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Abstract

The goal of this research is to find out the effects of certain disturbances
on the results of the Hanbury Brown-Twiss (HBT) experiment. The HBT
experiment was performed to demonstrate the working principles of the
intensity interferometer. In order to model the disturbances a computer
model of the HBT experiment was developed in Python. A total of three
disturbances were modeled; detector efficiency, detector jitter, and detector
dead time, and two types of light were modeled; Coherent and single-
photon light. Numerical experiments were performed to measure the effect
of the disturbances on the measurements. For detector efficiency and dead
time, a clear effect could be observed, but for the detector jitter, the results
were dependent on the type of light being used.
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Chapter 1
Introduction

1.1 The goal of this research

The goal of this research is to find out the effects of disturbances on the
result of the Hanbury Brown-Twiss (HBT) experiment. This question has
been divided into several subquestions:

• What disturbances are there on the HBT experiment?

• What are the effects of a non-perfect detector efficiency on the second-
order correlation function g(2)(τ)?

• What are the effects of detector jitter on g(2)(τ)?

• What are the effects of detector dead time on g(2)(τ)?

1.2 HBT experiment

Robert Hanbury Brown and Richard Q. Twiss were astronomers with an
interest in measuring the diameter of stars. For this purpose they had
developed an intensity interferometer, using the 2.5 m telescope at the
Mount Wilson Observatory. This experiment proved useful for measuring
the diameter of several stars, among which that of Betelgeuse. However,
their methods became disputed.[1] In order to address these disputes, they
decided to test the principles of their experiment in a laboratory. This
experiment is known as the HBT experiment.

The purpose of the HBT experiment is to show that the theory behind
the intensity interferometer used by Hanbury Brown and Twiss is sound.
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1.3 Additional theory 3

The HBT experiment is an experiment with the purpose of determining
the correlation of photons within a photon stream. The correlation of
photons is a measure of how bunched up photons are within a photon
stream.

The original experiment has been illustrated in Figure 1.1. The photon
emitter was a mercury lamp, and the light from the lamp was focussed
and filtered such that only light with a wavelength of 435.8 nm fell on the
beamsplitter. For the beamsplitter a half-silvered mirror was used, which
divided the impinging light into two streams towards a pair of photomulti-
pliers. The outputs of the photomultipliers were then amplified and fed
into a correlator, which returned the correlation between the fluctuations in
the outputs [2].

Figure 1.1: The original experimental setup used for the HBT experiment [2]

1.3 Additional theory

1.3.1 Principle of the HBT experiment and g(2) function

The basic experimental setup consists of a photon emitter, a 50/50 beam-
splitter, and two time-tagged photon detectors. During the experiment, the
light from the source is sent to the half-silvered mirror, which functions
as a 50/50 beamsplitter. Here, the photon stream gets split into two sep-
arate streams. These two streams then impinge on the photon detectors
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1.3 Additional theory 4

(C1 and C2 in Fig 1.1), which produce a click whenever a photon falls on
them (with a certain probability). The correlator unit then determines the
amount of coincidental clicks. The slide which photodetector C1 is attached
to can be used to introduce a delay τ in the measurements of the second
photodetector. From this the second-order correlation function g(2)(τ) can
be calculated, which is a measure of the probability of two photons falling
on both detectors with a τ time interval.

g(2)(τ) =
〈n1(t)n2(t + τ)〉
〈n1(t)〉〈n2(t + τ)〉 (1.1)

Here, n1 and n2 are the amount of photons that impinge on the photon
detectors, and the angled brackets 〈...〉 indicate the time average, which is
calculated by integrating over a long time period.

1.3.2 Poissonian statistics

The most well-known kind of classical light is coherent light, which is light
which has constant angular frequency ω, phase φ, and amplitude E0. The
equation discribing that light is as follows:

E(x, t) = E0 sin(kx−ωt + φ) (1.2)

Coherent light follows Poissonian photon statistics. This means that the
amount of photons within a subsection of the photon stream follows the
Poissonian photon distribution:

P(n) =
nn

n!
e−n (1.3)

Here, n is the amount of photons within that subsection of the photon
beam, and n is the average amount of photons in a subsection of the same
length.

This means that coherent light still has some variation in the amount of
photons in each subsection. The standard deviation of the distribution is
given by

∆n =
√

n (1.4)

1.3.3 Photon bunching & antibunching

Light can be classified in many different ways. One of them is by what the
value of g(2)(0) is for that light. There are three distinct possibilities:
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1.3 Additional theory 5

• g(2)(0) > 1: Bunched light

• g(2)(0) = 1: Coherent light

• g(2)(0) < 1: Antibunched light

Coherent light was mentioned before in the previous section. Because
coherent light has random time intervals between photons, the probability
of detecting a photon τ after another photon detection is the same for all
values of τ. Therefore, coherent light must have g(2)(τ) = 1 for all values
of τ.

Bunched light is light in which the photons tend to clump up into
regions with either more or fewer photons. This means that photons tend
to form up in groups or "bunches". As a result of this, the probability of
detecting a second photon short after a first photon is higher than detecting
a second photon after a longer time. Therefore, it is expected that the value
of g(2)(τ) is larger for small values of τ than for higher values.

