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Abstract

Characterizing quantum states is a central, yet involved, task in quantum
information processing. In experiments, the unknown quantum state of

interest must be prepared and measured multiple times to learn its
properties. Unfortunately, a full tomographic description is prohibitive

by the exponential scaling of the quantum state description with the
system size. In practice, only a few quantities are of interest for which

protocols involving informationally incomplete measurements are
preferable. After studying existing data acquisition protocols, we discuss
classical shadow estimation, a particular experimentally feasible method

for estimating many system properties. We extend the applicability to
quantum many-body systems with higher dimensional subspaces and
derive similar performance guarantees to the qubit case. Ultimately we

implement the generalized protocol in a modular and economic
numerical framework and demonstrate the accuracy along with the

favourable scaling of classical shadow estimation in unbiased numerical
experiments. In particular, we suggest and discuss the near-term

application to 4-photon OAM entangled systems.
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Chapter 1
Quantum state tomography: an
introduction

Classical computers and networks started increasingly to transform the
way we live since the beginning of the information age in the mid 20th cen-
tury. Following up the technology of the classical information age, quan-
tum technology is starting to become available. Although some milestones
- like quantum supremacy in 2019 [1] - have been achieved, large-scale
quantum devices are still far from accessible. To build up towards such
systems, first the fundamental noisy behaviour of existing intermediate-
scale quantum (NISQ) devices has to be overcome. For large-scale devices
we then can apply quantum-error-correction which is not possible for such
NISQ devices. [2]

The task of identifying, characterizing and reconstructing quantum states
has become essential for bringing these developments forward. This pro-
cess we call: Quantum State Tomography (QST). [3] Predicting which val-
ues qubits (quantum bits) take at the output of a quantum computer, is
just one simple example of possible applications. The processing of qubits
requires new kind of circuits with well-defined quantum gates that can
manipulate qubits reliably. To check the way whole quantum circuits or
individual gates work on qubits, we can send in known quantum states
and measure the states that leave at the output. By comparison with the
desired transformation, we can optimize our circuit designs. We thus also
need QST for this so-called standard quantum process tomography.[4].
For calibrating quantum measurement devices, we can even characterize
the unknown applied quantum measurements completely from the mea-
surement outcomes.
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2 Quantum state tomography: an introduction

These also relate to one of the currently most promising applications of
NISQ devices: Variational Quantum Eigensolvers. Such an Eigensolver
could be useful for studying and designing complex molecules in fields
like material science, chemistry and pharmaceutical research. [2] [5] [6].
The role of quantum state tomography is to identify eigenstates of atoms
and molecules and subsequently their corresponding energy spectrum.
Modelling and engineering of bandstructures and other microscopic molec-
ular properties, for example, can then be improved in both the efficiency
in application and synthetisation of such molecules.

Beside the broad relevance for quantum computers and quantum informa-
tion in general, there are also numerous more fundamental applications.
The basic task of determining the output of an (unknown) source of quan-
tum particles, for example. Similarly, in quantum optics research QST is
widely used in the characterization of optical signals. [7]

There is, however, a fundamental problem associated to the task of quan-
tum state tomography. Through the exponential scaling of possible quan-
tum state configurations with the number of system constituents and the
restriction that no direct copy of an unknown quantum system can be
made [8], the amount of resources required to achieve the task scales expo-
nentially as well if the system size is increased. In the context of quantum
computers, this means that by an increase of the number of fundamental
information storage and processing units, qubits, the number of required
identical copies of the qubit register must increase exponentially to com-
pletely characterize it using quantum state tomography. Practically, to cre-
ate each copy without cloning the register, this implies complete recalcu-
lation of the qubit register that is to be read out. With exponentially many
required copies, this would take an exponential amount of time which in-
terferes with the idea of an exponential speed-up of quantum computers
over classical devices. On the other hand, calculating all copies in parallel
would need an exponential amount of material resources.

The aim of this thesis is to illustrate the power of choosing, scheduling,
executing and processing measurements wisely to characterize a quantum
system to a maximum with minimal resources and effort. Doing this re-
quires us to drop the requirement of describing the quantum state of the
system fully and focus on the characterization based on its most relevant
properties. This task has been named shadow tomography. [9] This offsets
itself from existing solutions for this task by adapting existing protocols
to specific systems to gain maximum efficiency but also flexibility. In par-
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1.1 Fundamental concepts 3

ticular the system of spatially entangled photon pairs is considered that is
mostly promising in its application to information processing applications
like quantum networks. [2] [10] [11]

1.1 Fundamental concepts

Before we can introduce a more exact description of the problem asso-
ciated with quantum state tomography, we first need to introduce some
basic concepts from quantum mechanics and mathematical preliminaries.
Both the conventional notation and definitions will be given and can be
found in various textbooks like [8] and lecture notes on Quantum Compu-
tation and Quantum Information Theory, e.g. [12], [13].

1.1.1 State-vectors

To understand how to measure and interpret quantum states, we need to
present the notation and formalism to represent a state of any quantum
system in a unique way.
A quantum state is typically represented with a so-called state-vector in
state-space. It is used to determine probability distributions for present
and future behaviour of a quantum system. The complex vector space of
state vectors is a Hilbert space denotedH.

Definition 1.1.1 (State-vector). For an arbitrary Hilbert spaceH, any |ψ〉 ∈ H
such that |||ψ〉|| = 1 is called a state-vector. The subset of vectors satisfying
this condition is denoted S(H)

Here the norm, whenever not stated explicitly, refers to the standard 2-
norm. Similarly it is useful to introduce a norm || · ||∞ := Tr (·)2 on the op-
erator space L(H) of state-space H called Hilbert-Schmidt norm (or simply
operator norm). It arises specifically from the notion of an inner-product on
L(H), the Hilbert-Schmidt innerproduct: Given P, Q ∈ L(H) and their cor-
responding ket-vector representations |P〉, |Q〉 we define 〈P, Q〉 = 〈P||Q〉 :=
Tr P†Q. The ket-vector representation is defined through an isomorphism
L(H)→ H⊗H : P 7→ |P〉. More specifically this is the map |i〉〈j| 7→ |i〉|j〉
for an orthonormal basis {|i〉}i∈{1,dim(H)} of H, which defines the opera-
tions complete. It is a convenient way to write operators in a similar way
as quantum states, especially if more operators are involved.

The vector notation that we used is bra-ket notation in which a ket |ψ〉 ∈ H
is represented as a column vector in state-space. A bra 〈ψ| ∈ H is the
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4 Quantum state tomography: an introduction

complex conjugate, which is an element of the dual space of the original
state-space. Short notations like the inner-product 〈|ψ〉, |φ〉〉 = 〈ψ|φ〉 and
the outer-product |ψ〉〈φ| will be used throughout.
With regard to quantum computation and information one often works
more specifically in states of objects that can only be in two distinguish-
able (i.e. orthogonal) states. Like the bit in classical computation, repre-
sented by digits 0 and 1, we label for quantum computation the two states
with the orthonormal state-vectors |0〉 and |1〉 respectively. However, in a
quantum system the state can take any superposition of these two as well.
Such a 2-state quantum-system is called a qubit. The Hilbert space of such
a simple system is then taken as H = C2 and the orthonormal set of state
vectors {|0〉, |1〉} forms a basis for H called the computational basis. Any
quantum superposition can then be written: |ψ〉 = a|0〉+ b|1〉. Note that
for being a state-vector, the condition |a|2 + |b|2 = 1 must always be satis-
fied. This is equivalent to the statement for conservation of probability.
In this context, we also introduce another regularly used basis for qubits
called the Hadamard basis (or Pauli-X-basis) which is the set

{|+〉 =
1
√

2
(|0〉+ |1〉), |−〉 =

1
√

2
(|0〉 − |1〉)}

While we by convention (from the theory of spinors) label the com-
putational basis states |0〉, |1〉 as the two levels along the Z-direction in a
three dimensional system, we often choose the Hadamard basis as natu-
ral basis states along the X-direction and yet another (Pauli-Y) basis along
the Y-direction. This encodes the incompatibility of the distinct directions
in determining the two-level state: From the perspective of Pauli-X-basis
states |+〉,|−〉, we see that the norm of projections on |0〉 and |1〉 are equal.
i.e. from a deterministic state in the Pauli-X-basis, the superposition has
no preferred state in the Z direction. The same holds for the Pauli-Y-basis
and vice versa.
These collections of bases are called mutually unbiased bases (MUBs), that
is a set of orthogonal bases with constant mutual inner product (up to a
phase). Let p be a prime and 0 < α ∈ Z+. For d = pα dimensional state-
spaces, d + 1 MUBs do then exist (up to a unitary transformation of each
basis).[14] The set of computational basis, Pauli-X basis and Pauli-Y-basis
is therefore complete for single qubits (d = 2). For arbitrary d the number
of MUBs is still an open question. [15]

A very convenient way to illustrate state vectors for single qubits is the
Bloch sphere. This unit sphere in the complex state-space has poles labelled
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1.1 Fundamental concepts 5

Figure 1.1: [16] Bloch sphere for a single qubit system. On the poles are, by con-
vention, the two computational basis vectors, while on the equator the Hadamard
and Pauli-Y basis are denoted.

by the two computational basis states and along the equator the two re-
maining MUBs are distributed. (see figure 1.1) This picture allows to as-
sociate a single point on the sphere to a unique superposition. For higher
state-space dimensions this intuitive picture vanishes since the shape does
no longer correspond to an intuitive geometric shape.

Finally, within the state-vector formalism, the equivalence of states
with different phase must be mentioned. That is, a state |ψ〉 will be called
equivalent with eiθ|ψ〉 for any real phase angle θ. This can be seen by noting
that physical measurements only yield real values and expectation values
involve the inner product with an Hermitian (measurement) operator Â,
therefore: 〈(|ψ〉eiθ)|Â|(|ψ〉eiθ)〉 = eiθe−iθ(〈ψ|Â|ψ〉) = (〈ψ|Â|ψ〉). This is
exactly the expectation of |ψ〉 and thus no experimental distinction can be
made between the two states. This idea is equivalent to representing the
states as a point on the Bloch sphere and rotating all states by a certain
phase θ (i.e. rotating the whole sphere). The rotation does not change the
sphere, and the distribution of points on it, at all. Therefore the physical
picture of the system is invariant under the global rotation i.e. the physical
state is the same.

For multiple distinguishable qubits or quantum subsystems one can eas-
ily extend the concept of a state vector by taking the tensor product of the
state vectors of each qubit or subsystem: |ψ〉AB = |ψ〉A

⊗ |ψ〉B. Vice versa,

5



6 Quantum state tomography: an introduction

however, not every state of a multipartite system can be written as a tensor
product. Entangled qubits are an important example. Descriptions for in-
dividual subsystems can still be obtained but, as the term entanglement
suggests, those separate descriptions do not give us very much informa-
tion as long as they are not considered together. Just like a cookbook with
ingredients and directions printed on different pages. Considering a sin-
gle page does not make much sense.

1.1.2 Density Operator

The state-vector formalism becomes, however, inconvenient when describ-
ing mixed states. That are states that incorporate also classical information,
or, more precisely, classical uncertainty. There is then no fundamental,
unavoidable uncertainty (like for superpositions), but the uncertainty is
rather an artefact of incomplete knowledge of the observer about which
quantum state a system is in. Even stronger, if two or more subsystems
are entangled we have no clear way anymore to write it in terms of state
vectors and the formalism becomes obsolete.

For making the notation consistent for systems with both classical and
quantum information, for removing confusion of equivalent states and for
handling composite and entangled quantum systems easily, we can alter-
natively describe a state with density operators:

Definition 1.1.2 (Density operator/matrix). A density operator/matrix is an
operator ρ ∈ L(H) on an arbitrary Hilbert space H if it is semi-positive-definite
(ρ ≥ 0) and Tr ρ = 1. The set of Density operators is denoted D(H).

Also density matrices can be extended to multiple systems or qubits
by taking the tensor product of the separate density matrices, i.e. yielding
density matrices ρHH′ ∈ D(H

⊗H′). The subscript labels the involved
subsystems.

Equally to compositing subsystems to a larger system, systems can be
traced out to yield the description of the state in a smaller subsystem. For
this we introduce the partial trace:

Definition 1.1.3 (Partial Trace). Consider Hilbert spaces H,H′. The partial
trace , denoted TrH (·), with respect to subsystem H of a density matrix ρHH′ ∈
D(H⊗H′) is the superoperator

TrH (·) := Tr (·)
⊗

IH′ : L(H)
⊗
L(H′) 7→ L(H′)

6



1.1 Fundamental concepts 7

With IH′ : L(H′) 7→ L(H′) the identity operator on the operator space ofH′.

So the reduced density operator of subsystemH′ is ρH′ = TrH (ρHH′).

If the rank rank(ρ) = 1 then the density operator is called pure. Any
state-vector |ψ〉 ∈ S(H) can be mapped to such a pure density opera-
tor |ψ〉〈ψ| ∈ D(H). This formalism directly accounts for the global phase
invariance, as mentioned for state vectors.

Describing now any quantum state, including classical information in form
of probabilities Pi, for a pure state |ψi〉〈ψi| is as easy as taking the ex-
pectation values of the density operators ∑i Pi|ψi〉〈ψi| ∈ D(H). For the
set {|ψi〉}i∈{1,...,dim(H)} forming an orthonormal basis of H, this is just the
usual spectral decomposition of an density operator of a (mixed) state. So
any state that is not necessarily pure. From the superposition we can also
extract the trace condition for density operators of single qubits:

Tr (ρ) = Tr
dim(H)

∑
i=1

Pi|ψi〉〈ψi|) =
dim(H)

∑
i=1

Pi Tr |ψi〉〈ψi|) =
dim(H)

∑
i=1

Pi〈ψi|ψi〉 =
dim(H)

∑
i=1

Pi := 1

. The last equality follows from {Pi}i being a complete set of probabilities.

In the picture of the Bloch sphere, a mixed state can be represented by
a unique point inside the sphere. In fact, the center of the sphere corre-
sponds to the maximally mixed state in which indeed the state is com-
pletely random. Pure states reside on the surface sphere and their convex
hull generate the mixed states. This generalizes naturally to the more com-
plex shapes for higher-dimensional state-spaces.[17] [18]

Finally, unifying the descriptions of pure states as state vectors and mixed
states as density matrices, we remark that any mixed state ρ ∈ D(H) can
be obtained from a pure state in a composite system |ψ〉〈ψ| ∈ D(H⊗H′)
by tracing out all subsystems but H: ρH = TrH′ (|ψ〉〈ψ|) . Such a pure
state, known as a purification of the mixed state, is only unique up to uni-
tary operation on the ancillary system H′ to H. Therefore many purifica-
tions can be found.

1.1.3 Measurements

Measurements are central as a tool to determine certain properties of a
quantum system. It is one of the essential aims in this thesis to find out

7



8 Quantum state tomography: an introduction

which measurements to make and how to carry out measurements such
that the quantum state (or its properties) can be recovered efficiently.
For the sake of completeness, first the definition for a general measure-
ment will be given:

Definition 1.1.4 (Measurement). A measurement is specified by a set of oper-
ators (called measurement operators) {Mi} such that ∑i M†

i Mi = I (the state
must be completely within these possible outcomes i) with i ∈ I and I a non-
empty finite set of possible measurement outcomes.
The following results can be extracted from the measurement operators and a
quantum state described by density operator ρ:

• The probability for measuring outcome i is: Pi = Tr M†
i Miρ. Where Pi ≥ 0

is a valid probability since M†
i Mi ≥ 0

• If an outcome i is obtained from a measurement with Pi 6= 0, the quantum

state collapses to the post-measurement state:
1
√

Pi
(MiρM†

i )

Note that when we say "operator" in the context of measurements on
density operators, we actually refer to superoperators. So elements of
L(L(H)). However, this measurement framework can also be applied
one-to-one in the state-vector formalism and therefore the form of the op-
erators is the same. We will use these terms here interchangeably.

That a state collapses to a (different) post-measurement state with a given
probability when a measurement is applied, is the basis of the problem
in state tomography. The probabilistic nature of quantum mechanics re-
quires multiple measurements to fully estimate a quantum state, but each
measurement must be applied to an own copy of the state since, generally,
the measurement changes the state.
The most relevant kind of general measurements is that of POVMs:

Definition 1.1.5 (POVM). A positive operator-valued measure (POVM) is a
measurement with a finite set of operators Ei that statisfy ∑i Ei = I and Ei ≥ 0
for all i out of a non-empty finite set. (In definition 1.1.4 identify Mi =

√
Ei, for

example).
The probability of measurement outcome i is then Pi = Tr Eiρ

POVMs are of interest because they are able to describe most practi-
cally realistic measurements. However, one disadvantage of POVMs in
some situations might be that the post-measurement state can not be de-
termined within this measurement framework, as the operators Ei define

8



1.1 Fundamental concepts 9

no unique operators Mi (=
√

Ei) in definition 1.1.4. Applying any uni-
tary Ui to the Mi’s yield different measurement operators with the same
underlying POVM Ei: e.g. for measurement Mi = Ui

√
Ei we see that its

POVM consist of M†
iMi =

√
EiU†

i Ui
√

Ei =
√

Ei I
√

Ei = Ei. Therefore the
corresponding measurement operators to a POVM are fixed by the exact
way of implementation of the measurements.

Often it is sufficient and easier to use even more restricted conditions on
the operators. Also for this thesis, we will mainly be concerned with pro-
jective measurements:

Definition 1.1.6 (Projective Measurements). Projective/von Neumann mea-
surements are Hermitian operators M ∈ L(H) —in this context also called ob-
servables —with a spectral decomposition into orthogonal projectors Πm onto the
eigenspaces of M: M = ∑m mΠm, where the measurement outcomes m (i.e.
eigenvalues of M) form a non-empty finite set. In fact, the set is restricted in size
(as opposed to POVMs) to the dimension of the Hilbert spaceH. Orthogonal pro-
jectors need to satisfy Π2

m = Πm, ∑m Πm = I and are Hermitian as well. This
implies that all Πm only have eigenvalue 0 or 1, as opposed to the most general
operators in a POVM, whose eigenvalues must lie within the interval [0, 1].
With a projective measurement represented by an observable M of a system in a
quantum state described by ρ, the following results can be obtained:

• The probability for measurement outcome m: Pm = Tr Πmρ
Notice the consistency of this definition since indeed ∑m Pm = Tr (∑m Πm)ρ =
Tr ρ = 1

• The post-measurement state:
1
√

Pm
(ΠmρΠ†

m)

• The expectation value for observable M: 〈M〉 = 〈M, ρ〉 = Tr Mρ =
∑m m Tr Πmρ. Where the inner-product is the Hilbert-Schmidt inner-product.

Note that this defines a conventional but specific kind formalism for
projective measurements, since more generally the orthogonal projections
do not need to be on the eigenspaces of an observable. Rather a mutually
orthogonal set of orthogonal projectors {Mi}i on non-overlapping sub-
spaces can define a measurement on itself and involve more abstract labels
of possible measurement outcomes i. In most physical applications, how-
ever, the concept of an observable is used because of its straightforward
physical interpretation. In this thesis we will refer with "measurements" to
such projective measurements.

9



10 Quantum state tomography: an introduction

Projective measurements compare to POVMs like pure states to mixed
states: When considering systems that consist of multiple parts (e.g. A
, B), for any subsystem with any mixed state we can always find a state
that is pure in the bigger multipartite system. One reobtains the mixed
state in the single subsystem by the operation of ’tracing out’ —i.e. ignor-
ing —a subsystem in this pure state. Equivalently, from the perspective
of a single subsystem, applying a POVM to the subsystem is the same as
applying a projective measurement on the bigger system.
In contrast to POVMs, for projective measurements also the state after
measurement and statistical quantities are very easily calculated from the
decomposition of an observable. The average or expectation of observable
M ,〈M〉, for example.

1.1.4 Operators

Having seen now states and measurements being represented by opera-
tors and superoperators respectively, it is still unclear which concrete op-
erators can be considered in general and what might be a (conventional)
basis for the operator space.

We start by briefly mentioning a convenient and very generic, albeit in-
complete, notion of operations on quantum systems, quantum channels:

Definition 1.1.7 (Quantum Channel). Let H,H′ be two Hilbert spaces. A
Quantum Channel is defined to be a completely positive and trace preserving
(CPTP) map T : L(H) 7→ L(H′).
That is for any operator R ≥ 0 it satisfies Tr T (R) = Tr R and T (R̃) ≥ 0 with
R̃ = H⊗ H̃ ≥ 0, R̃ ∈ L(H⊗ H̃) for IH̃ the identity operator of any separate
Hilbert space H̃.

This definition ensures density operator ρ ∈ D(H) is mapped to an-
other valid density operator ρ′ ∈ D(H′). The partial trace introduced in
section 1.1.2 above is an example for a CPTP map.

Although quantum channels are very useful in describing many opera-
tions in quantum information processing, it is often more convenient to
consider time evolution of quantum systems by unitary operators U in-
stead. A Hamiltonian H, for example, can be applied easily by the uni-
tary operator e−iHt/h̄ to a quantum state. In analogy to purifications for
quantum states, quantum channels are equivalent to unitary operations

10



1.1 Fundamental concepts 11

on larger composite systems. That is, any quantum channel T : L(H) →
L(H′) can be written as T (·) = TrHH̃ (U ((·)⊗ |0〉〈0|⊗ |0〉〈0|)) with uni-
tary U acting on H⊗ H̃⊗H′. So describing the evolution of a quantum
system can be done using only unitary operations. In practice, however,
both quantum channels and unitaries are convenient in different situa-
tions. [19] [8]

From a more intuitive perspective, unitaries will be mostly sufficient for
our current discussion. To get more concrete on the purpose and kind of
unitaries, we introduce the most conventional choice for a generating set
of unitary operations:

Definition 1.1.8 (Pauli Matrices). The Pauli matrices/operators σx, σy, σz are
defined as:

σx :=
(

0 1
1 0

)
σy :=

(
0 −i
i 0

)
σz :=

(
1 0
0 −1

)
Therefore the Pauli matrices are Hermitian and satisfy: σ2

x = σ2
y = σ2

z = I,
Tr σx = Tr σy = Tr σz = 0

To keep notation clean we will equivalently write simply X, Y, Z.
Now it is very easy to form a basis for the real subspace of Hermitian op-
erators in L(H) since a 2×2 Hermitian matrix takes the general form:(

a c− d · i
c + d · i b

)
for explicitly real parameters a,b,c and d.

Therefore the set {I, σx, σy, σz} (I being the 2×2 identity) is complete and:

α · I + β · σx + γ · σy + δ · σz =

(
α + δ β− γ · i

β + γ · i α− δ

)
= 0

has clearly only the solution α = 0, β = 0, γ = 0, δ = 0. So the matrices
are linearly independent and complete with respect to the Hermitian sub-
space of L(H). Therefore they form a basis of Hermitian operators over
R. Equally they form also a basis over all matrices over C.

This can also be used to write density operators in the basis of Pauli ma-
trices:

ρ =
1
2
(I + ασx + βσy + γσz) (1.1)

This is called Bloch sphere representation of the density operator. Note that
the identity (which solely contributes to the trace) had to drop a coefficient
to fix Tr ρ = 1. This restriction removes thus one degree of freedom, con-
sistently with the number of unknown density matrix elements. However,
the expression is even more intuitive since the identity lets the state start in

11



12 Quantum state tomography: an introduction

the maximally mixed state at the center of the Bloch sphere and the Bloch
vector −→n = {α, β, γ} defines the deviation from the center to reach the
point in or on the Bloch sphere that corresponds to the state.
It might sometimes be convenient to express the density matrix in a few
operators of any basis, which is possible with any linearly independent set
of operators that span the space of Hermitian operators. The simple form
of the above representation, however, holds only with orthogonality.

Also, more importantly, basic measurement operators can be constructed
with only the set {I, σx, σy, σz}, since these four matrices form a basis of
Hermitian 2× 2 matrices over R. Taking the definition of the tensor prod-
uct into account, this generalizes easily to situations with n qubits, forming
also a basis of the Hermitian subspace of L(L(H))

⊗
n. The choices of cer-

tain bases for all single-qubit measurements are called settings of the mea-
surement. Considering 3 spatial dimensions, the number of settings are 3n

for n qubits if the operator is global. That is, if it is acting non-trivially on
all qubits in the system, while a local observable only acts on a part of the
system.

The compilation of operators from Pauli observables is a very important
feature as resources for applications like quantum devices are limited.
Standardization of operations that can be performed during measurements
might make the process sometimes less efficient but practically intuitive
and feasible. There exist also more extensive measurements that, for ex-
ample, use entanglement between qubits. Often the implementation for
these has been restricted a lot by decoherence, destroying the entangle-
ment state over time. [20] [21]

Finally it will become useful to exploit that Pauli operators form also a
group under inclusion of appropriate phases:

Definition 1.1.9 (Pauli Group). The n-qubit Pauli group Pn is generated by
tensor products of Pauli operators, so

Pn = {p
n⊗

k=1

σjk |p ∈ {±1,±i}, jk ∈ {I, x, y, z}} (1.2)

under matrix multiplication.

