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Abstract 

The network approach to psychopathology proposes that psychopathological conditions can be 

understood as networks of symptoms. These symptoms are thought to influence one another. 

However, modeling techniques for cross-sectional data produce static network models. To close 

the gap between theory and statistical modeling, I introduce Loopy Belief Propagation (LBP). This 

algorithm can be used to create dynamic network models using cross-sectional data by estimating 

how the network would behave over time. Three simulation studies were performed to investigate 

LBP. In study one, the convergence rate (i.e. output production rate) and the scalability (i.e. the 

relation between input size and run time) were investigated. Linear scaling was found, indicating 

that the run time should never blow up to infinity. However, substantial reductions in complexity 

(defined as the removal of nodes/edges) were required to reach acceptable convergence rates. In 

study two, the stability of LBP-based network models was investigated by checking for symmetry 

(defined as rough proportionality) between the static and dynamic parts of the network models. 

No evidence of symmetry was found, indicating that the LBP-based network models were 

unstable. In study three, an extension of LBP-based modeling was investigated: The similarity 

estimation method. This extension can be used to estimate a similarity coefficient for nested 

network models. The similarity estimation method was found to produce invalid results. In sum, 

the results were not promising, but due to certain caveats also inconclusive. More research is 

needed to see if LBP can estimate dynamic network models using cross-sectional data on 

psychopathology networks. 
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In network theory, constructs are conceptualized as networks of interrelated subconstructs. 

Accordingly, the network approach to psychopathology proposes that psychopathological 

conditions can be understood as networks of interrelated symptoms. If the relationships between 

symptoms are strong, the network can become stuck in a self-reinforcing state. A 

psychopathological condition is seen as an emergent property of a network in such a state 

(Borsboom, 2017). Note that throughout this paper, the relationship between symptoms refers to 

the conditional dependence relationship, which are usually estimated using partial correlations. 

For example, suppose insomnia and suicidal ideation are directly related to one another, and 

indirectly via rumination. The conditional dependence relationship would then be the direct 

relationship between these symptoms while controlling for the indirect relationship via rumination 

(Epskamp & Fried, 2018). 

Networks of symptoms are commonly modeled statistically using partial correlation 

matrices and visually using graphs. In these graphs, symptoms are represented as nodes which are 

connected to one another via edges. Figure 1 gives an example of a graph. Note that in this paper, 

the word ‘network’ refers to theoretical networks, and the word ‘network model’ refers to 

statistical models. In psychopathology networks, symptoms are thought to influence one another 

(Borsboom, 2017). However, conventional modeling techniques for cross-sectional data, such as 

the Ising Model (Van Borkulo et al., 2014) or the Gaussian Graphical Model (GGM; Epskamp, 

2020), produce static network models that do not capture this dynamic behavior. These static 

modeling techniques are often seen in the literature because most studies are based on cross-

sectional research (Robinaugh, Hoekstra, Toner, & Borsboom, 2019). Techniques that allow 

dynamic modeling using cross-sectional data are required to bring network modeling closer to 

network theory. Such a technique could then be used to estimate how a network would evolve over 
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time using cross-sectional data. To close the gap between theory and statistical modeling, I 

introduce an algorithm from graph theory, Loopy Belief Propagation (LBP), which can be used as 

an add-on to conventional modeling to create dynamic network models. 

In this thesis, I will first introduce LBP and one of its extensions, the similarity estimation 

method (Koutra, Parikh, Ramdas, & Xiang, 2011a). Then, in study one, I will investigate two 

aspects of LBP that are important for the practical useability. In study two, I will investigate the 

stability of LBP-based network models for psychopathology networks. In study three, I will 

investigate the similarity estimation method. It should be noted that this thesis is exploratory. As 

such, certain parts of the analysis were performed post-hoc. This thesis is thus not meant to provide 

a final conclusion, but instead aims to provide an indication of whether it would be worth to 

continue studying the use of LBP in network-based psychopathology research. 

 

 

Figure 1. Example of a graph with weighted edges, which can be seen as visual representation of 

a partial correlation matrix: Edges represent the conditional dependence relationships and range 

from -1 to 1. 



7 

 

Loopy Belief Propagation 

Loopy Belief Propagation (LBP) is a belief propagation (BP) algorithm (Yedidia et al., 

2001) and was initially developed to estimate the marginal probabilities for nodes in a graph (Pearl, 

1982; Pearl, 1986). What makes LBP useful for the current project is that the algorithm works by 

having nodes pass signals to one another. The network models estimated by LBP are not dynamic 

in the sense that they are estimated for time-series data. However, LBP can be used to estimate 

how network models based on cross-sectional data would evolve over time. In the following 

section, I give an interpretation of the technical details behind LBP following the network approach 

to psychopathology. For a more elaborate explanation of the mathematics behind LBP, the reader 

is referred to the paper by Yedidia and colleagues (2001). 

 Before the LBP algorithm can be used a network model needs to be estimated using a 

conventional method (e.g. GGM) to obtain the weighted adjacency matrix. Therefore, LBP is an 

add-on to conventional network modeling. After a network model has been estimated, all nodes 

need to be assigned at least one prior belief. A prior belief gives the probability for a specific node 

to be in a certain state. A node should be assigned as many prior beliefs as states (Yedidia et al., 

2001). For the network approach to psychopathology, the prior beliefs would give the probability 

for a specific symptom to be in a certain state. For example, the prior belief may denote the 

probability for a certain symptom to be measured at the maximum level of severity. In such a case, 

the belief value could be interpreted as the severity of a symptom. 