All classical light must satisfy the following equations:

g(2)(0) ≥ 1 (1.5)

g(2)(0) ≥ g(2)(τ) (1.6)

For example, thermal light has g(2)(0) = 2, and is therefore bunched.
Antibunched light is light where the gaps between photons are regular,

as opposed to having random length. Because of this, the probability of
detecting a photon right after another one is low, while the probability
of detecting one after a longer time increases with the amount of time.
Because of this, the following holds for antibunched light:

g(2)(0) < g(2)(τ) (1.7)

g(2)(0) < 1 (1.8)

This is in violation of the equations 1.5 and 1.6, which apply to classical
light. Therefore, photon antibunching is a quantum effect without any
classical equivalent [3].
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Chapter 2
Methods

2.1 The goal

The purpose of this research is to find out the effects of certain disturbances
on the result of the HBT experiment. In order to do this, a model has
been constructed (as described in section 2.2). Then, this model has been
used to perform several simulations with and without the effects of the
disturbances. These simulations are described in section 2.3, and the results
of these are described in chapter 3.

2.2 The model

The goal of the model is to simulate an ideal version of the Hanbury-
Brown-Twiss experiment, with the ability to add certain disturbances to
the simulation that might affect the results. The model is written in Python
3, using Jupyter Notebook as editor.

In this section the various functions in the model are explained. The
code used for these functions can be found in Appendix C.

2.2.1 Photon generation

Central to the model is the photon stream. The photon stream is modeled as
an array filled with integers. Each index of the array represents the amount
of photons emitted within a certain timeframe. An example is provided in
Figure 2.1. The amount of time each index represents is adjustable in the
code.
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2.2 The model 7

Figure 2.1: An example of a photon stream as represented in the code

In the model, there are two functions for generating photon stream
arrays: One for coherent light and one for single-photon light. These
functions each generate a photon stream array, with the amount of photons
chosen according to the probabiliy distribution corresponding to the type
of light being generated. The function for coherent light uses the Poisson
distribution:

Pcoh(n) =
nn

n!
e−n (2.1)

The way single-photon light is generated is a bit more complex. Unfor-
tunately, there is no simple formula for the photon distribution of single-
photon light. Therefore, another method is required to generate this type
of light. A single-photon emitter is an source that discharges only a single
photon per emission event. This is typically done with a two-level quantum
system, in which the system is put in its excited state by some mechanism,
and once the system decays to its ground state, a single photon is emit-
ted.[4] We can use this to calculate the delay between emission events. The
total delay t is the sum of the delay of the ground-excited transition t12 and
the delay of the excited-ground transition t21. The probability for these is
as follows:

P12(t) = k12e−k12t (2.2)

P21(t) = k21e−k21t (2.3)

Here k12 and k21 are the excitation rate and decay rate, respectively.
The way this is implemented in the code is very simple for coherent

light, but more complex for single-photon light. The function for coher-
ent light uses the np.random.poisson function from the numpy module,
which creates an array with values distributed according to the Poisson
distribution.

The sp_stream function keeps track of whether the emitter is in the
excited state or in the ground state. It then picks a delay time according to
Eq. 2.2 and Eq. 2.3. It adds these together, skips that amount of time ahead
in the photon stream, and adds a single photon at that time. This process is
then repeated until the end of the photon stream.
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2.2 The model 8

2.2.2 Beamsplitter

The beamsplitter function works to separate an incoming photon stream
into two photon streams. This mirrors the functionality of a 50/50 beam
splitter used in the physical HBT experiment.

The code works as follows: First, the function takes the incoming pho-
ton stream array. Then, an array δ of the same length as the photon
stream is created, and filled with random values between 0 and 1, us-
ing np.random.rand. Then, for every index, an amount of photons in that
index are put in the transmission array. The amount of photons is equal to
the fraction in δ multiplied by the amount of photons in the photon stream
array, rounded to the nearest integer. The remaining photons are put in
the reflection array. After this, both arrays are returned. The amount of
photons in each array is represented as follows:

ntrans,i = δi · ninc,i (2.4)

nre f l,i = ninc,i − ntrans,i (2.5)

Here ntrans,i and nre f l,i are the i-th elements of the transmission array and
the reflection array, respectively. ninc,i is the i-th element of the incoming
photon stream array. δi is the i-th element of the array with the fraction of
photons that gets transmitted.

This code is not completely equivalent to a 50/50 beamsplitter. In order
to correctly simulate a beamsplitter, distribution of photons should have
been chosen according to the binomial distribution. The decision to use a
flat distribution instead of the binomial distribution was made to speed up
the beamsplitter function, as the former function is significantly faster than
the latter. This does not significantly affect the distribution of photons. A
further explanation is given in Appendix A.

2.2.3 Photon detector

The click_detector function simulates the operation of a click detector.
This detector recieves an incoming photon stream, and when it detects a
photon it gives a ’click’.

There are several features that need to be simulated in such a detector.
First, there is the detector jitter, which is a random variation of the produced
click after a photon absorption event. There is also the fact that the detector
has a limited resolution, meaning that there is a limit on how close two
photons can be to each other while the detector can still distinguish them.
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2.2 The model 9

The detector also has a nonperfect efficiency, meaning that not all photons
that fall on the detector are actually detected. Then there is the detector
dead time, which means that after the detector detects a photon, the detector
cannot detect for a certain amount of time, during which the detector is
’dead’.

Thus, the order of operations is:

1. Jitter

2. Resolution

3. Efficiency

4. Dead time

The code used to simulate the photon detector can be seen in Figure C.4.
First, the function takes the incoming photon stream. Then, it applies the
jitter to it, the code for which can be seen in Figure C.5. This code works
as follows: First, the code takes the photon stream, and the strength of
the jitter. Then, for every element of the photon stream array, it moves
the contents a random amount, dependent on the intensity of the jitter.
This output is then put into a new array, in a new position, appropriate to
how far the contents were moved. The method by which the amount of
movement of a photon is calculated is by choosing a random amount of
time according to the normal distribution, where the intensity of the jitter
is represented by the standard deviation of the distribution.