Another closely related group of interest is the so-called (unitary) n-
qubit Clifford group C n

d − of which the n-qubit Pauli group is, by defini-

12



1.1 Fundamental concepts 13

tion, a normal subgroup. In particular C n normalizing Pn means

CPC−1 ∈ Pn; ∀C ∈ C n, P ∈ Pn (1.3)

This will be a key identity when working with unitary transformation of
Pauli operators later. Note further that for n = 1 the single qubit Clif-
ford group C 1 is isomorphic to the single qubit Pauli group P1. [22] [23]
Therefore we will consider the group of n-qubit tensor products of C 1 to
be equivalent to the Pauli group Pn.

We remark that some authors use an alternative definition of the Clif-
ford group as the Clifford quotient group Cn := C n/U (1) with the uni-
tary group of complex scalars U (1) = {eiθIn

d ; θ ∈ R} [24]. Thus it is
the group C n under exclusion of phases, generated by equivalence classes
[X] = {eiθX}θ∈R. [25] The exact difference will not be important for the
discussions in this thesis and we will use the term Clifford group inter-
changeably in context.
The Clifford group is of main interest to efficiently describe a finite and
discrete set of interesting operations on quantum systems. [26].

Quantum Circuits

The Clifford group Cn is generated by a few basic operations: The Hadamard
gate, Phase gate and the CNOT gate. We write their matrix representation
in the computational basis as:

H =
1
√

2

(
1 1
1 −1

)
P =

(
1 0
0 i

)
CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.4)

A quantum gate is just a unitary transformation in a quantum system but
is used mainly to name components in a quantum circuit. That is a de-
tailed instruction set constructed from a finite number of elementary gates.
Quantum gates are therefore completely equivalent to reversible logic (e.g.
AND, XOR) gates in classical electronic circuits. Figure 1.2 gives the rele-
vant example of generating the maximally entangled 3-qubit Greenberger-
Horne-Zeilinger (GHZ) state from the vacuum ground state |000〉 in a cir-
cuit diagram.

Since the Clifford group does not span the whole space of unitaries,
there is a large variety of other gates and circuits. Although required ex-
plicitly for any circuit that is unique to quantum devices they will not be
of direct reference or use in this thesis.

13



14 Quantum state tomography: an introduction

Figure 1.2: Quantum circuit for transforming the vacuum state for 3-qubits
|0〉

⊗
3 into a maximally entangled Greenberger-Horne-Zeilinger (GHZ) state. A

Hadamard gate is applied to the first qubit, followed by two CNOT gates with
qubit 1 and 2 as control qubits and qubit 2 and 3 as target qubits respectively.

Generalizations to multilevel systems

In our numerical experiments we consider the application to multilevel,
i.e. qudit instead of qubit, systems. Therefore we will briefly discuss com-
mon extensions on the definitions of the Pauli and Clifford group above to
subsystem dimensions of d > 2.

Although multiple generalizations of the Pauli group exist, the most nat-
ural choice turns out to be the finite and discrete Weyl-Heisenberg group
Wd of d2 elements that is generally generated by Xd and Zd under matrix
multiplication and inclusion of a phase

√
ω = eiπ/d. [27] Here defining

a dth primitive root of unity ω = ei2π/d. These generalized Pauli oper-
ators Xd, Zd are also known as clock and shift operators of order d such
that Xd

d = I = Zd
d and are defined as the unitary operators satisfying

Xd|j〉 = |j + 1 mod d〉 and Zd|j〉 = ω j|j〉 respectively for computational
basis state |j〉 ∈ {|0〉 . . . |d− 1〉} [28] [25]

We write an element of the group as a Pauli operator P with a phase ω̃α

as:
ω̃α · P(−→a ) = ω̃α · Xa1 Zan+1

⊗
. . .
⊗

Xan Za2n ∈ Wd

with −→a ∈ Z2n
d and: [28]

ω̃ =

{√
ω if d even

ω if d odd

Here the modulus is understood component-wise.
Action on a n-qudit computational basis state |−→x 〉 with bitstring −→x ∈ Zn

d

14



1.1 Fundamental concepts 15

can then be summarized as

P(−→a )|x〉 = ω
−→a n+1...2n·−→x |−→x +−→a 1...n mod d〉

Also we identify the product rule: [28]

P(−→a )P(
−→
b ) = ω̃

2
(−→a n+1...2n·

−→
b n+1...2n

)
P(−→a +

−→
b mod d)

Distinguishing phase factors with ω̃ for odd or even d is required to pre-
serve the order d for all elements in the complete Weyl-Heisenberg group
in both cases.
If d is odd P(−→a )d =

√
ω

d(d−1)||−→a n+1...2n||2 P(
−→
0 ) = ei(d−1)πI = I as required,

but ei(d−1)π = −1 if d is even. [28]
We conclude that for even d the number of roots of unity doubles and the
order of elements in the group becomes 2d, while it stays d in the odd case.
This is reflected in ω̃ introduced above. [27] [25]. To keep an unified for-
malism for all d, we also track phases modulo 2d for odd d because it does
not change the results.

Note further that although elements of this group are still unitary, these
generalized Pauli operators are not Hermitian anymore and therefore can
be assigned unphysical complex eigenvalues. In context of applications
this, however, is no problem. Also non-commuting Pauli operators do not
need to anticommute anymore, instead the commutation relation

P(−→a )P(
−→
b ) = ω

−→a �
−→
b P(
−→
b )P(−→a ) (1.5)

holds with � the symplectic inner product in F = Z2n
d . Where members

of Z2n
d are 2n× 2n-arrays with elements on the finite field Z2n

d . [28] [25].
In its matrix representation this bilinear form can be written as

−→a �
−→
b = −→a TΛ

−→
b with Λ =

(
0 −In
In 0

)
∈ Z2n×2n

d and −→a ,
−→
b ∈ Z2n

d

This implies that the symplectic inner-product defines the phase factor in
the commutation relation between P(−→a ) and P(

−→
b ). If it vanishes, the

Pauli operators commute. This also holds for qubits, but becomes even
more meaningful since a symplectic inner-product of 1 in that case corre-
sponds directly to anticommuting Pauli operators.

15



16 Quantum state tomography: an introduction

For the (generalized) Pauli group we will regularly also refer to the quo-
tient Pd

n :=Wd
n/U(1) as the group consisting of (tensor products of) Pauli

operators P(−→a ) without phases.

The generalized Clifford group can now be introduced in analogy to the
qubit case as the normalizer to the Weyl-Heisenberg group i.e.

C n
d = {C ∈ U (n)|CPC−1 ∈ Wn

d ; ∀P ∈ Wn
d }

for U (n) the group of unitary matrices of size n× n. [29] [25]. Also here the
quotient Cn

d = C n
d /U (1) is considered. Because of the complicated struc-

ture of the Clifford group in higher dimensions (d > 2) when including
phases, we will mostly refer to this generalized Clifford quotient group Cn

d as
the generalized Clifford group. [25] [24]

Generalized Clifford gates do exist and generate the n-qudit Clifford group
Cn

d . While phase P and CNOT gates are still general generators, we gener-
alize the Hadamard gate by the quantum Fourier tranform F. Their actions
on computational basis states |i〉, |j〉 with i, j ∈ Zd are: [28] [30] [24]

F|j〉 =
1
√

d
∑

i∈Zd

ω j·i|i〉 P|j〉 = ω̃ j(j+d)|j〉 CNOT|i〉|j〉 = |i〉|(i+ j) mod d 〉

As usual this choice is far from unique (in literature), we follow [30] which
showed that these operators form indeed the minimal set of operators
which are sufficient to generate the n-qudit Clifford group. Also the choice
of generators was made to ensure the convergence to the qubit case for
d = 2, both for the generalized CLifford group and the generalized Pauli
group.

Especially the identification of the quantum Fourier transform with the
Hadamard gate is conceptually interestingly since it allows to directly see
the connection between Pauli operators Xd and Zd and direct phase space
representations of quantum states. As in any physical system where we
can use Fourier transformations to transform between position and mo-
mentum space, we know that applying a Hadamard gate (or Fourier trans-
form) to the Pauli-X basis transforms it to the Pauli-Z basis. This allows
to interpret the operators Xd and Zd similarly as the momentum and po-
sition displacement operators in discrete phase space. Here p̂ and x̂ are
the quantum mechanical position and momentum operators respectively.
[31]. This is the underlying notion from which the finite Weyl-Heisenberg

16



1.2 Quantum state tomography 17

groupWn
d originally arose in describing the quantum kinematics of quan-

tum systems. Clifford operations are then those operations that keep the
system kinematics invariant.

1.2 Quantum state tomography

Within the technical framework of the previous section, we can now fi-
nally state and interpret the general problem of quantum state tomogra-
phy (QST).

We consider the simplest possible system of n independent, non-interacting
spins with spin 1/2. The state of this system can be described by a state-
vector or a density matrix in the computational basis ofH = (C2)

⊗
n. Each

element of this basis represents a configuration in which each spin can be
1 (up) or 0 (down).
Each spin is therefore just a qubit in state α|0〉+ β|1〉 (|α|2 + |β|2 = 1)
The general state-vector |ψ〉 = ∑b∈{0,1}n αb|b〉, with coefficients αb ∈ C and
∑b∈{0,1}n |αb|2 = 1, describes each individual configuration just by a string
of 0ś and 1ś. While the state-vector contains only D elements to denote
in which configuration or superposition of configurations the system is in,
the density matrix ρ needs D2 − 1 parameters for a unique description.
Here D is the Hilbert space dimension dim(H) = 2n, which is the number
of possible distinguishable configurations, and −1 appears because of the
constraint Tr ρ = 1 that makes one parameter redundant. For the benefits
mentioned earlier, we will keep using the density operator formalism from
here on. The problem of shadow tomography, for any similar system, can
then be stated as follows:

Let ρ be a density matrix representing an (unknown) quantum
state of system with state-space H. Given the observables
Oi, which form a set of measurements {Oi}i∈{1,...,m}, and
their outcomes bi = Tr Oiρ (see definition 1.1.6) with bi ∈
R. How can the density matrix ρ of the system’s quantum
state be fully reconstructed and under which constraints on
the set {Oi}i∈{1,...,m}, measurement outcomes bi and density
matrix ρ?

A straightforward mathematical solution to this problem is the vector-
ization of the problem and using linear inversion to solve the resulting
system of linear equations.

17



18 Quantum state tomography: an introduction

This can be done by identifying the Hilbert-Schmidt inner-product on L(H)
as usual:

〈A, B〉 = Tr A†B

for any A, B ∈ L(H). Note that observables are per definition Hermitian,
therefore the expectation values are just bi = Tr Oiρ = Tr O†

i ρ = 〈Oi, ρ〉.
For convenience we can transform this to an inner-product 〈−→Oi |−→ρ 〉 on
CD2

, where D2 is again the dimension of parameter space for ρ. The
−→
Oi

and −→ρ are vectorizations of the operators that are obtained by stacking
the column-vectors of the matrix representations into a single long vec-
tor. It is straightforward to see that this indeed corresponds to the sum of
the diagonal elements of the matrix product Oiρ, i.e. the Hilbert-Schmidt
inner-product of Oi and ρ. To compactly write this for all i ∈ 1, . . . , m we
note that −→ρ is equal for all i and therefore can be written as O−→ρ =

−→
b

with b the vector with components bi and O the m× D2-matrix with row
vectors

−→
Oi . Inverting O solves the problem under the condition that O is

invertible, thus for m = D2 and for linearly independent observables Oi.

We can do even better by avoiding a matrix inversion if we restrict the
observables further to be orthogonal. Then we use that for a complete set
of observables, that is for the number of observables being equal to the

dimension of the operator space dim(L(H)) = D2, we have∑i
−→
Oi
−→
O†

i = I

So then −→ρ = I
−→ρ = ∑i

−→
Oi
−→
O†

i
−→ρ = ∑i

−→
Oi〈
−→
Oi |−→ρ 〉 = ∑i

−→
Oi · bi. This can be

expressed in operator form as ρ = ∑i Oi · bi.

In both cases we can, as mentioned before, reduce the dimension of the
vectorized equations by one due to the restriction that ρ = 1, so that a
complete set of measurements consists of only D2 − 1 observables.
Also we can easily interpret these solution for any number of qubits that
constitute an arbitrary quantum state as no assumptions were made on
dimensionality. Still it is useful to see that the above also works in the case
of single qubit measurements on an arbitrary quantum state of n qubits as
such measurements are often used: Let then any effective observable Oi on
the whole system be separable as Oi =

⊗
k O(k)

i ,with O(k)
i the single-qubit

observable on qubit k, such that Tr
[
(
⊗

k O(k)
i )ρ

]
.

We reattain then for an orthogonal and complete set of observables Oi:
−→ρ = I

⊗
n

4 ρ = ∑i(
⊗

k O(k)
i )((

⊗
k O(k)

i )†)−→ρ = ∑i(
⊗

k O(k)
i ) · bi or ρ =

∑i(
⊗

k O(k)
i ) · bi. Where we used that a tensor product of identities is just

18



1.2 Quantum state tomography 19

the identity in the higher dimension and vectorization works the same
with the Kronecker product as tensor product.

Although the above solution works mathematically and forms an absolute
lower bound to obtain a unique solution for an arbitrary quantum state of
the system, it does not guarantee the result to be physical. That is, it might
give a matrix that is not a density matrix i.e. not positive-semidefinite
or resulting in invalid predictions for probability values. Since there is no
easy expression for physical constraints like the semi-positiveness of a ma-
trix, there thus needs to be a more advanced way of solving the problem.
This should either let us impose the physical constraints implicitly or be
based on a procedure that is physically argued, rather then being of purely
mathematical kind. That is, more generally, elements of the density matrix
ρ should not be regarded independent at all.
This is all beside the practical issues of implementing, operating and deal-
ing with accuracy of the measurements represented by the observables.

Establishing a procedure that gives even physical results, however, does
not imply practical feasibility. While the general lower bound of required
linearly independent observables is D2 − 1 to fully reconstruct the den-
sity matrix of a state, D itself does grow exponentially with the number
of qubits n (D = 2n). Therefore, in the most ideal case, the number of
measurements needed for estimating a quantum state completely scales
exponentially with the number of constituents in our quantum system.
[32]. As for almost all measurements the wave function of the state col-
lapses and, thus, the measured state changes. In consequence the state of
the system (which we want to measure) must be prepared anew for every
measurement.
One exception to this is when required measurement operators do com-
mute. In this case the operators have a common set of eigenvectors and
can therefore be measured simultaneously in the shared eigenbasis. [33]
[34] [8] Nevertheless the problem persists for many applications in which
the measurement operators certainly do not commute. Especially when
measures of entanglement are involved. [8] [35] [36] This makes gener-
alized and complete quantum state tomography infeasible for any larger
number of qubits. This is the main issue that we are addressing in this
thesis. The (scaling in the) number of required copies of a state for a state
tomographic procedure is called the sample complexity.

Illustrating the problem more concretely: In a quantum computing device
the state preparation (i.e. calculation) could potentially be exponentially
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20 Quantum state tomography: an introduction

faster, but on the other hand one needs to repeat it exponentially more of-
ten for increasing number of qubits to read out the output of a quantum
algorithm, for example. This restricts the usefulness of such quantum de-
vices heavily.

It gets even worse if we consider that a measurement with an observable
has also an underlying statistical distribution, which naturally scales as
O(1(/ε2) in accuracy ε,and that a system’s state might not always be pre-
pared equally well. This increases the sample complexity even further by
a certain factor in order to determine the expectation values of observ-
ables also with a suitable accuracy. In most cases this latter problem is
equivalent to the effort of estimating a Bernoulli parameter for each of the
elements/parameters of the density matrix ρ [17].

1.3 Protocols

In the late 1980s, after several suggestions that mostly relate to the naive
linear inversion approach from the last section, one of the first ideas [37]
for a tomographic method (which coined the term of QST) and its experi-
mental demonstration [7] was the technique of Optical Homodyning To-
mography (OHT). All proposals from before that guaranteed physical re-
sults had the problem of being nearly experimentally infeasible. They had
requirements like preparation of completely pure states [38] or implemen-
tation of a lot of complicated shaped potentials [39].
Homodyning tomography relies upon sampling easy representable marginal
distributions over phase space for an optical signal. Expressed more vi-
sually, this comes down to cutting (by integration) through phase space
distributions at different angles and calculating a marginal distribution
along each direction. For ensuring accuracy, the measurement at each an-
gle is repeated a large number of times. From this set of distributions, the
so-called Wigner distribution is calculated. This quasi-probability distri-
bution can describe the quantum state fully and maps one-to-one to the
concrete description of the state: the density matrix. [7] [40]

Lots of (more general) procedures have been suggested since OHT and the
applications have become broader. for example, in characterizing entan-
glement states not only in quantum optics for photons, but also for atoms
and even molecules [32] [41]
One particular method that is worth highlighting as well, because of its
wide application in experimental procedures in past and present, is the
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1.3 Protocols 21

maximum likelihood estimation method (MLE). The essence of MLE is
the goal of maximizing the likelihood to find the given measurement out-
comes (bi) for a certain density matrix. While such optimization meth-
ods always involve far more computational complexity than direct calcu-
lations, the estimated density matrices in MLE can be guaranteed, under
the right constraints [42], to be physically valid states. In this case the most
likely valid density matrix is estimated.

To perform maximum likelihood estimation one needs to define 3 essential
components: a density matrix parametrization, a likelihood functionL(ρ)
that is to be maximized and an optimization algorithm to finally execute
MLE under the defined conditions. [3]. While the latter is a rather tech-
nical choice, defining the shape of a density matrix and a optimization
function is a very general problem for the many optimization based pro-
tocols that have been proposed.
Basic methods often use Bloch vectors [43] −→r ∈ R4n−1 to express a den-

sity matrix for n qubits: ρ =
1
2
(I + ∑4n−1

i=1 riσi) for σi ∈ {I, σx, σy, σz}
⊗

n.
This follows the decomposition of ρ in equation 1.1. This parametrization
of density matrices is convenient since, in the case of Pauli matrices, the
density matrix representation as a point in or on the Bloch sphere is then
a simple and intuitive interpretation.
Alternatively, matrix elements are simply chosen as parameters for op-
timization and structured such that the resulting matrix will be psoitive
semidefinite. (e.g. choosing a Cholesky decomposition of a density matrix

1
Tr (T†T)

T†T with T being a low-triangular matrix and the elements of T

being the optimization parameters. [3])

More advanced approaches like in [42] use perturbation theoretic approaches
to get a density matrix that has not necessarily full rank. An important
property of maximum likelihood estimation, namely, is asymptotic normal-
ity. It holds generally only for (near) full-rank density matrices and states
a guarantee of convergence. If it doesn’t hold, one needs to be careful with
results of the MLE technique. When the estimated density matrix, for ex-
ample, has zero eigenvalues, it is probably not the indication of being the
most probable state but of a solution that lies outside the physical (pos-
itive semidefinite) domain of matrices while maximizing the likelihood
function. Physically zero eigenvalues are valid but it is rather a very un-
realistic case if the value would be exactly zero rather than just very small
in experimental settings, especially with a measurement error-bar. [44].
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22 Quantum state tomography: an introduction

Moving the value, proportional to the error-bar, a little above zero would
yield a better estimate than just keeping it zero. So the MLE estimate is
certainly not optimal with finite amount of measurements if it can be im-
proved by such a simple manual adjustment. Nevertheless this technique
is applied in lots of physical experiments because, for very few qubits and
a lot of measurement repetitions in each measurement basis, one can still
extract some useful information with respect to those eigenvalues which
are physically reasonable. Still it is very inefficient, we do not have control
over which aspects can estimated well and for more Hilbert space dimen-
sions the number of physically unreasonable eigenvalues grows fast.

The likelihood function L(ρ) = p(M|ρ) is often taken as a Gaussian [3]
or multinomial distribution [43] [42]. The state estimate can then be found
by optimizing:

ρMLE = arg max
ρ∈D(H)

L(ρ)

Beside the computational expense, the finite number of measurements and
the required sampling of the search space of possible density matrices are
the central problems of MLE if accurate estimates are required.

From this perspective, Bayesian Mean Estimation (BME) has been pro-
posed which is found to be working better on the domain where MLE fails.
[42] [44]. Rather than maximizing a likelihood function, the goal is to take
a weighted average of all states that are compatible with the measurement
outcomes and where the weight of every state is just its likelihood;

ρBME =

∫
ρ · L(ρ) · dρ∫
L(ρ) · dρ

Here L(ρ) contains now the likelihood function from MLE and an addi-
tional factor called the prior that represents the knowledge of the tomo-
graphic observer before the measurement. This follows the philosophy
of Bayesian statistics: an estimate should represent the knowledge about
the system from the measurement outcomes but it also considers all other
alternatives to the states that would fit the measurement outcomes best.
In fact, in the case that the prior distribution is chosen such that it really
and accurately represents the prior knowledge of the observer , the mean
squared error of the Bayesian mean estimate is optimal. [45] That is, it sat-
isfies lower bounds.

The variety of protocols proposed since then is enormous, to name just
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a few : state estimation by compressed sensing [46], local asymptotic nor-
mality [47], (projected) least squares [48], direct tomography [49], neural
network tomography [50], spectrum estimation [51], partial (reduced den-
sity matrix) tomography [33] ,permutationally invariant tomography [52],
forced purity routine [53], (generalized) overlap tomography [54], mini-
max estimation [55]

1.3.1 Framework

We will now turn our focus to describing protocols in a more general way
to understand the essential ingredients of existing quantum tomography
protocols and identify which choices one has to make when constructing
one. Although breaking down a single procedure for the large variety of
protocols is not possible, the fundamental framework and ingredients of a
QST protocol are often the same.

Initially a set of copies of a state with density matrix ρ is prepared, a set of
quantum measurements {Mi} are taken to obtain a classical description of
the state in the form of a set {Xi} of measurement outcomes. Using classi-
cal (or in the future quantum) post-processing of this data, an estimate of
the density matrix is constructed.
The details of each of these steps are diverse and although most protocols
stick to above setting, it’s not essential for being a valid way to reconstruct
all the information of a quantum state. The way of practical implementa-
tion might sometimes also influence how a protocol works. Setup related
ways of physically measuring in certain bases and performing error mit-
igation, for example, require often not just additions but very different
protocols.

Within each of the steps, there are a few considerations to make when
constructing a protocol. For the input state simplifications should be con-
sidered. If the protocol is designed application specific, structure of the
input state and its density matrix might be exploitable. For example, if the
state can be assumed low-rank (i.e. nearly pure) [56] such that the spec-
tral decomposition ρ = ∑i λi|ψi〉〈ψi| reduces to rank(ρ) � 4n terms only.
Thus the number of parameters that need to be estimated decreases and
makes the estimation easier.
For states that have a so-called matrix-product-state (MPS) representation
[57] [58] there exist efficient algorithms that have considerable effect on
the computational complexity in the post-processing step.
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24 Quantum state tomography: an introduction

A MPS is an expansion of the full state vector (interpreted as a tensor with
n rank-d indices) into a contraction of many tensors with indices of much
lower dimension. For full density matrices the number of indices of the
contracted tensor is 2n instead. The upshot is that we can process many
low dimensional components separately instead of one large dimensional
matrix. Instead of scaling exponentially in the number of qubits, the com-
putational expense can then scale linearly. Assuming that the MPS is a
good approximation to the state, also the number of estimation parame-
ters scale linearly in n. In fact, for many quantum many-body systems of
interest this turns out to be a very good approximation [59].
Equally, any other kind of structure in the density matrix can reduce the
number of estimation parameters considerably. This emphasizes the im-
portance of examining the structure and symmetry of the quantum system
in consideration for gaining a lot of efficiency.

When making measurements, we have to balance between complexity in
practical implementation and performance by choosing the type of mea-
surement. That can be POVM measurements, general projective measure-
ments or only 2-outcome measurements. This is in descending order of
complexity. Equally, how such a measurement is performed is often sig-
nificantly different. Applying a measurement to all copies of the quantum
state at once (global), to each copy individually or to each qubit within
a copy separately (local). Also here the complexity in required quantum
circuits decreases from global to local. The reason is simply that global cir-
cuits work only with gates that exploit entanglement between copies and
their qubits. But this scales for more qubits very fast and is not robust with
quantum noise, while a local measurement is even for large system easy
to implement.
While the kind of measurements can be summarized that way, obtaining
the exact measurement operators is where the individual diversity enters.
Not less because it is closely connected to the way post-processing is done.
While advanced protocols propose parametrizations of measurement op-
erators with numerical optimization [60] to find efficient measurements
before or during the experiment, others tend to perform random projec-
tive measurements, continuous/time-dependent measurements [61] [62]
or fixed pre-selected measurements. Paths of experimental and computa-
tional implementation for each them are so drastically individual that one
can not select an overall leader in performance for the general case.

Measurement strategies like overlapping tomography [63] or adaptive tomog-
raphy [64] have also demonstrated possibilities to find and compress re-
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quired measurements in as few measurement settings as possible. On-chip
implementation is enabled by this for example, which gives estimates by
iterative fixed linear transformations. [65]. Measuring with such efficiency
can reduce the sample complexity for readily existing protocols signifi-
cantly as well.

Note that tomographic completeness (i.e. measurement operators form-
ing an operator basis on the Hilbert space H) might not be necessary for
every kind of protocol since, for example, highly structured states from
above need less information to be described and thus less measurement
(repetitions). [66]

Finally, for estimating a quantum state, the desired form of the estimation
should be chosen and the accuracy of this estimation should be measured.
Different norms, like the trace norm and fidelity, do exist. [12][67] Beside
the obvious option of a point estimate —i.e. estimating a certain single
quantum state —we can choose to get a more rough region estimate. That
is a bounded region in the space of density matrices in which we expect
the real state to be with a given confidence. Another useful option is a
Bayesian posterior distribution or any other form of a state estimate that
makes sense for the target application. Also this can simplify the problem
as the required detail of information for the estimate can be reduced.

