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Abstract

Statistical physicists are recently focusing on the network structure of
financial systems in order to model cascading defaults in those systems.

Active research is on the characteristics of financial networks. These
networks are inferred from statistical ensembles constructed from partial
information, due to the fact that researchers usually don’t have full access
to the entire network underlying the financial system, because of privacy

reasons. Other research simulates the propagation of shocks such as
defaults through financial systems and focuses on the characteristics of
the network governing the dynamics. This research combines the two
areas of research using a unique data set containing all transactions of
commercial Dutch ING accounts from the year 2019. A state-of-the-art

random network ensemble is tested in the research, whereafter networks
are sampled from this ensemble to run the cascading defaults simulation

on. Furthermore, the simulation of cascading defaults is improved by
implementing non-trivial payment strategies, motivated by experiences
from bankers dealing with defaulted companies. The simulation using
the empirical network yields similar results to the networks sampled

from the ensemble, indicating that the random network ensemble
captures information governing the dynamics.
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Chapter 1
Introduction

A financial system consists of companies having connections, e.g. input-
output relationships, supply chain relationships or financial relationships.
When these connections weaken or break, for example if a product or ser-
vice essential for production is not delivered, the system is shocked. This
shock can propagate through the system. Companies in the system that
were not involved in the shock, can still be affected by the after-effects of
the shock, because of the interconnectedness of the financial system. The
shock could also affect the company that caused the shock: company A
could fail to fulfil its obligations to company B, which thereby fails to de-
liver (products/services/money) to company C. Company C might have
a connection to company A, creating a feedback loop on company A. In
short, the very own structure of the financial system can create (systemic)
risk for companies.

One of the possible shocks in a financial system is a default: a failure
to fulfil a financial obligation. In 2001, Eisenberg and Noe [1] proposed a
way of simulating such defaults in a financial system in order to measure
the systemic risk. In the method, defaults can shock the system and cause
a cascade of defaults, where one default follows the other because of a
connection. Hazama and Uesugi [2] showed empirically that such default
propagation exists in the Japanese interfirm trade credit network. They
showed that the cascade of defaults can be modelled and used to detect
prospective defaulters and even bankruptcies.

Both Eisenberg and Noe, and Hazama and Uesugi use a network rep-
resentation of the financial system to simulate the cascade of defaults. The
question remains what properties of the financial network cause and con-
trol the cascade of defaults. To try to answer this question, this research
reaches to random network ensembles. Random network ensembles can
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8 Introduction

be used to observe higher-order behaviour (e.g. certain patterns) in real
networks, as shown by Squartini and Garlaschelli [3, 4]. Examples of such
higher-order patterns are the clustering coefficient, and the occurrence of
triangular patterns [5]. The simulation of a cascade of defaults is also
higher-order behaviour.

Random network models can be constructed in such a way that the
realisations recreates certain constrained properties on average in the en-
semble and that these realisations are otherwise maximally random [6].
For example, the number of neighbours (degrees) can be exactly recon-
structed by the so-called Configuration Model [7], or both the flow of
money (strength) and degrees can be constrained (on average) using the
so-called Fitness-induced Configuration Model (FiCM) [6, 8]. When the
higher-order behaviour of the real network and the behaviour of the ran-
dom ensemble is not similar, one can conclude that the behaviour is not
(only) the cause of the constrained properties.

The aim of this research is twofold. First, the simulation algorithm
proposed by Eisenberg and Noe [1] is adjusted in such a way that de-
faulting companies employ non-trivial payment strategies and then run
on the Dutch ING interfirm transaction network of 2019. In the new simu-
lation, companies pay their obligations in such a way that they have fewer
creditors, by paying their largest creditor last. This strategy is motivated
by professional experiences of bankers in an arrears department, who hy-
pothesised that this the actual behaviour of defaulting companies. The
opposite strategy, paying the largest creditor first is also researched.

Second, to interpret the results of the cascading defaults simulation, a
state of the art interfirm network reconstruction model called the Stripe
Fitness model [9], is implemented on the 2019 Dutch ING interfirm trans-
action network. On top of the reconstruction of expected degrees and
strengths, the Stripe Fitness model is developed such that the expected
sector-sector connections are realised on average in the ensemble.

In chapter 2, the background of the research is discussed, further div-
ing into the research of Eisenberg and Noe and on the random network
models. Following that, chapter 3 discusses the data and preprocessing.
The methods are explained in chapter 4 on page 27, whereafter the results
are displayed and discussed in chapter 5. The discussion of the entire re-
search is done in chapter 6. The thesis ends with a conclusion in chapter 7
looking back at the entire project.

8
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9

Note that this thesis is the physics part of a physics research and a
business studies research project at ING. Some important parts of
the project had more focus on business studies and are discussed
more elaborate in that thesis [10]. There may also be some overlap
in order to construct a complete thesis.
This thesis, the physics part, aims at testing the performance of re-
constructed network ensembles built from statistical physics, both
on the structure of the network ensembles and the dynamics, i.e.
the cascading defaults simulation. This testing requires data of a
real-world network, which is hard to find, because of confidential-
ity issues. The data which are used, are the transaction data at ING,
made available for the internship. Therefore, the same data (and
data description, chapter 3 on page 21) are used.
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Chapter 2
Background

In this section, the (mathematical) foundations of graphs will be explained,
the work of Eisenberg and Noe is discussed [1], following the internship
report [10], and the basics of random network models are presented.

2.1 Financial networks

A network (or graph in mathematical context) G consists of nodes n ∈ N
and links gi→j ∈ E . The size of N is the number of nodes, N. The size
of E is the number of links L. Only simple graphs are considered in this
thesis, which means there is at most one link from node i to node j and
there are no links from node i to itself. Furthermore, the networks that are
considered are weighted graphs, i.e. there is a positive weight wi→j attached
to link gi→j. The unweighted representation of the graph is captured in
the adjacency matrix A with entries ai→j where

ai→j =

{
1 if wi→j > 0
0 if wi→j = 0.

(2.1)

2.1.1 Clearing vectors

In the context of this research, a financial network is a network L with
positive-weight directed links Li→j that represent an obligation from com-
pany i to company j. The payments that happen at time t are captured in
matrix P(t) with positive-weight directed links Pi→j(t). The sum of all
entries of P is called the total flow. The interest is in finding how much
each company will pay after some time.

Version of July 14, 2021– Created July 14, 2021 - 12:35
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12 Background

Following Eisenberg-Noe [1], for node i, its obligations Li→j and its to-
tal payables Li ≡ ∑j Li→j are constant. Its total receiving cash at time t is
Ri(t) ≡ ∑j Pj→i(t), which can change in time. Li and Ri(t) may not be in
balance, which can create risk in the system, as explained in the introduc-
tion on page 7 and shown by Eisenberg and Noe.

In this system, it is defined that node i, at time t, can never pay more
than is had incoming at time t− 1. This is called limited liability, i.e.

Pi(t) ≤∑
j
Pj→i(t− 1) = Ri(t− 1), (2.2)

where Pi(t) is the sum of payments of node i at time t, i.e. Pi(t) ≡ ∑j P(t)i→j.
Furthermore, (for now) we define that there is absolute priority. This

means that a node either pays its obligations in full, i.e. Pi(t) = ∑j Li→j =
Li, or it pays as much as it can:

Pi(t) = ∑
j
Pj→i(t− 1) = Ri(t− 1). (2.3)

These two conditions, limited liability and absolute priority define a payment
vector P(t) = {P0(t), P1(t), . . . PN(t)} of total payments. When P∗(t) =
P∗(t + 1), P∗ is called a clearing payment vector or clearing vector for short
because it ’clears’ the financial system.

Note that these two conditions don’t prescribe a way of paying obli-
gations when a node is in default. As long as the two conditions are met,
Pi→j(t) can be anything, under the condition that a node i doesn’t pay
more than it has to. Therefore, in general

0 ≤ Pi→j(t) ≤ Li→j. (2.4)

Eisenberg-Noe’s way of finding clearing vectors

In the method of Eisenberg-Noe, a few extra assumptions are made in
order to develop a way to find clearing vectors. First, a matrix of relative
obligations Π is defined as follows:

Πij ≡
{ Li→j

Li
if Li > 0

0 otherwise.
(2.5)

From the definition of Li, it follows that

∑
j

Πij = ∑
j

Li→j

Li
=

∑j Li→j

∑j Li→j
= 1, (2.6)

12
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2.2 Random networks 13

i.e. Π is row-normalised. Note that, since Π is defined by the obligations
matrix L, which is constant in time, the relative obligations matrix is also
constant in time.

Now, Eisenberg and Noe assume all debts have equal priority, and the
payment of node i to node j Pi→j is given by

Pi→j = PiΠij, (2.7)

i.e. every payment Pi→j is a fraction of the total payments Pi, where the
fraction is given by the size of the obligation, compared to all other obli-
gations (equation (2.5)).