 Just like all nodes need to be assigned prior beliefs, all edges need to be assigned an initial 

message based on the edge weight (Bayati, Borgs, Chayes, & Zecchina, 2007). Like nodes, edges 

have states, and so an initial message is required for every edge-state. Edges can have multiple 

states such that different initial messages can be used for the different states of a node. For the 
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network approach to psychopathology, this initial message would be based on the partial 

correlation between symptoms. After the prior beliefs and initial messages have been assigned, 

each node will pass a signal to all of its direct neighbors (i.e. all nodes directly connected to said 

node). This first signal is based on the initial message and the prior beliefs. A new set of beliefs is 

then calculated based on all incoming signals (Yedidia et al., 2001). For the network approach to 

psychopathology, this process can be interpreted as symptoms influencing one another. For 

example, suppose there are two nodes, insomnia and rumination, with a weak relationship between 

these nodes. Suppose also that the intensity of insomnia is low and the intensity of rumination is 

high. Insomnia will then send a weak signal to rumination. Rumination will also send a weak signal 

to insomnia, albeit less weak then the signal received from insomnia because the intensity of 

rumination was high. A strong signal thus requires a high intensity symptom and a strong 

relationship between symptoms. 

 When the beliefs have been updated, the algorithm will calculate a new signal for each 

node to send to their neighbors. Based on this new signal, new beliefs will be calculated (see Figure 

2). Eventually, the nodes should convergence on a single set of beliefs: The beliefs should stop 

changing. When this happens, LBP will produce a matrix of final beliefs (or a vector if there is 

one possible state per node; Yedidia et al., 2001). For the network approach to psychopathology, 

this can be interpreted as the psychopathological condition reaching a stable state. In this state, the 

severity of symptoms will remain stable unless some external factor (e.g. a major life event or 

treatment) influences the network. This stable state could be interpreted as analogous to the self-

reinforcing state discussed by Borsboom (2017). 
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Figure 2. An iteration of LBP visualized. The numbers in the nodes represent the belief value of a 

node. The numbers on the edges represent the edge weights. The arrows represent a signal being 

send. Note that the numbers are fictional and do not adhere to the mathematics behind LBP. 
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 Convergence may not occur. Instead, nodes may oscillate between two or more beliefs per 

state, and LBP is said to show nonconvergence. It is not entirely clear what causes 

nonconvergence. However, certain topological properties have been shown to influence the 

convergence rate. For example, if a network model is free of loops, then LBP is guaranteed to 

convergence (Gatterbauer et al., 2015). It is possible to force convergence using the convergence 

cutoff. When the degree by which a node oscillates is below some predetermined value, LBP will 

take the mean of the beliefs that the node is oscillating between. A higher convergence cutoff will 

therefore lead to less accurate final beliefs (McAuley, Caetano, & Barbosa, 2008). Despite the lack 

of output, nonconvergence may be meaningful. Nonconvergence could be interpreted as the 

psychopathological condition never reaching a stable state. The psychopathological condition may 

end up cycle, in which the symptoms go through a number of different states. Different versions 

and approximation of BP algorithms have been developed to overcome problems with 

convergence (e.g. Gatterbauer et al., 2015). However, LBP was used for this project because it is 

the most well-understood version. 

 Note that if node-states are theoretically defined (e.g. state defined as maximum severity 

level), and thus the prior beliefs are meaningful, then so are the final beliefs. In contrast, if the 

node-states are not defined, then neither the prior- nor final beliefs are meaningful. However, the 

difference between the prior and final beliefs is still meaningful because it is a function of the 

dynamic properties of the network. This meaningful difference can be used for various analyses, 

including the similarity estimation method (Koutra et al., 2011a). 

The following assumptions are required for dynamic modeling of psychopathology 

networks using LBP. First, absolute values of edge weights can be used without loss of validity. 

Because LBP does not allow for negative messages, the absolute value of edge weights has to be 
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used for the initial messages. Second, network models have the Markov property: the beliefs of a 

symptom at time 𝑡 depend only on its belief at 𝑡 − 1, and the beliefs of all symptoms it is related 

to at 𝑡 − 1. For example, if we know the intensity of insomnia and of all other symptoms it is 

related to at time 𝑡, then we can predict the intensity of insomnia at 𝑡 + 1. This prediction must be 

within the margin of error imposed by the imperfect fit between the model and the data. Note that 

other BP algorithms may not require network models to have the Markov property (Yedidia et al., 

2001). Third, relationships between symptoms are bidirectional in terms of the direction and size 

of the initial message. Fourth, the weighted adjacency matrix represents the true network. Thus, 

any bias in network estimation might be amplified by LBP. A proper method is therefore needed 

to estimate the strength of the conditional dependence relationships. Finally, symptoms influence 

each other via parallel duplication (Borgatti, 2005). Parallel duplication means that a symptom 

influences all other symptoms it is connected to, without the intensity of the symptom running out. 

Furthermore, the strength of a signal is not influenced by the amount of outgoing signals. For 

example, suppose we have a high intensity symptoms which is receiving only weak signals. The 

intensity of this symptom will then change only slightly due to the weak incoming signals. The 

fact that this symptom is sending out strong signals does not lead to a decrease in its intensity, no 

matter how many signals it sends. Thus, the intensity of a symptom is only influenced by the 

incoming signals and not the outgoing signals. 

 

Similarity Estimation Method 

Using the method developed by Koutra and colleagues (2011a), the similarity between two 

nested LBP-based network models can be estimated. This method could be valuable as future 
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challenges may revolve around studying the replicability and heterogeneity of network models 

(Fried & Cramer, 2017). 