Exact inversion, treating expectation values as random variables which
together give rise to a direct probability distribution over quantum states
(e.g. machine learning of quantum states) and numerical optimization are
the three ways to do post-processing. Because of the very limited tools for
purely the first two approaches, optimization has become a central part of
post-processing in most recent protocols. Might it be only the mapping of
an unphysical state estimate to its nearest physical neighbour. Optimiza-
tion takes some cost function and tries to minimize the cost by changing an
hypothesis to the real state. This cost function could be simply the average
distance between the matrix elements of density matrices, the likelihood
function for the measurement outcomes (like in MLE), a variance measure
of expectation values or state-specific properties (e.g. its rank).

Also how good a protocol in the end really is, depends heavily upon what
is needed. While in this thesis we focus mainly on sample complexity
(i.e. how many copies of the quantum state are needed), like a lot of
authors already did, others take the minimization of computational re-
sources more into consideration [68] [53]. Practical feasibility is for readily
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26 Quantum state tomography: an introduction

well-established protocols also of central discussion when considering re-
quirements on quantum circuits for quantum measurements. The depth
of a quantum circuit is a factor, but also whether entanglement of quan-
tum gates for measurements on multiple qubits or copies of a state are
required. [59] Implementing and conserving entanglement of quantum
gates on a large scale is still a challenge.

1.3.2 Evaluation

Evaluating and comparing protocols is also not a matter of comparing just
a single measure for how good a protocol is doing, but consists of several
measures that are all sensitive to different aspects, like the effective error
in individual density matrix elements, the entanglement properties of the
original state and the purity of the original state. [12] [8] Comparing such
properties between the original state and the state estimation allows to
choose, design or modify a certain state tomography protocol accordingly.
This is important since in most applications the accuracy in some property
is more significant than for another.

Most common measures include fidelity, trace-distance, coincidence and en-
tropy. Since our discussion will only involve the measure of fidelity, we
define it briefly: [12], [8]

Definition 1.3.1 (Fidelity). A measure of overlap between two states (e.g. an
estimated state σ ∈ D(H) and a real state ρ ∈ D(H)) is called the Fidelity. It is
the simple inner product of the states:

F :=
(

Tr
√√

ρσ
√

ρ

(
)2

The fidelity for pure states |ψ〉, |φ〉 ∈ H can be reduced to:

|〈ψ|φ〉|2

Also we introduce a very specific, but widely used set of measures of
entanglement [12]

Definition 1.3.2 ( Rényi-entropy). Given some (possibly multipartite) quan-
tum system with Hilbert spaceHA, we define the Rényi-α-entropy

Hα(ρA) := Hα(ρA) =
1

1− α
log (Tr (ρα

A))

for some α > 0
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Chapter 2
Incomplete tomography

Enormous efforts have thus been made to find procedures for quantum
state tomography which require as few as possible copies of the unknown
state ρ, are feasible in experimental settings and are applicable as wide as
possible. Despite the rich landscape of suggested QST protocols, there are
fundamental lower bounds to be respected which limit the performance
for any protocol. The lower bound in sample complexity, for example, for
any general quantum state within a D-dimensional state-space is O(D2)
[51]. This follows from arguments in quantum information theory which
account for the amount of information that needs at least to be extracted
for a full state description and how much information is maximally con-
tained in a single measurement. For rank r states this lower bound reduces
to only O(D · r). [56] [51]. However, even if it is assumed that these lower-
bounds can be practically reached with some yet unknown protocol, it
still needs to be considered that D grows exponentially in the number of
qubits. Additionally, this exponential scaling not only applies to measure-
ments but to classical computation and storage as well.

Making more physically relevant assumptions, we might consider a cer-
tain structure for the state, like an MPS representation. As mentioned in
the preceding chapter, the required polynomial number of samples in sys-
tem size can offer a large boost in efficiency. Although a lot of physical
many-body systems do have such a suitable structure, neither is the gen-
eral quantum state covered nor is the achieved efficiency consistent over
different states. [57][69] This makes the performance of protocols gener-
ally unreliable. Also, no matter how favourable MPS representations scale.
they always scale with system size. This keeps the bottleneck of tomogra-
phy upright for very large number of qubits or, even worse, qudits.
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28 Incomplete tomography

A less structured but more broadly applicable alternative to MPS tomog-
raphy is to learn an unknown state by its internal structure using neural
networks. However, despite its popular use, the classes of systems which
can be efficiently represented is currently not well known. [59] [70] [50].
For both approaches one thus needs to evaluate each application individ-
ually to determine whether it is suitable. Also, although potentially cheap
in sample complexity, neural networks can be very expensive in computa-
tional resources. Overall, the effective use of neural network tomography
will depend mainly on a guaranteed consistency in performance and cost
for clearly defined classes of states.

Also measuring a full state with low destruction of the measured state
using so-called gentle measurements requires in its optimal settings less
copies, but only with the cost of an significantly larger error [71] compared
to conventional protocols. For larger systems gentle measurements might
be far more feasible in practice and therefore a more acceptable alternative
[49] to standard measurements, but an approach that can achieve drasti-
cally better accuracies is required for most applications.

Thus the amount of ideas to specialize a protocol to gain lower sample
complexity has been enormous. However, increasing the assumptions
on quantum states, using machine learning tools, employing neural net-
works, or compressing quantum measurements is not enough anymore for
capturing all the information that a general, highly dimensional quantum
state contains [14] in targeted NISQ devices. [2] This suggests to rethink
the problem and raises the question whether really all the information of
a quantum state is required.

The idea of partial tomography is a first reaction to this insight. It aims
only to estimate certain parts of a density matrix instead of the complete
one. The estimated reduced density matrices then only represent and yield
information on the state of the fixed sets of qubits. Since one generally
needs to fix these choices beforehand, this only makes sense if one already
has a strong expectation of the resulting state and just wants to confirm
this expectation. Or, alternatively, if a desired property is local to a certain
essential set of qubits of the system.
Partial tomography has been shown to be efficient and feasible for high di-
mensional states in a whole series of works with improving sample com-
plexity [33] [63] [72] [73] [74], but the usefulness for obtaining global in-
formation of the state is highly restricted if the state is not representable
in a convenient form. For an arbitrary k-qubit reduced density matrix, we
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2.1 Shadow tomography: the problem 29

can then only extract information about k-local observables in expectation.
On the other hand, if it has a suitable representation, the reduced density
matrices can reconstruct the complete density matrix efficiently as well,
and global observables become accesible. [75] [33] [59] Overall partial to-
mography has become in efficiency and performance a close competitor
to protocols that directly estimate target observables. The latter will be of
extensive discussion in proceeding sections.

Closely related to partial tomography is the direct measurement of single
density matrix elements. However, beside the very restricted usefulness
of single elements in general, the greatest practical problem has been the
normalization for such elements. Doing this properly does effectively re-
quire estimation of all matrix elements using this method, which is gen-
erally on the same level of complexity as complete tomography methods
themselves. [76] The problem for normalization can be illustrated most
easily using the direct measurement scheme with photon detectors. Mea-
suring the photon counts on each detector for a single matrix element does
not give us information about the relative count with respect to all other
unmeasured matrix elements. So for a meaningful capture of information,
we would have to retrieve all counts over the complete density matrix and
normalize all matrix elements with respect to the total of all these measure-
ments.
Nevertheless, some schemes [77] [78] [76] have been proposed that promise
a relatively low sample complexity for single density matrix elements by
using weak or strong measurements that feature low-destruction of the
measured copies of a state. Also direct measurement schemes are fast since
they require no additional post-processing.
Although the formalism is still actively being developed, expectation of
observables are far more complex to predict and weak measurements hard
to implement. This is while in practice one is often interested in a flexible
measurement scheme that can predict certain properties of a system di-
rectly.

2.1 Shadow tomography: the problem

To encounter the sketched problems from the preceding section, the sug-
gestion [9] was made to give up on the goal of predicting (parts of) the
density matrix on itself. After all, recall that the description of a state was
causing the exponential increase of measurements by the exponential in-
crease of required parameters. Rather one would often like to predict only
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30 Incomplete tomography

a few specific properties of a system based on global or local observables,
which are however unknown during the construction of the protocol it-
self to make it universally applicable. With previously discussed methods
in quantum state tomography, this would involve predicting the density
matrix of the state and taking expectation values for relevant observables.
In the usual context this approach clearly imposes one redundant step of
first extracting all the information of a system, while one subsequently dis-
cards most of it. Equally well one could try to extract expectation values
of specific observables directly from the system, but that obviously would
also consume a lot of copies of a state if the number of observables is large.
We would rather like to implement a protocol that has low sample com-
plexity, has low cost in implementation by a low circuit complexity and
can be adapted easily for a particular application.
The problem, originally stated for two-outcome measurements [9], has
been named Shadow Tomography:

Given an unknown quantum state with density matrix ρ and
M known measurement operators Oi, the goal of shadow
tomography is to estimate expectation values Tr (ρOi) =
ci with accuracy ε for all i ∈ {1, . . . , M} with collective -
success probability 1 − δ and N, the number of copies of
state ρ, minimal.

Addressing exactly this problem will be at the core of the remainder of this
thesis. While partial tomography, as discussed above, certainly showed
promising results, the complexity of such methods has been increased
heavily for the benefit of reducing measurement resources. Taking there-
fore a step back to reconsider more basic methods is of considerable in-
terest for actual applications and convenient for our understanding of the
problem.

The name of shadow tomography (further interchangeably used with the
term incomplete tomography) originates from visualizing the problem as
identifying the expectation values, of selected observables that we want to
estimate, as the shadow that the quantum state casts on the observables.
In particular, we would like to create from measurements a classical de-
scription —the shadow —of the state which reproduces the behavior of the
state at least in expectation of the observables in consideration. Note that
such a classical description is more generally optional in yielding expec-
tation values, but it can help to store the observed state for later evaluation.
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Notice also that there are some trivial solutions if the sample complexity or
the number of targeted expectation values are arbitrarily large. If M ≥ D2

and N ≥ D2/ε2 (recall the Hilbert space dimension D = dn) then the set
of M observables is a complete, linearly independent measurement set on
the Hermitian subspace of L(H) and there are enough copies to measure
them directly. If only N ≥ D2/ε2 holds, then we are still able to conduct
full and general quantum state tomography with protocols mentioned in
chapter 1, but we have to do it with (another) complete set of measure-
ments to estimate the full density matrix and extract the required expec-
tation values. Another case is when N ≥ M/ε2 since then the number of
copies are sufficient to measure each of the M desired expectation values
directly. Each on a separate copy. This latter solution might seem optimal
in general, but when measuring a lot of observables one should mind that
some information of different observables might be overlapping. Reuse of
information for a lot of overlapping observables is therefore the key ad-
vantage of measurement procedures which are applied to the problem of
shadow tomography.

The minimal bound on the number of required state copies for estimat-
ing the expectation of any observable up to an additive error ε, which
follows from information theoretic arguments (theorem 16 in [9], theorem
2 in [59]), is N = Ω

(
log (M)/ε2).

In other words, an exponential number of expectations of 2-outcome mea-
surements can be predicted to accuracy ε with only a polynomial number
of state copies if the bound can be taken tight.

Like for full state tomography, this specific lower bound has therefore
nothing to do with how exactly the problem is approached. It rather is an
artefact of how much information can fundamentally be extracted from a
certain number of measurements. Note that the actual lower bound for
any practical situation can be much worse and depends heavily upon the
targeted observables (see theorem 2 in [59]) and how measurements are
taken. For the references considered here, this mainly refers to the locality
and spectrum of observables, as well as the locality of performed measure-
ments. Here the locality is interpreted more broadly than usual to refer to
how many qubits, or even how many copies, of the state measurements
and observables are taken. For the target observables that apply to multi-
ple copies of a system, we will more frequently refer to them as non-linear
target functions.
However, the most notable observation on this lower bound is clearly its
independence of the system size n i.e. the number of qubits. It demon-
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32 Incomplete tomography

strates that one could benefit enormously from ignoring the steps involv-
ing the density matrix ρ in standard state tomography methods. Needless
to say, this assumes that one could find any such concrete protocol that
scales (nearly) optimal by this lower bound while it is still able to predict
all desired observables well enough.

2.2 Shadow tomography protocols

The natural framework of a protocol in incomplete tomography —that is
measuring and subsequently estimating the desired expectations via post-
processing —stays similar to protocols in complete quantum state tomog-
raphy. The essential step of first recovering the whole density matrix has,
tough, vanished. This is not only beneficial in the amount of informa-
tion that needs to be extracted, but also allows to optimize the protocol
to the amount and type of required information (in form of observables)
directly. For example by using pre-processing, appropriate measurements
can be constructed for each specific application. The gain is a consistent
performance over different situations.

The problem of shadow tomography was also connected to one possible
solution [9], in form of a concrete procedure, for the case that expectations
of two-outcome measurements are desired. This involves updating an
hypothesis state iteratively in a well-known process called post-selection.
Each iteration only measures which expectation value of the hypothesis
state deviates too much from the corresponding expectation of the true
state and corrects the hypothesis state accordingly. To reduce the number
of required state copies, the measurements are chosen as gentle (weak)
measurements to damage the state copies only slightly and extract just
enough information in order to conclude whether the deviation falls out-
side of a certain confidence interval. This confidence interval can be cho-
sen freely with the failure probability δ as defined in the problem above.
Only if the hypothesis state deviates more then the confidence interval, the
hypothesis state is adjusted with respect to the observable. This subrou-
tine of finding deviating expectation values has been named gentle search
procedure. While the number of required state copies per iteration scales
independently of state-space dimension: O(log4 M/ε2), the number of it-
erations does not O(log D/ε3). [9]

So the total sample complexity does still scale with number of qubits but
only polynomial by O(log4 M log D/ε5). Although this comes not near the
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fundamental lower bound, it is still an exceptional advantage over known
full state tomography methods.

Later, different larger improvements on this procedure were proposed.
Aaronson et al [79] did for example use the concept of differential privacy.
When applied to shadow tomography, it allows gentle measurements to be
performed differently by applying a well-known concept from computer
science: Differential Privacy. It hinges on adding exponential noise to a
state copy in order to make it deviate slightly from the original state. Sub-
sequently it is measured together with an untouched copy of the unknown
state. This makes it possible to classify the state based on a two-sided
threshold. The result is a search procedure for strongly deviating expec-
tations that can replace the previous gentle search procedure. The main
advantage of this is that the algorithm can be online, which means that the
set of targeted measurements in the involved iterative process does not
need to be fixed. Measurements can thus in each iteration still be chosen
and specified during the run of the procedure. This makes each measure-
ment independent and invariant of the underlying probability distribu-
tion. Depending on the number of target expectations M, the system di-
mension D and the required accuracy ε, this algorithm requires at most
O(log D2 log M2/ε8) state copies. So in terms of sample complexity it is
only better in special cases, for example if the number of measurements
M is large relative to the system size. Others like [80] have improved the
sample complexity with very similar methods to O(log d · log M2/ε4).

Also other extensions [81], [82] and [83] (experimental demonstration of
[81] in [84]) profit from being an online algorithm but via Probably Ap-
proximately Correct (PAC) learning of quantum states. That is prediction
of expectations via machine learning for any set of measurements as sam-
pled from an arbitrary probability distribution. The goal is therefore only
to predict most of these sampled measurements correctly rather then all
expectations. The sample complexity is then mainly due to the learning of
a reasonable model by acceptance or rejection of predictions on randomly
sampled measurement operators. Applying the method to the problem
of shadow tomography for the first time gave an improved sample com-
plexity in the error dependence of O(log M4 log D/ε4) [79]) state copies as
well. This was improved quickly to a similar scaling as [80], that we men-
tioned earlier, of O(log M2 log D/ε4). [83] Even better, the authors prove
that if an approximate set of possible states with high internal structure is
known, the log D dependence can be replaced by a much lower factor.
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34 Incomplete tomography

2.3 Experimentally feasible shadow tomography:
Classical Shadow Estimation

While the branch of solutions in the preceeding section addresses the orig-
inal shadow tomography problem [9] tightly and proves the astonishing
high gain in comparison with standard full tomography methods, a few
different approaches have been initiated that try to generalize the problem
and solutions to a physically relevant context. For example, with observ-
ables that have an unit operator norm at the most, the space of predictable
physical quantities is somewhat restricted. We would rather like to predict
any observable or property of a state that could be useful in the lab.
Another key disadvantage of the original approach by Aaronson is that
it requires an exponential number of entangled quantum gates by the use
of measurements that apply to multiple state copies at once. This is rather
difficult to realize practically [59], especially when considering the remain-
ing polynomial scale in the number of qubits. That scaling is much better
than the exponential scaling in complete tomography, but it can still be-
come reasonably large when quantum systems are scaled up continuously.

Even before the problem of shadow tomography was stated in its gen-
erality, a few protocols were proposed based on the same philosophy but
specialized on predicting a single, fixed and physically relevant quantity
directly, e.g. fidelity [85] [86] or entanglement (entropy) [87] [88] [89]. Of-
ten though, to generalize the application range, we rather want to know
a large set of arbitrary quantities or properties. A few different, but rel-
atively similar, approaches have already been presented to extend those
methods which are otherwise only applicable to a single, fixed observable.

One of the most extensively studied approaches is classical shadow estima-
tion as originally proposed by Huang et al [59]. Although it is a substan-
tially different approach from those presented above, using only single-
copy measurements, classical shadow estimation yields an improved, di-
mensionally independent scaling sample complexity with

N = O(log(M) ·max
i

||Oi||2shadow
ε2 ) (2.1)

state copies (and measurements) required.

Note the dependence on the observables in this expression. This depen-
dence arises from possible variations in the amount of information that is

34
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required for each observable. The norm is called the shadow norm and is a
valid operator norm defined as:

||O||shadow = max
σ∈D(H)

[EU∼U ∑
b∈{0,1}n

〈b|UσU†|b〉〈b|UM−1(O)U†|b〉2] 1
2

(2.2)
Here the set of unitaries U = {Ui}i must be topographically complete and
have some discrete probability distribution αii over its elements, such that
they can be drawn at random. We denote this also as the unitary ensemble
E := (α, U) The bitstrings b (i.e. vectors {|b〉}b∈{0,1}n) just form the com-
putational basis of the n-qubit Hilbert spaceH.
The shadow norm is a valid Operator norm. That is, it is completely posi-
tive, homogeneous and satisfies the triangle inequality. While with linear-
ity of the quantum channelM the first two claims follow trivially, the trian-
gle inequality requires a more direct workout and follows finally from the
triangle inequality of the standard 2-norm.

The fundamental idea of classical shadow estimation is captured by the
quantum channel M: M(ρ) 7→ EU∈U ,b∈{0,1}n [U†|b〉〈b|U]. It therefore
maps the quantum state ρ of an arbitrary system to a classical object since
both U and |b〉 are classical (storable). The expectation and the required
tomographical completeness of the unitary ensemble ensure that this lin-
ear map is bijective: it is guaranteed that for any two states ρ 6= σ there is
a unitary U such that 〈b|UσU†|b〉 6= 〈b|UρU†|b〉. Surjectivity follows triv-
ially from the form of the classical codomain i.e. U†|b〉 is always a pure
state vector by definition and therefore corresponds to some pure (or even
mixed) state with density matrix ρ.

The physical reason for introducing this quantum channel is the represen-
tation of the conventional measurement process in an arbitrary basis with
a simple notation: First the (yet unknown) quantum state ρ is rotated with
a unitary U to the computational basis {|b〉}b∈{0,1}n : UρU†. Next the mea-
surement in the computational basis is taken as projective measurements
on the vectors of the standard basis. This results in outcome b ∈ {0, 1}n

with probability 〈b|UρU†|b〉, following Born’s rule. Finally, as we would
like to have the outcome in the original basis of measurement, we have
to rotate the outcome vector (given by |b〉) back using the same unitary to
obtain a classical description U†|b〉〈b|U.
The defined quantum channel M(ρ) therefore describes the mapping of
the state ρ to its measurement result in expectation over the unitaries U
within the chosen ensemble U and all possible measurement results b ∈
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{0, 1}n. We observe that the inverse of M exactly reproduces the state
as ρ = EU∈U ,b∈{0,1}nM−1(U†|b〉〈b|U). Here, the inverse channel can be
applied computationally on a classical device by bijectivity of M. How-
ever, physically implementing the inverted channel is not possible as it is
not completely positive in its generality. As a quantum channel should
always be a CPTP map, we consider it non-physical.- This is reasonable
since it involved measurements which are known to be connected to loss
of information i.e. irreversibility.

By recalling our goal of predicting a number of expectation values 〈Oi〉
corresponding to quantum state ρ as given by Born’s rule 〈Oi〉 = Tr (ρOi),
we see that Tr (Oiρ) = E[Tr (Oiρ̂)] with ρ̂ = M−1(U†|b〉〈b|U) a classical
snapshot. This classical snapshot could thus be interpreted as a single mea-
surement in the basis represented by a randomly chosen unitary U and
measurement outcome b. The array collecting a series of measurements
with different U and different outcomes b forms S(ρ) = {ρ̂1, ρ̂2, ..., ρ̂N}
and is called a classical shadow. That is, it captures a certain amount of di-
rect information and structure of the underlying state ρ, depending mainly
on the size N of the shadow, that can be used to predict the expectations
Tr (ρOi). Shadow size has a one-to-one correspondence to the number of
measurements and, therefore, measured copies of the state in equation 2.2

To predict single-valued expectations we need to combine our array of
snapshots to a single, ideal expectation-valued snapshot ρ̂ that we use to
calculate any Tr Oiρ̂. The arithmetic mean could be taken. However, the
authors of [59] suggest to apply an alternative that is robust from mea-
surement outliers that could have affected the accuracy of the individual
snapshots in the shadow. Thereby directly referring to applications in ex-
perimental setups. The simple algorithm is called median-of-means: First
the shadow of size N is partitioned into k sets of N/k snapshots and for
each partition the arithmetic mean ρ̂(1), ..., ρ̂(k) is taken element-wise. For
each of these k mean snapshots, the expectation for the desired observ-
ables Oi are taken: Tr Oiρ̂l. Finally the predicted expectation ôi is taken
as the median of all these k expectation values. As such the influence of
outliers on this final prediction becomes exponentially small ([90], [91],
[92]) since a median picks the expectation value in such a way that about
half of the k expectations would have to deviate towards the outliers to
have meaningful effect on the final result. Starting from the k mean values
{ôi

j}j=1,...,k, this can be seen more directly by evaluating the probability
that more than k/2 averages exceed the accuracy ε from the desired ex-
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pectation: Pr[|{|Ôi − Tr Oiρ| ≥ ε}| ≥ k/2] ≤ e−k/2eMε. The inequality
results from taking a Chernoff bound and shows indeed that this proba-
bility becomes exponentially small in k. [93]
Others (e.g. [94],[45]) have remarked that the benefit of median of means
for current experimental platforms over a simple arithmetic mean is in-
significant. Still in more extended studies of the algorithm, like in [95]
under specifically well-behaved noise, this kind of estimator is considered
as more important in future practical situations.

It is worth to point out that although this snapshot looks like a density
matrix and satisfies the trace condition Tr (·) = 1 by construction, it gener-
ally is not positive semi-definite. In fact, it turns out that, by comparison
with conventional state tomography methods, this is the great advantage
of classical shadows [45] since their predictions of expectation values can
converge towards the true value under the only constraint of a unit trace.
Even if the true state is a state on the boundary of the convex space of
density matrices D(H) e.g. the Bloch sphere. Such a state is often hard to
access with traditional state tomography methods since their search space
is restricted to the Bloch sphere. In the end, however, the big advantage
of having snapshots at all, as opposed to direct post-processing towards
certain observable expectations, is that we can take the measurements and
store the snapshots completely classically without requiring the associated
quantum device at a later time. Also the choice of observables can be taken
later, although the procedure can be made more efficient if the observables
are known prior to measurement.
Even stronger, the structure of the shadows, involving U†|b〉 and UρU†,
provides us with the ability to use state representations on our classical
post-processing device that are more efficient in computational resources.
This is true for using MPS representations for states in system that in-
herit the structure of tensor networks, but even more for so-called stabilizer
states [59], [26] [20] (or more recently, graph states [96]).

The simplest examples of useful unitary sets —that are in context also
demonstrated in [59] —are the n qubit Clifford group Cn or the n qubit
Pauli group Pn as introduced in section 1.1.4. For both Cn and Pn the
shadow norm in the lower bound of the sample complexity from equa-
tion 2.2 can be replaced by the Hilbert-Schmidt norm Tr (O2) or a factor
4k · ||O||2∞ respectively. [59] Here k is the locality (or weight) of the observ-
able and || · ||∞ its spectral norm.
The maximum in equation 2.2 then ensures that we extract enough infor-
mation to even cover the most demanding observable. While for observ-
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ables that have small eigenvalues and apply to very few qubits the norm
is small, it can increase rapidly for (nearly) global observables or observ-
ables with considerably large operator norm. In such cases the system size
n can thus still enter indirectly via this shadow norm. Consequently this
approach then does not offer any advantage over state tomography.