With equation (2.5) and (2.7), limited liability (equation (2.2)) and ab-
solute priority (equation (2.3)) become ∀i ∈ N

P∗i ≤∑
j

P∗j ΠT
ij , (2.8)

and ∀i ∈ N , node i pays its obligations in full, Pi(t) = Li or

P∗i = ∑
j

P∗j ΠT
ij . (2.9)

These representations of clearing vectors allow for an analytical way of
proving a) there exists a greatest and least clearing vector and b) the value
of equity of each node in the financial system is the same under all clearing
vectors (theorem 1 in [1]). Value of equity is defined as

∑
j

PjΠT
ij − Pi, (2.10)

the difference between outgoing and incoming. Note that equity is strictly
non-negative.

2.2 Random networks

Throughout this thesis, multiple notions on random networks will be made.
In section 4.2 on page 30 the explicit methods for this research are ex-
plained. The results are presented in section 5.1 on page 37 and discussed
in section 6.1 on page 51. This section will lay the foundations of these
sections by going over maximum entropy and the maximum likelihood
method, whereafter the Configuration Model is explained [7].

Version of July 14, 2021– Created July 14, 2021 - 12:35
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14 Background

2.2.1 The Maximum Entropy Principle

By ’borrowing’ methods from statistical physics, one can find a way to
sample random networks in an unbiased manner [11]. In statistical physics,
Shannon’s entropy is a measure of unpredictability. It is defined using a
probability P of an event happening. In network theory, the entropy S
is therefore defined (up to a constant) using the graph probability P(G).
Thus

S ≡ − ∑
G∈G

P(G) ln P(G), (2.11)

where G is the ensemble of possible graphs G. If entropy is maximal, the
unpredictability and therefore the unbiasedness is maximised. Note that
finding the functional form of P(G) is precisely the exercise, which is why
it is not defined yet.

In [11], Jaynes has developed the Maximum Likelihood Principle us-
ing the Shannon’s entropy, which Squartini et al. [3] showed can be used
to generate random network ensembles that will realise (on average) some
pre-determined constraints and are otherwise maximally unbiased. The con-
straints are enforced only on an expected value over the ensemble. The
constraints can be chosen to be a set of m observables {xα(G)}m

α=1, mea-
sured from a network G. When measuring from an empirical network G∗,
the constraints can be canonically enforced by setting the expected value
〈xα〉 of observable xα to be

〈xα〉 ≡ ∑
G∈G

xα(G)P(G)
!
= x∗α, (2.12)

with x∗α the empirical measurement of the α-th property.
Now, in order to maximise entropy (equation (2.11)), under the con-

straints given by equation (2.12) and ∑G∈G P = 1, the Lagrangian becomes

L(P(G),~θ) ≡ S +
m

∑
α=0

θα

(
− ∑

G∈G
xα(G)P(G) + 〈xα〉

)
(2.13)

with ~θ = {θα}m
α=1 the Lagrange multipliers corresponding to the con-

straints from equation (2.12) and θ0 an additional Lagrange multiplier for
the normalisation. The Lagrangian is maximised by taking the functional
derivative with respect to P and setting this to zero. The resulting maxi-
mum entropy P is

P(G|~θ) = e−H(G,~θ)

Z(~θ)
, (2.14)

14
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2.2 Random networks 15

with a defined Hamiltonian

H(G,~θ) ≡
m

∑
α=0

θαxα(G), (2.15)

being a linear combination of the constraints and where Z(~θ) is the parti-
tion function defined as

Z(~θ) ≡ ∑
G∈G

e−H(G,~θ), (2.16)

normalising the probability. Equation (2.14) can be recognised as the canon-
ical distribution as commonly used in statistical physics.

Equation (2.14), together with the definitions of the Hamiltonian and
the partition functions, can be used to completely define unbiased models
with constraints of the form in equation (2.12). To fully use these equations
to construct models, a useful relation can be constructed from equations
(2.14), (2.15) and (2.16), which is

〈xα〉 = −
1

Z(~θ)
∂Z(~θ)

∂θα
=

∂Ω(~θ)

∂θα
, (2.17)

where the free energy Ω(~θ) is defined as

Ω(~θ) ≡ − ln Z(~θ). (2.18)

The proof of equation (2.17) is presented in Appendix A.1 on page 59.

2.2.2 Constructing models

In general, one could try to measure the presence of every link gi→j from a
network G by measuring ai→j from the adjacency matrix A and constrain
it to be realised on average. In this case, the Hamiltonian from equation
(2.15) becomes

H(G,~θ) = ∑
i,j

θijai→j. (2.19)

Here θij can be considered the ’cost’ of placing a link from i to j and the
Hamiltonian is the full cost function. With this Hamiltonian, the partition
function from equation (2.16) becomes

Z(~θ) = ∑
G∈G

e−∑i,j θijai→j = ∑
G∈G

∏
i,j

e−θijai→j = ∏
i,j

∑
ai→j=0,1

e−θijai→j =

∏
i,j
(1 + e−θij) = ∏

i,j
z(θij), (2.20)

Version of July 14, 2021– Created July 14, 2021 - 12:35
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16 Background

where it is used that summing over all graphs G ∈ G is the same (for
unweighted graphs with adjacency matrix A) as summing over all possi-
bilities ai→j = {0, 1} for all node-pairs gi→j∀i, j ∈ N and the node-pair
partition function z is defined as

z(θ) ≡ (1 + e−θ). (2.21)

Now the free energy from equation (2.18) is

Ω(~θ) = − ln Z(~θ) = − ln ∏
i,j

z(θij) = −∑
i,j

ln z(θij) = ∑
i,j

ω(θij), (2.22)

with similarly as above a node-pair free energy defined as

ω(θ) = − ln z(θ). (2.23)

Using equation (2.17) and the equations above, one can calculate the
probability that there is a link from i to j, which is the expected value of
measurable ai→j, as follows

pi→j = 〈ai→j〉 =
∂Ω(~θ)

∂θij
=

∂ω(θij)

∂θij
, (2.24)

which means that
pi→j =

1
1 + eθij

, (2.25)

and the expected total number of links is

〈L〉 = 〈∑
i,j

ai→j〉 = ∑
i,j

pi→j. (2.26)

In principle, the full Hamiltonian can be used in order to find a model
that recreates every link ai→j in the ensemble average, but it should be
noted that the Hamiltonian depends on the vector ~θ which is N(N − 1)-
dimensional. This makes the problem unfeasible for most applications.
Therefore, usually not the individual links are constrained (by (2.12)), but
another measure. Furthermore, realising every link on average is not of
much interest, as it is very biased, in fact: maximally biased.

Erdős-Rényi

An Erdős-Rényi random graph is a graph where a link is placed from i to j
with a constant probability pi→j ≡ p. This random graph can be recreated

16
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2.2 Random networks 17

using the above methodology when only constraining the number of links
from equation (2.26) and setting θij ≡ θ. This reduces the problem from
N(N − 1)-dimensional to 1-dimensional.

The Hamiltonian now becomes

H(G,~θ) = θ ∑
i,j

ai→j = θL(G) (2.27)

and by tuning the only free parameter θ, one can realise an empirical mea-
sured number of links L∗. The probability of a link from i to j now is

pi→j = p =
1

1 + eθ
, (2.28)

which is a constant as expected.

Configuration Model

The Configuration Model is developed to recreate the expected degrees
of nodes [4]. The out and in degree of node i, is the number of out links
kout

i ≡ ∑j ai→j and the number of in links kin
i ≡ ∑j aj→i respectively. In this

section, the functional from of the probability pi→j that there is a link from
i to j is derived. Under the constraints

〈kout
i 〉 = ∑

G∈G
kout

i (G)P(G)
!
= (kout

i )∗ (2.29)

〈kin
i 〉 = ∑

G∈G
kin

i (G)P(G)
!
= (kin

i )∗, (2.30)

the Hamiltonian from equation (2.15) on page 15 is

H(G,~θ) =
2N

∑
ζ=0

θζ xζ(G) = ∑
i

(
ηikout

i (G) + µikin
i (G)

)
, (2.31)

where ηi is the langrange multiplier to control for kout
i and µi is the lan-

grange multiplier to control for kin
i . By using the definitions of out and in

degrees, the Hamiltonian is

H(G,~θ) = ∑
i,j
(ηi + µj)ai→j, (2.32)

which is a particular case of equation (2.19) where θij = ηi + µj.

