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Abstract 

There has been a long-standing debate about the effectiveness of active versus passive learning. 

Proponents of active learning present generative learning strategies (GLS) as an effective way of 

learning, whereas others reject this constructivist idea, saying children’s brains are not developed 

enough for it. This study investigated this claim by looking at the underlying mechanisms of two GLS, 

prediction generation and example generation. It specifically looked at the way prediction errors can 

contribute to learning. Existing data from a study by Breitwieser and Brod (2020) were used, including 

25 children (M = 9.84) and 25 young adults (M = 21.24). The experimental task consisted of a study 

phase with two conditions, in which participants had to predict a numerical quantity in an incomplete 

numerical fact (e.g., “X out of 10 animal species are insects”) or had to give an example related to the 

theme of the numerical fact (“butterflies are insects”). After every prediction or example, the correct 

answer was shown. Participants completed both conditions. In the following test phase, they had to 

complete all the incomplete numerical facts, without receiving feedback. Results were that children 

seemed to benefit more from prediction generation, compared to example generation, than adults. 

Specifically, making a prediction error seemed to stimulate learning, with a large error leading to a 

greater effect. Limitations and implications for future research and educational practice are discussed. 

 

Introduction 

Recently, the annual report of the Dutch Inspectorate of Education (Inspectie van het Onderwijs, 2020) 

was published, analyzing the current state of education in The Netherlands. It found that the best 

performing primary schools had a few matching features. Three teacher-related factors that repeatedly 

seemed to explain their success, were: responding to the individual needs of students, involving them 

in the instruction and letting them take responsibility for their learning process. Students indicated that 

this increased their motivation and self-confidence (Inspectie van het Onderwijs, 2020). 

 Stimulating students to take ownership of their learning process is something that has received 

increasingly more attention over the last two decades (e.g. Bada & Olusegun, 2015; O’Shea & Leavy, 

2013; Stefanou, Perencevich, Dicintio, & Turner, 2004; Terhart, 2003). Students are encouraged to play 

an active role in their learning process and to learn from their own mistakes (Stefanou et al., 2004). 

Recent studies show that this can have positive learning effects: children generate their own answers to 

questions, to find out their answers are not always correct, which then leads to surprise and subsequently 

to learning (Breitwieser & Brod, 2020; Brod, Breitwieser, Hasselhorn, & Bunge, 2019). 

 This way of learning seems consistent with the theory of constructivism, which states that 

learning is a process in which the child plays an active role. Understanding is achieved by actively 

connecting prior knowledge to new knowledge in a meaningful way (Piaget, 1926; Vygotsky, 1978). 

In other words: learning is a generative activity (Fiorella & Mayer, 2016) where the learner is 

responsible for actively constructing knowledge, by mentally integrating the information that is to be 

learned with prior knowledge (Wittrock, 1974). Inspired by this theory are generative learning strategies 
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(GLS) that aim to help the learner integrate new knowledge with prior knowledge (Fiorella & Mayer, 

2016). Although they are not mentioned in the report of the Dutch Inspectorate of Education, there is 

evidence that these GLS result in better learning outcomes than passive learning strategies (Dunlosky, 

Rawson, Marsh, Nathan, & Willingham, 2013; Fiorella & Mayer, 2016; Lee, Lim, & Grabowski, 2008).  

The current study will examine this more closely by focusing on two GLS: prediction 

generation and example generation. These two were selected because it is expected they lead to different 

effects; different executive functions are needed (e.g., working memory vs. analogical reasoning) and 

different underlying mechanisms are assumed (for example, surprise plays an important role when 

making predictions, but not when generating examples; Brod, Hasselhorn, & Bunge, 2018). These 

processes will be discussed in detail later.  

 This study will reanalyze data from a study by Breitwieser and Brod (2020), who looked at the 

effects of prediction and example generation on numerical fact learning. They compared 25 children 

(aged 9-11 years) and 25 adults (aged 17-29 years) who had to give a prediction or an example of an 

unfinished fact before seeing the right answer. An unfinished fact could be “X out of 10 historical 

statues are female figures”. A prediction that subsequently could be generated, was “4”. An example 

could be “There is a statue of Joan of Arc in Paris”. Results were that both GLS were equally effective 

in adults, whereas children benefited more from prediction generation. They remembered more facts on 

the final test after generating a prediction than after generating an example. In other words, there seemed 

to be a significant interaction between age and learning strategy (Breitwieser & Brod, 2020). The current 

study will examine the mechanisms behind prediction generation. 

 

Experiential learning versus direct instruction 

One way to improve the learning performances of young students might be to adjust the 

instruction to their cognitive development. However, what kind of instruction this should be, remains a 

discussion. There is a long-standing debate around the question how much guidance a student needs 

during learning, with direct instruction on one side of the continuum, and the model of ‘minimal 

guidance’ on the other side (Brunstein, Betts, & Anderson, 2009; Kirschner, Sweller, & Clark, 2006).  

The model of minimal guidance has been called by different names, varying from experiential 

learning (Kolb, 1984) and inquiry learning (Rutherford, 1964) to constructivist learning (Steffe & Gale, 

1995) and discovery learning (Anthony, 1973). The basic idea of this model is to let students take 

responsibility for their own learning process, with minimal instructional guidance. Advocates of direct 

instruction, on the other hand, state that learners need a teacher to provide clear instructions and 

information about the concepts they have to study. Students should not discover this all by themselves 

(Kirschner et al., 2006).  

A large base of research states that direct instruction has more beneficial effects on learning 

than constructivist learning (Klahr & Nigam, 2004; Mayer, 2004; Moreno, 2004; Sweller, 2004). 

Kirschner et al. (2006) argue that pure constructivist learning does not work based on our ‘cognitive 
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architecture’: it creates a working memory load that is too heavy. Indeed, self-directed learning appears 

to place high demands on executive functioning and self-regulation; skills that have not fully matured 

yet in primary schoolers (Diamond, 2013). Lastly, Kirschner et al. (2006) warn for the negative effects 

of constructivist learning, saying that students may form misconceptions or incomplete knowledge 

about a topic. 

 

Generating predictions 

Still, some aspects of constructivist learning might be beneficial for learning in combination 

with direct instruction and might potentially be even more effective than pure instruction. GLS like 

prediction generation and example generation are among these aspects. Evidence suggests that 

generation is a powerful tool to enhance learning and retention (Roediger & Pyc, 2012). This involves 

generating information from one’s own mind, instead of being presented with external information 

(Slamecka & Graf, 1978). In the classic generation model, participants are asked to learn a list of certain 

items in two conditions: a read condition, in which the items are presented in their complete form (for 

example, GARBAGE-WASTE; HOT-COLD; et cetera) and a generate condition, in which participants 

have to generate the correct item by using semantical or phonological cues, like synonyms, antonyms 

or rhymes (for example, GARBAGE-W_ST_; HOT-____; Bertsch, Pesta, Wiscott, & McDaniel, 2007; 

Rosner, Elman, & Shimamura, 2013). The benefits of generation over reading have been demonstrated 

in many different generation tasks, using a wide range of material, and in both healthy adults and patient 

populations (for an overview, see Bertsch et al. (2007)).  

 A specific form of generation is generating examples; one of the GLS. Generating examples 

appears to improve concept learning, for example in the field of psychology (Rawson & Dunlosky, 

2016) and mathematics (Sağlam & Dost, 2016). To select appropriate examples, learners need to 

activate relevant prior knowledge, generate multiple examples, compare them with the question and 

with each other, and eventually decide which one is most suitable (Breitwieser & Brod, 2020). Hence, 

this strategy demands analogical reasoning (Duit, 1991); a skill that is still developing during childhood 

and adolescence. Therefore, according to Breitwieser and Brod (2020) it is plausible that generating 

examples is less effective in children than generating predictions. 

Generating predictions, another GLS, seems to stimulate learning in many different fields, 

including physics (Crouch, Fagen, Callan, & Mazur, 2004; Inagaki & Hatano, 1977), biology (Schmidt, 

De Voider, De Grave, Moust, & Patel, 1989), geography (Brod et al., 2019; Brod, Hasselhorn, & Bunge, 

2018) and trivia fact learning (Brod & Breitwieser, 2019). Schmidt et al. (1989) suggest that generating 

predictions requires learners to access their prior knowledge. This is known to increase recollection and 

apprehension of new information (Bransford & Johnson, 1972). This way, generating predictions could 

stimulate learning. An example of a prediction generation task can be found in the study of Brod et al. 

