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Abstract

Many things remain unknown about the functioning of Auxin in plant devel-
opment of growth. We evaluate two models regarding Auxin propagation and
investigate whether they allow for the formation of Auxin pulses. We numeri-
cally uncover the existence of families of small-amplitude traveling pulses and
theoretically analyze their leading order behaviour.



Chapter 1

Introduction

Modern data indicates that approximately 98% of all oxygen is produced by
plants and plant-like growths. Given this figure, the growth and development of
plants is a very important matter. Why do plants grow in different shapes and
sizes? Why is one leaf larger than the other? Why do some leaves have holes?
What are the important factors in determining the morphology of a plant? [1]

Figure 1.1: Varying plants with unique leaves. Figure adapted
from https://www.vectorstock.com/royalty-free-vector/tropical-plants-exotic-
eco-nature-green-leaves-vector-23992912
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Ongoing research

Despite the importance of these questions, we know surprisingly little about
plant growth. As in humans, plant growth is governed by a multitude of hor-
mones. One of the few things that we do know, is that a hormone called Auxin
plays an important factor in growth and organ development [17], as well as
”endocytosis, cell polarity, and cell cycle control” [12], and ”... the location of
the quiescent centre and surrounding stem cells” [13]. In spite of the fact that
there have been ”remarkable breakthroughs in understanding [Auxin] produc-
tion, transport, and perception” [16], we still know very little about the actual
molecular functioning of the hormone. Ever since the canalization hypothesis
was proposed by Tsvi Sachs [11], much research has been going on. One article,
for example, explored how Auxin can be used to improve the yield of crops, such
as rice [15]. Another important aspect of Auxin, is how it affects the growth
and development of vascular patterning. It is believed that this is governed by
”a self-organizing pattern of auxin transport – canalization” [4]. A model to
study the vascular pattern formation is ”..the process of leaf vascularization in
Arabidopsis” [5].

One important area of research, is the transportation of Auxin. Using ra-
dioactive Auxin, one pair of researchers found that ”Auxin molecules are most
likely transported by anon-covalent mechanism” [8]. Specifically, several articles
found that a molecule named PIN1 played an important role in transport [6]
[7]. Based on this discovery, researchers have begun computationally modelling
the transportation of Auxin [10].

While the precise mechanism by which the presence of Auxin in a cell stim-
ulates said cell to develop is quite fascinating, in this paper I will be discussing
the propagation and movement of auxin concentrations.

Proposed models

Little is known about the details of Auxin transport. Several different models
have been proposed to describe the movement of auxin, however as of yet there
is no definitive answer.

One important hypothesis was proposed in 1969 by Tsvi Sachs: the canal-
ization hypothesis [11]. According to this hypothesis, a positive feedback loop
between the flux of Auxin, and a cell’s ability to transport Auxin leads to the
hormone being channeled. These channels resemble ”the way that streaming
water carves out a river system” [9].

Based on said hypothesis, we will consider two similar models. One model
was proposed by Roeland Merks et al [9], the other by Henry Allen and Mariya
Ptashnyk [3]. Both models assume that Auxin transport is facilitated through
the polarized version of a molecule called PIN1; a molecule that attaches itself
to the cell wall, and effectively pulls Auxin through. The central difference
between the models is the mechanism by which PIN1 polarizes: in the model by
Merks, polarization is determined by the Auxin concentration in neighbouring
cells. In the model by Allen however, the direction fo the Auxin flow is the
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determining factor.

Traveling Waves

Figure 1.2: A still image of a traveling wave.

An important type of equation to study general propagation phenomena is the
reaction-diffusion-equation [2]:

du

dt
= ∇ · (D∇u) +R(u,∇u).

Here, u(x, t) describes the concentration of the particle we’re interested in, and
D is a diffusion coefficient. The first term on the right hand side represents
diffusion, while the second term represents active transport (or creation and
decay). These equations are frequently used in chemistry, ecology, physics and
physiology to describe the changing concentration of a quantity, given that
this change is both diffusive, as well as through some sort of reaction. We
note that this will neatly fit the equation of Auxin we will deal with: we will
have a diffusive term on account of differences in concentration, and a term
corresponding to Auxin displacement via PIN1, which we can locally interpret
as creation or destruction of Auxin.

While our findings may differ, an example to guide our thinking is the
”Fisher Kolmogorov Petrovsky-Piscounov” (or FKPP) equation. In this case,
one chooses R(u) = u(1 − u). We look at a one-dimensional version. Further-
more, if we set D = 1, we find the equation

du

dt
=
d2u

dx2
+ ru(1− u).

A verifiable solution to this equation is u(x, t) = φ(x − ct), with c ≥ 2, φ
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differentiable, and Dφ′′ + cφ′ + rφ(1− φ) = 0. For example, we have

φ(x− ct) =
1

(1 + Ce
∓ (x−ct)√

6 )2

in the case of c = 5√
6
. We note that C is a phase, which we may pick arbitrarily.

Solutions of this form are called traveling waves; these waves have a fixed
rigid profile, which moves through space as time passes, and as such have both
time and space as arguments. Specifically, the arguments may be combined as
x− ct: we see that for larger t, x needs to be larger to get the same argument,
which matches movement to the right in figure 1.2.

In the models I will discuss, I will deal with a discretized set of cells Λ; there-
fore, we also need a discretized version of the FKPP equation. On a final note,
since we will deal with two different models, we will call the active transport
term Rdiscrete, and leave it undefined for now. We expect the equation to look
like this:

du(i, t)

dt
= (u(i−1, t)+u(i+1, t)−2u(i, t))+Rdiscrete(u(i, t), u(i−1, t), u(i+1, t)).

In this equation we have i ∈ Λ, our discrete set of cells. As a result, we also
expect a spatially discretized traveling wave solution. We assume this solution
to be of the form

u(i, t) = φ(i− ct).

Again we have i ∈ Λ.

The aim of the thesis

In this thesis, we explore the differences and similarities between these two
models. The first model, the one proposed by Merks, predicts that with a
constant influx of Auxin, at first the Auxin will stockpile, and after reaching a
certain threshold it will travel across the cells, after which the process repeats.
The resulting pattern will look like ’wave trains’. We investigated whether the
same behaviour occurs in the model by Allen and Mariya Ptashnyk, or whether
something radically different happens. Often, we will reference the work done
by Jelle van der Voort in his thesis [14], as he explored the former model.

Structure of the thesis

First, we will introduce the model we will base ourselves on; the model by
Roeland Merks. Subsequently, we will introduce the adaptations we made based
on the model by Allen. After having fully introduced the model, I will start with
a numerical solution, obtained by using MATLAB. From these simulations, we
will deduce the correlation between several of the solutions properties. Using
these correlations, I will attempt to find a leading order solution of the equations
of motion. Having done all this, I will numerically evaluate the differences
between the models, with regard to the presence of ’wave trains’.



Chapter 2

Model description

Figure 2.1: Schematic representation of Auxin transport, both through diffusion
and through polarized PIN1. Note that Auxin moves from cell to cell, while
PIN1 does not.

2.1 Common structure

To understand the dynamics of Auxin, I will be basing myself on the model
created by Merks et al [9], and the model created by Allen et al [3]. The models
are fairly alike, so we will elaborate on the similarities, before going into detail
on the differences.

According to both models, active Auxin transport is facilitated by a molecule
named PIN1, which is created under influence of Auxin. More specifically,
active transport is facilitated by a polarized version PIN1. We note that this
polarization is always towards another neighboring cell. It is this polarization
where the models differ. Before going into the specifics, we will introduce the

7
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variables we use:

• Ai(t) is the amount of Auxin in cell i.

• Pi(t) is the amount of PIN1 in cell i.

• Pij(t) is the amount of polarized PIN1 in cell i that is polarized towards
cell j.

Here we take i ∈ Λ, with Λ our set of cells. Furthermore, we take j ∈ Ni, where
Ni ⊂ Λ is the set of all cells adjacent to cell i.

2.1.1 Auxin dynamics

The transfer of auxin is facilitated both by a diffusive part, and active transport
by polarised PIN1. We will write

dAi(t)

dt
= Fact + Fdiff .

The active part is determined by the amount of polarized PIN1. Since no active
transport can take place without Auxin, and the polarized PIN1 will eventually
be ’saturated’, Merks introduced a normalized term to account for this, which
we will call NORM:

NORMj =
Aj(t)

ka +Aj(t)
.

Of course, the amount of PIN1 is also relevant. When we multiply this with the
polarized PIN1 concentration, and account for transport back from an adjacent
cell, the active auxin flux between two cells i, j looks like

FLUXij = Pji(t)NORMj − Pij(t)NORMi.

Finally, taking all surrounding cells into consideration and applying an overall
coëfficiënt, the active transport of Auxin becomes

Fact = Tact
∑
j∈Ni

FLUXij .

The diffusive part is determined entirely by the length of shared border between
cells, Lij , and the ’auxin gradient’ Aj(t)−Ai(t):

Fdiff = Tdiff
∑
j∈Ni

Lij(Aj(t)−Ai(t)).

Ultimately, the differential equation describing auxin is as follows:

dAi(t)

dt
= Tact

∑
j∈Ni

(Pji(t)
Aj(t)

ka +Aj(t)
− Pij(t)

Ai(t)

ka +Ai(t)
)

+ Tdiff
∑
j∈Ni

Lij(Aj(t)−Ai(t)). (2.1)
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2.1.2 PIN1 dynamics

In the dynamics of PIN1, four different terms can be identified: PIN1 polar-
ization, polarized PIN1 depolarization, PIN1 production and PIN1 decay. As
stated before, we will leave the polarization term undefined for now. For the
time being, we will write it as Pi,j(t). We can thus write:

dPi(t)

dt
= −

∑
j∈Ni

Pi,j(t) + Depolarizationi + Productioni −Decayi.