Version of July 14, 2021– Created July 14, 2021 - 12:35
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18 Background

From what’s derived in the section above, this Hamiltonian leads, by
equation (2.24), to

pi→j =
1

1 + eηi+µj
. (2.33)

This leads to the original formulation of the Configuration Model by defin-
ing xi ≡ e−ηi and yj ≡ e−µj as

pi→j =
xiyj

1 + xiyj
. (2.34)

Models for link weights

The methods described above can be used to find the topology of binary
graphs. When dealing with weighted graphs, as in this thesis, there are
several approaches to construct the weights of links in the random graphs.
Some methods, like the Weighted Configuration Model, proceed as above
with the entropy given by equation (2.11) on page 14, but constrain the
strengths instead of the degrees [12].

In this thesis however, a different method to find the link weights is
used as a basis, called MaxEnt. MaxEnt uses a different definition of en-
tropy, which interprets the weights of the graph as probabilities of inde-
pendent events happening, in contrast to the entropy of equation (2.11),
which accounts for the existence of the entire graph [3, 12, 13]. The en-
tropy is redefined in order to find a form for the weights wi→j ∈ (0, ∞),
and

S(W) ≡ −∑
i,j

wi→j ln wi→j, (2.35)

which must be maximised under the constraints

〈sout
i 〉 = ∑

j
wi→j

!
= (sout

i )∗, (2.36)

〈sin
i 〉 = ∑

j
wj→i

!
= (sin

i )∗. (2.37)

In appendix A.2 on page 60, it is shown that this definition with these
constraints lead to a deterministic way of finding the weights wi→j from a
maximum entropy argument:

wi→j =
(sout

i )∗(sin
i )∗

W
, (2.38)

18
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2.2 Random networks 19

where W ≡ ∑i,j wi→j = ∑i(sout
i )∗ = ∑i(sin

i )∗. This result necessarily leads
to a network where all the nodes i with positive (sout

i )∗ and (sin
i )∗ are con-

nected, which is not a favourable outcome. This method is later modified,
where a variant of the Configuration Model (section above) is used to sam-
ple the existence of links and a variant of equation (2.38) is used to place
the weights of the realised links.
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Chapter 3
Data

As mentioned, the data that are used are made available for the physics
and business studies project for the internship. The following chapter de-
scribes the data, along the lines of the internship report [10].

3.1 Transactions

The data used for the research are the transaction data available at ING’s
Wholesale Banking Advanced Analytics (WBAA) tribe. The data are for-
matted as a table of all (SEPA) transactions that are processed from or to
a Dutch ING account, excluding accounts with a foreign currency. On
top of those transactions, the table also contains Swift transactions, which
are international. Roughly speaking, these are transactions from accounts
in the EU countries and their neighbours to accounts in another of these
countries. For privacy reasons, the private individuals (PI’s) are filtered
out∗.

The transactions in this table started in October 2018 and the table is
updated regularly. This means there are approximately 7 · 1010 transac-
tions in the transaction table, for 4 · 105 nodes. For every transaction, there
are several features available: amount in EUR, the date and for both payer
and beneficiary the account, economic and legal ultimate parent, the name
and the country where the account holder is established. The sector speci-
fication of the accounts (as classified by the North American Industry Clas-
sification System, see section 4.2.2 on page 34) is added from another table,

∗ From ING accounts it is known whether they belong to private individuals. For non-
ING accounts, WBAA’s Possible Private Individuals (PPI) algorithm classifies accounts
as PI or not-PI.
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22 Data

which contains information about ING clients.
In a sense, this transaction table already is an edge list, which could be

used to create a graph. This graph could contain multi-edges, where there
is more than one transaction between the same nodes. To go from this table
to a simple graph, the transactions are grouped by ID† and summed, such
that every edge occurs only once. For this research, only the transactions
in 2019 are considered. This is because 1 year will discard most of the
seasonality, and because the data from 2018 wouldn’t give a full year (the
table starts in October 2018). 2020 was an unusual year, which is why that
year was not considered.

After the grouping and filtering, the table is an edge list of a simple
graph and it is stored as a Compressed Sparse Row (CSR) sparse matrix,
with approximately 3.1 · 106 edges and 3.7 · 105 nodes. This is the graph
that is considered to be ’the transaction network’ throughout this thesis.

3.2 The Transaction Network

Only a subset of the nodes in the transaction network are companies with a
Dutch ING account with relevant transactions, ’Dutch ING’ meaning they
have an account at ING and are in the internal database. From these ac-
counts, every SEPA and Swift transaction from October 2018 until now is
in the data set. That is no guarantee, however, that everything about these
companies is known. We do know that more is known about them, than
about e.g. ABN accounts. For these non-ING accounts, only the trans-
actions from ING to those accounts and from those accounts to ING are
observable. There is a blind spot for transactions from and to these ac-
counts to and from other banks (i.e. Rabobank, ABN, Triodos, etc.) or
foreign accounts.

Because of this fact, a distinction is made between Dutch ING compa-
nies and the other nodes. Using IBAN, the internal ING database, sector
information (saved as a NAICS-code, see section 4.2.2 on page 34), the
distinction can be made. An account is considered a Dutch ING account
when 1) it has ’NL’ and ’INGB’ in its IBAN, 2) its country, according to our
database, is ’NL’ and 3) it has an ID in our database, which 4) does not
correspond to a private individual account. The other nodes are grouped
and considered as separate group nodes. The group nodes are

• Public administrations (e.g. ’Belastingdienst’, the Dutch tax office).

†The ID roughly corresponds to an economic entity in an internal ING table, however
it is not necessarily the case that 1 company only has 1 ID.

22
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3.2 The Transaction Network 23

This is based on the NAICS code 92.

• Private individuals, based on a flag in the internal database. See also
footnote ∗ on page 21.

• Foreign accounts, based on the country as present in the internal
database.

• Financial institutions (e.g. insurance companies and banks), based
on having NAICS code 521, 522 or 523.

• Dutch non-ING companies, which have a country ’NL’ according to
our database and have a defined sector in the database. Only ac-
counts with a known sector are considered because of those accounts
we’re sure they’re companies and not private individuals.

• Other, where all of the above requirements are not met. This group
unfortunately contains batch payments.

The subgraph of only ING nodes is named the ’ING network’ or ’Internal
Network’ and has approximately 2.7 · 106 edges and 2.8 · 105 nodes. The
other (group) nodes are considered to be ’exogenous forces’. Figure 3.1
on the next page displays the presence of the external nodes, compared
to the Internal Network, in terms of the total flow of money and count of
transactions.

Characteristics of the Transaction Network

In figure 3.2 on page 25, the transaction network is described by 4 his-
tograms. The properties that are displayed are the (out and in) degree
kout

i , kin
i , and the weighted (out and in) degree sout

i , sin
i . The latter is also

called the strength. The properties can be directly measured for any graph
G with entries wi→j and its respective adjacency matrix entries ai→j (see
equation (2.1)), by the following

kout
i = ∑

j 6=i
ai→j, kin

i = ∑
j 6=i

aj→i (3.1)

sout
i = ∑

j 6=i
wi→j, sin

i = ∑
j 6=i

wj→i. (3.2)

Generally speaking, the distribution of degrees and strengths is more
informative than the individual degrees and strengths. In real-world net-
works, these distributions are highly non-trivial, as shown in [4]. It is
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Figure 3.1: The figure shows which type of transactions are present in the trans-
action network. The figure should help understand what the distribution of
internal-external transaction is and what type of transactions are filtered. A fig-
ure with the strength of all groups can be found in the appendix (figure B.1 on
page 64).

shown that the degree distributions of real-world networks have a long
tail, i.e. there are more nodes with a large degree than expected from a
completely random graph as described by Erdős-Rényi [14]. The long tails
make measuring the distribution with a histogram somewhat tricky, but
an accepted way to overcome this is by using a log-log scale and exponen-
tial bins. The degree distributions in figure 3.2 appear to be power-law
distributions, which is to be expected of real-world networks [4].

24

Version of July 14, 2021– Created July 14, 2021 - 12:35



3.2 The Transaction Network 25

Figure 3.2: The figure shows the network properties of the transaction network
used for the research. Note the logarithmic scales. The grouped nodes (foreign
accounts, other banks, etc.) are considered only in the full transaction network.
Because they represent a large number of accounts, they have an extremely large
out and in degree and are filtered for the ING network. When not considering the
external nodes, there are fewer nodes with large strengths or degrees.
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Chapter 4
Methods

In this chapter, all the methods used in the project are presented. In sec-
tion 4.1, all the aspects of the simulation of cascading defaults and default
strategies, as explained in the internship report [10], are discussed. Then,
in section 4.2 on page 30, the network models and their construction are
explained.