(2018). The goal was to improve participants’ geography learning by asking them either to predict 

which of two countries had the largest population, or to make post-hoc evaluations, i.e. to indicate what 
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they would have expected after they had seen the correct answer. Results were that making predictions 

was most effective for learning geography facts (Brod et al., 2018).  

One aspect of generating predictions is making prediction errors. Brod et al. (2018) observed 

in their geography experiment that expectancy-violating information enhanced memory, compared to 

post-hoc evaluations. In other words: when adults are exposed to new information that contradicts their 

prior knowledge (i.e. prediction errors), this can increase their learning performance. The authors 

describe that answers that violated the participants’ expectations after predicting the possible outcome, 

led to a surprise response (measured with the pupil diameter). In turn, the strength of this surprise 

response correlated positively with the extent of learning (Brod et al., 2018). These prediction errors 

seem especially beneficial when accompanied with corrective feedback (Henson & Gagnepain, 2010; 

Huelser & Metcalfe, 2012; Potts, Davies, & Shanks, 2019). Potts and Shanks (2014) demonstrated that 

prediction errors, in combination with feedback, improved memory much better than just reading the 

information, or selecting one answer from a few possible answers and getting feedback. An answer to 

the question why prediction generation, and prediction errors specifically, seem to benefit learning, can 

be found in literature about the brain. 

 

Prediction in the brain 

The human brain is constantly generating predictions (Bar, 2007). This is a universal 

mechanism to adapt most effectively to the ever-changing environment (Greve, Cooper, Kaula, 

Anderson, & Henson, 2017). Bar (2007) demonstrated that memory systems use associations to produce 

predictions. Objects and events that often emerge together, are linked to each other in a scheme. This 

facilitates the detection of trends and the anticipation on future events – in other words, prediction (Bar, 

2007). The brain areas that seem important for these associations, have a significant overlap with brain 

areas that are part of the default mode network (Bar, Aminoff, Mason, & Fenske, 2007). This network 

consists of regions (including the medial temporal lobe, medial prefrontal cortex, and medial parietal 

cortex) that are active when the individual is resting, i.e. not doing a specific task (Raichle et al., 2001). 

Since these regions also seem to be involved in forming associations, this supports the idea that the 

brain is constantly generating predictions, instead of passively waiting to be activated by stimuli  (Bar, 

Aminoff, Mason, & Fenske, 2007). In other words, the specific brain regions for making predictions 

are still active when there is no specific reason to be active (i.e., a particular task). Therefore, it is 

unlikely that these brain regions are passively waiting to be activated. Hence, it is assumed that 

generating predictions is a continuous activity in the brain. 

Memory systems. Research regarding the brain mechanisms underlying prediction could give 

insight into why prediction seems to work so well during learning. In general, there are two important 

memory systems: working memory and long-term memory. Working memory holds information in 

mind for a short period of time (Vallar, 2015). This is necessary to successfully carry out a task that one 

is currently working on (Pinel & Barnes, 2014). For example, when making predictions it is important 
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to keep in mind the initial answer until the correct one is given, so that the two can be compared. 

Working memory is thought to be consolidated by the hippocampus into long-term memories (Squire 

& Bayley, 2007).  

The long-term memory system can be divided in multiple subsystems, each with their own 

participating brain regions. Long-term explicit memory includes declarative memory and is important 

for the conscious remembrance of events and objects (Kolb & Wishaw, 2015). This seems to play a role 

when making an ‘episodic prediction error’: having violated expectations about an event (Lisman & 

Grace, 2005). Long-term implicit memory (also called nondeclarative memory) plays a role in 

conditioning. When making a prediction error, a condition process takes place that minimizes the 

chance of making a similar error in the future (Van den Bos, Cohen, Kahnt, & Crone, 2012). Altogether, 

these memory systems work together to generate the best possible predictions and to learn from 

prediction errors (Henson & Gagnepain, 2010), thereby contributing to the effectiveness of GLS. 

Interacting memory systems. When predictions do not match the correct answer, this 

introduces the prediction error. Many brain regions seem to be involved in the processing of this 

prediction error (for an overview, see Schultz & Dickinson, 2000). Henson and Gagnepain (2010) link 

the prediction error to learning via the PIMMS model, where PIMMS is an abbreviation for “predictive 

interactive multiple memory systems”. Memory systems interact with each other to minimize prediction 

errors in the future, by continuously comparing incoming information with top-down predictions. The 

synaptic changes following a prediction error increase memory; the larger the prediction error, the 

greater these synaptic changes and the better the encoding of memories (Henson & Gagnepain, 2010). 

This suggests that the prediction error is a signal that something needs to be changed, which could 

explain why generating predictions is more effective than generating examples or only giving the 

correct answer.  

When taking a closer look at the different memory systems that are interacting as part of the 

PIMMS network, there seem to be two important structures involved: the medial temporal lobe network 

(MTL) and the striatal network. The latter seems to be involved in nondeclarative learning: the 

acquisition of skills and habits (Doyon et al., 2009; Filoteo, Maddox, & Davis, 2001; Myers et al., 

2003). The striatum itself  is believed to be involved in the storage of persistent relationships between 

stimuli and responses (Laubach, 2005), procedural learning (Poldrack, Prabhakaran, Seger, & Gabrieli, 

1999) and reward learning (O’Doherty, 2004). Specifically, the dorsomedial striatum appears to be 

involved in goal-directed learning (Yin & Knowlton, 2006) and instrumental conditioning (Yin, 

Ostlund, Knowlton, & Balleine, 2005). The dorsolateral striatum seems involved in habit learning 

(Voorn, Vanderschuren, Groenewegen, Robbins, & Pennartz, 2004; Yin, Knowlton, & Balleine, 2004). 

Prediction errors are often associated with reward learning in the striatum (O’Doherty, 2004; 

O’Doherty et al., 2004). Here, prediction errors are encoded by dopaminergic neurons (McClure, Berns, 

& Montague, 2003; Schultz, Dayan, & Montague, 1997). When the prediction error is either positive 

or negative (meaning that the outcomes are respectively better or worse than expected), the striatum 



7 

 

sends a signal to the prefrontal cortex, which, in turn, learns to adapt to this outcome in the future (Van 

den Bos et al., 2012). According to Doll, Jacobs, Sanfey, and Frank (2009), the mature prefrontal cortex 

also controls this striatal activity, meaning it can suppress the prediction error when it is inconsistent 

with the (direct) instruction or their goals. In other words: in adults, the prefrontal cortex strengthens 

the influence of outcomes that are consistent with the instruction. The effects of instruction-inconsistent 

outcomes, on the other hand, are reduced. This creates a confirmation bias: it stimulates adults to 

appraise actions or ideas that were recommended through direct instruction more highly than actions or 

ideas that were learned through experience only. Even when the recommendations turn out to be 

inaccurate, this remains the case (Doll et al., 2009).  

The MTL, including the hippocampus, seems to be responsible for declarative learning, i.e. 

semantic and episodic memories (Knowlton, Mangels, & Squire, 1996; Ranganath & D’Esposito, 

2001). The hippocampus is also involved the processing of prediction errors, although these errors seem 

different from the prediction errors the striatum is involved in. The hippocampus is activated by events 

that are linked to an existing memory representation (meaning there is a learnt association), but differ 

in some way from that representation (Lisman & Grace, 2005). Or, more easily put: it detects 

mismatches between contemporary sensory input and past experiences (Kumaran & Maguire, 2007). 

Lisman and Grace (2005) call this the episodic prediction error. Their hippocampal-VTA loop model 

states that when the hippocampus detects a mismatch, it sends a signal to the substantia nigra/ventral 

tegmental area (SN/VTA), where neurons synthesize dopamine. In turn, the SN/VTA stimulates the 

release of dopamine into the hippocampus. Shohamy and Wagner (2008) later added to this model that 

this release of dopamine enhances the encoding of both past and current events into an integrated 

representation. 