In this definition i is the cell in which PIN1 is being polarized, and j is the cell
in which direction it is polarized.

Depolarization is assumed to only be affected by the presence of polarized
PIN1:

Depolarizationi = k2

∑
j∈Ni

Pij(t).

As stated before, PIN1 is taken to be produced under influence of Auxin. Sim-
ilarly, decay is only determined by the concentration of PIN1. Thus,production
and decay are modeled by

Productioni −Decayi = αAi(t)− δPi(t).

Taking these terms together, we get the full equation for PIN1:

dPi(t)

dt
= −

∑
j∈Ni

Pi,j(t) + k2

∑
j∈Ni

Pij(t) + αAi(t)− δPi(t). (2.2)

2.1.3 Polarized PIN1 dynamics

Polarized PIN1 is assumed to neither decay nor be produced, except through
the polarization and depolarization. Evidently, these terms are the same as in
the equation above, but with signs switched:

dPij(t)

dt
= Pi,j(t)− k2Pij(t) (2.3)

2.1.4 The Polarization model by Merks

Having properly established most of the equations, we can get into the differ-
ences. The model by Merks posits that the Auxin concentration in neighboring
cells is the dominating factor in the polarization of PIN1.

Evidently, polarization can only occur if both Auxin and PIN1 are present;
furthermore, the process cannot exceed a certain rate, so we have to normalize.
We expect Pi,j to look like

Pi,j = k1
R ·Aj(t)
kR +Aj(t)

Pi(t)

km + Pi(t)
.
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In this statement, R, k1, kR, km are constants. We see that for Aj = 0 or Pi = 0,
no polarization will take place, while for Aj →∞ and Pi →∞ it will approach
k1R. Using this term, we find that (2.3) becomes

dPij(t)

dt
= k1

R ·Aj(t)
kR +Aj(t)

Pi(t)

km + Pi(t)
− k2Pij(t). (2.4)

Filling this term into (2.2) gives us the following equation:

dPi(t)

dt
= −k1

∑
j∈Ni

R ·Aj(t)
kR +Aj(t)

Pi(t)

km + Pi(t)
+ k2

∑
j∈Ni

Pij(t) + αAi(t)− δPi(t).

(2.5)

2.1.5 The modified model

A paper by Henry R. Allen and Mariya Ptashnyk [3] suggests that the flux of
auxin is the determining factor of PIN1 polarization, rather than auxin concen-
tration. The complete model introduces a sizeable amount of interactions and
molecules, and therefore a considerable amount of parameters. To ensure that
the model remains (somewhat) manageable, we use only the main part of the
model. Specifically, we introduce a term H(J ija ) which governs the polarization
of PIN1:

H(J ija ) =

1

1+e−h(
J
ij
a
λ
−θ)∑

j∈Ni
1

1+e−h(
J
ij
a
λ
−θ)

. (2.6)

In this equation we defined the following:

J ija = σa(AiPij −AjPji). (2.7)

This quantity represents the Auxin flux from cell i to cell j, using σa as a
parameter. We note that H(J ija ) is normalized, such that

∑
j∈Ni H(J ija ) = 1

for any i.
This gives us the following expression for the polarization:

Pi,j = λPiH(J ija ).

This term is inserted in equation (2.3) as follows:

dPij
dt

= λPiH(J ija )− k2Pij . (2.8)

Because the term replaces the term for PIN1 polarisation, it also has to be
substituted in the equation for Pi:

dPi(t)

dt
= −

∑
j∈Ni

Pi,j + k2

∑
j∈Ni

Pij + αAi(t)− δPi(t)

= −λPi(t)
∑
j∈Ni

H(J ija ) + k2

∑
j∈Ni

Pij(t) + αAi(t)− δPi(t).
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As stated before, H(J ija ) is normalized; therefore, summing over all neighbouring
cells returns 1. Thus, the equation simplifies to

dPi(t)

dt
= −λPi(t) + k2

∑
j∈Ni

Pij(t) + αAi(t)− δPi(t). (2.9)

2.1.6 Overview of both models

To summarize, the Auxin dynamics are given by (2.1):

dAi(t)

dt
= Tact

∑
j∈Ni

(Pji(t)
Aj(t)

ka +Aj(t)
−Pij(t)

Ai(t)

ka +Ai(t)
)+Tdiff

∑
j∈Ni

Lij(Aj(t)−Ai(t)).

In the model by Merks, PIN1-dynamics (both polarized and unpolarized) are
given by (2.5) and (2.4) respectively:

dPi(t)

dt
= −k1

∑
j∈Ni

R ·Aj(t)
kR +Aj(t)

Pi(t)

km + Pi(t)
+ k2

∑
j∈Ni

Pij(t) + αAi(t)− δPi(t),

dPij(t)

dt
= k1

R ·Aj(t)
kR +Aj(t)

Pi(t)

km + Pi(t)
− k2Pij(t).

In the modified model by Allen, these equations are replaced by (2.9) and (2.8)
respectively:

dPi(t)

dt
= −λPi(t) + k2

∑
j∈Ni

Pij(t) + αAi(t)− δPi(t),

dPij
dt

= λPi(t)H(J ija )− k2Pij .
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Numerical analysis

To explore the behaviour of the model, we will run several simulations in MAT-
LAB. The original model by Merks, applied in one dimension, leads to the
formation of travelling waves [14]. We are interested whether the same, or per-
haps a similar movement of Auxin can be found in the modified model we are
exploring, as discussed in paragraph 2. We will be investigating both Auxin, as
well as polarized PIN1.

3.1 Cell configuration

To study the system numerically, we will restrict ourselves to relatively simple
cases. As one can imagine from the equations in the previous section ((2.1),
(2.9), (2.8)), solving them for the general case of a plant quickly becomes im-
possible. Having to consider 3 dimensions, different cell shapes, and cells not
being lined up neatly makes the system rather complex. We therefore make a
number of restrictions;

• All cells are identical perfect squares with sides L

• We consider n cells, perfectly aligned in one dimension. We add an ’n+1th’
cell that functions as an Auxin sink, much like the rest of a plant outside
the viewed system.

This leaves us with significantly easier equations. For Auxin, the summation
over all surrounding cells of cell i, is reduced to cells i− 1 and i+ 1:

dAi(t)

dt
= Tact

(
Pi−1,i(t)

Ai−1(t)

ka +Ai−1(t)
− Pi,i−1(t)

Ai(t)

ka +Ai(t)

+ Pi+1,i(t)
Ai+1(t)

ka +Ai+1(t)
− Pi,i+1(t)

Ai(t)

ka +Ai(t)

)
+ TdiffL(Ai−1(t) +Ai+1(t)− 2Ai(t)). (3.1)

12
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The same holds for the equation of PIN1:

dPi(t)

dt
= −λPi(t) + k2(Pi,i+1(t) + Pi,i−1(t)) + αAi(t)− δPi(t). (3.2)

For the equation of polarized PIN1, the difference occurs (mostly) within the
H-term. We remember equation (2.7):

J ija = σa(AiPij −AjPji).

For the sake of simplicity, we introduce the following notation:

Ji± ≡ J i,i±1
a . (3.3)

Now, we can define the quantity

hi± =
1

1 + e−h(
Ji±
λ −θ)

. (3.4)

Using these definitions, we can write H(Ji±, Ji∓) in a more manageable form:

H(Ji±, Ji∓) =
hi±

hi+ + hi−
. (3.5)

Then, (2.8) is split into two distinct equations:

dPi,i+1(t)

dt
= λPi(t) ·

hi+
hi+ + hi−

− k2Pi,i+1(t), (3.6)

and
dPi,i−1(t)

dt
= λPi(t) ·

hi−
hi+ + hi−

− k2Pi,i−1(t). (3.7)

We note that (3.6) and (3.7) are two equations; one for Pi,i+1 and one for Pi,i−1.
However, for simplicity (and because we will treat these variables the same way
for now), we will often write them together, as seen in the previous chapter.
Finally, we will denote PIN1 that is polarized to the cell on the right (Pi,i+1) as
RPIN, and PIN1 that is polarized to the cell on the left (Pi,i−1) as LPIN from
now on.

3.2 Additional conditions

3.2.1 Initial conditions

Having simplified our equations, we can almost start to solve the system. Before
that, however, we need a few initial and boundary conditions. First off, we
assume that no Auxin is present in the system, other than a set amount (which
we call Ainit) present in cell 1:

Ai(0) =

{
Ainit for i = 1

0 for 2 ≤ i ≤ n+ 1

}
.
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We ran our initial simulations at Ainit = 1. However, to find correlations be-
tween wave amplitude, we will be varying the initial concentration later on.
Similarly, we assume that initially no PIN1 exists, in either polarized or unpo-
larized form, in any cell:

Pi(0) = 0 for 1 ≤ i ≤ n+ 1,

Pi,j(0) = 0 for 1 ≤ i, j ≤ n+ 1.

3.2.2 Boundary conditions

As stated before, we also have some boundary conditions. Specifically, the
equations we use will look a bit different for cells 1, n and the Auxin sink n+ 1.