4.1 Simulation

The goal of this project is to research the dynamics of cascading defaults
on networks reconstructed from statistical ensembles. To fully reach this
goal, we first need to look at how the simulation is done. Following the
internship report [10], the domino effect (or ’cascade’) of defaults in a fi-
nancial network, as introduced in the Introduction, is investigated. Section
2.1.1 on page 11 explained a way of finding clearing vectors of a financial
system, under certain assumptions as introduced by Eisenberg and Noe
[1]. This is done using a simulation called the fictitious default algorithm.

In Eisenberg and Noe, this algorithm is nothing more than a matrix
multiplication under the two constraints of limited liability and absolute
priority and the assumption that all debts have equal priority. Here, a
more general approach of simulating defaults is proposed where 1) not
all debts have equal priority, but a debtor can distinguish creditors by the
size of the respective obligation and 2) the absolute priority constraint is
relaxed, as a node can choose to save money to reserves instead of paying.
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4.1.1 Fictitious Default Algorithm

To simulate the defaults, the fictitious default algorithm as proposed by Eisen-
berg and Noe [1] is adapted. The algorithm allows measuring a node’s
systemic risk exposure: the earlier it defaults, the more it is at risk. The
thinking behind the simulation is relatively simple:

First, each node pays its obligations if it can. If it cannot, the node is
by definition ’in default’. Then, the node pays what it can, according to a
certain defaulting strategy (see the next section). At every time step, the
weighted matrix of payments P(t) is observed and the sum of all entries
∑i,j Pi→j(t) gives a measure for the total flow. The algorithm is written in
pseudo-code in algorithm 1. Note that debts don’t carry over time and are
forgiven after every iteration.

Algorithm 1: Fictitious default algorithm
for n ∈ N do

obligationsn = ∑m Ln→m
incoming0,n = ∑m Lm→n
reserves0,n = max (0, (incoming0,n − obligationsn))

P0 = [[0, .., 0], ..[0, .., 0]]
for t ∈ range(1, max iterations) do

incomingt,n = ∑m P(t−1)m→n + reserves(t−1),n
for n ∈ N do

if incomingt,n ≥ obligationsn then
paymentst,n = obligationsn

else
paymentst,n = payments strategyn

reservest,n = (incomingt,n − paymentst,n)
Pt = stack(paymentst,n)

4.1.2 Defaulting Strategies

When a node is in default, the node could still pay part of its obligations.
The node does this according to a certain defaulting strategy. Here, the
investigated strategies are described and briefly motivated.

Eisenberg Noe [1]

In 2001, Eisenberg and Noe described a mechanism to analytically find
clearing vectors (see subsection 2.1.1 on page 11). Their thinking can be

28
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adapted to describe a defaulting strategy. In this defaulting strategy, a de-
faulted node n pays all their incoming money to their creditors, weighted
by the relative liabilities matrix Πij, see equations (2.5) and (2.7) on page 13.

The motivation behind this default strategy is mainly simplicity. With
the relative liabilities matrix Πij described as above, the algorithm be-
comes an analytically solvable problem, i.e. the system always converges
to a steady-state which can be found using Πij, as shown in [1]. One could
also argue that from an economic perspective, this defaulting strategy is
fair: if a debtor is in default, all their creditors suffer proportionally to the
size of the obligation.

Largest Creditor

A defaulting strategy that has more motivation from reality is the Largest
Creditor strategy. It is hypothesised by bankers from within an arrears
department of ING that defaulted companies pay obligations according to
their respective size, such that a company has fewer creditors to deal with.
There are two variants of this strategy: (Pay) Largest Creditor First and
Largest Creditor Last. When using this strategy, a node that is in default
sorts all its obligations (on size in EUR) and pays obligations from that
sorted list until it runs out of money (see Algorithm 2).

Algorithm 2: Largest Creditor
sorted obligationsn = sort(obligationsn)
paymentsn = 0
i = 0
while paymentsn + sorted obligationsn[i] < incomingn do

paymentsn+ = sorted obligationsn[i]
i+ = 1

return paymentsn

The result of Largest Creditor First for a defaulting node, is, by con-
struction, that the node has fewer obligations of ’large’ size, in popular
language ’no big bills lying around’. The result of Largest Creditor Last is
fewer obligations in terms of number of creditors and therefore, in popular
language ’fewer parties to deal with’.

4.1.3 Reserves (R vs. XR)

For the Largest Creditor First and Largest Creditor Last strategies, a de-
faulting node may pay less than it has incoming. This also happens when
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making a profit. When a node pays less than it has incoming, there are
two options to force conservation of money. The money can be saved to
a ’reserve’, which is considered income in the next time step (strategy R),
or, for nodes in default, the money is paid to a creditor, even when this
payment doesn’t fulfil the entire obligation (strategy XR). For simplicity,
the excess money is always paid to the creditor that would’ve received the
next payment of the defaulting node.

Note that using the XR strategy coincides with the assumption of ab-
solute priority and that the R strategies no longer obey absolute priority.
Convergence, which was guaranteed for clearing vectors, i.e. obeying lim-
ited liability and absolute priority is not guaranteed anymore when using
the R strategy.

When building reserves, an unpaid obligation can become a paid obli-
gation after a few iterations when a defaulted node saves money until it
has enough incoming again to fully pay an obligation. When not build-
ing reserves and having a fixed order of preference for paying, it can be
shown that the total flow of money (per node) is strictly non-increasing,
by the following argument.

When a node is healthy, i.e. it has at least as much incoming as obli-
gations, it will pay its obligations. The total flow of this node is exactly
the sum of its obligations (a constant in time). When, for some reason,
at a later point in time the incoming money of this node is less than its
obligations, it will spend everything it has at that point. All of its neigh-
bours will therefore receive at most what they already received, and thus
never more. The same goes for all other nodes and thereby: when not
building reserves, the total flow of money (per node and in total) is strictly
non-increasing.

4.2 Random Networks

In order to make sense of the measurements on the transaction network,
the results are compared to a null model. An ensemble of random net-
works is sampled and used as a comparison. The random networks are
generated in such a way that statistical properties are realised in the en-
semble averages. This allows the ensemble to act as a null model: when
behaviour of the empirical network, e.g. the dynamical behaviour of the
cascading defaults simulation, result in different outcomes than the ran-
dom network ensemble, the behaviour is not fully explained by the con-
strained statistical properties.

In this research, the random network models are designed to replicate

30
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4.2 Random Networks 31

the total number of links and the individual strengths of all the nodes. A
random network model that fits for this purpose is the Fitness-induced
Configuration Model (FiCM) [7, 8], possibly enhanced with labelled edges
and nodes in order to replicate flows between sectors [9].

4.2.1 Fitness-induced Configuration Model

Finding the topology

The configuration model (CM) [7] can realise an empirical degree distri-
bution, by having two Langrange multipliers {xi, yi} for every node i ∈ V
in the network. The model is generally fitted from a maximum entropy ar-
gument, using each of the node’s empirical out and in degree (kout

i )∗ and
(kin

i )∗ respectively, as the expected out and in degree 〈kout
i 〉 and 〈kin

i 〉 re-
spectively of that node in the ensemble. See section 2.2.2 on page 17 for
the details. In general, the configuration model gives rise to the functional
form

pi→j =
xiyj

1 + xiyj
. (4.1)

In the Fitness-induced Configuration Model (FiCM) [8], it is assumed
that the Langrange multipliers xi and yi correlate linearly with some (mea-
surable) node-specific fitness χi and ψi, determining the out and in de-
grees, respectively, through universal parameters α and β, i.e.

xi ≡
√

αχi yi ≡
√

βψi. (4.2)

This is called the fitness ansatz. Now equation (4.1) becomes

pi→j =
zχiψj

1 + zχiψj
, (4.3)

where z ≡
√

αβ [15]. Given the (empirical) node-specific fitnesses {χi, ψi}i∈V ,
which can be any node attributes that are assumed to affect the degree by
equation (4.2), e.g. the out and in strengths, the only free parameter is z.

The parameter z can be found by an algebraic equation. The CM re-
alises the empirical degree distribution by design. The sum of the out and
in degree distributions is the number of links L in the networks. The em-
pirical degree distributions are realised, thus the total number of links L∗
should also be realised. Now z can be found by solving

L∗ !
= 〈L〉 = ∑

i,j
pi→j = ∑

i,j

zχiψj

1 + zχiψj
. (4.4)
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When z is found, a binary topology Ã of a random sample G̃ is realised
by placing an edge in the random network when a randomly generated
number is smaller than pi→j. This means for an edge ãi→j in the sample:

ãi→j =

{
1, with probability pi→j =

zχiψj
1+zχiψj

0, with probability 1− pi→j.
(4.5)

Finding the weights

As explained in section 2.2.2 on page 18, the empirical strengths are re-
alised by the random networks from a maximum entropy viewpoint when

w̃i→j =
(sout

i )∗(sin
j )
∗

W
, (4.6)

with (sout
i )∗ = ∑j w∗i→j, (s

in
i )∗ = ∑j w∗j→i the empirical out and in strength

of node i, respectively, and W = ∑i,j w∗i→j the sum of empirical weights in
the network. This functional form, however, assumes that the network is
fully connected and is therefore unfeasible for the proposed random topol-
ogy (see section 2.2.2 on page 18).