 Koutra and colleagues (2011a) employ the following definition of similarity: Two nodes 

are similar if their neighbors are similar. This definition can be interpreted as: A symptom in two 

different network models is similar if it shows a similar pattern of relationships with other 

symptoms. This definition is similar to the definition of topological overlap, which poses that if 

two nodes within a network model show a similar pattern of relationships to other nodes, then 

these nodes may represent the same construct (Fried & Cramer, 2017). The key difference is that 

topological overlap is about two nodes within the same network model, whereas similarity is about 

two nodes in two different network models. Nevertheless, the idea of topological overlap can be 

extended to the definition of similarity. Suppose we have two network models which we assume 

are generated by the same underlying process and for which we assume that all symptoms in the 

models represents the same constructs. Because a specific symptom in the two different network 

models is assumed to represent the same construct, one would expect that symptom to show a 

similar pattern of relationships to other symptoms. In other words, we would expect the symptom 

to show between-network topological overlap. The higher the percentage of symptoms that show 

between-network topological overlap, the higher the similarity between the two network models. 

The similarity estimation method (Koutra et al., 2011a) works as follows. First, LBP is 

used to get a matrix of final beliefs for both network models. Then, a similarity measure (e.g. 

Pearson correlation) is used to produce a similarity coefficient using the two matrices of final 

beliefs. Note that this method of estimating a similarity coefficient satisfies the definition: A 

symptom is similar if it shows between-network topological overlap. If a symptom in two different 

network models shows similar patterns of relationships with other symptoms, then this symptom 
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will obtain similar final beliefs. Thus, a high proportion of symptoms showing between-network 

topological overlap will lead to similar matrices of final beliefs, which will lead to a high similarity 

coefficient. 

The similarity estimation method requires that the network models are nested because the 

final beliefs produced by LBP are compared pairwise for each node. Nodes that have the same 

label/position are thus assumed to represent the same symptom.  

 

Studies 

 Study one. 

The main objective is to investigate whether LBP can be used to create dynamic network 

models. Thus, LBP must be implemented into statistical software so that it can be used by 

researchers. Additionally, the algorithm must be of practical use. Therefore, in study one, I 

investigate two aspects of LBP that are important for practical use and are often suboptimal: run 

time and convergence rate (Gatterbauer et al., 2015). However, I investigate scalability instead of 

run time. Scalability is the degree by which the run time changes when the size of the input (i.e. 

the number of nodes/edges) is changed. Unlike run time, scalability is a property of the algorithm 

and generalizes to different machines. Ideally, the run time of the algorithm scales linearly with 

the size of the input. Linear scaling ensures that the run time cannot realistically blow up to infinity 

(Sanchez, Solarte, Bucheli, & Ordonez, 2018). 

 

 Study two. 

 In study two I investigate the stability of LBP-based network models by looking at the 

relationship between changes to the static part of the network model (the weighted adjacency 
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matrix) and the resulting changes to the dynamic part of the network model (the final beliefs). The 

degree by which the dynamic part of the model changes should not be exactly equal to the degree 

by which the static part of the model was changed. Such a one-to-one relationship would mean 

that the dynamic part of the model does not add any extra information. However, the changes to 

the static and dynamic parts of the model should be roughly proportional: There should be 

symmetry between the static and dynamic parts of the model. If there is no symmetry, then 

processes that can cause minor changes to the static part of the model (e.g. sampling variance) can 

lead to major changes to the dynamic part of the model. In other words, the dynamic part of the 

model will be unstable. For example, in the absence of symmetry, a 1% change in the static part 

of the model produced by measurement error might lead to an 80% change in the dynamic part of 

the model. As such, completely different LBP-based network models could be estimated for the 

same population on consecutive days. Therefore, in the absence of symmetry, any analysis 

performed on LBP-based network models would be unreliable.  

 

 Study three. 

 In study three I investigate one of the extensions that arises when LBP is used to create 

dynamic network models: Estimating the similarity between two nested network models. This 

method was developed by Koutra and colleagues (2011a). However, there are some differences 

between the network models typically found in psychopathology literature and those used by 

Koutra and colleagues. The network models used by Koutra and colleagues showed no variation 

in edge weights. In terms of psychopathology network models, this would mean that all partial 

correlations have the exact same value, which is highly unlikely. Another important difference is 

that Koutra and colleagues used Linearized BP, which is an approximation of LBP and therefore 
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does not produce the exact same beliefs (Koutra et al., 2011b). Thus, the results found by Koutra 

and colleagues (2011a) cannot be assumed to generalize to the current project. 

 

Methods And Results 

Data Collection 

Empirical data were acquired for simulating network models. In addition, empirical data 

were acquired to test the similarity estimation method (Koutra et al., 2011a) using empirical 

network models. The empirical data needed to be cross-sectional data on the severity of 

psychopathological symptoms. In order to investigate the similarity estimation method, empirical 

data that could be used to fit nested network models needed to be acquired. The raw data were not 

required because LBP only uses the weighted adjacency matrix of a network model. Note that 

empirical data were only acquired such that realistic network models could be simulated. The 

results were not meant to be interpreted as clinically or theoretically meaningful. 

 In order to acquire empirical data, I first identified studies based on open datasets composed 

of symptom severity data of individuals suffering from a psychopathological condition. After 

suitable studies and open datasets were identified I contacted the lead author/researcher and/or 

institution to ask for permission to use the data. The resulting two datasets are described below. 

 

Datasets 

 STAR*D dataset. 