As already stated in the PIMMS model, there seems to be an interaction between the striatal 

network and the MTL (including the hippocampus). A growing base of evidence states that the 

interaction between these memory systems can be both competitive (activation of one system decreases 

the activation of the other) and cooperative (both systems make parallel contributions to the learning 

process; Freedberg, Toader, Wassermann, & Voss, 2020; Sadeh, Shohamy, Levy, Reggev, & Maril, 

2011; Wimmer, Braun, Daw, & Shohamy, 2014). Whether the interaction is competitive or cooperative, 

could depend on the specific learning context (Delgado & Dickerson, 2012). During trial-and-error 

learning, for example, the interaction seems mostly cooperative (Dickerson, Li, & Delgado, 2011). In 

this context of feedback learning, activity in the hippocampus could reflect attempts to identify 

differences between positive and negative outcomes (Li, Delgado, & Phelps, 2011) alongside the 

corticostriatal systems, possibly encoding a  feedback-based model-derived reward prediction error 

signal (Dickerson et al., 2011). 

Surprise and curiosity as underlying mechanisms. There are more suggestions for processes 

that play a role when making predictions or prediction errors. Brod et al. (2018) argued that surprise 

might play a role in learning from the prediction of facts. Expectancy-violating outcomes, i.e. prediction 



8 

 

errors, lead to an emotional reaction: the surprise response (D’Mello et al., 2014; Ekman, 1992).This 

response has been linked to the release of noradrenalin in the locus coeruleus (Aston-Jones & Cohen, 

2005), which in turn stimulates the development of long-term memory (McGaugh & Roozendaal, 

2009). In addition, enhanced arousal may elevate attention to the surprising results, which also increases 

memory for these facts (Fazio & Marsh, 2009; Stahl & Feigenson, 2015). Then, the surprise response 

is followed by confusion: a cognitive disequilibrium that can be beneficial for learning as well (D'Mello, 

Lehman, Pekrun, & Graesser, 2014).  Indeed, Brod et al. (2018) found that prediction errors led to a 

surprise response, and that the intensity of this response was positively related to memory performance. 

This is in line with other research, saying that the more surprising the information is, the better it will 

be remembered (Fazio & Marsh, 2009; Greve, Cooper, Kaula, Anderson, & Henson, 2017). Butterfield 

and Metcalfe (2001) called this phenomenon ‘the hypercorrection effect’. Accordingly, both the 

surprise response and the prediction error seem to send certain signals when outcomes do not match 

expectations. The difference is that the surprise response seems to be an effect of the prediction error; 

an emotional reaction that would not exist without the prediction error being made. Possibly the surprise 

response strengthens the effects of the prediction error, depending on its intensity. Another difference 

is that metacognitive skills are needed for surprise; previous beliefs need to be changed in the light of 

new information (Brod et al., 2019). The prediction error, on the other hand, seems to happen almost 

automatically and unconsciously in the PIMMS network (Henson & Gagnepain, 2010). 

Another mechanism that could underly learning from prediction, is curiosity: a process that 

emerges before the prediction error takes place. In their experiment, Brod and Breitwieser (2019) found 

that generating predictions stimulated curiosity, which in turn was related to a better memory for the 

correct answer. They explain this by saying that curiosity, just like surprise, stimulates the release of 

noradrenalin from the locus coeruleus (Kang et al., 2009). Indeed, they could demonstrate that higher 

levels of curiosity were accompanied with a larger pupil dilation. Generating examples did not lead to 

such high levels of curiosity as generating predictions and was related to less correct recalls (Brod & 

Breitwieser, 2019).  

Perseverative errors. A risk of making prediction errors could be that students remember their 

incorrect guess instead of the correct answer. Marsh, Roediger, Bjork and Bjork (2007) found that 

students can make such perseverative errors during a multiple-choice test, remembering the false lures 

instead of the correct option. In addition, Vaughn and Rawson (2012) did three experiments in which 

they compared an associative guessing condition with a study condition (participants could study the 

associations before the final test). In their first experiment, they found that studying outperformed 

incorrect guessing. The second experiment revealed that timing of feedback functioned as a moderator: 

when the incorrect guessing was followed by immediate feedback, participants performed better in the 

feedback condition than in the studying condition. But when feedback was delayed, incorrect guessing 

lead to a worse recall. According to Vaughn and Rawson (2012), this could have to do with 

perseverative errors, in the sense that participants confused their previous guess with the correct answer. 
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However, their third experiment gave evidence against this suggestion. In the final test, they asked 

participants to indicate if they made a guess for this specific stimulus in the practice phase (with the 

guessing condition), and if so, whether they remembered what they guessed. Participants from both 

groups (delayed-study and immediate-study) were equally likely to remember their original guesses 

correctly (Vaughn & Rawson, 2012). Still, other studies demonstrate that errors made with high 

confidence persevered when they were not tested immediately after the participant realized it was an 

error (Butler, Fazio, & Marsh, 2011; Metcalfe & Miele, 2014). 

To summarize, brain research can give some possible explanations for the effectiveness of 

generation predictions on learning. These explanations are, respectively: synaptic changes resulting 

from predictive interactive multiple memory systems, the surprise response, and curiosity. All three of 

them increase memory, but this could be a memory of the incorrect answer. In other words, there may 

be perseverative errors when generating predictions, meaning that one remembers the incorrect 

prediction instead of the correct answer. However, these studies did not investigate the underlying 

(brain) mechanisms in children during prediction generation. Research in these age group is scarce; 

still, there are some studies that shed light on the possible brain systems of children that play a role 

during prediction. 

 

Effects of prediction in children 

In infants and children, violated expectations or prediction errors seem to stimulate learning 

(Reuter, Lev-Williams, & Borovsky, 2019; Stahl & Feigenson, 2015; Stahl & Feigenson, 2017). In 

children, the striatal reward signals look quite mature already (Cohen et al., 2010). However, the 

connection between the striatum and the prefrontal cortex is still developing into adulthood (Liston et 

al., 2006). This relative immaturity of the prefrontal-striatal connection seems to have an influence on 

children’s way of learning. Whether this is a positive or a negative influence, depends on the situation. 

Immaturity of the prefrontal cortex seems to be related to a weaker level of cognitive control, meaning 

that children are less able to inhibit inappropriate responses and more easily distracted by the 

environment  (Bunge, Dudukovic, Thomason, & Vaidya, 2002). In addition, because the connection 

between the prefrontal cortex and the striatum is not fully developed yet, there is less top-down control 

of behavior under motivational demands (e.g. rewards; Barrett, Fox, Morgan, Fidler, & Daunhauer, 

2013).  

However, the immaturity of the prefrontal-striatal connection could have a positive influence 

on the process of generating predictions. A study by Decker, Lourenco, Doll and Hartley (2015) 

compared the effectiveness of feedback learning to direct instruction in children. These children 

appeared to benefit more from feedback learning than adults; in fact, the effects of feedback learning 

seemed to be intensified in children, compared to adults. The explanation Decker et al. (2015) gave for 

these results, is the immaturity of the prefrontal-striatal connectivity. As discussed, adults have a 

confirmation bias for actions or ideas that were recommended through direct instruction. It strengthens 
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the effect of outcomes that were consistent with instruction and diminishes the influence of instruction-

inconsistent outcomes, or ideas that were learned through experience only. This seems to stem from the 

influence of the rule-following prefrontal cortex on the feedback-evaluative striatum (Doll et al., 2009). 

Children, however, seem to learn more from experience than direct instruction, because the connection 

between the prefrontal cortex and the striatum is not yet mature enough to create this confirmation bias 

(Decker et al., 2015). In conclusion, the immaturity of the prefrontal-striatal connectivity can be 

beneficial for learning. 

Age could influence the effectiveness of GLS in general, for several reasons. First, age 

influences the amount of prior knowledge they have. Gurlitt and Renkel (2008) found that GLS are 

important learning support for students with a lower prior knowledge, suggesting that younger learners 

might benefit most from GLS. Second, age could affect GLS by influencing the level of executive 

functioning. It could be that different GLS have different developmental pathways, depending on the 

different executive functions that are involved (see Li et al., 2004). Brod et al. (2019) discovered that 

generating predictions only benefited learning in children with better inhibitory control skills. And, as 

was already explained before, example generation requires the executive function of analogical 

reasoning (Duit, 1991), an ability that undergoes strong developmental changes from childhood to 

adolescence (Richland, Kornell, & Kao, 2009). The same goes for inhibitory control, and specifically 

the error-processing circuit (Ordaz, Foran, Velanova, & Luna, 2013; Velanova, Wheeler, & Luna, 

2008). Consequently, Breitwieser and Brod (2020) also looked at the influence of executive functions 

on GLS in their study. Indeed, there was an effect of analogical reasoning on example generation: 

children with better analogical reasoning skills performed more equally in the two GLS conditions. 

