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Abstract

In this thesis, we work towards a demonstration of quantum key recy-
cling (QKR) using photonic spatial modes. To that end, we first extend
the security analysis of QKR provided in Fehr and Salvail’s 2016 paper
’Quantum Authentication and Encryption with Key Recycling’ to accommo-
date for higher dimensional states and to allow for lossy environments.
We then show how QKR can be realised using photonic spatial modes and
we propose a setup that facilitates it up to a distance of 10 m with a 10%
error probability as we confirm by simulation. Next, the theoretical pre-
dictions are tested using the classical analogue to single photons, the laser.
We show that theory and experiment coincide to such a degree that the-
oretical expectations are experimentally viable. Finally, we discuss what
modifications are required to genuinely demonstrate quantum key recy-
cling using photonic spatial modes.
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Chapter 1
Introduction

The rapid digitisation of society is one, if not the most influential transfor-
mation of the past decades. Consequently, safeguarding online data and
communications has become pivotal for the functioning of contemporary
society. Currently, classical encryption algorithms suffice, but all but one
suffer the fundamental shortcoming of being merely computationally se-
cure. That is, security is not theoretically guaranteed but rather depends
on the inability of contemporary computers to solve the complex under-
lying problems. However, this could change, especially in the light of the
advent of the quantum computer [1]. The only exception is the classical
one time pad which is seldomnly used because it requires a fresh key the
length of the message for every message [2]. One solution to this quan-
tum threat also emanates from the quantum realm and concerns quantum
encryption schemes, which, contrasting their classical counterparts, are
theoretically secure. The most famous of these is quantum key distribu-
tion (QKD) using BB84-encrypted qubits [3], with which secure commu-
nication over distances in the order of hundreds of kilometers has already
been established [4].

Another such algorithm is quantum key recycling (QKR). The main idea
behind QKR is to make the key from the one time pad recyclable which
is classically impossible. Utilizing the quantum-mechanical phenomenon
of superposition, QKR is able to detect eavesdroppers therefore necessi-
tating refreshing the key only if such an eavesdropper is detected. If this
is not the case, the key can be recycled lifting the constant refreshment
criterion off the classical one time pad making it practically viable. Al-
though its discovery predates QKD [5], the idea remained on the shelves
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6 Introduction

until Gottesman [6] proposed a scheme with partly reusable keys in 2003.
A rigorous security analysis was provided in 2005 by Damgård, Pedersen
and Salvail [7]. In contrast to the original scheme, the scheme they proved
secure requires sender and receiver to be in possession of a quantum com-
puter which was at the time, and still is, technologically infeasible. In
2016 [8], Fehr and Salvail combined the relative simplicity of the original
scheme with a security analysis to create a version that is both theoreti-
cally secure and realisable with contemporary technology. Since, various
extensions and improvements on the scheme have been proposed to in-
crease noise tolerance and efficiency [9–11]. The main advantage QKR
holds over QKD is that of message authentication, the ability to verify that
a message originates from the intended sender. QKD cannot possibly pro-
vide this as it does not involve a shared key and therefore there is no way
to differentiate between the intended sender and an impersonator.

Conventionally, QKR requires the communicating parties, commonly re-
ferred to as Alice and Bob, to share a private key in advance. The first part
of this key, the basis key θ ∈ {0, 1}n, in combination with a randomly gen-
erated bitstring X ∈ {0, 1}n is used to prepare the qubits in a state Xi in
basis θi. These bases are usually the computational and Hadamard bases
such that the qubit has uniform probability of being in a state |0〉 , |1〉 , |+〉
and |−〉. The qubits are then sent to Bob together with a classical message*

and a classical tag computed from the message and the string X using a
message authenticated code (MAC) [12].† These can all be intercepted,
measured and amended by a malicious eavesdropper Eve who controls
the communication channel. Bob then measures the qubits in accordance
with θ such that he obtains a string XB which should be identical to XA.
Using this string he also computes a tag using the same MAC. Finally, he
compares the computed tags. If they are identical, classical communica-
tion can be initiated using the randomness communicated in X. If not,
communication is aborted until a new private key is shared. The protocol
is graphically represented in Fig. 1.1. Although promising, an experimen-
tal realisation of QKR has never been realised.

This thesis works towards implementing QKR using photonic spatial modes
which facilitate qudits up to near arbitrary dimension [13]. To accomplish
this, Fehr and Savail’s original scheme is first extended in order to allow

*This is a random dummy message and not the message Alice actually wants to re-
main secret.

†The MAC computes a tag from the second part of the shared key and the concatena-
tion of X and the message. The map is such that it is impossible to gain information on
the shared key from the tag.
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Old & New protocol for Quantum Key Recycling

- prepares quBits
- chooses message
- computes tagAlice

Alice

- measures received qudits
- computes tagBob
- compares tags

Bob

DB=0

- Share new 
basis key

Alice and Bob

DB=1

quBits
tag
message

Old quantum key recycling protocol

- prepares quDits Alice

- computes tagBob
- compares tags

Bob

msg
tag

DB=0

- Share new 
basis key

Alice and Bob

DB=1

quDits

- measures received quDits Bob

P

- chooses message
- computes tagAlice

Alice

New quantum key recycling protocol

Figure 1.1: Schematic overview of the protocol presented in [8] (left) and the
amended version (right). DB represents Bob’s decision based on the similarity
between the tags. In the new protocol, P is a string with information on received
quDits.

for higher dimensional states and to make it robust against the loss-prone
environment of experimental reality. The former is achieved by introduc-
ing the quantum Fourier transform (QFT)-basis [14, 15] as the natural gen-
eralization of the two dimensional Hadamard basis used in the original
proof. Similar to these bases, the computational and quantum Fourier
bases are mutually unbiased, meaning, in addition to orthonormality of
the two bases individually: | 〈i|QFT |j〉〉 |2 = 1

D , ∀i, j ∈ {0, 1, .., D}. It
is shown that this generalization does not invalidate the proof. On the
contrary, it strengthens the protocol as Eve’s knowledge on the key is in-
versely proportional with the square root of the dimensionality of the qu-
dits. Loss is incorporated by introducing an extra step into the protocol,
thereby making it interactive. In this version, at first, Alice only sends
over the qudits of which Bob measures those that actually reach him. Bob
communicates to Alice which qudits he has received. Alice then calculates
the tag using only the elements of X that correspond to qudits that Bob
has received. Once again, it is derived that this amendment does not in-
validate the proof. By this extension, the scheme is primed for experimen-
tal implementation using photonic modes, where losses will be extremely
prevalent.

The next chapter discusses how the photonic spatial degrees of freedom
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8 Introduction

are suitable for qudit encryption.* A method is introduced to create mu-
tually unbiased sets within these degrees of freedom using position bin-
ning. Attention is then diverted to the more practical questions of state
creation, state propagation and state detection. Here, a basic familiarity
with paraxial optics, complex electric fields and the Fourier property of
lenses is assumed as well as the equivalence of photonic probability dis-
tributions and classical intensity profiles.† Using optical components we
sequentially design a setup that can facilitate QKR up to a maximal dis-
tance of about 15 meters with an estimated 10% error probability while
preserving mutual unbiasedness between the states, at least in simulation.
Finally, it is discussed what changes could increase, respectively decrease,
the aforementioned results.

In the final chapter we present the experimental realisation of the afore-
mentioned setup. It is shown that the simulations are generally accurate
and that the error probabilities are also experimentally feasible. This is
all however still performed in a classical setting using intensity distribu-
tions instead of single photons. Nevertheless, these results are expected
to extrapolate to the quantum realm as the single photon setup equiva-
lent is certainly more challenging from an engineering point of view, but
is expected not to introduce any new physics.

*These were chosen because they are easy to work with in terms of basis transfor-
mation (lens/SLM) and detection of different states (CCD-array). Ultimately, the time-
energy degrees of freedom might be more suitable because they allow for in-cable trans-
mission [16]. They are however experimentally cumbersome to work with especially
since all states need to be measured at every iteration in order for the protocol to work.
Approaches where states are measured in turn and the final result is obtained by apply-
ing statistics do not suffice.

†As such, they will often be used interchangeably.
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Chapter 2
Security analysis high-dimensional
& interactive QKR

In this chapter, we present the encryption scheme and provide a proof for
its security. It is an extension to Serge Fehr and Louis Salvail’s 2016 paper
’Quantum Authentication and Encryption with Key Recycling’ [8] in which
they originally proved QKR to be theoretically secure. The amendments
include a generalization to arbitrary qudit dimension as well as a modifi-
cation to the protocol itself to allow for losses between sender and receiver.

In analogy to the original proof, the security is proven in three steps. First,
some important mathematical and quantum-cryptographic concepts are
introduced and some elementary inequalities derived. Then, these are
used to discuss a few versions of a quantum guessing game that will aid
in the proof of security of the protocol. Following the introduction of the
amended scheme, it is shown that it is still possible to bound the knowl-
edge obtained on the key by a malicious adversary, therefore proving that
the modifications do no invalidate the proof.

2.1 Preliminaries

Here, mathematical and cryptographical concepts are introduced to aid
our discussions in sections 2.2 and 2.4.

Using the quantum Fourier transform (QFT) [14], we will first define the
QFT-basis:
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10 Security analysis high-dimensional & interactive QKR

Definition 2.1 (QFT-basis) Given some Hilbert space of dimension D with or-
thonormal basis {|x1〉 , ..., |xD〉}*, one can always construct an orthonormal ba-
sis ({|y1〉 , ..., |yD〉}) that is mutually unbiased towards it using the quantum
Fourier transform [15]. This is the QFT-basis and its jth-state is given by

|yj〉 =
1√
D

D−1

∑
k=0

e2πikj/D |xk〉 .

The operator that transforms between the bases is called QFT and is a unitary
operator.

Also, it is possible to re-express the generalized Bell-state
|φ+〉 = 1√

D ∑D−1
j=0 |xjxj〉 conveniently using the QFT-operator:

Lemma 1 The generalized Bell-state can be expressed in terms of the QFT as

|φ+〉 = 1√
D

∑
j
|xjxj〉 =

1√
D

∑
j

QFT |xj〉 ⊗QFT† |xj〉 .

proof.