The Sequenced Treatment Alternatives to Relieve Depression (STAR*D; Fava et al., 2003; 

Rush et al., 2004) was a large-scale multisite clinical trial conducted in the USA and funded by 

the National Institutes of Health (NIH). The STAR*D dataset has been used before in 
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psychometric literature (Fried, Epskamp, Nesse, Tuerlinckx, and Borsboom, 2016a; Fried et al., 

2016b; Ron, Fried, & Epskamp, 2019). The STAR*D dataset contains a representative sample of 

depressed individuals (n = 4041). Participants were between the ages of 18 and 75 and were 

suffering from first-episode or recurrent nonpsychotic MDD. Possible participants were excluded 

if they had a history of- or suffered from psychosis, schizophrenia, schizoaffective disorder, 

bipolar disorder, primary obsessive compulsive disorder, anorexia, or bulimia. The data were 

collected via telephone interviews. A more detailed description of the dataset can be found 

elsewhere (Rush et al., 2004). For the current project, the correlation matrix for the baseline 

measures of the Quick Inventory of Depressive Symptoms, clinician-rated version (QIDS-C; Rush 

et al., 2003) was taken from the supplementary materials of the paper by Fried and colleagues 

(2016b). Note that Fried and colleagues (2016b) merged certain items to align with the DSM 5 

criteria for MDD (American Psychiatric Association, 2013). Therefore, the dataset contained 14 

instead of 16 QIDS-C items. 

 

 Posttraumatic stress disorder datasets. 

For their study on the generalizability and replicability of posttraumatic stress disorder 

(PTSD) network models, Fried and colleagues (2018) used 4 independent samples. Sample 1 

consisted of 526 Dutch individuals and refugees who had experienced complex traumatic events. 

In this sample, the severity of PTSD symptoms was assessed using the Harvard Trauma 

Questionnaire (HTQ; Mollica et al., 1992). A cut-off score of 2.5 on the HTQ led to a classification 

of probable PTSD for 66.7 percent of the participants in this sample. Sample 2 consisted of 365 

Dutch individuals who had experienced traumatic events of various types. In this sample, the 

severity of PTSD symptoms was assessed using the Posttraumatic Stress Symptom Scale Self-
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Report (PSS-SR; Foa, Cashman, Jaycox, & Perry, 1997). All the participants were diagnosed with 

PTSD based on the Structured Clinical Interview for DSM-IV (SCID-IV; Kübler, 2013). Sample 

3 consisted of 926 Danish soldiers who had experienced deployment-related traumatic events. In 

this sample, the severity of PTSD symptoms was assessed using the PTSD Checklist, Civilian 

version (PCL-C; Weathers, Litz, Herman, Huska, & Keane, 1993). A cut-off score of 44 on the 

PCL-C led to a classification of probable PTSD for 59.3 percent of the participants in this sample. 

Sample 4 consisted of 956 refugees residing in Denmark. In this sample, the severity of PTSD 

symptoms was assessed using the HTQ (Mollica et al., 1992). All participants were diagnosed with 

PTSD. Fried and Colleagues (2018) pooled and rescaled items in order to be able to compare the 

measures. More information on the samples and the measures can be found elsewhere (Fried et al., 

2018). The correlation matrices for the severity of PTSD symptoms for all samples were taken 

from the supplementary materials (Fried et al., 2018).  

 

Parameters And Estimation 

 Network estimation. 

Network models were fitted using Gaussian Markov random field estimation. Graphical 

Lasso regularization was used to trim any relationships between symptoms that were a function of 

random fluctuations. The extended Bayesian information criterion was used to tune regularization 

parameters (Epskamp & Fried, 2018). 

 

 LBP-based modeling. 

The parameters for LBP were based on the examples found in the CRF R package (Wu, 

2019). The absolute value of the weighted adjacency matrix was taken before estimating LBP-
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based network models. LBP-based network models were estimated using 2 states per node/edge. 

Initial messages were based on the edge weights from the weighted adjacency matrix by alternating 

between the edge weight and 1 − 𝑒𝑑𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 over edge-states. For each node, the prior beliefs 

were initialized as .5 and 1 for the two node states. Final beliefs were inferred using the sum-

product rather than max-product equations. The maximum amount of iterations was set to 50,000. 

The cut-off value for forcing convergence was set to 1 ∗ 10−4. 

 

 Similarity estimation method. 

Euclidian distance was used as a similarity metric, because this metric produced the most 

intuitive results (Koutra et al., 2011a). The Euclidian distance (d) was converted into a similarity 

coefficient (s) using the equation used by Koutra and colleagues: 𝑠 = 1/(1 + 𝑑). The similarity 

coefficient was obtained by taking the average similarity coefficient over all node states. Under 

nonconvergence, the final beliefs tended to be biased towards state 1, causing the final beliefs to 

sometimes be rounded to 1. Therefore, state 1 was ignored in the calculation of the similarity 

coefficient under nonconvergence. Because the Euclidian distance is not scale invariant, final 

belief matrices with narrow ranges would have resulted in unintuitive similarity coefficients. As 

such, the final beliefs were standardized prior to computation of the similarity coefficient. 

 

Software 

Simulations and analyses were performed using R (version 3.5.1; R Core Team, 2018). 

Three R packages deserve special mention. The ‘bootnet’ package (Epskamp, Borsboom, & Fried, 

2017) was used to estimate network models and simulate datasets. The ‘qgraph’ package 

(Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom, 2012) was used to visualize network 
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models. The ‘CRF package (Wu, 2019) provided functions that could be used to model and 

perform computations on conditional random fields. With the authors permission, new functions 

were written based on the functions from the CRF package. These new functions were used for 

creating LBP-based network models and running the similarity estimation method. It should be 

noted that the new functions always produced the same output as the original functions when the 

new functions were programmed to mimic the original functions. Results were graphed using 

Microsoft Excel (version 365). 

 

Study One: Scalability And Convergence Rates 

 Simulation, editing, and analyses. 

For study 1, 3 sets of 5 datasets were simulated from the STAR*D dataset. Network models 

were then fitted, resulting in 3 sets of 5 network models. Every set contained 5 network models to 

minimize the random effects imposed by the simulation. Changes were made to the adjacency 

matrices in an attempt to affect the run time and convergence rate of LBP. These changes were 

also used by Koutra and colleagues (2011a). Specifically, the number of edges (set 1), the number 

of nodes (set 2), and the edge weights (set 3) were modified. Changes were made in 9 steps of 10 

percent, resulting in 10 versions for each network model (0% to 90% change). LBP-based network 

models were then fitted for all versions. The run time was defined as the time spend inferring the 

final beliefs and did not include the time spend obtaining the weighted adjacency matrix through 

conventional modeling. 