For cell 1, we simply eliminate any terms that would require a cell 0. Equa-
tion (3.1) becomes

dA1(t)

dt
=Tact

(
P2,1(t)

A2(t)

ka +A2(t)
− P1,2(t)

A1(t)

ka +A1(t)

)
+ TdiffL(A2(t)−A1(t)). (3.8)

The equation of PIN1, equation (3.2), becomes:

dP1(t)

dt
= −λP1(t) + k2P1,2(t) + αA1(t)− δP1(t). (3.9)

We assume that all PIN1 polarizes towards the right. This means that equation
(3.7) will not play a role in cell 1, so we say that

dP1,0(t)

dt
= 0. (3.10)

As for (3.6), it will simplify to

dP1,2(t)

dt
= λP1(t)− k2P1,2(t). (3.11)

For cell n, we will assume that n+1 cannot transfer Auxin back. As it represents
a much larger system (i.e. the rest of the plant), we set Pn+1,n = 0 and An+1 =
0. This means we have to change the equation for Auxin in cell n. The equations
governing PIN1 (in any polarization or lack thereof) remain unchanged.

dAn(t)

dt
=Tact

(
Pn−1,n(t)

An−1(t)

ka +An−1(t)
− Pn,n−1(t)

An(t)

ka +An(t)

− Pn,n+1(t)
An(t)

ka +An(t)

)
+ TdiffL(An−1(t)− 2An(t)) (3.12)

As for the Auxin sink, ”cell” n + 1, we do not care about PIN1 in any way, as
we set Pn+1,n = 0, and there is no cell n + 2. The only relevant equation is
(3.1), concerning Auxin. The equation heavily simplifies to

dAn+1(t)

dt
= TactPn,n+1(t)

An(t)

ka +An(t)
. (3.13)
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3.3 Analysis of Auxin

Figure 3.1: Auxin concentrations of cells 1 through n+1 against time. We
obtained this graph using equations (3.1), (3.2), (3.6) and (3.7), with Ainit = 1.
Note that the final curve is simply the Auxin sink.

Figure 3.2: Auxin concentration in cell 25, taken from figure 3.1
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Running the simulation with the stated equations and initial conditions, yields
figure 3.1. As seen, the Auxin moves from left to right in a distinct wave pattern.
We will attempt a similar analysis as v.d. Voort [14] by analyzing the waveform.
In chapter 4, we will attempt to use the insights obtained in this chapter to find
an an analytical solution at leading order.

To analyze this waveform, we will explore the relationship between the am-
plitude, and the width and the wave speed. To do so, we need to somehow
obtain these variables from our data:
To define the wave amplitude (denoted by ε), we used MATLAB’s ’max’ func-
tion, to obtain the highest Auxin concentration achieved in individual cells.

Then, we averaged over cells n+1
4 through 3(n+1)

4 to get the amplitude.

Figure 3.3: The maximum value of Auxin per cell, with Ainit = 1. The outliers
are cells 1 and n+ 1 respectively. The deviating values are due to the boundary
conditions.

To model the wave speed (denoted by v), we measured the time between
two peaks, and again averaged this value. As this is a time, taking one over this
value produces a velocity, which gives us the wave speed.
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Figure 3.4: The time between peaks at Ainit = 1; the ith dot represents the
time between the peaks of cells i and i+ 1.

The wave width (denoted by b) is slightly more tricky; first off, we measure
the distance from the first time the value of Auxin in a cell reaches 5%, to the
second time. As this is really a time, not a distance, we multiply by the wave
speed to get the wave width.
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Figure 3.5: The wave sojourn time of cell 50. Marked are the points at which
the Auxin concentration is 5% of its maximum. Again, we have Ainit = 1.

Now that we have established these quantities, we can begin analyzing them.
Running the simulation once gives us the wave speed and width for a single
amplitude; to find a correlation, we will vary Ainit in the following sections.
This will yield different waves of varying amplitudes, speeds and widths.
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3.3.1 Amplitude versus wavespeed

Figure 3.6: The amplitude of the Auxin wave, against its speed.

The first correlation that we examine, is the one between the amplitude of the
wave, and the speed. As we can tell, this resembles a root-like relationship.
Fitting a curve to the data, we get the following:

v ≈ 2.3 · ε0.35 (3.14)

Here the variables v and ε represent the wave speed and amplitude respectively.

3.3.2 Amplitude versus wave width

We find a more interesting correlation between the amplitude and the wave
width b (or, more usefully, 1

b );
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Figure 3.7: The relationship between the wave amplitude, and the inverse of
the wave width.

This does not correspond to any simple root-like relationship; rather it ap-
pears there are two regimes, separated around ε ≈ 0.2. We will focus on the
smaller regime first. ’Cutting off’ larger values of ε, we get the plot

Figure 3.8: The relationship between the wave amplitude, and the inverse of
the wave width, for small amplitude.
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In the graph above, we fitted the following curve:

1

b
≈ 1.4 · ε1.60 (3.15)

3.4 Wave comparison

Figure 3.9: Scaled waves for initial Auxin concentrations of 0.01 through 0.1
The wave corresponding to 0.01 is marked with circles.

To qualitatively compare how varying initial Auxin concentrations affect the
wave profile, I ran the simulation using initial Auxin concentrations ranging
from 0.01 to 0.1. Subsequently, I scaled the concentration in cell 50 both to
height 1 and width 1 (both as defined in the previous section). Finally, I also
shifted the graphs to have their peaks at the same time; the point at 50 seconds
was chosen for convenience, rather than meaning. The results are plotted in
figure 3.9.

What we can conclude from this graph, is that as the initial Auxin decreases,
the scaled wave becomes more concentrated around the peak, while for smaller
Auxin, the tails are slightly wider.

We see that as epsilon becomes smaller, the waves appear to approach the
circled blue line. In chapter 4 we will look for a leading order analytical solution;
we expect this solution to look like the circled blue line.
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3.5 Analysis of RPIN and LPIN

Unlike in the analysis performed by v.d. Voort, we will find in the next section
that RPIN and LPIN cannot be analytically solved at first order, from the
equations we have. Therefore, we need to take a look at the amplitudes of
RPIN, respectively LPIN, and see how they relate to the amplitude of Auxin.
We name the amplitude of RPIN η, and the amplitude of LPIN η′. I ran
the same simulation as in the previous sections, and the amplitude of RPIN,
respectively LPIN, is defined in the same way as the amplitude of Auxin was
defined.

Figure 3.10: ε versus η (blue) and η′ (orange).

Taking a look at this figure, we see that there is no simple correlation between
the 3 variables. However, if we focus on very small ε, we see a root-like function.
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Figure 3.11: ε versus η (blue) and η′ (orange)

From this graph we can see that for small ε, η and η′ are almost the same.
Performing a fit on the data gives us

η ≈ η′ ≈ 0.1 · ε0.25 (3.16)

Another interesting property to look at, is the difference between RPIN and
LPIN (Pi,i+1 − Pi,i−1 to be clear). This quantity will play a role in the Auxin
flux in chapter 4. We see that the amplitude of this property is η− η′. Plotting
this quantity against the amplitude of Auxin, gives a fascinating result:
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Figure 3.12: ε plotted against η − η′

We were unable to find any lower order function to fit to this data. However,
if we once again focus on the very small ε, we do get a somewhat manageable
result:

Figure 3.13: ε plotted against η − η′, for small ε.
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We note that once again, we see a root-like relationship here. Performing a
fit on the data gives us

η − η′ ≈ 2.1 · 10−3 · ε0.41 (3.17)

It is important to state here, that while we have restricted ourselves to small
ε before, we now restrict ourselves much further; where ε of the order of 0.1
worked to fit the relationship between the amplitude of Auxin and its width,
we now need ε of order 0.01.

3.6 In conclusion

Having ran our simulations, we have found the following correlations:

v ≈ 2.3 · ε0.35

1

b
≈ 1.4 · ε1.60

η ≈ 0.1 · ε0.25

η − η′ ≈ 2.1 · 10−3 · ε0.41

Having found these correlations numerically, we can use them to guide us
through our analytical derivation in the next chapter. We will investigate
whether this approach will yield the same coefficients, or different ones.



Chapter 4

Leading order analytical
solution

In this chapter we will be looking for a leading-order analytical solution. We
will start off similar to the analysis by v.d. Voort [14], on the model by Merks
[9].

First, we will linearise the equations used in chapter 3, namely equations
(3.1), (3.2), (3.6) and (3.7) . Then, we will introduce several wave profiles,
which we will expand in terms of ε. Using these expansions, we will attempt to
solve the linearised equations.