Two modifications to equation (4.6) can be made to make it feasible.
First, rather than placing the weights deterministic like in the equation,
the weights can be recreated in the ensemble average by sampling from
a positive support probability distribution with a mean µ = w̃i→j. The
exponential distribution is used for this, because it is the continuous dis-
tribution that maximises the entropy under the constraint of the mean.
The exponential distribution is given by

P(x|µ) = 1
µ

e−x/µ. (4.7)

Second, when trying to create a sparse (not fully connected) network, by
sampling the edges, e.g. by equation (4.5), the value pi→j can be added
to the denominator in order to still recreate the expected strengths. The
expected weights now become

〈w̃i→j〉 =
(sout

i )∗(sin
j )
∗

W pi→j
ãi→j, (4.8)

which realises the empirical strengths in the ensemble average. This can
explicitly be shown by the following:

〈sout
i 〉 =

〈
∑

j
w̃i→j

〉
=

(sout
i )∗

W ∑
j

(sin
j )
∗

pi→j
〈ãi→j〉 = (sout

i )∗, (4.9)
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and analogous for 〈sin
i 〉.

In summary, using equation (4.5) to create the binary topology of a
random network, with a z found by solving equation (4.4) and by using
equation (4.8) to place the weights, an ensemble of random networks can
be made where, on average, the number of links, out and in degree distri-
butions and out and in strength distributions are realised and where the
other properties are maximally unbiased and random. This is under the
assumption that the strengths correlate with the Lagrange multipliers and
therefore with the degrees of nodes [8].

4.2.2 Stripe Fitness model

The Fitness-induced Configuration Model assumes that there exist univer-
sal parameters α and β that couple the fitnesses to the Lagrange multipli-
ers. This universality can constrain the model, as it does not allow for
other (node) properties that control the degrees: all nodes experience the
same relation described in equation (4.2) on page 31.

The Stripe Fitness model [9] generalises the FiCM [8] and allows for
different relations between the Lagrange multipliers and fitnesses to co-
exist. Nodes get a label g (e.g. a sector) and for every label that is present
in the model, a zg is fitted by the procedure described above. This means
that equation (4.3) on page 31 generalises to:

pi→j =
zgi s

out
i sgi→j

1 + zgi s
out
i sgi→j

, (4.10)

and again

ãi→j =

{
1, with probability pi→j

0, with probability 1− pi→j,
(4.11)

where

sout
i = ∑

j
wi→j sgi→j = ∑

k∈gi

wk→j. (4.12)

The expected weights are generalised as follows:

〈w̃i→j〉 =
sout

i sgi→j

Wgi pi→j
ãi→j, (4.13)

with
Wgi = ∑

k∈gi

sout
k = ∑

j
sgi→j (4.14)
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The quantity sgi→j can be thought of as the in strength from a certain
labelled group. The motivation is that a node might need a certain influx
from nodes with a certain label (e.g. sector) gi

∗ . Using the equations from
the Stripe Fitness model, the node has no bias to any node in the group gi,
and in the ensemble, the node is certain to have on average influx sgi→j.

This can be shown using a similar argument as above in (4.9). For a
node i, its influx from group gj is, averaged over the ensemble:

〈s̃gj→i〉 = 〈∑
k∈gj

wk→i〉 = 〈∑
k∈gj

sout
k sgj→i

Wgj pk→i
ãk→i〉, (4.15)

which is equal to

〈s̃gj→i〉 =
sgj→i

Wgj
∑

k∈gj

sout
k

pk→i
〈ãk→i〉. (4.16)

Now ∑k∈gj
sout

k and Wgj cancel, as well as 〈ãk→i〉 and pk→i, resulting in

〈s̃gj→i〉 = sgj→i. (4.17)

The out strength of node i, averaged over the ensemble, can be found
using a similar procedure:

〈s̃out
i 〉 =

sout
i

Wgi
∑

j

sgi→j

pi→j
〈ãi→j〉 = sout

i , (4.18)

where equation (4.14) is implicitly used in the last step.

Choosing number of groups

In the research, the nodes of the financial network are companies. For the
companies i, a natural group gi is the sector. The Stripe Fitness model
replicates (on average) for every node i, the influx from every group gj. In
this case, the model replicates for every company the incoming cash from
a certain sector. ’Sector’, however, is not trivial to define.
∗Note that technically, one should consider this to be ’outflux of money’ or ’influx

of product’, since a link corresponds to a monetary transaction from node i to j and a
product from j to i. In the Stripe Fitness model, one should pay close attention to which
party (payer or beneficiary) is labelled with the sector. In this research, the beneficiary of
the transaction determines the group that is considered, which corresponds to the seller
of a product.

34

Version of July 14, 2021– Created July 14, 2021 - 12:35



4.2 Random Networks 35

Codes Titles
11 Agriculture, Forestry, Fishing and Hunting
1111 Oilseed and Grain Farming
111110 Soybean Farming
111120 Oilseed (except Soybean) Farming
111130 Dry Pea and Bean Farming
111140 Wheat Farming
111150 Corn Farming
111160 Rice Farming
111191 Oilseed and Grain Combination Farming
111199 All Other Grain Farming
1112 Vegetable and Melon Farming
111211 Potato Farming
111219 Other Vegetable (except Potato) and Melon Farming

Table 4.1: A small piece of the NAICS-table. NAICS provides a way of hierarchi-
cally grouping sectors [16].

For sectors, the North American Industry Classification System (NAICS)
is used, because it is available in the data [16]. The system provides a way
of hierarchically classifying sectors into subsectors. The first two digits
provide a broad description of the sector, and with every next digit, there
is more granularity. See table 4.1 for an example.

One advantage of using NAICS is that sectors can be grouped, which
can be useful to ensure enough companies in one group. When for ex-
ample, there are only 5 companies in the entire data set with NAICS-code
111191: Oilseed and Grain Combination Farming, they can be considered as
being part of the larger group 1111: Oilseed and Grain Farming, decreasing
granularity. This way, companies get attributed a sector label in such a
way that there are at least l nodes with the same sector.

The factor l can be used to control for granularity. l can range from 1 to
N, with N the number of nodes inN . When l = 1, the sector of every node
will be its 6-digit NAICS-code and some sectors can have only 1 node.
When l ≥ N, there is only one sector in the data and the Stripe Fitness
model reduces back to the FiCM. When l = 15, there are 737 different
sectors measurable with more than 15 companies.
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Chapter 5
Results

This chapter will try to cover all the results of the research. First, the ran-
dom network ensemble is compared to the empirical network to check
whether it can be used as a null model for the second part, the cascading
defaults simulations.

5.1 Random networks

An important step in generating random network ensembles is checking
its realisations with the empirical network. Remember that the FiCM [8]
and Stripe Fitness model [9] both were based on maximum entropy, which
ensures maximally randomness, and the assumption that the strengths (al-
beit strength of a group g) were a good proxy for the Lagrange multipliers
in the Configuration model [7]. Because this is an assumption, analytical
results should be checked numerically.

5.1.1 Number of links

In table 5.1 on the following page, it can be seen that for all the random
network ensembles the number of links is perfectly realised, with a mini-
mal error. This result was to be expected, as the expected number of links
of the ensemble is equal to the empirical number of links, by design (equa-
tion (4.4) on page 31).
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Network # of sectors Number of links Relative error
Empirical n/a 2.73160 · 106 n/a
Stripe Fitness model 60 2.73168 · 106 ± 1.319 · 103 0.059σ
Stripe Fitness model 204 2.73175 · 106 ± 1.216 · 103 0.120σ
Stripe Fitness model 563 2.73155 · 106 ± 1.353 · 103 −0.036σ
Stripe Fitness model 737 2.73176 · 106 ± 1.399 · 103 0.115σ
FiCM 1 2.73162 · 106 ± 1.504 · 103 0.010σ

Table 5.1: The empirical number of links and ensemble averages of the number
of links. The errors are given by the standard deviation over all 50 realisations.

5.1.2 Degrees

The Configuration Model should be able to realise the degree distribution
of the empirical network. In the proposed models, i.e. the FiCM and Stripe
Fitness model, the Configuration Model is used as an inspiration. There is
no analytical guarantee, however, that the expected degrees are equal to
the empirical ones.

