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Abstract

Quantum mechanics either violates realism (non-determinism) or locality. This follows
from Bell’s theorem by showing the measurement statistics of the

EPR-experiment—specifically, E[σα ⊗ σβ] = −α · β—can never be fully reproduced by
any local hidden variable model (LHV-model). Research has been done in the last

couple of decades into the degree to which LHV-models can reproduce measurement
statistics approximating the EPR’s statistics. Specifically of interest is finding a critical
amplitude pc for which amplitudes 0 ≤ p ≤ pc can be reproduced by LHV-models with
E[A(α)B(β)] = −pα · β and for p > pc it cannot. Our analysis and the literature show:
a density matrix separability criterion on the two-electron singlet state yields pc ≥ 1

3 ;
constructs by Kaszlikowski and Żukowski find pc ≤ 3

4 ; and finally pc =
1

KG(d+1) with d

the dimension of the measurement settings in Sd and KG the Grothendieck constant.
Further, open question arise and new approaches to the locality of quantum states are

given.
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Chapter 1
Introduction

1.1 Intro

Quantum mechanics (QM) is a special kind of physics. Its probabilistic nature is in stark
contrast to classical physics and its corresponding determinism. In classical physics,
measurement outcomes are precisely defined through intrinsic properties of objects.
Sometimes these outcomes can be calculated by proven formulas, but even if not, these
intrinsic properties assure equal measurement outcomes for same objects under same
conditions.

This is, however, not the case with quantum mechanics. Its mathematical framework al-
lows for properties of objects, such as electrons, to yield different outcomes by repeating
exactly the same measurement under the same conditions. Also, it seemingly allows to
violate the concept of locality: information cannot travel faster than the speed of light.

This seemingly probabilistic nature and violation of locality of quantum mechanics
has not always been appreciated. Physicists such as Einstein, Podolsky and Rosen
suggested that QM’s mathematical description was flawed. Their belief: quantum
mechanics can and should be formulated as a local hidden variable theory that instills
non-determinism and locality. [1]

However, in 1968 [2] John Stewart Bell showed by a short, but powerful proof that
the quantum formalism could not be formulated as such a model. A specific quantum
experiment, the EPR-experiment, was analyzed and for this shown its measurement
statistics could never fit a local hidden variable theory and thus always either violates
determinism or locality. And, experiments have shown the formalism to calculate
real-world experiments correctly.
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2 Introduction

In my research, I will analyze, with the help of literature, to answer what variations of
the EPR-experiment can be reproduced by a LHV-model. Doing so, I give an overview
of different methods to answer this question and state open problems still concerning.

This thesis is divided into three chapters: the first gives an introduction to all the
necessary mathematical tools of quantum mechanics, the second the mathematical
analysis and the third chapter the conclusion and discussions.

1.2 Quantum formalism

In this section, we outline the basic construct of the mathematical formalism of quantum
mechanics and corresponding properties.

Hilbert spaces form the framework of quantum mechanics.* We define a Hilbert spaceH
and its dual H′ and denote elements of the former as |·〉, called the ket, and elements
of the latter as 〈·|, the bra. This is called the braket notation.† There exists a natural set
isomorphism betweenH andH′

J : H ∼→ H′

α|x〉 7→ α〈x|.
(1.1)

which shows that for every ket in H there is a corresponding bra in H′ and vice versa
and constants change to their complex conjugate.‡

The inner product corresponding to the Hilbert space is denoted as

( f |x〉, |y〉) = 〈y| f |x〉 (1.2)

with |x〉, |y〉 ∈ H and for all continuous functions f : H → H.§ By definition, inner
products are linear and continuous in both arguments.

In quantum mechanics, the state of an object, with all its properties, is described by an
element from a particular H. Therefore, this set is often called the state space and its
elements state vectors or pure states.¶

Physics is the science of measuring: this formalism also provides a framework for
measurements on observables.|| We define quantum operators as linear and continuous

*A Hilbert space is an inner product space complete in respect to its metric.
†For a Hilbert space H, we define its dual as the set H′ = { f : V → C | f continuous and linear}

where f is called a (continuous) linear form.
‡The existence of this isomorphism follows from the the Riesz–Fréchet representation theorem. [3]
§All this notation is the default through all literature.
¶In this thesis all the state are normalized such that 〈ψ|ψ〉 = 1.

||Observables are physical quantities that can be measured—velocity, momentum, position, for
example.

2
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1.2 Quantum formalism 3

functions

σ : H → H (1.3)

that are self-adjoint, or Hermitian. Then, a state vector |vλ〉 ∈ H for which holds

σ|vλ〉 = λ|vλ〉 (1.4)

is called an eigenstate of σ with eigenvalue* λ ∈ C. Note, the set of eigenstates for any
operator forms an orthonormal basis forH.

Using this, we define how observables are measured by quantum operators:

– If state |ψ〉 ∈ H is an eigenstate of operator σ, then the measurement outcome is
its eigenvalue λ.

– If |ψ〉 is not an eigenstate, then it can be written as a complex sum of eigenstates:

|ψ〉 = ∑
λ

zλ|vλ〉 (1.5)

with zλ ∈ C and ∑λ |zλ|2 = 1. Then, the measurement outcome can take all the
eigenvalues λ, each with probability |zλ|2.

Surprisingly, this means a state that is not an eigenvector has no pre-known mea-
surement outcome, but can actually take different measurement values—this is called
non-determinism.

Due to this non-determinism, we define the expected value for a quantum operator σ on
state |ψ〉 as

E|ψ〉[σ] ≡ 〈ψ| σ|ψ〉

=

[
∑
λ

zλ〈vλ|
]

σ

[
∑
λ

zλ|vλ〉
]

=

[
∑
λ

zλ〈vλ|
] [

∑
λ

σ(zλ|vλ〉)
]

=

[
∑
λ

zλ〈vλ|
] [

∑
λ

zλλ|vλ〉
]

= ∑
λ

|zλ|2λ

(1.6)

by exploiting the linearity of σ and the orthonormality of the eigenstates.

*In this thesis, operators can often be written as matrices—therefore the word eigenvalue is used.
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4 Introduction

In the scope of this thesis, we can write kets and bras as (vector) arrays.* Using this, we
define the computational useful density matrix ρ|ψ〉 for a state |ψ〉:

ρ|ψ〉 ≡ |ψ〉〈ψ|

∼=
(

a
b

) (
a b

)
=

(
|a|2 ab
ba |b|2

)
.

(1.7)

We call density matrices of this form pure state density matrices. Following, we have

E|ψ〉[σ] = Tr[σρ|ψ〉]. (1.8)

Often times, not all observables of an object are considered simultaneously but only a
single property is. For single properties the Hilbert space formalism still holds and a
space is defined for specifically that property.

In this thesis, we will only focus on the observable electron spin that electrons have.

1.2.1 Electron spin

The electron spin is an intrinsic property of a sub-atomic particle, the electron. On a large
scale, there is no exact replica of this property, but a very close analogy can be made.

Large objects can have a spin angular momentum: the object spinning about an axis located
through its center of mass (figure 1.1). Letting α be the vector describing the direction of
this axis taking values in S2, we see an object has three options: rotating in a pre-defined
direction we call clockwise (value 1), moving oppositely called counterclockwise (value
−1), or rotating not all in that direction (value 0).†

*We use the symbol ∼= when changing between braket and array notation.
†S2 is the surface of a three-dimensional sphere.