Furthermore the authors of [59] prove that, for any protocol that uses
only single-copy measurements and no additional assumptions on the un-
known state, the given bound is information theoretically optimal. (see for
an off-topic proof supplementary section 7 in [59]) This is true for the n-
qubit Clifford unitaries Cn. For other sets of unitaries, like the one repre-
sented by the n-qubit Pauli group Pn, the scale in locality can be slightly
better. e.g. 3k instead of 4k. [59] [35]
Note that this lower bound agrees also with the aforementioned lower op-
timal bound for the general problem of shadow tomography when multi-
copy measurements are used and only 2-outcome POVMs with spectrum
in [0, 1] are targeted. Weakening these constraints for classical shadow es-
timation restricts our abilities to use symmetries and multi-copy structures
in the problem, but makes the practical implementation much easier and
more broadly applicable to physical systems.

Beside the advantageous lower bound on sample complexity, classical shadow
estimation profits from its simplicity. Note that shadow estimation to
some extend is just an equivalent to the naive linear inversion method that
we introduced with complete quantum state tomography in section 1.2. In
fact, choosing an exponential amount of measurements in system size al-
lows one to re-establish the complete density matrix to finite accuracy by
reproducing the expectation

EU∈U ,b∈{0,1}n [ρ̂] = EU∈U ∑
b∈{0,1}n

[M−1(U†|b〉〈b|U)] = ρ

The intuition of why the method is now well-suited for the current prob-
lem is simply that the amount of required information of the predicted
classical shadow is reduced heavily and recycling of information between
different pieces of extractable information —i.e. system properties —is
possible. This yields the bound discussed above.

Still it is quite remarkable how random sampling actually can reproduce
exactly the information that we want without extracting all information.
We will give a quick insight on why this is for the most elementary situ-
ation of Pauli measurements and observables. For simplicity we also use
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just a simple arithmetic mean to find the expectation:
Consider the Bloch sphere representation of the unknown state

ρ =
n⊗

j=1

1
2
(I + αjσx + β jσy + γjσz) =

n⊗
j=1

1
2
(I +−→n j · −→σ )

with−→n j the Bloch vector of the state for each qubit j. We assume a product
state but from linearity the following will generalize also to non-product-
states. Further take the observable O =

⊗n
k=1 σ

(k)
jk

for j ∈ I, x, y, z and a

single Pauli basis measurement P with P(k) ∈ {I, σx, σy, σz} a single-qubit
measurement operator. Importantly, choosing P is conditioned on that it
covers information about the observable O, for Pauli measurements that
is simply P(k) = σjk for any k and jk 6= I. If the observable is locally
the identity, the choice of measurement at that position does not matter
as we can always locally marginalize the probability distribution that we
obtain from the measurement. However, if measurement and observable
disagree both with non-trivial Pauli operators, no information can be ob-
tained about the observable at all. We say that a measurement needs to
"hit" (O . P) the observable [36].
From the perspective of random measurements in classical shadow esti-
mation that means collecting information for an expectation value by sam-
pling enough measurements that hit the corresponding observable. Find-
ing the total number of required measurements therefore boils down to
the statistics of sampling such a P.

The projectors for a measurement P onto the eigenspaces of m different
measurement outcomes b ∈ {−1, 1}n are given by Πi∈{1,m} =

⊗n
k=1

1
2(I +

b(k)i P(k)). Therefore the probability for yielding outcome string b on state

ρ on measuring P is Pr(b|ρ, P) = Tr
[⊗n

k=1
1
2(I + b(k)P(k))ρ

]
.

Our goal is to find the expectation

Tr Oρ = Tr
n⊗

k=1

σ
(k)
jk

ρ = Tr

 n⊗
k=1,σ(k)

jk
6=I

σ
(k)
jk

n⊗
k=1,σ(k)

jk
=I

σ
(k)
I


Performing then our measurement P on the state allows us to introduce
the corresponding outcome string b into this expectation via the above
outcome probability and the use of Born’s rule: Remark that summing
over all possible outcome strings b ∈ {−1,+1}n will eventually cancel the
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term b(k)P(k) in the measurement operator 1
2(I + b(k)P(k)) for any P(k) and

recall Tr P(k)ρ = Tr 1
2(b

(k) + P(k))ρ = b.
Using this to rewrite the second and first factor in Tr Oρ respectively, we
get:

Tr Oρ = ∑
b∈{−1,1}n

Πn
k=1,σ(k)

jk
6=I

Tr
1
2
(P(k) + b(k)) ·Πn

k=1,σ(k)
jk

=I
Tr

1
2
(σ

(k)
I + b(k)P(k))

Here we used in the first factor the assumption that P hits O to replace
the local observable operators by measurement operators since σ

(k)
jk
6= I.

Also note that the second product only picks out those subsystems k with
an observable equal to identity, i.e. where the measurement operator does
not matter. We therefore recognize the marginal probability P̄r(b|ρ, P) for
which we take into account that locally for σ

(k)
jk
6= I also the outcome of

the measurement is irrelevant. Finally then:

Tr Oρ = ∑
b∈{−1,1}n

P̄r(b|ρ, P) ·Πn
k=1,σ(k)

jk
6=I

b(k) = E
b∈{0,1}

Πn
k=1,σ(k)

jk
6=I

b(k)

with the expectation over the measurement outcome strings b. The most
practical way to approximate this expectation is by taking a number of
M independent measurements P for which we obtain different outcomes
b. An arithmetic mean over only those outcomes that correspond to mea-
surements which hit the desired observable O then yields [36]:

Tr(ρ̂O) =
1
µ

µ

∑
m=1

Πn
k=1,σ(k)

jk
6=I

b(k)m

with µ the number of hitting measurements out of all measurements M,
bm the outcome string of measurement m and where the sum iterates all
hitting measurements m.

Obviously there is no well-defined expectation if no measurement hits
the observable. Sampling measurements at random, however, facilitates a
reasonable probability of hitting an observable at least once and therefore
allows a finite confidence of predicting expectations to a certain accuracy
for a finite amount of measurements. Notice that the above is just an ab-
straction of classical shadow estimation compared to how we introduced
it earlier. Since the intermediate step of producing the classical shadow
itself is optional, the same justification for the use of a linear inversion
scheme applies.
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2.3 Experimentally feasible shadow tomography: Classical Shadow Estimation 41

Although we are not directly concerned with predicting non-linear func-
tions in the density matrix ρ in this thesis, it is in the interest of complete-
ness to also mention the capabilities of classical shadow estimation with
respect to polynomial features. Common non-linear quantities of interest
are for example entropy measures of multipartite entangled systems. e.g.
Rényi-entropies as introduced in section 1.3.2 For Rényi-2 entropy there is
a quadratic dependence through the purity Tr (ρ2).

Analogous to linear properties, the expectation Tr (Oρ2) := E Tr (Oρ̂2)
can be obtained from a classical description for ρ̂2. More accurately, we
use the simplification that there exists an Õ for every observable O such
that Tr (Oρ2) = Tr (Õρ⊗2). [59]
By adopting a statistical tool called U-statistics, a snapshot ρ̂⊗2 can be ob-
tained from the original linear snapshots ρ̂ in the protocol.
Essentially U-statistics states that for a set of N observations of a ran-
dom variable X, {X1, . . . , XN}, and a kernel function h(X1, . . . , Xr) of order
r < N, there exists an unbiased and minimum variance estimator [97]

E[h(X1, . . . , XN)|X1, . . . , XN] =

(
N
r

)−1

∑
1≤i1<...<iN≤N

h(Xi1 , . . . , XiN)

This is also called symmetrization of statistics. [59]

For classical shadow estimation with quadratic features this means: Given
N snapshots ρ̂ =M−1(U†

i |bi〉〈bi|Ui), we obtain the quadratic snapshot by
summing over all pairs of linear snapshots:

ρ̂⊗2 =
1

N(N − 1)∑
i 6=j
M−1(U†

i |bi〉〈bi|Ui)
⊗
M−1(U†

j |bj〉〈bj|Uj)

for N(N − 1) pairs of snapshots. Note that we solely adjust the post-
processing of the measurement outcomes, we do not need to change any-
thing on the measurement process itself.
Similar expressions can be found for any other polynomial function of
the density matrix and therefore also for any function with a well-defined
power expansion.

Obviously there is a cost to this procedure in the variance of the estimator
(and thus the required number of linear snapshots N). Compared to linear
function prediction, the sample complexity can be lower bounded, like for

linear features, by N ≥
3 Tr (O2)

ε2 and N ≥
4k

ε2 for global and local Clifford
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measurements respectively. The difference to the bounds following from
eq. 2.1 is that the norm of an observable on multiple state copies ρ can
increase more rapidly and the weight w of observable O is the maximum
over the effective weights of the observable O on each of the copies of ρ.
From a practical point of view, this still scales much more advantageous
than usual state tomography techniques in the lab.

Classical shadow estimation was recently also demonstrated experimen-
tally by Struchalin et al [94] using spatial photon modes. They showed that
with classical shadow estimation a clearly more accurate and unbiased
prediction of fidelity and other linear observables were obtained where
complete state tomography would have failed. However, direct compari-
son was only shown with Maximum-Likelihood-Estimation which is used
practically a lot but which already was known to be biased by its asymp-
totic optimality, as elaborated in the previous chapter. More advanced
protocols and target system properties (non-linear, non-rank-1), that were
included in the numerical analysis of [59], were not considered. Also the
authors used, in contrast to experiments for other incomplete tomogra-
phy protocols (e.g. [84]), single photons instead of multipartite systems.
This takes away any unique quantum mechanical nature and restricts the
assumption of the general benefit for classical shadows. Still it demon-
strates the main predictions on accuracy and efficiency for this way of im-
plementation. The consistency, or independence of state-space dimension,
was not achieved but this was dominantly claimed to be due to issues in
practical implementation of higher dimensional states which resulted in
decreasing estimation accuracy with larger system sizes.

Derandomization

The aforementioned information theoretic optimality restricts our ability
of improvement in sample complexity strongly. As we target near term
feasible solutions to the shadow tomography problem, tightening the as-
sumptions on measurements, observables and possibly occurring quan-
tum states seems therefore the only way to overcome this limit.
A more recent work [36] by the same authors as [59] took the protocol a
step further by a well-known process in computer science [98] [99][100]
called derandomization. Essentially it takes the involved random elements
of the protocol away, e.g. random single-copy measurements for classical
shadow estimation, by fixing them such that the performance of the pro-
tocol is at least as high as for the randomized procedure. [36]
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2.3 Experimentally feasible shadow tomography: Classical Shadow Estimation 43

The performance is measured for each possible choice of measurement by
a cost function that needs to be minimized. Here the cost function orients
itself on our goal to find predictions of expectations for any set of M ob-
servables {Om}1≤l≤L to accuracy of at least ε with high confidence δ. That
is, the probability to fail on the desired accuracy limit for any observable
Oi under measurement set P = {Pi} should satisfy [36]

Pr[( max
1≤l≤L

|ôi−Tr (Oiρ)| ≥ ε)|P] ≤ exp (− ε2

µ(Oi, P)
) := Con f [ε, Oi, P] ≤ δ/2

(2.3)
Where the first inequality uses a Chernoff bound and µ(Oi, P) counts the
(average) amount of "hitting" measurements in the set P for observable
Oi, like defined and used in the preceding subsection. The factor 2 in the
last equality originates from the fact that although a normal probability
distribution is two-sided around the expectation of 0, we only consider
absolute values of deviations. We thus only consider one half of the total
confidence interval described by δ.
The actual probability function itself is far more complicated but it suf-
fices to define the confidence Con f [ε, O, P] as explicit upper bounding cost
function of measurements and observables. This is called an pessimistic up-
per bound on the probability. [101]

Derandomization then starts by treating each local Pauli operator in the
measurement scheme P, P(j)

i for measurement round 1 ≤ i ≤ N and qubit
number 1 ≤ j ≤ n, as random variable, which can take any operator value
from the Pauli group except the identity {X, Y, Z}. This is the completely
randomized situation and corresponds essentially to the original proto-
col of sampling measurements uniformly. The corresponding confidence
bound is easily found since we can consider the only unknown µ(Oi, P)
measurement-wise and qubit-wise: Per local measurement P(j)

i the ran-
dom draw is between three operators. The hitting probability is therefore
1/3 if observable O(j)

i 6= I. On the other hand, if O(j)
i = I the exact choice

for P(j)
i is irrelevant and the probability of hitting —i.e. the probability of

gaining information from the measurement —is one. The measurement
operator is then chosen uniformly at random to not waste the opportunity
of measurement. Extra gained information can then be used for prediction
of other observables, while the information for the local identity observ-
able can be re-obtained from marginalization.
The total hitting probability, and average hitting count µ(Oi, P), of mea-
surement set P on observable Oi is then N · 3−wi , with wi the weight of Oi.
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So for the randomized case the confidence bound becomes

Con f [ε, O, P] = exp(− ε2

µ(Oi, P)
)

The idea of derandomization, in particular the method of conditional expec-
tations [101], is now to replace random variables P(j)

i by a fixed value p(j)
i

such that

Con f [ε, Oi, [P1
1 , . . . , pj

i , . . . , Pn
N]] ≤ Con f [ε, O,i [P1

1 , . . . , Pj
i , . . . , Pn

N]]

This can be done be iterating through all possible values for p(j)
i , deter-

mining the confidence bound Con f [ε, Oi, P] and choosing the p(j)
i with

the tightest confidence. The existence of a p(j)
i satisfying the condition

is guaranteed since the confidence Con f [ε, Oi, P] for random variable Pj
i is

an average over all possible choices. Hence some operator p(j)
i must exist

which has a confidence value below or equal to this average. [101] By fix-
ing this value and considering Con f [ε, O,i [P1

1 , . . . , Pj
i , . . . , Pn

N]] as the new
upper bound on the probability in eq. 2.3, we can repeat the process for
any other random measurement operator Pj

i until all random variables are
replaced. [36] [101]

The above can also be generalized to more observables by taking a union
bound over the probability in eq. 2.3. Combining it with the Chernoff
bound for each observable Oi, the same derandomization procedure can
be applied by considering the total cost over all observables , i.e. [36]

Con f [ε, O, P] :=
N

∑
i=1

e
− ε2

µ(Oi ,P)

Note that the total number of measurement rounds N has to be manually
adjusted to the performance gain of derandomization to make an actual
practical difference. For this, [36] considered an adaptive derandomiza-
tion procedure in which the number of hitting measurements per observ-
able is continuously traced in order to terminate the process as soon as a
measurement threshold for all observables is passed. This ensures that the
measurement scheme is minimal and complete without tight assumptions
on the number of measurements beforehand. Our numerical framework
implements this approach as well.
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2.3 Experimentally feasible shadow tomography: Classical Shadow Estimation 45

Because the confidence bound is highly dependent on the structure and
combinations of observables, no guaranteed performance bound was di-
rectly derived by [36] while one might be able derive one for specific sets of
local observables. More directly, the guaranteed performance bound must
be equal to the randomized procedure from the original protocol since
there is theoretically no guarantee that derandomization actually performs
better. We only require at least equal performance on the cost function in
each step. If, for example, very few (nearly) global observables have an
uncommon structure in the full set of observables, derandomization with
the confidence cost function is highly unlikely to observe and choose them
as measurement operators. Randomized measurements might still have
randomly drawn measurements compatible with such observables, obvi-
ously at the cost of accuracy on other expectations. In the end this thus
boils down to the global-local minima issue in many optimization prob-
lems.
In most generic situations, however, derandomization has been shown to
yield a much lower bound than the random protocol. [36]

Before derandomization, so-called [35] were introduced by [35] with a
very equivalent formalism but with a skewed probability over the ran-
dom choice between {X, Y, Z} on each qubit position and within each
measurement round. This can be seen as partial derandomization. Nu-
merical experiments have, however, already demonstrated locally biased
shadows to perform worse than derandomization for specific cases. [36].
What might make locally biased shadows nevertheless a better alternative
is its still existing partial probabilistic nature. This enables the chance to
sample measurements for few observables with rare structures to be non-
zero.
So although derandomization has shown that sample complexity of the
original protocol can be improved by taking the desired observables into
account, we did not gain any specific guarantees or made any changes
to the actual prediction process. In fact, the possibly better results with
derandomization are not very surprising on themselves. The question
thus remains how to change the process for better sample complexities
by challenging more fundamental restrictions such as those given by the
information-theoretic optimality in [59]. One of the possibilities could be
the customization of shadow tomography to specific applications. In the
next section we introduce one such application candidate which could be
used to benchmark and study the actual experimental use and customiz-
ability of incomplete tomography protocols, like classical shadow estima-
tion, in systems of highly quantum mechanical nature..
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46 Incomplete tomography

2.4 Application: Multipartite spatial entanglement
in photonic systems

One of the most interesting but directly accessible areas of benchmarking
and applying both quantum state tomography and shadow tomography
in the near term is quantum optics. The reason is that much of the re-
quired transformations, state preparations and measurements are easier to
implement in photonics than in, for example, solid state devices. The low
influence of decoherence on a photonic system is an important aspect of
this. Currently coherence times of tens of microseconds are easily achiev-
able, while extension to multiple hours is expected for this platform. All
experimental demonstrations mentioned earlier —e.g. [94] [84] [52] —did
use photonic platforms as well for this reason.

Here we concentrate on one particularly interesting experimental setup
arising in measurements on systems of 4-OAM photons, that are systems
of 4 entangled photons for which we take not the polarization but the spa-
tial orbital angular momentum (OAM) modes in consideration as the pri-
mary degrees of freedom for a subsystem. Orbital angular momentum is a
spatial property of photons that, in contrast to polarization modes, allows
us to have not only two-level (qubit) systems of photons but arbitrarily
large and discrete subsystems (qudits) as well.
Well-known natural bases for discrete OAM modes are the Hermite-Gauss
(HGm

n ) and Laguerre-Gauss (LGl
p) modes with indices m, n, l, p ∈ N. De-

tails on both of these have been discussed extensively in other places [102]
[103] [104] and will not be relevant for the current discussion. As of the in-
structive illustration of orbital angular momentum modes as the gyrating
Poynting vector of a beam around its axis of propagation and the con-
sequently emerging picture of helix-shaped wavefronts, we will assume
a Laguerre-Gauss (LGl

p) basis since it supports this visualization with its
natural description in cylindrical coordinates and an angular momentum
dependent phase factor exp (iφl) [103] [105]. Also we will ignore the index
p and focus fully on l which corresponds to the actual azimuthal orbital
angular momentum number l of the mode. But one should be aware that
this makes LGl

p modes to an incomplete basis ofH.

To reach an effective higher dimensional D = dn state-space H we thus
increase the dimension d of a single subsystem, rather than increasing
the number of subsystems n. By example through increasing the range
of possible values of l for the LG basis. Practically such states are often
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2.4 Application: Multipartite spatial entanglement in photonic systems 47

harder to prepare and to control, the resulting compactness and reduced
circuit complexity for such systems, however, might be still be advanta-
geous. Multipartite entanglement of single photon subsystems that have
many degrees of freedom allows specifically to encode more information
[106] and promises therefore advanced applications in quantum technol-
ogy like quantum cryptography and information transfer in quantum net-
works [107]
One application that is particularly of interest in this context is quantum
secret sharing between multiple parties. Not only because of the increased
information density compared to qubit systems, but also in terms of secu-
rity. [108]
In the context of this thesis, however, the main interest towards this spe-
cific photonic system concerns the study of incomplete tomography pro-
tocols in a eventually useful, but practically feasible environment.

2.4.1 Theory

One way to create systems of OAM entangled photons is pair production
by parametric down conversion (PDC). It is a non-linear scattering process
of an incident pump beam from a laser in an optical, often birefrigent, crys-
tal, which induces occasionally the creation of a photon pair. Photons in
the two resulting beams, conventionally called the signal and idler beams,
have then anti-correlated angular momentum modes. The latter follow-
ing from conservation of angular momentum under the assumption of an
gaussian incident beam with no angular momentum. [103] [105] [109].
Also energy conservation holds naturally when an incident photon even-

tually is converted into a photon pair such that
1

λpump
=

1
λsignal

+
1

λidler
.

Through the non-linearity of PDC process, however, understanding and
creating such systems for more than two photons with discretized degrees
of freedom has been a challenge. [110] [105] Still, entanglement of four
photons has been experimentally observed [111] and, more recently, en-
tanglement between photon pairs particularly resulting from the process
of parametric down conversion (PDC) has been demonstrated and stud-
ied. [105] [112].

The production of useful photon pairs with anti-correlated spatial modes
hinges on the concept of phase matching [103], that is

−→
k pump =

−→
k signal +−→

k idler for
−→
k the wavevectors of each of the beams. This gives rise to differ-

ent types of PDC, depending on the orientation of the wavevectors ,from
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which only type-I PDC will be of interest here. Thus we consider the case
of all photons from pair production having the same polarization which is
orthogonal to the polarization of the incident pump beam. This makes the
process polarization independent and enables us to omit it from the dy-
namical description of the process [103] and, finally, from the description
of the resulting entangled four photon state as well.

A recent thesis [103] discusses also the relevance of different kind of pair
productions in PDC processes, i.e. the ratio between photon pairs pro-
duced by spontaneous parametric down conversion (SPDC) and those re-
sulting from stimulated emission of photon pairs with PDC. Here stim-
ulated emission means, as usual, that a previously created photon pair
stimulates the emission of another nearly identical photon pair in the crys-
tal, while spontaneous emission creates pairs at different positions in the
crystal independently of the existence of pairs in identical modes. In the
case of stimulated emission the two involved pairs are also consequently
entangled and it is therefore the most relevant factor in creating entangled
four photon states. In practice PDC will be a combination of stimulated
and spontaneous pair production.

The difference in production is also represented in the structure of the state
for two entangled photon pairs by the angular momentum that each pho-
ton in a pair carries. We need to treat photons as indistinguishable bosons,
therefore it is not definite which photon occupies which state. To keep
notation simple we use the Fock state basis from second quantization i.e.
the ket |nk1nk2nk3 ...〉 denotes the number of photons nki in the mode with
index ki such that ∑i nki = n, the total number of photons. Independent
pairs in different OAM modes l1 and l2 are then written as |1l11l11l̄11l̄2〉)
and pairs of photons in the same mode l give |2l2l̄〉with l̄ := −l. Note that
when we say a pair is in mode l, we mean that one photon is in the OAM
mode with index l while the other is in mode of −l.

In consequence we also require a description of the PDC process that is
adjusted for second quantization and the angular momentum basis. We
introduce therefore the annihilation operator âk: âk|n1...nk...〉 = |n1...(nk −
1)...〉 and creation operator â†

k : ata†
k |n1...nk...〉 = |n1...(nk + 1)...〉 up to nor-

malization.
The relevant non-linear part Hnl of the Hamiltonian H = Hl + Hnl which
describes the interactions within the PDC was found to be: [for an exten-
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sive discussion and derivation see chapter 3 & 4 of [103]]:

H =
i
2

κh̄
∞

∑
l=−∞

(â†
l â†

l̄ − âl âl̄) (2.4)

States of photon pairs resulting from PDC can then be yielded from expan-
sion of the usual unitary evolution operator exp iHt/h̄ which is applied to
the vacuum state |vac〉. That is the state (usually also denoted |0〉) in which
the system is by definition in its ground state and, in the Fock basis, no
mode is occupied by any photon i.e. in total no photons exist.
The expansion is valid because the non-linear contribution, represented
by κ above, in the total Hamiltonian is very small. This also leads to a
very low pair production rate, in optimal cases on the order of 10−6 per
incoming photon. [113]. This gives:

|ψ〉 = exp (iHt/h̄)|vac〉 ≈ (1 +
i
h̄

Ht− 1
2h̄2 H2t2 + ...)|vac〉 (2.5)

∝ |vac〉+ it
h̄

∞

∑
l=−∞

(â†
l â†

l̄ − âl âl̄)|vac〉

− t2

h̄2

∞

∑
l1=−∞

∞

∑
l2=−∞

(â†
l1 â†

l̄1
â†

l2 â†
l̄2
− â†

l1 â†
l̄1

âl2 âl̄2 − âl1 âl̄1 â†
l2 â†

l̄2
+ âl1 âl̄1 âl2 âl̄2)|vac〉+ ...

= |vac〉+
∞

∑
l=−∞

it
h̄
|1l1l̄〉 −

t2

h̄2

∞

∑
l1=−∞

∞

∑
l2=−∞

(|1l11l̄11l21l̄2〉 − |vac〉) + ...

where we used that âl|vac〉 = 0 for any l ∈ N. While the zeroth order
term, naturally, stays in the vacuum state and creates no photon pair, the
first order term is the creation of a single photon pair. The second order
term then finally corresponds to the states of interest that correspond to
four photons or, equivalently, two photon pairs.

This expression is clearly not normalizable because of the infinite sums
that come without proper weights for each of the l modes. Therefore one
has to include spatial correlations separately. This has been done in an ex-
tensive calculation in [103] but is not further relevant here. Most important
to our application of shadow tomography is rather the rough form of the
state which can still be distilled from equation 2.5 by selecting now only
states where 4 (entangled) photons, i.e. two photon pairs, are involved,
this reduces the state (when properly normalized) to:

|ψ4〉 =
∞

∑
l1=−∞

∞

∑
l2=−∞,l2 6=l1

α(l1,l2)|1l11l̄11l21l̄2〉+
∞

∑
l=−∞

βl|2l2l̄〉 (2.6)
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Now the two different terms also unveil the origin of two pairs within
the state structure. Photon pairs originating from the same position in the
PDC crystal by, primarily, stimulated pair production result in an equal
state i.e. the second term. Photon pairs created at different points by spon-
taneous PDC yield generally different states i.e. the first term.