There was no effect of inhibitory skills on prediction, however (Breitwieser & Brod, 2020). Altogether, 

it seems that especially the GLS of generating predictions has a positive influence on children’s learning 

– even though the underlying executive functions are still developing. 

 

Depth of processing 

Apart from age, there is something else that could influence prediction generation specifically: 

depth of processing. In a study of Benjamin, Bjork and Schwarz (1998), participants had to make two 

tests: one in which they had to answer trivia questions, and one in which they received a blank sheet of 

paper and were asked to free-recall their previous answers. During the first test, after every question 

participants were asked to rate the possibility that they would recall the answer to this fact. Results were 

that the more quickly participants responded during this first test, the more confident they were to recall 

their answer and, surprisingly, the less likely they were to recall it during the second test. Thus, 

participants were more likely to remember the answers they thought about for a longer time (Benjamin 

et al., 1998). Accordingly, depth of processing and retrieval success seem to be related. When applying 

this to prediction generation, it could be the case that the longer it takes participants to predict an answer, 

the more likely it is they will recall it.  
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The current study 

In this study, the data of Breitwieser and Brod (2020) were used for a secondary analysis. In 

short, they asked children and adults to generate either a prediction or an example about an incomplete 

fact (e.g., “X out of 10 historical statues are female”). When they had given their answer, the true answer 

appeared, and the next fact was shown. After this study phase, participants were tested with the same 

unfinished facts to see how much they had remembered.  

First, the current study repeated analyses by Breitwieser and Brod, focusing on the different 

effects of prediction and example generation in children and adults. Next, these data were used for 

additional, new analyses. It is still not known whether it is a large or a small difference between 

prediction and correct answer that leads to the best recall. One could argue that a large difference 

between prediction and correct answer leads to a larger neural prediction error and therefore to a better 

remembrance. On the other hand, a large difference could indicate that the participant does not have 

any idea what the answer could be. Then, the neural prediction error and the learning effect will 

probably be smaller. Therefore, this study wanted to find out if it is a large or a small behavioral 

prediction error that is responsible for a better recall of the correct answers. In order to do so, it was 

examined whether there were differences in performance between the facts with a high prediction error 

and the facts with a small prediction error. Furthermore, to examine the possibility that prediction errors 

could persevere (remembering the incorrect prediction instead of the correct answer), a second 

additional analysis focused on the presence of perseverative errors. Because knowledge and executive 

functions differ across development and between individuals, main effects and interactions with age, 

inhibitory skills and cognitive flexibility were also examined. Lastly, it is not known yet whether depth 

of processing is related to retrieval success in the context of prediction generation and example 

generation. Therefore, this study investigated the role of reaction times when making predictions.   

 Previous literature states that the more surprising the information is, the better it will be 

remembered (e.g. Brod et al., 2018; Greve et al., 2017; Butterfield & Metcalfe, 2001). Accordingly, it 

was hypothesized that the facts with a larger difference between prediction and true answer (i.e., a high 

prediction error) would be remembered correctly more often than the facts with a smaller difference 

(i.e.,  a small prediction error). Regarding perseverative errors, it was hypothesized that persons with 

lower levels of inhibitory skills and cognitive flexibility would make more perseverative errors than 

persons with higher levels of these executive functions. Building on that, it was also hypothesized that 

children would make more perseverative errors than adults.  The last hypothesis, based on Benjamin et 

al. (1998), was that the longer the reaction time in the study phase, the better the memory performance 

in the test phase, and the other way around. 
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Method 

For this study, data from the study of Breitwieser and Brod (2020) was used. It was preregistered on 

the Open Science Framework.  

 

Participants 

Data were collected from 25 children of 9-11 years old (10 females; M = 9.84, SD = 0.47) and 

25 young adults of 17-29 years old (17 females; M = 21.24, SD = 3.68). All participants came from 

middle-class households. The children were recruited through a database of children that had 

participated in previous studies of the research group in Frankfurt, and via an email that regularly 

distributes information to parents of fourth graders in Frankfurt. Adults were acquired via the informal 

network of the researchers, advertisements on the bulletin boards in the Goethe-University of Frankfurt 

and announcements in student groups on social media. All participants were asked to fill out informed 

consent forms. The children received a toy worth five euros for their participation, their parents received 

five euros to compensate for their travel costs, and the adults received ten euros or ECTS (course credit). 

The ethics committee of the DIPF | Leibniz Institute for Research and Information in Education gave 

permission for this research. 

 

Experimental task 

A task of 60 numerical facts was designed. They were written in such a way that they were 

incomplete. The answer needed to be a number (ranging from 1 to 9) divided by 10. For example, a fact 

could be: “X out of 10 animal species are insects”. The experimenters ensured all children knew X 

represented a number. In both the prediction condition and the final test, a visual analog scale (VAS) 

was used to support participants with low numeracy skills. PsychoPy v1.8 was used to present all the 

facts (Peirce, 2007). In the prediction condition, participants had to predict a number (e.g., the number 

of animal species that are insects).  The answer would light up for one second. Then, after a brief delay, 

the correct answer to the fact appeared on the screen for three seconds. Subsequently, the next 

incomplete fact would be presented. In the example condition, the participants had to come up with an 

example for the fact that was shown (e.g. “butterflies are insects”). As soon as they had found an 

example, they had to click on a smiley button. If they could not think of an example, the participants 

could click on a red button. Before each condition, there were three practice trials. For a schematic 

overview, see figure 1.  

For each condition, there was a study phase and a test phase. Participants completed both 

conditions successively. The order of the conditions was counterbalanced across the participants. After 

the prediction and the example condition, there would be a test phase in which the participants received 

the same 30 facts as in the study phase. This time, all the facts were incomplete, and the participants 

needed to remember the right answer. Their response was again highlighted for one second. The right 

answer was not shown. 
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From all the 60 numerical facts, two subtests of 30 facts were created. The facts were assigned 

randomly to each subtest. After 30 trials there was a short break. In total, the sessions took 60 minutes 

for young adults and 70 for children. 

 

Procedure 

Before the experimental task, participants performed two executive functions tests that 

measured their inhibitory skills and cognitive flexibility, one of them being the Hearts and Flowers task 

(HFT; Wright & Diamond, 2014). This task has been validated with both children (4-13 years old) and 

adults (Davidson, Amso, Anderson, & Diamond, 2006; Diamond, Barnett, Thomas, & Munro, 2007) 

and has been shown to have concurrent validity with other tasks measuring inhibitory skills (Brocki & 

Tillman, 2014). Task parameters and test procedure were the same as in the study of Brod, Bunge and 

Shing (2017). The task consisted of three blocks, each containing 20 trials, that increased in level of 

executive functioning needed to complete the task successfully. The first block was the congruent 

condition (and baseline condition), in which participants had to press a button at the side where the 

heart appeared on the screen. With the second block, the incongruent condition, inhibitory skills were 

assessed. A flower appeared on the screen and participants had to press a button at the opposite side 

relative to the location of the flower. The third block, the mixed condition, measured cognitive 

flexibility. Both hearts and flowers appeared, and participants had to switch between the heart rule and 

the flower rule.  

Another task that measured executive functions, and specifically their perseverative errors, was 

the Berg Card Sorting Test (BCST; Fox, Mueller, Gray, Raber, & Piper, 2013): an abbreviated, low-

cost, open-source version of the better-known Wisconsin Card Sorting Task. Participants had to match 

cards from a deck to 4 cards at the top of the screen, according to a rule they had to discover (for 

example, “sort on color”). This sorting rule changed over time (to, for example, “sort on shape”). With 

moderate intra-test and low inter-test correlations, the convergent and divergent validity were sufficient 

(Piper et al., 2015).The (test-retest) reliability of this task was judged to be intermediate (Pearson’s r = 

4.5, Spearman’s rho = 3.5; Piper et al., 2015).   

The experimental task was carried out individually. Participants were instructed to remember 

the correct answers for the final test. In the study phase, they predicted 30 numerical facts (prediction 

condition) and had to give an example for 30 numerical facts (example condition). Participants were 

instructed to remember the facts for the later memory test. During both study phases, eye tracking data 

was collected, which focused on pupil size changes in response to the correct answer. After the study 

phase, there was a short task of approximately one minute, to clear the participants’ short-term memory 

from any numerical facts. This was done with the de Digit Span Backward test (DSB; Wechsler, 2008) 

in which participants had to recall a series of numbers in the reversed order of how they were presented. 

