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Abstract

This report is on the simulation of the double slit experiment. Diffraction cal-
culations will be used to create a simulated version of the experiment in vir-
tual reality in order to accommodate the growing number of first year physics
students. The parameters for the double slit aperture and light source in the
simulations are equal to those in the physical experiment. We calculate the
diffraction patterns behind the double slit aperture using the Fresnel approx-
imation on Kirchhoff’s Integral Theorem. The diffraction integrals are either
solved brute-force (by for-loop) or using a fast Fourier transform. With the lat-
ter approach, the simulations were made in two dimensions and the different
components could be rotated in order to simulate the misalignment of the setup
in the physical experiment.
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Chapter 1
Introduction

The wave-particle duality of light is almost impossible to imagine, but can be
easily demonstrated in a university lab. Light was regarded as particles before
Young’s double slit experiment in 1802 [18]. In this experiment, a beam of par-
ticles travels through a double slit before hitting a screen. The arrival of each
separate particle can be recorded at the screen. The wave nature of the light
causes the particles to interfere, and light and dark fringes that can be observed
on the screen [10].

Young’s double slit experiment is one of the experiments performed by first
year physics students at Leiden University. However, more and more bachelor
students enroll each year and space is limited. On top of the limited space, less
students are allowed in the already confined lab due to the outbreak of COVID-
19 [14]. The university is improving their remote education, and one way Lei-
den University is trying to accommodate students is by improving the remote
physics experiments of the first year course ’Experimentele Natuurkunde’ (EN).

Together with a company called VR Lab, the goal of this Bachelor Research
Project is to simulate the double slit experiment in 3D. These simulations will be
used by VR Lab to create a virtual reality environment where first year students
can practice and prepare the double slit experiment at home. To simulate such
an optical experiment, it is critical to understand what happens to light from the
moment it leaves the laser, until it hits the screen and forms a diffraction pattern.
Therefore, we will be addressing several approaches of how to calculate the
diffraction pattern.
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The goal of our Bachelor Research Project is to numerically calculate the diffrac-
tion pattern behind a double slit, using various methods and to investigate
which is the best option. We will be looking at the analytical formula for diffrac-
tion behind a double slit, Fraunhofer diffraction, Fresnel diffraction and the
Rayleigh Sommerfeld diffraction integral. Also, we will be comparing our nu-
merical simulations to simulations made with ”Diffractio, python module for
diffraction and interference optics” [13].

In order to use the above-mentioned methods, first we will look at the the-
ory and approximations necessary to implement said methods. To start, we
will examine the double slit experiment using analytic propagation and assess
the analytical formula. Then we will work on the derivation from the wave
equation of light to the aforementioned diffraction formulas and theories: Fres-
nel and Fraunhofer diffraction, we will also discuss the difference between the
Fresnel-Kirchhoff diffraction formula and the Rayleigh Sommerfeld diffraction
integral. We will close the chapter on the theory by eventually deriving the ana-
lytical formula for the diffraction behind the double slit, which was mentioned
at the start of Chapter 2.

In the next chapter, we will walk through the methods of our double slit ex-
periment and results. Here, we also established the parameters for the simula-
tions and numerical calculations. In chapter 4, the simulations are discussed. A
comparison is made between the Diffractio simulations and our own numerical
simulations using NumPy [8]. It is also analyzed which method works best for
our purpose. In the final chapter, a summary is given and an outlook for future
projects.
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Chapter 2
Theoretical Background

In this chapter the foundations for the rest of the report are provided. First the
concept of diffraction is explained using the Hugyens-Fresnel principle. Then,
the analytical formula for the diffraction behind the double slit aperture is pro-
vided. Finally, the different diffraction integrals are derived from the wave
equation of light. We will look at Rayleigh-Sommerfeld diffraction and then
walk through the approximations of Fresnel and Fraunhofer diffraction. With
the latter we will prove the validity of the analytical formula. In our further
calculations, we denote the imaginary number i by j, since j is used in Python.

2.1 Diffraction

When a wave passes through obstacles such an aperture, its behavior cannot
only be described in terms of light rays; photons that propagate along straight
lines. With this assumption, light that falls on the edge of a non-reflective
opaque screen gives a sharply defined shadow, the geometrical shadow. How-
ever, this is not observed in optical experiments. It is observed that the light
propagates to the screen and enters the geometrical shadow of the opaque screen.
This creates a diffraction pattern when it bends around the edge of the opaque
screen [1].

Diffraction patterns can be analyzed using Huygens’s principle. This princi-
ple states that every point of a wave front can be considered a secondary source
of wavelets that spread out in all directions with the same speed as the propa-
gation of the wave. The position of the wave front at a later time is the envelope
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2.2 Principle Optics 6

of secondary waves at that time. If one wants to find the resultant displacement
at any point, you combine all the individual displacements produced by the
secondary waves and use the superposition principle [10]. Huygens published
his principle in 1690, and Fresnel improved it later, hence later called Huygens-
Fresnel principle [1].

Figure 2.1: Diffraction analyzed using Huygens’s principle. The blue lines represent
an incident plane. The yellow dots are the secondary wavelets. The green wave is the
superposition of the displacements of these secondary wavelets [16].

2.2 Principle Optics

Young’s double slit was the first experiment to demonstrate the interference
of light [9]. In the original experiment, sunlight was used as the light source,
passed through a pinhole. Nowadays, a monochromatic coherent light source,
such as a laser, is used in the most basic versions. This light source illuminates
an aperture consisting of two narrow slits S1 and S2, as one can see in Figure
2.2. A screen can be placed at a distance z behind the aperture and a pattern of
dark and light fringes can be seen [12]. The light fringes are the locations were
light arrives in phase and interferes constructively. Dark fringes are located
were light destructively interferes [10]. The key to obtain this pattern is to use
mutually coherent light. Therefore, today we use a laser, but Young used a
pinhole which emits monochromatic cylindrical wave fronts [7].

To simplify the analysis of the interference pattern seen on the screen we as-
sume that the distance R between the aperture and the screen is much larger
than the distance between the two slits in the aperture d, so R >> d. Then we
can say that the rays coming from S1 and S2 are nearly parallel. The difference
in path length between rays from S1 and S2 is given by [7]:

r2 − r1 = d sin θ (2.1)

Version of July 6, 2021– Created July 6, 2021 - 16:46

6



2.2 Principle Optics 7

Figure 2.2: Schematic drawing of situation behind double slit [10]. On the left one can
see the actual geometry, and on the right an approximation is made; R ¿¿ d.

Here d is the distance between the two slits, and θ is the angle between a line
from the slits to screen. The intensity of the interference pattern on position y
on the screen is:

I(y) = I0 cos2(
πd
λ

sin θ) (2.2)

In this equation λ is the wavelength of the light. The intensity on the screen
has minimums and maximums. There is a maximum when: d sin θ = mλ. In
the far field: d << R so θ << 1, this means that the positions of the maximums
on the y-axis are given by:

ym = R
mλ

d
(2.3)

The distance between the different maximums ∆y is given by Rλ/d. Or in terms
of the angle θ:

∆θ ≈ 2π

kd
=

λ

d
(2.4)

where k = ω
c , also known as the wavenumber.