4.1 Linearization

To begin finding an analytical leading order solution, we start with linearizing
the equations of the model. The first two equations are easy to deal with: noting
that 1

ka
is the leading order term for 1

ka+Ai(t)
, we see that the equation for auxin

becomes:

dAi(t)

dt
=
Tact
ka

(Pi−1,i(t)Ai−1(t)−Pi,i−1(t)Ai(t)+Pi+1,i(t)Ai+1(t)−Pi,i+1(t)Ai(t))

+ TdiffL(Ai−1(t) +Ai+1(t)− 2Ai(t)) +H.O.T (4.1)

We notice that (3.2) is already linearised:

dPi(t)

dt
= −λPi(t) + k2(Pi,i+1(t) + Pi,i−1(t)) + αAi(t)− δPi(t)

The third equation is more difficult to process. We remember (3.6) and (3.7)
(writing them in a more compact form):

dPi,i±1(t)

dt
= λPi(t) ·H(J i±, J i∓)− k2Pi,i±1(t)

26
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With

H(J i±, J i∓) =
hi±

hi+ + hi−

as defined in (3.5). We note that linearizing this equation, boils down to lineariz-
ing H(J i±, J i∓). As ε will be small, we expect that J i± ≈ 0. We will explicitly
linearize H(J i+, J i−), the term present in RPIN, noting that the other can be
found simply by swapping the arguments. For simplicity we write x = J i+ and
y = J i−. So, to linearize this term around (0, 0), we find:

H(0, 0) =
1

2
(4.2)

Next up, we calculate some derivatives. From equation (3.4) we find the
following:

∂hi+
∂x

=
h
λe
−h( xλ−θ)

(1 + e−h( xλ−θ))2
(4.3)

∂hi−
∂y

=
h
λe
−h( yλ−θ)

(1 + e−h( yλ−θ))2
(4.4)

∂hi−
∂x

=
∂hi+
∂y

= 0 (4.5)

In the numerical analysis we used θ = 0, so we will assume the same here. This
leads us to:

∂H

∂x
=

(hi+ + hi−)∂hi+∂x − hi+(∂(hi++hi−)
∂x )

(hi+ + hi−)2
=

hi−
∂hi+
∂x

(hi+ + hi−)2
(4.6)

Ergo, using equations (3.4) and (4.3) we find that

∂H

∂x
(0, 0) =

h

8λ
. (4.7)

Similarly, differentiating with respect to the other argument gives us

∂H

∂y
=

(hi+ + hi−)∂hi+∂y − hi+(∂(hi++hi−)
∂y )

(hi+ + hi−)2
=
−hi+ ∂hi−

∂y

(hi+ + hi−)2
. (4.8)

Ergo, from equations (3.4) and (4.4) it follows that

∂H

∂y
(0, 0) = − h

8λ
. (4.9)

Now, we can use equations (4.2), (4.6) and (4.9) to create a Taylor polynomial.
We find:

H(x, y) =
1

2
+

h

8λ
(x− y) +H.O.T. (4.10)
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As stated before, the linearization is analogous if the arguments were swapped.
In fact, we will find that

H(y, x) =
1

2
− h

8λ
(x− y) +H.O.T. (4.11)

Inserting the definitions of x, y, and in turn of Ji,±, we find the leading-order
expression.

H(J i±, J i∓) =
1

2
±1

8

hσa
λ

(AiPi,i+1−Ai+1Pi+1,i−AiPi,i−1+Ai−1Pi−1,i)+H.O.T.

(4.12)
Inserting this into the equations for polarized PIN gives us

dPi,i±1

dt
=
λPi
2
± Pi

8
hσa(AiPi,i+1 −Ai+1Pi+1,i −AiPi,i−1 +Ai−1Pi−1,i)

− k2Pi,i±1 +H.O.T. (4.13)

We note that this equation isn’t really linearized, as there is an additional factor
of Pi. However, it is easy to see that at the lowest order, the equations for RPIN
and LPIN are identical, likely leading to a purely diffusive solution.

4.1.1 Final assumptions

We make some additional assumptions to simplify our system:

ka = 1,

k2 = δ = 0.

The equations become:

dAi(t)

dt
=Tact

(
Pi−1,i(t)Ai−1(t)− Pi,i−1(t)Ai(t) + Pi+1,i(t)Ai+1(t)

− Pi,i+1(t)Ai(t)
)

+ TdiffL(Ai−1(t) +Ai+1(t)− 2Ai(t)), (4.14)

dPi(t)

dt
=− λPi(t) + αAi(t), (4.15)

dPi,i±1(t)

dt
=
λPi(t)

2
± Pi(t)

8
hσa

(
Ai(t)Pi,i+1(t)−Ai+1(t)Pi+1,i(t)

−Ai(t)Pi,i−1(t) +Ai−1(t)Pi−1,i(t)
)
. (4.16)

4.2 Wave Ansatz

Before we can start to solve the equation for Auxin, we need to establish what
our wave looks like. We take our travelling wave solution to be of the form

Ai(t) = εφ(
1

b
(i− vt)) (4.17)
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Here ε is the amplitude of the wave, φ is a normalized wave function, b is the
wave width, and v is the wave speed, matching the symbols used in the previous
section. t represents time, and i marks which cell. As seen in Chapter 3, for
small ε there exist root-like relationships between the amplitude and both the
inverse of the width ( 1

b ) and the speed v. Thus, from now on, we will write

Ai(t) = εφ(εβ(i− cεγt)) (4.18)

Unlike van der Voort, we will find ourselves unable to analytically solve for
Pi,i±1. After extensive unsuccessful attempts to solve these equations, we con-
cluded that more wave-profiles needed to be established. As it turns out, simply
creating wave profiles for Pi,i±1 will not lead to useful results. Therefore, we
will define two more quantities: the sum of Pi,i+1 and Pi,i−1, and the difference
thereof;

Pi,+(t) = Pi,i+1(t) + Pi,i−1(t), (4.19)

Pi,−(t) = Pi,i+1(t)− Pi,i−1(t). (4.20)

When creating a wave profile for these quantities, an important observation is
that everything within the argument of the wavefunction must be the same as
within the argument of the wavefunction for Auxin. Any differences encountered
will be contained within the wave function itself and the amplitude. Therefore,
our new wavefunctions must be of the form:

Pi,+(t) = εδρ+(εβ(i− cεγt)), (4.21)

Pi,−(t) = εζρ−(εβ(i− cεγt)). (4.22)

As far as the sum is concerned, we found that it offered little analytical insight.
Thus, we only use it to rewrite the equations. The difference on the other hand,
is far more interesting.

4.3 Solving for Pi(t)

We deal with the easiest equation (and in fact the only we can solve straight
away) first. We will solve this equation using the integrating factor method.
First, we rewrite:

dPi(t)

dt
+ λPi(t) = αAi(t).

We need to find a µ(t) such that

dµ(t)

dt
= λµ(t).

We see that the following suffices:

µ(t) = e
∫
λdt = eλt+c1 .
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We multiply the first equation with µ:

µ
dPi(t)

dt
+ λµPi(t) = µ

dPi(t)

dt
+
dµ(t)

dt
Pi(t) =

d(µ(t)Pi(t))

dt
= µ(t)αAi(t).

The first equality follows from the definition of µ. The second equality follows
from the chain rule. Solving this gives us:

Pi(t) =
1

µ(t)

∫ t

−∞
µ(s)αAi(s)ds = e−λt

∫ t

−∞
eλsαAi(s)ds. (4.23)

We notice that the constant c1 disappears. Lastly, we note that the constant
arising from the integration has to be 0, as otherwise Pi(0) 6= 0. Now, we can
use the profiles defined in the previous section:

Pi(t) = e−λt
∫ t

−∞
eλsαεφ(εβ(i− cεγs))ds.

To evaluate this, we will use integration by parts:

Pi(t) = αεe−λt ·
∫ t

−∞
eλsφ(εβ(i− cεγs))ds

= αεe−λt · ([ 1

λ
eλs · φ(εβ(i− cεγs))]t−∞ −

∫ t

−∞

1

λ
eλs · cεβ+γφ′(εβ(i− cεγs))ds)

=
α

λ
· εφ(εβ(i− cεγt))− αεe−λt ·

∫ t

−∞

1

λ
eλs · cεβ+γφ′(εβ(i− cεγs))ds.

We see that the integral carries additional factors of ε, so we consider it a higher
order term. Restricting ourselves to the first term, the equation simplifies:

Pi(t) =
α

λ
· εφ(εβ(i− cεγt)) =

α

λ
·Ai(t). (4.24)

This means that Pi(t) is of the same order as Ai(t). This may qualitatively be

understood by considering very small ε: in this regime dPi(t)
dt is close to zero,

as the amplitude of the wave profile is very small and the profile is very wide.

Substituting dPi(t)
dt = 0 in equation (4.15), we find the same relationship.

4.4 Solving for Ai(t)

Now that we have established these wave profiles, we can solve (4.14).

4.4.1 Left hand side

We start our evaluation with the left-hand side:

LHS =
dAi(t)

dt
. (4.25)
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We will do so by inserting the wave ansatz, (4.18). Doing so, we find:

LHS =
d

dt
εφ(εβ(i− cεγt)) = −cε1+β+γ · φ′(εβ(i− cεγt)). (4.26)

We note that this is of order ε1+β+γ .

4.4.2 Right hand side

We take a look at the right-hand side of equation (4.14):

RHS =Tact(Pi−1,i(t)Ai−1(t)− Pi,i−1(t)Ai(t) + Pi+1,i(t)Ai+1(t)− Pi,i+1(t)Ai(t))

+ TdiffL(Ai−1(t) +Ai+1(t)− 2Ai(t)). (4.27)

We split our evaluation into two parts.

Passive transport

We first consider the passive transport term. Our analysis is analogous to that
performed by van der Voort [14]:

First, we perform a taylor expansion of Ai+1(t), by expanding φ around
εβ(i − cεγt) (note that this is not an expansion in terms of t, but the entire
argument of φ!). Noting that εβ(i+ 1− cεγt)− εβ(i− cεγt) = εβ :

Ai+1(t) = εφ(εβ(i−cεγt))+ε1+βφ′(εβ(i−cεγt))+ε2β+1

2
φ′′(εβ(i−cεγt))+O(ε3β+1).

(4.28)
A similar expansion of Ai−1(t) yields:

Ai−1(t) = εφ(εβ(i−cεγt))−ε1+βφ′(εβ(i−cεγt))+ε2β+1

2
φ′′(εβ(i−cεγt))+O(ε3β+1).

(4.29)
Considering the sum Ai+1(t) + Ai−1(t) − 2Ai(t), we note that a lot of terms
disappear:

Ai+1(t) +Ai−1(t)− 2Ai(t) = ε2β+1φ′′(εβ(i− cεγt)) +O(ε3β+1). (4.30)

Ultimately, the passive transport term becomes:

TdiffL(Ai−1(t)+Ai+1(t)−2Ai(t)) = TdiffL ·(ε2β+1φ′′(εβ(i−cεγt))+O(ε3β+1)).
(4.31)

We see that the leading order is ε1+2β .