This intermediate task was followed by the test phase. During both study and test phase, reaction time 

of the participants was measured. 
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Finally, participants were asked to fill out a questionnaire. They were asked to indicate the facts 

they had already known prior to the experiment, the condition they thought was the most educational, 

and the condition they experienced as more enjoyable (ranging from 1, clearly prediction, to 6, clearly 

example).  

 

Design 

A design was used that included both a within-subjects component (the generative learning 

strategies) consisting of two levels (the two conditions: generating predictions and generating examples) 

and a between-subjects component (age). Before the actual analyses started, it was investigated whether 

this study could produce the same results as Breitwieser and Brod (2020) – an interaction between 

condition and age on memory performance – using a slightly different analysis procedure. Memory 

performance was operationalized into proportion of answers correct on the final test.  Then, it was 

examined if there was an effect of the size of the prediction error in the study phase on memory 

performance. A prediction error was defined as any answer but the correct one in the prediction 

condition of the study phase. The size of the prediction error was measured using the distance between 

the incorrect prediction and the correct answer. Here, memory performance was operationalized as the 

difference between prediction error sizes of correct and incorrect items on the test.  

The second question was whether there were perseverative errors and if there was an effect of 

age and level of executive functioning on the number of perseverative errors. A difference was made 

between the number of corrected errors, i.e., facts that were predicted incorrectly, but answered 

correctly in the test phase, and the number of perseverative errors, i.e., facts that were predicted 

incorrectly during the study phase for which the exact same incorrect response was given during the 

test. Level of executive functioning was operationalized into inhibitory skills and cognitive flexibility, 

two variables that were in turn operationalized into reaction times on the different conditions of the 

HFT. A faster reaction time in the incongruent condition meant a higher level of inhibitory skills, and 

a faster reaction time in the mixed condition meant a higher level of cognitive flexibility. In addition, 

cognitive flexibility was also operationalized into the proportion of perseverative errors on the BCST, 

with lower proportions reflecting a higher flexibility.   

Lastly, it was investigated whether depth of processing in the study phase influenced memory 

performance (which is again about the difference between correct and incorrect items in the test phase), 

and if this differed by age. Depth of processing was operationalized into reaction times during the study 

phase, based on the study by Benjamin et al. (1998). 

 

Statistical analyses 

To replicate the findings of Breitwieser and Brod (2019), a repeated measures ANOVA was 

used. For the second research goal, the facts from the experimental task were categorized in ‘answered 

correctly’ and ‘answered incorrectly’ in the test phase. Prediction errors were analyzed in the prediction 
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condition only. The means of these categories were compared by using a repeated measures ANOVA 

as well. For the third research goal about perseverative errors and executive functioning, hierarchical 

linear regression analyses were carried out. For the fourth research goal regarding depth of processing, 

reaction times during the prediction and example condition were compared with a repeated measures 

ANOVA. 

 

 

 

Figure 1. Schematic overview of the study phase of the experimental task, in which participants had to generate a prediction about the value 

of X ( in this case, “X out of 10 animal species are insects”) or generate an example that was related to the unfinished fact. 

Note. Reprinted from “Cognitive prerequisites for generative learning: Why some learning strategies are more effective than others” by 

Breitwieser, J., and Brod, G. (in press), 2020, Child Development. 
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Results 

Data exploration  

Facts known prior to the experiment were deleted per participant. Also deleted were reaction 

times (RTs) of zero, that were found once or twice in three participants. One participant had thirty RTs 

of zero, which were all deleted. Contrary to Breitwieser and Brod (2019/2020), facts with no examples 

were not deleted from the data. The reason for that is that participants seemed to have thought of their 

answers before deciding not to give an example. The average RT for these facts was 12.12 seconds (SD 

= 7.06), which is significantly longer than the average RT of 6.74 seconds (SD = 2.22) for the facts 

where an example was given (t (22) = -4.225, p < 0.05, 95% CI [-9.06;-3.09]). Having thought of 

examples could still lead to a better memory for the facts in the test phase. In addition, the example 

condition was more similar to the prediction condition this way. After all, it is highly likely that the 

prediction condition also consisted of facts participants did not know anything about. Interestingly, an 

independent t test demonstrated that adults (M = 0.998, SD = 0.013)  and children (M = 0.925, SD = 

0.007) differed significantly in how many facts they left blank on average in the example condition (t 

(37.019) = -20.980, p < 0.001, 95% CI [-0.069;0.056]). 

Histograms and normality plots were inspected to gather insight in the distributions of the 

variables (for the descriptive statistics, see table 1.). Proportion of facts correct in the test phase was 

relatively normally distributed for both the prediction condition and the example condition from the 

study phase. Though when looking at the age groups separately, the distributions appeared to be more 

positively or negatively skewed. The distributions of RT were positively skewed, and this was also the 

case in both age groups. The same went for the distributions for prediction errors, perseverative errors 

and corrected errors (i.e., number and proportion of facts that were incorrect in the prediction condition 

of the study phase and correct in the test phase). However, these skewed distributions were not highly 

problematic since the repeated measures ANOVA is relative robust to violations of normality. 

 

Replication analyses 

Before performing the planned analyses, it was important to establish that the findings of 

Breitwieser and Brod (2020) could be replicated using a slightly different analysis method (i.e., repeated 

measures ANOVA instead of logistic/linear mixed-effects regression). A repeated measures ANOVA 

was carried out for the proportion of facts that were correct in the test phase and were learned previously 

in either the prediction condition or the example condition in the study phase. Condition was significant 

(F (1, 48) = 9.401, p = 0.004), meaning that there was a significantly higher proportion of correct facts 

in the test phase when those facts were learned in the prediction condition of the study phase, compared 

to facts learned in the example condition. Also, there was a main effect of age (F (1, 48) = 39.277, p < 

0.001), indicating that adults had a significantly higher proportion of correct facts in the test phase than 

children, for both conditions of the study phase. The interaction of age with condition was not 

significant (F (1, 48) = 2.186, p = 0.146). These results are not in line with those of Breitwieser and 
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Brod (2020), who found a significant interaction effect, i.e. a stronger effect for generating predictions 

than for generating examples in children compared to adults. Therefore, post-hoc analyses were carried 

out by looking at the age groups separately. The difference between the conditions was significant for 

children (F (1, 24) = 11.629, p = 0.002), but not for adults (F (1, 24) = 1.133, p = 0.298). So, although 

the age x condition interaction was not significant, there did seem to be a trend in which children 

benefited more from making predictions than adults. 

 To analyze this further, this study looked at the average absolute difference between test answer 

and true answer, for facts that were learned in either the prediction condition or the example condition. 

Repeated measures ANOVAs were carried out again; condition was significant (F (1, 48) = 25.642, p 

< 0.001), indicating that the difference between the test answer and the true answer was significantly 

smaller for facts learned in the prediction condition of the study phase, compared to the example 

condition. There was a main effect of age (F (1, 48) = 43.550, p < 0.001). This means that on average, 

adults had a significantly smaller difference between test answer and true answer in the test phase than 

children, for both conditions of the study phase. Lastly, the interaction between condition and age was 

significant as well (F (1, 48) = 4.842, p = 0.033; see figure 2). When analyzing the age groups separately, 

the average differences were significant for both children (F (1, 24) = 16.701, p < 0.001) and adults (F 

(1, 24) = 9.756, p = 0.005). Facts that were learned in the prediction condition thus resulted in less 

incorrect answers during the test phase, in comparison to facts learned in the example condition. For 

children, this difference was significantly larger than for adults. In conclusion, the previous analysis 

demonstrated that the prediction condition resulted in more correct facts in the test phase, whereas this 

second analysis found that the prediction condition resulted in less incorrect answers in the test phase. 