Apart from this interference, one also has to take the finite width of the slits
into account. This results in the following formula of the intensity of the diffrac-
tion pattern on position y [10],

I(y) = I0

(
sin[πa(sin θ)/λ]

πa(sin θ)/λ

)2

cos2(
πd
λ

sin θ) (2.5)
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2.3 From light wave to diffraction pattern 8

All the parameters are the same as in the previous equations, and a is the
width of one slit. The extra term in Eq. 2.5 compared to Eq. 2.2 causes an enve-
lope around the interference pattern. This sinc-function describes the diffraction
pattern caused by a single slit. In Figure 2.3 we show the single slit diffraction
pattern and double slit diffraction pattern. One can clearly see the single slit
diffraction envelope in the double slit diffraction pattern.

Figure 2.3: Diffraction pattern behind single slit and double slit [17]

2.3 From light wave to diffraction pattern

2.3.1 The Scalar Wave Equation of Light

Light is an electromagnetic wave. This was first proven by James Clerk Maxwell
with his Maxwell’s equations. In a dielectric medium that is linear, isotropic ho-
mogeneous and non-dispersive, all components of the EM field behave in the
same way and their behavior can be described by a single scalar wave equation:

∇2u(r, t)− n2

c2
∂2u(r, t)

∂t2 = 0 (2.6)

In this equation u(r, t) may represent any of the components of the electric
(E) and magnetic (H) field at position r and time t. n is the refractive index of
the medium and c the speed of light in vacuum. Of course, in most cases the
requirements of an isotropic, non-dispersive, homogeneous, dielectric media
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2.3 From light wave to diffraction pattern 9

aren’t met. Therefore, the representation of the wave equations in scalar form
is seen as an approximation [5]. In our case, diffraction of light by an aperture,
the (E) and (H) fields are only modified at the edges of the aperture where the
light interacts with the material of the edges. This effect extends only over a few
wavelengths. So, if the aperture is larger than the wavelength of the light, the
effects will be small, and we can assume homogeneous media.

Equation 2.6 is the time-dependent Helmholtz equation. The scalar field must
be monochromatic, thus consisting of a single frequency. The scalar field can be
written as:

u(r, t) = A(r) cos[ωt + φ(r)] (2.7)

where A(r) and φ(r) are the amplitude and phase of the wave at position r. The
angular frequency is represented by ω. In phasor representation this becomes:

u(r, t) = Re[U(r)ejwt] (2.8)

U(P) equals A(r)eφ(r) and is called the complex amplitude. Equation 2.8 must
satisfy the scalar wave equation, and substituting this expression for u(r,t) into
Eq. 2.6 yields:

(∇2 + k2)U(r) = 0 (2.9)

This equation is called the Helmholtz equation [6]. To get the diffraction pattern,
we have to solve this equation for U(r).

2.3.2 Green’s Theorem

To solve the Helmholtz equation and find U(r), the Helmholtz equation will
be converted into an integral using Green’s theorem. Green’s theorem involves
two complex valued functions U(r) and G(r). It states the following: Let S be a
closed surface surrounding volume V. If the first and second partial derivatives
of U(r) and G(r) are single-valued and continuous, without any singular points
within or on S (the sum of S0 and S1), Green’s theorem states that [5]:∫∫∫

V
(G∇2U −U∇2G) dv =

∫∫
S
(G

∂U
∂n
−U

∂G
∂n

) ds (2.10)

∂/∂n is a partial derivative in the outward normal direction at each point of
S. U corresponds to the wave field. There are multiple choices for G(r) that
yield a useful representation of diffraction. One is used by Kirchhoff in his The-
ory of Diffraction, and one is used by Sommerfeld in the Rayleigh-Sommerfeld
Diffraction Integral discussed in this thesis [6].
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2.3 From light wave to diffraction pattern 10

2.3.3 Kirchhoff Integral Theorem

The Green function chosen in this theorem is a spherical wave given by:

G(r) =
ejkr01

r01
(2.11)

here, r is the position vector from a point in the observation plane, P0, to an
arbitrary point in space, P1. The distance from P0 to P1 is the corresponding
distance, given by

r01 =
√
(x0 − x)2 + (y− y0)2 + z2 (2.12)

This is illustrated in Figure 2.4.

Figure 2.4: Geometrical arrangement used in deriving Kirchhhoff’s Integral Theorem.

Both U(r) and G(r) satisfy the Helmholtz equation, thus the left hand side of
Eq. 2.10 becomes∫∫∫

V
(G∇2U −U∇2G) dv =

∫∫∫
V

k2[UG− GU] dv = 0 (2.13)

This means that Eq. 2.10 can now be written as∫∫
S
(G

∂U
∂n
−U

∂G
∂n

) ds = 0 (2.14)

Again, ∂/∂n is a partial derivative in the outward normal direction at each point
of S. U corresponds to the wave field.The integral over S0 goes to zero as the
radius R→ ∞ if

lim
R→∞

R
(

∂U
∂n
− jkU

)
= 0 (2.15)
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2.3 From light wave to diffraction pattern 11

This is the Sommerfeld radiation condition and leads to results that correspond
with experiments [6]. The only surface that remains in Eq. 2.14 is S1, and the
integral becomes

U(P0) =
1

4π

∫∫
S1

(G
∂U
∂n
−U

∂G
∂n

) ds (2.16)

Surface S1 is an infinite opaque plane with any aperture denoted by A. Two
approximations have to be made to determine the value of U(r) on the sur-
face of the aperture, these are called the Kirchhoff boundary conditions or the
Kirchhoff approximation [1]. They state that U(x,y,z) and its partial derivative
in the z-direction are discontinuous outside the aperture, and continuous inside
the aperture (at z = 0). This leads to the following solution for U(P0), with the
integral only over aperture A [6]:

U(P0) =
1

4π

∫∫
A

(
G

∂U
∂n
−U

∂G
∂n

)
ds (2.17)

Filling in our choice for Green’s function:

U(P0) =
1

4π

∫∫
A

(
ejkr01

r01

∂U
∂n
−U

∂

∂n

(
ejkr01

r01

))
ds (2.18)

2.3.4 Fresnel-Kirchhoff diffraction formula

The expression for U(P0) in Eq. 2.18 can be further simplified by assuming
that the distance r01 between the aperture and observation point is many optical
wavelengths.

∂G(P1)

∂n
=

∂

∂n

[
ejkr01

r01

]
= cos(θ)

[
jk− 1

r01

]
G(P1) ∼= jk cos(θ)G(P1) (2.19)

Substituting this approximation in Eq. 2.18, we find [6]:

U(P0) =
1

4π

∫∫
A

ejkr01

r01

[
∂U
∂n
− jk cos(θ)U

]
ds (2.20)

Now, suppose that the aperture is illuminated by a single spherical wave origi-
nating at a point P2. The distance between P1 and P2 is r21, the angle between n
and r21 is θ2.

U(P1) = G(r21)
ejkr21

r21
(2.21)
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2.3 From light wave to diffraction pattern 12

∂U(P1)

∂n
∼= jk cos(θ2)G(r21) (2.22)

Filling this into Eq. 2.20 yields the following result:

U(P0) =
1
jλ

∫∫
A

ejk(r21+r01)

r21r01

[
cos(θ)− cos(θ2)

2

]
ds (2.23)

This result is known as the Fresnel-Kirchhoff diffraction formula. It is valid for
the diffraction of a spherical wave by a plane aperture [6].