It is important to remark that in consequence of the no-cloning-theorem
[114] the state can not be split up into the two processes as clearly as it
may seem. Creation of a pair by stimulated pair production will always
also mixture in a term with |1l11l̄11l21l̄2〉 since the photon pair from stimu-
lated PDC is forbidden to be copied exactly.

Another property of the state in equation 2.6 becomes apparent when
one considers the explicit ket-representation: Since |2l2l̄〉 := 1√

(6)
(|lll̄ l̄〉+

|ll̄ l̄l〉 + |l̄ l̄ll〉 + |l̄l l̄l〉 + |ll̄ll̄〉 + |l̄lll̄〉), we see that in each term there is a
binary choice between l and l̄. This allows us to identify l as excitation
in a Dicke state, a special type of entangled quantum state, with a total of
two excitations. We define a typical Dicke state (which includes the well-
known W-state) as

|Dn
m〉 =

1
N ∑
{α}
|d{α}〉 (2.7)

Here the sum is taken over the sets of indices {α} which indicate the po-

sition of m excitations in a system of size n, N =
√
(n

m) and |d{α}〉 =⊗
i/∈{α} |0〉i

⊗
i∈{α} |1〉i [115]. Dicke states have many advantages in prac-

tice, they can not only be easily distilled to different types of entangled
states such as the well-known and maximally entangled GHZ states, but
are also less susceptible to photon loss. [115] [105]

2.4.2 Generalizing classical shadows to qudits

On the way of applying classical shadow estimation to our high dimen-
sional photonic systems is the need for its generalization to qudits. Fortu-
nately a lot of the concepts from the protocol apply one-to-one, but there
are a few points that do not generalize easily.

Measurement Channel

A central point in finding a relevant mapping between measurement out-
comes and classical shadow, as well as in quantifying the performance of
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classical shadow estimation, was the quantum channelM. Finding an ex-
pression for this channel is dependent upon the precise unitary ensemble
that is used for sampling unitaries but will here be restricted to the most
relevant cases of the generalised Clifford group Cn

d (/C n
d ) and the gener-

alised Pauli group Pn
d , also to allow comparison with the qubit case in

[59]. Given its similarity we will largely follow the lines of derivation for
the qubit case given in supplementary section 5 of [59].

As the quantum channel M represents a measurement, it maps by defi-
nition ρ 7→ U†|b̃〉〈b̃|U with probability 〈b̃|UρU†|b̃〉. So in expectation

M(ρ) = E
b̃∈{0,...,d−1}n,U∈E

U†|b̃〉〈b̃|U = E
U∈E ∑

b̃∈{0,...,d−1}n

〈b̃|UρU†|b̃〉 ·U†|b̃〉〈b̃|U

(2.8)
Evaluating this expression is usually possible for each of the unitary en-
sembles in consideration, but often the calculation becomes less cumber-
some when considering the well-studied complete group of unitaries U (dn).
For the Clifford group and its local counterpart, the Pauli group, this is
simple because they are both so-called unitary t-designs.
A unitary t-design is any such ensemble of unitaries E = {αU, Ui} with
probabilities αU for which [22]:

E
U∼E

(U†⊗t
)X(U⊗t) = ∑

U∼E
αU · (U†⊗t

)X(U⊗t) =
∫
U (dn)

dηHaar(U†⊗t
)X(U⊗t)

(2.9)
where dηHaar, the Haar measure, is a unique and unitary invariant measure,
which assigns a uniform (probability) density to the unitary group U . In
words we say that randomly sampling according to distribution −→α from
a unitary t-design E is equivalent to sampling from the complete unitary
group U (dn) when the so-called t-fold twirling operation is applied. That
is the operation under which an operator X ∈ L(H

⊗
t) is conjugated by a

unitary U
⊗

t —where U is randomly drawn from some (possibly infinite)
ensemble —and an average over all unitaries in the ensemble is taken. [22]
[107] More intuitively we can think of this statement as capturing the first
k moments over linear operator X ∈ L(H) of the Haar measure dηHaar
on the unitary group U (dn). That is, the higher the value of t, the more
detailed the unitary ensemble E imitates the full unitary group U (dn) over
the Haar measure dηHaar and the more E approximates it. [22] [116]. While
almost any uniformly distributed, complete and linearly independent set
of unitaries, including the generators of the Pauli group, can form an uni-
tary 1-design, only very few ensembles are known to be 2- or 3-designs.
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This concept is useful in application to eq. 2.8 since:

M(ρ) = E
U∼E ∑

b̃∈{0,...,d−1}n

〈b̃|UρU†|b̃〉 ·U†|b̃〉〈b̃|U

= E
U∼E ∑

b̃∈{0,...,d−1}n

U†|b̃〉〈b̃|(UρU†)|b̃〉〈b̃|U = E
U∼E

U†T (UρU†)U

(2.10)

Here T can be interpreted as another quantum channel T : L(H) →
L(H). The last equality in eq. 2.10 then follows by using an equivalent
characteristic of CPTP maps: the Kraus representation. Given a set of m
operators T1, . . . , TD ∈ L(H) such that they are complete —i.e. ∑i T†

i Ti =
I —and mutually orthogonal with respect to the Hilbert-Schmidt inner-
product, we can represent a quantum channel T by its action on any op-
erator R ∈ L(H): T (R) = ∑i TiRT†

i [12].
Choosing an quantum channel T with Ti = |i〉〈i| for i ∈ {0, . . . , dn − 1} is
then valid since {|i〉}i∈{0,...,dn−1} forms an orthonormal basis and thus in-
deed ∑i |i〉〈i||i〉〈i| = ∑i |i〉〈i| = I and Tr |i〉〈i||j〉〈j| = δij This yields indeed
eq. 2.10.

Recognizing the twirling operation of quantum channel T over the uni-
tary ensemble E and assuming E is at least a 2-design, we can write with
eq. 2.9:

M(ρ) = E
U∼E

U†T (UρU†)U =
∫
U (n)

dηHaarU†T (UρU†)U = Φdep(ρ)

(2.11)
Here the depolarization channel Φdep is originating from noise charac-

terization in quantum information as a very simple model of noise. [8]
Essentially it takes the density matrix of a state and mixes the completely
mixed state in with relative amplitude η. Thus

Φdep(ρ) = ηρ + (1− η)
I

dn

Loss parameter η is then found as [24]

η =
dnF + 1
dn + 1

:=
dn(
∫
H dψ〈ψ|T (|ψ〉〈ψ|)|ψ〉) + 1

dn + 1
(2.12)

with F the average channel fidelity of T over whole pure state-space H.
For integration one usually uses the Haar measure as it assigns equal prob-
ability weights to any pair of states that can be transformed into each other
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2.4 Application: Multipartite spatial entanglement in photonic systems 53

by a unitary transformation. Therefore one often refers to a uniformly
drawn pure state as a Haar-random state.
The emergence of this channel in eq. 2.11 is a result obtainable from the
integral by a direct calculation [117] or diagrammatically based on repre-
sentation theory [118].

To make the expression for the depolarization channel complete, we eval-
uate the integral in eq. 2.12:

η =
dn(∑i∈{0,...,d−1}

∫
H dψ〈ψ|i〉〈i|(|ψ〉〈ψ|)|i〉〈i|ψ〉) + 1

dn + 1

=
dn(
∫
H dψ ∑i∈{0,...,d−1}〈i|

(
|〈i|ψ〉|2|ψ〉〈ψ|

)
|i〉) + 1

dn + 1

=
dn(
∫
H dψ ∑i∈{0,...,d−1}〈i|

(
|〈i|ψ〉|2|ψ〉〈ψ|

)
|i〉) + 1

dn + 1

=
dn(
∫
H dψ Tr |ψ〉〈ψ|) + 1

dn + 1
=

dn(
∫
H dψ) + 1
dn + 1

=
1

dn + 1
(2.13)

Which in the qubit (d = 2) case indeed agrees with [59]. Here we used that
∑i∈{0,...,d−1} |〈i|ψ〉|2 = 1 and the (spherical) symmetry of pure state-space
H to conclude

∫
H dψ = 0.

Visually this channel corresponds to a contraction of the Bloch sphere of
single qubits or, equivalently, shrinking the Bloch vector of a state in its
norm while keeping its orientation the same. [8]

Finally we obtain:

M(ρ) = Φdep =
1

dn + 1
ρ + (1−

1
dn + 1

)
I

dn =
1

(dn + 1)
(ρ + I) (2.14)

Inverting this linear channel is straightforward:

ρ = E
b̃∈{0,...,d−1}n,U∈E

M−1(U†|b̃〉〈b̃|U) = E
b̃∈{0,...,d−1}n,U∈E

(dn + 1)U†|b̃〉〈b̃|U− I

So, as seen before, sampled measurement arrays U†|b̃〉〈b̃|U can be used
to construct classical snapshots ρ̂ for the shadow S(ρ̂), and to reconstruct
expectations ô = Tr ρO = E

b̃∈{0,...,d−1}n,U∈E
Tr ρ̂O, also for qudits.

Restricted by the 2-design property we return to two unitary ensembles
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under consideration: the n-qudit Pauli group Pd
n and Clifford group Cd

n.
By using the separability of tensor products in linear channel M−1, we
can then write:

ρ̂ =M−1 = (dn + 1)U†|b̃〉〈b̃|U − I (2.15)

ρ̂ =
n⊗

i=1

M−1
i =

n⊗
i=1

(
(d + 1)U†

i |b̃i〉〈b̃i|Ui − I
)

(2.16)

for local Pauli measurements {Ui}i∈{1,...,n} with outcomes {|b̃i〉}i∈{1,...,n}
and global Clifford measurements (represented by U) with outcomes |b̃〉
respectively.

Variance bounds

For evaluating the performance of classical shadows based on sample com-
plexity in qudit systems, we would like to adapt the qubit performance
bound from [59] as well.
We recall that the variance for expectation values is given by

Var(Oi) = 〈(Oi − Tr(Oiρ))
2〉 = 〈O†

i Oi〉 − 〈Oi〉(Tr(Oiρ))
∗ − 〈O†

i 〉Tr(Oiρ) + |Tr(Oiρ)|2

= 〈O†
i Oi〉 − |Tr(Oiρ)|2 − Tr(O†

i ρ)Tr(Oiρ) + |Tr(Oiρ)|2

= 〈O†
i Oi〉 − Tr(O†

i ρ)Tr(Oiρ)
(2.17)

In contrast to qubits, we need to respect that generalized Pauli operators
are not Hermitian. If Oi is a Pauli string, we need to account for this.

Consider the situation of reconstructing from a sampled set of measure-
ment outcomes U†|b〉〈b|U, we can write the first term as

〈O†
i Oi〉 = 〈(Tr Oiρ̂)

∗(Tr Oiρ̂)〉ρ̂ = E
b̃∈{0,...,d−1}n,U∈E

∣∣∣Tr OiM−1(U†|b〉〈b|U)
∣∣∣2

Because the measurement channel itself is obviously Hermitian, we can
use the defining property of Hermitian linear maps with respect to the
Hilbert-Schmidt inner-product to write [59]:

Tr (OiM−1(U†|b〉〈b|U)) = Tr
(
M−1(Oi)U†|b〉〈b|U

)
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So then: [59]

Var(Oi) = E
b̃∈{0,...,d−1}n,U∈E

∣∣∣TrM−1(Oi)U†|b〉〈b|U
∣∣∣2 − Tr(O†

i ρ)Tr(Oiρ)

≤ E
b̃∈{0,...,d−1}n,U∈E

∣∣∣TrM−1(Oi)U†|b〉〈b|U
∣∣∣2 − Tr(O†

i ρ)Tr(Oiρ)

= E
U∈E ∑

b̃∈{0,...,d−1}n

〈b̃|UρU†|b̃〉
∣∣∣TrM−1(Oi)U†|b〉〈b|U

∣∣∣2 − Tr(O†
i ρ)Tr(Oiρ)

= E
U∈E ∑

b̃∈{0,...,d−1}n

〈b̃|UρU†|b̃〉
∣∣∣〈b|U(M−1(Oi)U†|b〉

∣∣∣2 − Tr(O†
i ρ)Tr(Oiρ)

≤ max
σ∈D(H)

E
U∈E ∑

ildeb∈{0,...,d−1}n

〈b̃|UσU†|b̃〉
∣∣∣〈b|U(M−1(Oi)U†|b〉

∣∣∣2 − Tr(O†
i ρ)Tr(Oiρ)

(2.18)

Considering first the case of Hermitian observables (e.g. qubit Pauli op-
erators), we can safely ignore the constant term Tr(Oiρ)

2 and make the
first term explicit instead. This is because we only want to find an up-
per bound on the variance. Constant here means invariant with respect to
which measurements (represented by U) are chosen and which outcomes
|b〉 those measurements yield respectively. Under these assumptions, eq.
2.18 is exactly the expression from eq. 2.2, the shadow norm ||Oi||shadow.
So writing Var(Oi) ≤ ||Oi||2shadow implies that estimating the variance boils
down to finding an explicit expression for the shadow norm. Dependence
on the measurement channel M requires us to do so separately for any
unitary ensemble that we choose for the measurements. Bounding the
shadow norm is also where qudits start to deviate from qubits.

For global Clifford measurements we refer back to eq. 2.16 and note the
equivalence of the shadow norm when replacing Oi by its traceless coun-

terpart Ōi = Oi − Tr (Oi)
I

dn, as remarked by [59].
This simplifies the expression for the inverse channel on the observable to
M−1(Ōi) = (dn + 1)Ōi. So we write [59]:

||Oi||2shadow ≡ ||Ōi||2shadow = max
σ∈D(H)

[EU∼E ∑
b∈{0,1}n

〈b|UσU†|b〉
(
〈b|U(dn + 1)ŌiU†|b〉

)2
]

= max
σ∈D(H)

Tr
[

σ EU∼EU†|b〉〈b|U
(
〈b|U(dn + 1)ŌiU†|b〉

)2
]
(2.19)
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The form of the expression suggests —like in the preceding section —to
use t-design properties to simplify the expression further. The problem
now arises that the dependence on unitary U is three-fold, i.e. we must
consider the three-fold twirl operation. This implies the use of 3-design
characteristics. Unfortunately, while the qubit Clifford group is indeed a
3-design, the generalized Clifford group C d

n is generally only a 2-design.
[22]. In fact, only Clifford groups for subsystem dimension d = 2q; q ∈ Z+

have been identified as 3-designs. [22].

For those values of d, we can conclude a bound easily while we leave the
variance for general d as open question. Here we are mainly interested in
gaining insight into the changes in known bounds for qubits. It is expected
that a thorough examination of expectation over the generalized Clifford
group will yield very similar bounds. This is motivated by the fact that
classical shadow estimation was not the first protocol of its kind.

Independently of [59], a yet disregarded work by Morris et al [14] intro-
duced the Selective Quantum State Tomography (SQST) protocol. With an
similar approach to partial tomography, they have shown that equivalent
bounds can be derived when considering measurement and reconstruc-
tion in arbitrary mutually unbiased bases instead of the MUBs induced by
the Pauli matrices.
On predicting a single observable, also [119] achieved an equal perfor-
mance guarantee to global Clifford measurements for classical shadows.
Although their method is comparable in structure, they used random sin-
gle qubit rotations instead and a deviate more clearly on post-processing.
Both works suggest an straightforward extension of the bounds obtained
through the use unitary t-designs.

Completing the examination of the shadow norm for appropriate d, which
allow the use of 3-design properties, we get: [59]:

||Oi||2shadow = max
σ∈D(H)

Tr (σ
(dn + 1)2(Tr (Ōi

2
)I + 2Ōi

2
)

(dn + 2)(dn + 1)
)

=
dn + 1
dn + 2

max
σ∈D(H)

Tr Ōi
2
+ 2 Tr σŌi

2 ≤ 3 Tr (Ōi
2
) ≤ 3 Tr (O2

i )

(2.20)

where the system size dependent prefactor 0 <
dn + 1
dn + 2

≤ 1 was ignored

since it pushes the estimated upper bound only further down. We refer to
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[59] and [118] for details on evaluating the integral over U (dn) for t = 3
instead of t = 2, which leads to the above equality.
To conclude on the inequalities, the relation || · ||∞ ≤ Tr (·)2 between the
standard operator norm Tr (·)2 and the spectral norm || · ||∞ was used.
[12] [59] To unify the two terms in the second to last equality, note that
maxσ∈D(H) Tr (σŌi

2
) = ||Ōi

2||∞.
Although this expression matches exactly with [59] for qubits, and has
therefore no direct dependence on subsystem dimension d, the d-dependence
reappears indirectly in the Hilbert-Schmidt norm of the observable. Often
as worse as dn.

For non-Hermitian observables the calculation becomes not much more
complicated. We note that by maximizing over states σ, the second term
in eq. 2.18 Tr(O†

i σ)Tr(Oiσ) can be upper-bounded by |λmax(Oi)|2 and can
therefore be ignored as a constant as well. For the shadow norm we thus,
again, use only the first term. Equally we observe that because classical
shadows have unit trace by construction, i.e.

Tr(O†
i ρ̂)− Tr(Oiρ)

∗ = Tr(Õi
†
ρ̂)− Tr(Õiρ)

∗

for Õ†
i = O†

i −
Tr(O†

i )

dn I, the variance of Oi is independent of the trace of O†
i

as well [59]. That is, ||Oi||2shadow = ||Õi||2shadow, also in the non-Hermitian
case.

We again proceed by assuming 3-design compatible values of d and by
applying eq. 12 from [118] on eq. 2.19 now explicitly:

||Oi||2shadow = max
σ∈D(H)

Tr (σ
(dn + 1)2(Tr (ŌiŌi

†
)I + ŌiŌi

†
+ Ōi

†Ōi)

(dn + 2)(dn + 1)
)

=
dn + 1
dn + 2

max
σ∈D(H)

Tr (ŌiŌi
†
) + Tr (σŌiŌi

†
) + Tr (σŌi

†Ōi)

(2.21)

≤ 3 Tr (ŌiŌi
†
) ≤ 3 Tr (ŌiŌi

†
) (2.22)

since O†
i Oi = OiO†

i is always Hermitian. Further the same arguments as
for eq. 2.19 apply.

For local Pauli measurements, we reconsider the shadow norm eq. 2.2
with the corresponding local inverse channel from eq. 2.16. For Hermitian
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observables Oi this means:

||Oi||2shadow = max
σ∈D(H)

E
Ui∼E

[

 n⊗
j=1

∑
b∈{0,...,d−1}

〈bj|Uj

 σ

 n⊗
j=1

∑
b∈{0,...,d−1}

U†
j |bj〉


·

 n⊗
j=1

∑
b∈{0,...,d−1}

〈bj|Uj

 Φ⊗n
dep(Oi)

 n⊗
j=1

∑
b∈{0,...,d−1}

∑
b∈{0,...,d−1}

U†
j |bj〉

2

]

(2.23)

The problem changes only slightly compared to global Clifford measure-
ments since the form of the shadow norm is similar. Through the locality
of measurement unitaries {Uj}j∈{1,...,n} and outcomes {|b̃j〉}j∈{1,...,n} we,
however, need to distinguish between the most general case of global ob-
servables Oi that operate on at most w qudits and w-qudit tensor products
of local observables Oi =

⊗n
j=1 O(j)

i . [59]

The latter case means Oi = (
⊗w

j=1 O(j)
i )

⊗
I⊗(n−w) and makes the shadow

norm separable. Moreover, from eq. 2.23 and Φdep(I) = I , the equiva-
lence of the shadow norm for the n-qubit observable Oi and the w-qubit
non-trivial part follows: ||Oi||2shadow = ||(⊗w

j=1 O(j)
i )||2shadow

Together this yields:

||Oi||2shadow = max
σ∈D(H)

Tr[σ
w⊗

j=1

E
Uj∼E

∑
bj∈{0,...,d−1}

U†
j |bj〉〈bj|Uj

·
(
〈bj|Uj

(
(d + 1)O(j)

i − I
)

U†
j |bj〉

)2
]

(2.24)

Also in this case we encounter the problem of a three-fold dependence on
the local unitaries Uj and therefore a requirement for the unitary ensemble
E to be a 3-design. Neither for the generalized single-qudit Clifford group
nor for the generalized Pauli group this is the case unless the dimension
d is a power of two. [22] For these subsystem dimensions we proceed as
before by using the explicit form for the expectation over the single-qudit
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Clifford group C d
1 from [59] and [118]. We find:

||O||2shadow = max
σ∈D(H)

Tr

σ
w⊗

j=1

(d + 1)2 Tr (O(j))2I + 2(O(j))2

(d + 2)(d + 1)


=

(
(d + 1)
(d + 2)

)w

max
σ∈D(H)

Tr

σ
w⊗

j=1

Tr ((O(j))2)I + 2(O(j))2


=

(
(d + 1)
(d + 2)

)w

max
σ∈D(H)

Πw
j=1 Tr ((O(j))2)) + 2 Tr (σ

w⊗
j=1

(O(j))2)


=

(
(d + 1)
(d + 2)

)w

max
σ∈D(H)

Πw
j=1 Tr ((O(i))2)) + 2 Tr (σ

w⊗
j=1

(O(j))2)


≤
(
(d + 1)
(d + 2)

)w

Πw
j=1(Tr ((O(j))2)) + 2||(O(j))2||∞) ≤ (d + 1)w · ||Õ||2∞

(2.25)

Additionally to the factorization of the spectral norm under tensor prod-
ucts ||P⊗Q||∞ ≤ ||P||∞ · ||Q||∞ [12], we used the same identities as for
eq. 2.20. This is indeed consistent with the qubit bound (d + 1)w · ||Õi||2∞
for {O(j)}j=1,...,w Pauli operators. Note that the actual position of the w
non-identity Pauli operators is irrelevant to the shadow norm.

If the observable Oi is global, it can nevertheless always be expanded
into a sum of tensor products of observables on individual qubits Õk. So
Oi = ∑k ckÕk. The expression in eq. 2.23 is then not separable and the
proof of a bound on the shadow norm becomes somewhat more involved.
Since the derivation deviates only on few points for qudits (particularly in
eq. S59 in [59]), we leave the proof to section S5C of [59]. Note that be-
cause the Pauli group is isomorphic to tensor products of the single-qudit
Clifford group, the arguments are solely based on the assumption that the
local observables are represented by Pauli operators.
Qubits yield a scaling of the shadow norm by 4w · ||Õi||2∞ [59], where the
factor 4w originates from counting the number of non-trivial Pauli strings
of length w. In the proof this follows from a binomial series ∑q.s 3|q| =

3w ∑k
i=0 (

k
i)
(

1
3

)i
= 4w for fixed measurement Pauli string s ∈ {X, Y, Z}w,

|q| the weight of observable Pauli string q and . the condition of s to hit
q. (see section 2.3). So in general, for a cardinality d2 − 1 ofWn

d \I, we can

59



60 Incomplete tomography

replace (3 + 1)w = 4w by (d2 − 1 + 1)w = (d2)w. It is important to remark
the reappearance of dependence on the 3-design property in the proof.
A derivation independent of this property has been given by [35] for qubits,
but the same generalization to qudits holds there as well. It is assumed,
however, that local measurements are solely taken in the Pauli basis. This
is also the assumption we took in the numerical experiments due to the
same current restriction of derandomization to Pauli measurements.[36]

For non-Hermitian local and global observables Oi = Õi ⊗ I(n − w), all
steps follow equivalently and yield a bound ||O||2shadow ≤ (d+ 1)w · ||Õi||2∞
and ||Oi||2shadow ≤ (d)w · Tr (ÕiÕi

†
) respectively instead.

Finally to find the variance and sample complexity over M observables,
instead of a single observable, we can apply a union bound. That is [8]

Pr[
M⋃

m=1

(ô− Tr (Oiρ)| ≥ ε)] ≤
M

∑
m=1

Pr[ô− Tr (Oiρ)| ≥ ε] ≤ M
Var(Oi)

ε2δ
∝ N

(2.26)
So the probability to fail in collective prediction of M observables to accu-
racy ε is upper bounded by the sum of individual probabilities.
Here the probability over M observables can be interpreted as the prob-
ability that the maximum deviation over all observables is exceeding the
accuracy ε. The second inequality is a simple Chebyshev bound with δ a
confidence parameter. [8]. By using medians of means prediction, rather
than an arithmetic average, the linear scaling in M can eventually be re-
duced to a log(M) dependence and the δ-dependence be removed. [59]

Putting everything together we find that classical shadow estimation with
global Clifford measurements enables us to predict M observables Oi =(
⊗w

j=1O(j)
i

)
⊗ I
⊗(n−w)
d with an accuracy of at least ε using

N ≥ log(M) · 3 ·max
i

Tr (O†
i Oi)

ε2 = log(M) · 3 ·max
i

Tr (O2
i )

ε2

copies of quantum state ρ for qudits, like for qubits. The latter equality
obviously only holds for Hermitian observables. Equally for local Pauli
measurements we obtain a sample complexity of

N ≥ log(M)
(d)w

ε2 ·
w

∏
j=1

Tr
(
(O(j)

i )†O(j)
i

)
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for observables that operate on at most w qudits. Hermitian observables
Oi = Õi ⊗ I(n− w) can be further upper-bounded by and

N ≥ log(M)
(d2)w

ε2 · ||Õi||2∞

respectively. If the observable can be decomposed into tensor products
of single-qudit observables, the scaling in subsystem dimension d is re-
duced significantly by a sole indirect dependence in the maximal Hilbert-
Schmidt norm of the local observables. Also note that an upper-bound
implies only worst-case scaling.
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Chapter 3
Numerical experiments

Based on the collected insights from shadow tomography, numerical ex-
periments were performed to illustrate the practical advantage of classical
shadow estimation over quantum state tomography. Subsequently for ex-
perimental relevant situations, such as spatially entangled 4-photon sys-
tems described in the last chapter, we assess performance under exper-
imentally feasible conditions. First reproduction of some basic but key
results from earlier studies are demonstrated.