1√
D

D−1

∑
j=0

QFT |xj〉 ⊗QFT† |xj〉 =
1

D
3
2

∑
j

∑
k

e2πijk/D |xk〉 ⊗∑
l

e−2πijl/D |xl〉 =

1

D
3
2

∑
j,k,l

e2πij(k−l)/D |xjxl〉 =
1

D
3
2

∑
j,k
|xkxk〉 =

1√
D

∑
k
|xkxk〉

Here, the fourth equality is by the general argument that ∑D−1
x=0 e2πixn/D, (n, D) ∈

Z is nonzero only if n is zero or an integer multiple of D. In all other cases, the
terms are equidistantly spaced along the unit circle yielding a zero sum. In this
specific case, the sum over j is nonzero only if k = l.

Definition 2.2 (Schatten∞-norm) For any matrix A, the schatten∞, or stan-
dard operator-norm ‖A‖ outputs the biggest singular value of that matrix:
‖A‖ =

√
maxλ(A† A). It has the following properties [17, 18]:

• submultiplicativity: ‖AB‖ ≤ ‖A‖‖B‖

• triangle inequality: ‖A + B‖ ≤ ‖A‖+ ‖B‖

• satisfaction of: ‖A‖2 = ‖AA†‖ = ‖A† A‖

• conservation under unitary transformation: ‖UAU†‖ = ‖A‖
*This basis is often referred to as the computational basis in this context.
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2.1 Preliminaries 11

• for any semi-definite matrix: ‖P‖ = λmax*

• For semi-definite matrices P,Q with P < Q: ‖P‖ < ‖Q‖†

• if tr(B) = 1 ,for any projection matrix: tr(PB) ≤ ‖P‖‡

• for any block diagonal matrix M = A⊕ B: ‖M‖ = max{‖A‖, ‖B‖}.

Definition 2.3 (Schatten1-norm) For any two matrices A, B, the schatten1-
norm, also trace norm, is defined as

δ(A, B) =
1
2
‖A− B‖1 =

1
2

√
(A− B)†(A− B).

This measure is frequently used in the context of density matrices. In that
case, it grants a measure of the similarity between two states ρ, σ. Impor-
tantly, it shares the property of conservation under unitary transformation
with the Schatten∞-norm.

Using the properties listed in definition 2.2 two useful lemmas can be de-
rived:

Lemma 2 Consider four projection, therefore semi-definite operators, P,P′, Q
and Q′ with P ≤ P′ and Q ≤ Q′, it holds that

‖PQ‖2 ≤ ‖P′Q′‖2.

proof.

Recalling property 6 of 2.2, and considering that P2 = P†P = P we have

‖PQ‖2 = ‖Q†P†PQ‖ = ‖Q†PQ‖ ≤ ‖Q†P′Q‖ = ‖P′Q‖2 = ‖P′QQ†P′†‖ =

‖P′QP′†‖ ≤ ‖P′Q′P′† = ‖P′Q′‖2.

Definition 2.4 (Set of orthogonal permutations) The set {πk} is the set con-
taining N orthogonal permutations of the string (0, 1, ..., N − 1). Here, orthogo-
nality implies πi(n) 6= π j(n) for i 6= j.

An example of such a set is the set of cyclic permutations for N = 3:
{(0, 1, 2), (2, 0, 1), (1, 2, 0)}. In contrast, {(0, 1, 2), (2, 0, 1), (2, 1, 0)} are non-
orthogonal permutations as π1(1) = π2(1).

*λmax is the largest eigenvalue of P.
†For two semi-definite matrices A, B, A ≤ B means subtracting A from B yields an-

other semi-definite matrix.
‡Importantly, the trace of density matrices is 1.
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12 Security analysis high-dimensional & interactive QKR

Lemma 3 given a set of projection matrices {P1, P2, ..., PN} and a set {πk} as
described in 2.4, it holds that

∑
k
‖Pk‖ ≤∑

k
max

i
{‖
√

Pi

√
Pπk(i)‖}.

proof.

Let us first store the square roots of the projection operators in a (N × N)-

block-matrix as M =


√

P1 0 . . . 0
√

P2
...

...
...

...
...√

PN 0 . . . 0


N×N

. Here, the entries represent

blocks that are either the square root of a projection matrix or completely
0. It is then easy to verify that

M†M =


∑i Pi 0 . . . 0

0 0
...

... . . . ...
0 . . . . . . 0

 and MM† =


√

P1
√

P1 . . .
√

P1
√

PN
... . . . ...√

PN
√

P1 . . .
√

PN
√

PN

.

Clearly, ‖∑i Pi‖ is the biggest (and only) nonzero eigenvalue of M†M.
Combining this with the notion that the sum of projection matrices is also
a projection matrix and property 5 of 2.2* we have

‖M†M‖ = ‖∑
i

Pi‖ = ‖MM†‖.

This can be decomposed: MM† = ∑k Dk where (Dk)ij = δj,πk(i)
√

Mi
√

Mj.
Here, the equivalence is assured by the orthogonality of the permutations
[19]. For some intuition, consider the cyclic N = 3 case once more where

MM† =

(√
P1
√

P1 0 0
0

√
P2
√

P2 0
0 0

√
P3
√

P3

)
+

(
0 0

√
P1
√

P3√
P2
√

P1 0 0
0

√
P1
√

P3 0

)

+

(
0

√
P1
√

P2 0
0 0

√
P2
√

P3√
P3
√

P1 0 0

) .

Also by the orthonormality of the permutations, there is exactly 1 nonzero
entry in every row and column of any Dk and hence, using a unitary

*Valid because a projection matrix is necessarily semi-definite
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2.1 Preliminaries 13

transformation, they can all be transformed into block diagonal matrices
D′k = UDkU†. By the 4th and 8th property of the operator norm we have

∑
k
‖Dk‖ = ∑

k
‖D′k‖ = ∑

k
max{‖

√
Pi‖‖

√
Pπk(i)‖}.

Finally, using the triangle inequality we can relate this to the projection
matrices to and obtain

∑
k
‖Pk‖ = ‖MM†‖ ≤ ‖∑

k
Dk‖.

Completing the proof.

Remark. The proof is valid for any choice of πk. Besides the cyclic permu-
tation another important such choice can be obtained by performing the
logical bitwise Xor operation between the element number k and the posi-
tion number within that element i: πk(i) = i⊕ k.
Such a set only exists if N = 2n with n ∈ N. In this case, the Hamming
distance between π0(i) and πk(i) is given by the number of ones in the
binary representation of k [20]. Here, the Hamming distance is defined
as h(a, b) = ∑n

j=0 |aj − bj| with a, b two bitstrings of length n. The claim
follows as

h(π0(i), πk(i)) =
n

∑
j=0
|ij − (ij + k j)| = ∑

j
k j.

Consequently, the number of permutations with Hamming distance d is

given by the binomial distribution: Nd=d =

(
n
d

)
. We also note that the

Hamming distance distribution is independent of i, the entry of every
string that is evaluated.

Definition 2.5 (Guessing probability) Given quantum information E and clas-
sical measurement outcomes X , we will define

Guess(X |E) := max
M

(P[M(E) = x]).

Hence, Guess(X|E) is the maximum probability of obtaining some x ∈ X
from E by performing the best possible measurement M on E for obtaining
that particular x. It has the following elementary properties [8]:

• Guess(X |Q(E)) ≤ Guess(X |E) where Q is a CPTP map. Essentially,
this states the guess cannot be improved by performing some action
on E.

13



14 Security analysis high-dimensional & interactive QKR

• Guess(X |ZE) ≤ ∑z PZ(z)Guess(X |E, Z = z), where Z is a classical
distribution.

• Guess(X|E, Λ) ≤ Guess(X |E)/P(Λ), where Λ is an event.

• There exists σE such that:
ρXE ≤ Guess(X |E) · (IX ⊗ σE) = Guess(X |E) · |χ| · (uχ⊗ σE), where
µχ is the uniform distribution of length |χ|.*

Keeping the last definition in mind, we can move away from mathematics
and introduce the crypthographic concept of a hash-function.

Definition 2.6 (Hash-function) A keyed hash-function H is any function that,
given some key k ∈ K and message msg ∈ MSG outputs a fixed length tag
y ∈ Y such that:

H(k, msg)→ y

Such a function is said to be message-independent if, for a uniform distribution
k, the distribution of y is independent of msg. If additionally this distribution is
uniform, the hash function is considered uniform.

Remark. Intuitively, it can be understood that such hash functions are
useful in authentication schemes. Imagine two parties in possession of a
shared key. Post interchanging the message, they can compute tags based
on the message and their shared key. By comparing tags, they can ex-
clude message-tampering. Since the message can have any length and is
usually longer than y, the map is non-injective implying several messages
will map to the same y. Consequently, with a small probability εMAC tam-
pering with the message produces the same tag due to the non-injectivity.
For a good MAC, this probability is extremely small.

Finally, it is necessary to define some sort of measure for the security of
the key. Without going into details, a convenient measure for this is the
notion of v-key-privacy:

Definition 2.7 A hash function H is said to offer v-key-privacy if for any state
ρKXYE with the properties that ρKX = µk⊗ ρX, y = H(K, X) and ρK ↔ ρXY ↔
ρE

† it holds that:

δ(K, µk|YE) ≤ v
2

√
Guess(X|YE) · |Y|

*For two semi-definite matrices A, B, A ≤ B implies subtracting A from B yields an-
other semi-definite matrix

†Here, the arrows imply that the states form a Markov-chain state [21]. Practically, it
means that E contains no information on k other than through X and Y which can contain
information on k.

14



2.2 A Quantum Guessing Game 15

Here, µk is the uniform distribution of k and the privacy is considered
ideal if v = 1. Also, Guess(X|YE)=Guess(X|E) in case H is message-
independent. It can be shown that there exist hash functions that satisfy
this definition of v-key-privacy [8].