2.3.5 Rayleigh-Sommerfeld Diffraction Formula

Kirchhoff’s theory has yielded impressive experimental results and is widely
used. However, there are certain inconsistencies in this theory caused by impos-
ing Kirchhoff’s boundary conditions on both the field strength and its normal
derivative. If a two-dimensional potential function and its normal derivative
vanish along any finite curve segment, then the potential function must van-
ish over the entire plane. The same holds for a three-dimensional wave equa-
tion, if it vanishes on any finite surface element, it must vanish in all space. In
other words, Kirchhoff’s boundary conditions say that the field is zero behind
the aperture, which we know contradicts the physical situation [5]. Also, the
Fresnel-Kirchhoff diffraction formula for a spherical wave fails to recreate the
boundary conditions when the observation point is closer to the aperture.

These inconsistencies were later removed by Sommerfeld with the use of an-
other Green’s function. We start again with Eq. 2.16. This equation is valid
if the scalar theory holds, both U and G satisfy the homogeneous scalar wave
equation and the Sommerfeld radiation condition is satisfied [5]. The following
Green’s function is used by Sommerfeld:

G2(r) =
ejkr01

r01
− ejkr01

r01
(2.24)

r01 is the distance from P0 to P1, and P0 is the mirror image of P0 with respect
to the initial plane. r01 is the mirror function of r01, thus the distance from P0 to
P1. Filling G2(r) into Eq. 2.16 gives us the first Rayleigh-Sommerfeld diffraction
formula [6]:

U(x0, y0, z) =
1
jλ

∫∫ +∞

−∞
U(x, y, 0)

z
r01

ejkr01

r01
dx dy (2.25)
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2.4 Further Approximations 13

In some textbooks such as Introduction to Fourier Optics from the McGawhill
Electrical and Computer Engineering Series [5], z

r01
is replaced by cos θ, where θ

is the angle between the vectors n and r01. Eq. 2.25 shows that U(x0, y0, z) can
be interpreted as a linear superposition of diverging spherical waves, spreading
out from a point (x,y,0) in the aperture weighted by 1

jλ
z

r01
U(x, y, 0). This is the

mathematical form of the Huygens-Fresnel principle [1][6].

2.4 Further Approximations

Eq. 2.25 is often used to calculate diffraction. However, solving this integral
analytically is almost impossible to do for all but simplified setups. Luckily,
certain approximations can be applied to the Rayleigh-Sommerfeld diffraction
integral to allow simpler calculations. They are only valid in certain regions,
farther away from the aperture. The approximations we will consider are the
Fresnel and Fraunhofer approximations. In Figure 2.5 the valid regions for the
approximations are shown. Rayleigh-Sommerfeld is valid in the entire half-
space to the right of the aperture, Fresnel is valid in the ’near field’ and Fraun-
hofer in the ’far field’ [6]. Exact bounds will be calculated below. Also, we will
look at the calculation of Fresnel diffraction using a Fourier Transform, as we
use this application later in our simulations.

Figure 2.5: The different regions where the Rayleigh-Sommerfeld integral, Fresnel and
Fraunhofer are valid.
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2.4 Further Approximations 14

2.4.1 Fresnel Diffraction

The first step towards the Fresnel diffraction integral is the paraxial approxi-
mation, stating that z is much larger than the aperture size [6]. Then we look at
the biggest problem of Eq. 2.25, the expression for r01

r01 =
√
(x0 − x)2 + (y0 − y)2 + z2 (2.26)

We can simplify this by defining ρ and substituting it into the expression for r01:

ρ2 = (x0 − x)2 + (y0 − y)2 (2.27)

r01 =
√

ρ2 + z2 = z

√
1 +

ρ2

z2 (2.28)

Now we use the binomial expansion for
√

1 + b. This is given by:

√
1 + b = 1 +

b
2
− b2

8
+ ... (2.29)

We can now express r01 as

r01 = z

[
1 +

ρ2

2z2 −
1
8

(
ρ2

z2

)2

+ ...

]
= z +

ρ2

2z
− ρ4

8z3 + ... (2.30)

If we use all terms of the binomial expansion, we don’t make an approximation.
So how many terms of the binomial expansion suffice? The answer depends on
the occurrence of r01. In the denominator of Eq. 2.25, the error of dropping all
terms except the first one (z) is relatively small so we can say r2

01 ≈ z2. However,
for the r01 in the exponential, the errors are more substantial, since r01 is mul-
tiplied with k, a large value. Therefore, we need to retain the first and second
term of the binomial expansion in the exponent [5]. The key to Fresnel approxi-
mation is assuming that the 3rd term is very small and thus can be left out. This
is true if it is much smaller than the period of the complex exponential 2π:

k
ρ4

8z3 � 2π (2.31)

Using the fact that k = 2π
λ we get the following relationship:

ρ4

λ4 � 8
z3

λ3 (2.32)

1
λ4 (x0 − x)2 + (y0 − y)2 � 8

z3

λ3 (2.33)
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2.4 Further Approximations 15

If this condition holds for x, x0, y, y0 we can neglect third or higher order terms
in the binomial expansion. For experimental setups using optical wavelengths
λ, λ is often much smaller than the other physical dimensions: λ � z and
λ� ρ. This holds if ρ� z and together with Eq. 2.31 marks the Fresnel region
[6].

In this region we can then make the Fresnel approximation for r01:

r01 ≈ z +
ρ2

2z
= z +

(x0 − x)2 + (y0 − y)2

2z
(2.34)

Filling this into Eq. 2.25 for r01 together with r2
01 ≈ z2 in the denominator we

get the Fresnel diffraction integral:

U(x0, y0, z) =
ejkz

jλz

∫∫ +∞

−∞
U(x, y, 0)ejk[(x0−x)2+(y0−y)2] dx dy (2.35)

Another way to represent the Fresnel diffraction integral is through a Fourier
Transform. We can numerically calculate this Fourier Transform much faster
using the numpy.fft module [8]. First, we write out (x0 − x)2 and (y0 − y)2:

(x0 − x)2 = x2
0 + x2 − 2x0x (2.36)

(y0 − y)2 = y2
0 + y2 − 2y0y (2.37)

Now we can express the Fresnel diffraction integral as a two-dimensional Fourier
Transform in k-space, using the following definition, where p, q are wave num-
bers like k:

G(p, q) = F[g(x, y)]
∫∫ +∞

−∞
g(x, y)e−2π j(px+qy) dx dy (2.38)

We express the Fresnel diffraction integral as [6]:

U(x0, y0, z) =
ejkz

jλz
e

jπ
λz (x2

0+y2
0)F
[
U(x, y, 0)e

jπ
λz (x2+y2)

]∣∣∣∣∣
p= x

λz ,q= y
λz

= h(x, y) · G(p, q)|p= x
λz ,q= y

λz

(2.39)

It can be seen that the field strength U in the observation plane can be calcu-
lated by taking the Fourier transform of the product of the field distribution in
the aperture U(x, y, 0) and a quadratic phase function in the exponent.
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2.4 Further Approximations 16

