapter 5
Conclusions

The far-field behavior of an axisymmetrical particle near a wall was inves-
tigated, using the established multiple expansion theory. The effect of a
wall on the force dipole term in the presence of rotational diffusion was ex-
plored via numerical simulation. This was quantified by the rotation time
τr and long-time translational diffusion coefficient D for varying values
of the first-order expansion coefficient α. We find that a transition takes
place between three-dimensional diffusion and two-dimensional diffusion
parallel to the wall. This is reflected in the rotation time and diffusion
coefficient. For a spherical particle with active velocity ~v0 = 1µms−1 and
radius a = 1µm, this transition takes place at α ≈ 9.
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