4
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1.2 Quantum formalism 5

Figure 1.1: A gyroscope with spin angular momentum. The object rotates about its center of
mass axis.[4]

As the electron is a (near) point-like particle, it cannot have a spin angular momentum
as other objects have. However, measurements have shown electrons do carry a similar
property called electron spin. In short, we can act as if electrons carry spin angular
momentum and base our mathematics on it. There is single exception: the spin value
can never be 0—it is always either ±1 in every direction α ∈ S2, corresponding to a
‘clockwise’ and ‘counterclockwise‘ rotation.*

Returning to quantum formalism, we introduce the Hilbert space H that compactly
denotes electron spin. We define

H =

{
|ψ〉 ≡

(
a
b

)
∼= a|0〉+ b|1〉 | ∀a, b ∈ C, |a|2 + |b|2 = 1

}
(1.9)

with the corresponding dual space

H′ =
{
〈ψ| ≡

(
a b

) ∼= a〈0|+ b〈1| | ∀a, b ∈ C, |a|2 + |b|2 = 1
}

† (1.10)

and the inner product

〈·||·〉 : H′ ×H → C

〈ψ1||ψ2〉 7→
(
a1 b1

) (a2
b2

)
= a1a2 + b1b2

(1.11)

where we denote |ψ1〉 ∼=
(

a1
b1

)
and |ψ2〉 ∼=

(
a2
b2

)
.‡

*The analogy between spin angular momentum and electron spin is so strong that throughout the
literature electron spin is indeed described as a rotation.

‡Due to the isomorphism betweenH andH′ (1.1), this defines the inner product onH×H also.
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6 Introduction

Electron spin measurement

For the electron spin, we define the quantum observable that, given a direction α ∈ S2,
outputs the direction ±1—we call this the spin measurement. Let σα be this measure-
ment. Then it is defined as

σα ≡ α · σ ≡ α ·

σx
σy
σz


≡ αxσx + αyσy + αzσz

(1.12)

with

σx =

(
0 1
1 0

)
,

σx =

(
0 −i
i 0

)
,

σx =

(
1 0
0 −1

) (1.13)

the well-known Pauli matrices.

By this definition, we find that the spin measurements in the positive standard directions
(x, y, z) are the corresponding Pauli matrices.

To give an example, we perform a spin measurement in the positive z-direction on the

general state |ψ〉 = a|0〉+ b|1〉 ∈ H. As |0〉 ≡
(

1
0

)
and |1〉 ≡

(
0
1

)
are eigenstates with

eigenvalue 1 resp. −1, this means—according to calculation rules (1.5)—that observing
1 as measurement outcome occurs with probability |a|2 and −1 with probability |b|2.

Two-particle formalism

The formalism of the electron spin can also be extended when talking about two
electrons instead of one using tensor products. The state vectors are then of the form

|ψAB〉 = ∑
i,j∈{0,1}

zi,j |i〉 ⊗ |j〉 (1.14)

with zi,j ∈ C and ∑i |zi|2 = 1 and corresponding co-vector

〈ψAB| = ∑
i,j∈{0,1}

zi,j 〈i| ⊗ 〈j|. (1.15)

6

Version of July 1, 2021– Created July 1, 2021 - 12:29



1.2 Quantum formalism 7

A special class of measurements in the multi-particle formalism are local measurements.
Here, the particles are all measured individually by a respective quantum operator. In
literature, for the two-particle situation, this often described as Alice measuring particle
A by quantum operator σA and Bob particle B by σB.

The two-particle local measurements are of the form

σA ⊗ σB : H⊗H → H⊗H (1.16)

with the property

(σA ⊗ σB) (|ψA〉 ⊗ |ψB〉) = (σA|ψA〉)⊗ (σB|ψB〉)
= (λA|ψA〉)⊗ (λB|ψB〉)
= (λAλB)(|ψA〉 ⊗ |ψB〉)

(1.17)

where the second equality holds in case |ψA〉 and |ψB〉 are eigenstates for σA resp. σB.
This means the outcome of such a measurement is defined as the product of the two
separate local measurements. It follows that σA ⊗ I2 is the measurement that only
outputs the measurement outcome of σA on the first electron and analogously for
I2 ⊗ σB on the second electron. For vectors and arrays, the tensor product works at the
Kronecker product.

Non-determinism

One peculiarity of quantum physics we have already encountered upon is its non-
determinism. A object can have different measurement outcomes for the same observ-
able in exactly the same situation. For example, look at the electron in the state

|ψ〉 = 1√
5
|0〉+ 2√

5
|1〉

∼=
1√
5

(
1
2

)
=

3√
10

[
1√
2

(
1
1

)]
− 1√

10

[
1√
2

(
1
−1

)]
.

(1.18)

Note that in the last expression, the state is written as a sum of the eigenstates of σx
with respective eigenvalues 1 and − 1. Therefore, the probability of σx measuring 1 on

this state is
(

3√
10

)2
= 9

10 and similarly for -1 the probability is
(

1√
10

)2
= 1

10 .
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8 Introduction

1.3 EPR-experiment

In this thesis, the EPR-experiment plays a central role. In this, there are two electrons
and two observers, as is common, Alice and Bob. The experiment is done by Alice
performing a spin measurement with angle α on the first electron and Bob on the
second with angle β. The electrons are in the so-called singlet state, i.e. the two-particle
quantum state

|ψ〉 = 1√
2
[|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉]

∼=
1√
2

[(
1
0

)
⊗
(

0
1

)
−
(

0
1

)
⊗
(

1
0

)]
.

(1.19)

The corresponding density matrix of this state is

ρ|ψ〉 = |ψ〉〈ψ|

=
1
2
(|0〉 ⊗ |1〉 〈0| ⊗ 〈1| − |0〉 ⊗ |1〉 〈1| ⊗ 〈0| − |1〉 ⊗ |0〉〈0| ⊗ 〈1|

+|1〉 ⊗ |0〉〈1| ⊗ 〈0|)

∼=
1
2

((
1
0

)
⊗
(

0
1

) (
1 0

)
⊗
(
0 1

)
−
(

1
0

)
⊗
(

0
1

) (
0 1

)
⊗
(
1 0

)
−
(

0
1

)
⊗
(

1
0

) (
1 0

)
⊗
(
0 1

)
+

(
0
1

)
⊗
(

1
0

) (
0 1

)
⊗
(
1 0

))

=
1
4


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 .

(1.20)

The expected values of the measurement outcomes are then

E[σα] ≡ E|ψ〉[σα ⊗ I]

= Tr[σα ⊗ I ρ|ψ〉]

= Tr
[(

σα 0
0 σα

)
ρ|ψ〉

]
=

1
4

Tr
[(

σα −σα

−σα σα

)]
=

1
2

Tr[σα]

= 0

(1.21)

8
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1.4 Research question 9

as the Pauli matrices have zero trace. Analogously, E[σβ] ≡ E|ψ〉[I⊗ σβ] = 0. For the
product measurement, one finds

E[σα ⊗ σβ] ≡ E|ψ〉[σα ⊗ σβ] = Tr[σα ⊗ σβ ρ|ψ〉]

= −α · β
(1.22)

so, when Alice and Bob both measure in the same direction, it holds that

E[σα ⊗ σα] = −|α|2 = −1. (1.23)

As the possible outcomes are ±1, this statement concludes when measuring in the same
direction the product of the outcome will always be −1. Accordingly, if Alice observes
measurement outcome 1, Bob observes −1 and vice versa.

1.4 Research question

As mentioned in the introduction, the EPR-experiment violates one of the following
properties

– Locality: information can not travel faster than the speed of light;

– Realism: observable are deterministic—i.e., for a property of an object, equal
measurements under equal conditions on this property yield equal outcomes.
These properties are embedded as ‘variables’ in the objects and may or may not
be directly observable (hidden).*

The mathematical formalism of quantum mechanics described in the previous sections
indeed suggests either one of these principles is violated. The electron with spin state
(1.18) has two different possible measurement (non-realism) outcomes and the expected
value of (1.23) seemingly concludes two electrons interact simultaneously (non-local).

However, these violations may be solely a result of the mathematical formalism and not
of the underlying physics we measure on. For example, the physics behind the state of
(1.18) may be describing not one electron, but a box of ten electrons with nine having an
electron spin in the positive x-direction and one in the negative x-direction—measuring
this state actually means randomly receiving one of these electrons from the box and
then measuring the electron spin deterministically. The probabilities would then fit
the ones calculated in the quantum formalism. Likewise, the result of (1.23) can be
explained by introducing two pairs of two inseparable electrons (a left and right one):
one pair with the left having an electron spin in the positive z-direction and the right one

*An example of a hidden variable is mass. It is not possible to directly observe the mass of an
object—only indirect inferences are possible by measuring the gravitational weight, for example.