2.4.2 Fraunhofer Diffraction

Now we consider a more rigid approximation, which, greatly simplifies the
diffraction calculations when valid. This approximation is valid in the so-called
far-field, or the Fraunhofer region. In addition to the Fresnel approximation
which resulted in Eq. 2.35, we now make the stronger Fraunhofer approxima-
tion:

z� k[(x0 − x)2 + (y0 − y)2]

2
(2.40)

If this is condition is satisfied, we are far away from the aperture and we can

ignore the quadratic terms in the exponent under the integral e
jk
2z [(x0−x)2+(y0−y)2]

because they are very small. Thus, the expression in the exponent becomes

e−
jk
2z (x0x+y0y) [5]. This gives us the following integral [6]:

U(x0, y0, z) =
ejkz

jλz
e

jk
2z (x2

0+y2
0)
∫∫ +∞

−∞
U(x, y, 0)e−

2π j
λz (x0x+y0y) dx dy (2.41)

This can also explicitly be written as an integral over the aperture A:

U(x0, y0, z) ∝
∫∫

A
U(x, y, 0)e−

jk
z (x0x+y0y) dx dy (2.42)

Then one can clearly see that U(x0, y0, z) is the 2D-Fourier transform of the field
in the aperture plane U(x, y, 0) at frequencies p = x0

λz and q = y0
λz [6]. Eq. 2.41 is

the Fraunhofer diffraction integral and holds in the Fraunhofer region. A more
elegant way to determine the minimal z-distance for this region is the ”antenna
designer’s formula” [5].

z >
2D2

λ
(2.43)

In this equation, D is the largest dimension of the aperture D = max(x2 + y2).
If z meets this requirement, you are in the Fraunhofer region. Another way
to make use of the Fraunhofer approximation if you don’t have room in your
experimental setup for a large D, is to view the diffraction pattern in the focal
plane of a lens [2].

2.4.3 Fraunhofer Diffraction behind Double Slit

Now, let us consider the double slit as aperture (Figure 2.6) and analyze the
resulting diffraction pattern using the Fraunhofer diffraction integral in one di-
mension. In 1D the Fraunhofer diffraction integral reduces to:

U(y0, z) =
ejkz

jλz
e

jk
2z y2

0

∫
A

U(y, 0)e−
jk
z (y0y) dy (2.44)
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2.4 Further Approximations 17

If we only address the relevant part of the integral and leave out the constants
we get [7]: ∫

A
ejky sin θ dy =

∫ a

0
ejky sin θ dy +

∫ d+a

d
ejky sin θ dy (2.45)

=
1

jk sin θ

(
ejka sin θ − 1 + ejk(d+a) sin θ − ejkd sin θ

)
=

(
ejka sin θ − 1

jk sin θ

)(
1 + ejkd sin θ

)
(2.46)

U(y0) = 2ae
1
2 jka sin θe

1
2 jkd sin θ sin[1

2 ka sin θ]
1
2 ka sin θ

cos
(

1
2

kd sin θ

)
(2.47)

Figure 2.6: Schematic drawing of double slit.

To obtain the intensity I from U, we square the absolute value of U: I = |U|2
[7]. The result we obtain is equivalent to the analytical formula for diffraction
behind a double slit, Eq 2.5:

I(y0) = I0

(
sin[1

2 ka sin θ]
1
2 ka sin θ

)2

cos2
(

πd
λ

sin θ

)

= I0

(
sin[πa(sin θ)/λ]

πa(sin θ)/λ

)2

cos2
(

1
2

kd sin θ

)
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Chapter 3
Double Slit Experiment

Before starting on simulating the double slit experiment, we had perform the
experiment physically. To make the virtual reality experience as close to the
actual experiment, we determined the dimensions of the optical experiments,
and calculate the parameters such as the slit width a and double slit distance
d. In this chapter our experiment is discussed. How did we determine the
parameters, and how do our results compare to the analytical formula?

3.1 Goal & Hypothesis

The goal of this experiment was to study the interference of light due to a
double slit and see how each optical instrument influences the interference pat-
tern. We also determine the parameters for the slit width a & distance between
the slits d and compare the interference pattern to the analytical formula. The
parameters determined in the physical experiment are used in the simulations.

We expect that the interference pattern is described by Eq.2.5. However, we
expect that it may not entirely overlap due to misalignments. For example, if
more light falls on one slit, we expect the maximum to shift towards the side of
the more illuminated slit.

3.2 The Setup

The optical experiments in the virtual environment designed by VR Lab are
based on the instruments used to build the setup. The setup is very straightfor-
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3.3 Calculation of d and a 19

ward. A laser pointer (frequency doubled Nd:YAG, λ = 5.32 · 10−7m), double
slit, and CCD Alphalas (2048 pixels, pixel length = 14 µm) are placed on an op-
tical rail [15]. One can find a schematic drawing of the setup in Figure 3.1. An
extra screen is used to align the laser, this also has to be done in the VR appli-
cation. A lens (f = 60 mm) is added between the double slit and the CCD or
screen. The lens is used to determine the slit distance d and slit width a.

Figure 3.1: Schematic drawing of the double slit experiment setup.

3.3 Calculation of d and a

3.3.1 Measurement

When the distance between the lens and double slit is twice the focal distance
of the lens v = 2 f , one does not see a diffraction pattern on the screen, one
simply sees two illuminated slits. The distance between these slits, and the
width of these slits can be measured and used to calculate the actual d and a of
the double slit. To do this, the lens formula and magnification formula are used.

1
f
=

1
v
+

1
b

(3.1)

N =
b
v
=

B
V

(3.2)

In these equations, v is the distance between object and lens, b the distance be-
tween lens and image, f the focal distance, V the size of the object, and B the size
of the image. We measured v and used it to calculate b with the lens formula.
Then we calculated the magnification N. We could measure B on the screen, this

Version of July 6, 2021– Created July 6, 2021 - 16:46

19
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was either the distance between the illuminated slits or the slit width. With this
info, V was calculated. The formula for V is:

V(B, v, f ) =
1

B
(

v
f − 1

) (3.3)

This equation yielded the results found in Table 1.

v [mm] σv [mm] b [mm] σb [mm] N σN [mm] B [mm] σB [mm] V [mm] σV [mm]

68 4 510 4 7.5 0.45 2.24 0.3 0.299 0.044
75 4 300 4 4 0.22 1.18 0.3 0.295 0.077
65 4 780 4 12 0.74 3.8 0.3 0.317 0.032
70 4 420 4 6 0.347 1.8 0.3 0.3 0.053

Table 3.1: Measurements and calculations of V. In this case, V is the distance between
the two slits: d. σ is the error in each measurement.

The mean is taken of all values for V. This yields V or dexperiment = 0.30 ±
0.05 mm. In Eq. 3.4 you find the formula we used to calculate the error.