If the rate of nonconvergence was high, then the scalability analysis would not have been 

very informative because the run time would have been strongly related to the maximum amount 

of iterations. Therefore, 2 new sets of 5 simulated network models were created and reduced in 
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complexity in an attempt to increase the convergence rate. These network models were reduced in 

complexity by randomly removing 6 out of the 14 nodes and 50 percent of the remaining edges. 

This base reduction in complexity was the largest reduction for which it was still possible to go 

through the 10 steps of decreasing complexity. The same changes were applied to the 8-node 

network models as were applied to the 14-node network models, except for the removal of nodes 

and associated edges. The effect of the removal of nodes and associated edges was not investigated 

because the 8-node network models would have gone down to 1 node. Set 2 of the 8-node network 

models was not analyzed because the complexity reduction did not lead to the intended result 

(higher convergence rates). 

 

 Results. 

 14-Node network models. 

 Convergence rates. 

Very low convergence rates were observed for the 3 sets of 14-node network models. 

Convergence only occurred in set 1 when 90 percent of the edges were removed. Even then, the 

convergence rate was only at 66.67 percent. Therefore, the amount of edges had a weak effect on 

the convergence rate because a lot of edges needed to be removed before convergence occurred. 

Convergence did not occur in set 2, so the amount of nodes did not seem to have an effect on the 

convergence rate. In addition, convergence did not occur in set 3, so the value of edge weights did 

not seem to have an effect on the convergence rate. Thus, network models for psychopathology 

networks were likely too complex for LBP to reach acceptable convergence rates.  
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 Scalability. 

Figure 3 shows the average run times for the 3 sets 14-node network models. There was a 

weak negative relationship between the amount of edges and the average run time (set 1 in Figure 

3). This relationship seemed to be linear, indicating good scalability. The big decrease in average 

run time that occurred between step 9 and 10 (see Figure 3) was caused by the increasing 

convergence rate (from .00% to 66.67%). If the network models that converged were excluded, 

the average run time was 3.56 seconds, following the established the linear trend. If the network 

models that did not converge were excluded, the average run time was .04 seconds. This decrease 

in run time upon convergence suggested that, under nonconvergence, most of the run time was 

spend reaching the maximum amount of iterations. There did not seem to be a relation between 

the average run time and the amount of nodes (set 2 in Figure 3) and the value of the edge weights 

(set 3 in Figure 3). In sum, the scalability of LBP-based modeling seemed good because there was 

either no effect on run time or a linear effect on run time. 

 

 

Figure 3. Average run times for the 3 sets of 14-node network models. Every step on the x-axis 

represent a change of 10 percent, starting from 0 percent change at step 1. 
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 8-Node network models. 

 Convergence rates. 

Table 1 gives the convergence rate per step for the set of 8-node network models, in which 

10 percent of the edges were removed per step. The convergence rate improved substantially after 

the base complexity reduction. For the 14-node network models, convergence only occurred when 

90 percent of the edges were removed. For the 8-node network models, convergence already 

occurred when 20 percent of the edges were removed. However, it should be noted that although 

complexity was an important factor, it was not the only factor. For one specific network model, 

convergence did not occur until 90 percent of the edges were removed, while all other network 

models converged when 20 to 60 percent of the edges were removed.  

 

 Scalability. 

Figure 4 gives the average run times for the set of 8-node network models under 

nonconvergence. As found earlier, there was a linear relation between the amount of edges and 

run time, indicating good scalability. Apart from a dip in run time at step 8, run times seemed to 

decrease linearly. However, only 20 percent of network models showed nonconvergence at step 8 

(see Table 1). Therefore, the dip in run time could have been an outlier caused by a small sample 

size. 

 

Table 1. Proportion converged per step for the 8-node network models 

Edges removed (%) 0 10 20 30 40 50 60 70 80 90 

Proportion converged 0 0 0.4 0.4 0.4 0.6 0.8 0.8 0.8 1.0 
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Figure 4. Average run times for the 8-node network models under nonconvergence. Every step on 

the x-axis represent a change of 10 percent, starting from 0 percent change at step 1. Note that the 

x-axis stops at step 9 because nonconvergence was not seen at step 10. 

 

Figure 5 gives the average run times for the set of 8-node network models under 

convergence. As found earlier, the biggest factor influencing run time was whether there was 

convergence. Whereas run times ranged from 3.75 to 3.48 seconds for nonconvergence (see Figure 

4), run times fluctuated around .015 seconds for convergence (see Figure 5). Unfortunately, it was 

impossible to draw conclusions about scalability under convergence because the small values of 

the run times allowed for a strong effect of random fluctuations. 

 

 

Figure 5. Average run times for the 8-node network models under convergence. Every step on the 

x-axis represent a change of 10 percent, starting from 20 percent change at step 3. Note that the 

x-axis starts at step 3 because convergence was not seen at step 1 and 2. 
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Study Two: Symmetry 

 Simulation, editing, and analyses. 

The goal of this study was to investigate the stability of LBP-based network models. For 

this study, the 14-node and 8-node network models from study 1 were reused. However, set 2 of 

the 14-node network models, in which nodes were removed, could not be used for the symmetry 

analysis because the different versions of network models needed to be nested. Therefore, set 3 of 

the 14-node network models was renamed to set 2. 