3.1 Framework

A central objective in designing the code structure were flexibility and re
usability. Hardcoding the targeted systems was prevented as much as pos-
sible while classical computational resources were equally addressed. As
such, a modular program was constructed using the Julia language [120]
to yield highest possible performance in compromise with readability and
compactness of code. Performance is important because of the exponential
amount of information about the true quantum state that needs to be pro-
cessed and stored when simulating a measurement protocol. After mea-
surements are performed, the computational complexity reduces to actual
specifications of the post-processing step in the specific protocol. Note
that under experimental conditions only the latter performance specifica-
tion is relevant since only the design of a measurement scheme and the
post-processing of measurement outcomes are required. For numerical
comparison with an experiment, one can adjust the code to work with ef-
ficient representations that fit to possibly known structures of the states
in consideration. We refer to [121] for the open-source code, basic usage

63



64 Numerical experiments

instructions and example experiments for our implementation.
The framework was built from, and designed around, the minimal open
source Python implementation of Huang et al [122]. This includes the ran-
domized and derandomized sampling procedures for local Pauli measure-
ments as proposed in [36], as well as the shadow prediction method for
local observables from [36].

We remark that during finalization of this thesis, a new complete imple-
mentation for the Qiskit-based Python framework Pennylane [123] was
published. It implements the general and original protocol in [59] such as
it was presented in this thesis. However, it does not include a generaliza-
tion to qudit systems.

Before we describe general methods in the different steps of the numerical
framework, we start by introducing a useful formalism which was mainly
used for the benchmarking simulations.

3.1.1 Stabilizer formalism

One tool that we have been focussing on to speed up performance of
the numerical framework is the stabilizer formalism as first introduced by
Gottesman [20] in 1997 in the context of quantum error correcting codes
[124] [125] [8]. The formalism allows to simulate a particular subset of
quantum states, known as stabilizer states, and their evolution efficiently
on a classical computer. That is instead of the usual exponential computa-
tional cost of simulating quantum circuits, the cost is only polynomial in
system size. This result is known as the Gottesman-Knill theorem [124] [26].
Importantly it restricts evolution to unitary evolution by elements in the
Clifford group from section 1.1.4, measurements in the computational ba-
sis and Clifford operations conditioned on measurement outcomes. Thus
any circuit which consists only of Hadamard, Phase and CNOT gates, as
well as measurements, can be simulated efficiently on classical devices.

Although this set of operations, generating the Clifford group, is incom-
plete in perspective of universal quantum computation, some fundamen-
tal quantum algorithms in quantum information processing rely only on
Clifford operations. For example quantum teleportation [126] and super-
dense coding [8]. Also interesting states like the GHZ-state and cluster
states can be prepared and studied. Other well-known quantum algo-
rithms like Shor’s algorithm, Grover’s algorithm or the Deutsch-Jozsa al-
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gorithm require additionally universal quantum gates like the Toffoli gate,
also known as the 3-qubit CCNOT gate. Adding only a single such uni-
versal gate to the generators of the Clifford group allows us to approx-
imate any operation on universal quantum devices. Only circuits with
few non-Clifford gates can be approximated in classical simulations. [127]
Nevertheless, our choice to restrict some numerical demonstrations to the
stabilizer formalism is mainly motivated by the capabilities to simulate
data acquisition protocols on classical devices for high dimensional state-
spaces.

A stabilizer of a state |ψ〉 is any such unitary operator X ∈ L(H) for which
X|ψ〉 = |ψ〉. It is easy to see that those operators form a group Stab(|ψ〉)
since the identity operator I, the product XX′: (XX′)|ψ〉 = X(X′|ψ〉) =
X|ψ〉 = |ψ〉 and the inverse X−1 = X†: X−1|ψ〉 = X†|ψ〉 = X†X|ψ〉 = |ψ〉
stabilize any state |ψ〉 for any X, X′ ∈ Stab(|ψ〉). Representing the state |ψ〉
uniquely with a generating set of such a finite group instead of a collection
of complex amplitudes would benefit from the rich field of group theory
and forms the basis of the stabilizer formalism. Unfortunately, the gener-
ating set of a group Stab(|ψ〉) for an arbitrary quantum state |ψ〉 still turns
out to scale exponentially in system size and would thus change notation
but not processing cost on a classical device. When restricting ourselves
to highly structured set of states, we can however consider a considerably
smaller subgroup S(|ψ〉) = Stab(|ψ〉) ∩ Pn [26] i.e. the intersection with
the n-qubit Pauli group Pn as introduced in section 1.1.4.
The state |ψ〉 can then be represented by only 2n stabilizers that form an
abelian group generated by O(n) stabilizers. [26] The latter follows since
any group with cardinality |G| is guaranteed to be representable uniquely
by log2(|G|) generating elements [8], any other stabilizer arises from the
product between a pair of generators. This stabilizing group must be
abelian since only commuting operators have common eigenvectors and
therefore have a non-empty intersection in Hilbert space H that corre-
sponds to the stabilized state |ψ〉. Henceforth we will refer with stabilizer
to elements in the generating set.

This then indeed reduces the cost of representing a state with an exponen-
tial number of density matrix elements to a linear scaling number of gen-
erators for the stabilizer group. Also simulating the evolution of a state on
a classical machine becomes as easy as keeping track of the correspond-
ing stabilizers of the state. Unitary evolution by U, for example, simply
involves updating X 7→ UXU† since U|ψ〉 = UX|ψ〉 = (UXU†)U|ψ〉 so
UXU† stabilizes U|ψ〉.
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The formalism was improved by Aaronson and Gottesman [26] in 2004 by
also keeping a record of the destabilizers of a state. Destabilizers are mu-
tually commuting Pauli strings that complete the set of stabilizers to form
together a generating set of the Pn. Every destabilizer has a correspond-
ing anticommuting stabilizer, while it commutes with all other stabilizers.
Adding information about destabilizers improves computation efficiency
of important subroutines by simplifying them. This is relevant since al-
though unitary evolution is straightforward to implement, other opera-
tions like measurements are not. Adding destabilizers improves the run-
time of measurements from O(n3) to O(n2).[26] The required storage is
obviously increased but still only grows linearly in system size.

Although the information one can yield from the stabilizer formalism is
restricted in more general cases, the ability of capturing even highly en-
tangled states ,like the maximally entangled GHZ state (see figure 1.2), is
remarkable. In consequence of the ability to classically simulate such sys-
tems, however, somewhat weakens the common conception of entangle-
ment as main ingredient of quantum advantage. One namely identifies the
additional assumption for correct exploitation of entanglement in order to
actually outperform classical devices. [126] This aspect is also reflected
in the kind of states that fall outside the range of stabilizer states, these
are generally known as magic states but are actually far more diverse in the
way they differ from stabilizer states. See [128] for an extensive discussion.

To translate the concept of stabilizers to an implementable algorithm, we
exploit the defining normalizing property of the Clifford group Cn with
respect to the Pauli group Pn as we introduced in equation 1.3 of section
1.1.4. Applying any Clifford unitary to a tensor product of n Paulis P with
a certain phase eiπk yields another Pauli string P′ with some other phase
eiπk′ , so eiπk · CPC† = eiπk′P′. With the way how stabilizers transform we
can thus see that we consistently stay within the chosen restricted set of
stabilizers from the Pauli group if we apply only Clifford operations. Here
we follow the definition of [26] of a stabilizer state as any such state that
can be obtained from applying Cliffords to the vacuum state |0〉

⊗
n. The

stabilizer group of the vacuum state is trivially generated by {Z1, .., Zn}
with Zi the identity on all qubits except a Pauli Z = σz on qubit i. Ap-
plying Hadamard, phase and CNOT gates with U locally then transforms
the generators to the Pauli operators which stabilize the new state U|ψ〉.
Bookkeeping of the exact Clifford operations allows for yet another repre-
sentation of the state without keeping track of the complex amplitudes in
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the computational basis.

The key idea is now that unitaries can be uniquely defined by their action
on Pauli strings since for n qubits [23]:

X̄j := UXjU† = (eiπ)rj
n⊗

i=1

X
αji
i Z

β ji
i (3.1)

Z̄j := UZjU† = (eiπ)sj
n⊗

i=1

X
γji
i Z

δji
i

for 1 ≤ j ≤ −n, bit-strings r, s ∈ Zn
2 and matrices α, β, γ, δ ∈ Zn×n

2 . Fixing
these parameters defines then the Clifford U, including the corresponding
stabilizer state, uniquely: Let U, U′ ∈ Cn such that for fixed Pauli oper-
ator P = XxZz ∈ Pn we have UPU† = U′PU′†. Then U = U′ since
U′†UP = PU′†U forces U′†U = I up to a global phase. The latter follows
because only the identity commutes with all Pauli operators P. [28]
This description includes also the action on the Pauli-Y operator since
σxσz = −iσy = −iY which gives with the above relations:

UY(j)U† = −i(UX(j)Z(j)U†) = −i(UX(j)U†UZ(j)U†)

= −i((eiπ)rj
n⊗

i=1

X
αji
i Z

β ji
i )(eiπ)sj

n⊗
k=1

X
γjk
k Z

δjk
k )

Equally the action of U on any other Pauli string can be found this way
from the logical operators X̄j and Z̄j. These logical operators can both en-
code the action of a unitary, and therefore the unitary itself, but also the
state that is stabilized by Z̄j for 1 ≤ j ≤ n since those Pauli strings corre-
sponded to the vacuum state before the unitary was applied.

The choice of parameters (r, s, α, β, γ) can, however, not be arbitrary since
mapping from a set of stabilizers to another set of stabilizers needs to pre-
serve commutation relations. Otherwise the resulting stabilizers would
not form a stabilizer group anymore. Preserving commutation relations is
equivalent to preserving a particular bilinear form called the symplectic
inner product. The tuples of vectors (−→αi ,

−→
βi and (−→γi ,

−→
δi ), from the right

hand side of equation 3.1, each just define a complete n-qubit Pauli string.
The symplectic inner product

⊙
of these two Pauli strings then just tells

us whether they commute or anticommute:

(−→αi ,
−→
βi )

⊙
(−→γj ,
−→
δj ) = 〈−→αi ,

−→
δj 〉

⊕
〈−→βi ,−→γj 〉 =

{
1, iff (αi, βi) commute
0, iff (−→αi ,

−→
βi ) anticommute
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with
⊕

modulo 2 addition.

Fortunately compact representations for the parameter set {α, β, γ, δ} ex-
ist which preserve symplectic inner products between stabilizers. It is
known as the Symplectic group Sp(2n, Z2n

2 ) of size 2n over the finite field
F = Z2n

2 , and contains block matrices of the form

(
α β
γ δ

)
=

 x11 . . . x1n z11 . . . z1n
... . . . ...

... . . . ...
x2n1 . . . x2nn z2n1 . . . z2nn

 ∈ Z2n×2n
2 (3.2)

with xij, zij ∈ {0, 1} such that for Pauli string in row i:Pi =
⊗n

k=1 Xxik
k Zzik

i .
[26] [23] Elements, like eq. 3.2, of the symplectic group must be a symplectic
matrix S satisfying:

SΩST = Ω; for Ω =
n⊕

i=1

(
0 I

I 0

)
(3.3)

where Ω is the matrix representation of the symplectic inner-product. [23]
The phase parameters r and s are not constrained and therefore stored sep-

arately in a single phase vector
(−→r
−→s

)
∈ Z2n

2 .

When we use symplectic matrices to encode unitaries by their action or
stabilizer states through their generating unitaries, we call them tableau
(or check matrix). It is easy to see that the initial state, the vacuum state,
would correspond to the (2n× 2n)-identity matrix. Further we see from
the definition of (α, β, γ, δ) and eq. 3.2 that the first n rows in a tableau
correspond to logical operators X̄j and therefore the destabilizers, while
the last n rows define the logical operators Z̄j corresponding here directly
to the stabilizers.
Beware that in our implementation we define a tableau as the transpose of
eq. 3.2 because of the unusual order of dimensions for arrays in the Julia
language.

Note that also mixed states can be represented by stabilizer states through
purification: Any mixed state can be represented by a non-unique pure
state on a larger system. Obtaining such a purification in form of a tableau
for a given mixed state, simulating the desired stabilizer circuit on the
larger system and tracing out the previously added ancillas, results in a
state that is completely equivalent to the state one would have obtained
by direct operation of the circuit on the mixed state. [26]
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The quadratic, instead of exponential, growth of the tableau size with
number of qubits n appears also here beneficial to the density matrix.
In fact, all operations can be implemented via some operation on this
(2n× 2n)-bit array and the phase vector. For the tableau, for example, Clif-
ford gates can be easily applied by elementary column operations. While
the Hadamard gate interchanges the X and Z tableau values for a single
qubit a, the phase gate adds the column of values for X to the column vec-
tor of Z of the same qubit. [129] As the exact routines of the individual
operations are quite detailed and neither very insightful, nor of further in-
terest here, we refer for instructions and derivations to [26] Fortunately the
framework as proposed by Aaronson and Gottesman has been extensively
studied in the literature and implementations for various languages read-
ily existed. For qubits we combined two incomplete Julia frameworks,
Juqst.jl [130] and QuantumCliffords.jl [131] to implement tableaus and ba-
sic operations on them.

Measurements

Measurements, however, are a special case since they generalize non-trivially
to higher subsystem dimensions d. Therefore we will give a brief overview
of their implementation as is described in [124] [26]
We consider within this framework solely projective measurements on
pure states. Also we have performed measurements qubit- and qudit-
wise. By simulating global or local Clifford unitaries on the tableau that
corresponds to the original state |φ〉, we obtain the state tableau in the
computational basis |ψ〉 = U|φ〉. The following procedure is repeated
over each qubit a of the system by focussing on the Pauli operators given
by columns a and a + n (eq. 3.2), but beware that any operation is applied
to the complete tableau:

For qubits, computational basis measurements are based on whether the
stabilizers S(|ψ〉) of state |ψ〉 commute or anticommute with the measure-
ment operator. If we have a set of measurement operators {Mi}i, with
outcome i labelling the corresponding eigenvalue λi, the measurement co-
incides with the projection P± = (I + λi Mi). In the computational, i.e.
Pauli-Z, basis, we thus apply the projection P = (I± Z) depending on the
measurement outcome ±1.

If there exists a stabilizer V that anticommutes with the measurement op-
erator Mi = ±Z, {Mi, V} = 0, the measurement is incompatible with the
current state. When there are multiple options for choosing V, we define
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V to be the first incompatible stabilizer in the tableau. In this case the
measurement outcome is random. By the fact that Y, Y, Z represent three
different MUBs, we know that all stabilizers V —which correspond to a
different eigenbasis than the measurement operator —must have eigen-
vectors that are all equidistant to all eigenspaces of Mi. The probability to
project with P into the eigenspace of outcome i is thus the same for all i.
Therefore we sample the outcome uniformly at random.

Next the post-measurement state must be obtained in preparation for the
measurement on the next qubit by simulating the collapse of the state ac-
cording to measurement Mi with outcome i. This is called post-selection.
The essential task is to find (de)stabilizers that are compatible with mea-
surement operator Mi such that when repeating the measurement on the
same qubit, no stabilizer V can be found. This is done by overwriting the
destabilizer corresponding to V by V and replacing the stabilizer V itself
by the measurement operator Mi. Additionally we post-select on the spe-
cific outcome (phase) by storing the outcome as the phase of the new sta-
bilizer Mi in the phase vector of the stabilizer state |ψ〉. Finally, by consid-
ering all other stabilizers and destabilizers Wj that anticommute with Mi,
we can make them compatible as well by replacing them one-by-one with
the product of Pauli operators VWi. Since [Mi, (VWi)] = (−VMi)Wi −
(V(−MiWi) = 0. Returned are the outcome and post-selected state.

If no incompatible stabilizer V can be found in the first step, then the state
is already its own projection on the measurement basis and the outcome is
deterministic. We thus only need to read out the outcome i. Here it will be
useful to consider the full tableau, rather than only the columns of qubit a.
A superscript (i) will denote the operator which acts trivially on all qubits
but i.
Because the stabilizers form a generating set for the stabilizer group S(|ψ〉)
and all of them commute with the measurement operator Z(a), we can al-
ways write Z(a) as a product of all stabilizers. Translated to the symplectic
tableau, this corresponds to the sum

n

∑
q=1

Cq
−−−→
S(n+q) = (eiπ)h−→Z (a)

for Cq ∈ [0, 1], a phase h ∈ {0, 1}, −→Z (a) the symplectic row vector of Z(a)

and
−−−→
S(n+q) the (n + q)th row vector in the tableau.
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Starting from the measurement operator with phase h = 0, correspond-
ing to the outcome +1, M = Z(a), we want to know which phase h the
stabilizers force on this Pauli operator. Thus which Mi = ±Z follows. The
coefficients Cq can be obtained from recalling one of the defining proper-
ties of destabilizers, namely that each destabilizer anticommutes with its
stabilizer but commutes with all other generating stabilizers in S(|ψ〉). As
indicated in the preliminaries, we consider a symplectic inner-product of
0 to represent commutation between Pauli operators.
So then

−−→
S(q′)

⊙−−−→
S(n+q) = 1− δq′q and therefore

−→
Sr
⊙(

n

∑
q=1

Cq
−−−→
S(n+q)

)
=

n

∑
q=1

Cq

(−→
Sr
⊙−−−→

S(n+q)

)
= Cq =

(−→
Sr
⊙−→

Z (a)
)
∈ {0, 1}

This reduces the task to multiplying all destabilizers P(
−→
Sr ) in the tableau

for which Cq 6= 0, including their phases from the separate phase vector.
The phase corresponding to the product then agrees with the phase h of
Z(a) and therefore defines the measurement outcome.
As the measurement was deterministic, the state stays unaffected and no
post-selection is required. We finally return the measurement outcome
and state for the next measurement.

Generalizing to qudits

For qudits the reasoning from the qubit case can be applied completely in
analogue but using the generalized Pauli group Pn

d and generalized Clif-
ford group Pn

d from section 1.1.4. However, not only the formalism itself
generalizes easily, also the efficient simulation of qudit stabilizer systems
(i.e. the Gottesman-Knill theorem) was shown to be generalizable. [29]

The starting point is again to identify stabilizers from Stab(|ψ〉), for a state
|ψ〉 of any system with n d-dimensional subsystems, which are contained
in the intersection with the Weyl-Heiserberg group Wn

d and form a max-
imal abelian subgroup of the latter. We defined a Pauli operator from
the Weyl-Heisenberg group by a vector −→a ∈ Z2n

d and a phase ω̃α with
α ∈ Z2d. We exploit the normalization property to write [23] [29]:

X̄j := UXjU† = (ω̃)rj
n⊗

i=1

X
αji
i Z

β ji
i (3.4)

Z̄j := UZjU† = (ω̃)sj
n⊗

i=1

X
γji
i Z

δji
i

71



72 Numerical experiments

As we did for eq. 3.1 as well.

Also here the parameters completely characterize the unitary U with the
only difference that now −→r ,−→s ∈ Z2n

d and α, β, γ, δ ∈ Z2n×2n
2d .

Finally we obtain again, by enforcing invariance of the symplectic inner

product between Pauli strings, the symplectic matrix ("Tableau") T =

(
α β
γ δ

)
and phase vector

−→
h =

∣∣∣∣−→r−→s
∣∣∣∣.

In this general context, it follows also immediately from the fact that the
symplectic group is isomorphic with Sym(2n, Zn

d)
∼= Cn

d /Pn
d . [30] [23]

This means we get a representation of d-independent size, but with dit-
instead of bit-valued entries. Also we need to keep track of the phase
base ω̃ for our specific value of d. Useful operations between Cliffords
U(T, h) and Pauli operators P(−→a , α) are easily generalized from combin-
ing the commutation relations for Pauli operators with the symplectic de-
scription of actions for Cliffords, as done in [28]. As yet no framework
for simulation of generalized Clifford circuits existed for Julia, the qudit
implementation of the stabilizer formalsim had to be written from ground
up. This involved for a standardized storage and syntax also the intro-
duction of two structures for Clifford/State tableaus and Pauli operators
respectively. To ensure consistency and compatibility with the qubit case,
we followed [28] for basic Tableau-based operations and generalized the
measurement procedure from [26], as we now describe briefly.

For measurements on qudit systems, we have to respect more complex
commutation relations, different projectors on the computational basis and
tableaus (phase vectors) with values modulo d (2d). Like before, we can
use the toolset from the stabilizer formalism to rotate a state |φ〉 to the
computation bases |ψ〉 = U|φ〉. From the d eigenvalues, we have d pos-
sible measurement outcomes with measurement operators Mx and corre-
sponding single-qudit projectors P = |x〉〈x| = I + Mx. However, by the
order of generalized Pauli operator Z, Mx 6= Z. Rather we have to obtain
Mx separately. We recall that Zd|j〉 = ω j|j〉. So |x〉〈x| = ∑d−1

k=0 ω−j·kZk by a
discrete inverse Fourier transform. Here the exponent is taken modulo 2d.
We thus have Mx = ∑d−1

k=1 ω−j·kZk.

The idea of compatibility with measurement operators, however, stays
the same. Instead of checking for an anticommuting stabilizer V of |ψ〉
with Mx, we now look for stabilizers V which do not commute with one
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of the terms in Mx. That is, additionally to iterating over each individ-
ual qudit in the system, we also perform the measurement procedure per
term of Mx. Beside the convenient equivalence with the qubit case in the
subsequent measurement steps, this is also necessary to read out the mea-
surement outcomes on a unique basis. In practice, we calculate the unique
set of phases from the Fourier transform corresponding to each basis state
|x〉, we measure the phases corresponding to each term of Mx and finally
match the string of phases to the dictionary values to identify the final out-

come |x〉 on each qubit. We proceed for qubit a and Mx term
(

Z(a)
)p

.

The difference between deterministic and random measurements slightly
different from the commutation relation between generalized Pauli Oper-

ators. From checking for non-commuting stabilizers V with
(

Z(a)
)p

, we
conclude again a deterministic outcome if such a V does not exist. Post-
selection is not required and reading out the measurement outcome goes
analogous to the qubit case:

If
(

Z(a)
)p

commutes with all stabilizers, we can construct it from a prod-
uct of the stabilizer generators in the tableau. This equivalently corre-

sponds to a sum ∑n
q=1 Cq

−−−→
S(n+q) = ω̃h

−−−−→(
Z(a)

)p
. Notice the slight difference

to the qubit case, where ω instead of ω̃ was used. We can use the same ar-
gument on the symplectic inner-product as before to notice that Cq = 0 if

and only if the qth destabilizer commutes with
(

Z(a)
)p

. Therefore, when
calculating the phase h from multiplying stabilizers, we do not include
stabilizers with coefficient Cq = 0. However since Cq is no longer just the
set {0, 1} but rather any phase modulo 2d, we have to weight the sum and
the product of Pauli operators. This can be done by adding the phase Cq
to the qth element in the phase vector of the state. Finally we can read out

the phase of the product to obtain the measurement outcome for
−−−−→(

Z(a)
)p

.

On the other hand if a non-commuting stabilizer V exists, the outcome is
random. For arbitrary d, the reasoning for qubits is not directly applicable
anymore since the operators from the Weyl-Heisenberg group, beyond X
and Z, no longer necessarily give rise to mutually unbiased bases. For d =
pα with p a prime, it has been proven that at least X, Z, XZ, XZ2, . . . , XZd−1

have mutually unbiased eigenbases. [132]
Whether this is true for arbitrary d is an open problem. Conceptually the
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property of MUBs can be bypassed easily by keeping track of all possi-
ble outcomes and their probabilities for each possible operator. If mul-
tiple non-commuting stabilizers V existed, possibly with different prob-
ability distributions, we can just apply post-selection like we did in the
qubit case. For larger dimensions d or number of qudits n this can become
computationally intense, even if probability distributions are in advance.
Even more this was the case on the usual computational resources avail-
able during the preparation of this thesis.
An additional issue is that definitions of meaningful probability distribu-
tions become ambiguous for non-degenerate eigenvalues, which appear
regularly.

Therefore we considered alternative approaches. During examination of
distributions up to d = 10, we noticed that choosing an uniform distri-
bution approximates the outcome distributions generally very well. Only
few distributions excluded some measurement outcomes but were even
then uniformly distributed for all non-zero probabilities. Since we repeat
the measurement procedure over all terms of Mx and try to match the re-
sulting phase string to an unique outcome for qubit a, this approach comes
not without problems. We handled this by always choosing the closest
unique outcome for qubit a. Since we can generally take (in simulations)
large number of measurements into account, such errors average out eas-
ily. Especially with median-of-means estimation or other calibration tech-
niques like from [95]. Remark also that this only concerns the numeric
simulation of the protocol and not its actual application in the lab.
After post-selection, we return the random outcome and the post-selected
state.