Version of July 1, 2021– Created July 1, 2021 - 12:29
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10 Introduction

in the negative z-direction; and the other pair equally but the left and right interchanged.
Then, the measurement could again mean randomly receiving one of these pairs and
measuring the spins.

Both examples are mathematical formulations that yield the same result as the quantum
formalism’s, but do instill locality and realism. Theories that follow these properties are
called local hidden variable theories with the corresponding mathematical constructions
called local hidden variable models (LHV-model).*

An interesting question arises whether all results in quantum mechanics, including the
EPR’s, can be formulated as a LHV-model. This would deem the previously explained
quantum formalism obsolete and show quantum mechanics is in fact local and realistic.
However, in 1964 the physicist John Stewart Bell proved such a model does not exist,
concluding that quantum mechanics is inherently non-local and/or non-realistic.[2]

In this research, I analyze to what degree LHV-models can explain QM. One question is
central: what is the highest amplitude p > 0 for which a LHV-model can reproduce the
quantum measurement statistics

E[σα ⊗ σβ] = −pα · β (1.24)

with

E[σα] = E[σβ] = 0. (1.25)

We analyze whether there exists a critical value pc such that LHV-models exist for all
p ≤ pc and definitely not for all p > pc.

Chapter 2 contains the mathematical analysis of this research and Chapter 3 the conclu-
sions and discussion.

*All realistic theories are defined by (hidden) variables and vice versa—therefore the word realistic is
substituted for hidden variable. Local refers to the locality principle.

10
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Chapter 2
Local hidden variable theories

In this chapter, we introduce the mathematical construct of local hidden variable theory
as discussed in the previous section and show a main result in this field: Bell’s theorem.
Also, we analyze how, and to what degree, LHV-models can reproduce the measurement
statistics found in the EPR-experiment.

We start off with the mathematical construct.

2.1 Mathematical construct

In the previous chapter, we discussed LHV-models as having the properties locality—
information cannot travel faster than the speed of light—and realism—observables
are deterministic. Fortunately, these two requirements lead to a general (and easy)
mathematical construct that imbed these properties precisely: all LHV-models can be
written such way. In this construct, we only need two things: measurement functions

A, B : Sd ×Ω→ {±1}
A : (α, ω) 7→ A(α, ω) ∈ {±1}
B : (β, ω) 7→ B(β, ω) ∈ {±1}

(2.1)

where Sd is the surface of a (d + 1)-dimensional sphere* and a probability space

(Ω,F , PΩ) (2.2)

with the sample set Ω, the σ-algebra event set F , and the probability function PΩ :
F → [0, 1]. In this thesis, it is often unnecessary—or clear from context—to explicitly

*We define Sd ≡ {v ∈ Rd+1 | ‖v‖ = 1}. Note that S2 was also previously defined.
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12 Local hidden variable theories

mention F . It can be the power set of Ω or another applicable σ-algebra. Also, PΩ is
often omitted in exchange for the more useful density measure pΩ.

The idea is that two observers, Alice and Bob, both choose a measurement setting
α and β for their measurement devices and nature randomly selects an element in
ω ∈ Ω as the object they will measure. Clearly, when the measurement settings and the
ω stay the same, the measurement outcome will also, so the formalism is deterministic
(realistic). Also, the system is local as functions A and B do not interact with each
other—A does not depend on β and B not on α. If measurements are repeated and
give different outcomes this is either because the measurement settings have changed
(α and β) or a different object, ωi, has been given.

In the most general framework, we allow communication between Alice and Bob so
their selection of ω is equal during their measurements. This is a justified addition,
because the underlying physics may be organized in such way Alice and Bob receive the
same object ωi. This does not violate locality or realism. Also, two separate probability
spaces can always be combined in one space with elements that describe both. *

An easy example is measuring the width, depth, or height of
three-dimensional objects. We define four different objects Alice and Bob can measure.
They cannot select an object freely, but have the equal probability 1

4 of measuring
a particular one. Alice and Bob always measure the same object, but may differ in
what direction they measure: this is notated by Alice’s options αx, αy, αz and similarly
βx, βy, βz for Bob. The probability space (2.2) is then defined by Ω = {ω1, ω2, ω3, ω4}
the set of the four objects and P(ωi) =

1
4 for all i. We then have Alice’s measurement

outcome A(αj, ωi), defined by (2.1), as the size of object ωi in the j-direction and
analogously for Bob. This model is local as Alice’s measurement does not influence
Bob’s and vice versa, and it is realistic as a repeated measurement on the same object
yields the same result.

2.2 Bell’s theorem

As mentioned in the previous chapter, Bell’s theorem shows no LHV-model exists that
can fully reproduce the measurement statistics of the quantum formalism—i.e.,

E[A(α)] = E[B(β)] = 0 and
E[A(α)B(β)] = −α · β.

(2.3)

*Most generally: Ω = ΩA ×ΩB =

{
ω =

(
ωA
ωB

)
| ω1 ∈ ΩA, ωB ∈ ΩB

}
and

pAB(ω) = pA(ωA)pB(ωB).

12
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2.2 Bell’s theorem 13

Theorem 1 (Bell’s theorem (1964) [2],[5]*). Quantum mechanics cannot be formulated as a
LHV-model.

Proof. Let two electrons be in the two-electron singlet state

|ψ〉 ∼=
1√
2

[(
1
0

)
⊗
(

0
1

)
−
(

0
1

)
⊗
(

1
0

)]
(2.4)

with the corresponding measurements statistics ((1.21) and (1.22)). Assume there exists
a LHV-model which reproduces the statistics—i.e., measurement functions A, B and a
probability space (Ω,F , PΩ) described by equations 2.1 and 2.2 and having expected
values as 2.3.

Then, let α, α′, β, β′ ∈ Sd be four random measurement settings and define

S = A(α)B(β)−A(α)B(β′) + A(α′)B(β) + A(α′)B(β′)

= A(α)
(
B(β)− B(β′)

)
+ A(α′)

(
B(β) + B(β′)

) (2.5)

and note either

|B(β)− B(β′)| = 0 and |B(β) + B(β′)| = 2 (2.6)
or

|B(β)− B(β′)| = 2 and |B(β) + B(β′)| = 0 (2.7)

as the functions only output ±1. Combined with the fact that
|A(α)|, |A(α′)| = 1, we find:

|S| ≤ 2 (2.8)
and the so-called CHSH-inequality

E [|S|] ≤ 2. (2.9)

Now we define our four measurement settings α, α′, β, β′ such that they lie in a plane
and can be parameterized by a single angle. The angles we choose are θα = 0, θα′ =

*While John Stewart Bell was the first to prove this theorem, a different, more common prove is given
here, using the CHSH-inequality. [5]
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14 Local hidden variable theories

π
2 , θβ = π

4 and θβ′ =
3π
4 . Then we have,

E[|S|] = E [A (θ = 0)]E
[

B
(

θ =
π

4

)]
−E [A (θ = 0)]E

[
B
(

θ =
3π

4

)]
+ E

[
A
(

θ =
π

2

)]
E
[

B
(

θ =
π

4

)]
+ E

[
A
(

θ =
π

2

)]
E

[
B
(

θ =
3π

4

)]
= cos

(π

4

)
− cos

(
3π

4

)
+ cos

(π

4

)
+ cos

(π

4

)
= 2
√

2
(2.10)

using the EPR-measurement statistics and the known relation α · β = cos θ.
Now note that 2

√
2 > 2, concluding the CHSH-inequality (2.9) is violated and thus

the LHV-model is not well-defined. In conclusion, no LHV-model can reproduce the
measurements statistics of the quantum state.