 The similarity estimation method was used to compare the final beliefs for each of the 10 

versions of a network model. Every version of a network model was compared to the previous 

version. For example, the version which had the 20 percent of the edges removed was compared 

to the version that had 10 percent of the edges removed. Every version was compared to the 

previous version and not the first version to ensure that if the first version showed nonconvergence, 

not all comparisons would include at least one nonconverged version. The sensitivity of 

unweighted adjacency matrices and Pearson’s correlation over edge weights were computed for 

set 1. These metrics were then correlated to the similarity coefficient to see whether they indicated 

symmetry between the static and dynamic parts of the model. Correlations between metrics were 

computed separately for convergence and nonconvergence. For all metrics, 95 percent confidence 

intervals (CI95%) were computed based on the variance over different network models from a set 

at a specific step. The sensitivity and correlation over edge weights could not be computed for set 

2 because difference between versions was that the value of the edge weights. Therefore, both the 

sensitivity and correlation over edge weights were always 1 and thus not informative. However, 

the similarity coefficient was still computed for set 2 to see if changes made to the edge weights 

affected the similarity coefficient. If changes to the edge weights did not affect the similarity 
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coefficient, then this would provide evidence against symmetry between the static and dynamic 

parts of the network models. 

 

Results. 

 14-Node network models. 

Figure 6 gives the results of the symmetry analysis for set 1, in which 10 percent of the 

edges were removed per step. Convergence was not observed for any of the network models from 

this set, so only the similarity coefficient under nonconvergence could be calculated. The 

correlations between the nonconverged similarity coefficient and the correlation coefficient ranged 

between -.44 and .22, and the correlations between the nonconverged similarity coefficient and the 

sensitivity ranged between -.17 and .75 (see Table 1, Appendix A). Thus, there was no agreement 

between the metrics that quantify the changes made to the static part of the model (sensitivity and 

correlation over edge weights) and the metric that quantifies the resulting change in the dynamic 

part of the model (nonconverged similarity coefficient). In other words, there was no symmetry 

between the static and dynamic parts of the model under nonconvergence. This lack of symmetry 

suggested that, under nonconvergence, the model estimated by LBP was unstable. 
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Figure 6. Results of the symmetry analysis for set 1 of the 14-node network models. Every step on 

the x-axis represents a change of 10 percent, starting from 0 percent change at step 1. The dotted 

lines represent the upper and lower bounds of the CI95%. Note that if a bound hits 1 or 0 it actually 

exceeds it, but this was not shown in order to reduce the range of the y-axis. 

 

 Figure 7 gives the results of the symmetry analysis for set 2, in which the edge weights 

were decreased by 10 percent per step. As in set 1, no convergence was observed and the 

nonconverged similarity coefficient fluctuated around 0.2. However, contrary to set 1, the CI95% 

around the similarity coefficient had a comparatively constant range. This constant range 

suggested that the differences between the original network models were more important in 

determining the similarity coefficient than the changes made to the network models. The opposite 

pattern was seen in set 1, suggesting that changes to the structure of a network model (i.e. removing 

edges) had a stronger effect on the similarity coefficient than changes made to the edge weights. 

This lack of effect on the similarity coefficient when the edge weights were changed provided 

further evidence against symmetry under nonconvergence. 
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Figure 7. Results of the symmetry analysis for set 2 of the 14-node network models. Every step on 

the x-axis represents a change of 10 percent, starting from 0 percent change at step 1. The dotted 

lines represent the upper and lower bounds of the CI95%. 

 

 8-Node network models 

Figure 8 gives the results of the symmetry analysis for the set of 8-node network models, 

in which 10 percent of the edges were removed per step. The similarity coefficient was calculated 

under convergence and nonconvergence. Whereas the nonconverged similarity coefficient 

fluctuated around .2, the converged similarity coefficient took on more plausible values. However, 

the correlations between the converged similarity coefficient and the correlation over edge weights 

ranged between -.43 and .84, and the correlations between the converged similarity coefficient and 

the sensitivity ranged between .29 and .86 (see Table 1, Appendix A). Thus, there was no 

agreement between the metrics that quantify the changes made to the static part of the model 

(sensitivity and correlation over edge weights) and the metric that quantifies the resulting change 

in the dynamic part of the model (converged similarity coefficient). In other words, there was no 

symmetry between the static and dynamic parts of the model under convergence. This lack of 

symmetry suggested that, under convergence, the model estimated by LBP was unstable. 
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Figure 8. Results of the symmetry analysis for the set of 8-node network models. Every step on the 

x-axis represents a change of 10 percent, starting from 0 percent change at step 1. The dotted lines 

represent the upper and lower bounds of the CI95%. Note that if a bound hits 1 or 0 it actually 

exceeds it, but this was not shown in order to reduce the range of the y-axis. Missing steps on the 

x-axis indicate a lack of data at these steps. 

 

Study Three: Similarity Estimation Method 

 Simulation, editing, and analyses. 

 Simulated data. 

For study 3, 2 sets of 5 pairs of datasets were simulated from different PTSD samples. The 

base samples for a pair were randomly chosen without replacement, such that a pair of simulated 

datasets was always based on two different samples. Network models were then fitted, resulting 

in 2 sets of 5 pairs of network models. Changes were made to the adjacency matrices of each first 

network model out of a pair. The changes were made to increase the differences between the 

network models in a pair. Specifically, the number of edges (set 1) and the edge weights (set 2) 
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were modified. Changes were made in 8 steps of 10 percent, resulting in 9 versions for each first 

network model in a pair (10% to 90% change). Note that the unchanged versions of the simulated 

network models were ignored because they were very similar to the empirical network models that 

were also used to investigate the similarity estimation method. The whole procedure was 

performed for the original network models (16 nodes) and the network models of reduced 

complexity (10 nodes). The method for creating reduced complexity network models was the same 

as for study 1: 6 out of the 16 nodes were randomly removed as well as 50 percent of the remaining 

edges. If convergence was not observed for the second 10-node network model out of a pair, the 

amount of edges or values of edge weights (set 1 and 2, respectively) were reduced by 10 percent 

until convergence was observed. The resulting version of the second network model then became 

the new second network model in the pair. This procedure ensured that the similarity estimation 

method could be tested on 2 10-node network models that both showed convergence. As in study 

1 and 2, set 2 of the 10-node network models was not analyzed because the complexity reduction 

did not lead to the intended result (higher convergence rates). 