The difference is that the second analysis looked at the distance between the test answer and the correct 

answer. These results provided useful information for the following analysis about prediction errors. 
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Table 1 

Descriptive statistics of all variables except age 

 Children (n = 25) Adults (n = 25) 

 M SD M SD 

Replication analyses   

Test phase: correct (proportion) 

Prediction condition 

Example condition 

 

0.47 

0.36 

 

0.14 

0.17 

 

0.66 

0.62 

  

0.12 

0.16 

Test phase: Difference between 

test answer and true answer 

Prediction condition 

Example condition 

 

 

1.12 

1.68 

 

 

0.38 

0.80 

 

 

0.53 

0.75 

 

 

0.22 

0.36 

Additional analyses     

Study phase: Difference between 

prediction and true answer for 

test-correct 

 

 

0.52 

 

 

0.47 

 

 

1.16 

 

 

0.32 

Study phase: Difference between 

prediction and true answer for 

test-incorrect 

 

 

1.13 

 

 

0.41 

 

 

1.00 

 

 

0.37 

Proportion corrected errorsa  0.216 0.071 0.030 0.086 

Proportion perseverative errorsb  0.046 0.028 0.046 0.031 

Study phase: RT for test-correct 

(prediction) 

 

7.34 

 

1.80 

 

5.47 

 

0.94 

Study phase: RT for test-incorrect 

(prediction) 

 

7.69 

 

1.62 

 

5.92 

 

2.33 

Study phase: RT for test-correct 

(example) 

8.31 3.50 5.55 2.07 

Study phase: RT for test-incorrect 

(example) 

8.50 2.92 5.56 2.10 

BCST     

Proportion perseverative errors  0.146 0.037 0.102 0.018 

HFT     

RT incongruent block  543.23 92.70 367.10 81.11 

RT mixed block  784.84 151.10 554.79 107.93 

Note. a Proportion corrected errors is defined as the proportion of facts incorrect in the prediction condition and correct in test phase.  

b Proportion perseverative errors is defined as the proportion of facts with the same incorrect answer in both the prediction condition and the 

test phase. 
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Additional analyses 

 Prediction errors. As a result of the replication analyses, it was now known that facts learned 

in the prediction condition lead to more correct answers in the test phase than facts learned in the 

example condition. To test whether this was related to the size of the prediction error, another repeated 

measures ANOVA was performed. This analysis looked at the average absolute difference between the 

prediction and the true answer in the prediction condition, for facts that were either correct or incorrect 

in the test phase. Condition was significant (F (1, 48) = 11.925, p = 0.001; see figure 3), meaning that 

the facts answered correctly in the test phase were characterized by a larger difference between 

prediction and true answer in the study phase (compared to facts answered incorrectly in the test phase). 

Therefore, a larger prediction error seemed to lead to a better memory for the correct answer, which is 

in line with our hypotheses. There was also a main effect of age (F (1, 48) = 9.566, p = 0.033), indicating 

that adults had a significantly smaller difference between prediction and true answer in the study phase 

than children, for both correct and incorrect facts in the test phase. However, interaction with age was 

not significant (F (1, 48) = 1.980, p = 0.166), which suggests that children and adults did not 

significantly differ in how much they benefited from generating incorrect predictions. 
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Figure 2. Graph of participants’ performance in the test phase. The error bars represent standard errors of the 

means. This figure indicates that facts learned in the prediction condition resulted in fewer incorrect answers during 

the test phase, than facts learned in the example condition. For children, this difference was significantly larger 

than for adults (hence, there was an interaction effect). 
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Perseverative errors.  Next, it was investigated whether prediction errors from the study phase 

persevered in the test phase (i.e., remembering the incorrect prediction instead of the true answer on the 

final test), and if there was an effect of age and level of executive functioning on the number of 

perseverative errors. The average proportion of perseverative errors on the experimental task was very 

low (M = 0.05, SD = 0.293 for all participants).  

To see if age and the proportion of perseverative errors on the BCST were predictors of the 

proportion of corrected errors on the experimental task (i.e. facts that were answered incorrectly in the 

prediction condition of the study phase, but were answered correctly in the subsequent test phase), a 

hierarchical regression analysis was carried out. Age was significant (t = 3.426, p = 0.001, 95% CI 

[0.261;1.001]). When adding the executive function of cognitive flexibility (measured by the BCST as 

proportion of perseverative errors), age remained significant (t = 2.468, p = 0.017, 95% CI 

[0.097;0.953]). Proportion of perseverative errors on the BCST was not significant, however (t = -0.998, 

p = 0.323. 95% CI [-0.946;0.319]). As a result, the R squared change from 0.196 to 0.017 was not 

significant either (p = 0.323). 

Another hierarchical regression analysis was done with age and the two executive functions of 

inhibitory skills and cognitive flexibility (this time measured by the HFT), to see if age and level of 

executive functioning influenced the proportion of corrected errors (i.e., how much a person had 

learned) on the experimental task. When adding inhibitory skills and cognitive flexibility to the model 

with age, age did not remain significant (t = 1.879, p = 0.067, 95% CI [-0.034; 1.002]). Both executive 

functions were not significant either (t = -0.524, p = 0.603, 95% CI [-0.042; 0.025] for inhibitory skills, 
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Figure 3. Graph of participants’ performance in the test phase. The orange bar represents the difference between the 

prediction and the true answer in the study phase, for facts that were answered correctly in the test phase. The green 

bar represents the difference between the prediction and the true answer, for facts that were answered incorrectly in 

the test phase. Together, they indicate that facts answered correctly in the test phase, were characterized by a larger 

difference between the prediction and the correct answer in the prediction condition (i.e. a larger prediction error). 

This was the case for both age groups. 



21 

 

and t = -0.172, p = 0.865, 95% CI [-0.024; 0.021] for cognitive flexibility). The R squared change from 

0.196 to 0.012 was also not significant (p = 0.707). Interestingly, though, when looking at inhibitory 

skills and cognitive flexibility separately, both were significant predictors of the proportion of corrected 

errors (respectively t = -2.822, p = 0.007, 95% CI [-0.027;-0.005] and t = -2.520, p = 0.015, 95% CI [-

0.018;-0.002]). A plausible explanation is that the independent variables were highly correlated with 

each other (r = 0.785, p < 0.001). However, the VIF of 2.605 remained under 10 for both variables. 

When carrying out regression analyses with age and one of the executive functions, both remained 

insignificant (first analysis: t = 1.974, p = 0.054 for age and t = -0.827, p = 0.412 for inhibitory skills; 

second analysis: t = 2.266, p = 0.028 for age and t = 0.657, p = 0.515 for cognitive flexibility). Another 

explanation is that both inhibitory skills and cognitive flexibility were highly correlated with age 

(respectively r = 0.672, p < 0.001 and r = 0.620, p < 0.001). Still, the VIFs remained under 10 (3.047 

for age and inhibitory skills, and 2.715 for age and cognitive flexibility). Furthermore, since age was 

significant or almost significant in both analyses, it seems that this mostly explained the variance in the 

proportion of corrected errors on the experimental task. 

Subsequently, it was investigated whether age and level of executive functioning could predict 

the proportion of perseverative errors on the experimental task. First, a hierarchical linear regression 

analysis looked at the question whether age and cognitive flexibility (measured by the proportion of 

perseverative errors on the BCST) could predict the proportion of perseverative errors on the 

experimental task. Age was not a significant predictor (t = -0.187, p = 0.852, 95% CI [-0.122; -0.147]). 

When adding proportion of perseverative errors on the BCST as a predictor to this model, the results 

remained insignificant (for age, t = 0.203, p = 0.840, 95% CI [-0.141;0.173]; for proportion of 

perseverative errors on the BCST, t = 0.086, p = 0.932, 95% CI [-0.222; 0.242]). Logically, the R 

squared change from 0.001 to 0.000 was insignificant as well (p = 0.932). In a second hierarchical 

regression analysis, inhibitory skills and cognitive flexibility (as measured by the HFT) were added to 

the model with age as a predictor of the proportion of perseverative errors on the experimental task. 

Age remained insignificant (t = 0.699, p = 0.488, 95% CI [-0.123; 0.253]). Inhibitory skills and 

cognitive flexibility were not significant either (respectively t = 0.743, p = 0.461, 95% CI [-0.008;0.017] 

and t = -0.091, p = 0.928, 95% CI [-0.009;0.008]). The R squared change from 0.001 to 0.017 was also 

not significant (p = 0.674). Therefore, according to these analyses, it seems that neither executive 

functions nor age had a significant influence on the proportion of perseverative errors a person made in 

the test phase of the experimental task.  Interestingly, however, age was a significant predictor of the 

proportion of perseverative errors on the BCST (t = -3.997, p < 0.001, 95% CI [-0.508; -0.168]), with a 

higher age relating to fewer perseverative errors. It was also a significant predictor of inhibitory skills 

and cognitive flexibility on the HFT (respectively t = -6.280, p <0.001, 95% CI [-17.393;-8.957] and: t 

= 5.417, p < 0.001, 95% CI [-23.392; -10.819]), with a higher age relating to faster RTs.   