Exactly the same measurement procedure can also be used to calculate
a deterministic quantity like the inner products between states which are
represented by stabilizer tableaus. We use that for the inner-product 〈φ, ψ〉,
we can write |φ〉 = U|0〉 for some unitary U and vacuum state |0〉. We then
write 〈φ, ψ〉 = (U|0〉)†|ψ〉 = 〈0|U†|ψ〉. So applying U† to |ψ〉 gives a state
U†|ψ〉 for which we want to know the overlap with the vacuum state i.e.
the state stabilized by the set generated from all local Pauli-Z operators.
This is roughly equivalent to a deterministic version of a computational
basis measurement. [133]
We initially assume a full overlap/inner-product between the states and
include extra factors based on the measurement routine. Instead of sam-
pling a random outcome in the random measurement case, we observe
that a non-commuting stabilizer of the state U†|ψ〉 with a local Pauli-Z
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operator is equivalent to a partial overlap between the states. While for
qubits this is simply a factor 1/

√
2, it is an overlap of cos πk

2d for qudits
with k the commutation phase (i.e. symplectic inner product) between the
Pauli-Z and non-commuting stabilizer. If the deterministic measurement
case is applicable, the overlap is either complete or non-existent. the choice
is made based on the outcome that a measurement would have produced.
If the measurement outcome is different from 0 (modulo 2d), the inner-
product between the states is zero, otherwise it is left unchanged. This is
a relatively lightweight method to find the inner-product, although time
complexity scales, like for measurements in general, as O(n3) for qubits.
[133] [26]

Ultimately we remark that even more compact representations than sta-
bilizers do exist for similar quantum systems, the graph state formalism.
Graph states are almost identical to stabilizer states but allow an even bet-
ter compression of information on the state. [96]

3.1.2 Implementing simulations on qudits

For simulating and benchmarking the performance for photonic systems
with inclusion of OAM spatial modes, we also needed to adjust the simu-
lation framework as a whole to allow for qudit type systems. The main ad-
justments consisted of implementing generalized Pauli and Clifford oper-
ations into the procedures of state preparation, sampling of measurement
schemes and feature prediction. Also, while handling states like those
from the photonic experiment, the use of the stabilizer formalism becomes
impossible because the efficiency of the representation is no longer given.
This forced us to use exponentially scaling matrices and arrays in those
cases While one might be able to find other efficient representations, like
an MPS representation, for certain kinds of systems, our goal was to keep
the possible inputs to the framework as general as possible. Through the
modularity, however, it should be possible to implement other suitable
representations as well. The stabilizer formalism mainly serves the possi-
bility to explore the capabilities of incomplete tomography protocols.

State preparation

Preparing the quantum state in a suitable format for the measurement and
feature prediction routines was dedicated to a separate module to allow
flexibility in representations.
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While generating density matrices as complex-valued 2D-arrays is rather
expensive for large system sizes, and even more for large subsystem di-
mensions d, it is obviously the most straightforward way to do so. Dicke
states were prepared according to eq. 2.7 in the computational basis and
used to obtain the total 4-photon OAM state in eq. 2.6 from the PDC pro-
cess. Although this is a pure state, we converted it to a density matrix to
exploit full capabilities in the subroutines of the simulation.

Also implementing random stabilizer states is rather simple since we can
sample them once by taking an empty tableau and phase vector (the vac-
uum state) on which we apply a random Clifford circuit. The number
of applied gates was randomly drawn as well with lower bound of d · n
and an fixed upper bound of 400 gates. (suitable for d ≤ 10) The upper
bound is important because sampling truly uniformly from the space of
stabilizer states is rather difficult with this naive approach. With the low
number of generating Clifford gates, we often sample equal or equivalent
states and are unlikely to sample states that require very specific prepara-
tion circuits. This problem is due to the non-unique mapping of circuits to
quantum states. By sampling a large number of gates we can compensate
this because the probability to sample unique and inequivalent circuit be-
comes smaller. Through the inclusion of CNOT gates, we then also gain
the full entanglement capabilities reachable with the stabilizer formalism.
By applying specific gates, like those needed for the GHZ state (see figure
1.2), we can of course also obtain particular fixed states from the vacuum
tableau.

Sampling pure states as numeric array uniformly at random is, in contrast,
an own field of study. [134] To obtain random normalized state vectors, we
took the route of picking random columns (or rows) of uniformly sampled
unitaries, albeit we realized later that this is actually not advantageous to
normalizing a random vector of normal distributed complex entries. [134]
While a unitary matrix parametrization is quickly derived, sampling just
the parameters uniformly at random does not respect the non-uniform
distribution density of unitaries in U (dn). In fact, the dependence of el-
ements in a unitary matrix on each other is creating complexities. [135]
The unitary invariant measure that we use to define a (probability) den-
sity on U (dn) is the earlier encountered Haar-measure. The key result from
random matrix theory is that by the uniqueness and invariance under
unitary operations of the Haar measure, we can generate a Haar-random
unitary by sampling a random complex matrix Z and orthogonalizing its
column-space. The entries of Z are normally distributed and make Z a ran-
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dom sample from the so-called Gimbre-ensemble. The well-known Gram-
Schmidt procedure enables the orthogonalization of Z to a unitary matrix
Q. We summarize this into a concept called the QR-decomposition since
Z = QR with R a certain upper-triangular matrix. [135] [136] This latter
can be understood from the typical orthogonalization strategy with an it-
erative routine in which every subsequent iteration involves an additional,
readily orthogonal vector. This implies the triangular form. Fortunately,
obtaining a random Z is easy and applying the QR-decomposition is a
readily built-in method in Julia. The problem, however, is that R and Q
are not unique. Repeating this process therefore with other implementa-
tions of the QR-decomposition might result in different decompositions.
To demand uniqueness of Q, given Z, we apply a transformation to Q
based on R. This is the diagonal matrix of R with normalized entries. For
mathematical details we refer to [135] and [136].

Pure states can then be obtained by picking a (random) column of a Haar-
random unitary. For enabling sampling of mixed states, a pure state on a
larger system is generated and reduced to the desired state-space using the
partial trace. Alternatively, a smaller random unitary matrix can directly
be used with a method described in [134].

Generating data acquisition schemes

While benchmarking the simulation is not very sensitive to the actual ran-
domness of a single pure trail state, performing genuine random mea-
surements is of high relevance to capture all the details of quantum states
equally well. Within the stabilizer formalism, for example, randomly sam-
pling Clifford gates is rather exhaustive when trying to approximate a uni-
form distribution. This is seen from the cardinality of the quotient Clifford
group |Cn

d | = dn2+2nΠn
i=1(d

2i − 1) which increases rapidly. [24] By the
finite order of each generator of Cn

d and equivalence of certain combina-
tions of Clifford gates, we often end up with a biased sample. Increasing
the sample size exponentially was computationally not achievable with
the way our stabilizer tableaus were constructed since we can only find
the tableau representation by explicitly applying each gate individually
in succession. This is unproblematic for a single measurement, but not
for number of measurements on the order of 3 or 4 orders of magnitude.
We rather require a random circuit that has immediately minimum depth.
Sampling from Cn

d directly is practically also not feasible since one would
need to generate and label each Clifford in advance.
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Far more economic solutions have been given by [23] and [129] through
exploitation of just exactly the same efficient representation, by a tableau
and phase vector, as we were already using within the stabilizer formal-
ism. The explicit symplectic constraint and direct interpretation as action
of the Clifford on Pauli operators 3.1) allows to select an element of Cn

d
without additional knowledge about other elements in the group and can
be easily translated to a unique direct representation if required.

Generating a symplectic matrix is based on the commutation rules, i.e.
the symplectic inner-product identities, of Pauli operators which Aaron-
son et al (proposition 3, [26]) summarized for (de)stabilizers of any stabi-
lizer state. The key constraint of which is anticommutation of a stabilizer
with its corresponding destabilizer. That is, a non-zero inner-product be-
tween their corresponding row vectors in the tableau. If we sample valid
(i.e. non-identity) Pauli strings with a random phase while obeying this
commutation rule, we create a proper formatted tableau. The phase vec-
tor stays completely unconstrained. [129]

If a circuit representation of the Clifford is required, we apply a process
called "sweeping" to the tableau. In essence it is just Gaussian elimination as
known from linear algebra. This is because elementary row operations are
preserving the symplectic inner-product as well. This has to be true since
applying Clifford gates to a tableau is equivalent to applying elementary
column operations and should result in a valid, symplectic tableau as well.
So by keeping track of what operations we apply to arrive at the vacuum
tableau (represented by an identity matrix), we can convert the procedure
to a series of local Clifford gates and, therefore, a quantum Circuit.

Our implementation follows the simplified procedure in [129] which does
so by initializing an empty tableau, pairwise random generation of a stabi-
lizer and destabilizer pair, application of a fixed sweeping algorithm [129]
to solely these two rows in the tableau and repetition of the last few steps
for all n stabilizer-destabilizer pairs. We thus fill and sweep the tableau
from top to bottom with two rows in each iteration. By equivalence of two
tableaus on interchanging two rows, this indeed is equivalent to creating
and sweeping a tableau with destabilizers in the upper half and stabiliz-
ers in the lower half. The independence between pairs of rows is here,
although surprising, unproblematic. But, it comes with the cost of creat-
ing a circuit on the full n-qubit register that might still have suboptimal
depth compared to more advanced algorithms. In contrast to our earlier
naive sampling of Clifford gates, however, it scales beneficial by O(n log n)
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in circuit depth [129] and O(n2) in time complexity (for qubits).
Note also that sweeping a tableau actually corresponds to the inverse (or
adjoint) Clifford operation. To avoid an inversion step, we consider this
adjoint operation as the final, randomly sampled Clifford. Repeating the
complete routine for each required measurement is then efficient and uni-
form in distribution.

Remark also that the procedure was only described for qubits in [129]
and had be generalized by mainly changing the conditions for non-binary
tableau entries. This was rather straightforward since the qubit procedure
was detailed enough in the intended tableau format. We refer to the com-
ments in our implementation [121] for the detailed adjustments.

In the non-stabilizer mode of our framework, we can use the circuit repre-
sentation from the sweeping process to convert the Clifford tableau to its
matrix-representation, i.e. by applying the Clifford circuit to an identity
matrix. This is very computationally very costly for high dimensions dn

and therefore one of the large bottlenecks in the framework.

For local measurements the above procedure can not be applied since the
two-qudit CNOT gate must be applicable. Huang et al [122], however,
provided a simple implementation for local Pauli basis measurements for
randomized and derandomized approaches from the preceding chapter.
Qudit generalization was trivial for those methods as well.
Finally we also mention our implementation of the partial derandomized
sampling method of locally-biased shadows from [35]. However, during
finalization of this thesis, it is only available for qubits in non-stabilizer
settings.

Measurement and feature prediction

While measurements in the stabilizer formalism were discussed in section
3.1.1 and 3.1.1, we wrote simple alternatives for the raw array represen-
tation of density matrices of non-stabilizer states and Cliffords. The main
issue in this case has been the reconstruction of the full unitary matrix as-
sociated to the specific measurement and rotating the state into the compu-
tational basis with this matrix. In contrast to feature prediction, the mea-
surement can not be separated into single-qudit measurements unless the
state is a product-state and the measurements are local single-qudit opera-
tions. Measurements are therefore one of the few points in the framework
where the matrix representation is a bottleneck relatively quickly when
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increasing the number of qudits n and subsystem dimensions d. Because
most of the occurring unitary operations have matrix representation with
a lot zeros by their local action, we used the built-in type for sparse arrays
in Julia to save memory. However, by the highly restricted set of opera-
tions that can be applied to sparse arrays, the full potential could not be
used throughout the complete framework.

After rotation of the state to the computational basis, the diagonal of the
resulting density matrix is used as probability vector for a categorical dis-
tribution to sample a random measurement outcome. This corresponds to
a simulated computational basis measurement. [29] Note that from this
moment, the state has become a product state as a computational basis
vector. If local Clifford or Pauli measurements were used, this means that
feature prediction can be executed qudit-wise instead. For global measure-
ments the rotation from the computational basis back to the actual desired
measurement basis has to be performed with the full adjoint of the corre-
sponding unitary matrix.

To unify the procedure of feature prediction for the stabilizer and matrix
representations of quantum states into a single routine, it was ensured that
the different measurement simulations result in a common output format
for measurement outcomes. Although less efficient in storage compared
to single integers, outcomes were stored as computational basis vectors to
use them directly for prediction of local observables. Beside reducing the
complexity of the numerical framework as a whole, this allowed us to en-
sure the same efficiency and performance for both settings.

Following [59] we would usually proceed from obtaining outcomes |b〉
by partitioning the snapshots M−1(U†|b〉〈b|U) into k sets, over each of
which we take the mean element-wise, calculate the expectation of that
mean shadow and take the median over all mean expectations. However,
this would force us to use full-scale complex arrays with non-seperable
global Cliffords U in the most general case.
Therefore we rather shortcuted the procedure by rewriting

〈Tr ρ̂O〉ρ̂ = 〈Tr
(

OM−1(U†|b〉〈b|U)
)
〉ρ̂

= (dn + 1) · 〈Tr
(

O
(

U†|b〉〈b|U
))
〉ρ̂−Tr O = (dn + 1) · 〈〈b|UOU†|b〉〉ρ̂−Tr O

From separability of the quantum channel for local measurements (eq.
2.16) the same follows, but written as a computationally beneficial product
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over all individual qudits instead:

Πn
i=1

[
(d + 1) · 〈〈bi|UiO(i)U†

i |bi〉〉ρ̂
]
−Πn

i=1 Tr O(i)

Since we used only (local) Pauli strings as observables for our implemen-
tation and applications thereof, we pre-calculated the trace of every Pauli
operator during framework initialization to obtain Tr O = Πn

i=1 Tr O(i) at
this point conveniently.

To calculate the expectations from the measurement outcomes |b〉 now ef-
ficiently, we exploit the normalization property of Clifford unitaries once
again to convert UOU† and UiO(i)U†

i (with O,O(i) Pauli operators) to sin-
gle Pauli operators with a certain phase. This allows us to completely cir-
cumvent the global structure of U that would force us usually to construct
the full unitary matrix for non-Clifford circuits. The resulting Pauli string
UOU† = ω̃pP is finally separable and leads to 〈b|UOU†|b〉 = 〈b|

(
Πi=1ω̃pi P(i)

)
|b〉 =

Πi=1

[
ω̃pi〈bi|P(i)|bi〉

]
for |b〉 = ⊗n

i=1 |bi〉 in the global measurement case.
The local case is completely analogous, although the expectation was read-
ily locally computable without the assumption of (local) Cliffords. Since
the conjugation of O(i) by Ui involves matrix multiplication as well, the
advantage of this method compared to direct computation of UiO(i)U†

i de-
pends on how the values of n and d compare.

Finally, for the readout of the diagonal component corresponding to lo-
cal measurement outcome |bi〉, we reconstructed the matrix representation
of single-qudit Pauli operator P(i) and slices out entry bi on the diagonal.
This is reasonably inefficient, especially if d increases. The economical
way would be to query the stabilizer tableau for P(i)|bi〉 and to calculate
its inner-product with the tableau for |bi〉. This is possible independent
of whether the actual probed system state is a stabilizer state. Unfortu-
nately did we not finish a reliable implementation of the inner-product
procedure for d ≥ 3, which was, as described earlier, based on the sta-
bilizer measurement procedure. Due to an minor, yet unexplained, bug
in the phase calculation of the measurement outcome, we could not use
it for estimation of the tableau inner-products. As to obtaining the actual
measurement outcomes |b〉, this effect was largely insignificant for feature
prediction with a large number of measurements.

Median of means can be applied at the very end by interpreting the expec-
tation 〈·〉ρ̂ as the mean on one of k partitions of the measurement scheme.
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After applying the channel to the expectation as stated above, the median
is taken of the resulting k final expectations to find the output estimation
ô for the expectation of O. For our numerical experiments, we used, how-
ever, always the arithmetic means (k = 1) instead of median of means.
Both because of simplicity and general insignificance on the final result,
especially in noise-less simulations. [94]

An even more efficient and direct way of predicting expectations for local
observables under the use of local Pauli measurements was proposed and
implemented by Huang et al [36] [122] as part of the derandomized pro-
tocol of classical shadows. The routine works nevertheless completely ag-
nostic to the way measurements are sampled as long as only Pauli strings
are used to represent observables and measurements.

Based on our discussion in section 2.3, for example, the concept of com-
patible measurements and observables is used. While iterating over the
desired set of observables, compatibility with each of the measurements
in the sampled measurement scheme is checked. That is, whether a mea-
surement "hits" the observable. If for a fixed observable O a measurement
P is accepted as compatible, we add the eigenvalue corresponding to the
outcome of P to a cumulative sum. When the final element in the mea-
surement scheme is passed, an arithmetic mean is taken over the sum and
returned as estimation of the observable expectation. Median of means
estimation is not required since the contribution from each measurement
outcome to the expectation is now immediately scalar-valued and discrete.
If no measurement contained information about an observable, i.e. no
measurement P hits observable O, the expectation is assumed to be zero.

For qudits this procedure works equally well as for the original propo-
sition for qubits, but because the eigenvalues are no longer ±1 and not
equal for all generalized Pauli operators, we need to compute the eigen-
values of each local measurement operator in advance. Although this in-
volves only the computation of eigenvalues for d2 d× d-matrices once, it
becomes slightly more demanding compared to qubits in the initialization
phase of the framework.
Note that although we discuss classical shadow estimation, the advanta-
geous aspect of this direct prediction method is the avoidance of creat-
ing the classical shadow explicitly. The benefits, however, still persist. If
archiving of measurement data for future feature prediction is required,
one can still do so along the way, albeit the classical storage without stabi-
lizer tableaus might not be economical anymore.
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Beside prediction of local observables, we also provided the option for
fidelity prediction between the state ρ of the system in consideration and
an arbitrary comparison state σ. Fidelity as observable differs from most
other relevant features of quantum systems in that it can not be decom-
posed or approximated by a set of local observables, like Pauli strings.
[59] Therefore we had to include a separate prediction method for fidelity
prediction. Note that by construction, classical shadows require only ad-
justments in the post-processing step. Measurement results from local ob-
servable prediction can completely be reused.

Based on our definition for fidelity in definition 1.3.1, we created a func-
tion to evaluate fidelity for both pure and mixed state separately. Also here
the choice between a stabilizer and matrix representation can lead to an ef-
ficient and less efficient implementation. However, since the definition of
|〈ψ|φ〉|2 for pure states requires us to evaluate an inner-product between
the state vectors, we could not implement the economic stabilizer method
for non-qubit systems in a stable manner.
This forced us to use the matrix representation in general. To enable pre-
diction of mixed state fidelities, we used the expression for mixed states
(Tr
√√

ρσ
√

ρ)2 from definition 1.3.1. The desired fidelity between the
pseudo density matrices of classical snapshots ρ̂ and an arbitrary state
σ can then be evaluated by preparing classical snapshots ρ̂ as matrices
explicitly for every performed measurement. We subsequently extract k
mean snapshots by partitioning the shadow into k parts and compute the
fidelity of each of those mean snapshots with σ. The median over the k
mean fidelities becomes then our final prediction again.

3.2 Benchmarking Classical Shadow estimation

Following up the description of our implementation, in this section we
finally present our simulation results from reproducing simulations from
[59], benchmarking our generalization to qudits and applying it to multi-
partite entangled systems of photons.

3.2.1 Basic feature prediction

As our implementation of classical shadows was not written within an ex-
isting and stable simulation framework for quantum many-body systems
or quantum circuits, we needed to verify the framework thoroughly.
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Figure 3.1: True vs. predicted expectation of random 3-local observables for dif-
ferent number of qubits (d = 2). Marker colors indicate different simulation
repetitions of predicting 12 observables with 2.8 · 103 random local Pauli mea-
surements. Dashed diagonals show perfect match while blue shaded areas mark
the performance bound for classical shadows from section 2.4.2, i.e. the maximal
expected deviation.

To do this, we wrote a few example experiments, most of which can be
found at [121] as well.
Most relevant to these experiments was randomization of probed states in
order to make the verification agnostic to exact properties of predictable
quantum systems and to cover the average case. So the provided exam-
ples neither represent the worst case nor the most beneficial situation.

To obtain a first qualitative impression of the prediction capabilities
of classical shadows and to judge estimated values based on the perfor-
mance bound from section 2.4.2, we plotted a few predictions of random
observables against their true value. For 3, 5, 8 and 10 qubits we see in
figure 3.1 indeed that predictions follow the optimal diagonal line closely.
All points, including measurements from additional simulations up to 12
qubits, fall within the maximum error given by the performance bound.

The reason for the close contraction of points around the expectation of
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zero for increasing number of qubits, is the uniform statistical distribution
for eigenvalues in sampling the observables. Their mean is zero and the
more qubits we add, the larger is the set of possible observables and eigen-
values which distribute themselves around this mean. This also means
that the dispersion of points becomes more fine-grained and compact be-
cause the associated normal distribution becomes narrower.

Another observation is the tilt of the rough gradient line through all the
points towards the horizontal. That is, the estimated value for truly non-
zero expectations progressively vanishes. This is due to the scaling of the
qubit register with a constant number of predicted observables. Because
the number of n-qubit Pauli strings is increasing, a random measurement
P becomes less likely to hit a single random observable O. Incompatible
measurements contribute no information for the prediction of the expec-
tation of O and therefore less measurement information per observable is
available. Beside the zero mean of observables in this experiment, we ear-
lier also set the rule of predicting an expectation of zero whenever there
are no hitting measurements for O. This means that, on average, the pre-
diction of a non-zero expectation approaches zero. which clearly occurs
for 10 qubits in figure 3.1. To prevent such behaviour in actual application
of the measurement protocol, we can simply increase the number of ran-
domly sampled measurements. This is no disadvantage per se since over-
complete sets of measurements would increase exponentially in n, while
this adjustment scales linearly in the worst case.

Moreover, by the information theoretic optimal bound presented with clas-
sical shadow estimation in [59], we know that there must exist a variant of
the protocol in which modifications to the sample size are not required for
increasing n. One existing example is derandomization. Basically it makes
the protocol independent of how much different choices can be made for
single measurements through applying a bias towards informationally rel-
evant measurements

In figure 3.2 we compare the randomized and derandomized approaches
by plotting an overview of the absolute prediction error with our frame-
work over different values for the number of qubits n and subsystem di-
mension d. For this we repeated the prediction of 80 random observables
on random pure quantum states with 4 · 104 local Pauli measurements per
run, and averaged subsequently over 16 and 6 prediction rounds for the
randomized and derandomized protocol respectively. Here the number of
samples 4 · 104 for the derandomized procedure was technically not fixed
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Figure 3.2: Absolute deviation of prediction to true expectation for various sys-
tem sizes n and subsystem dimensions d. A total of 80 random (max. 3-local)
observables are predicted with the (original) randomized protocol (left) and its
derandomized counterpart (right). Left, each square is the average of 16 repe-
titions with 4 · 104 local projective measurements. On the right, each square is
the average of 6 repetitions with at least 80 local projective measurements per
observable.

since —as mentioned in section 2.3 —we rather fix the minimum number
of measurements per observable that we want to achieve. To allow some
comparison to the randomized measurements, we fixed it to 4·104

80 = 50
compatible measurements per observable. This is not completely equiva-
lent because the 50 samples per observable is a minimum value. In general
more measurements than 4 · 104 are sampled. We, however, consider this
as insignificant. In particular for 4 · 104 randomized measurements, we got
additional derandomized measurements on the order of at most 9 · 102.

The number of repetitions per cell was chosen to the maximum of avail-
able computational resources so that the fluctuations in the grid are re-
duced and, therefore, a sharper view on the trend between different parts
of the grid can be obtained. The difference in the number of runs between
the two simulation variants reflects the additional computational compli-
cation of derandomizing a random set of measurements. To ensure a rea-
sonable runtime, we therefore cut the number of repetitions for the deran-
domized variant with respect to the randomized protocol.

Most apparently figure 3.2 shows in direct comparison that indeed deran-
domization can have a significant advantage with respect to accuracy or,

86



3.2 Benchmarking Classical Shadow estimation 87

equivalently, sample complexity. Note that the uniform distribution of ob-
servables, however, does also imply that this is a comparably undemand-
ing case for derandomization. In actual applications, derandomization
might often be even less significant in improving on completely random
measurements.

Furthermore we observe that both grids show an inconsistent drop in er-
ror for the complete column of system size 2. This is due to an extension
of the data from simulations concerning only values of n > 2. Because
higher values of n would have enabled random observables of increasing
locality with negative effect on the prediction accuracy, we restricted the
simulations to sample observables of maximum weight 3 throughout. By
the incompatibility of this choice for n = 2, we reduced this maximum
weight to 2 for solely n = 2. In the variance bound of section 2.4.2, this
reflects a drop from a factor 43 to 42 in the variance. Although this scaling
only refers to an upper bound, it is clearly noticeable in figure 3.2.