The limited resolution effectively causes the photon stream to be rep-
resented in larger time bins. This is achieved by creating an output array
of length equal to the original length, divided by the ratio between the
resolution and the length of a timebin:

Tnew = Told ·
tbin
tres

(2.6)

Here, Tnew and Told are the lengths of the new and original arrays,
respectively. tbin is the length of each time bin, and tres is the resolution of
the detector. Each index within the new array represents a timeframe that
is tres

tbin
times longer than the original timebin. Then, the photons from the

old array need to be represented in the new array. This is done by taking
the photons within a timeframe from the old array, adding them together,
and putting them into the new array.

Next, the efficiency of the detector is simulated. The efficiency of the
detector is an indicator of the chance for a detector to actually detect a
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2.2 The model 10

photon impinging on it. There are two options to handle this. The first
option is a “flat" type of efficiency, where the amount of photons does not
affect the detection chance, and it only matters whether a photon falls on
the detector or not. For this efficiency type, the following is true:{

Pdet = 0 nphot = 0
Pdet = ε nphot > 0

(2.7)

Here, Pdet is the detection chance, nphot is the amount of photons that
fall on the detector within the timebin, and ε is the efficiency of the detector.

There is also the "exponential" efficiency type, where each photon that
falls on the detector increases the detection chance exponentially. For this
efficiency type, the following is true:

Pdet = 1− (1− ε)nphot (2.8)

When the detection chance has been determined, it is randomly decided
(with a Pdet probability) whether the photon detector has detected a photon
that timebin.

After the detection array has been made, the deadtime is applied. In
order to simulate the detector deadtime, the code goes through the entire
detection array, and if it finds a detection, it sets all detections to False for
a number of elements, equivalent to the length of the deadtime. The code
used for the deadtime is shown in Figure C.6.

2.2.4 g2 function

The g2 function (which measures the probability of two photons falling
on both detectors with a τ time interval) calculates the values of g(2)(τ)
given a photon stream and a range of values for τ. It uses the beamsplitter
function and the click_detector function to simulate the setup of the HBT
experiment, and then uses the output of those to calculate g(2)(τ). (g(2)(τ)
is a measure of the probability of two photons falling on both detectors
with a τ time interval)

First, the incoming stream is split into two streams using the beam-
splitter (stream1 and stream2). Then, the two streams are individually
passed into the click_detector function, resulting in two arrays filled
with Boolean values (newstream1 and newstream2). Then, a range of values
for τ is created, for which the values of g(2)(τ) will be calculated. Then,
for every value of τ, the value of Eq. 1.1 is calculated, with the two arrays
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2.3 Verification of photon generators 11

newstream1 and newstream2 used as n1(t) and n2(t + τ). The approxima-
tion of the integration done over a long time with the brackets 〈...〉 is done
by, for each index, multiplying the value of both arrays, with the second
array having its index offset by τ. After the values of g(2)(τ) have been
calculated, both the array with g(2)(τ) values and the corresponding τ
values is returned.

2.3 Verification of photon generators

In this section it is shown that the photon generator functions generate light
that is consistent with the theory. This is added because for single-photon
light, additional theory had to be developed in order to properly test the
functions.

2.3.1 Coherent light

The function for coherent light must follow the photon distribution of Eq.
1.3.
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Figure 2.2: Comparison of theoretical photon distribution and photon distribution
generated by the coherent_stream function

As can be seen in the graph, the photon distribution of the coherent_stream
function follows the theoretical distribution perfectly.

2.3.2 Single-photon light

As seen in subsection 2.2.1, there is no simple formula for the photon
distribution of single-photon light. However, it is possible to calculate the
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2.4 Numerical experiments 12

expected distribution of delays between photons. It is possible to calculate
the probability for the excitation time and the decay time (Eq. 2.2 & 2.3),
and this is used to calculate the total emission time t = t12 + t21.

In order to calculate the probability of the total emission time, we must
integrate over all possible combinations of t12 and t21 that add up to t:

P(t) =
∫ t

0
P12(t12)P21(t21)dt12 (2.9)

Filling in 2.2 and 2.3 gives the following:{
P(t) = k12k21

k21−k12

(
e−k12t − e−k21t) i f k12 6= k21

P(t) = k2te−kt i f k12 = k21 = k
(2.10)

Plotting this function and comparing it to the delays generated by
sp_stream gives the following graph:
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Theoretical vs practical delay distribution for single-photon light
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Figure 2.3: Comparison of theoretical delay distribution and delay distribution
generated by the sp_stream function

2.4 Numerical experiments

In order to determine the effects of the disturbances, several numerical
experiments have been performed. These experiments each determine the
effects of a single type of disturbance. A control experiment has also been
performed, to measure the behaviour of g(2) without any disturbances. All
of these experiments have been performed for both coherent and single-
photon light.
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2.4 Numerical experiments 13

2.4.1 Control experiments

The control experiments have been done for both coherent and single-
photon light. One experiment has been done for coherent light, and four
experiments have been done for single-photon light.

The control experiment for coherent light has been done with a 10 ms
long photon stream, with an average photon frequency of 10 MHz, timebin
size of 1 ns, a detector resolution of 25 ns, and a τ range of 10000 ns. The
results are shown in Figure 2.4:
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g(2
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Control experiment for coherent light
Length: 10 ms
Avg photon freq: 10 MHz
Timebin size: 1 ns
Det. resolution: 25 ns

Figure 2.4: The values for g(2)(τ) for the control simulation of coherent light

The graph shows that the value of g(2) stays around 1 for all τ, which is
consistent with the theory. There is some noise in the values however, but
this does not exceed 3%.