2.2 A Quantum Guessing Game

In this section, different variants of a quantum guessing game are intro-
duced that are closely related to the final security proof. In case of the
two player game, it shows that Bob can retrieve Alice’s string with 100%
accuracy if Alice prepares and sends qudits according to the protocol de-
scribed in 2.3 and there has been no eavesdropping. All other scenario’s
are ultimately used to bound expressions in 2.4.

Two Players

Consider a game played by two players, Alice and Bob, according to the
following rules:

• Bob prepares m qudits, n of which are sent to Alice.

• Alice performs a measurement on the received qudits according to
a string θ uniformly selected from {0, 1}n. If θi = 0, the ith qudit
is measured in the computational basis. In case θi = 1, the qudit is
measured in the associated QFT-basis. The result is a string XA ∈
{0, ..., D− 1}n

• Alice sends θ to Bob.

• Bob performs some measurement on his remaining m − n qudits.
This measurement may depend on θ. The result is a string XB ∈
{0, ..., D− 1}n

• Alice and Bob compare strings. Bob wins if XA = XB.

Without specifying either measurement operator (Aθ
X,Bθ

X) or Bob’s qudit
preparation, the probability for equal strings conditioned on some θ is
given by

P[XA = XB|θ = θ f ixed] = ∑
X

tr[Aθ
X ⊗ Bθ

X)ρAB].

Here, the sum over X is the sum over all possible measurement outcomes
where XA = XB. ρAB is the state prepared by Bob. By the uniformity of θ,

15



16 Security analysis high-dimensional & interactive QKR

the probability averaged over all θ is then given

P[XA = XB] =
1
2n ∑

θ
∑
X

tr[(Aθ
X ⊗ Bθ

X)ρAB].

Proposition 2.1 The game described in the section above can be won by Bob with
probability:

P[XA = XB] = 1

proof.

In order to achieve this, Bob should prepare 2n-qudits into n Bell-state
paires, of which one of each pair is sent to Alice. Since this is a pure
state the switch is made from density matrix to ket-notation where ρAB =
|AB〉 〈AB|. Explicitly |AB〉 is given

|AB〉 = 1√
D

D−1

∑
d=0
|dd〉1,2 ⊗ ...⊗ 1√

D

D−1

∑
d=0
|dd〉n−1,n .

Also, as we are working with the computational basis only, we will abbre-
viate the state |xj〉 to |j〉. Since the pairs are not entangled with one other, it
suffices to consider only one pair as P[XA = XB] = P1 [XA = XB]

n. Alice’s
measurement operator is fixed: Aθ

X = QFTθ |X〉 〈X|QFTθ†. Therefore, if
Bob chooses Bθ

X = QFTθ† |X〉 〈X|QFTθ and we take into consideration the
results from Lemma 1 that (QFT⊗QFT†) |φ+〉 = |φ+〉 *

∑
X

tr
(
(Aθ

X ⊗ Bθ
X)ρAB

)
= ∑

X

1
D

tr

(
|AB〉∑

d
Qθ†

A Qθ
B 〈dd|Qθ

AQθ†
B |XX〉Mb

)

=
1
D ∑

X
tr

(
∑
d

Qθ
AQθ†

B |dd〉 〈dd|Qθ†
A Qθ

B

)
=

1
D ∑

X
tr(|XX〉 〈XX|) = 1.

Where we have used Q, Mb as a shorthand for QFT, the bra terms of the
projection operator. Completing the proof is straightforward from here:

P[XA = XB] =

(
1
21

1

∑
0

1

)n

= 1

Remark. Writing |ab〉 for the state of one of the Bell-pairs, the state of the
qudit possessed by Bob after Alice has measured its Bell-state partner is

*It can easily be shown that this also holds for 〈φ+|

16



2.2 A Quantum Guessing Game 17

given [14]:

trX(∑
X

Aθ
X ⊗ IB) |ab〉 〈ab| = trA(|ab〉 〈ab|) = 1

D
tra(∑

d,d′
|dd′〉ab 〈dd′|ab)

=
1
D ∑

d,d′
〈d|d′〉a |d〉b 〈d′|b =

1
D ∑

d
|d〉b 〈d|b = µb (2.1)

where trA denotes the partial trace over subsystem A. Hence, after Alice
has measured, Bob has qudits whose state is the classical uniform distri-
bution. His whole system can then be described as

ρB = trA |AB〉 = tra(|ab〉1,2 ⊗ ...⊗ |ab〉n−1,n) = µb ⊗ ...⊗ µb = µB. (2.2)

Three Players

In order to mimic the presence of an eavesdropper, the game is now be
extended from a two player to a three player version. Qudits are prepared
by Bob and Charlie together. Both of them keep a part of the resulting state
ρABC. After Alice has measured her qudits, both receive θ, from which
both have to guess XA. That is, the winning condition is XA = XB = XC.
Communication between Bob and Charlie ceases once they have prepared
ρABC. From the two player discussion, one would expect that using a kind
of three qudit Bell-state, Bob and Charlie should be able to win. Winning
however does heavily rely on the results obtained in lemma 1 and a three-
qudit variant thereof does not exist. Instead, perhaps surprisingly, it can
be shown that Bob and Charlie cannot consistently win independent of
their strategy.

Proposition 2.2 The winning probability of the three player game as described
above can be upper-bounded

Pwin = P[XA = XB = XC] ≤
(

1
2
+

1
2
√

D

)n
.

proof.

In order to prove this, we will first introduce the projection operator Πθ:
Πθ = ∑X Qθ |X〉 〈X|Qθ ⊗ Bθ

X ⊗ Cθ
X. With this definition and property 5 of

definition 2.2, Pwin can be expressed as

Pwin =
1
2n ∑

θ

tr(ΠθρABC) =
1
2n tr(∑

θ

ΠθρABC) ≤
1
2n ‖∑

θ

Πθ‖.

17



18 Security analysis high-dimensional & interactive QKR

Lemma 3 can now be used to rewrite this as

Pwin ≤
1
2n ‖∑

θ

Πθ‖ ≤ 1
2n max

k
‖ΠθΠπk(θ)‖.

Here, πk(θ) represents a set of orthogonal permutations of θ. Let us now
introduce two new projection operators B′θX = ∑X Qθ |X〉 〈X|Qθ† ⊗ Bθ

X ⊗
IC and C′θX = ∑X Qθ′ |X〉 〈X|Qθ′† ⊗ IB ⊗ Cθ′

X . The former, given some θ
applied to ρABC outputs the probability of XA = XB, doing nothing to ρC.
In contrast, the latter leaves ρB intact and uses θ′ to measure the probability
XA = XC. These operators are bigger* than Πθ,Πθ′ respectively and hence
by lemma 2:

‖ΠθΠθ′‖2 ≤ ‖B′θX C′θ
′

X ‖2 = ‖B′θX C′θ
′

X B′θX‖
Introducing Q |X〉 = |xθ〉 the right hand side can be computed

B′θC′θ
′
B′θ = ∑

x,y,z
|xθ〉 〈xθ|yθ′〉 〈yθ′ |zθ〉 〈zθ| ⊗ Bθ

xBθ
z ⊗ Cθ′

y .

By the orthogonality of the states that is projected onto Bθ
xBθ

z = δx,zBθ
x and

the prior equation can be rewritten as

= ∑
x,y
|xθ〉 | 〈xθ| |yθ′〉 |2 〈xθ| ⊗ Bθ

x ⊗ Cθ′
y = D−d(θ,θ′) ∑

x
|xθ〉 〈xθ| ⊗ Bθ

x ⊗ IC.

(2.3)
Here d(θ, θ′) is the Hamming distance between θ and θ′. The equality
| 〈xθ|yθ′〉 |2 = D−d(θ,θ′) follows by the mutual orthogonality of the bases:
| 〈xθi |yθ′i 〉 |2 = D−1 given θi 6= θ′i . Recognizing the right side of the equa-
tion as Bθ

X

‖ΠθΠθ′‖ =
√
‖B′θC′θ′B′θ‖ = D−d(θ,θ′)/2

√
‖B′θ‖ ≤ D−d(θ,θ′)/2. (2.4)

Recalling our discussion of the special permutation case πk(i) = i⊕ k:

Pwin ≤
1
2n ∑

k
max

θ
D−d(θ,πk(θ))/2 =

1
2n ∑

θ′
D−d(θ,θ′)/2 =

1
2n

n

∑
d=0

(
n
d

)
D−d/2

(2.5)
Here, the maximum over θ vanishes as the average distance between θ,θ′

is independent of the choice for θ.† Applying the binomial theorem [22] to
the obtained bound then yields the promised bound.

*Bigger in the sense that Bθ
X −Πθ yields another semi-definite matrix.

†This is argued in the remark following Lemma 3
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2.2 A Quantum Guessing Game 19

In the three player case therefore, Bob and Charlie’s probability of winning
decreases exponentially with the number of qudits they send Alice.

Remark. The original proof has θ ∈ Θ ∈ {0, 1}n, with Θ a code of length |Θ|
with minimal distance dmin. The difference being that here, eq.2.5 can be
directly bounded by realising ∑k maxθ D−d(θ,πk(θ))/2 ≤ ∑k D−dmin/2 such
that: Pwin ≤ 1

|C| +
1

Ddmin/2 .

Variation I

The game is now slightly amended by giving Bob and Charlie access to
(quantum)- information ρE. Although slightly abusive, this is often just
written as E. In addition, the uniformity condition on θ is dropped.

Proposition 2.3 With the introduction of quantum information E, Bob and Char-
lie’s odds of winning increase to:

Pwin ≤ Guess(θ|E)
(

1 +
1√
D

)n

proof.