Also other dependencies on n and d can be recognized in both plots. Most
apparent is the strong dependence on the subsystem dimension d for con-
stant n. In the case of local Pauli measurements, we found in section 2.4.2
a factor (d2)w in the variance upper bound for observables with weight w.
Despite the difficulty to fit the trend in the simulation results to any defi-
nite basic function, we can perceive an nearly linear relation qualitatively
in the case of randomized measurements. The plot for the derandomized
protocol shows a more faint relation between cells because fluctuations are
more influential. Still, the contrast between the very top and bottom of the
grid indicates some very similar dependence.

From the variance we also concluded that the system size n should not in-
fluence the performance of classical shadows. As we have seen for figure
3.1, this is to be taken with care and assumes saturation of the lower bound
of sample complexity. Also it still underlies numerical and statistical fluc-
tuations. For both plots we can recognize this system size independence
reasonably well, but a higher number of experiment repetition and a more
thorough evaluation will be needed to confirm this.

One way is to split the evaluation of the n- and d-dependence into sepa-
rate experiments to use more computational power for each of them. In
figure 3.3 we did consider the root mean square error (RMSE) of predict-
ing 80 random separable observables as function of n and d. The choice for
the RMSE was made to have a measure with a little more robustness than
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Figure 3.3: Root-Mean-Square-Error (RMSE) for various system sizes n (left) and
subsystem dimensions d (right). Each point is a single run with 103 random pro-
jective measurements. Dashed lines indicate the maximum expected RMSE

the absolute error used earlier, but serves no other particular benefit. For
each prediction round, 104 measurements were used. Using the gained
computational resources for the extension of the considered range of sub-
system dimensions was not possible as the routines in our framework, also
in the case of stabilizers, require the construction of a polynomial number
of polynomial sized arrays of complex numbers. This made the initializa-
tion in its current format infeasible for d > 8 on a usual computing device.
We expect, however, that more economic solutions for problematic scaling
procedures can be designed for the stabilizer formalism.

This is in contrast to the system size n which we found to scale reasonably
well for qubits such that we found that system sizes on the order of 150
can be reached within a reasonable timeframe. This comes nowhere near
the original demonstrated system sizes for the stabilizer formalism [26] or
even the closed-source implementation in [59], but gives for the experi-
ment in consideration already a sufficient insight into the development of
accuracy with increasing system sizes. In light of the maximum Hilbert
space dimension we reached in figure 3.2, taking for example n = 7 and
d = 7 would require about 11 TB of RAM on a classical computer in direct
array-based computations.

On the left figure 3.3 we took a single sweep over various qubit system
sizes (d = 2) up to 60 qubits and plotted the RMSE for predicting the 80
random Pauli strings. The simulations for each point were performed only
once because of the wide range in the number of qubits.
We obtained now indeed a more conclusive plot of the relation between
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accuracy and system size n. While for n < 10 the error starts very low
and increases rapidly, we obtain the expected behaviour of the accuracy
which fluctuates around a constant value and seems to converge for large
n. Notice also that the upper bound on the RMSE is strictly respected by
the numerics. At a few points the values get dangerously close, while the
actual line of convergence is located somewhat below the upper bound.

As mentioned before, the behaviour for low number of qubits is largely
dominated by the restricted size of the set of Pauli strings. Adding a few
qubits, increases this size significantly, which on its own has a large effect
on the probability that measurements hit an observable.
For larger number of qubits (n > 10), this changes insignificantly. Espe-
cially if the locality of the observables (here 3-local) is very low compared
to n (and constant). Then the prediction variance indeed becomes inde-
pendent of system size as expected. This is exactly what we see in the
figure.

On the right hand side of figure 3.3 we consider the same experiment but
with constant n = 3 instead and varying subsystem dimension d. Also
here the dashed line denotes the performance bound from section 2.4.2
and is indeed not constant anymore. We recall our conjecture that while
the d2 dependent expression (i.e. linear in the plot) for the variance does
give an theoretical upper bound on the variance, we expect the actual scal-
ing to be much more advantageous towards prediction accuracy. A tighter
upper is, however, still to be found.
The plot of simulation results seems to support this, at least for low val-
ues of d. The first point for qubits coincides with the high accuracy from
the left plot, but increases slightly to a series of almost equally levelled
points. The trendline has a slight positive gradient but suffers from too
much fluctuations to be conclusive. The prediction error for higher values
of d needs to explored further since a deviating behaviour for low d, like
for the n-dependence, can not be ruled out based on solely these results.
For this,however, our framework and computational resources were not
optimized and would require a further improvement in performance re-
stricting aspects like memory allocations.

Thus far we only considered the prediction of local Pauli measurements on
random quantum states. However, our framework also supports global
Clifford measurements which enables us to predict also non-local prop-
erties of quantum systems. Sometimes more efficiently than with local
measurements. Note that this, in practice, is more demanding on quan-
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Figure 3.4: Fidelity of GHZ state prepared with probabilistic phase flip (Z-error)
given by Bernoulli parameter p (eq. 3.5). In total 6 · 103 Global random Clifford
measurements are taken in a single run for each of the ten datapoints. The optimal
and expected relation is indicated by the dashed line.

tum hardware since physical realizations of global Cliffords require many
entangled quantum gates. [59] [2]

One way to probe the reliability in predicting features with global observ-
ables, is to test the protocol on fidelity estimation. Since fidelity is the
measure of overlap between two states, it is often used to verify quantum
hardware components, like physical quantum gates and channels. Pos-
sible errors, through e.g. decoherence or thermalization, can then be de-
tected, characterized and corrected using fidelity. [85]

Similar to [59] we have, therefore, examined the use of the classical shadow
estimation protocol for detecting errors in the preparation of a quantum
state. If we, for example, take the highly entangled GHZ state and mix in
an impurity with a certain probability, we can simulate occasional errors
from a noisy environment. In particular, we consider the case of random
phase flips. This corresponds to a classical statistical mixture and yields
the mixed state: [59]

p · |GHZ+〉〈GHZ+|+ (1− p) · |GHZ−〉〈GHZ−| (3.5)
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with p the probability of preparing the state with a flipped phase and

|GHZ±〉 =
1
√

2
(|000〉 ± |111〉) as usual. Because the Pauli-Z operation

corresponds to a phase flip for qubits, this is also called an Z-error.

In the numerical implementation this means that for every single mea-
surement a Bernoulli trail with parameter p is performed to obtain the
measurement state, i.e |GHZ+〉 or |GHZ+〉. For the direct calculation of
the true fidelity value, the complete mixed density matrix is constructed
and measured.

In figure 3.4 we plotted the estimated fidelity for a range of probabilities p.
The dashed anti-diagonal represents the expected true fidelities. Per data-
point a single round of 6 · 103 global Clifford measurements is performed.
We see that indeed the measurements follow the measured and theoretical
truth with few deviations, especially for low Z-error probabilities. Those
deviations surprisingly, however, turned out to be not due to typical statis-
tical fluctuations through the use of finite measurement statistics in sam-
pling the classical snapshots. Rather there seem to occur static systematic
errors from the measurement simulation as well. Although we readily re-
ported such deviations for the simulation of stabilizer measurements, they
seem to appear equivalently but with less impact in the array-based part
of the framework. Also here we suspect a phase mismatch or numeric ac-
curacy problem during measurements.
Overall the predictions coincide with the expected linear decrease in fi-
delity very well and reproduce therefore also figure 2 in [59] in the n = 3
case.

Finally, since we are mainly concerned with reducing sample complexity,
we looked at the regular fidelity of a qubit GHZ (|GHZ+〉) state when pre-
dicted with classical shadow estimation for different number of measure-
ments. Here each point in figure 3.5 is the average over 4 runs. Maximal
expected errors are indicated by shaded areas around the predictions for
probed system sizes of 2 to 4 qubits.

While we see huge fluctuations for low numbers of measurements (< 400),
the predicted fidelity converges towards a horizontal line at the level of the
true fidelity F = 1.0 for more than 4 · 103 samples. While for 2 and 3 qubits
the predictions seem to match up well, the case of n = 4 seems to over-
estimate the fidelity. From the data it does not become clear whether this
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Figure 3.5: Fidelity of a pure GHZ state with its own prediction for increasing
number of random Clifford measurements. Each prediction was averaged over
4 measurement rounds. The equal coloured shaded area around each line indi-
cates the maximal absolute deviation within which the expected fidelity (F = 1.0)
should fall.
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is due to a statistical deviation or whether convergence occurs when more
samples are included. Within the current plot we see that, starting with
a saturation value of 500 measurements, the true fidelity value stays con-
sistently in the maximal deviation bounds for all three system sizes. Even
if we choose n = 4 and take more than 6000 measurements into account,
the truth of F = 1.0 is still located on the boundary of the maximal error
bound for the prediction. Therefore we still expect this to be a statistical
outlier.

A final judgement depends on how the prediction for n = 4 further devel-
ops, we might be in need to recalibrate our prediction routine. This should
generally not be required, but could be a reasonable method to force cor-
rect offsets or physical expectation values. For this we only need a few
more measurements than for classical shadow estimation itself to find op-
timal parameters and do the final calibration. In [94], classical shadows are
also shown to converge slower, but with physically meaningful values, by
projecting each measurement snapshot ρ̂ to a positive-semi-definite ver-
sion of itself.
On the other hand figure 3.5 shows also the key benefit of classical shad-
ows to allow estimates which are non-physical expectation values. Es-
pecially for eigenvalues that are located near physical boundaries (like
F = 1.0 for fidelities), predictions can be made very rough for only few
measurements. By increasing the number of measurements, the expecta-
tion value gets tighter towards the truth. This is exactly what we observe
for the fluctuations around F = 1.0 as well. This is where a lot of cur-
rent estimation methods fail when trying to converge to such expectations.
[45].

In the end, figure 3.5 demonstrates the prediction capabilities of classical
shadows for fidelities sufficiently. It also agrees with the simulation and
experimental results from [94], which includes the above fidelity predic-
tion with classical shadows as well.
Many of the experiments on predicting local observables with local mea-
surements required less measurements to reach the same accuracy, but the
example of fidelity in our two simulations shows that classical shadows
can be feasible and efficient for global, but non-separable, observables as
well.
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3.2.2 Predicting observables in entangled photonic systems

Demonstrating effectiveness and accuracy of a measurement protocol, like
classical shadow estimation, is of interest to compare it with other meth-
ods. But even more important is to demonstrate its performance for par-
ticular useful tasks, such as characterization of the four-photon entangled
system that we suggested as an application in section 2.4.1. For states that
are no stabilizer states, the demonstrations of classical shadow estimation
have yet been scarce.

Many interesting features of quantum many-body systems can be decom-
posed into local single-qudit observables which we have shown in the pre-
ceding section, in addition to [59] and [94], to be efficiently predictable
with classical shadows. In near term applications, most potential can be
seen in improving protocols based on random measurements and in re-
alizing required quantum hardware. Currently protocols are mostly only
feasible when local measurements are used.
By employing local Pauli measurements, we specifically can use our frame-
work to simulate predictions on such systems by just appending customized
options in the state generation and observable prediction controller for
specific states and observables in the experiment.

Like for the theory part, we restrict ourselves to the discussion in [105].
One basic feature that was used to verify entanglement in the experimen-
tal setting of [105] is the simple entanglement witness W(2)

4 from [137].
Based on local (qubit) spin operators, it can verify entanglement in multi-
partite systems.

In the first place, an entanglement witness is a tool, mostly stated in the
form of an inequality involving a measurable observable, which is able to
detect (non-)separability of a quantum state directly by various properties.
This can be imagined as a classification model in state-space.
Here W(2)

4 does this specifically for n-qubit Dicke states with n
2 excitations.

This is of interest since the the state created from PDC is given by eq. 2.6.
The second term is of most relevant in the consideration of the system as it
constitutes the genuine entangled four photon state. As pointed out, this
term can be interpreted as a Dicke state (see eq. 2.7) where we label |l̄〉, |l〉
as the ground state and excited state respectively, for example. Note that
the exact value of l on this specific term of the total state does not matter
for this description.
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Concretely, the entanglement witness is given by

W (2)
4 = ∑

i∈{X,Y}
〈J2

i 〉

with Ji the global spin operators i.e. Ji =
1
2 ∑n

k=1 J(k)i in the qubit case. We
can use this notation of total angular momentum since the total orbital an-
gular momentum must be zero anyway. [137][105]
The witness can first of all detect entanglement in general by violation
of the system-specific inequality 〈W (2)

4 〉 ≤
4
2

(
4
2 +

1
2

)
= 5 and genuine

entanglement between the 4 photons if 〈W (2)
4 〉 ≤

7
2 +
√

3 ≈ 5.23 is not
satisfied. [137][105] Both follow from arguments about the eigenvalues of
spin operators of symmetric states, like the Dicke state.

In preparation to the numeric experiments, we implemented the general
Dicke state |Dn

m〉 from eq. 2.7 in array-mode —since Dicke states are no
stabilizer states —and created a custom option to extract all the local ob-
servables needed to find the expectation value ofW (2)

4 . The latter had to
be done within qubit mode (d = 2) since finding a generalizing representa-
tion of this entanglement witness for qudits turned out to be not straight-
forward within the structure of our framework. This also forced us to only
run predictions on the raw Dicke state. Nevertheless we included the PDC
state as option in the framework. With a more thorough examination of
this and other entanglement witnesses, the appropriate modifications to
the framework could enable the simulation of the original state as well.

Resulting from our simulations, figure 3.6 demonstrates the prediction
of this basic entanglement witnessW (2)

4 for the Dicke state |D4
2〉 by vary-

ing the size of the classical shadow, i.e. number of measurements, for the
prediction in order to see the performance of the protocol with respect to
sample complexity. Each datapoint is the average value over 5 indepen-
dent runs. The maximum error bound of predicting 32 single qubit observ-
ables, from section 2.4.2, has been indicated by the blue region. Notice that
also here the measured true value of the witness always falls within this
maximal expected error when the number of measurements passed a cer-
tain saturation value of about 500 samples.

For shadows of size < 2000 the witness value still fluctuates heavily, espe-
cially before reaching the above mentioned saturation value. In contrast
when increasing the sample size further, we see that indeed the predicted
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Figure 3.6: Prediction of the W (2)
4 entanglement witness of a 4 qubit |D4

2〉 Dicke
state with 2 excitations using classical shadow estimation with varying num-
bers of local Pauli measurements. Each point was averaged over 5 consecutive
rounds. Gray regions indicate either entanglement or genuine multipartite en-
tanglement based on the criteria from [137]. Other regions correspond to fully
separable states. Satisfaction of the propagated maximum expected prediction
error specified by the blue shaded area.
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value converges to the directly measured value smoothly from above. We
remark that we indeed expected a expectation value of 6 for the |D4

2〉Dicke
state [105], which is predicted by the protocol sufficiently. The plot was
cut off early for showing details, but up to the investigated value of 6 · 104

measurements, no quantitative deviation larger than the last appearing
point in the figure were estimated.

We can interpret the predicted expectation values by the given inequali-
ties of the witness. These have also been marked in the figure 3.6 by the
gray shaded regions. Since the value of 6 lies significantly above both the
entanglement threshold and the threshold for genuine multiparitte entan-
glement, we have indeed detected genuine entanglement for this Dicke
state. The prediction reached the corresponding region quite quickly for
more than 500 measurements and remained far above the threshold for all
sample sizes exceeding the saturation. If the truth of the entanglement wit-
ness would have been closer to the threshold values, a conclusion would
be hard to make like for direct measurements in practice as well. How-
ever, through the smooth convergence, a tight performance bound and
a reasonable method for mitigation of measurement noise, one might be
more confident to judge the (non-)existence of (genuine multipartite) en-
tanglement.

Many other robust and experimentally feasible entanglement witnesses
exist, albeit they are often more demanding in practice. We demonstrated
that the witnessW (2)

4 can be estimated sufficiently well by classical shad-
ows. However, comparing to direct measurement of 32 observables to a
certain accuracy, the advantage is rather small. Huang et al [59] came to
the same conclusion in considering the application to variational quantum
eigensolvers. The actual advantage of classical shadows becomes practi-
cally only apparent when considering either a large system size (> 102)
or a large number of observables. For the subsystem dimension we re-
call that the benefit of classical shadows depends heavily on how tight the
variance bound with the d2 scaling really is. If the actual dependence of
d in general is linear —or (almost) non-existent as in figure 3.3 —classical
shadows might be favourable for low system sizes as well.

States resulting from pair production in PDC, however, have a reasonably
small system size since the production rate diminishes quickly for higher
number of photon pairs. Also when characterizing the whole system, we
might have some higher order terms with higher subsystem dimension by
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the value of l. But also then the coefficients in the superposition drop very
fast to zero for increasing l. [103].
When considering such a system, we thus get mainly a benefit if we want
to predict many local observables at once. This is more often the case
than the above example might suggest. For instance, when obtaining ex-
pectations of (the variance of) Hamiltonians [59] and more complex sets
of entanglement witnesses, or quantifying subsystem entanglement using
Renyi-α-entropies. In terms of entanglement witnesses, we could also pin-
point the exact type of entanglement even further down by prediction a
whole set of entanglement witnesses at once. The same is true for even
more fundamental classifying observables that probe the state-space di-
mension of entangled multipartite systems, so-called dimensionality wit-
nesses. [138] [139]

But even if the set of desired observables turns out to be small, we should
keep in mind that there are only very rare cases where choosing classi-
cal shadows over direct measurements is actually a significant disadvan-
tage, especially with derandomization. Moreover, other aspects of classi-
cal shadows can also be beneficial, like the ability to store a classical snap-
shot for time-delayed estimation for observables that can even be chosen
after the measurements.

A prominent example [115] for a more robust entanglement witness on
the considered type of systems has been mentioned in [105] as well. The
witness In

m from [115] is more robust to noise, albeit requiring more dif-
ferent expectation values. It is based on permutation invariance of the
state with respect to bipartitions of the system. That is, considering a spe-
cific element of the density matrix of our state, |〈α|ρ|β〉|, we can rewrite it
under the assumption of different bipartitions using the Cauchy-Schawrz
inequality. If we then define In

m as the subtraction of the expressions of
all possible bipartitions from the original matrix element, any valid bipar-
tition in the state ρ will pull the In

m below zero. Therefore the inequality
In
m ≤ 0 holds for any biseparable state ρ, but is violated for genuine multi-

partite entangled states.[115]

A basic template for direct calculation of this witness has been built into
the feature prediction controller of our framework. However, yet with
mixed benchmarks results. Both in post-processing the expectation values
to an unbiased estimation of the witness value, as well as in handling the
large number of observables by scheduling compatible measurements for
simultaneous measurement.
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For this specific system —also in regard to the complete mixed PDC state
instead of the pure Dicke state —further numerical investigation is re-
quired to obtain a better impression and overview on the effectiveness of
classical shadow estimation. On the one hand in context of this photonic
experiment, but even more for general systems that are restricted to small
system sizes and subsystem dimensions. This would be for assessing more
robust and practical entanglement witness, but also for other interesting
properties that we mentioned above. Recall that classical shadow estima-
tion can be quite useful by its sensitivity to the structure of observables.

Another next step would be the actual incorporation of experimental mea-
surement data as a more practical relevant survey of classical shadows
—supplementary to the basic experimental study by [94] —in promising
near term applications and environments. The four photon OAM entan-
gled system could certainly be one of such interesting and practically fea-
sible systems.
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Chapter 4
Conclusion & Outlook

Quantum state estimation is a powerful tool to fully reconstruct quantum
states and consequently gain information about their properties. This ap-
proach, however, has faced ultimate limits by the emerging ability to pre-
pare and control systems of vastly increasing state-spaces. A lot of mea-
surement repetitions are needed, which restricts the realization of scalable
but noise-resilient quantum devices.

In this thesis, we gave an overview of the basics and current state-of-art in
quantum state estimation. We investigated key ideas in bypassing infor-
mation theoretical lower bounds for QST using incomplete tomography
and settled our focus onto the specific problem of shadow tomography.
By introducing the concept of classical shadows from recent efforts in de-
signing near term and experimentally feasible data-acquisition protocols,
we emphasized the relevance of universal but resource efficient solutions.
Both with respect to classical computational resources, i.e. in preparing
and post-processing measurements ,as well as in terms of quantum hard-
ware requirements in the NISQ era. Here the latter involves mainly the
design of practically achievable quantum gates and circuits.
We gave a brief overview of emerging variants of classical shadows in the
literature and presented a generalization of the original protocol to qudit
many-body systems. For the purpose of benchmarking classical shadow
estimation outside the qubit regime for various systems and applications,
we developed a modular numerical framework that implements the gen-
eralized protocol from state preparation to feature prediction. An exist-
ing generalization of the stabilizer formalism ensured high flexibility in
state-space dimension during benchmarking and enabled an efficient use
of computational resources and storage on the simulating classical device.
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In numerical experiments, our framework showed consistency with ba-
sic benchmarks by [59] [94] [35] on global measurements (i.e. for GHZ
fidelity estimation), as well as on local Pauli measurements. We evaluated
both cases on the scaling of prediction accuracy with respect to the system
size of qubit systems.
In terms of derandomization, however, our randomized benchmark shows
a smaller benefit compared with the specialized example in [36]. We sus-
pected either the focus on a single problem in [36] or errors from a phase
mismatch in the measurement simulation procedure that we reported ear-
lier.
In contrast, our derived upper bounds on the variance and sample com-
plexity on qudit systems were consistently obeyed throughout our numer-
ical experiments. It is an open question whether there is a tighter bound
in the case of local Pauli measurements on qudit systems than our derived
d2 dependent expression. Based on the proof of information theoretic op-
timality for qubits in [59], this can however be expected.

We thus conclude that classical shadows, also in the generalized form pre-
sented here, can efficiently predict many properties of quantum systems.
Although this assumes an appropriate combination of system and desired
observables.
Deciding on shadow tomography becomes less obvious if the universality
over many different features or the advantage of classical storable snap-
shots do not matter to the experimenter. The choice of randomized shadow
tomography methods over conventional direct measurement (or complete
tomography) approaches is then mainly a matter of practical limitations
on the specific experimental platform. For classical shadows, this mainly
concerns the unitary rotations and measurements that can be performed.
For the system of four spatially entangled photons, such as considered
here, we mainly profit from the photonic platform, which has shown many
capabilities in these aspects for the near term. Classical shadows can also
be beneficial for such low dimensional systems if one wishes to extract a
lot, but not all, information on the state of a system. Additionally, the pro-
tocol simplifies the measurement process of directly measuring multiple
observables and makes the post-processing computationally less demand-
ing since, in contrast to the commonly used MLE technique, no optimiza-
tion is required.

The exact benefit for individual applications is still to be investigated with
more extensive simulations. But even more importantly, benchmarks based
on actual measurement data are required to find the current experimental
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benefits of this and other incomplete tomography protocols. Although
prediction on measurement data is already possible in our framework, the
current setting is expected to be quite vulnerable to noise. Only a few
methods have yet been proposed for noise mitigation within the classical
shadows framework. Further study of the efficient integration of noise
suppression into the measurement procedure would make the protocol
more feasible in very noisy environments. Also, performance bounds in
those situations have to evaluated in order to compare methods in an
equal manner.
When considering other platform candidates of NISQ devices, an exten-
sion of the simulation framework to include other state representations,
like MPS representations on large scale systems, could be interesting.

Improving the method of classical shadows on itself will also relevant
for future directions. While upper bounds for the original protocol were
proven information-theoretically optimal, this always represents the worst
case. Specific systems and observables can be expected to do much better.
Our simulation results of random states demonstrate this very clearly. By,
for example, adjusting the type of unitary ensemble, we could take the
explicit structure of the state into account. The suggested photonic appli-
cation of this thesis, for example, might have an inconvenient total state
structure. But optimizing the type of measurements to a highly structured
Dicke state with n/2 excitations could ultimately improve performance,
deliver a tighter upper bound on the sample complexity, and might even
be of general interest regarding Dicke states for quantum information.
Equally we could take the targeted features explicitly into account when
scheduling measurements.
Derandomization of classical shadows already took a step in this kind of
protocol customization by explicitly taking (sub)structures of desired ob-
servables into account. In contrast to other handcrafted methods of feature
prediction for specific applications, we expect that customization of yet
very general methods, like shadow tomography, could standardize and
simplify the design of protocols for specific applications.
One other way of improvement would be to allow requirements for more
advanced classical or quantum hardware. Simultaneous measurement of
multiple state copies is, for example, demanding in that it requires a quan-
tum memory for caching multiple state copies. However, this is not real-
istic for experimental realization in the near term.

In the end, the success of incomplete tomography protocols, like classi-
cal shadow estimation, could be a vital tool in developing and operating
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NISQ devices. This includes verification of quantum hardware and es-
timation of numerous expectations involved in VQEs. Also beyond the
NISQ era, efficient data acquisition stays relevant to all kinds of problems
in quantum computing and outside. In more fundamental research, prob-
ing of quantum systems is relevant as well. This can be as simple as de-
tecting or quantifying entanglement in a system to distinguishing whole
quantum phases of matter. The suggested application in this thesis is an
example of the former task.
In the big picture, it is still difficult to say what quantum technology will
really bring about. From enhancements of the technology of today, with
e.g. quantum metrology, towards complete quantum computers and net-
works themselves. A lot can be imagined. But for whatever might emerge,
novel measurement protocols will for sure play an essential role on the
path to it.
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