The control experiments for single-photon light have been done for four
different parameter combinations. The experiments have been done with
an excitation rate of 0.1 GHz and 1 GHz, and a decay rate of 0.1 GHz and 1
GHz, for all combinations of these parameters. The following parameters
were the same for all simulations: A timebin size of 1 ns and a detector
resolution of 1 ns. The simulation with a k12 and k21 of 1 has been done
with a photon stream length of 1 ms, the other simulations have been done
with a stream length of 10 ms. This was done to save on time, due to the
time needed for the simulation at such high transition rates. The detector
resolution of 1 ns was chosen to better show the curve of g(2)(τ), as for 25
ns this was not very clear.
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2.4 Numerical experiments 14
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Figure 2.5: The values for g(2)(τ) for the control simulations of single-photon light

The graphs show that the value of g(2)(τ) starts at 0 for τ = 0, and rises
to 1 as τ increases. The rate at which g(2)(τ) rises increases as the excitation
and decay rate become higher. This is consistent with Eq. 1.7 and Eq. 1.8.

2.4.2 Disturbances

After the control simulations, the experiments with the disturbances were
performed. The results for these are described in the next chapter. For each
of the disturbances, several simulations were run for a range of parameters.
These were then compared to the control simulation with the same base
parameters.

The first series of simulations was done with non-perfect efficiency, the
second was done with the jitter turned on, and the third was done with the
dead time turned on.

For the efficiency, the values 75%, 50%, 25%, and 10% were used. For
the jitter, the values 1 ns, 4 ns, and 10 ns were used. For the dead time, the
values 100 ns and 1000 ns were used.
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Chapter 3
Results

The results of the experiments described in the previous chapter are pre-
sented here. The experiments can be separated in three categories, each
covering two types of light. The categories are the three types of distur-
bances examined: the detector efficiency, the detector jitter, and the detector
dead time.

In order to determine which results are still usable and which results are
too impacted to use, acceptance criteria have been made: One for coherent
light, and one for single-photon light.

For coherent light, the deviation from the theoretical value of g(2)(τ)
has been used as a marker: The theoretical value is subtracted from all g(2)

values from the experiments, leaving only the deviation from the theory.

g(2)dev(τ) = g(2)(τ)− g(2)coh(τ) = g(2)(τ)− 1 (3.1)

The standard deviation of these deviation is then calculated. This is
done for both the control experiment and the disturbed experiments. The
standard deviation of the control experiment σcontrol is then used as a
marker of acceptability: If the standard deviation for an experiment is
less than twice that of the control experiment, the results of that experiment
are still acceptable. Otherwise, the results are too altered to use. The
standard deviation for the control experiment is σcontrol = 0.011.

For single-photon light, there is no easy theoretical value to compare
the results to. Therefore a different method of determining acceptability
was chosen. The g(2) values of the control experiment were subtracted from
those of the disturbed experiments, leaving the deviation from the control
experiment, or the residue:
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3.1 Detector efficiency 16

g(2)res (τ) = g(2)(τ)− g(2)control(τ) (3.2)

The standard deviation of the residue is then calculated. However,
because there is no residue of the control experiment to compare this to, an
arbitrary value was chosen instead. A value of 0.02 was chosen as the limit,
so if the standard deviation is less than this value, the result is considered
acceptable. Otherwise, the results are too altered to use.

3.1 Detector efficiency

These are the results for g(2)(τ) from simulations with varying detector
efficiencies.

3.1.1 Coherent light

The simulations were done with a photon stream of coherent light, with
the following properties:

• Array entries: 10000000

• Timebin size: 1 ns

• Total length of stream: 10 ms

• Average photon count per bin: 0.01

• Average photon frequency: 10 MHz

• Detector resolution: 25 ns

• Range of values for τ: 0 ns - 1000 ns, 25 ns interval
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3.1 Detector efficiency 17
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Figure 3.1: The values of g(2)(τ) for coherent light, with varying detector efficien-
cies

As can be seen, the variations in g(2)(τ) increase as the efficiency of the
detector decreases, with a maximum variation of 0.03 for a 100% efficient
detector. This is due to the decrease in efficiency causing there to be less
photon detections, which in turn increases the error of the values.

The results are still acceptable for an efficiency of 75% ( σ
σcontrol

= 1.40),
but are no longer acceptable for an efficiency of 50% ( σ

σcontrol
= 2.07). This

makes sense, as the total amount of photon detections decreases as the
detector efficiency decreases.

3.1.2 Single-photon light

In all simulations with single-photon light, most of the parameters have
remained the same. The only parameters that have been altered between
simulations are the excitation rate and the decay rate. The constant param-
eters are as follows:

• Array entries: 10000000

• Timebin size: 1 ns

• Total stream length: 10 ms

• Detector resolution: 1 ns

• Range of value for τ: 0 ns - 1000 ns, interval of 1 ns

The following simulation has been done with an excitation rate of 0.1 GHz
and a decay rate of 0.1 GHz.
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Experiments for single-photon light with different detector efficiencies

eff = 10%
eff = 25%
eff = 50%
eff = 75%
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Length: 10 ms
Excitation rate: 100 MHz
Decay rate: 100 MHz
Timebin size: 1 ns
Det. resolution: 1 ns

Figure 3.2: The values of g(2)(τ) for single-photon light, with varying detector
efficiencies. Excitation rate of 0.1 GHz, decay rate of 0.1 GHz

As can be seen, the general shape of the curve remains the same regard-
less of detector efficiency, but the dispersion of the values increases as the
efficiency of the detector decreases.

For an excitation rate of 0.1 GHz and a decay rate of 0.1 GHz, the results
are still acceptable at an efficiency of 75% (σ = 0.019), but no longer at an
efficiency of 50% (σ = 0.025).

For an excitation rate of 0.1 GHz and a decay rate of 1 GHz, the results
are still acceptable at an efficiency of 50% (σ = 0.014), but no longer at an
efficiency of 25% (σ = 0.027).