σq(x, y) =

√(
∂q(x, y)

∂x
σx

)2

+

(
∂q(x, y)

∂y
σy

)2

(3.4)

In the same way, the slit width was calculated, now the width of a slit was
measured on the screen at distance b. The results obtained are in Table 3.2.

v [mm] σv [mm] b [mm] σb [mm] N σN [mm] B [mm] σB [mm] V [mm] σV [mm]

68 4 510 4 7.5 0.45 0.8 0.2 0.107 0.027
72 4 360 4 5 0.29 0.45 0.2 0.09 0.04
65 4 780 4 12 0.74 1.2 0.2 0.1 0.018
70 4 420 4 6 0.347 0.5 0.2 0.083 0.034

Table 3.2: Measurements and calculations of V. In this case, V is the slit width: a. Again,
σ is the error in each measurement.

We again take the mean of the different results obtained for V and σV and this
gives us a slit width aexperiment = 0.10 ± 0.03 mm. Since the error margins are
large compared to the obtained values for d and a, in the next section we will
discuss the determination of d and a using a microscope.
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3.3 Calculation of d and a 21

3.3.2 Microscope

To more accurately determine the parameters d and a for the simulations,
we measured them using a Nikon Japan Microscope. First, we determined the
length of d and a in pixels, then converted the length in pixels to length in SI
units by multiplying the length in pixels by the length of one pixel. To deter-
mine the length of one pixel, we had to calibrate the microscope. To do this, you
measure a distance you already know, and measure the distance in pixels. This
way you can calculate the pixel length. In order to determine the pixel length,
we used a single slit with width a = 150 µm and a geo triangle with a = 1 mm =
1000 µm. We measured the width of both objects at multiple locations and took
the average of these measurements.

The pixel length based on the single slit was Lss = 1.09 ± 0.02 µm. The pixel
length based on the geo triangle was Lgeo = 1.05 ± 0.03 µm. To determine the
error in pixel length, Since the different calibration objects yielded us different
pixel lengths, we got two different values for d and a of the double slit. These
values can be found in Table 3.3.

Calibration d [µm] a [µm]

Single slit 349 ± 6.8 54 ± 2.4
Geo triangle 336 ± 3.1 52 ± 2.1

Table 3.3: Results for slit distance d and slit width a obtained with geo triangle and
single slit calibration.

The results for d and a obtained with the two calibration methods are not the
same. Therefore, we take the average of the two results and propagate the error.
We again used Eq. 3.4 to calculate the error in our final result. We concluded
that d = 343 ± 3.7 µm and a = 53 ± 1.6 µm.

We suspect that the difference in pixel length obtained via the different objects
is caused by the distance between the microscope lens and object. In order to
focus the lens on the object, we adjust the distance between the lens and said
object. Hence the pixel length may vary. Also, we couldn’t get the two slits of
the double slit in focus at the same time. This might be because the slits are not
perfect. One slit might be deeper than the other one. We think that these factors
contribute to the error in our findings.
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At the first glance, it seems odd that d and a don’t have perfectly rounded di-
mensions. However, the double slit and many other optical instruments used in
the Bachelor Lab, are made by the Leidse Instrumentmakers School specifically
for the Physics program and they slightly varied the size of the instruments so
not all students get exactly the same results when conducting their experiments.
Thus, our obtained results for d and a are valid, and we will use these as our
parameters in our simulations. We will use the results for d and a obtained with
the microscope, since these are more accurate.

3.4 Interference pattern

The next step in our experiment was to determine the interference or diffrac-
tion pattern. To look at said pattern, we used the CCD Alphalas webcam appli-
cation. In this application, the signal of each pixel is plotted. In Figure 3.2 you
can see the interference pattern caused by the double slit aperture. The distance
between the double slit and CCD was 79 cm. In the left plot, the raw data is
plotted. In the right plot, the noise is reduced by subtracting the mean of the
captured noise data. The x-axis was transformed from pixels to µm, by multi-
plying the array containing the data points for the x-axis with the pixel length of
14 µm. Lastly, we normalized the intensity by dividing it through the maximum
intensity, in order to be able to compare it more easily to future simulations and
the analytical formula for the diffraction pattern.

Figure 3.2: Diffraction pattern behind double slit. In both plots, the distance between
double slit and CCD camera R = 79 cm. Parameters d = 343 µm, a = 53 µm. The left plot
is the raw data. The right plot shows the same data with noise reduction, normalized
intensity and the position in µm on the x-axis.

In Figure 3.2 one can see that the interference pattern isn’t perfectly centered
around x = 0. This is due to a misalignment of the double slit or laser pointer.
The double slit is slightly rotated, so one slit is closer to the light source than
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3.4 Interference pattern 23

the other. This causes a different phase of the light from the two slits. One
can observe this even more clearly in Figure 3.3. Here the normalized interfer-
ence pattern obtained through the CCD and the analytical formula (Eq. 2.5) are
plotted in the same plot along the same axis. However, we substituted sin θ by
x/R in order to get the same x-axis. In this plot, one can also see that the min-
imums of the experimental interference pattern don’t go to zero, while they do
in the analytical formula. We suspect that this is also due to imperfections in
our setup, such as misalignments and the manufacturing of the double slit.

Figure 3.3: Comparison of experimental result and analytical formula (Eq. 2.5) for
diffraction pattern. The parameters are d = 343 µm, a = 53 µm, R = 79 cm, λ = 5.32∗ 10−7

m.
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Chapter 4
Simulations

In this chapter the simulations of the double slit experiment are discussed.
First we will look at simulations made with the library Diffractio [13], a diffraction-
interference module for python. In this module, we used the Rayleigh-Sommerfeld
diffraction integral to calculate the diffraction pattern. Then, we will discuss our
own simulations, we implemented the Fresnel approximation, and converted it
to a FFT. We will also look at the 2D FFT of the Fresnel approximation.

4.1 Diffractio

We mainly used Diffractio to check whether our own simulations were going
in the right direction. Also it was a good example on how to proceed with the
sort of calculations needed. For example, we had to calculate a double integral
over two planes; the source plane and the observation plane. These integrals
can take a long time and for the application of our project, it is vital to make the
simulations as fast as possible.

We will not be comparing the Diffractio results to our experimental results,
since it would be unnecessary since we will compare the experimental results to
our own simulations in the next subsections. What we will discuss this section,
is the simulation of light sources in Diffractio and double slit. Then, we will
look at the diffraction pattern at different distances from the double slit. Next,
we will include a lens and observe the diffraction pattern in the Fraunhofer
region. Lastly, we will summarize the main takeaways important for our own
simulations.
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4.1 Diffractio 25

4.1.1 The Light Sources and Double Slit

The light sources we used in our simulations were a plane wave and a Gaus-
sian beam. According to Brooker’s Modern Classical Optics [3]: ”A Gaussian
beam is a beam of light whose profile varies in a Gaussian way with radial dis-
tance from its central axis.” A Gaussian beam is important for our simulations
because the output of a laser is often of the form of a Gaussian beam. In Figure
4.1 one can see the two different light sources made using Diffractio. The wave-
length used is λ = 532 nm, the same as in the actual experiment. The functions
used for the light sources can be seen below.

Formula for plane wave:

A*exp(1j*k*(self.x*sin(theta) + z0*cos(theta)))

Formula for Gaussian beam:

gausbeam0.gauss_beam(x0, w0, z0, A=1, theta=0.0)

For both sources, we used the following parameters: k = 2π/λ, θ = 0 (the
incident angle of the wave), z0 = 0. The array x is the x-axis we use to create
the light source. Here, 2000 µm with 8192 data points. We give both sources an
amplitude A of A = 1. In addition, w0 = 300 µm, this is width of the Gaussian
beam at z = 0.