After sampling networks from the ensemble, the degree (out and in)
distributions and inverse cumulative distribution functions (icdf) are in-
spected using figure 5.1 on the facing page. The top panels (figures 5.1a
and 5.1b) show the degree distribution and icdf of an average realisation.
For every realisation a degree distribution and icdf are made. Then, for
every sample in the ensemble, the average height of the bin (and the stan-
dard deviation for the error bar) and average of the icdf is calculated and
displayed.

The bottom panels (figures 5.1c and 5.1d) show the ensemble-averaged
degree distributions and icdf. These are calculated by averaging the de-
gree of every node over the ensemble and then creating the distribution
and icdf for the ensemble-averaged degree distribution. The error bar is√

N with N the height of the bar in the histogram, to indicate the error.
When inspecting the distributions and icdf’s, several point can be made.

First, the number of nodes with a low in degree (< 5 · 101) is greatly un-
derestimated (note the log-scale) by the models. Second, the number of
nodes with a medium to large out degree ( 5 · 101 < kout < 5 · 103), is
overestimated by the models. These points can be made by comparing the
height of the bins of the models to the height of the bins of the empirical
network (in blue).

Furthermore, the number of nodes with no outgoing connections (kout =
0) or no incoming connections (kin = 0), which is displayed in the left bar
of the histogram, is far greater (O(104)) in the random networks than in

38
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(a) Empirical out degrees (blue) and other
out degrees (histograms averaged over all
realisations).

(b) Empirical in degrees (blue) and other
in degrees (histograms averaged over all
realisations).

(c) Empirical out degrees (blue) and en-
semble mean out degrees.

(d) Empirical in degrees (blue) and en-
semble mean in degrees.

Figure 5.1: Degrees of empirical and random networks. The bars display the
count (left axis), the lines display the inverse cumulative distribution function
(right axis). Figures (a) and (b) show the average distributions (i.e. first make a
distribution, then average and standard deviation for the error bars). Figures (c)
and (d) show the ensemble averages, with

√
N error bars. The models are the

Stripe Fitness model with different number of labels (section 4.2.2 on page 33)
and the Fitness-induced Configuration Model (FiCM) (section 4.2.1 on page 31).
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the empirical network, which is expected of random networks sampled
from a canonical ensemble (see section 6.1 on page 51).

The last point is that the icdf of the observed out degrees is not clearly
from a power-law, which would have produced a straight line in log-log
plot. This behaviour is not replicated by the models, which have a more
power-law-like shape for the icdf of the out degrees.

5.1.3 Strengths

Distributions

When inspecting the strength distributions (figure 5.2 on the facing page),
the strengths and limitations of the model become even more visible than
when analysing the degrees. In the figures, which are similar to the figures
shown in section 5.1.2 on page 38 but for strengths, the empirical strength
distributions are compared to the ensemble strength distributions.

As expected by equation (4.18) on page 34, the distribution of the en-
semble averaged out strengths are (approximately) equal to that of the
empirical out strengths, as can be seen in figure 5.2c. The number of low
in strength nodes (figure 5.2d) is underestimated by the models, and the
number of zero in strength nodes is overestimated by the models.

The top panels 5.2a and 5.2b, where the strength distributions of an
average realisation are displayed show that in the average realisation, the
number of low-strength nodes is massively underestimated (for in strengths
a factor around O(101)) and the number of zero out or in strength node is
overestimated by a number of O(104), which is O(10)% of the total num-
ber of nodes. This result and its implications are discussed in section 6.1
on page 51.

Expected values

To get a sense of how the models recreate the strength distributions, one
can sample a number of random networks and calculate the mean strength
of every node. A distribution of these strengths is depicted in figure 5.2c
on the facing page, as already discussed above. Figures 5.3 on page 42
show the mean value of the strengths versus the empirical strength. There
are therefore N ≈ 2.8 · 105 points in these figures and the figure is dis-
played as a 2D histogram.

From these figures, it can be concluded that generally, nodes with a
large empirical strength (si > 105) have the same mean strength in the
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(a) Empirical out strengths (blue) and
other out strengths (histograms averaged
over all realisations).

(b) Empirical in strengths (blue) and other
in strengths (histograms averaged over all
realisations).

(c) Empirical out strengths (blue) and en-
semble mean out strengths.

(d) Empirical in strengths (blue) and en-
semble mean in strengths.

Figure 5.2: Strengths of empirical random networks. Figures (a) and (b) show the
average distributions (i.e. first make a distribution, then average and standard
devation for error bars). Figures (c) and (d) show the ensemble averages with
a
√

N error bar. The left axis corresponds to the bars (frequency), the right axis
corresponds to the lines (inverse cumulative distribution function). The models
are the FiCM (see section 4.2.1 on page 31) and the Stripe Fitness model with
different number of labels (see section 4.2.2 on page 33).
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(a) Comparison between empirical out
strengths and the mean modelled out
strengths, using the FiCM.

(b) Comparison between empirical in
strengths and the mean modelled in
strengths, using the FiCM.

(c) Comparison between empirical out
strengths and the mean modelled out
strengths, using the Stripe Fitness model
with 737 labels.

(d) Comparison between empirical in
strengths and the mean modelled in
strengths, using the Stripe Fitness model
with 737 labels.

Figure 5.3: In the figures, the empirical strengths are plotted against the mean
sampled strength. The Stripe Fitness model with 737 labels and the FiCM, which
is just a Stripe Fitness model with 1 label, are used to show the result. The results
of the intermediate Stripe Fitness models (60, 204 and 563 labels) gradually shift
in shape from the FiCM to the Stripe Fitness 737. The figure with all the strength
realisations can be found in figure B.3 on page 66.

ensemble. For smaller strength nodes, the spread is somewhat larger. This
is also discussed in section 6.1 on page 51.

FiCM vs. Stripe Fitness model

In general, an observation on the Stripe Fitness model can be made from
figures 5.1 and 5.2. The Stripe Fitness model replicates both the degrees
and the strengths, both for the individual realisations and for the ensemble-
averaged distributions, better than the FiCM. The more labels that are
used, the better the realisations.
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5.2 Cascading defaults 43

Figure 5.4: (Full size in appendix figure B.2 on page 65). The flow of money in
time, depicted for different defaulting strategies (colours) when the simulation is
run for different networks (line styles). 100 random networks are sampled from
the ensemble and the flow is recorded at each time. For that time, the mean is
depicted with the line and the area is ±1σt with σt the standard deviation of the
flow of the ensemble at that time.

5.2 Cascading defaults

In this section, the results of the cascading defaults simulations from the
internship report [10] are reiterated. The simulations are done using the
empirical network and 100 random networks sampled from a certain en-
semble (FiCM or Stripe Fitness model with 737 labels, i.e. l ≥ 15).

5.2.1 Flow and not-defaulted companies

Dynamics

The first observed quantity is the change of the total flow of money in the
network ∑i,j Pi→j(t = t′), relative to the total obligations ∑i,j Li→j. Fig-
ure 5.4 shows some interesting results. The first observation is that for XR
strategies (always paying as much as you can, see section 4.1.3 on page 29),
the total flow is strictly non-increasing, as expected. For LargestCreditor-
First XR (in green), the total flow even reaches a non-zero equilibrium in
t < 1000, also in the random networks sampled from the Stripe Fitness
model ensemble.

On the other hand, the total flow for R strategies, where you can build
a reserve, even when you’re in default, fluctuates for both the empirical
and the random networks. It is clear, however, that the trend is overall
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Figure 5.5: The results at the end of the simulations, sorted by defaulting strategy
(colour) and network (hatches). The top figure shows the eventual flow ∑i,j Pi→j
relative to the total obligations ∑i,j Li→j on a log scale. From this, it is clear that
LargestCreditorFirst strategies (in green and red) yield the highest eventual flow
and LargestCreditorLast strategies (in blue and orange) the lowest, for all networks
(empirical and random).

decreasing.

Final state

When combing this with figure 5.5, more becomes apparent. In the top
figure, the height of the bars represents the relative eventual size of the
economy. They correspond to the height of the lines in figure 5.4 at time
t = 1000. From this, some observations can be made. First, the Largest-
CreditorFirst strategies (in green and red), have the highest flow for all
networks.

This is explaind by observing figure 5.6 on the facing page, which dis-
plays the payments done in the last iteration of the simulation. It is ob-
vious that for the LargestCreditorFirst strategies, the payments are higher
than for the LargestCreditorLast strategies (because all the companies first
pay their large obligations). The area under this distribution is equal to
the height of the corresponing bar in figure 5.5, and because of the skewed
distribution in figure 5.6 (note the log-log scale), the total flow is higher.