For an excitation rate of 1 GHz and a decay rate of 0.1 GHz, the results
are still acceptable at an efficiency of 50% (σ = 0.014), but no longer at an
efficiency of 25% (σ = 0.027).

For an excitation rate of 1 GHz and a decay rate of 1 GHz, the results
are still acceptable at an efficiency of 25% (σ = 0.015), but no longer at an
efficiency of 10% (σ = 0.038).

It can be seen that the increased frequency of photon emissions dimin-
ishes the effect of a non-perfect detector efficiency. This is because the direct
effect of such an efficiency (decreased amount of photon detections) is at
least partially alleviated by the sheer number of photons falling on the
detector.
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In all simulations with single-photon light it can be seen that the dis-
persion of values for g(2)(τ) increases as the efficiency decreases. This is
because a decrease in efficiency causes there to be less photon detections,
which in turn increases the error of the values.

3.2 Detector jitter

We now turn to the results from the simulations with varying amounts of
detector jitter.

3.2.1 Coherent light

The simulations were done with a photon stream of coherent light, with
the following properties:

• Array entries: 10000000

• Timebin size: 1 ns

• Total length of stream: 10 ms

• Average photon count per bin: 0.01

• Average photon frequency: 10 MHz

• Detector resolution: 25 ns

• Range of values for τ: 0 ns - 1000 ns, 25 ns interval

The amount of jitter indicated in the legend of the graph is actually the
standard deviation of the normal distribution used to generate the amount
of jitter.
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Experiments for coherent light with different amounts of jitter
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Figure 3.3: The values of g(2)(τ) for coherent light, with varying amounts of
detector jitter

As can be seen, this amount of jitter does not seem to have much of
an effect on the values of g(2)(τ). This is also reflected in the standard
deviation of the results: σ

σcontrol
= 1.001 for a jitter of 10 ns. This means that

the results are acceptable for all examined values of jitter. This is because the
jitter adds randomness to the amount of time between photon detections,
but for coherent light this is already random, so it has no noticable effect.

3.2.2 Single-photon light

In all simulations with single-photon light, most of the parameters have
remained the same. The only parameters that have been altered between
simulations are the excitation rate and the decay rate. The constant param-
eters are as follows

• Array entries: 10000000

• Timebin size: 1 ns

• Total stream length: 10 ms

• Detector resolution: 1 ns

• Range of value for τ: 0 ns - 1000 ns, interval of 1 ns

The following simulation has been done with an excitation rate of 0.1 GHz
and a decay rate of 0.1 GHz.
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Figure 3.4: The values of g(2)(τ) for single-photon light, with varying amounts of
detector jitter. Excitation rate of 0.1 GHz, decay rate of 0.1 GHz

As can be seen, the values of g(2)(τ) all follow the same curve, but the
start and the steepness of the curve are different for the different amounts
of jitter. As the amount of jitter increases, g(2)(0) becomes higher, but the
width of the dip at τ = 0 decreases.

For an excitation rate of 0.1 GHz and a decay rate of 0.1 GHz, the results
are still acceptable at a jitter of 1 ns (σ = 0.019), but no longer at a jitter of 4
ns (σ = 0.028).

For an excitation rate of 0.1 GHz and a decay rate of 1 GHz, the results
are not acceptable for any of the examined amounts of jitter. (σ = 0.024 for
jitter of 1 ns)

For an excitation rate of 1 GHz and a decay rate of 0.1 GHz, the results
are not acceptable for any of the examined amounts of jitter. (σ = 0.024 for
jitter of 1 ns)

For an excitation rate of 1 GHz and a decay rate of 1 GHz, the results
are not acceptable for any of the examined amounts of jitter. (σ = 0.025 for
jitter of 1 ns)
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Overall, two things have been observed for single-photon light: g(2)(0)
is higher when the jitter is higher, and g(2)(τ) increases more slowly when
the jitter is higher. The former can be explained by the fact that jitter
rearranges the time of detection for photons, which means that where
previously there was no chance of two photons being detected right after
each other, there is now a chance of a photon being detected too early, right
after the previous photon. Similarly, the “dip" in g(2)(τ) becomes broader
as the jitter increases.

3.3 Dead time

These are the results from the simulations with varying amounts of detector
dead time

3.3.1 Coherent light

The simulations were done with a photon stream of coherent light, with
the following properties:

• Array entries: 10000000

• Timebin size: 1 ns

• Total length of stream: 10 ms

• Average photon count per bin: 0.01

• Average photon frequency: 10 MHz

• Detector resolution: 25 ns

• Range of values for τ: 0 ns - 1000 ns, 25 ns interval
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Figure 3.5: The values of g(2)(τ) for coherent light, with varying amounts of
detector dead time

Similar to what could be seen in the simulations with non-perfect effi-
ciency, the variation in values of g(2)(τ) increases as the amount of dead
time increases. This is due to the fact that all photon detections during
the dead time are missed, reducing the total amount of photon detections,
which in turn increases the error of the values.

The results are acceptable for a dead time of 100 ns ( σ
σcontrol

= 1.60), but
not for a dead time of 1000 ns ( σ

σcontrol
= 7.88). This means that the cutoff

point for the dead time is likely nearby 100 ns.