Bell’s theorem elegantly shows that no LHV-model can yield the same measurement
statistics as the EPR-experiment. This means, quantum mechanics can be—as is the case
with the EPR-experiment—intrinsically non-local and/or non-realistic.

A different question is, however, whether similar correlations can be reproduced by a
LHV-model. Specifically of interest, is finding a pc ∈ R such that for all positive values
p ≤ pc there exists a LHV-model with

E[A(α)B(β)] = −p α · β. (2.11)

Note, from Bell’s theorem (1), we know pc ≤ 1√
2
—the CHSH-bound.

This chapter is organized in few sections where we explore this question. The main
results of this chapter is

pc(d) =
1

KG(d + 1)
(2.12)

using the real Grothendieck constant and the measurement setting dimension d.

14

Version of July 1, 2021– Created July 1, 2021 - 12:29



2.3 Quantum separability 15

2.3 Quantum separability

The first method we use is to introduce separable quantum density matrices.

Definition 1. A density matrix ρAB is called separable if it can be written as

ρAB = ∑
i

pi ρi,A ⊗ ρi,B

≡∑
i

pi|ψi,A〉〈ψi,A| ⊗ |ψi,B〉〈ψi,B|
(2.13)

for pi ≥ 0, ∑i pi = 1 and |ψi,A〉, |ψi,B〉 ∈ {|0〉, |1〉}.

Werner [6] and Terhal [7] proved separability is a sufficient requirement for a LHV-
model to exist that reproduces the same expected value outcomes as the quantum
model.

Definition 2. A quantum state is called local if there exists a LHV-model that reproduces the
state’s measurement statistics—i.e.,

Eρ[σα ⊗ σβ] = EM[A(α)B(β)]

Eρ[σα ⊗ I] = EM[A(α)]

Eρ[I⊗ σβ] = EM[B(β)]

(2.14)

for a quantum density matrix ρ and LHV-model M.

Lemma 1. Two-electron states with separable density matrices are local.

Sketch of proof. Write ρAB in the form of equation 2.13. From the values pi, define a
probability space with the corresponding events ρi,A ⊗ ρi,B. These events individually
can always be further modelled by a clever mathematical construction; depending on
the measurements. [7] See Model 1 as an example of such an construction.

So, finding a separable quantum density matrix implies its expected outcomes can be
reproduced by a LHV-model. The next theorem gives a general result for separable
2× 2 density matrices.

Theorem 2. Let ρ be a separable two-qubit density matrix.
If Eρ[σα] = Eρ[σβ] = 0 and Eρ[σα ⊗ σβ] = γ α · β for all α, β ∈ S2 and for a γ ∈ R, then
−1

3 ≤ γ ≤ 1
3 .

Proof. We prove the theorem by introducing a general density matrix ρ, applying the
expected value constraints, and then using a necessary and sufficient requirement for
the separability for ρ.
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16 Local hidden variable theories

We first note that the the set of Pauli matrices together with the identity matrix form a
real basis for the single-qubit density matrices. Namely, all ρA can be written as:

ρA =
1
2
[I2 + σ · δ] (2.15)

for a δ ∈ R3 with ‖δ‖ ≤ 1 and σ =

σx
σy
σz

 (1.13). [8]

Using the two-qubit formalism, this means, using some abuse by notation, that B× B =
{σi ⊗ σj | σi,j ∈ {σ0, σ1, σ2, σ3} ≡ {I, σx, σy, σz}} forms a basis for the two-qubit density
matrices—i.e.,

ρ =
3

∑
i,j=0

Ri,j σi ⊗ σj (2.16)

for all ρ and appropriate 4× 4 real matrix R.

Based on this, we can find an expression for the joint correlations for certain s, t ∈
{0, 1, 2, 3}:

Eρ [σs ⊗ σt] = Tr[(σs ⊗ σt)ρ] =
3

∑
i,j=0

Ri,j Tr[(σs ⊗ σt)(σi ⊗ σj)]

=
3

∑
i,j=0

Ri,j Tr[σsσi ⊗ σtσj]

=
3

∑
i,j=0

Ri,j Tr[σsσi]Tr[σtσj]

=
3

∑
i,j=0

Ri,j 4δs,iδt,j

= 4Rs,t

(2.17)

by linearity of the trace and tensor product properties.

Note that clearly Eρ[I ⊗ I] = 1, so R0,0 = 1
4 . Also, the expected value constraints

Eρ[σα] = Eρ[σβ] = 0 for all directions α and β are exactly met when Eρ[σi ⊗ I] =
Eρ[I⊗ σi] = 0 for all 1 ≤ i ≤ 3, concluding Ri,0 = R0,i = 0 for same i.

We now rotate matrix R to a more practical one. Ben-Aryeh et al. [9] show for density
matrices in the form of 2.16 with the above expected values, there always exists a vector

16
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2.3 Quantum separability 17

basis {v1, v2, v3} for R3 such that

ρ =
1
4

I⊗ I +
3

∑
i=1

Ri σvi ⊗ σvj . (2.18)

in our standard notation σvi = vi · σ. As this set of vi is a basis, there exists a transforma-
tion matrix M such that

M>σλi M = σi (2.19)

for all i.* We then define

ρ ≡ (M⊗M)ρ(M⊗M)>

= (M⊗M)ρ(M> ⊗M>)

= (M⊗M)

(
1
4

I⊗ I +
3

∑
i=1

Ri σλi ⊗ σλi

)
(M> ⊗M>)

=
1
4

I⊗ I +
3

∑
i=1

Ri

(
Mσλi M

>
)
⊗
(

Mσλi M
>
)

=
1
4

I⊗ I +
3

∑
i=1

Ri σi ⊗ σi.

(2.20)

In other words, ρ is the rotated density matrix with respect to the new basis.

Now note, that density transformations of the form

ρ 7→ (MA ⊗MB)ρ(MA ⊗MB)
† (2.21)

preserve separability as

(MA ⊗MB)ρ(MA ⊗MB)
† = (MA ⊗MB)

(
∑

i
pi ρA ⊗ ρB

)
(MA ⊗MB)

†

= ∑
i

pi

(
MAρAM†

A

)
⊗
(

MBρBM†
B

) (2.22)

is again a sum of pure state density matrices. †

*Operator σλi is a 3× 3 matrix, so M also. As M is a transformation matrix, it is also by definition
invertible.

†This can be checked by noting Tr
[
MAρA M†

A
]2

= 1. [10]
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18 Local hidden variable theories

Hence, ρ is separable if and only if ρ is. Using 2.17, we find for all measurement settings
on ρ :

Eρ[σα ⊗ σβ] = Eρ

[(
3

∑
i=1

aiσi

)
⊗
(

3

∑
i=1

bjσj

)]

=
3

∑
i=1

3

∑
j=1

aibj Eρ[σi ⊗ σj]

=
3

∑
i=1

3

∑
j=1

aibj Riδi,j

=
3

∑
i=1

aibiRi.

(2.23)

Then, inserting the theorem’s prerequisite

Eρ[σα ⊗ σβ] = γ α · β (2.24)
leads to

Ri = γ (2.25)
so,

ρ =
1
4
[I⊗ I + γ(σ1 ⊗ σ1 + σ2 ⊗ σ2 + σ3 ⊗ σ3] . (2.26)

Changing from braket to array notation, the tensor product is applied as the Kronecker
product. With this, we can explicitly calculate the tensor products of the Pauli matrices
and find

4ρ = I4 + γ




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

+


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

+


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1




=


1 + γ 0 0 0

0 1− γ 2γ 0
0 2γ 1− γ 0
0 0 0 1 + γ


(2.27)

Now that we have the general, explicit expression for density matrices with our mea-
surement requirements, we need only to look when it is separable. To do this, we apply
the Peres-Horodecki criterion [11]. For this, we calculate the partial transpose matrix

18
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2.3 Quantum separability 19

ρPT of ρ defined as the matrix of transposed 2-by-2 block elements of ρ and look at its
eigenvalues. We find

4ρPT =


1 + γ 0 0 2γ

0 1− γ 0 0
0 0 1− γ 0

2γ 0 0 1 + γ

 (2.28)

which has eigenvalues ΩρPT =
{

1−3γ
4 , 1−γ

4 , 1−γ
4 , 1+3γ

4

}
. According to the criterion, as

the dimension of this space is 2× 2, ρ is separable if and only if all the eigenvalues are
non-negative which is the case if and only if −1

3 ≤ γ ≤ 1
3 .