By the fourth property of definition 2.5 the joint semi-definite matrix ρθE is
bounded: ρθE ≤ 2n ·Guess(θ|E) · (µθ ⊗ σE). Here, µθ ⊗ σE can be thought
of as the state before playing the prior variation.* Furthermore, since the
mapping† ρθE → ρABC → ρXAXBXC → ρ1XA=XB=XC

is a CPTP map, by prop-

erty 1 of the guessing probability ρθE ≥ ρ1XA=XB=XC
= (1 + 1√

D
)n. This

concludes the proof:

Pwin ≤ 2n ·Guess(θ|E)
(

1
2
+

1
2
√

D

)n
= Guess(θ|E)

(
1 +

1√
D

)n

Remark. Since 1 + 1√
D
> 1 this expression seems to increase exponentially

with n. However, Guess(θ|E) will also be dependent on n. Specifically, if
the information provided by E on θ is only marginal: Guess(θ|E) ≈ k

Dn

and we reacquire the bound derived in proposition 2.2 multiplied by a
factor k.

*There was no quantum information present, however one can easily imagine intro-
ducing some quantum information that provides no information on θ, therefore not af-
fecting the result.

†This mapping is from ({0, 1}n ⊗HE) to {0, 1} where it is 1 when XA = XB = XC

19



20 Security analysis high-dimensional & interactive QKR

Variation II

In the next variation, Bob and Charlie are granted the power to decide
which portion of the n qudits send to Alice are actually measured as to
simulate loss. After preparing ρABC, Bob and Charlie create a list P con-
taining |P|* qudits from ρA. The choice of P is shared with Alice who only
measures those qudits that are entries of P and discards the rest. The win-
ning conditions is changed to XP

A = XB = XC, where XP
A is the string

obtained by Alice after measuring the qudits specified by P.

Proposition 2.4 With the novel rule, the bound on the quantum game decreases
to†

Pwin ≤
(

1
2
+

1
2
√

D

)|P|
. (2.6)

proof.

We observe that as long as θ looks uniform to Bob and Charlie, by sym-
metry, there are no x ∈ XA that are easier to guess than others. Therefore,
by decreasing the number of qudits they cannot gain an advantage other
than that the number of qudits they have to guess is reduced from n to |P|.
This transforms the game in the original game but with n = |P|, wich we
already bounded.

Remark. One can easily combine the bounds obtained in variation I and
variation II to obtain a bound in case both variations are considered si-
multaneously. Although not performed explicitly here, one can apply the
argument of variation I to the bound of variation II to obtain:

Pwin ≤ 2n ·Guess(θ|E)
(

1
2
+

1
2
√

D

)|P|
(2.7)

This expression, by the remark following 2.2 decreases exponentially with
|P|.

Variation III

For the last variation, let us return to a two player setting. This time, Bob
now does not receive θ after Alice’s measurements. He is however in pos-

*Obviously |P| ≤ n
†We observe that if |P| is chosen a small integer, Pwin can be reasonably large. In a

setting where Bob/Charlie is the adversary, this points towards a blockade attack. One
can however easily imagine a game where Alice accepts to play if only if |P| > pmin

20



2.3 Overview of the Protocol 21

session of the quantum information and qudit reduction measure as intro-
duced priorly.

Proposition 2.5 Bob’s odds of winning given the newly introduced rules are the
same as in the prior variation, that is:

Pwin ≤ 2n ·Guess(θ|E)(1
2
+

1
2
√

D
)|P|

proof.

We remark that there is little use for Bob to wait for Alice to finish her
measurements before starting his own. Therefore, any playable strategy
is contained within preparing ρAB, and immediately measuring ρB. Now,
this is a subset of playable strategies in the prior variant as Bob and Charlie
can do the same there. Namely, prepare ρABC, immediately measure ρB to
obtain XB and copy XB to XC. Since this exhausts the strategies in this
variant, the previously acquired bound must apply here.

2.3 Overview of the Protocol

Now that we have sufficient knowledge on the relevant concepts, it is pos-
sible to introduce the loss-allowing, high dimensional quantum key re-
cycling protocol. To simplify the analysis, a noiseless environment is as-
sumed. Because such an assumption is unrealistic from an experimental
point of view, error correction as employed in the original proof [8] will
still be required for experimental implementation.

Before execution, it is assumed that Alice and Bob share a private key
ksec = k||θ that is the concatenation of the MAC-key k ∈ {0, 1}m and the
basis-key θ ∈ {0, 1}n.

The first step is for Alice to generate a random string XA ∈ {0, 1, ..., D −
1}n and perform a QFT on every qudit |x〉 if θi = 1. Hence the resulting
state

QFTθ1 |x1〉 ⊗ ...⊗QFTθi |xi〉 ⊗ ...⊗QFTθn |xn〉 = QFTθ |XA〉 = |B〉 .

From here, we also define the density matrix associated with this state:
ρB = |B〉 〈B|. This state is then sent to Bob over a public channel poten-
tially controlled by a malicious eavesdropper Eve.

21



22 Security analysis high-dimensional & interactive QKR

Bob performs measurements as specified in the subsection ’Two Players’
on the qudits he has received to obtain XB. Since we assumed a noise-
lessness environment, Bob can retrieve the state of any arriving qudit with
100% accuracy. However, since we did not exclude losses, |XB| may be
much smaller than |XA|. To account for this, Bob creates a list P contain-
ing the numbers of the qudits he has received.* This list is then forwarded
to Alice who computes a tag τA = MAC(k, msg||XP

A)). Here, XP
A only con-

tains those Xi specified by P and MAC is a message authentication code
which inherits the properties of the Hash function (2.6), in particular uni-
formity and ideal v-key-privacy (definition 2.7). Alice now sends the tag
over to Bob together with the message msg. From this, Bob computes his
tag τB = MAC(k, msg||XB). Finally, he creates a decision bit D according
to DB = truth(τA = τB), meaning that DB = 1 if τA = τB and 0 otherwise.
If DB = 0 communication is aborted until the key is refreshed. Otherwise,
the protocol can be repeated. The procedure is also graphically presented
in 2.1.

In case D = 1 the message is authenticated and, as we will see soon, the
interference of an eavesdropper can be excluded. Exploiting the communi-
cated randomness, the scheme can be transformed from an authentication
scheme to an encryption scheme as demonstrated in the original paper [8].

2.4 Bounding the Key

For the protocol to be secure, it should be impossible, or almost impossi-
ble, to gain knowledge on either part of the key ksec. In that case, overall
security of the proof is guaranteed by the MAC. Hence, it is sufficient to
show that it is not possible for an eavesdropper to gain significant knowl-
edge on the key during an execution.†

In order to do this, it is important to track the information at any point
during the execution. Mapping the information at the black dots in Fig.
2.1‡

kθXABE→ kθXAB′C̃ → kθXP
AXBPC̃τA → kθXP

AτBτAPC′D (2.8)

Here, E is Eve’s quantum system before executing the protocol, C̃ is the
state in Eve’s quantum memory after Alice has sent the qudits. C̃ therefore

*It is assumed that this is somehow possible. How exactly this is achieved is irrelevant.
†This is, obviously, under the assumption that the eavesdropper starts without knowl-

edge on the key.
‡Once again, the notation is used ρA = A as actually kθXABE should be ρkθXABE etc.
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- prepares qudits Alice

- computes tagBob
- compares tags

Bob

msg
tag

DB=0

- Share new 
basis key (θ)

Alice and Bob

DB=1

qudits

- measures received quDits Bob

P

- chooses message
- computes tagAlice

Alice

quantum key recycling protocol

Figure 2.1: Schematic representation of the authentication scheme. Protocol starts
in the upper left corner. Arrows represent transfer of specified information over
a public channel controlled by Eve. DB is the decision made by Bob to accept
or reject based on whether τA = τB. The black dots are important steps in the
informational flow.

consists of E and the qudit information she keeps (C), possibly entangled.
B′ is the state, contrived from B, that does reach Bob. Finally, C′ is the final
state of Eve’s quantum memory that she might have changed due to τa and
P. The underlining means the information is available to Eve. Also, We’ll
define θ′ as the post-execution basis key and E′ all information available
to Eve at the end of an execution. Here, θ′ = θ if D = 1 and freshly chosen
if D = 0.

Theorem 2.1 The interactive QKR protocol as proposed in section 2.1 is secure
as an eavesdropper’s knowledge on θ, respectively k is upper-bounded by

Guess(θ′|E′) ≤ 1
2n + Guess(θ|E)
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24 Security analysis high-dimensional & interactive QKR

δ(k, µk|θ′E′) ≤ 2εMAC +

√
2

2

√
2n ·Guess(θ|E)(1

2
+

1
2
√

D
)|P||T |.

proof.

For the first claim, recall that Eve’s post-execution quantum register E′

contains: E′ = C′τAPD. Using the 2th property of the guessing probability:

Guess(θ′|E′) ≤ P(D = 0)Guess(θ|C′τAP, D = 0)+

P(D = 1)Guess(θ′|C′τAP, D = 1) ≤ 1
2n + Guess(θ|C′PτA)

Where we have used P(D = 0), P(D = 1) < 1 to obtain the final inequality
and the fact that the key gets refreshed if and only if D = 0. Next, recall
that by the information chain in eq.2.8, C′ is acquired from C̃ which is in
turn acquired from CE. Also, P is extracted from B′. Finally, C and B′

are obtained from E and B. Hence, by using property 1 of the guessing
probability (2.5) four times:

Guess(θ|C′PτA) ≤ Guess(θ|θC̃PτA) ≤ Guess(θ|C̃P)

≤ Guess(θ|C̃B′) ≤ Guess(θ|EB)

Here, it is also used that θ cannot depend on τA by the message-independence
of the MAC. Finally, recalling from eq.2.1 and eq.2.2 that after Alice has
measured ρA, ρB = µB* and therefore we obtain ρBθE = µB ⊗ ρθE. Since
B is completely uniform, it cannot provide information on θ which com-
pletes the proof.

Moving on to the second claim, let us first define D̃, the idealized version
of D. That is, the two are identical but for when D = 1 while XP

A 6=
XB or message/tag/P-tampering has occurred that yielded the same tag
by accident. This only happens with probability εMAC as defined in the
remark following definition 2.6, which is very small for a good MAC. The
two can be related via

δ(k, µk|θ′TDPC′) ≤ δ(k, µk|θ̃′TD̃PC′) + 2εMAC.