3.3.2 Single-photon lightx

In all simulations with single-photon light, most of the parameters have
remained the same. The only parameters that have been altered between
simulations are the excitation rate and the decay rate. The constant param-
eters are as follows

• Array entries: 10000000

• Timebin size: 1 ns

• Total stream length: 10 ms

• Detector resolution: 1 ns

• Range of value for τ: 0 ns - 1000 ns, interval of 1 ns

The following simulation has been done with an excitation rate of 0.1 GHz
and a decay rate of 0.1 GHz.
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Figure 3.6: The values of g(2)(τ) for single-photon light, with varying amounts of
detector dead time. Excitation rate of 0.1 GHz, decay rate of 0.1 GHz

The first panel of Figure 3.6 shows clearly that the dispersion of values
for g(2)(τ) increases as the amount of dead time increases.
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Figure 3.7 is from a simulation that has been done with an excitation rate
of 1 GHz and a decay rate of 1 GHz. Due to time restraints, this simulation
has only been done with 1000000 array entries, adding up to 1 ms total
stream length.
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Figure 3.7: The values of g(2)(τ) for single-photon light, with varying amounts of
detector dead time. Excitation rate of 1 GHz, decay rate of 1 GHz

It is notable that for a dead time of 100 ns the value of g(2)(τ) appears
to oscillate, with a period equal to the dead time.

The variation in values of g(2)(τ) increases as the amount of dead time
increases. This is due to the fact that all photon detections during the dead
time are missed, reducing the total amount of photon detections, which in
turn increases the error of the values. Another thing that is noticable is that,
especially for the simulations with higher excitation/decay rate, the values
of g(2)(τ) appear to oscillate with a period equal to the length of the dead
time. This is because, when the frequency of photons is high, the chance of
another photon being detected right after the end of the dead time is high.

For an excitation rate of 0.1 GHz and a decay rate of 0.1 GHz, the
results are not acceptable for any of the examined amounts of dead time.
(σ = 0.055 for a dead time of 100 ns)

For an excitation rate of 0.1 GHz and a decay rate of 1 GHz, the results
are not acceptable for any of the examined amounts of dead time. (σ = 0.039
for a dead time of 100 ns)

For an excitation rate of 1 GHz and a decay rate of 0.1 GHz, the results
are not acceptable for any of the examined amounts of dead time. (σ = 0.039
for a dead time of 100 ns)

For an excitation rate of 1 GHz and a decay rate of 1 GHz, the results
are not acceptable for any of the examined amounts of dead time. (σ = 0.18
for a dead time of 100 ns)
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This means that the dead time has a considerable effect on the detection
of single-photon light.
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Chapter 4
Discussion

In this chapter, the results of the experiments are examined and sum-
marised. There is also a recap of the experiments and a review of how they
could be improved.

4.1 Summary of results

The main effect of a non-perfect detector efficiency is that as the efficiency
decreases, the variation in the values of g(2)(τ) increases. This seems to be
independent of the type of light, as this has been seen in both coherent and
single-photon light.

The effect of detector jitter seems to be dependent on the type of light
that is being detected; For coherent light the jitter did not have any noticable
effect for all values of jitter examined. However, it has a significant effect
on single-photon light, as both g(2)(0) and the width of the dip at τ = 0 are
affected. As the jitter increases, both g(2)(0) and the width of the dip also
increase.

The detector dead time has a similar effect to that of a non-perfect
detector efficiency, as it increases the variation in values of g(2)(τ). Another
effect it has on single-photon light with a high photon frequency is that the
values of g(2)(τ) will oscillate with the same period as the dead time, with
a gradually decreasing amplitude.
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4.2 Points of improvement

A point of improvement for the simulation is the way the photon streams
are stored. Currently, photon streams are stored as integers in an array, with
each entry representing the amount of photons within a certain timeframe.
This has several downsides. One such downside is there being a lot of
empty entries, which means that it takes a lot of memory to store a photon
stream, and that operations that pass every array entry take a lot of time.
Another downside is that the accuracy of the stream is limited by the size
of the timeframe each entry represents. Increasing the accuracy of the
stream linearly increases the size of the array, which exacerbates the issues
mentioned previously.

This could have been prevented by instead of using an array in which
every entry represents a timeframe, by using an array where every entry
represents a photon, and the stored value is the time at which the photon
was emitted. This was not implemented because this would mean that the
entire code for the simulations would have to be overhauled, which would
have required a massive amount of time and effort.

Another point of improvement is that the model could have been recre-
ated in a physical setup, in order to test its validity. However, due to the
Covid-19 pandemic, lab research was not possible.

One of the ways the simulation might be improved is by optimising it
so that the simulations run faster, which in turn allows for longer simula-
tions in the same amount of time. One of the ways this could be achieved
is by optimising the process of calculating the photon correlations. The
current method of calculating this is by using brute force, calculating corre-
lations for each individual element. There are methods for more efficiently
calculating autocorrelations, such as using the Wiener-Khinchin theorem,
which reduces the order from n2 to n log(n). However, these only work for
autocorrelations, where both inputs are the same, which is not the case for
this simulation. The goal would then be to modify one of these methods in
such a way that it would allow for it to work with differing inputs.

4.3 Possible future research

There are many possibilities to continue this research further, or into other
areas.

One of the possibilities for expanding this research is to use different
types of light in the simulations. Early in the research process there was an
attempt to make a photon generator for thermal light, but the complexity
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required for this turned out to be too high. Initially, the idea was to simulate
thermal light by simply using the Bose-Einstein formula (Eq. 4.1) for
the particle distribution, with the thought that that would be enough to
properly simulate it, but this seemed to be too simple.

PBE(n) =
1

n + 1

(
n

n + 1

)n
(4.1)

However, in 2018, several German scientists have done research into
properly simulating light emitted by a thermal light source [5]. These
methods could be used to simulate thermal light in our own model, in
order to analyse the effects of the disturbances on thermal light.

In the current research, only three types of disturbances have been
examined. The research question could be further answered if more types
of disturbances were examined, such as detector pile-up, or the effects of
a finite coherence time. One could also focus more on disturbances that
involve the photon source, such as the “blinking" of a single-photon source.