In conclusion, under the expected value restrictions we posed, only for these values of
γ, ρ is separable and thus ρ.

A slightly different reasoning of the separability of 2.27 is also given. Ben-Aryeh et al.
also show for these states, the density matrix can be expressed as

4ρ =
3

∑
i=1

2|γ|
[(

I− σi

2
⊗ I− sign(γ)σi

2

)
+

(
I + σi

2
⊗ I + sign(γ)σi

2

)]
+

I⊗ I

4
4(1− 3|γ|) (2.29)

Then, because for all i ∈ {1, 2, 3},

I± σi

2
= |j±〉〈j±| (2.30)

is the density matrix of an eigenvector (|j±〉) of one of the Pauli matrices, and thus a pure
state, 2.29 is a weighted sum of pure states.* The total weight is 1

4(12|γ|+ 4− 12|γ|) = 1.
Hence, if these weights are all positive, ρ is separable according to the definition which
occurs only if |γ| ≤ 1

3 .

This method of finding an exact expression for the separability sum (2.13) is useful to
find sufficient requirements—such as |γ| ≤ 1

3—but provides no necessary requirements
as the density matrix may be also written as a sum of other pure states. However, these
sums do help out when creating an explicit LHV-model, see model 1 in section 2.4.4.

*This is also verified by the fact that Tr
[(

I+σi
2

)2
]
= 1. [10]
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20 Local hidden variable theories

2.4 Werner states

Most often, however, the locality of models is done only on a specific quantum state:
the Werner state.

Definition 3. The two-electron Werner state is a quantum state described by the density matrix

ρWp = p|ψ−〉〈ψ−|+ 1− p
4

I4 (2.31)

for 0 ≤ p ≤ 1 and |ψ−〉 = 1√
2
(|0〉 − |1〉) the singlet state.

A Werner state has the advantage that its measurement statistics is comparable to that
of the singlet state.

Lemma 2. The Werner states ρWp have expected outcomes
EρWp

[σα ⊗ σβ] = −p α · β for all α, β ∈ S2.

Proof. We calculate,

E[σασβ] = Tr[σα ⊗ σβ ρWp ]

= p Tr[σα ⊗ σβ|ψ−〉〈ψ−|] +
1− p

4
Tr[σα ⊗ σβ I4]

= −p α · β.

(2.32)

using E[σα ⊗ σβ] = −α · β for the singlet state and the fact that the spin measurements
have zero trace.

2.4.1 Separability
(

p ≤ 1
3

)
Using the density matrix of the singlet state (1.20), we find

ρWp =
p
2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

+
1− p

4
I4 (2.33)

=
1
4


1− p 0 0 0

0 p + 1 −2p 0
0 −2p p + 1 0
0 0 0 1− p

 . (2.34)

This is the density matrix (2.27) seen in the previous section. So, from Theorem 2, we
find ρWp is separable if and only if |p| ≤ 1

3 and thus has a LHV-model with equal
measurement statistics for these values by Theorem 1.

20
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2.4 Werner states 21

Unfortunately, Theorem 1 does not include a constructive proof with an exact model.
However, inspired by the separability expression (2.29), as mentioned, we can construct
a LHV-model with same correlations as this density matrix.

2.4.2 Visibility and locality
(

p ≥ 3
4

)
A different analysis worth highlighting is the one done by Kaszlikowski and Żukowski
[12]. They prove Bell’s theorem (theorem 1) by introducing the construct of an in-
ner product, define probability functions PQM and PLHV , corresponding to quantum
mechanical models and LHV-models, and show

〈PLHV |PQM〉 <
∥∥PQM

∥∥2 (2.35)

implying PLHV 6= PQM. With this construction, they prove the EPR-experiment cannot
be reproduced by a LHV-model. We give a short outline of their construction and relate
it to our Werner models.

In the context of the EPR-experiment, the functions PQM and PLHV are defined as

PQM, PLHV : {±1}2 ×
(

Sd
)2
→ [0, 1] (2.36)

with PQM(m, m′, α, β) the probability of observing measurement outcomes m and m′ for
spin measurement settings α and β. PLHV is defined analogously for a LHV-model, not
further specified. The inner product is defined as an integration over all the possible
measurement settings α and β and the measurement outcomes m, m′ ∈ {±1}:

〈 f |g〉 ≡ ∑
m,m′∈{±1}

∫∫
dΩa dΩb f (m, m′; α, β)g(m, m′; α, β) (2.37)

where Ωa, Ωb denote all the measurement settings by spherical parameters.

This inner product gives the following relations∥∥PQM
∥∥2 ≡ 〈PQM|PQM〉

=
16
3

π2
(2.38)

and

〈PQM|PLHV〉 ≤ 5π2. (2.39)

This shows equation (2.35) is always held, for all possible LHV-models, concluding
quantum mechanics cannot be reproduced by any LHV-model.

Version of July 1, 2021– Created July 1, 2021 - 12:29

21
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More interesting, is their consideration of visibility. In real life experiments, the visibility
tells us how often the apparatus register measurements correctly and not noise. This
is relevant for experiments that observe signals continuously—at a set time interval,
for example—rather than registering signals only after it has been produced. In case of
the former, when misregistered noise is added to the data, the measurement statistics
become skewed and data should be treated differently.

We let V ∈ [0, 1] denote this visibility with V = 1 indicating no noise is measured and
V = 0 solely noise is measured—i.e., no correct measurements are done at all.

Taking visibility into account, Kaszlikowski and Żukowski show the following relations
hold: ∥∥PQM

∥∥2
= (2π)2

(
1 +

V2

3

)
(2.40)

and

〈PQM|PLHV〉 ≤ (2π)2
(

1 +
V
4

)
. (2.41)

In this case, we have

〈PLHV |PQM〉 <
∥∥PQM

∥∥2 (2.42)

if and only if V > 3
4 . This means, when is assured that the measurement apparatus

correctly measure 75%, or more, of the data entries and the data follows the EPR’s
measurement statistics, it is proven this data could not have been generated by a LHV-
model. For situations where this visibility is less, this conclusion cannot be made and
the found statistics may be due to random effects of the noise.

Making the comparison to Werner states, this visibility directly translates to the the
parameter p of these states. This is because, simply put, looking at its definition, a
parameter p implies a 1− p probability of measuring the density matrix ρ = I⊗ I which
works as noise. In other words, a Werner state ρWp with parameter p is equivalent to
measuring a singlet state electron pair with visibility V = p. Therefore, this analysis
proves that for p ≥ 3

4 , the state ρWp is non-local. An interesting approach, albeit not a
new insight as the CHSH-bound proved the same for p ≥ 1√

2
≈ 0.71.

2.4.3 Grothendieck constant
(

p ≤ 1
KG(d+1)

)
We find separability gives a partial answer to what types of density matrices can be
reproduced by LHV-models and also an intuition (Lemma 1) how to find an explicit
model. However, there is no reason to believe that a non-separable * density matrix

*Also called an entangled density matrix

22
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2.4 Werner states 23

cannot be reproduced by LHV-model either.

This section gives a sharper answer to our question using the interesting mathematical
Grothendieck constant. First we introduce this constant and then formulate a theorem
using this number.

Definition 4. For all d ≥ 2, the (real) Grothendieck constant KG(d) in dimension d is the
smallest contant with the property: if M is a m×m real matrix with∣∣∣∣∣ m

∑
i,j=1

Mijsitj

∣∣∣∣∣ ≤ 1 (2.43)

for all real numbers |si|, |tj| ≤ 1, then∣∣∣∣∣ m

∑
i,j=1

Mi,j〈si, tj〉
∣∣∣∣∣ ≤ KG(d) < ∞ (2.44)

for all vectors si, tj in the unit ball of a d-dimensional Hilbert spaceH, i.e.
‖si‖ ,

∥∥tj
∥∥ ≤ 1.