44

Version of July 14, 2021– Created July 14, 2021 - 12:35



5.2 Cascading defaults 45

Figure 5.6: Distribution of the payments (weights of the payment matrix) that are
done in the last iteration for the empirical network. The original obligations are
also displayed (brown area). The area under the distribution equals the height
of the total flow in figure 5.4 on page 43 in the last iteration (and the height
of the bars in figure 5.5). The area under the green distribution (LargestCredi-
torFirstXR) is orders of magnitude higher than that of the other lines (note the
log-scales). Note that the LargestCreditorLast payments (blue and orange) are
more skewed to the lower payments (because the large obligations are paid last)
and the LargestCreditorFirst payments (green and blue) are more skewed to the
higher payments, as the nodes first pay the largest obligations. A similar fig-
ure for the randomly generated models can be found in appendix figure B.4 on
page 67.
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5.2.2 Building reserves when in default

A second important observation from figures 5.4 and 5.5 on page 44 is that
the strategies where all the money is paid according to absolute priority
(the XR-cases) always result in a higher total flow than strategies where
nodes are allowed to build reserves when they are in default (in the R-
case). This can be explained by the following reasoning.

Because of conservation of money, all the money must be either paid to
a creditor or saved to a reserve. The only difference between R and XR is
that nodes that are in default can choose to not pay a creditor. Therefore,
this money is saved and not flowing. When it happens that debtors of
these nodes stop paying, this node is not able to save more money and it
stops saving, but with some non-zero amount in its reserves. This money
will then never flow, which is equivalent to it being removed from the
system. Now, since this is the only difference between R and XR, it is likely
that the strategies XR will always result in a higher flow, as observed. This
effect is amplified in the LargestCreditorFirst strategies, where nodes try
to save for a larger obligation, but never quite reach this level. This effect is
not present when using networks sampled from the FiCM, because there,
in an average realisation, there are fewer nodes with small strengths (see
section 6.1 on page 51).

A second point is the difference between the random networks models.
In terms of relative differences between strategies, the Stripe Fitness model
with 737 labels recreates similar behaviour as observed with the empiri-
cal network. The ratio of flows between simulations of the Stripe Fitness
model and the empirical network, for the five strategies, is 21.4%± 6.0%.
This indicates that the simulation on the random networks recreates some
of the behaviour (differences between strategies), but not all (total flow).
For the FiCM, this ratio is 29.4%± 28.4%, which is a much higher variance,
indicating that the FiCM recreates the behaviour of the empirical network
worse.

When comparing the number of not-defaulted nodes (’healthy’ com-
panies), similar results appear. For the Stripe Fitness model, the number
of not-defaulted nodes is on average 84.0%± 3.6% compared to the empir-
ical. In the bottom figure, one can see that there is almost no difference in
terms of number of not-defaulted nodes between strategies for the FiCM.
For all the strategies, the number of not-defaulted nodes is on average
3.80 · 104 ± 7.42 · 102, a relative difference of about 2%.
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5.3 Sectors

After the simulation, the sector of the nodes is inspected. Each node is
part of a sector (or grouped sector, see section 4.2.2 on page 34) and within
these sectors, it is observed when the nodes default on average and how
many nodes in the sector stay healthy during the simulation. Figure 5.7 on
the next page shows the results (averages in the sectors) of this analysis.

From this figure, one can observe several points. First, in contrast to the
rather naive way of interpreting figures 5.4 and 5.5, the LargestCreditorFirst
strategies (in blue and orange) seem to produce more favourable results
than the LargestCreditorLast strategies (in red and green): for LargestCred-
itorFirst, the nodes default on average later in the simulation, and, also
confirmed by figure 5.5, there are fewer defaults in general (for all the sec-
tors).

Second, there seems to be a difference between the sectors. For exam-
ple, the nodes in the sectors starting with 54, i.e. Professional, Scientific,
and Technical Services, default on average later than nodes in the sectors
starting with 44, i.e. Retail Trade. There are also more defaults in the latter
sectors. It should be noted, however, that, given the errors and the short-
comings of the simulation as discussed in 6.2 on page 52, this research
cannot draw strong conclusions on the risk of the mentioned sectors face
in reality.
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Figure 5.7: (Caption next page.)
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Figure 5.7: (Previous page.) The sector analysis of the simulations. The left fig-
ure shows when the nodes in that group default, averaged over all nodes in the
group. For the random ensembles, 100 networks were sampled and the mean
of these 100 data points is plotted, with an error for the standard deviation. The
middle figure shows the relative number of nodes that did not default in t < 1000,
which can be observed directly with only 1 network (the empirical). For the ran-
dom networks, the relative number of not-defaulted nodes is averaged over the
100 networks, with error bars for the standard deviation. The right plot shows
how many companies are in the different groups. The sectors are grouped using
NAICS (see section 4.2.2 on page 34) in such a way that every sector contains at
least 2500 nodes. Note that this grouping is done separately from the grouping for
the Stripe Fitness model. The grey area’s in the figure indicate the 2-digit NAICS
grouping, which means that neighbouring sectors in the same shade of grey are
part of the same broader group.
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Chapter 6
Discussion

In chapter 5, some interesting results were presented. In this chapter, the
results are discussed. First, some shortcomings of the random networks
are discussed. Second, the simulation is discussed.

6.1 Stripe Fitness model

6.1.1 Low strengths

In the figures presented in section 5.1.3 on page 40 on the strength distri-
butions, two points became clear. First, in an average realisation of the
Stripe Fitness model, the number of nodes with a small strength was un-
derestimated, especially for the Stripe Fitness models with a small number
of labels. This can be explained by first inspecting the equations that gov-
ern the FiCM (equations (4.3) and (4.8) on page 32) (and also the equations
of the Stripe Fitness model, equations (4.10) and (4.13) on page 33).

The first equation is increasing in χ and ψ (for χ ≥ 0, ψ ≥ 0), indicating
that links between smaller-strength nodes have a smaller probability of
being realised (by construction). This is precisely what is observed in the
figures. As explained previously, the average strengths are reproduces by
construction. The fact that an average realisation of the random models is
not equal in terms of strength distributions could have an effect on the cas-
cading defaults simulations, which are done using individual realisations
of the random networks.
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Figure 6.1: The net flow of the empirical transaction network. Net flow can be
calculated by subtracting the out strength from the in strength for all the nodes.
From this figure, one can see that many nodes start the simulation in default (i.e.
sin

i − sout
i < 0).

6.2 Cascading defaults

Imbalanced transactions

Since the transactions from 2019 form the matrix of obligations and thereby
the incoming flow in the first iteration, any company that had more out-
going transactions than incoming transactions (after filtering), will default
in the first iteration. In other words, the network of obligations is highly
unbalanced, see figure 6.1. In reality however, this shouldn’t be the case
necessarily, as companies may have reserves and/or other (unobserved)
accounts.

This imbalance will not result in a ’shock’ in the network, as is for
example the case in research on risk contagion [17–19], but rather it will
cause a spread of money. When every node has exactly as much incoming
as outgoing money (i.e. net flow sin

n − sout
n = 0∀n ∈ N ), the entire network

will relax. This can be checked by inspecting equations (2.2) and (2.3) on
page 12.

To overcome this, the nodes could start with a certain ’reserve’ r. This
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would make it such that the starting capital is no longer sin
n − sout

n , but
rather sin

n − sout
n + r. The value of this reserve could be estimated from

account balances or balance sheet information.

Other shortcomings

In the business research thesis on this project [10], more shortcomings of
the cascading defaults simulation are discussed, including the calculation
of obligations and the exogenous filtered transactions.

6.3 Cascading defaults and random networks

In section 5.2 on page 43, some of the results are already discussed. It is for
example discussed that the flow is decreasing for most simulations, that
the strategies XR (not saving when in default) result in higher flow and
that LargestCreditorFirst results in higher total flow, but also more defaults.
These results are also explained in that section. In this section, figure 5.7
on page 48 is discussed.

6.3.1 Stripe Fitness and FiCM

Recall figure 5.7 on page 48 on the sectors of nodes in the cascading de-
faults simulations. In the figure for every strategy (e.g. LargestCreditor,
EisenbergNoe) and for every sector the mean stage of defaulting and the
relative number of defaults is depicted. This is shown for the different net-
works (empirical, ensemble of Stripe Fitness and ensemble of FiCM). The
goal of this section is to explore the differences between the random net-
work models in term of agreement with the results of the empirical model.

In the Stripe Fitness model, sector information is explicitly used to cre-
ate the random networks. One would therefore expect that the results of
the simulation on sector level agree better with the empirical than an en-
semble of random networks where only strengths are conserved (FiCM).
In the figure (figure 5.7), two properties are measured. First, the mean
stage of defaulting for nodes in that sector. Second, the number of nodes
that did not default during the entire simulation (divided by the number
of nodes in the sector).