Active transport

Up next is the active transport term:

ACTIVE = Tact(Pi−1,i(t)Ai−1(t)−Pi,i−1(t)Ai(t)+Pi+1,i(t)Ai+1(t)−Pi,i+1(t)Ai(t)).
(4.32)
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Before we can deal with this, we have to perform the change of variables
introduced in section 4.2. We can invert equations (4.19) and (4.20) to give us

Pi,i+1(t) =
1

2
(Pi,+(t) + Pi,−(t)) (4.33)

and

Pi,i−1(t) =
1

2
(Pi,+(t)− Pi,−(t)). (4.34)

We can then rewrite our equation:

ACTIVE =Tact

(1

2
(Pi−1,+(t) + Pi−1,−(t))Ai−1(t)

+
1

2
(Pi+1,+(t)− Pi+1,−(t))Ai+1(t)− Pi,+(t)Ai(t)

)
. (4.35)

Similar to the Taylor expansions performed on Ai−1 earlier, we will expand
Pi−1,+, Pi−1,−, Pi+1,+ and Pi+1,− in terms of Pi,+ and Pi,− respectively. Rem-
bembering definitions (4.21) and (4.22), this leads us to:

Pi−1,+(t) =εδρ+(εβ(i− cεγt))− εβ · εδρ′+(εβ(i− cεγt))

+
ε2β

2
· εδρ′′+(εβ(i− cεγt)) +O(ε3β+δ), (4.36)

Pi+1,+(t) =εδρ+(εβ(i− cεγt)) + εβ · εδρ′+(εβ(i− cεγt))

+
ε2β

2
· εδρ′′+(εβ(i− cεγt)) +O(ε3β+δ). (4.37)

And analogously:

Pi−1,−(t) =εζρ−(εβ(i− cεγt))− εβ · εζρ′−(εβ(i− cεγt))

+
ε2β

2
· εζρ′′−(εβ(i− cεγt)) +O(ε3β+ζ), (4.38)

Pi+1,−(t) =εζρ−(εβ(i− cεγt)) + εβ · εζρ′−(εβ(i− cεγt))

+
ε2β

2
· εζρ′′−(εβ(i− cεγt)) +O(ε3β+ζ). (4.39)

Finally, we may start to fill in the equation we have. For the sake of brevity, we
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will write the argument as χ(i, t) = εβ(i− cεγt). Starting with the active part:

ACTIVE = Tact(
1

2
(εδρ+(χ(i, t))− εβ · εδρ′+(χ(i, t)) +

ε2β

2
· εδρ′′+(χ(i, t)) +O(ε3β+δ)

+ εζρ−(χ(i, t))− εβ · εζρ′−(χ(i, t)) +
ε2β

2
· εζρ′′−(χ(i, t)) +O(ε3β+ζ))

· (εφ(χ(i, t))− ε1+βφ′(χ(i, t)) +
ε2β+1

2
φ′′(χ(i, t)) +O(ε3β+1))

+
1

2
((εδρ+(χ(i, t)) + εβ · εδρ′+(χ(i, t)) +

ε2β

2
· εδρ′′+(χ(i, t)) +O(ε3β+δ))

− (εζρ−(χ(i, t)) + εβ · εζρ′−(χ(i, t)) +
ε2β

2
· εζρ′′−(χ(i, t)) +O(ε3β+ζ))

· (εφ(χ(i, t)) + ε1+βφ′(χ(i, t)) +
ε2β+1

2
φ′′(χ(i, t)) +O(ε3β+1)))

− (εδρ+(χ(i, t))) · εφ(χ(i, t)))

This is a frankly monstrous expression. Fortunately, we can simplify it some-
what. Given that the diffusive term is of order ε1+2β , we will drop any higher
order terms. We work out the brackets, to give us

ACTIVE = Tact(
1

2
(ε1+δρ+(χ(i, t))φ(χ(i, t))− ε1+β+δρ+(χ(i, t))φ′(χ(i, t))

+
ε1+2β+δ

2
ρ+(χ(i, t))φ′′(χ(i, t))− ε1+β+δρ′+(χ(i, t))φ(χ(i, t))

+ ε1+2β+δρ′+(χ(i, t))φ′(χ(i, t)) +
ε1+2β+δ

2
ρ′′+(χ(i, t))φ(χ(i, t))

+ ε1+ζρ−(χ(i, t))φ(χ(i, t))− ε1+β+ζρ−(χ(i, t))φ′(χ(i, t))

+
ε1+2β+ζ

2
ρ−(χ(i, t))φ′′(χ(i, t))− ε1+β+ζρ′−(χ(i, t))φ(χ(i, t))

+ ε1+2β+ζρ′−(χ(i, t))φ′(χ(i, t)) +
ε1+2β+ζ

2
ρ′′−(χ(i, t))φ(χ(i, t)))

+
1

2
(ε1+δρ+(χ(i, t))φ(χ(i, t)) + ε1+β+δρ+(χ(i, t))φ′(χ(i, t))

+
ε1+2β+δ

2
ρ+(χ(i, t))φ′′(χ(i, t)) + ε1+β+δρ′+(χ(i, t))φ(χ(i, t))

+ ε1+2β+δρ′+(χ(i, t))φ′(χ(i, t)) +
ε1+2β+δ

2
ρ′′+(χ(i, t))φ(χ(i, t))

− ε1+ζρ−(χ(i, t))φ(χ(i, t))− ε1+β+ζρ−(χ(i, t))φ′(χ(i, t))

− ε1+2β+ζ

2
ρ−(χ(i, t))φ′′(χ(i, t))− ε1+β+ζρ′−(χ(i, t))φ(χ(i, t))

− ε1+2β+ζρ′−(χ(i, t))φ′(χ(i, t))− ε1+2β+ζ

2
ρ′′−(χ(i, t))φ(χ(i, t)))

− ε1+δρ+(χ(i, t))φ(χ(i, t)) +O(ε1+3β))



CHAPTER 4. LEADING ORDER ANALYTICAL SOLUTION 34

This isn’t really any simpler. However, if we start matching terms of the same
order, we will notice that a great deal of terms cancel out or simplify.

ACTIVE =Tact

(1

2
(ε1+2β+δ(ρ+(χ(i, t))φ′′(χ(i, t))

+ 2ρ′+(χ(i, t))φ′(χ(i, t)) + ρ′′+(χ(i, t))φ(χ(i, t))))
)

−Tact
(
ε1+β+ζ(ρ−(χ(i, t))φ′(χ(i, t)) + ρ′−(χ(i, t))φ(χ(i, t)))

)
+O(ε1+3β)

Putting this together with the passive transport part of the equation, we find:

RHS = ACTIVE + TdiffL · (ε2β+1φ′′(χ(i, t))) +O(ε3β+1)). (4.40)

4.4.3 The full equation of Auxin

Then, the completed equation becomes:

−cε1+β+γ ·φ′(χ(i, t)) = ACTIVE+TdiffL·(ε2β+1φ′′(χ(i, t))+O(ε3β+1)). (4.41)

Now, we will look for the leading order terms. Using equations (4.26) and (4.40),
we have:

−cε1+β+γ · φ′(χ(i, t)) =Tact

(1

2
(ε1+2β+δ(ρ+(χ(i, t))φ′′(χ(i, t))

+ 2ρ′+(χ(i, t))φ′(χ(i, t)) + ρ′′+(χ(i, t))φ(χ(i, t))))
)

− Tact
(
ε1+β+ζ(ρ−(χ(i, t))φ′(χ(i, t)) + ρ′−(χ(i, t))φ(χ(i, t)))

)
+ TdiffL · (ε2β+1φ′′(χ(i, t))) +O(ε1+3β). (4.42)

We notice that the first active transport term is a higher order term, so we
disregard it. This leaves us with the following equation:

− cε1+β+γ · φ′ = −Tact · ε1+β+ζ(φρ′− + φ′ρ−) + TdiffL · (ε2β+1φ′′). (4.43)

As our experimental observations suggested that β ≈ 1.6, we believe the diffusive
term to be higher order as well. Matching the lower order terms gives us

γ = ζ. (4.44)

We note that in chapter 3 we found γ = 0.3459 and ζ = 0.4089. While these
values do not match, the 95% confidence intervals overlap to a reasonable extent.
However, we will now try to deduce an analytical value for these parameters.

4.5 Solving for Pi±1(t)

As we still do not have enough information to determine the exponents, we will
perform a similar analysis for Pi±1(t), using equations (4.16). These were:
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dPi,i±1(t)

dt
=
λPi(t)

2
± Pi(t)

8
hσa(Ai(t)Pi,i+1(t)−Ai+1(t)Pi+1,i(t)

−Ai(t)Pi,i−1(t) +Ai−1(t)Pi−1,i(t))

4.5.1 Changing variables

For the sake of brevity, we say that

dPi,i±1(t)

dt
=
Pi(t)

2
(λ± 1

4
hσaFi(t)) (4.45)

with a ’Flux-term’:

Fi(t) = Ai(t)Pi,i+1(t)−Ai+1(t)Pi+1,i(t)−Ai(t)Pi,i−1(t) +Ai−1(t)Pi−1,i(t).
(4.46)

We note that this term is strikingly similar to the active transport term in the
equation of Auxin, however it differs in two signs. As stated in section 4.3, if we
consider the polarized versions PIN1 on their own, we will find that to a leading
order they are the same, as the λ-term dominates in the differential equation.
In turn, this leads to a solution that is diffusive, rather than active. Again, we
will use the difference between RPIN and LPIN, and the sum of these.