So, the Grothendieck constant relates the size of a matrix when multiplied by real
numbers, to the size when multiplied by an inner product—if the matrix is small
enough for real numbers in inequality 2.43, it will similarly be so for inner products in
equation 2.44.

Only for d = 2, the constant is known to have an exact expression—for the other
dimensions there are approximate upper and lower bound (table 2.1).

d KG(d) ≥ KG(d) ≤
2

√
2

√
2

3 1.4359 1.4644
4 1.4841 1.5708
5 1.46112
6 1.47017
7 1.47583
8 1.47972 1.6641
9 1.48608
∞ 1.67696 1.78221

Table 2.1: Lower and upper bounds of the real Grothendieck constant for different dimensions.*
KG(∞), often written as KG, is defined as limd→∞ KG(d).
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Toner et al. ([19],[20]) have shown the following remarkable result.*

Theorem 3. A Werner state ρWp is local if and only if p ≤ pc =
1

KG(d+1) with d the dimension
of the measurement settings.

Before we prove this, we introduce the following lemma and make a subsequent
definition.

Lemma 3. For a LHV-model M with corresponding measurement functions A and B, there
exists a LHV-model M̃ with the same measurement functions and
EM̃[A(α)B(β)] = EM[A(α)B(β)] and EM̃[A(α)] = EM̃[B(β)] = 0.

Proof. Introducing a model M̃, it is always possible to extend the elements ω ∈ Ω
with an extra random variable that changes the sign of the measurement value of
both A(α) and B(β) with probability 1

2 . Then, the measurement outcomes of the prod-
uct A(α)B(β) remain the same and as both the positive and negative outcomes are
measured with equal probability, we get EM̃[A(α)] = EM̃[B(β)] = 0.

In short, when constructing a LHV-model M reproducing the measurement statistics of
a Werner state, we only need to ensure the correlations are equal, i.e. EM[A(α)B(β)] =
EρWp

[σα ⊗ σβ] = −pα · β and need not look at the requirements
EM[A(α)] = EρWp

[σ(α)] = 0.

To prove the theorem, we also need to define Bell inequalities.†

Definition 5. For LHV-models, Bell inequalities are general statements that bound the sum of
expected values of measurement values. All LHV-models satisfy these inequalities.

An example of a Bell inequality is the aforementioned CHSH-inequality used in the
proof of Bell’s theorem. This inequality states all LHV-models satisfy∣∣E [A(α)B(β)]−E

[
A(α)B(β′)

]
+ E

[
A(α′)B(β)

]
+ E

[
A(α′)B(β′)

]∣∣ ≤ 2 (2.45)

for all measurement settings α, α′, β, β′ ∈ Sd with A, B the measurement functions of
the model.

The Bell inequalities can also be written in the form of quantum formalism. For example,
the CHSH-inequalitiy transforms to∣∣Eρ

[
σα ⊗ σβ

]
−Eρ

[
σα ⊗ σβ′

]
+ Eρ

[
σα′ ⊗ σβ

]
+ Eρ

[
σα′ ⊗ σβ′

]∣∣ ≤ 2. (2.46)

*[13] (d = 2, upper bounds d = 4, 8, ∞); [14] (lower bounds d = 3, 4); [15] (upper bound d = 3); [16]
(lower bounds d = 5, 6, 7, 8); [17] (lower bound d = 9); [18] (lower bound d = ∞)

*Up until now, we solely considered the case of d = 2: measurement settings defined as points on the
unit sphere. Following the definition of Sd, for d = 1 we restrict settings to a circle on this sphere. Higher
values of d are considered in section 3.2.

†Bell inequalities are defined more technically—our definition will suffice for this thesis.

24
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2.4 Werner states 25

It is clear that local quantum states need to satisfy these transformed quantum states.
Furthermore, these inequalities form a sufficient requirement for locality.

Lemma 4 ([21]). The set of all Bell inequalities transformed to apply for a quantum states form
a necessary and sufficient requirement for locality of quantum states.

A special class of Bell inequalities are the correlation Bell inequalities which only include
expected values of product measurements and not the local measurements—i.e. only
E[A(α)B(β)] and not E[A(α)], E[B(β)] are include in the sum. Due to lemma 3, we
can restrict our focus solely to correlation Bell inequalities as LHV-models with wanted
correlations can always be made into a model with zero local expected values.

Using this definition and lemma 3, we can now prove theorem 3.

Proof of Theorem 3. ([19],[20]) We start off with giving a mathematical description of Bell
inequalities. Correlation Bell inequalities in their most general form can be written as∣∣∣∣∣ m

∑
i,j=1

Mi,jE[A(αi)B(β j)]

∣∣∣∣∣ ≤ 1 (2.47)

where M is a m×m matrix and {(αi, β j) | i, j ∈ {1, . . . , m}} a set of m random measure-
ment settings for A and B. For example, the CHSH-inequality is described by m = 2,
M1,2 = −1

2 , and Mi,j =
1
2 for all the other i, j.

We can further normalize M in such way that 2.47 holds and also

max
{ai,bj}∈{±1}2m

∣∣∣∣∣ m

∑
i,j=1

Mi,jaibj

∣∣∣∣∣ = 1. (2.48)

Then for all real numbers |ai|, |bj| ≤ 1, we have∣∣∣∣∣ m

∑
i,j=1

Mi,jaibj

∣∣∣∣∣ ≤ 1 (2.49)

which allows us to apply the definition of Grothendieck constant:∣∣∣∣∣ m

∑
i,j=1

Mi,j si · tj

∣∣∣∣∣ ≤ KG(d + 1) (2.50)

for all si, tj ∈ Rd+1 with ‖si‖ ,
∥∥tj
∥∥ ≤ 1.*

*Following, we denote this norm restriction as ∈ Rd+1
≤1 .
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As the Grothendieck constant is independent of m and Mm, and as the inequality is
an upper bound for the (absolute) sum, we can take the supremum of all possible Bell
inequalities of size m while maximizing over the measurement settings and (still) find*

sup
Mm

max
si,tj∈Rd+1

≤1

∣∣∣∣∣ m

∑
i,j=1

Mi,j si · tj

∣∣∣∣∣ ≤ KG(d + 1). (2.51)

This bound also allows us to take the limit of m to infinity. As (2.51) is increasing in m
and KG(d + 1) is the smallest value with the property (2.50), we find equality as

lim
m→∞

sup
Mm

max
si,tj∈Rd

≤1

∣∣∣∣∣ m

∑
i,j=1

Mi,j si · tj

∣∣∣∣∣ = KG(d + 1). (2.52)

With this, we can prove our theorem. First, let ρ ≡ ρWp be a Werner state with parameter
p. According to lemma 4, ρ is local if and only if inequality (2.47)—transformed to
quantum formalism—is satisfied for the previously defined αi, β j:∣∣∣∣∣ m

∑
i,j=1

Mi,jE[σαi ⊗ σβ j ]

∣∣∣∣∣ ≤ 1. (2.53)

We need not enforce the statistics E[σα] = E[σβ] = 0 for all α, β, because lemma 2 makes
these requirements obsolete.

Following, we find

1 ≥
∣∣∣∣∣ m

∑
i,j=1

Mi,jE[σαi ⊗ σβ j ]

∣∣∣∣∣ = p

∣∣∣∣∣ m

∑
i,j=1

Mi,jαi · β j

∣∣∣∣∣ (2.54)

and using (2.52), we have

1 ≥ lim
m→∞

sup
Mm

max
αi,β j∈Rd

≤1

p

∣∣∣∣∣ m

∑
i,j=1

Mi,j αi · β j

∣∣∣∣∣ = pKG(d + 1) (2.55)

from which follows

p ≤ pc ≡
1

KG(d + 1)
. (2.56)

*The supremum over the measurement settings is indeed a maximum as the d + 1-dimensional unit
sphere is a compact set.
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2.4 Werner states 27

In other words, this theorem shows the critical value of p for which no possible Bell-
inequality is violated—regardless of the number of measurement values and even
letting it go to infinity—is fixed at a (somewhat) known expression. Consequently,
LHV-models for these Werner state exist.