Another research possibility is to determine the effects of multiple dis-
turbances at the same time. This will provide a more realistic simulation of
the setup, and may give insight in ways to counteract these disturbances.

Another possibility is to examine one type of disturbance more in depth,
in order to more accurately simulate it. This could help with finding ways
of more effectively mitigating or eliminating it.

Another possible application is to use the difference between the theoret-
ical photon distribution and the observed photon distribution to determine
the amount of detector jitter. One way this could be done is by examining
how the observed delay distribution deviates from Eq. 2.10. This can be
useful to determine how reliable results are when using a physical setup.
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Appendix A
Beamsplitter optimisation

As mentioned in chapter 2, the function for the beamsplitter should use
the binomial distribution for a completely correct simulation, but uses a
flat distribution instead. This is a valid choice, as for small amounts of
photons, the binomial distribution and the flat random distribution are
mostly equivalent. This is shown in Figure A.1.

The first and third graphs show a comparison of the frequency of dif-
ferent photon counts, while the second and fourth graphs show the ratio
between the frequency of the photon counts. The ratio is calculated as
follows:

η =
nrand

nbinomial
(A.1)

As can be seen, the distribution of photons is very similar. The distri-
bution only starts to diverge when the mean photon count exceeds 1 per
time bin. The ratio between the frequency of different photon counts is also
mostly the same for low photon counts, but starts to increase for higher
photon counts. This is expected . However, this is not a significant issue, as
the actual number of times this occurs is very low.
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Figure A.1: A comparison between the photon distribution using the binomial
distribution and using a flat distribution

Version of June 15, 2021– Created June 15, 2021 - 12:58

32



Appendix B
Results from all experiments

B.1 Efficiency

B.1.1 Coherent light
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Figure B.1: The values of g(2)(τ) for coherent light, with varying detector efficien-
cies
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B.1.2 Single-photon light
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Figure B.2: The values of g(2)(τ) for single-photon light, with varying detector
efficiencies. Excitation rate of 0.1 GHz, decay rate of 0.1 GHz
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Figure B.3: The values of g(2)(τ) for single-photon light, with varying detector
efficiencies. Excitation rate of 0.1 GHz, decay rate of 1 GHz
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Figure B.4: The values of g(2)(τ) for single-photon light, with varying detector
efficiencies. Excitation rate of 1 GHz, decay rate of 0.1 GHz
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Figure B.5: The values of g(2)(τ) for single-photon light, with varying detector
efficiencies. Excitation rate of 1 GHz, decay rate of 1 GHz
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B.2 Jitter
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Figure B.6: The values of g(2)(τ) for coherent light, with varying amounts of
detector jitter

B.2.2 Single-photon light
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Figure B.7: The values of g(2)(τ) for single-photon light, with varying amounts of
detector jitter. Excitation rate of 0.1 GHz, decay rate of 0.1 GHz
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Figure B.8: The values of g(2)(τ) for single-photon light, with varying amounts of
detector jitter. Excitation rate of 0.1 GHz, decay rate of 1 GHz
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Figure B.9: The values of g(2)(τ) for single-photon light, with varying amounts of
detector jitter. Excitation rate of 1 GHz, decay rate of 0.1 GHz
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Figure B.10: The values of g(2)(τ) for single-photon light, with varying amounts
of jitter. Excitation rate of 1 GHz, decay rate of 1 GHz
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B.3 Dead time

B.3.1 Coherent light
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Figure B.11: The values of g(2)(τ) for coherent light, with varying amounts of
detector dead time

B.3.2 Single-photon light
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Figure B.12: The values of g(2)(τ) for single-photon light, with varying amounts
of detector dead time. Excitation rate of 0.1 GHz, decay rate of 0.1 GHz
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Figure B.13: The values of g(2)(τ) for single-photon light, with varying amounts
of detector dead time. Excitation rate of 0.1 GHz, decay rate of 1 GHz
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Figure B.14: The values of g(2)(τ) for single-photon light, with varying amounts
of detector dead time. Excitation rate of 1 GHz, decay rate of 0.1 GHz
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Figure B.15: The values of g(2)(τ) for single-photon light, with varying amounts
of detector dead time. Excitation rate of 1 GHz, decay rate of 1 GHz
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Appendix C
Code blocks

C.1 Photon generation

1 #coherent light
2 def coherent_stream(lam , length):
3 return np.random.poisson(lam , length)

Figure C.1: The code used to generate streams of coherent light
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1 #single -photon light
2 def sp_stream(k12 , k21 , length):
3 #define variables
4 timerange = np.arange(0, length , 1)
5 dist_k12 = k12 * np.exp(-k12 * timerange)
6 dist_k21 = k21 * np.exp(-k21 * timerange)
7 excited = True
8
9 #create output stream

10 stream = np.zeros(length , dtype=bool)
11
12 #normalise probability distribution
13 dist_k12 = dist_k12 / sum(dist_k12)
14 dist_k21 = dist_k21 / sum(dist_k21)
15
16 #prepare arrays with random values
17 k12_list = np.random.choice(timerange , size=length , p=dist_k12)
18 k12_index = 0
19 k21_list = np.random.choice(timerange , size=length , p=dist_k21)
20 k21_index = 0
21
22 #set time elapsed to 0
23 t = 0
24
25 #during the timeframe of the photon stream
26 while(t < length):
27 #if the emitter is in an excited state
28 if(excited):
29 #get the length of the delay before decay (and emission)
30 #and skip that much time ahead
31 t += k21_list[k21_index]
32 k21_index += 1 #increment index
33
34 #check if t is still within time limits
35 if(t < length):
36 stream[t] = True #emitter emits photon
37 excited = False #emitter decays to non -excited state
38
39 #if the emitter is not in an excited state
40 else:
41 #get length of the delay before excitation
42 #and skip that much time ahead
43 t += k12_list[k12_index]
44 k12_index += 1 #increment index
45
46 #emitter is now excited
47 excited = True
48
49 return stream