First, we will examine the sum. We notice that the differential equation for
Pi,+ is as follows:

dPi,+
dt

=
dPi,i+1

dt
+
dPi,i−1

dt
= λPi. (4.47)

It is easy to see that this is simply twice the leading order of equation (4.45),
so no new information is contained in this statement. What is more interesting
is the differential equation we see when we consider the difference:

dPi,−
dt

=
1

4
Pi(t)hσaFi. (4.48)

4.5.2 Left-hand side

We start off with the left-hand side of equation (4.48):

LHS =
dPi,−
dt

(4.49)

From equation (4.22) we easily find that

LHS = −cεβ+γ+ζρ′−(εβ(i− cεγt)). (4.50)
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4.5.3 Right-hand side

The right-hand side of equation (4.48) is somewhat more complicated:

RHS =
1

4
Pi(t)hσaFi(t). (4.51)

For this side, we start our evaluation in Fi(t). Written in terms of the sum and
difference, the term looks like

Fi = Ai(t)Pi,−(t)−1

2
·(Ai+1(t)(Pi+1,+(t)−Pi+1,−(t))−Ai−1(t)(Pi−1,+(t)+Pi−1,−(t))).

(4.52)
We notice from equation (4.48) that we will deal with additional factors of ε,
resulting from a factor Pi(t), so we will focus on the lowest order terms. We use
the expansions and definitions we used before to find:

Fi(t) = 2ε1+ζφ(χ(i, t))ρ−(χ(i, t)). (4.53)

Putting this into (4.51), we are left with the following:

RHS =
αhσa

2λ
ε2+ζφ2(χ(i, t))ρ−(χ(i, t)). (4.54)

4.5.4 The full equation for Pi,−(t)

We can now finally equate the left-hand-side and right-hand side. Putting equa-
tions (4.50) and (4.54) together gives us:

− cεβ+γ+ζρ′−(χ(i, t)) =
αhσa

2λ
ε2+ζφ2(χ(i, t))ρ−(χ(i, t)). (4.55)

If these terms are to be of the same order ε, we require that β + γ + ζ = 2 + ζ.
In other words:

β + γ = 2. (4.56)

4.6 In conclusion

Despite my best efforts, I can not yet find an analytical value for β, γ, δ and ζ.
However, the relationships we have found between these parameters appear to
be supported by numerical analysis; in section 4.3, equation (4.43) gives us

γ = ζ.

And in the previous section, we concluded from (4.55) that

β + γ = 2.
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Both of these claims are supported by the values of these parameters we found
in chapter 3:

β ≈ 1.6,

γ ≈ 0.35,

δ ≈ 0.25,

ζ ≈ 0.41.

While the analytical claims do not mach the exact values, they are well within
the 95% confidence intervals of the measurements. On a final note, we see that
no analytical prediction has been found for δ. To do so, we will have to take into
account higher order terms in the expansions and equations. Doing so, however,
would take too much time at this point, and thus we move on to the final part
of this thesis.



Chapter 5

Wave trains

Having worked our way through both numerical analysis and analytical approx-
imation, we finally arrive at the concept of wave trains. Up until this point,
we have assumed a certain initial concentration of Auxin in cell 1. Going for-
ward, we rather assume a constant influx of Auxin throughout the simulation.
For both the model by Merks (equations (2.1), (2.4) and (2.5)), as well as the
adapted model (equations (3.1), (3.2), (3.6) and (3.7)), I will explore the re-
lationship between wave amplitude and width, and compare these both to the
case of fixed initial Auxin, as well as to the other model.

To simulate a constant influx, we made two major changes. First off, we set
the initial Auxin concentration to zero in all cells (as opposed to zero in all but
one cell). In other words:

Ai(0) =
{

0 for 1 ≤ i ≤ n+ 1
}

Since this would make for a boring model on its own, we modified the differential
equation for Auxin in cell 1 to have an added constant. The complete code used
can be found in appendix A.4:

dA1(t)

dt
=Tact(P2,1(t)

A2(t)

ka +A2(t)
− P1,2(t)

A1(t)

ka +A1(t)
)

+ TdiffL(A2(t)−A1(t)) + 0.1. (5.1)

We note that equations for Auxin in the other cells (equation (3.1)), as well
as the equations for PIN1, RPIN and LPIN (equations (3.2), (3.6) and (3.7))
remain unchanged.

Finally, to properly compare the two models, we have to rephrase the model
by Merks in terms of our cell configuration as well (as we did in chapter 3).
Noticing that the equation for Auxin is the same as in the model by Allen, this
gives us the following equations for PIN1 and polarized PIN1:

dPi(t)

dt
=− k1(

R ·Ai−1(t)

kR +Ai−1(t)

Pi(t)

km + Pi(t)
+

R ·Ai+1(t)

kR +Ai+1(t)

Pi(t)

km + Pi(t)
)

+ k2(Pi,i+1(t) + Pi,i−1(t)) + αAi(t)− δPi(t) (5.2)

38
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dPi,i±1(t)

dt
= k1

R ·Ai±1(t)

kR +Ai±1(t)

Pi(t)

km + Pi(t)
− k2Pi,i±1(t) (5.3)

Qualitatively, we find that in both models Auxin builds up in a cell. After
reaching a certain concentration, the hormone is sent out through the line of
cells. Afterwards, Auxin starts building up again, and the process repeats. In
figure 5.2 we see three ’packets’ produced in the model by Merks. In figure 5.6,
we see many more packets produced by the modified model.

Exploring the varying connections in this new regime, proves to be somewhat
more difficult. As it turns out, each ’wave packet’ manifests later in the sequence
of cells; while an earlier packet may start at cell 10, a later one might only start
at cell 20. As such, I have elected to look at a single cell, in multiple packets,
to determine the relationship between amplitude and wave width. A drawback
of this, is that the wave speed is ill-defined, which means that we will also have
to make due with the wave sojourn time, rather than the actual width.

To measure the different peaks, we first chopped up the wave train into
separate waves by using the ’islocalmin’ function in Matlab.

Figure 5.1: Local minima of cell 60 in the modified model

The first few minima (around 0) are meaningless, so we ignore them. Within
each of the resulting intervals we measure the peak and wave sojourn time as
done in chapter 3: using the max function, and finding the first and last value
where the function exceeds 5% of this maximum.

Ultimately, we found rather few data points using only one constant influx.
To solve this, I ran the simulation multiple times, at different Auxin influx.
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5.1 The model by Merks

An important note to make here is that a modification had to be made to this
model: van der Voort [14] originally used a PIN1 decay parameter of 0.0001.
While for an initial condition of Auxin this produced a nice traveling wave, for
a constant influx, the PIN1 did not decay fast enough to generate a new wave
packet. To mitigate this, I raised this parameter to 0.1.
Running the simulation in this altered form gives us the following wave pattern:

Figure 5.2: Wave Trains in the model by Merks (equations (5.1), (3.1),(5.2),
(5.3))

We specifically consider cell 50, as the observed wave profile is pronounced
enough to draw conclusions, and it barely suffers from border conditions.
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Figure 5.3: Wave Trains in cell 50, in the model by Merks (equations
(5.1),(3.1),(5.2), (5.3)).

Now, analogous to chapter 3 we correlate the amplitude and wave sojourn
times of these peaks:

Figure 5.4: Peaks of cell 50 matched against corresponding wave sojourn times,
as generated by the model by Merks (equations (3.1), (5.1)-(5.3)).
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There are too few data points to draw any reliable conclusion. To resolve
this, I ran multiple simulations at differing influxes of Auxin. These attempts to
expand the amount of data have been met with errors by Matlab; the equation
does not converge fast enough, and my computer runs out of RAM, forcing Mat-
lab to terminate the calculation. I can only conclude that there is no correlation
to be seen here, for lack of data.

What we find for a fixed initial amount of Auxin is also quite interesting.
Due to PIN1 decay being much higher, we find that in the original model (with
fixed initial concentration), Auxin does not produce a traveling wave; much less
a reliable correlation between the amplitude and width thereof.

Figure 5.5: Auxin development at fixed initial Auxin, with high PIN1 decay,
model by Merks (equations (3.1),(5.2), (5.3))

Again, we can draw no reliable conclusion here, as the transport is quite
passive. As stated before, using the parameter used by van der Voort leads
to the simulation for the constant influx failing. At this point, we can only
conclude that the parameter regimes of the fixed initial Auxin and the constant
influx for the model by Merks are simply too different to draw any parallels.

5.2 The Modified model

In the modified model (equations (3.1), (3.2), (3.6), (3.7) and (5.1)) we are met
by a very different wave pattern: see figure 5.6
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Figure 5.6: Wave trains in cells 1 through 100, generated in modified model
(equations (3.1), (3.2), (3.6), (3.7) and (5.1)).

In the modified model, we have a few more cells, so we consider cell 60. We
see that we have far more peaks, and therefore more data. We measure the data
in the same way as described in the previous section.

Figure 5.7: Wave train in cell 60, in the modified model (equations (3.1), (3.2),
(3.6), (3.7) and (5.1)).
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We can now plot the found Auxin peaks against the wave sojourn times.
Doing so gives us a far more useful plot than for the model by Merks:

Figure 5.8: Amplitude versus Wave Sojourn Time, as generated by the modified
model with a constant Auxin influx (equations (3.1), (3.2), (3.6), (3.7) and (5.1))

In spite of the few datapoints, we see a correlation here. The fitted curve
represents the correlation

Wave Sojourn Time = 1.718 ·Amplitude−0.5177. (5.4)

Again we compare this to the correlation between amplitude and Wave Sojourn
Time in the case of a fixed initial Auxin concentration:
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Figure 5.9: Amplitude versus Wave Sojourn Time, as generated by the modified
model with fixed initial Auxin (equations (3.1), (3.2), (3.6) and (3.7)). The red
line corresponds to the fit in equation (5.5).