2.4.4 Models

After the theoretical analyses of the previous sections, here we introduce some explicit
examples of LHV-models with interesting measurement statistics. Following lemma 2,
we are only interested in the product expected values.

Model 1. Let (Ω, pΩ) define a probability space with

Ω =




f
s
λ
δ

 | f ∈ {1, 2, 3}, s ∈ {±1}} and λ, δ ∈
[
−1

2 , 1
2

] the event set and pΩ


f
s
λ
δ

 =

1
6 the probability density. Define measurements

A : S2 ×Ω→ {±1}α,


f
s
λ
δ


 7→ sign

(
λ +

1
2

sα f

) (2.57)

and

B : S2 ×Ω→ {±1}β,


f
s
λ
δ


 7→ sign

(
δ− 1

2
sβ f

) (2.58)

with α =

α1
α2
α3

 and β =

β1
β2
β3

.

Lemma 5. Model 1 has expected outcomes E[A(α)] = 0 and correlation
E[A(α)B(β)] = −1

3 α · β.
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Proof.

E[A(α)] =
∫

Ω
P(ω) A (α, ω) dω

= ∑
f

∑
s

∫∫ 1
2

− 1
2

P


f
s
λ
γ

 A

α,


f
s
λ
γ


 dλ dδ

=
1
6 ∑

f
∑

s

∫ 1
2

− 1
2

sign
(

λ +
1
2

s α f

)
dλ

=
1
6 ∑

f
∑

s

[∫ 1
2

− 1
2 sα f

(1) dλ +
∫ − 1

2 sα f

− 1
2

(−1) dλ

]

=
1
6 ∑

f
∑

s
sα f =

1
6 ∑

f
[α f − α f ] = 0

(2.59)

and similarly E[B(β)] = 0. Following, we have

E[A(α)B(β)] =
∫

Ω
P(ω)A(α, ω)B(β, ω) dω

= ∑
f

∑
s

∫∫ 1
2

− 1
2

P


f
s
λ
γ

 A

α,


f
s
λ
γ


B

β,


f
s
λ
γ


 dλ dδ

=
1
6 ∑

f
∑

s

∫∫ 1
2

− 1
2

sign
(

λ +
1
2

s α f

)
sign

(
γ− 1

2
s β f

)
dλ dδ

=
1
6 ∑

f
∑

s
sα f (−s)β f

= −1
6 ∑

f
∑

s
α f β f = −

1
3 ∑

f
α f β f = −

1
3

α · β.

(2.60)

We give a short geometrical interpretation of this model. From equation (2.29), you
see the Werner state with this correlation (γ = −1

3) is the sum of six pure state density
matrices: three different sets and per set two sign versions. In the LHV-model, we model
that when measuring, you are in fact randomly given one of these six pure state density
matrices on which you do a spin measurement. This is constructed by introducing
random variables f and s with probabilities equal to the weight of the density matrices

28
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in (2.29), namely 1
6 . The other random variables λ and δ and measurement functions

are then defined in such a way to simulate the measurements on the individual pure
states. The probability distribution of λ and δ and the parameters of the functions are
found by experimenting.

Toner [19] introduces models close to the limit of p ≤ 1
KG(d+1) .

Model 2 ([19]). Let (Ω, P) define a probability space with

Ω =

λ =

λ1
λ2
...

 ∈ R∞

 and pΩ : λ ∼ N (0, I) the infinite-dimensional multivariate

normal distribution. Using the given functions Ã, B̃ : S2 → l∞ in [19], we define

A, B : S2 ×Ω→ {±1}

A : (α, λ) 7→ sign
(

Ã(α) · λ
)

B : (β, λ) 7→ sign
(

B̃(β) · λ
) (2.61)

Theorem 4 ([19]). Model 2 has correlation E[A(α)B(β)] ≈ −0.6595 α · β.

Compare this amplitude with −0.696 ≤ −pc = − 1
KG(3)

≤ −0.683.

Toner also introduces a model for measurement settings with d = 1. For this, we first
define some functions.

Let f , g : [−π, π)→ [−1, 1] with

f (t) =


1 if |t| ∈

[
0, π

4

]
3
(
1− 2t

π

)
− 4

(
1− 2t

π

)3
if |t| ∈

[
π
4 , π

2

]
− f (π − |t|) |t| ∈

[
π
2 , π

] (2.62)

and

g(t) = sign(cos(t)). (2.63)

Let (c2k+1)k∈N and (d2k+1)k∈N denote the Fourier coefficients of f , g, i.e. such that
f (t) = ∑∞

k=0 c2k+1 cos(2k + 1)t and g(t) = ∑∞
k=0 d2k+1 cos(2k + 1)t.

Then define sequences

a2k+1 = (−1)k 2
π(2k + 1)

c2k+1 and

b2k+1 = − 1
a1

∑
d|(2k+1), d 6=1

adb(2k+1)/d.
(2.64)
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From this we define the following model.

Model 3 ([19]). Let (Ω, pΩ) define a probability space with

Ω = {2n + 1 | n ∈ N} × [−π, π)×
[
−1

2 , 1
2

]
and pΩ

2n + 1
t
λ

 = 1
2π |b2n+1|. We define

measurements

A, B : [−π, π)×Ω→ {±1}
A : (x, ω) 7→ − sign(b2n+1)g[(2n + 1)(x− t)]

B : (y, ω) 7→ sign
(

1
2

f [(2n + 1)(t− y)]− λ

)
.

(2.65)

Theorem 5. Model 3 has correlation E[A(x)B(y)] = − 1√
2

cos(x− y)

Proof. By the probability space we find

P

 ··
λ

 =
∞

∑
n=0

∫ π

−π

1
2π
|b2n+1| dt =

∞

∑
n=0
|b2n+1| = 1 (2.66)

which shows λ is uniformly random. Continuing, we have a marginal expected value

E[B(y, (2n + 1, t, ·))] =
∫ 1

2

− 1
2

B(y, (2n + 1, t, λ)) dλ

=
∫ 1

2

− 1
2

sign
(

1
2

f [(2n + 1)(t− y)]− λ

)
dλ

= f [(2n + 1)(t− y)]

(2.67)

similar to an earlier calculation (2.60). Then [19] proves the result.

Surprisingly, this model’s correlations has an amplitude exactly the critical value pc =
1

KG(2)
= 1√

2
. The theoretical existence of a LHV-model proved by theory 3 is now made

explicit.
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Chapter 3
Conclusion and discussion

3.1 Conclusion

In the previous sections, different methods are explored to find the locality of quantum
states and approximate pc. Specifically, the analysis of Werner states and theorem 3 give
the most powerful insight to this question and allow us to focus mainly on Grothendieck
constant. For d = 1, the constant’s exact known value gives a sharp answer.

In this section, we make conclusions of our findings. In the following section we pose
open questions and further research.

3.1.1 d = 1

For d = 1, figure 3.1 summarizes the findings from theorem 3. In this figure a number
of graphs are shown, each representing the product correlation function for a certain
Werner state ρWp with θ the angle between the two measurement settings α and β.
The solid black and red line represent the correlation of Werner states with respective
parameters p = 1 and p = 1√

2
with the area in between colored red.

As pc =
1√
2

from theorem 3, we conclude that Werner states with product correlation
functions in the red area (p > pc) are local and those in the white below (p ≤ pc) are not.
For example, the Werner state with the green, dashed product correlation function can
be reproduced by a LHV-model (p ≈ 0.2), but the one with the blue, dashed correlation
cannot (p ≈ 0.8).