Figure 4.1: Light sources in Diffractio.

For the aperture function we used a double slit mask. We assigned the fol-
lowing parameters:

• The distance between the slits: d = 80 µm.

• Slit width a = 30 µm.

• Range: the same x-array used in the source.
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It is important to note that the aperture plane, source plane and observation
plane are all the same size, and contain the same number of data points. This is
disadvantageous because the greater the distance between the source plane and
observation plane, the wider the diffraction pattern becomes and the greater our
x-array needs to be. This leads to slower calculations and sometimes plotting
errors since the Diffractio algorithms can’t handle the amount of data points.

4.1.2 The Diffraction Pattern

We chose to calculate the diffraction patterns with the Rayleigh-Sommerfeld
algorithm Diffractio offers. The function for the light source is multiplied with
the aperture function and results in an array we named uds. Then, the Rayleigh-
Sommerfeld algorithm is applied using a given distance z. As you can see in
Figure 4.2, the diffraction pattern greatly varies at different distances from the
aperture. At the distance of z = 5 mm, the pattern looks nothing like the analyt-
ical formula. The more the distance increases, the pattern looks like the pattern
in the Fraunhofer region.

Figure 4.2: Diffraction pattern behind double slit(d = 80 µm, a = 30 µm) at different
distances from the aperture, illuminated with plane wave.

You can also observe in figure 4.2 that the diffraction pattern widens as the
distance increases. That is why we adjusted the x-axis accordingly. Further-
more, Diffractio does calculate the intensity, and you can see that the greater
the distance z, the lower the intensity. The diffraction patterns farther away
from the aperture have the same form as the analytical formula Eq 2.5, with a
sinc-function as envelope. However, because the slit width a and slit distance d
are smaller than in the experiment, less maximums are present.

4.1.3 Adding a Lens: Fraunhofer Region

To look at the diffraction pattern in the Fraunhofer region, the far field, we
add a lens and place the aperture in the focal point of the lens. The lens has a
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focal distance of f = 10 mm and a diameter of 5 mm. The lens gives the field
incident to the lens a quadratic phases shift. This phase shift is depicted in the
center image of Figure 4.3. The sawtooth function on the left and right side of
the parabola are present because the phase shifts from π and −π.

The procedure of calculating the diffraction pattern with a lens present is a
different from the method explained in the previous section. The part where
the light source array is multiplied with a mask of the aperture remains un-
changed. Then, a new mask is created: the lens. You can give this lens your
desired parameters: focal length, diameter, and wavelength. You multiply your
lens mask with uds : uds_lens = uds*tlens. You fill in at what distance z you
want to calculate the diffraction pattern, and apply the Rayleigh-Sommerfeld
algorithm to uds_lens.

On the right side of Figure 4.3 you can see the diffraction pattern when the
double slit aperture is placed in the focal plane of the lens. This is part of the
Fraunhofer regime. If you look back at Eq. 3.1, you can see that if the distance
between the aperture and lens (v) is equal to the focal length (f), the distance to
the image of the aperture (b) is infinite. Thus, the right side should match the
plot of the analytic formula.

Figure 4.3: Diffraction pattern behind double slit(d = 80 µm, a = 30 µm), illuminated
with plane wave. Left image is diffraction pattern without lens at a distance of z = 10
mm, the middle image shows the amplitude and phase of the lens, and the right image
shows the diffraction pattern when the double slit aperture is placed in the focal plane
of the lens.

4.2 Own Simulations

There are many ways to calculate the diffraction pattern behind an aper-
ture. In this section two approaches are discussed. First we will look at our
implementation of Fresnel diffraction using Eq. 2.35. We only consider the 1-
dimensional scenario. Then, we examine the conversion of Fresnel diffraction
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into an Fourier transform, using the FFT module of NumPy [8]. This is done in
two dimensions. We imported Numpy as np.

4.2.1 1D Fresnel Diffraction Integral Method

The most direct way to calculate the diffraction pattern is via Eq. 2.35. To
examine the method, we will discuss the creation of light sources, double slit
and diffraction pattern we obtained.

Creation of Light Source and Double Slit

Just like the Diffractio simulations, the light source was either a plane wave
or a Gaussian beam. We created functions for the Gaussian beam, plane wave
and double slit. The plane wave has the same form and parameters as the plane
wave from Diffractio [13]. The Gaussian beam was defined as a Gaussian func-
tion:

Ugb = e−(
x−µ

σ )
2

(4.1)

The maximum amplitude is one by default. σ is normally the standard devia-
tion, but also determines the width of the curve. We took σ = 200. µ determines
the location of the maximum, and we took µ = 0 as default. Furthermore, x is
an array containing the data points at the source plane, defined as follows:

size = 20000

ndatapoints = 2048

x = np.linspace(-size/2, size/2, ndatapoints)

Here, size is the length of the array in µm. ndatapoints speaks for itself.

The aperture in question is of course a double slit. We could define the slit
distance d, slit width a. The plane containing the double slit has the same num-
ber of data points and has the same size as the source. The transmission of
light (x) is 1 in the slits, and 0 everywhere else. We multiply the function defin-
ing the source plane with our double slit function plane wave(), and is used to
calculate the diffraction pattern at a later stage. This process is similar to the
Diffractio algorithm, however, we don’t use masks and classes, only functions.

The calculation so far is:

u_plane = plane_wave(0,0,x)

ds_aperture = double_slit(d = 343, a = 53, x)

u_ds_1 = u_plane * ds_aperture

Version of July 6, 2021– Created July 6, 2021 - 16:46

28



4.2 Own Simulations 29

Where u plane() is a plane wave as light source without phase shift perpendic-
ular to our optical axis z.

The Diffraction Pattern

The next step is to calculate the diffraction pattern. To do so, the inegral from
Eq. 2.35 is defined in the following way:

import numpy as np

prefactor = 1/(1j*lamb)

u_fresneldif = np.zeros(len(xobserve), dtype=’complex_’)

for p in range(len(xobserve)):

rfresnel = z + (xobserve[p]-x)**2/(2*z)

u_fresneldif[p] = prefactor * np.sum( u_ds_1

*(z/rfresnel**2) * np.exp(1j*k*rfresnel) )

An empty list is created and for each for-loop iteration over p in the length of
array xobserve the position in the observation plane is calculated at distance z
from the double slit. Then this value rfresnel is used to calculate the optical
field at this position. The sum is taken over all the contributions of the field in
the double slit plane to the optical field in the observation plane.

To get the intensity of the diffraction pattern, we take the absolute value
of u fresneldif and square it. To make comparisons to other methods eas-
ier, the results are normalized by dividing by the maximum value of array
u fresneldif.

Figure 4.4: Diffraction pattern behind double slit aperture, calculated using the Fresnel
Approximation as integral.

In Figure 4.4 the results are plotted of the above described method. The same
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parameters were used as determined in the experiment and at the same distance
z = R.