Figure C.2: The code used to generate streams of single-photon light

C.2 Beamsplitter

1 def beamsplitter(stream):
2 length = len(stream)
3
4 trans_array = np.random.rand(length)
5
6 stream_trans = np.around(stream * trans_array).astype(int)
7 stream_refl = stream - stream_trans
8
9 return stream_trans , stream_refl

Figure C.3: The code used to split a photon stream into two photon streams
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C.3 Click detector

1 #create function that simulates a click detector detecting a photon stream
2 def click_detector(stream , resolution , efficiency =1, efftype ="flat", jit=0, deadtimelength = 0,

binlength = 25):
3 length = len(stream)
4 newlength = int(np.ceil(length/resolution))
5
6 #apply jitter to stream
7 stream = jitter(stream , jit , binlength)
8
9 #make output array (filled with False ’s)

10 newstream = np.zeros(newlength , dtype=bool)
11
12 #go through entire new array
13 for i in np.arange(0, newlength , 1):
14 #count how many photons fall on the detector
15 photcount = np.sum(stream[resolution*i:resolution *(i+1)])
16
17 #if photons have fallen on the detector
18 if(photcount > 0):
19 #determine detection chance
20 #if the detector efficiency is not influenced by the amount of photons that fall on it
21 if(efftype == "flat"):
22 detchance = efficiency
23
24 #if the detector efficiency increases exponentially with every photon
25 elif(efftype == "exponential "):
26 detchance = 1 - (1 - efficiency) ** photcount
27
28 #if the wrong value for efftype has been given
29 else:
30 detchance = 0
31
32 if(detchance > np.random.rand()):
33 newstream[i] = True
34
35
36 #retroactively apply dead time
37 newstream = deadtime(newstream , int(deadtimelength/resolution), binlength)
38
39 return(newstream)

Figure C.4: The code used to simulate a click detector
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C.4 Disturbances

1 def jitter(stream , jitter , binlength):
2 length = len(stream)
3 newstream = np.zeros(length , dtype=int)
4
5 #for each element of the stream
6 for i in range(length):
7 photcount = stream[i]
8
9 #if there is a photon in the current index

10 if(photcount > 0):
11 #randomly determine the position of the detector
12 pos_det = np.random.normal(0, jitter)
13
14 #determine how much earlier the photons are detected
15 #for every photon
16 for j in range(photcount):
17 #randomly determine where in the timebin the photon is
18 pos = np.random.rand() * binlength
19
20 #calculate how much the index changes due to jitter
21 indexshift = int(np.floor ((pos + pos_det)/binlength))
22
23 #put photons in place in new array
24 if(i + indexshift >= 0 and i + indexshift < length):
25 newstream[i + indexshift] += 1
26
27 return newstream

Figure C.5: The code used to simulate detector jitter

1 #define detector dead time function
2 #deadtimelength and timebin should be the same unit
3 def deadtime(stream , deadtimelength , timebin):
4 #define variables
5 length = len(stream)
6 deadtimeleft = 0
7 newstream = np.zeros(length , dtype=int)
8
9 #go through entire array

10 for i in np.arange(0, length , 1):
11 #check if there is dead time left
12 if(deadtimeleft > 0):
13 #detector doesn ’t detect anything
14 newstream[i] = 0
15
16 #if the deadtime doesn ’t expire within the current timebin
17 if(deadtimeleft >= timebin):
18 #deadtimeleft is reduced by timebin length
19 deadtimeleft = deadtimeleft - timebin
20 #if the deadtime expires within the current timebin
21 else:
22 #deadtimeleft is set to zero
23 deadtimeleft = 0
24
25 #if there is no dead time left
26 #check if there is a photon detection
27 elif(stream[i] != 0):
28 #detector detects photons
29 newstream[i] = stream[i]
30 #deadtime countdown starts
31 deadtimeleft = deadtimelength
32
33 return newstream

Figure C.6: The code used to simulate the detector dead time
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C.5 g(2) function

1 global TIMEBIN_RESOLUTION
2 TIMEBIN_RESOLUTION = 25
3
4 #optimise g2 function
5 def g2(stream , tau_max , efficiency =1, jit=0, deadtimelength =0, resolution =25):
6 length = len(stream)
7
8 #split the stream
9 stream1 , stream2 = beamsplitter(stream)

10
11 #detect streams
12 newstream1 = click_detector(stream1 , resolution=resolution , efficiency=efficiency , efftype ="flat

", jit=jit , deadtimelength=deadtimelength , binlength=TIMEBIN_RESOLUTION)
13 newstream2 = click_detector(stream2 , resolution=resolution , efficiency=efficiency , efftype ="flat

", jit=jit , deadtimelength=deadtimelength , binlength=TIMEBIN_RESOLUTION)
14
15 #create tau range over entire stream length
16 tau = np.arange(0, tau_max/resolution , 1, dtype=int)
17
18 #create array for g2 values
19 g2_array = np.zeros(len(tau))
20
21 #calculate g2 for every value for tau
22 newlength = len(newstream1)
23 for i in tau:
24 g2_array[i] = np.average(newstream1 [0: newlength -i] * newstream2[i:newlength ])/(np.average(

newstream1 [0: newlength -i]) * np.average(newstream2[i:newlength ]))
25
26 return g2_array , resolution*tau

Figure C.7: The code used to calculate the values for g(2)(τ)
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