*The result was obtained in a situation where a generalized Bell-state was prepared
after which one of the qudits was measured to produce ρB which is the equivalent of B in
this game. Altough prepared differently, the resulting states are the same which is why
we can use it here.
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2.4 Bounding the Key 25

Here, θ̃′ is the post-execution basis key associated with the idealized de-
cision D̃. Last, let us assume knowledge on tag/message tampering is
contained within Eve’s post execution quantum system C′ such that by
v-key-privacy:

δ(k, µk|τAθ̃′1XP
A=XB

PC′) ≤ 1
2

√
Guess(XA|θ̃′1XA=XB PC′)|T |

Splitting the guessing term using its 2th property and immediately upper
bounding on P[XP

A 6= XB], P[XP
A = XB] ≤ 1:

Guess(XP
A|Tθ̃′1XP

A=XB
PC′) ≤ Guess(XP

A|θ̃′PC′, XP
A 6= XB) + Guess(XP

A|θ̃′PC′, XP
A = XB)

For the case XP
A 6= XB, described by the first term, θ̃′ is freshly chosen

implying XP
A cannot depend on it. Furthermore, by the same chain as

before we find that:

Guess(XP
A|PC′) ≤ Guess(XP

A|PC̃) ≤ 2n ·Guess(θ|E)(1
2
+

1
2
√

D
)|P|

Here, the final bound is acquired from the direct correspondence with the
third variation of the guessing game (2.2). That is, one player is to guess
XP

A only having access to some priorly existing quantum information.

For the second term, regarding XC as the measurement outcome of opti-
mally measuring C given θ*:

P[XP
A = XB]Guess(XP

A|θPC) ≤ P[XP
A = XP

B ]P[X
P
A = XP

C] ≤ P[XP
A = XP

B = XP
C]

This is then exactly the situation described in remark below 2.2 of the
quantum guessing game. Hence, similar to the first term:

Guess(XP
A|θ̃′C, XP

A = XB) ≤ 2n ·Guess(θ|E)(1
2
+

1
2
√

D
)|P|

Obtaining the final bound on δ(k, µk) is now only a matter of retracing
steps.

Hence, under the assumption of a key appearing completely uniform to an
eavesdropper and a secure MAC, the security of high dimensional QKR in
a lossy environment as a theoretically secure authentication scheme has
been proven. Conversion to the associated theoretically secure encryption
scheme can now proceed similarly as described in section 5.2 of [8].

*In the case described by the second term θ is not refreshed and therefore θ̃′ = θ
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Chapter 3
QKR using photonic spatial modes

In this chapter, we develop an implementation of QKR using photonic spa-
tial modes that complies with the security protocol as laid forth in chap-
ter 2. To that end, we first show how mutually unbiased sets of near ar-
bitrary dimension can be constructed using photonic spatial modes [13].
Then, we address the practical questions regarding the design of a realistic
setup. These include state creation, state propagation and state detection.
In addition to a theoretical discussion, simulations of the different steps
are provided using the python library ’Diffractio’ for the propagation of
classical electric fields. By the direct correspondence between probabil-
ity distributions and normalized electric field intensity†, the behaviour of
photons. Combining these results, the chapter concludes by providing a
simulation of a setup that can facilitate QKR over a distance of 5 m with a
maximal single state error probability of approximately 10%.

3.1 Mutual Unbiasedness using photonic spatial
modes

The proof provided in chapter 2 implicitly assumes the existence of a mu-
tually unbiased bases (MUB). In particular, the transition from eq.2.3 to
eq.2.4 in proposition 2.2 relies on it. Throughout chapter 2, these were as-
sumed to be the computational and QFT-bases but that choice is entirely
arbitrary. In fact, any two sets of states can be used as long as they satisfy
mutual unbiasedness:

†That is, if the field describes monochromatic (laser) light.
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28 QKR using photonic spatial modes

Definition 3.1 Two sets {a1, a2, ..., aD} and {b1, b2, ..., bD} are considered mu-
tually unbiased if the following conditions are satisfied [23]:

〈ai|aj〉 = 〈bi|bj〉 = δij, ∀i, j ∈ {1, ..., D}

| 〈ai|bj〉 |2 =
1
D

, ∀i, j ∈ {1, ..., D}

Here, the elements of the sets can either be vectors or functions depending
on the specific space in question.

In paraxial optics in a linear medium, ignoring polarisation, the field at
any plane perpendicular to the optical axis can be expressed as a complex
field [24]. These fields will then propagate along the optical axis. We can
use this field to define states, which we require to be normalizable. Hence,
to construct these states, we have a L2-space meaning the elements will
be square integrable functions f : Rn → , n ∈ {1, 2}. Here, the value of
n depends on the number of transverse dimensions. That is, the number
of dimensions perpendicular to the optical axis that are considered. In
experiment, this will always be n = 2, but n = 1 yields less cumbersome
formulae for theoretical analysis.

Consequently, the spatial space is (uncountable)-infinitely dimensional and
one therefore cannot expect to find a finite dimensional bases for it to con-
duct QKR with. Instead, one has to construct two mutually independent
sets whose elements span a subspace of the complete spatial space. This
creates the potential for ’state leakage’ into the set’s orthogonal comple-
ment. The consequences of this are addressed in section 3.3.

The position set

For now, let us focus our attention towards finding sets of functions
{ f1(x), ..., fD(x)} and {g1(x), ..., gD(x)} that satisfy the condition of mu-
tual unbiasedness. To this end, the inner product needs to be explicitly
defined

〈a(x)|b(x)〉 =
∫ ∞

−∞
a(x)†b(x)dx.

The most convenient such set concerns one constructed from D position
bins of size d that are equidistantly spaced a distance d′ apart. They are
graphically represented in Fig. 3.1a and will from now be referred to as
the position set or position basis.* Further defining d̃ = d + d′, the j-th

*The latter is abusive as the set does not span the entirety of the space.
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3.1 Mutual Unbiasedness using photonic spatial modes 29

such state can be mathematically expressed as

|pj(x)〉 = 1√
d

∫ jd̃+d

jd̃
δ(x− x′)dx′. (3.1)

Although intuitively obvious, for completeness sake, they can easily be
proven to be orthonormal. Here, without loss of generality, the x-axis is
chosen such that the left side of the jth-bin lies at the origin.

∫ ∞

−∞

∫ d

0
δ(x− x′)dx′

∫ kd̃+d

kd̃
δ(x− x′′)dx′′dx =

1
d

∫ d

0

∫ kd̃+d

kd̃
δ(x′′ − x′)dx′′dx′

Here, it was used that
∫ ∞
−∞ δ(x − a)δ(x − b) = δab. Realising that x′′ =

x′ + (k− j)d̃, the subsitution u = x′′ − (k− j)d̃ is made such that

=
1
d

∫∫ d

0
δ(x′ − (u + (k− j))d̃)dx′du

In the special case k = j this evaluates to:

1
d

∫∫ d

0
δ(x′ − u)dx′du =

1
d

∫ d

0
du = 1.

As when evaluating the inner integral, u lies within the range of x′. In
contrast, if k 6= j, the inner integral will evaluate to zero as u + (k − j)d′

does not lie within [0, x′] as d < d̃ for d′ > 0. Hence, we conclude that
〈pj(x)|pk(x)〉 = δjk.

Finding a conjugate set

Having constructed one orthonormal set, the job is now to find a second
one that is mutually unbiased towards it. It is important to note that this
choice is not unique.* The easiest states to consider are superpositions of
the positions bins with constant phase factors for any of the bins: |m(x)〉 =

1√
D ∑D

j=0 pj(x)e2πiφj , for which mutually unbiasedness with the position
set is straightforwardly derived

| 〈pj(x)|m(x)〉 |2 = | 〈pj(x)| 1√
D

D

∑
k=0

pk(x)eiφk〉 |2 =
1
D
| 〈pj(x)|pj(x)eiφj〉 |2 =

1
D

.

*In fact, finding and testing more of such conjugate sets is a promising route to im-
proving overall performance, see section (3.4)
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Position and conjugate set
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(a) Sketch boxcar function that make up the posi-
tion set. Given the proper normalisation they are
orthonormal.
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with d′ = d for D = 5. Lines rep-
resent the plane waves that the
states are named after.

Figure 3.1: Amplitude and phase distribution of the position and momentum sets
respectively.

Consequently, if a D-sized orthonormal set of these superposition states
is constructed, it is automatically mutually unbiased towards the position
basis. We require that

〈mm(x)|mn(x)〉 = 1
D ∑

j
p∗j (x)e−iφjm ∑

k
pk(x)eiφkn =

1
D ∑

j
ei(φjn−φjm) = δmn.

It is physically appealing* for all states to have linear phase ramps φjm =
2π j · am where am is the phase ramp of such a state. With this restriction, it
is obtained that

1
D

D−1

∑
j=0

e2πij(an−am) =
1
D

D−1

∑
j=0

e2πij c
D = δmn.

Where we have made the substitution an− am = c
D . The last equality holds

only if c ∈ Z.† The fact that the 2π-periodicity of the purely complex ex-
ponential requires 0 ≤ an − am < 1 for every unique state, in combination

*because these states are at least somewhat reminiscent of plane waves, which work
well in combination with lenses.

†Where the sum (multiplied by the prefactor)is 1 if c is an integer multiple of D and 0
for any other integer.
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3.2 State creation using a Spatial Light Modulator 31

with the objective of finding a set of length D, then fully fixes c to take on
values {0, ..., D − 1}. Hence, apart from the freedom to choose the ramp
of the first state*, the states are fully determined. Making the choice to set
the am-th state’s ramp to 0, the other ramps become: an = c

D . Naming
the states after their respective value for c, the resulting states take on the
form:

|mk(x)〉 = 1√
D

D−1

∑
j=0

e2πijk/D |pj(x)〉 = QFT(|pk(x)〉) (3.2)

This leads us to conclude that we have found suitable bases within the
spatial freedom of the photon to conduct QKR with. Also, there is a con-
venient method of constructing the conjugate states with the help of the
quantum Fourier transform. In addition, this choice is unique under the
assumptions of constant, linearly increasing phase shifts between the po-
sitions states. In the remainder of the thesis the conjugate states will often
be referred to as momentum state because of the linear phase ramp remi-
niscent of optical plane waves, which have a well defined momentum.