Depth of processing. To examine whether it is more likely that participants recall the correct 

answer in the test phase when it takes them longer to predict this answer in the study phase (meaning 
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their depth of processing is larger), a repeated measures ANOVA was carried out. First, it looked at the 

average RT in the prediction condition of the study phase for the facts that were correct or incorrect in 

the test phase. RT was significantly longer for facts that were incorrect during the test phase than for 

facts that were correct during the test phase (F (1, 48) = 6.634, p = 0.015). In addition, there was a main 

effect of age (F (1, 48) = 11.425, p = 0.003): adults had faster RTs than children. However, there was 

no significant interaction with age (F (1, 48) = 0.084, p = 0.773). Subsequently, the analysis looked at 

the average RT in the example condition of the study phase for facts that were correct or incorrect in 

the test phase. A repeated measures ANOVA demonstrated that there was no significant effect of RT 

on number of facts correct (F (1,48) = 0.115, p = 0.736). Still, there was a main effect of age (F (1, 48) 

= 16.328, p < 0.001), with – again – adults having faster RTs than children. Yet, the interaction with 

age was not significant (F (1,48) = 0.096, p = 0.758). So, for generating examples, depth of processing 

in the study phase did not seem to influence memory performance in the study phase. 

Transformation of variables. To check whether the findings did not result from the non-

normal distributions of the variables, logistic transformations were carried out. These transformations 

yielded no different results. 

 

Discussion 

Recently a report from the Inspectorate of Education (2020) was released, identifying features of 

constructivism as contributing to the strength of schools. This study sought to investigate the underlying 

mechanisms of two constructivism based GLS, prediction generation and example generation, thereby 

contributing to the debate about the most effective kind of instruction. In order to do so, this study used 

data from Breitwieser and Brod (2020), who found an interaction effect between age and GLS. 

Prediction generation was more beneficial than example generation for primary school children, 

whereas both GLS were equally effective in adults. The current study examined whether memory 

performance on the final test was affected by prediction error size (as indicated by the difference 

between the predicted answer and the true answer) and depth of processing (as indicated by the RT) in 

the study phase, and if this differed by age. In addition, it investigated whether there was an effect of 

age and level of executive functioning on the number of perseverative errors. 

 

Conclusion and discussion of results 

 Replication analyses. Surprisingly, this study did not find the interaction between condition 

and age that Breitwieser and Brod (2020) found when looking at the proportion of correct facts, even 

though the same data set was used. There was a main effect of condition, but no interaction with age, 

meaning that generating predictions was more beneficial in both children and adults. Still, post-hoc 

analyses revealed that the benefits of generating predictions were significant in children but not in 

adults. In addition, a second analysis did find a significant interaction, now looking at the average 

absolute difference between test answer and true answer. Both age and condition were significant as 



23 

 

well. This means that children seem to benefit relatively more from prediction generation, compared to 

example generation, than adults. 

An explanation for why the initial results differed from Breitwieser and Brod (2020) is that the 

current study used a repeated measures ANOVA for the analyses, whereas they used a logistic mixed-

effects model. The latter is more sensitive and therefore could detect the differences between adults and 

children more easily. Another difference is that in this study, it was decided to leave the facts with no 

given example in the dataset, whereas Breitwieser and Brod (2020) deleted them. Since children and 

adults significantly varied in how many facts they left blank in the example condition, this could have 

lead to different results. 

 Prediction errors. Conform the hypothesis, the current study found a larger difference between 

prediction and true answer in the study phase, for facts that were answered correctly in the test phase. 

In other words, a larger prediction error seemed to stimulate memory. There was no interaction with 

age, suggesting that both groups benefited more from larger prediction errors. All in all, prediction 

errors seem to lead to a better memory; something that is in line with previous literature (Breitwieser & 

Brod, 2020; Brod et al., 2018; Henson & Gagnepain, 2010; Huelser & Metcalfe, 2012; Potts, Davies, 

& Shanks, 2019; Potts & Shanks, 2014). Apparently, memory systems – most likely the MTL with the 

hippocampus, and the striatum – are triggered by prediction errors, therefore remembering more than 

when learning in a passive situation. The reason for why larger prediction errors lead to greater memory 

effects than smaller prediction errors, could be that larger prediction errors cause a larger surprise 

response. After all, the given prediction was far more different than the correct answer. The surprise 

response, in turn, is known to trigger memory systems, with a stronger response leading to greater 

learning effects (Brod et al., 2018). Future neuroscientific research could investigate how exactly the 

different memory networks of the MTL and the striatum play a role when making a prediction error, 

and how they respond to a large prediction error compared to a small one. 

It is important to note that there is a difference between the prediction error as this study 

measured it, and the physiological prediction error as described by Henson and Gagnepain (2010). 

Whereas this study defined the prediction error as the distance between the incorrect answer and the 

true answer, Henson and Gagnepain (2010) operationalized it as the difference between top-down 

predictions from, for example, the hippocampus, and bottom-up sensory input. For future research, it is 

interesting to investigate whether this neural prediction error and the behavioral prediction error as 

measured in this study, are comparable.  

Perseverative errors. With respect to perseverative errors, the current study found a relatively 

small amount of perseverative errors, and quite a large amount of corrected errors. As discussed, 

frequently heard criticism on prediction generation – or constructivist learning in general – is that 

children will remember their incorrect guess instead of the correct answer. This study demonstrates the 

opposite: children more often corrected their initial incorrect guess, than that they kept making the same 

mistake.  
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It was hypothesized that participants with lower levels of executive functioning would make 

more perseverative errors and fewer corrected errors than persons with higher levels. This effect was 

not found for the experimental task. It was also hypothesized that children would make more 

perseverative errors than adults, because their executive functions had not fully developed yet. Age was 

a significant predictor of the proportion of perseverative errors on the BCST, and it also significantly 

predicted the level of inhibitory skills and cognitive flexibility. Yet, age was not a significant predictor 

of the proportion of perseverative errors on the experimental task.  

Regarding corrected errors, on the other hand, age was a significant predictor: the higher age, 

the higher the proportion of corrected errors on the experimental task. Consequently, it was also found 

that inhibitory skills and cognitive flexibility had a significant effect on the proportion of corrected 

errors, with lower levels of these executive functions leading to fewer corrected errors on the 

experimental task.  Be that as it may, when inhibitory skills and cognitive flexibility were put together 

in one model, neither was a significant predictor for the proportion of corrected errors on the 

experimental task. This did not seem to be due to the great overlap between the two predictors, so the 

reason for these results remains an issue for further research.  

Depth of processing. It was hypothesized that memory performance on the final test would 

improve when RTs in the study phase were longer. The results demonstrated the opposite: facts that 

were incorrect in the test phase were characterized by a significantly longer RT in the prediction 

condition of the study phase. When looking at RTs in the example condition of the study phase, there 

was no significant correlation with final test performance.  

These results are not in line with Benjamin et al. (1998), who found that participants with a 

longer RT remembered more facts correctly than participants with a shorter RT. One factor that could 

play a role in these differences is that Benjamin et al. (1998) used a free-recall task, whereas this study 

asked participants to remember every answer to every fact. That means the current participants had a 

higher chance of answering a question incorrectly in the test phase, since they needed to answer all the 

facts; even the facts they did not remember anymore. Participants from Benjamin et al. (1998) only 

needed to answer the facts they – correctly or incorrectly – remembered.  It is possible they mostly 

remembered the facts they had thought about for a longer time, but that does not imply that the facts 

they did not remember (i.e. the facts with a shorter RT), were answered incorrectly. In addition, 

Benjamin et al. (1998) used a between-subjects design, looking at participants with a short or long RT, 

whereas this study had a within-subjects design, looking at individual facts with a short or long RT. 

Lastly, an explanation could be that a deeper processing (i.e. a longer RT) did not lead to more incorrect 

answers, but that a deeper processing still took place, despite more incorrect answers. After all, it is 

quite likely that the facts participants thought about for a longer time, were also less familiar. After a 

deep processing of this fact, the possibility of an incorrect answer would still be high. 