This returns a root-like relationship. Having fitted the data, we retrieve

Wave Sojourn Time = 1.527 ·Amplitude−0.2865. (5.5)

We note that while they are not identical, the relationships are qualitatively the
same, and not too far off each other. We may thus conclude that understanding
singular waves will help studying and understanding wave trains. In fact, if we
plot the data from figure 5.9 against the fit from figure 5.8, we see a decent
match:
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Figure 5.10: Data obtained from a simulation with fixed initial Auxin, set
against a fit obtained from a simulation with constant Auxin influx (equations
(3.1), (3.2), (3.6), (3.7) and (5.1)). The fitted line is the same as in figure 5.8,
corresponding to equation (5.4).



Chapter 6

Discussion

The goal of my thesis was twofold. The first goal was to find a leading order
analytical solution that matches the numerically obtained data. On this front, I
found that finding such a solution requires including higher order terms; sticking
to the lowest order term does not provide analytical values for all parameters
involved. As for the second goal, I aimed to prove that in the case of a continuous
influx of Auxin into a system, the Auxin would be passed along in wave trains.
In chapter 5 I found that this is very much the case: the Auxin is ’stored’ for a
while and then released, after which the cycle repeats.

I started off by numerical analysis. Doing so, I found that the determined
correlations between the wave properties behaved in odd ways for larger am-
plitudes. To retrieve any useful relation, I had to restrict myself to smaller
amplitudes than van der Voort did in his thesis; where an amplitude of order
0.1 [14] sufficed for him, I required an amplitude of order 0.01.

This issue also occurred in the analytical analysis: I found that nonlinear
behaviour occurred much earlier than in the original model. While van der Voort
was able to describe his wave solution with lower order terms, our model requires
the inclusion of higher order terms. However, time constraints required me to
abandon these, which might have provided more insight into the properties of
the wave. Another problem here was that solving the differential equations for
RPIN and LPIN directly created a recursion, which forced the introduction of
more wave profiles, with yet more parameters.

Finally, I moved on to the second goal: wave trains. While the original model
failed to provide a conclusion on account of the lack of data, the modified model
provided us with a fairly strong suggestion that these trains may indeed occur.

I found a few difficulties in using Matlab. Most notably, while examining
wave trains in section 5.1, Matlab often failed to run the simulation, when
varying the influx of Auxin. In turn, this meant little data could be collected. I
also found that running the simulation for fixed Auxin tended to return an error
if the chosen parameters did not heavily favour RPIN polarization over LPIN
polarization. Some of these issues may be solved (or at the very least diminished)
by using a computer with larger amounts of RAM. On a positive note, running

47
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the simulation of the modified model with the parameters I ended up using was
much faster than running the original model; therefore, it was possible to run
this simulation for longer time spans.

Finally, I can say that much remains to be examined here. As stated, the
analytical approximation of the wave in the modified model warrants the in-
troduction of higher order terms. Doing so should lead to a proper analytical
solution. Once this particular model has been properly researched, there are
several possibilities. The first thing to come to mind, is to fully convert the
model into the model used by Allen [3]. Another avenue of potential research is
adding a second dimension of cells (or a third, if one is feeling daring). However,
while theoretical models are fascinating, it remains equally important to verify
their accuracy. It would be interesting to see how the amplitude, speed and
wave width of Auxin relate in the real world. As van der Voort put it ”...the
ball is now in the court of (mathematical) biologists” [14].
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Appendix A

Appendix

A.1 The simulation with fixed initial Auxin

1 %Timerange
2 tRange=[0,100];
3

4 %Amount of cells
5 n=100;
6

7 %Initial conditions
8 Z0 = zeros(1,4*n+2);
9 %Setting start value

10 Z0(1)=1;
11

12 %Executing the solver
13 [tSol,ZSol]=ode45(@ODEsystem,tRange,Z0);
14

15 %%
16 function dZdt = ODEsystem(t,Z);
17 %Setting Parameters
18 n=100;
19 Tact=800;
20 TdiffLab=0.15;
21 ka=1;
22 R=100;
23 kR=100;
24 k1=2;
25 k2=5*10ˆ(-3);
26 km=100;
27 alpha=0.1;
28 ∆=0.0001;
29 lambda = 0.5;
30 h= 1000;
31 phi=1;
32 theta=0;
33

34

51
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35 Auxine = zeros(1,n+1);
36 Proteine = zeros(1,n+1);
37 RProteine = zeros(1,n);
38 LProteine = zeros(1,n);
39

40 Auxineterm = zeros(1,n+1);
41 Proteineterm = zeros(1,n+1);
42 Activation = zeros(1,n+1);
43

44 Afgeleide = zeros(1,4*n+2);
45

46 for i = 1:4*n+2
47 if (i < n+2)
48 Auxine(i)=Z(i);
49 Auxineterm(i)= Auxine(i)/(ka+Auxine(i));
50 Activation(i)=Auxine(i) * R / (kR + Auxine(i));
51 elseif (i < 2*n + 3 && i > n + 1)
52 Proteine(i-n-1)=Z(i);
53 Proteineterm(i-n-1)=Proteine(i-n-1)/(km+Proteine(i-n-1));
54 elseif i < 3*n+3
55 RProteine(i-2*n-2)=Z(i);
56 elseif i < 4*n+3
57 LProteine(i-3*n-2)=Z(i);
58 end
59 end
60

61 J = zeros(1,n);
62 for i = 1:n
63 J(i) = ...

phi*(Auxine(i)*RProteine(i)-Auxine(i+1)*LProteine(i));
64 end
65

66 H= zeros(2,n+1);
67 H(1,1) = (1/(1+exp(-h*(J(1)/lambda-theta))))
68 /((1/(1+exp(-h*(J(1)/lambda-theta))))+(1/(1+exp(h*theta))));
69 H(2,1) = (1/(1+exp(h*theta)))
70 /((1/(1+exp(-h*(J(1)/lambda-theta))))+(1/(1+exp(h*theta))));
71 for i = 2:n
72 H(1,i) = (1/(1+exp(-h*(J(i)/lambda-theta))))
73 /((1/(1+exp(-h*(J(i)/lambda-theta))))
74 +(1/(1+exp(-h*(-J(i-1)/lambda-theta)))));
75 H(2,i) = (1/(1+exp(-h*(-J(i-1)/lambda-theta))))
76 /((1/(1+exp(-h*(J(i)/lambda-theta))))
77 +(1/(1+exp(-h*(-J(i-1)/lambda-theta)))));
78 end
79 H(1,n+1)=0;
80 H(2,n+1)=0;
81

82 Afgeleide(1) = ...
Tact*(LProteine(1)*Auxineterm(2)-RProteine(1)*Auxineterm(1))

83 +TdiffLab*(Auxine(2)-Auxine(1));
84 for i = 2:n-1
85 Afgeleide(i) = Tact*(RProteine(i-1)*Auxineterm(i-1)
86 +LProteine(i)*Auxineterm(i+1)
87 -(LProteine(i-1)+RProteine(i))*Auxineterm(i))
88 +TdiffLab*(Auxine(i+1)+Auxine(i-1)-2*Auxine(i));
89 end
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90 Afgeleide(n) = Tact*(RProteine(n-1)*Auxineterm(n-1)
91 -(LProteine(n-1)+RProteine(n))*Auxineterm(n))
92 +TdiffLab*(Auxine(n-1)-2*Auxine(n));
93 Afgeleide(n+1) ...

=Tact*(RProteine(n)*Auxineterm(n))+TdiffLab*(Auxine(n));
94

95 Afgeleide(n+2)= -lambda*Proteine(1)*(H(1,1)) + ...
k2*(RProteine(1))+alpha*Auxine(1)-∆*Proteine(1);

96 for i = 2:n
97 Afgeleide(i+n+1)= -lambda*Proteine(i) + ...

k2*(RProteine(i)+LProteine(i-1))
98 +alpha*Auxine(i)-∆*Proteine(i);
99 end

100 Afgeleide(2*n+2) = 0;
101

102 Afgeleide(2*n+3)= lambda*Proteine(1)*H(1,1)-k2*RProteine(1);
103 Afgeleide(3*n+3)= lambda*Proteine(2)*H(2,2)-k2*LProteine(1);
104 for i = 2:n-1
105 Afgeleide(i+2*n+2)= ...

lambda*Proteine(i)*H(1,i)-k2*RProteine(i);
106 Afgeleide(i+3*n+2)= ...

lambda*Proteine(i+1)*H(2,i+1)-k2*LProteine(i);
107 end
108 Afgeleide(3*n+2)= lambda*Proteine(n)*H(1,n)-k2*RProteine(n);
109 Afgeleide(4*n+2)= 0;
110

111 dZdt= [Afgeleide]';
112 end

A.2 Generating data by running the simulation

1 tic;
2 fileID = fopen('Golfdata (Aux,PIN,RPIN,LPIN), ...

(0.01,0.01,1,1500).txt','w'); %Opening datafile
3 fprintf(fileID,'\n','Maximum','Speed','Golfbreedte');
4

5 for i = 1:1:10 %Running the simulation
6 FluxmodelV4(i,1500)
7 end
8

9 %Importind data from datafile
10 Temp= importdata("Golfdata (Aux,PIN,RPIN,LPIN), ...