Note that this bound pc is surprisingly the same as the CHSH-bound in Bell’s theorem
(1). The main difference between these values: the CHSH-bound works on all LHV-
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32 Conclusion and discussion

models, and pc is only defined in the context of LHV-models for the quantum mechanical
Werner states. However, as these values are equal—seemingly coincidentally and very
elegantly, we can conclude that LHV-models with

E[A(α)B(β)] = −p α · β (3.1)

exist for all 0 ≤ p ≤ 1√
2

and do not exist for p ≥ 1√
2
. Even stronger, model 3 constructs

it for p = pc.
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Figure 3.1: Product correlations of Werner states with the measurement settings in S1 with angle
θ in between them. The red area represents correlations not reproducible by LHV-models (e.g.
blue line) and the white area below vice versa (e.g. green line).

3.1.2 d = 2

For d = 2, the conclusion is less sharp. In figure 3.2, you can see the results for this
dimension. The same colors represent the maximum amplitude (black, p = 1) and
the two test correlation (blue and green)—the CHSH-bound of 1√

2
is the dashed black

32
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3.1 Conclusion 33

line. Zooming in, this becomes better visible (figure 3.2b). The red lines, dashed and
non-dashed, correspond to the most accurate up and lower bound approximations of
pc =

1
KG(3)

, respectively.

Just as with d = 1, all the cosine correlations in the white (non-red) area correspond
to amplitudes p < pc. This means the Werner states with those amplitudes are local
by theorem 3 and thus a LHV-model can reproduce their measurement statistics. For
amplitudes above the dashed red line, so for p > pc, the respective Werner states are not
local.

Now lets look at the area between the upper bound of pc and the CHSH-bound. Cosine
correlations above the CHSH-bound can never be reproduced by any LHV-model, but
below this bound and above the upper bound of pc, only the non-locality of respective
Werner states is proved by theorem 3. This means no conclusion can be made about all
LHV-models in general. It is possible there is a LHV-model, not related to a Werner state,
that has its correlation in this area.
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(b) Zoomed-in. The black and red lines indicate the CHSH-bound,
the upper bound, and lower bound of pc, respectively. The CHSH-
bound and pc are different and the approximation of pc causes a
gap.

Figure 3.2: Product correlations of Werner states with the measurement settings in S2 with angle
θ in between them. The red area represents non-local Werner states (e.g. blue line). The area
between the CHSH-bound (black, dashed) and the upper bound of pc may be reproduced by a
LHV-model.
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3.2 Further research 35

3.2 Further research

In the conclusion, we only consider the situation of d = 1 and d = 2 and look at the
results of theorem 3 and the CHSH-bound. However, more options can be explored
with corresponding open questions.

Non-quantum locality

All the methods in the previous sections work from quantum-to-locality principle: one
introduces a quantum state with some favorable properties, such as Werner states, and
gives an analysis when such a state is local. The advantage is that clear expressions for
these quantum states exist which often simplify necessary calculations. For example,
the Werner states are simply expressed by their density matrix (1.20) and their corre-
lations are easily calculated ((1.21) and (1.22)). A disadvantage is non-trivial locality
requirements such as Theorem 3.

A different approach, however, is to disregard the quantum states altogether. One can
try to make a LHV-model that has measurement statistics similar to EPR’s without
constructing it from a local quantum state. The main argument for this approach is that
it is more general and in some ways more natural.

To explain this, for Werner states we can conclusively say which parameters allow for
local models and which not. For those that are local, there definitely exist LHV-models—
albeit possibly not constructed (yet)—and these may come close to CHSH-bound.
However, this does not make a conclusion for all possible LHV-models. There might be
a LHV-model for measurement dimension d = 2 with correlation similar to − 1√

2
α · β.

The only statement Theorem 3 makes, is that it cannot be a local Werner state.

The easiest example is the triangle correlation generated by a model described by Bell
[2]: a simple construction of the LHV-model without basing it on a quantum state.

A disadvantage of this approach is that it is difficult to make general conclusions.
Looking at all the possible LHV-models is difficult, if not impossible.

Further research can be done into finding classes of cosine-like correlation functions, or
different classes, that LHV-models can produce.
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Increasing d

We only analyzed d = 1 and d = 2 in the previous sections, because these are the
dimensions spin measurements are defined for. However, we can also consider general
(projective) measurements of arbitrary high dimensions. Then the critical value pc(d) =

1
KG(d+1) still holds for Werner states [19] where pc(d) indicates α, β ∈ Sd.

Comparing d = 2 and 3, KG(d) is increasing in d, but for higher dimensions this is
more difficult to say—in part because no exact values of the constant are known (figure
4). These bounds, however, do give a slight suggestion the constant increases. The
following lemma proofs it is indeed non-decreasing.

Lemma 6. Grothendieck constant KG(d) is non-decreasing in d

Proof. Assume the Grothendieck constant decreases between two subsequent
dimensions—i.e. KG(d + 2) < KG(d + 1) for a certain d. This implies from theorem
3, pc(d + 1) > pc(d). Then, define a Werner state ρWp with pc(d + 1) > p > pc(d).
The second inequality shows the state is non-local for measurement settings defined
in Sd and the first inequality shows the state is local for measurements in Sd+1. Due to
this locality, a probability space and measurements functions A, B exist (2.1, 2.2) taking
measurement settings in Sd+1.

Now note, that there exists a natural imbedding from Sd to Sd+1, for example, by
mapping vectors

Sd 3 v 7→
(

v
0

)
∈ Sd+1. (3.2)

Using this imbedding, we define d-dimensional measurement functions Ã, B̃

by Ã(v, ω) ≡ A
((

v
0

)
, ω

)
and B analogously. These functions combined with the

probability space form a LHV-model and its correlation is easily calculated:

E[Ã(α)B̃(β)] = E

[
A
((

α
0

))
B
((

β
0

))]

= EρWp

σ(α
0

) ⊗ σ(β
0

)


= −p
(

α
0

)
·
(

β
0

)
= −pα · β.

(3.3)
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This is the Werner’s state correlation function, so the state is local for d-dimensional
measurement settings. This is a contradiction to the previous, concluding that KG(d) is
non-decreasing in d.

2 3 4 5 6 7 8 9

d

1.4

1.45

1.5

1.55

1.6

1.65

1.7
Upper and lowers bound of Grothendieck constant

Figure 3.3: Upper (red stars) and lower bounds (blue circles) of the Grothendieck constant for
different dimensions. The non-monotone development may be due to different calculation
methods. See table, 2.1.
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Different measurement space

In our analysis we only looked at measurement settings defined in Sd, the surface of
a (d + 1)–dimensional sphere. However, an open interesting question arises how the
boundary value pc changes if this measurement space is changed. For example, if
we limit this set to a part of S2, such as the upper hemisphere, can a different value
of pc be given? It seems logical to think a higher value of pc then holds, because
less measurement options makes it ‘easier’ for a LHV-model to reproduce the same
statistics—as is the case with pc(1) and pc(2). A analysis on the so-called Grasshopper
problem by Goulko and Kent [22] might give interesting insight into the effect of changing
the measurement set.

3.3 Discussion

My research has been two-folded: a literature research into the current standing of the
locality problem of EPR-like quantum states and my own research/mathematics into
some problems often inspired from this literature.

My own research started off by trying to numerically find density matrices with expected
values coming close to that of the EPR-experiment by using MATLAB. While doing
literature research simultaneously, I found a basis of a more theoretical approach by
analyzing general two-qubit density matrices and the realization that separable density
matrices can always be reproduced by a LHV-model. After this, the Grothendieck
constant and corresponding properties came to my knowledge and gave interesting
results. After the following theorem (3) basically fully answered the research question, I
went on to make conclusions and find more interesting research questions—some of
which would have fit neatly here if time was not so brutal.

I want to thank my supervisors, Richard and Jordi, greatly for their support, guidance,
and their seemingly infinite amount of time they were willing to spend on me. I hope
this thesis can be of some use for people interested in the topic.
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