3.2 State creation using a Spatial Light Modula-
tor

Having acquired a method of constructing mutually unbiased bases in the
spatial degree of freedom, it is now necessary to focus attention away from
theoretical questions and start addressing more practical ones. The first of
these is the matter of state creation. Explicitly, this implies manipulating
an electric field such that it takes on forms specified in eq.3.1 and eq.3.2.
Considering the phase jumps introduced in the momentum basis, full con-
trol over the phase profile is required. In addition, if there is no premature
fixing on section 3.1’s d and d′ parameters, amplitude control is also re-
quired. One way to achieve this is using a spatial light phase modulator
(SLM). Such a device applies an arbitrary phase shift φ(n, m) to any of its
(N ×M) pixels of size (lx, ly). Mathematically this can be expressed as†

Eout(x, y) =
N

∑
i=0

M

∑
j=0

∫ (i+1)lx

ilx

∫ (j+1)ly

jly
Ein(x, y)eiφ(n,m)δ(x− x′)δ(y− y′)dx′dy′.

*Choosing the first state is essentially adding a global phase factor which is of no
physical relevance.

†Altough certainly very insightful, this expression is very cumbersome to work with.
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32 QKR using photonic spatial modes

It is immediately clear that such a device grants direct control over the
light’s phase profile on length scales l: lx/y < l < Nl. Complete ampli-
tude control is obtained by applying an extra phase ramp to a part of the
incoming light. This phase ramp bends part of the light with an angle
θ = arctan( λ

nlx/y
), where n is the number of pixels used for a phase cycle. *

The light that has been bent is said to be 1th-order light and The unaffected
light is said to be 0th-order in accordance with standard grating terminol-
ogy [24]. One can formally show that by using a phase-only SLM like this,
any desired light profile can be constructed in the 0th- or 1th-order [25].†

Since real SLMs are non-ideal, not all light will be deflected into the first
order even with a full 2π-phase cycle. Hence, the 1th-order will be used to
create the states and the 0th-order will contain all left-over light.

By estimating the angle θ using typical values λ = 0.633 µm‡, n = 5, lx =
10 µm it is found that θ ≈ 1°. Consequently, taking a typical SLM width
Nlx = 1 cm, full separation between the 0th- and 1th-order light happens
only after 50 cm. Even then, introducing optical elements that only affect
the 1th-order will be hard. Hence, a filtering system is introduced, that,
using a 4f-imaging system and an adjustable slit gets rid of any non 1th-
order light. The design is schematically represented in figure 3.2.

Using this design, state creation can be simulated. In figure 3.3 this is per-
formed in five dimensions with the states from 3.1 displayed on the SLM.
The light is evolved using the Diffractio module which uses the Rayleigh-
Sommerfeld approximation for propagation.

In Fig. 3.3b we see that, using this method, states can be created that are
reasonably close to the boxcar functions of 3.1. Due to diffraction effects,
the square fields produced by the SLM have, upon arriving at the imaging
plane, lost their sharp edges. A quick visual inspection lead us to conclude
that they are better approximated by gaussians. Importantly, this is of no
consequence to security as the states still show a high degree of orthonor-
mality (Fig.3.3d), which is ultimately what matters, not the exact shape
of the field. In addition, this figure also shows all squares of inner prod-
ucts between position and momentum states to be close to 1

5 as expected.
Specifically, the mean is 0.189 with a standard deviation of 0.01 which is

*To deflect all light going through the pixels to whom the ramp is applied this cycle
goes from 0 to 2π.

†The proof is omitted here as the experimental realization does not live or die with
this result.

‡This choice stems from the fact that helium-neon lasers, a very common laser, emits
with this wavelength.
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SLM

X

Z
f

lenslens Slit
Imaging 

Plane

ff f

Figure 3.2: 1th-order filtering using a 4F-imaging system. The phase ramp is ap-
plied to the orange light which is deflected into the first order.By the properties of
such a system, the field in the imaging plane is exactly the same but for a mirror-
ing in the x-direction, both in amplitude and phase, as the 1th-order light in the
SLM-plane. [24].

reasonably unbiased. As a final comment, Fig. 3.3c shows the momen-
tum states to be much more distinguished in their phase profiles. This is
expected because their intensity profiles are so similar. From an informa-
tion theoretic point of view, the waves representing different states need
to carry that information somewhere. If it is not carried in the amplitude
it needs to be contained within the phase.

One (legitimate) concern regarding the applicability of the simulation is
the fact that it was performed using a plane wave SLM input. Viable
source candidates however, most likely lasers, will be gaussian-shaped in
the transverse dimensions [26]. For the light incident on the SLM

|ESLM(x, y)| ∝ e−
x2+y2

2σ2 ≈ 1− x2 + y2

2σ2 .

Here, σ is the beam width at the SLM and the approximation is valid for
small x2 + y2. If the condition on the source is now placed that
σ > 5 · D

2 (d + d′)− d′
2 = 5 · xmax*, in our one dimensional case (y = 0) this

*This is the constrained that the standard deviation be five times bigger than the dis-
tance from the outer position bins to the centre.
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34 QKR using photonic spatial modes
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Figure 3.3: Simulation of state creation using a phase-only SLM and a 4f-lensing
system for the following parameters: d = 40 µm, d′ = 60 µm, lx = 8 µm, n = 3,
f = 20 cm and slit size 5 mm. The transverse (X) direction has size 1 cm and
contains 10, 000 points.
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gives

|ESLM(xmax)|
|ESLM(0)| ≈

1− ( xmax
5
√

2xmax
)2

1
= 0.98. (3.3)

Hence, under this assumption on the source, the plane wave approxima-
tion is sufficient and the simulation realistic.

3.3 Propagation through the eavesdroppable zone

In this section, the propagation of the light between the communicating
parties is discussed. First, the effect of diffraction is discussed and a re-
lation derived between the realistic transmission distance and the initial
beam width. Then, theoretical evidence is provided that mutual unbi-
asedness is preserved during propagation which is then also confirmed
by simulations.

Diffraction and divergence

The setup described in Fig. 3.2 creates mutually unbiased states that could
in principle be sent directly to Bob. Any propagating beam however is
subject to beam widening in the transverse dimensions caused by diffrac-
tion. For gaussian beams, the widening of the beam width is given by
[26]:

w(z) = w0

√
1 + (

zλ

πw2
0
)2

Here, w0 = 2σ is the original beam width and z is the propagated distance
measured from the focus. Considering the small initial beam widths at
the focus (imaging plane) of only about 30 µm, the effect of diffraction
will be very profound. Taking z = 5 m, the beam width will have grown

to: w(5m) = 60 µm
√

1 + (5 m·0.5 µm
π·60 µm2 )2 ≈ 1.3 cm. Therefore even this tiny

propagation distance already requires Bob to have measurement or focal
equipment of significant size. Perhaps surprisingly, to overcome this issue,
the initial beam width has to be increased. A convenient way to achieve
this is using a lens. By its Fourier property [24], for the absolute value of
the field we obtain

|E(x)| = F (e
− x2

2σ2
old ) = e−

1
2 σ2

oldk2
x .
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36 QKR using photonic spatial modes

By a geometric argument based on 3.4b, x =
ky
|k| f =

kyλ f
2π , and by simple

substitution, we obtain σnew = λ f
2πσold

. Computing this using some typical

values: σnew ≈ 0.5 µm·0.5 m
2π·30 µm = 1.3 mm, and therefore:

w(5 m) = 2.6 mm
√

1 + (5 m·0.5 µm
π·2.6 mm2 )2 = 2.6 mm, which is smaller by almost

one order.

Simulation of the eavesdroppable zone
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(c) Intensity profiles of the position and momentum states at the planes as specified
at (a). The mutual diverging of the position states in the eavesdroppable zone is
clearly visible. Diffraction however is negligible as the states are sufficiently wide.
In contrast, the momentum states do not diverge but all the different peaks diffract
widening them considerably. The result is a very chaotic profile.

Figure 3.4: Simulation of the propagation of light through the eavesdroppable
zone. Parameters are identical to that of Fig 3.3 with the exception of d′ which is
set 40 µm. In addition, fspace = 60 cm and l = 10 m. Since l

fsp
≈ 17 < 42 all light

is contained within a 2 cm area.

In addition to diffraction, there are also momentum considerations that
pose a restriction if we want Bob’s setup to be of workable dimensions.
The different position states gain different transverse momenta once they
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3.3 Propagation through the eavesdroppable zone 37

propagate through the lens, posing the risk of diverging past a point where
Bob can collect them using a reasonably sized lens. To investigate this
concern, the states will be approximated as a beam of size 2σ. This can
be done as the ray-approximation neglects diffraction but that has already
been dealt with. Looking at Fig. 3.4b, the angle θ is given θ = (D−1)(d+d′)

f ,
and consequently for the transverse distance between the outer edges of
the extremal states at a distance l:

xmax = (l − f )θ + 2σ = (l − f )
(D− 1)(d + d′)

f
+ 2σ <

l(D− 1)(d + d′)
f

+ 2σ < dBob

Here, the last inequality does not follow logically but is a restriction if Bob
wants to catch the majority of the light with optical equipment of diameter
dBob. Taking d = 2 cm and setting the other parameters like in the previous
simulations, the ratio between focal and transmission length can be lower
bounded: l

f < dbob−2·σ
(D−1)(d+d′) = 2 cm− 2 · 0.3 cm

4(40 µm+40 µm)
= 42. This points towards the

biggest problem using spatial degrees of freedom for encryption purposes
namely that the required optical equipment size is unrealistic for trans-
mission over significant distance. Although one can probably find ways
to increase this bound a bit, the problem seems rather fundamental. Re-
sultingly, the spatial degrees of freedom seem to be of little use beyond
demonstrational purposes.