(0.01,0.01,1,1500).txt");
11 Golfdata = Temp(:,:);
12 GPiek = Golfdata(:,1);
13 GSnelheid = 1./Golfdata(:,2);
14 GBreedte = Golfdata(:,3).*(1./Golfdata(:,2));
15 PinPiek = Golfdata(:,4);
16 PinSnelheid = 1./Golfdata(:,5);
17 PinBreedte = Golfdata(:,6).*(1./Golfdata(:,5));
18 RPinPiek = Golfdata(:,7);
19 RPinSnelheid = 1./Golfdata(:,8);
20 RPinBreedte = Golfdata(:,9).*(1./Golfdata(:,8));
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21 LPinPiek = Golfdata(:,10);
22 LPinSnelheid = 1./Golfdata(:,11);
23 LPinBreedte = Golfdata(:,12).*(1./Golfdata(:,11));
24

25

26

27 toc;

A.3 Rescaling Auxin waves

1 tic;
2

3

4 hold on
5 for j = 0.01:0.01:0.1
6 FluxmodelV4(j,3000);
7 AUX=importdata('AUXdata.txt'); %tSol en ZSol of cell 50 ...

being imported from FluxmodelV4
8 Prop=importdata('AUXdata2.txt'); %The maximum, speed, width ...

and time of maximum of Auxin in cell 50
9 AUXine = zeros(1, length(AUX(:,1)));

10

11 for i = 1:length(AUX(:,1))
12 AUXine(i) = AUX(i,2)/Prop(1); %Scaling wave in height
13 end
14 AUXine(Prop(4)) = AUX(Prop(4),2)/Prop(1);
15

16

17 if j == 0.01
18 plot((AUX(:,1)-AUX(Prop(4),1))/Prop(3)+50,AUXine,
19 'Linewidth', 2) %Plotting the first line a bit thicker
20 end
21 plot((AUX(:,1)-AUX(Prop(4),1))/Prop(3)+50,AUXine, ...

'Linewidth', 1) %Scaling wave in width
22 xlim([49.5, 52])
23 xlabel('Time')
24 ylabel('Normalized Auxin concentration')
25

26 end
27 hold off
28 legend('0.01','0.02','0.03','0.04','0.05','0.06','0.07','0.08',
29 '0.09','0.1')
30

31 toc;

A.4 The simulation with constant Auxin influx

1

2 % function FluxmodelV5 Pulsjes(Meettijd)
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3

4 %Timerange
5 tRange=[0,200];
6

7 %Amount of cells
8 n=60;
9

10 %Initial conditions
11 Z0 = zeros(1,4*n+2);
12 %Instellen van beginwaarden
13 Z0(1)=0;
14

15 %Executing the solver
16 [tSol,ZSol]=ode45(@ODEsystem,tRange,Z0);
17

18 %Auxine per cel, 1 t/m n+1
19 Z1 = ZSol(:,1:n);
20 plot(tSol,Z1)
21 xlabel('Tijd')
22 ylabel('Auxin in cell 1 t/m n+1')
23 legend('Cell1', 'Cell 2', 'etc')
24

25 plot(tSol,ZSol(:,60))
26 xlabel('Time')
27 ylabel('Auxin-concentration')
28 legend('Cell 60')
29

30

31 %Calculate peak
32 a=findpeaks(ZSol(:,60));
33 c=ZSol(:,60);
34 TF=islocalmin(c);
35

36 interval = zeros(1,19);
37 j=1;
38 tSol(TF);
39 for i=1:length(tSol)
40 if TF(i)==1
41 i;
42 interval(j)=i;
43 j=j+1;
44 end
45 end
46

47 clear pieken
48 clear WaveSojournTime
49

50 for i = 1:18
51 clear tempSol
52 clear tempZSol
53 clear tijd
54

55 tempSol = tSol(interval(i):interval(i+1));
56 tempZSol(:,60) = ZSol(interval(i):interval(i+1),60);
57

58 a=max(tempZSol(:,60));
59 index(1,i) = find(tempZSol(:,60) ≥ 0.05*a, 1, 'first');
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60 index(2,i) =find(tempZSol(:,60) ≥ 0.05*a, 1, 'last');
61

62 for j=1:2
63 tijd(j) = tempSol(index(j,i));
64 end
65

66 interval(i);
67 pieken(i) = a;
68 WaveSojournTime(i) = tijd(2)-tijd(1);
69 end
70

71 for i = 1:length(pieken)
72 % Writing peak and wave sojourn time to file
73 fileID = fopen('PiekVSBreedte.txt','a');
74 fprintf(fileID,'%f %f \n', pieken(i), WaveSojournTime(i))
75 end
76

77 scatter(pieken, WaveSojournTime)
78 xlabel('Wave Amplitude')
79 ylabel('Wave Sojourn Time')
80 legend('Een golf in meerdere paketten')
81

82

83 function dZdt = ODEsystem(t,Z);
84 %Setting Parameters
85 n=60;
86 Tact=800;
87 TdiffLab=0.15;
88 ka=1;
89 R=100;
90 kR=100;
91 k1=2;
92 k2=1.5*10ˆ(-1);
93 km=100;
94 alpha=0.1;
95 ∆=1.0;
96 lambda = 0.5;
97 h= 900;
98 phi=1;
99 theta=0.01;

100

101

102 Auxine = zeros(1,n+1);
103 Proteine = zeros(1,n+1);
104 RProteine = zeros(1,n);
105 LProteine = zeros(1,n);
106

107 Auxineterm = zeros(1,n+1);
108 Proteineterm = zeros(1,n+1);
109 Activation = zeros(1,n+1);
110

111 Afgeleide = zeros(1,4*n+2);
112

113 for i = 1:4*n+2
114 if (i < n+2)
115 Auxine(i)=Z(i);
116 Auxineterm(i)= Auxine(i)/(ka+Auxine(i));
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117 Activation(i)=Auxine(i) * R / (kR + Auxine(i));
118 elseif (i < 2*n + 3 && i > n + 1)
119 Proteine(i-n-1)=Z(i);
120 Proteineterm(i-n-1)=Proteine(i-n-1)/(km+Proteine(i-n-1));
121 elseif i < 3*n+3
122 RProteine(i-2*n-2)=Z(i);
123 elseif i < 4*n+3
124 LProteine(i-3*n-2)=Z(i);
125 end
126 end
127

128 J = zeros(1,n);
129 for i = 1:n
130 J(i) = ...

phi*(Auxine(i)*RProteine(i)-Auxine(i+1)*LProteine(i));
131 end
132

133 H= zeros(2,n+1);
134 H(1,1) = (1/(1+exp(-h*(J(1)/lambda-theta))))
135 /((1/(1+exp(-h*(J(1)/lambda-theta))))+(1/(1+exp(h*theta))));
136 H(2,1) = (1/(1+exp(h*theta)))
137 /((1/(1+exp(-h*(J(1)/lambda-theta))))+(1/(1+exp(h*theta))));
138 for i = 2:n
139 H(1,i) = (1/(1+exp(-h*(J(i)/lambda-theta))))
140 /((1/(1+exp(-h*(J(i)/lambda-theta))))
141 +(1/(1+exp(-h*(-J(i-1)/lambda-theta)))));
142 H(2,i) = (1/(1+exp(-h*(-J(i-1)/lambda-theta))))
143 /((1/(1+exp(-h*(J(i)/lambda-theta))))
144 +(1/(1+exp(-h*(-J(i-1)/lambda-theta)))));
145 end
146 H(1,n+1)=0;
147 H(2,n+1)=0;
148

149 Afgeleide(1) = ...
Tact*(LProteine(1)*Auxineterm(2)-RProteine(1)*Auxineterm(1))

150 +TdiffLab*(Auxine(2)-Auxine(1))+0.1;
151 for i = 2:n-1
152 Afgeleide(i) = Tact*(RProteine(i-1)*Auxineterm(i-1)
153 +LProteine(i)*Auxineterm(i+1)
154 -(LProteine(i-1)+RProteine(i))*Auxineterm(i))
155 +TdiffLab*(Auxine(i+1)+Auxine(i-1)-2*Auxine(i));
156 end
157 Afgeleide(n) = Tact*(RProteine(n-1)*Auxineterm(n-1)
158 -(LProteine(n-1)+RProteine(n))*Auxineterm(n))
159 +TdiffLab*(Auxine(n-1)-2*Auxine(n));
160 Afgeleide(n+1) ...

=Tact*(RProteine(n)*Auxineterm(n))+TdiffLab*(Auxine(n));
161

162 Afgeleide(n+2)= -lambda*Proteine(1)*(H(1,1)) + ...
k2*(RProteine(1))+alpha*Auxine(1)-∆*Proteine(1);

163 for i = 2:n
164 Afgeleide(i+n+1)= -lambda*Proteine(i) + ...

k2*(RProteine(i)+LProteine(i-1))
165 +alpha*Auxine(i)-∆*Proteine(i);
166 end
167 Afgeleide(2*n+2) = 0;
168
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169 Afgeleide(2*n+3)= lambda*Proteine(1)*H(1,1)-k2*RProteine(1);
170 Afgeleide(3*n+3)= lambda*Proteine(2)*H(2,2)-k2*LProteine(1);
171 for i = 2:n-1
172 Afgeleide(i+2*n+2)= ...

lambda*Proteine(i)*H(1,i)-k2*RProteine(i);
173 Afgeleide(i+3*n+2)= ...

lambda*Proteine(i+1)*H(2,i+1)-k2*LProteine(i);
174 end
175 Afgeleide(3*n+2)= lambda*Proteine(n)*H(1,n)-k2*RProteine(n);
176 Afgeleide(4*n+2)= 0;
177

178 dZdt= [Afgeleide]';
179 end
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