 The similarity estimation method was used to compare the final beliefs of the network 

models in a pair. The sensitivity of unweighted adjacency matrices and Pearson’s correlation over 

edge weights between pairs were calculated for set 1. These metrics were then correlated to the 

similarity coefficient to check for agreement between metrics based on the static (sensitivity and 

correlation of edge weights) and dynamic (similarity coefficient) parts of the model. Correlations 

between metrics were computed separately for convergence and nonconvergence. For all metrics, 

95 percent confidence intervals (CI95%) were computed based on the variance over different pairs 

of network models from a set at a specific step. As in study 2, the sensitivity and correlation over 

edge weights were not computed for set 2: These metrics would have been constant and could 
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therefore not be correlated with the similarity coefficient. Set 2 was still analyzed to see how the 

similarity coefficient responded to changes made to the edge weights.  

 

 Empirical data. 

In order to study the similarity estimation method using empirical data, network models 

were estimated for each of the 4 PTSD samples before estimating LBP-based network models. 

Similarity coefficients were then generated. Sensitivity of unweighted adjacency matrices and 

Pearson’s correlation over edge weights were calculated and correlated to the similarity 

coefficient. 

 

Results. 

 Simulated data. 

 16-Node network models. 

Figure 9 gives the results of the similarity estimation method analysis for set 1. In this set, 

10 percent of the edges were removed per step for 1 network model out of a pair. Only the 

similarity coefficient under nonconvergence could be calculated for this set. The sensitivity 

steadily increased per step and the correlation coefficient steadily decreased per step. No such 

obvious pattern was observed for the similarity coefficient. The similarity coefficient seemed to 

fluctuate around .2 with relatively low variance except for a dip at step 9 (90% of edges removed). 

Therefore unsurprisingly, agreement between metrics was not indicated by the correlations 

between the similarity coefficient and the correlation coefficient (r = .07 to r = .99) and the 

similarity coefficient and the sensitivity (r = -.69 to r = .86; see Table 2, Appendix B). Thus, under 

nonconvergence, the similarity estimation method provided seemingly invalid results. 
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Figure 9. Results of the similarity estimation method analysis for set 1 of the 16-node network 

models. Every step on the x-axis represents a change of 10 percent, starting from 10 percent 

change at step 1. The dotted lines represent the upper and lower bounds of the CI95%. 

 

 Figure 10 gives the results of the similarity estimation method analysis for set 2, in which 

the edge weights were decreased by 10 percent per step for 1 network model out of a pair. Note 

that as with set 1, convergence was not observed, so the similarity coefficient could only be 

calculated under nonconvergence. The similarity coefficient changed by less than .003 between 

step 1 (edge weights decreased by 10%) and step 9 (edge weights decreased by 90%). As such, the 

nonconverged similarity coefficient did not seem to be affected by changes made to the edge 

weights. 
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Figure 10. Results of the similarity estimation method analysis for set 2 of the 16-node network 

models. Every step on the x-axis represents a change of 10 percent, starting from 10 percent 

change at step 1. The dotted lines represent the upper and lower bounds of the CI95%. 

 

 10-Node network models 

Figure 11 gives the results of the similarity estimation method analysis for the set of 10-

node network models, in which 10 percent of the edges were removed per step for 1 network model 

out of a pair. Because instances of convergence and nonconvergence occurred, the similarity 

coefficient was calculated under convergence and nonconvergence. Whereas the nonconverged 

similarity coefficient fluctuated around .2, the converged similarity coefficient took on more 

plausible values. However, agreement between metrics was not strongly indicated by the 

correlations between the converged similarity coefficient and the correlation coefficient (r = .30 

to r = .91) and the converged similarity coefficient and the sensitivity (r = .27 to r = .75; see Table 

2, Appendix B). Thus, under convergence, the similarity estimation method provided seemingly 

invalid results. 
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Figure 11. Results of the similarity estimation method analysis for the 10-node network models. 

Every step on the x-axis represents a change of 10 percent, starting from 10 percent change at 

step 1. The dotted lines represent the upper and lower bounds of the CI95%. Note that if a bound 

hits 1 or 0 it actually exceeds it, but this was not shown in order to reduce the range of the y-axis. 

Missing steps on the x-axis indicate a lack of data at these steps. 

 

 Empirical data. 

Convergence was not seen for any of the empirical network models. As discussed earlier, 

under nonconvergence, the similarity estimation method provided invalid results. As such, the 

results for this part of the analysis were not interpreted. 

 

Discussion 

The present thesis focused on the use of LBP for creating dynamic network models using 

cross-sectional data on psychopathology networks. To this end, the thesis was split up into three 
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different studies. In study one I investigated the practical usability of LBP by looking at scalability 

and the convergence rate. The results indicated linear scaling, meaning that the run time should 

not realistically blow up to infinity. Unfortunately, the convergence rate was low. Substantial 

reductions in complexity (i.e. removal of nodes and/or edges) were required to reach acceptable 

convergence rates, severely limiting the practical usability of LBP. However, it should be noted 

that complexity was likely not the only factor influencing the convergence rate. Certain topological 

features can influence the convergence rate (Gatterbauer et al., 2015). In absence of these features 

convergence could occur for relatively complex network models. 