Mutual Unbiasedness during Propagation

Figure 3.3 shows the mutual unbiasedness of the states, but this by itself is
insufficient to claim mutual unbiasedness throughout the eavesdroppable
zone. Between state creation and the eavesdroppable zone operations are
performed on the light. If these operations are not unitarian for instance
due to absorption, inner product is certainly not preserved which affects
mutual unbiasedness and therefor the security of the procedure.

Instead, a proof of mutual unbiasedness at plane I of Fig. 3.4a in addition
to a proof of preservation of inner product during propagation is required.
The former is straightforward, at least in simulation, and is shown in Fig.
3.5a. The latter is a result of the unitarity of linear optics [27], a proof of
which is beyond the scope of this thesis. In our context, this theorem states
that any action onto a state ψ→ ψ′ can be represented by a unitary opera-
tor U from which conservation of the inner product immediately follows:

〈ψ′1|ψ′2〉 = 〈ψ1|U†U|ψ2〉 = 〈ψ1|ψ2〉

Defining the inner product change through the eavesdroppable zone as:
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38 QKR using photonic spatial modes

δ(z, 0) = 〈ψ1(z)|ψ2(z)〉 − 〈ψ1(0)|ψ2(0)〉, this can also be tested in simula-
tion. Here, distance is measured from fspace, the start of the eavesdrop-
pable zone. Theoretically, this quantity should always evaluate to zero.

Mutual Unbiasedness in the Eavesdroppable zone
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Figure 3.5: Simulation of the evolution of mutually unbiasedness in the eaves-
droppable zone. From (a) it can be deduced that the states start out almost mutu-
ally unbiased. Combining this with information from (b), it is confirmed that the
states are (almost) mutually unbiased everywhere in the eavesdroppable zone.

Interestingly, the inner products are not completely preserved during the
simulation. Although changes are only in the order of 10−3, the change is
correlated with distance meaning this could pose a serious problem if the
setup is elongated. That is, in simulation only *, because it is assumed that
this is merely an error in simulation, considering the rigidness and fun-
damentality of the theory underlying the preservation of inner products
within linear optics and the tiny inner product deviation. In the remain-
der of this thesis it is therefore assumed that in reality these deviations do

*The origin of this peculiar behavior is unknown and certainly deserves to be properly
investigated. It might originate from the method the Diffractio module uses to propagate
the fields.
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not occur.

3.4 State detection

The final step in designing a suitable setup for QKR is corporealizing the
grey box labeled ’Bob’ in Fig 2.1. The goal of this apparatus is to create a
string XB from the incoming photons that is identical to XA. By the result
presented in the subsection ’Two players’ in 2.2 this should be possible
with 100% accuracy. The goal therefore is to construct physical manifes-
tations of the operators (Bθ

X) that can distinguish between the different
states. As established in chapter 2, the choice of operator may depend
on θ, the key shared between Alice and Bob. This allows us the freedom
to adjust the setup in accordance with θ. This might be done without any
regard for conservation of mutual unbiasedness as it is assumed the eaves-
dropper cannot interfere once the light is inside Bob’s apparatus.

Discriminating between position states

The first step is to find a method to discriminate between the position
states. Recall that the states in the imaging plane in Fig 3.2 have the same
intensity and phase profiles as when produced at the SLM.* This plane in
turn lies exactly one focal length away from Alice’s last lens implying that
the field one focal length into the eavesdroppable zone can be described
as [24]

E(l = fspace, x) = F
(

Eimag(
x

λ fspace
)

)
.

Defining lex = l − 2 fspace then, and placing a lens with focal length f =
fspace = fsp at the beginning of Bob’s apparatus, we can calculate the field
a focal distance further on to be

E(z = l + fsp, x) = ei k
2 f (1−

lex+ fsp
fsp

)x2

F (E(z = fsp, x)) = ei k
2 f (1−

lex+ fsp
fsp

)x2

Eimag(−x).

Where the phase factor is the result of the interlens distance not being
exactly of length 2 fsp. This however is of no consequence if a measurement
is performed:

P[xa < x < xb] =
∫ xb

xa

e−iφ(x)Eimag(−x)†eiφ(x)Eimag(−x)dx =
∫ xb

xa

Iimag(−x)dx

*That is, but for the transformation of the states from boxcar to gaussians by diffrac-
tion.
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40 QKR using photonic spatial modes

Here, the phase factor has been abbreviated to φ(x) and Iimag(−x) is the
intensity in the imaging plane. Since the position states can be clearly dis-
criminated in the imaging plane (Fig. 3.3(b)), this gives a straightforward
way to distinguish the position states given a camera with pixels that are
at least an order smaller than the width of the gaussians. If this condition
is met the position state gaussians are all well seperated and can be ac-
curately resolved. Consequently, illumination of a particular pixel can be
traced back to a particular state. Of course, when two intensity profiles
overlap, there is an associated error with this. To quantify the similarity
between two states for Bob, we’ll define the overlap integral:

O(|i〉p , |j〉p) =
∫ ∞

−∞
Ĩi(x) Ĩj(x)dx*

Where Ĩ is the normalized intensity at the plane z = l + fsp such that
O = 1 for fully overlapping state and O = 0 for perfectly separable states.
Judging from the results of 3.3, this should guarantee accurate position
state discrimination as is confirmed in simulation in 3.6.

Discriminating between momentum states

In contrast to discriminating the position states, discriminating the mo-
mentum states is significantly less trivial. In fact, finding a setup that
yields overlap integrals as good as the position states is one of, if not the
most important unsolved challenge remaining within the project. The ele-
mentary solution involves positioning a lens with focal distance fm a dis-
tance dm from the camera as in Fig.3.6a. The discrepancy between fm and
dmom corrects for the phase factor obtained during propagation and the
fact that the lens is not ideally positioned such that fsp and fm constitute
a 4F-system. Finding optimal values for fm and dm is best performed nu-
merically for fixed fspace and l. In the simulation of Fig. 3.6, Scipy’s least
squares method is used for this. From the figure, it can immediately be
concluded that this solution is not optimal as there is clear overlap be-
tween momentum states. Consequently, Bob will not be able to tell the
state of a photon sent in the momentum basis with 100% certainty. From
a security perspective, all these errors have to be ascribed to be due to
the eavesdropper. As a result, XA and XB may be different to such an ex-
tent that even noise correction will not suffice in reconciliating the strings,
which would mean the key needs to be refreshed without even the pres-

*In reality, the camera is not infinitely long and the bounds will be at the outer most
pixels.
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ence of an eavesdropper*. It is therefore of the utmost importance that
future efforts are directed towards decreasing the error probability.
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(a) Schematic representation of the setup as simu-
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(c) Intensity profiles of the different states at the camera plane.

Figure 3.6: Simulation of the light observed by Bob at the camera plane. Used
parameters were identical to those at 3.4. Furthermore it was chosen to fix
fmom = 100 mm. Using least square fitting, the ideal momentum lens distance
was determined dmom = 62 mm.

*This would also directly hinder the main goal of QKR, namely to recycle the key.
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Optimizing Bob’s measurements

From the same figure, it can be observed that all overlap integrals are
upper bounded by 0.07. Although this by itself is acceptable, one has
to realize how the total error rate is related to this. Generally, to deter-
mine which state caused a particular pixel excitation, one divides the pix-
els into intervals where a particular state dominates. When a photon is
detected in that interval it is then assumed to come from the dominant
state. The error probability for the ith-state with dominating intervals
{(x1

s , x1
f ), ..., (xn

s , xn
f )}:

Pi
err =

n

∑
k=0

P[xk
s < x < xk

f |i]
P[!i]

P[!i] + P[i]
=

n

∑
k=0

∫ xk
f

xk
s

I′i dx
∑j 6=i

∫ xk
f

xk
s

Ĩjdx∫ xk
f

xk
s

Ĩidx + ∑j 6=i
∫ xk

f

xk
s

Ĩjdx

Here, I′ is the intensity normalized over the chosen intervals.* P[i] and
P[!i] are the probability that an excitation is or is not caused by the dom-
inant state. Compared to the overlap integral, this quantity more accu-
rately represents the error probability. It does however require establish-
ing the intervals where the overlap integral does not. Hence, the overlap
integral is sometimes preferred. Realistically, the two will be heavily cor-
related, implying that optimizing either one will likely suffice. However,
strictly, it is the error probability that needs to be minimized.

One possible method for minimizing the error probability concerns post-
selection of photons based on which pixel is excited. In particular, the re-
gions where there is no clear dominant state can be excluded and regarded
as loss. This strategy is applied to the states shown in Fig. 3.7, which yields
error probabilities of at most 10%. Such a strategy would however require
another amendment to the security analysis as this kind of non-uniform
post-selection with regard to θ is currently not included. Intuitively, such
post-selection would necessitate randomly discarding position state pho-
tons such that XB contains approximately as much position as momentum
state photons but this needs to be investigated more carefully.

There is a possibility that such post-selection is ultimately not necessary
with additional changes to the setup. As priorly mentioned, the momen-
tum states are orthonormal meaning they should be fully separable. Possi-
bly, a path other than the current momentum lens exists to better seperate
the momentum state in intensity. We attempted to add higher order poly-

*In contrast to Ĩ which is normalized over the whole of x.
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nomial terms to the phase distribution of the momentum lens

φnew(x) = φlens(x) + ax3 + bx4 =
π

λ fmom
x2 + ax3 + bx4.

However, least square fitting converged to φlens(x) even with variable
dmom. This is, however, far from an exhaustive search so there might be
other configurations that yield better results possibly containing several
lenses or other optical equipment.