The results of the current study partly correspond with the study of Huelser and Metcalfe 

(2012), who used a classic generation model with three conditions: read-short (study cue and target for 
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5 seconds), read-long (study cue and target for 10 seconds) and error-generation (generate a response 

before receiving the true answer). After this study condition, there was a final test. Results were that for 

all conditions, RTs for correct responses were shorter than RTs for incorrect responses on the final test. 

In their second experiment, they found the same results specifically for the items that were learned in 

the error-generation condition (Huelser & Metcalfe, 2012). One must keep in mind, however, that this 

study did not look at RTs during the test phase, but at RTs during the study phase. Still, the study of 

Huelser and Metcalfe (2012) underlines the possibility of a shorter RT leading to a correct response. 

 

Limitations 

There are some factors that have not been measured in this study but are likely to have an effect 

on the process of generating predictions. First of all, when predicting numerical facts, it could make a 

difference whether somebody is able to generate numerical predictions. In other words, the level of 

‘number sense’ somebody possesses could influence the quality of the predictions and the amount of 

learning that takes place. Number sense is defined in many ways (Berch, 2005), one of the more broader 

definitions being “the ability to use numbers and quantitative methods as a means of communicating, 

processing and interpreting information” (McIntosh, Reys, & Reys, 1992). Estimation is one aspect of 

number sense and was found to be influenced by the ability to use number relations and understand the 

relative sizes of large numbers (Pike & Forrester, 1997). Although estimation and prediction are not the 

same, their processes of guessing a certain number seem alike. Therefore, it is possible that number 

sense affects the generation of numerical predictions. To expand our understanding about the effect of 

generating predictions on learning, future research should look into the effects of number sense. 

 Working memory also could have had an influence on the results. As is known, working 

memory holds information in mind for a short period of time. It is, as Morrison and Chein (2011) 

describe, a “flexible, capacity limited, mental workspace that is used to store and process information 

in the service of ongoing cognition” (p. 47). Participants’ different working memory capacities could 

have influenced the degree to which participants succeeded in comparing their own prediction with the 

true answer. After all, Kirschner et al. (2006) argue that constructivist learning poses a load that is too 

heavy on children’s working memory. Future research should investigate whether this is the case. 

 In addition, Breitwieser and Brod (2020) mentioned a few limitations of their research that are 

relevant for the current study, too. First, there was no control condition, meaning that the measurements 

could not be compared with a baseline performance of participants not being stimulated to use certain 

learning strategies. Therefore, one could question whether learning from prediction or example 

generation is more effective than baseline performance. However, Breitwieser and Brod (2020) explain 

why they explicitly decided to not incorporate a control condition: it would be too difficult to compare 

baseline performances between the age groups, since adults – or university students – are more likely 

to use GLS without being prompted to (Justice & Weaver-McDougall, 1989). Children, on the other 

hand, are not expected to use these GLS spontaneously, and are characterized by large inter-individual 
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differences (Bjorklund, 2010). Second, Breitwieser and Brod (2020) mention that the sample size was 

limited; large enough for studying the age x condition interaction, but too small for reliable between-

subject analyses like the regression analyses regarding executive functions. Their study and the current 

replication can be seen as exploratory analyses that pave the way for further research into the different 

age-related mechanisms. A final limitation is that the long-term effects of prediction and example 

generation were not investigated (Brod & Breitwieser, 2020). Consequently, is also not known whether 

prediction errors persevere in the long term. Metcalfe and Miele (2014) stated that high-confidence 

errors persevered more often when they were not tested immediately after participants realized their 

answer was wrong. In other words: participants reverted more often to their incorrect prediction (made 

with high confidence) as the time gap between their initial answer with corrective feedback (i.e. the 

study phase) and the final test (i.e. the test phase) became larger. This study did not test the prediction 

error immediately after participants realized they gave a wrong answer; instead, a next fact was 

presented. Still, the final test was a relatively quick follow-up of the study phase. Perhaps, when the test 

would have been delayed for a longer period, high-confidence errors would have persevered after all.  

 

Implications and future directions 

The present study adds a new perspective to the debate that centres around the question which 

kind of instruction is the most appropriate for children in primary school. It gives evidence for the 

benefits of some aspects of constructivist learning, by indicating that generating information from one’s 

own mind is an effective learning strategy. Specifically, generating incorrect predictions and receiving 

corrective feedback on them seems to be beneficial for children’s learning. In fact, it did not seem to 

lead to perseverative errors, something that is often mentioned as criticism on constructivist learning. 

This could indicate that the best instruction includes segments from both constructivist learning 

(generating predictions) and direct instruction (receiving corrective feedback).  

 Furthermore, the current study provides new, useful insights for future brain research. Since it 

has found new evidence for the effectiveness of prediction errors in children, it would be interesting to 

investigate what happens in their brains when generating predictions, and if and in which way this 

differs from adults. It is conceivable that children’s brain activity regarding prediction errors differs 

from adults’ activity, since the connection between the striatum and the prefrontal cortex has not yet 

fully matured in children (Decker et al., 2015). This would mean that when making predictions and the 

accessory errors, the striatum of children would be more active without the prefrontal cortex being 

involved, whereas in adults, the prefrontal cortex would be actively controlling the striatum. 

Understanding these underlying neural mechanisms of prediction generation in children makes it 

possible to tie the educational instruction more appropriately to their needs. 

 Another direction for future brain research could be the question whether the behavioral and 

the neural prediction error are related. It is plausible that in some situations, they differ; for example, 

the behavioral prediction error could be quite large (i.e. there is large distance between the prediction 
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and the correct answer), while at the same time, the neural prediction error could be much smaller, 

because participants did not know anything about the subject so they randomly guessed something. 

Random guessing could lead to a smaller neural prediction error, because there was no expectation 

about the possible answer. The striatum responds to prediction errors in terms of whether the outcome 

was better or worse than expected (Van den Bos et al., 2012). When there are hardly any expectations, 

the subsequent striatal reward signals could be much smaller. In addition, one might ask whether 

participants would even remember their randomly guessed answer long enough to compare it to the 

correct answer. Working memory has to select information in order to maintain effective, and in doing 

so it is influenced by stimulus salience and reward expectations (Klink, Jeurissen, Theeuwes, Denys, & 

Roelfsema, 2017). During random guessing, presumably neither stimulus salience nor reward 

expectations are high. As a consequence, the neural prediction error will probably not be high either. In 

conclusion, future brain research should investigate this specific prediction error in relation to the 

behavioral prediction error. 

 Finally, it is important to note that this study does not implicate that generating predictions is 

the best way of learning. Fiorella and Mayer (2016) sum up more GLS than prediction (and example) 

generation alone, that should be investigated before such a claim could be made. Still, there are already 

successful curricula that implement prediction generation with receiving corrective feedback in physics 

(Champagne, Klopfer, & Anderson, 1980; Gunstone & White, 1981; Liew & Treagust, 1995). In 

addition, there is an interactive computer program that uses predictions with corrective feedback to 

teach students about genetics (Tsui & Treagust, 2003). The current study could stimulate the 

implementation of the prediction-feedback cycle in more areas, and specifically in subjects relevant for 

primary school. Since prediction has already been proven to be successful in geography (Brod et al., 

2018) and trivia fact learning (Brod & Breitwieser, 2019), here lay opportunities to incorporate 

generating predictions in the instruction. However, it remains a question in which subjects generating 

predictions is effective in children. The studies of Brod et al. (2018) and Brod and Breitwieser (2019) 

were done with adults and although the present study was done with children, it did not teach them a 

specific subject. Therefore, future research should focus on the effects of prediction generation in more 

specific subjects of primary school. 

 

Conclusion 

 In conclusion, the current study demonstrates the effectiveness of generating predictions in 

primary school children. Breitwieser and Brod (2020) found that generating predictions was more 

effective than generating examples in children, whereas both were equally effective in adults. This study 

found a similar trend: generating predictions lead to more correct answers on the final test than 

generating examples, and this effect was significantly stronger in children than in adults. In addition, 

this study discovered a possible reason for this effect: generating predictions involves making prediction 

errors, and these seem beneficial for learning. That is, a larger prediction error was related to a better 
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memory for the correct answer. These results provide exciting opportunities for education and research 

in the future. 
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