4.2.2 2D Fresnel FFT Method

The previous method delivered correct results and can be used to calculate
the diffraction pattern at all distances from the double slit in the Fresnel region.
Nonetheless, the for-loop used to calculate the integral takes a while, and is too
slow for more data points. Therefore, it cannot be converted to 2 dimensions.
Thus, another method is needed. Since the Fresnel diffraction integral after ap-
plying the Fresnel approximation can be converted into a Fourier transform, we
used the FFT module of NumPy to make simulations of the diffraction pattern
in 2D [8]. In addition to the use of NumPy and matplotlib, SciPi packages misc
and ndimages are also used [11].

Creation of Light Source and Double Slit

The function for the light source in 2D is created using a similar formula to the
Diffractio module [13]. However, in our own simulation no classes and masks
are used. The double slit is created out of two single slits, inspired by Rafael de
la Fuentes simulations [4]. The function that creates the Gaussian beam works
as follows:

import numpy as np

def gaussian_beam2D(x, x0, y, y0, w0, z0, A, phi, theta):

global k

x0 = int(x0 + z0*np.sin(theta))

y0 = int(y0 + z0*np.sin(phi))

w0x = w0

w0y = w0

z_rayleigh = k * w0x**2 / 2

alpha = np.arctan2(z0, z_rayleigh)

wx = w0x * np.sqrt(1 + (z0/z_rayleigh)**2)

wy = w0y * np.sqrt(1 + (z0/z_rayleigh)**2)

w = np.sqrt(wx*wy)

if z0 == 0:

R = 1e10

else:

R = z0 * (1 + (z_rayleigh / z0)**2)

amplitude = A * w0/w * np.exp(-(x-x0)**2/

(wx**2) - (y+y0)**2/(wy**2))
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phase1 = np.exp(1j*k)

phase2 = np.exp(1j * (k*z0 - alpha + k*(x**2+y**2)/(2*R)))

u_gaussian = amplitude * phase1 * phase2

return u_gaussian

The input parameters x and y are coordinate matrices from coordinate vectors.
(x0,y0) are the coordinates from the origin, If you want the beam centered,
these are both equal to 0. w0 is the beam width in the origin (x0,y0), and z0 is
the position of the Gaussian beam along the z-axis. In the center (x0,y0) the
intensity has amplitude A = 1, and the intensity fades from the center. On the left
side of Figure 4.5 the effect of phi and theta is shown. The origin (x0,y0,z0)

remains the same, but the laser is tilted in a certain direction. For a perfectly
aligned Gaussian beam, the parameters used are: x0,y0, theta, phi = 0, z0 =
104 µm, and w0 = 1500 µm. This corresponds to the values of z0 and w0 of the
laser used in the experiment in Chapter 3 [15].

Figure 4.5: The rotational planes of the Gaussian beam and double slit.

As mentioned at the beginning of this section, the double slit is created by
placing two single slits next to each other. They are placed next to each other
with an equal distance from x = 0. The single slit transmits 100% within its
own width, and transmits nothing of the light that falls on the opaque part.
Below you see the function that creates the double slit: double slit2D() from
function single slit2D(). Both contain the same amount of data points as the
source plane and have the same dimensions.

import numpy as np

def double_slit2D(distance, height, xwidth, ywidth, phi, theta, x,y):

global k
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double_slit = np.zeros((len(y), len(x)))

double_slit += single_slit2D(x0=-distance/2, y0=-height,

lx=xwidth, ly=ywidth, x=x, y=y)

double_slit += single_slit2D(x0=distance/2, y0=-height,

lx=xwidth, ly=ywidth, x=x, y=y)

double_slit = ndimage.rotate(double_slit, theta, reshape=False)

double_slit = double_slit * np.exp(1j*x*np.sin(phi)*k)

return double_slit

The important parameters of this function are the distance between the two slits
distance = 341 µm, slit width xwidth = 53 µm, length of a slit in y-direction
ywidth = 8000 µm. Also, (x,y) are coordinate matrices from coordinate vectors
with the same dimensions as (x,y) in the source plane. Furthermore, phi is the
rotation about the y-axis. If phi 6= 0, one slit is slightly closer to the observation
plane. Lastly, theta is the rotation about the z-axis, rotating the xy-plane, the ro-
tation is done using the SciPy function ndimage.rotate(double slit, theta)

[11]. If theta 6= 0, the double slit is tilted. This is further illustrated on the right
side of Figure 4.5.

The rotating of the double slit and Gaussian beam are crucial factors in recre-
ating the experimental results. With these techniques, the misalignment of the
double slit and laser can be replicated, creating more realistic simulations.

The Diffraction Pattern

In the same way as with the Fresnel approximation as integral, the source
field is multiplied with the aperture:

u = gauss2D_z * double_slit

Then, a Fast Fourier Transform (fft) is performed over this field uwith np.fft.fft2,
an algorithm to execute a 2D Fourier transformation in python. The function
can be found below.

import numpy as np

def fresnelfft2D(u, z, xsource, ysource):

global k, lambda

prefactor1 = np.exp(1j*k*z) / (1j*lambda*z)

prefactor2 = np.exp(1j*np.pi*(xscreen**2 + yscreen**2)/(lambda*z))

fft_u = prefactor1* prefactor2*np.fft.fft2(u * np.exp(1j *

k/(2*z) *(xsource**2 + ysource**2)))

U = np.fft.fftshift(fft_u)

return U
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For xsource and ysource we again take the coordination matrices of the coordi-
nation vectors. For z, we take the distance from the double slit to the observa-
tion plane. The actual fft fft u has the same form as Eq. 2.39. In order to center
the x-axis properly, the fft has to be shifted using np.fft.fftshift(fft u). This
makes x = 0 µm the center of the plots.

Figure 4.6: Diffraction pattern behind double slit. The left side shows the 2D diffraction
pattern, and the right side shows the normalized intensity profile. Number of data
points = 2048, R = 79 cm, d = 343 µm, a = 53 µm, λ = 532 nm. The parameters for the
Gaussian beam are the same as discussed in the previous section.

The results of the 2D Fresnel FFT Method can be seen in Figure 4.6. Again,
the same parameters are used as in the experiment. With this method, less
data points are needed and a wider part of the diffraction pattern is calculated.
Not only the first maximum of the sinc-envelope is plotted, also higher order
maximums are present.

4.3 Comparison of Results

In the last section of Chapter 4, the results of the different simulations are
compared to each other, and the Fresnel FFT method will be compared to the
experimental results. Only this method is compared to the experimental results,
since the rotation of the double slit and light source will give more realistic re-
sults. The Fresnel diffraction integral method will be compared to Diffractio and
to Eq. 2.5. Then, the intensity profiles of the Fresnel diffraction integral method
and Fresnel FFT method will be compared. Lastly, the Fresnel FFT simulation
will be compared to the experimental data.
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4.3.1 Diffractio vs. Fresnel Integral vs. Analytical Formula

In Figure 4.7 the intensity is plotted against the position on the screen in
the observer plane. To plot the different methods in the same figure with the
same x-axis, they all contain the same amount of data points (n = 8192). The
wavelength λ = 532 nm, and the other parameters are named in the title. All
methods are normalized in the same way by dividing through the maximum
intensity. The results of the three different methods match well at a distance
of R =10 cm, especially in the first maximums. But in the first sinc-envelope at
m = ±2, the intensity is higher for the Diffractio result than for the analytical
formula and the Fresnel integral. It is possible that this is due to the fact that the
analytical formula and the Fresnel integral are approximations.