In figure 6.2 on the following page, the difference between the men-
tioned measurements for the models and for the empirical network is de-
picted for the different ensembles. The mean of the difference indicates a
bias and the standard deviation gives a spread. Both models result in error
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Figure 6.2: Histograms of the difference between the mean observed values x
for the random models and the observed values x∗ for the empirical network.
The vertical lines depict the means of the distribution and the horizontal lines
the standard deviation of the distribution. For the FiCM, the mean of the error
between stage of defaulting (left figure) is −8.29± 10.8 and this is 2.10± 8.43 for
the Stripe Fitness model with 737 labels. The mean of the error of relative number
of defaults is−0.0145± 0.0588. For the Stripe Fitness model with 737 labels, this is
−0.0237± 0.0312. A similar figure where the different strategies are not grouped
can be found in figure B.5 on page 68.

that have 0 within 1σ, indicating that in general the results are replicated.
It should be noted that the variance is smaller in the Stripe Fitness model
than the FiCM. A possible interpretation is that the Stripe Fitness model
recreates the behaviour observed on the sector level better than the FiCM.
However, this conclusion is not statistically rigorous.
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Chapter 7
Conclusion

Statistical physics can be used in order to analyse the structure and dy-
namics of networks. Specifically for financial systems, where the underly-
ing network is usually not fully known, statistical ensembles can be used
to sample random networks that share specific properties with some em-
pirical network. This research applies methods from statistical physics to
focus on two topics: cascading defaults and random network generation.
In the sections on random networks, the Fitness-induced Configuration
Model (FiCM, [8]) and the Stripe Fitness model [9] were used to create an
ensemble of random networks from which can be sampled. The ensembles
were created such that the ensemble samples would recreate the number
of links and the individual (out and in) strengths of nodes on average.

The research confirmed that these measures were indeed reconstructed
on average, but not in individual samples from the ensemble. When using
more labels for the Stripe Fitness model, the individual strength distri-
butions coincide more with the empirical. In general, the Stripe Fitness
model reproduces the strengths better than the FiCM. The degree distri-
butions were not realised exactly, also not in the ensemble average. The
general shape of the distribution was reproduced, but certainly not the
exact degree distribution (as hypothesised by the Fitness ansatz [15]).

This indicates that the out and in strengths as used in the FiCM are
not a perfect fitness (i.e. proxy for the Lagrange multiplier controlling the
degree). Using sector strengths as used in the Stripe Fitness model and a
parameter z per group results is a degree distributions that is more in line
with the empirical network.

From the simulations, some conclusions were drawn in the internship
report [10]. First, the strategies LargestCreditorFirst produce the highest
flow, which is explained by the fact that on average, larger obligations
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are paid. The LargestCreditorLast strategy results in more companies that
don’t default in the simulation. This results in a lower total flow because
the obligations that are paid are the small obligations.

These results are confirmed by the random networks sampled from the
Stripe Fitness model. The FiCM only reproduces the observed behaviour
regarding the total flow. The number of not-defaulting nodes is almost the
same for all different strategies when using networks sampled from the
FiCM.

With this research, the start of a representative simulation of cascading
defaults is made. By the Stripe Fitness model, it is confirmed that using
sector information and strengths more realistic networks can be sampled
than by example the FiCM.
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[14] P. Erdős and A. Rényi, On Random Graphs I, Publicationes Mathemat-
icae Debrecen 6, 290 (1959).

[15] G. Caldarelli, A. Capocci, P. De Los Rios, and M. A. Muñoz, Scale-Free
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Appendix A
Derivations

A.1 Free energy relation

Given a function f (x1, x2, . . . ) = ln(y(x1, x2, . . . )), one can see that the
partial derivative w.r.t. xi is

∂ f (x1, x2, . . . )
∂xi

=
d f
dy

∂y(~x)
∂xi

. (A.1)

Now, since d f
dy = 1

y(~x) ,

∂ f (~x)
∂xi

=
1

y(~x)
∂y(~x)

∂xi
. (A.2)

Now by renaming ~x ≡ ~θ the parameters, y ≡ Z(~θ) the partition function
and f ≡ −Ω(~θ) the free energy as defined by equation (2.18) on page 15,
the relation becomes

∂Ω(~θ)

∂θα
= − 1

Z(~θ)
∂Z(~θ)

∂θα
, (A.3)

which is the right part of equation (2.17). Now by equations (2.15) and
(2.16),

∂Z(~θ)
∂θα

=
∂

∂θα

(
∑

G∈G
e−∑m

β=1 θβxβ(G)) = − ∑
G∈G

xα(G)e−∑m
β=1 θβxβ(G)

= − ∑
G∈G

xα(G)e−H(G,~θ), (A.4)
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and therefore equation (A.3) is

∂Ω(~θ)

∂θα
=

1

Z(~θ)

(
∑

G∈G
xα(G)e−H(G,~θ)

)
. (A.5)

Here, equation (2.14) for P can be recognised and

∂Ω(~θ)

∂θα
= ∑

G∈G
xαP(G|~θ) = 〈xα〉, (A.6)

where in the last step, the definition of 〈xα〉 (equation (2.12)) is used. Hereby,

〈xα〉 = −
1

Z(~θ)
∂Z(~θ)

∂θα
=

∂Ω(~θ)

∂θα
, (A.7)

which is equation (2.17) on page 15.

A.2 MaxEnt

Recall equations (2.35), (2.36) and (2.37) on page 18. Analogous to the
binary case described in subsection 2.2.1 The Maximum Entropy Principle
on page 14, the entropy and constraints result in a Lagrangian

L(wi→j, ~π,~υ) ≡ S + ∑
i

πi(∑
j

wi→j − (sout
i )∗) + ∑

i
υi(∑

j
wj→i − (sin

i )∗),

(A.8)
which must be maximised, i.e.

∂L

∂wi→j
= −1− ln wi→j + πi + υj

!
= 0, ∀i, j (A.9)

∂L

∂πi
= ∑

j
wi→j − (sout

i )∗
!
= 0, ∀i (A.10)

∂L

∂υi
= ∑

j
wj→i − (sin

i )∗
!
= 0, ∀i. (A.11)

From equation (A.9), it follows that

wi→j = eπi+υj−1, (A.12)
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which can be used in equations (A.10) and (A.11) to find that

eπi =
(sout

i )∗

∑j eυj−1 (A.13)

eυj =
(sin

i )∗

∑i eπi−1 . (A.14)

Now, by rearranging (A.12), it can be found that

wi→j =
(sout

i )∗(sin
i )∗

(∑j eυj−1)(∑i eπi−1)e
=

(sout
i )∗(sin

i )∗

∑i,j eπi+υj−1 =
(sout

i )∗(sin
i )∗

W
, (A.15)

where W is defined to be
W ≡∑

i,j
wi→j, (A.16)

which is by construction equal to

W = ∑
i
(sout

i )∗ = ∑
i
(sin

i )∗. (A.17)
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64 Supplementary results

Figure B.1: [Figure from the internship report [10]].The figure shows what the
strengths are of the groups node. This figure is similar to figure 3.1 on page 24,
which displays the strength from ING companies. For all the bars, except the bar
’Dutch ING’, the numbers are therefore the same. In this figure, the Dutch ING
bars contain both exogenous→ Dutch ING and Dutch ING→ Dutch ING (and
the other way around).
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(a) Comparison between empirical out
strengths and the mean modelled out
strengths, using the FiCM.

(b) Comparison between empirical in
strengths and the mean modelled in
strengths, using the FiCM.

(c) Comparison between empirical out
strengths and the mean modelled out
strengths, using the Stripe Fitness model
with 737 labels.

(d) Comparison between empirical in
strengths and the mean modelled in
strengths, using the Stripe Fitness model
with 737 labels.

Figure B.3: In the figures, the empirical strengths are plotted against the sampled
strength. The Stripe Fitness model with 737 labels and the FiCM, which is just
a Stripe Fitness model with 1 label, are used to show the result. The results of
the intermediate Stripe Fitness models (60, 204 and 563 labels) gradually shift in
shape from the FiCM to the Stripe Fitness 737. The figure with mean sampled
strengths can be found in figure 5.3 on page 42.
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Figure B.4: [Figure from the internship report [10]]. Similar figure as figure 5.6
on page 45, but for random networks. The distribution of the payments (weights
of the payment matrix) that are done in the last iteration is displayed. The height
of the bars is normalised so they add up to 1. For both random network models,
the LargestCreditorLast payments (blue and orange) are generally lower than the
payments with LargestCreditorFirst. This is due to the fact that nodes pay the
largest obligations last or first, respectively.
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68 Supplementary results

Figure B.5: An extension of figure 6.2 on page 54. Histograms of the difference
between the mean observed values x for the random models and the observed
values x∗ for the different strategies and the different models (top stripe fitness
model, bottom FiCM). The vertical lines depict the means of the distributions and
the horizontal lines depict the standard deviations of the distributions.
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