In study two I investigated whether there was symmetry between the static and dynamic 

parts of the network models. Symmetry was defined as a rough (but not perfect) proportionality 

between changes to the static and dynamic parts of the network models. This symmetry between 

the static part (based on conventional modeling) and LBP-based dynamic part of the network 

models is required to ensure that the LBP-based network models are stable. There was no evidence 

of symmetry, suggesting that LBP-based network models are unstable. This lack of symmetry 

means that any analysis performed on LBP-based network models, and thus also any conclusions 

based on these analyses, would be unreliable. For example, slight differences between network 

models estimated for the same population on consecutive days could lead to large differences in 

the LBP-based network models. Thus, any conclusions based on LBP-based network models 

would be unreliable as they could change on a daily basis. 

In study three I investigated an extension of LBP-based network modeling: Estimating a 

similarity coefficient for nested network models. There was no strong indication of agreement 

between similarity metrics based on the static part of the network model and the similarity 

coefficient. Thus, the metrics based on the static part of the network models and the similarity 
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coefficient are likely to provide conflicting results. In light of these conflicting results, the 

similarity estimation method should be rejected in favor of the more established metrics based on 

the static part of the network models.  

The lack of evidence for symmetry and the lack of support for the similarity estimation 

method is surprising, as Koutra and colleagues (2011a) drew the opposite conclusions from their 

study. In the following two sections I will offer possible explanations for this difference in 

conclusions. 

One possible explanation for the difference in conclusions comes from the inability to 

generalize beyond the range of inputs (Good & Hardin, 2012). For the present thesis, the range of 

inputs can be defined as the range of the amount of nodes and edges. Substantial reductions in 

complexity (i.e. removal of nodes/edges) were needed to reach acceptable convergence rates. As 

such, the range of inputs on which the main conclusions of this thesis are based differed strongly 

from the range of inputs used by Koutra and colleagues (2011a) and the intended range of inputs 

(network models for psychopathology networks). The results of the current thesis therefore cannot 

be generalized to the range of inputs used by Koutra and colleagues and the intended range of 

inputs. This idea is nicely illustrated by the sensitivity over nonweighted adjacency matrices for 

the 8-node network models of the symmetry analysis. The sensitivity seemed to be biased towards 

1, as it never went below .96. However, this bias could be explained by the high number of empty 

cells in the 8-node network models. For the original, 14-node network models, this empty cell 

problem would not occur. Thus, the bias in the sensitivity cannot be generalized beyond the 8-

node network models. The same argument holds for the conclusions regarding symmetry and the 

similarity estimation method. 
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Additional explanation can be identified for the difference in conclusions between this 

thesis and the study by Koutra and colleagues (2011a). First, LBP and/or the similarity estimation 

method may not be well suited for estimating/analyzing dynamic network models for 

psychopathology networks. There could be several reasons for this mismatch, including possibly 

unacceptable assumptions made by LBP. As a result of these unacceptable assumptions, LBP-

based network models would not offer a valid representation of psychopathology networks. If 

conventional network modeling does provide a valid representation of psychopathology networks, 

then a lack of symmetry between conventional modeling and LBP-based network models is 

unsurprising. This lack of symmetry means that the analysis of LBP-based network models would 

be unreliable, thereby explaining the lack of support for the similarity estimation method. More 

research on the use of BP algorithms for dynamic modeling of psychopathology network models 

and a discussion about the assumptions are required. Second, perhaps LBP cannot be used, but 

different BP algorithms or approximations of LBP can be used. Koutra and colleagues used an 

approximation of LBP to increase the convergence rate. The use of this approximation leads to 

differences in the output and possibly also assumptions. These differences may be required for BP 

algorithms to be useful for dynamic modeling of psychopathology networks. 

 In sum, the results of this study are not promising, but also not conclusive. More research 

is needed to see if LBP can be used to estimate dynamic network models using cross-sectional data 

on psychopathology networks. If future studies continue to find similar results, a different (BP) 

algorithm will have to fill the gap between network theory and cross-sectional network modeling 

of psychopathology networks.  
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Appendix A 

Table 1. Symmetry analysis: Correlations of the similarity coefficient with other metrics 

  Nonconverged Converged 

  Pearson 

Correlation 

Sensitivity Pearson 

Correlation 

Sensitivity 

Set 1a Network 1 -.32 -.17 NAc NAc 

 Network 2 .22 .78 NAc NAc 

 Network 3 -.16 .54 NAc NAc 

 Network 4 -.24 .57 NAc NAc 

 Network 5 -.44 .75 NAc NAc 

Set rc1b Network 1 .11 -.76 NAc NAc 

 Network 2 -.10 .21 NAc NAc 

 Network 3 NAc NAc -.43 .29 

 Network 4 .20 .44 .84 .44 

 Network 5 NAc NAc -.42 .86 

a = Original complexity 

b = Reduced complexity 

c = Metric not computed because there were less than 3 datapoints or the standard deviation could 

not be computed 
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Appendix B 

Table 1. Similarity estimation method analysis: Correlations of the similarity coefficient with 

other metrics 

  Nonconverged Converged 

  Pearson 

Correlation 

Sensitivity Pearson 

Correlation 

Sensitivity 

Set 1a Network 1 .86 -.69 NAc NAc 

 Network 2 .99 .86 NAc NAc 

 Network 3 .07 .25 NAc NAc 

 Network 4 .46 .36 NAc NAc 

 Network 5 .48 .52 NAc NAc 

Set rc1b Network 1 .29 .49 .30 .75 

 Network 2 .43 .92 .56 .27 

 Network 3 .17 .14 NAc NAc 

 Network 4 .23 .07 NAc NAc 

 Network 5 .65 .84 .91 NAc 

a = Original complexity 

b = Reduced complexity 

c = Metric not computed because there were less than 3 datapoints or the standard deviation could 

not be computed 

 