Error optimization using post-selection
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Figure 3.7: Simulation of error optimization at Bob’s. Momentum errors are re-
duced to below 10% in return for a 50% loss.
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Chapter 4
Experimental realization

After having optimized the experimental design in the previous chapter,
we now turn to the experimental implementation, and compare the re-
sults to the simulations. The measurements are all still performed using
monochromatic laser light instead of single photons. Nevertheless, it is
shown that, besides some minor details, simulation and experiment agree
to such an extent that running the encryption scheme is actually feasible.

4.1 Setup

The constructed setup is very reminiscent of that presented in Fig. 3.6.
The plane-wave source is provided using a 633 nm helium-neon laser sat-
isfying the constraint posed in Eq. 3.3. The light is then guided towards
a (8 µm x 8 µm) spatial light modulator (Holoeye Pluto) under a 10° angle
of incidence. The per pixel phase shift on the SLM can be controlled by
means of a (1920 x 1080)-greyscale image that is pixel-wise converted to
a phase shift φ(pix) = γ(w(pix)) ≈ 2π·w(pix)

255 with w(pix) the brightness
of a pixel in the greyscale image. The 1-dimensional states of Fig. 4.1a
are displayed along the x-direction. Here, the state parameters are chosen
d = 40 µm and d′ = 60 µm.† Furthermore, the number of pixels per 2π-
revolution is 3. Every pixel further away from the SLM centre also gets
zero phase shift.‡ In the y-direction, the image is displayed on the centre
34 pixels such that the height of the fields (initially 34 · 8 µm = 270 µm) is

†For definitions of these parameters 3.1
‡This is the vast majority as the SLM is much larger.
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roughly conserved under propagation through the lenses.* We developed
software based on the python library ’Pygame’ that allows fast switching
between the states by pressing the associated key to portray the state onto
the SLM. The 4f 1th-order filtering system consists of two lenses with focal
distance 20 cm and an adjustable diaphragm for optimization of the spa-
tial filtering. In accordance with simulation, fspace is chosen 60 cm. Due
to practical constraints however, the propagation length is restricted to
2.33 m. This is still significantly larger than 2 fsp such that the imaging is
still non-4F meaning the phase will still acquire a phase shift that requires
correction.†

Experimental Setup
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(a) Schematic overview of the setup. The dashed
lens fm is included only if a momentum state is
to be measured. The subplot shows the different
states on the SLM.
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(b) Examples of |1〉p and |1〉m as
greyscale images. Every pixel out-
side this interval receives no phase
shift.

To measure at Bob’s, a megapixel Spiricon SP620U CCD-camera with pixel-
size (4.4 µm x 4.4 µm) is used. The camera plane is chosen 53 cm because
it yielded the best result in practice, despite being 7 cm away from the ex-
pected focal plane. Finally, Bob’s momentum lens is chosen fmom = 10 cm.

*This is because, as derived in 3.3, σnew = f

2πσold≈ 0.63·10−6 ·0.5
2π135·10−6

≈ 350 µm for a typical lens

( f = 0.5 m) in the setup.
†This is important because one cannot expect to create a 4F-system if l is ever in-

creased. Therefore, this distortion is crucial to preserve a realistic setup.
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Like the slit size, its position is manually optimized. The setup is also
shown in Fig. 4.2.

4.2 Method & Results

The first measurement series is conducted with the camera positioned in
Bob’s camera plane and the momentum lens disjointed from the setup.
All states were consecutively displayed on the SLM. One screenshot of
the intensity profile is saved per state. Camera settings were freely ad-
justed also within one such measurement series as absolute intensities are
largely irrelevant. It is the normalized intensity that is associated with
photon probability distribution.* Afterwards, the momentum lens is in-
troduced and the method repeated. The resulting normalized intensity
distributions, summed over the y-direction, are shown in Fig. 4.2.
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Figure 4.2: Intensity profiles at the camera plane, both by experiment (solid) and
by simulation (dashed). Simulation parameters match experimental parameters
as specified in 4.1a. Except for fsp = 60 cm as mentioned in the text.

Besides intensity profiles at Bob, the other important characteristic to var-
ify is mutual unbiasedness. To demonstrate mutual unbiasedness, the

*This is necessary because the momentum states are five times as luminous as their
position counterpart as more light is reflected into the 1th-order at the SLM.
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camera is moved to the plane 43 cm into the eavesdroppable zone, a value
that was chosen at random. Since the beam width in the eavesdroppable
zone (∼ 1 cm) is larger than the camera width, the camera is positioned
slightly left of the optical axis such that the left side of the profile can be
imaged. A measurement series is conducted for all states after which the
camera is moved over to the right and the procedure is repeated. The
resulting intensity distributions are plotted in Fig. 4.3. In addition to sum-
ming over the y-direction, this plot is a rolling average over fifty pixels to
act as a low-pass filter. This is required as the light intensity in the eaves-
droppable zone is reduced by approximately a factor 1.5 cm

40 µm = 375 for the
position states* necessitating a higher gain and integration time amplify-
ing the noise. Since these variations are of little interest, the rolling average
is justified.

Experimental intensity profiles in the eavesdroppable
zone
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Figure 4.3: Intensity profiles 43 cm into the eavesdroppable zone, both by exper-
iment (solid) and by simulation (dashed). Simulation parameters match experi-
mental parameters as specified in 4.1a. Only the distance fsp-camera is kept at the
theoretical 60 cm.

4.3 Discussion

Considering the profiles in Fig. 4.2, it can be concluded that predictions
are met to a reasonable degree. Measuring in the position basis, agree-
ment is excellent and thus, in accordance with simulation, the position

*For the momentum state, this factor is harder to find but it will be far less than the
position states because every momentum state in the eavesdroppable zone contains a few
σ ≈ 0.5 mm peaks.
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states will be straightforwardly separable. In the momentum basis, agree-
ment is not ideal which is notably pronounced in the upper left figure that
shows quite a deviation from a Gaussian in the experimental case. This
is especially troublesome as discriminating momentum states is already
tougher theoretically, and any deviation from the the optimized simula-
tion will complexify this even further. It is however currently the case that
this predominantly affects the side lobes which could possibly be ignored
by post-selection in exchange for an even higher loss. Considering the
similarity with simulation in the remaining centre regions, it is expected
that simular error probabilities can be obtained as in Fig.3.7a.

One possible explanation for this discrepancy has to do with the odd choice
for the camera plane at 53 cm instead of the focal plane of fspace. Theoret-
ically, there is no reason for this and such behavior is not observed any-
where in simulation. Of course, it could be that the focal distance of the
lens was incorrect, but the deviation is so severe that this seems unlikely.
A more probable explanation emanates from the source: although satis-
fying the condition in eq.3.3, this was only barely met. Consequently, the
beam is of such size that diffraction is not entirely negligible. This widen-
ing could then have had consequences down the optical path that leads to
the different effective focal plane.

Moving onto the eavesdroppable zone, we observe the exact same de-
viation from simulation as with the momentum lens. This is unsurpris-
ing as the momentum lens effectively projects a scaled version of the in-
tensity profile in the eavesdroppable zone onto the camera. The similar
discrepancies however do indicate that the process causing the difference
originates from Alice, further discrediting the flawed lens hypothesis. Al-
though experiment and simulation agree less here, this does not necessar-
illy indicate a security breach. As priorly mentioned, the security does not
dependent on the exact shape. As long as the conjugate* basis changes ac-
cordingly such that mutual unbiasedness is preserved the security is guar-
anteed. As this does seem to have happened†, one can be reasonably sure
that mutual unbiasedness is realized also in the experimental case.

*Be it the momentum states if the position states change or vice versa.
†An indicator for this is the way the side lobes have changed
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Outlook

We worked towards implementing a demonstration of high dimensional
quantum key recycling. And, to that end, significant progress has been
made: We developed a more experimentally-friendly version of the se-
curity proof, designed a setup that has a 10% error rate and verified this
using a classical analogue. However, as is so often the case, there lie many
more challenges ahead, both theoretically and experimentally.

Theoretically, there is a lot to gain in state optimization. To start, the ap-
proach in section 3.1 contains restrictions that are unnecessary. Linearity
for example, although convenient in the context of lenses, is not required
and there may exist conjugate bases that are more suitable for QKR, es-
pecially in combination with Bob’s momentum lens replaced by a mo-
mentum spacial light modulator. Together, these may decrease overlap
between conjugate states at the detector. In addition, the security proto-
col can be extended to include steps like post-selection (3.7) on measured
qudits by Bob. This would make it much easier to eliminate noise.

This is important, because experimentally there is a lot of work that still
needs to be done in order to perform a successful demonstration. First,
the laser has to be replaced by a single photon source [28] or weak coher-
ent pulses in the form of decoy states have to be used [29]. In addition,
the current camera would have to be replaced by a single photon camera,
the combination of which would pose significant engineering challenges.
Another issue is that of speed, especially with regard to Bob’s switching
between measuring position and momentum states. Probably, even with-
out a new conjugate basis, the momentum lens has to be upgraded to a
SLM to enable fast switching between the two. In case of no new conju-
gate basis however, a liquid lens [30] is another option to achieve similar
results. Of course, accompanying software that portrays the right state
and interprets Bob’s camera in real time have to be developed.

Looking even further into the future, one could ask whether the spatial de-
gree of freedom is the best photon degree to conduct QKR in. It is certainly
a convenient degree in terms of state creation, manipulation, detection
and ease of reaching high dimensions, but it is fundamentally plagued by
diffraction and divergence as addressed in section 3.3. This shortcoming
will likely restrict the range below practical usability. In addition, QKD
experiments have been performed using other high dimensional photon
degrees of freedom including Energy-time and Angular position- Angu-
lar momentum [16, 31]. The Energy-time degree, although experimen-

50



4.3 Discussion 51

tally cumbersome, is especially promising because it is suitable for in-fibre
transmission which has potentially enormous consequences in terms of
range.

In conclusion, there are still major challenges to overcome. Both before a
demonstration is realised and wherever the project may lead from there.
Nevertheless, I hope to have laid a solid foundation to wherever that may
be. Maybe we will see our future communications protected by quantum
key recycling. One never knows.
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