Figure 4.7: Comparison of simulation with Diffractio module, Fresnel approximation
and analytical formula (Eq. 2.5).

4.3.2 Fresnel Integral vs. Fresnel FFT

Now, the two methods for our own simulations are compared. Since the FFT
method is in 2D and the Fresnel integral is in 1D, we only look at the intensity
of the diffraction pattern. We don’t compare both methods to the experimental
results, since the setup wasn’t aligned properly and it was already established
that there are some differences between the intensity of the experimental data
and the intensity of Eq. 2.5. Since Eq. 2.2 and the Fresnel integral give similar
results, we don’t compare them to the experiment. However, for the default
parameters for the 2D FFT method, the intensity patterns can be compared. The
results are shown in Figure 4.8.

The locations of the minimum and maximums correspond, however, their in-
tensities are higher in the pattern created using the Fresnel integral. We suspect
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Figure 4.8: Comparison of simulation with Fresnel FFT method and Fresnel
approximation.d = 343 µm, a = 53 µm, R = 79 cm, λ = 532 nm. For the FFT light source
rotation: θgb = 0 rad, φgb = 0 rad. For the FFT double slit rotation: θds = 0 rad and φds =
0 rad.

that this is due to the fact that the intensity pattern from the 2D FFT method is
calculated from a 2D array. Since the shape of the pattern is more important in
our simulations than the intensity, both methods are still valid. Especially since
the Fresnel integral only uses the matplotlib and NumPy module, and the FFT
method also needs SciPy modules. Even though the FFT methods requires less
data points, both methods take about the same amount of time to run. How-
ever, to more accurately simulate the experiment, the FFT method is preferred,
since you can rotate the double slit. With the amount of datapoints needed for
the Fresnel integral calculation, doing it in 2D would take too long for the VR
Lab application.

4.3.3 Fresnel FFT vs. Experiment

Lastly we compare the Fresnel FFT to the experimental results. Since we can
rotate the Gaussian beam and the double slit, we can replicate the diffraction
pattern we obtained with our slightly misaligned setup, seen on the right side of
Figure 3.2. In Figure 4.9, the Gaussian beam and double slit are slightly rotated
and are a better fit to the experimental results. With our program, we can correct
the double slit for the misalignment of the Gaussian beam. However, since both
optical instruments were probably partly misaligned in our experimental setup,
we also rotated both the Gaussian beam and double slit.

The simulation still doesn’t perfectly replicate the experiment. The mini-
mums of the simulations have a higher intensity than those of the experiment.
Also, the intensity of some maximums is higher than in our simulation. But,
the intensity of the two maximums in the middle match very well and the posi-
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tions of the minimums and maximums coincide. The mismatch of the intensity
can also be caused because of the way we reduced the noise. We subtracted
the mean of the noise from our intensity array. The average noise was around
∼ 200, and the maximum intensity ∼ 4000, so we also reduced our maximum
intensity by 200. This may have caused the higher intensity in the minimums.
Of course, it is also possible that the double slit was even more misaligned than
simulated.

Furthermore, there is still some noise present in the intensity of the experi-
ment and not all pixels of the CCD camera capture the light completely. That is
why some extremely sharp peaks are present in the experimental pattern. We
also noticed some reflections of laser light from the metal aperture and atten-
uators in our setup. This may have also caused some unwanted interference.

Figure 4.9: Comparison of diffraction pattern created using 2D FFT method and experi-
mental data. The parameters for both are: d = 343 µm, a = 53 µm, R = 79 cm, λ = 532 nm.
For the FFT light source rotation: θgb = 0.015 rad, φgb = -0.08 rad. For the FFT double
slit rotation: θds = -2 rad and φds = -0.006 rad.

To conclude the comparison of the experiment to the simulation with the
Fresnel FFT method, we can say that the rotation of the double slit and Gaus-
sian beam results in a closer resemblance to the actual experimental results. Of
course, there are still some factors that can be taken into account when creat-
ing a simulation, but the question is whether you want to include these in your
simulation as most of them are unwanted in the actual experiment.
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Chapter 5
Conclusion & Outlook

The goal of this Bachelor Research Program was to numerically calculate the
diffraction pattern behind a double slit aperture. These calculations will be used
by a company ’VR Lab’ so that students can use these simulations to virtu-
ally prepare themselves for the actual experiment at the university. In order to
achieve this goal, we studied several ways to calculate diffraction. We assumed
the light used in our simulations was in a dielectric linear, isotropic, homoge-
neous and non-dispersive medium, thus the light could be described by a single
scalar wave equation, and if the aperture is larger than the wavelength of the
light, this scalar wave equation could be transformed into the Helmholtz equa-
tion. To solve the Helmholtz equation and come up with a value for U(r), it is
converted into an integral. This can be done using one of Green’s functions. The
Kirchhoff Integral Theorem uses the first Green’s function, and to solve some
inconsistencies, Sommerfeld later used a different Green’s function. The Kirch-
hoff integral Theorem eventually yielded us the Fresnel-Kirchhoff diffraction
formula, valid for the diffraction of a spherical wave by a plane aperture. Som-
merfelds approach yielded us the Rayleigh-Sommerfeld diffraction formula,
and after applying the Fresnel approximation and Fraunhofer approximation,
we returned to the analytical formula.

In the physical experiment, the double slit distance d = 343 ± 3.7 µm and
slit width a = 53 ± 1.6 µm were determined, and the diffraction pattern behind
the aperture was obtained. Performing the actual experiment was an impor-
tant step towards our goal, since it showed us what factors were important
in simulating our data and showing us what to expect. The next step was to
simulate the diffraction pattern using a python module Diffractio. This was
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mainly used to check whether our own simulations were correct. For our own
simulations, we calculated the Fresnel integral using a for-loop, and we used
the FFT-algorithm from NumPy to calculate the Fresnel diffraction as a Fourier
transform. Both results corresponded with the Diffractio simulations. But be-
cause the second approach could be simulated in two dimensions, the double
slit and Gaussian beam could be rotated. This leads to a closer resemblance to
the experimental results.

Both methods can be used by VR Lab, their choice depends on the translation
of our Python code to C++. The FFT method also used a SciPy module to rotate
the instruments. Other important elements to consider in the further course of
this project are the speed of the calculations and the magnitude of the intensity.
using a for-loop takes a lot of time in python, and especially in virtual reality,
you want to see an immediate result of your action such as moving the obser-
vation screen. The intensity of the diffraction pattern should also be improved.
Because we normalized the intensity, this is not connected to the distance be-
tween the observation plane and aperture plane, but this is actually related to
one another. Lastly, the implementation of a lens should also be implemented,
both in one dimension as in two dimensions, since this is used to calculate the
parameters of the double slit aperture in the experiment.

All in all, our simulations contribute to the understanding of the behaviour
of light, and shows its wave-like nature. These simulations will hopefully help
future 1st year physics students to further their knowledge and prepare their
own experiment.
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