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Abstract

This paper addresses the optimization of RF power absorption into a Laser-
Induced plasma, naturally consisting of some highly conductive plasma
torus and a surrounding cloud of less conductive plasma. By reproduc-
ing experimentally determined values in simulations, a characterization
of the two plasma-components is made. Using CCD-images, the dimen-
sions of the plasma-components are determined, and an Ansatz is made
for the electron density distribution and decay of the conductive compo-
nent. Using 2.45 GHz power reflection- and 57 GHz voltage transmission
measurement data, the dielectric properties of both plasma-components
are determined by parametric sweeps in COMSOLTM. Finally, the most
accurate characterization of the LI-plasma is implemented in simulations
on magnetic induction heating within a TE-102 rectangular and a TE-011
cylindrical cavity, and the resulting power absorption ratios are compared
to that of capacitive heating in a TE-101 rectangular cavity.
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Introduction

Motivation for area of research

In its aim to decelerate climate change and the possible future depletion
of raw materials, the world is already starting to switch to sources of re-
newable energy in order to limit the emission of carbon dioxide. During
periods of low demand (such as nighttime), the excess energy needs to be
invested immediately. A popular investment is conversion of the electrical
energy to molecular energy. One example is the current production of hy-
drogen gas in offshore windmill parks, where hydrogen and oxygen gas
are produced from water by electrolysis. Another example, which is the
process that this paper aims to employ, is the dissociation of waste gases
by microwave heating. In general, the central premise of these processes is
a reverse exothermic reaction, in which a molecule is dissociated into com-
ponents by investment of energy required for its dissociation. The energy
invested in dissociation of the molecule can be released upon combustion
of the components into the original molecule (H2 +

1
2O2), or be used to cat-

alyze reactions (O2) and synthesize fuel (CO). As for carbon dioxide CO2,
its dissociation can happen along two possible reactions, consecutively re-
sulting in a net dissociation reaction:

1 CO2 + ∆H → 1 CO +
1
2

O2, ∆H = 2.9 eV

The decomposition of waste gases relies on adding energy to the waste
gas molecules in order to dissociate them. Conventionally, this energy
is added by excitation with magnetron radiation in a microwave cavity
containing the gas. The gas molecules can only absorb the radiation if
they contain charges or dipoles that respond to the RF-field (RF: radio fre-
quency). In domestic purposes, microwave heating relies on a sample’s
high water content: the molecular dipoles oscillate along with the electric
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field, where their vibration is equivalent to a rise in temperature. In dis-
sociation purposes of CO2, heating relies on increasing the susceptibility
to the RF-radiation by creating charges through ionization. The process of
ionization, where electrons gain enough energy to leave the correspond-
ing ions, turns a charge-less molecule into a positive- (ion) and negative
(electron) charge. This gas is susceptible to the electric field, because the
ions and electrons are displaced, and no longer shield each other. If the
gas is ionized beyond some significant degree (along with other proper-
ties), it is classified as a plasma. Because the temperature of a CO2-plasma
falls within the regime of dissociation, sustaining it through microwave
heating leads to dissociation. This method is called plasmolysis.

Established research on plasmolysis

Established research on plasmolysis revolves around injecting pure CO2-
gas into a microwave cavity sustaining a plasma, and extracting the gas.
The best research group to mention here is DIFFER [1]. Their setup em-
ploys a 2.45 GHz magnetron matched to a shorted WR-340 cavity by an
automatic matching circuit half a guide wavelength from the short, form-
ing a TE-101 mode. A fused quartz (FQ) tube runs down the center of the
TE-101 cavity, axisymmetric with the electric field. The plasma is created
and maintained by the oscillating electric field at the tube. On one end of
the tube, CO2-gas is injected with a volumetric flow rate of roughly V̇ ≈ 10
[slm], and the cavity is excited with an input power of roughly Pin ≈ 1
[kW]. On the other end of the tube, the (imperfect) reactor product gas-
mixture is extracted. From spectrometry measurements on the extracted
gas, the fractional conversion α could be determined by the amount of
dissociated CO2 molecules upon injection of some amount of injected CO2
molecules. In terms molecular flow rate of CO2-molecules in the injected
gas Ṅin and for molecular flow rate of CO2-molecules in extracted gas Ṅout,
the fractional conversion α equals:

α ≡ 1− Ṅout(CO2)

Ṅin(CO2)

Assuming RF-energy to be distributed equally to each molecule within
the reactor and approximating the two-step dissociation process as singular-
stepped, all CO2-molecules will dissociate if the energy per molecule (SEI)
equals the net dissociation reaction enthalpy ∆H; in which case α(SEI ≥
∆H) = 1 and α(SEI < ∆H) = 0. Under energy homogeneity, the specific
energy input (per molecule) - SEI - is simply the input RF-energy absorbed

2
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by molecules (Uin · ηRF) divided by the amount of absorbing molecules
(N), where ηRF is the RF-efficiency accounting for parasitic losses of RF-
power such as power loss to the cavity walls. Dividing the terms in both
the numerator and the denominator by time, SEI = Pin · ηRF/Ṅ ≈ Pin ·
ηRF/(V̇ ·n0), with Pin the RF input power, (Ṅ) the (injected) CO2-molecular
flow rate, and n0 ≈ 3 · 1025 [m−3] the Loschmidt constant. We may obtain
the total reactor energy efficiency ηtot in equation (1), representing the ratio
of energy invested in dissociation over the total invested energy.

ηtot = α
∆H
SEI

= α · ∆H
Pin
˙V · n
· ηRF (1)

In reality, the molecular energy distribution is unequal: intrinsically
due to Maxwell-Boltzmann statistics, and extrinsically due to non-homogeneous
field strength as well as ”gas-slippage” (injected gas slipping past the hot
plasma). This makes the fractional conversion α a function to be exper-
imentally determined from parameters applied to the reactor setup; the
volumetric injection flow rate (V̇) and input power (Pin).

Our ultimate aim is to achieve full reactor efficiency ηtot = 1. Exper-
imentally, this can be approached by ensuring SEI = ∆H correspond-
ing to a variation of the setup-parameters near the values Pin = 3 [kW]
and V̇in = 10 [slm]. If SEI < ∆H, then α < 1 because (some) molecules
do not attain the energy required for dissociation. If SEI ≥ ∆H, then
even if α = 1, ηtot < 1 because we have invested more energy per CO2-
molecule than should have been required for CO2-dissociation. There is an
endemic trade-off between conversion α and ηtot; increasing one decreases
the other.

Moreover, we aim to achieve a full conversion rate α = 1, because
the extraction of pure CO2 gas has cost energy investment. In order to
ensure that all injected molecules have undergone dissociation, we want
all injected molecules to pass through the plasma and remain within the
plasma for a significant residence time. The term ”gas-slippage” refers to
injected gas that does not pass through the plasma, and this issue is what
the introduction of a pre-formed laser-induced plasma intends to resolve.

Research description

This project provides a setup before the microwave heating of the cavity by
creating a plasma within the cavity, shortly after which the RF heating is
applied. A plasma is created by a 16 nanosecond-pulse of a 20 MegaWatt-
power laser beam focused at the center of the cavity by a 50 millimetre-
lens. The laser radiation is absorbed by the gas molecules at the focus,
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leading to a rise in temperature and subsequent ionization. The plasma
thus created at the focus undergoes a geometric evolution from the focal
point’s double cone shape; by thermal expansion and subsequent collapse,
a vortex ring is formed beyond 20 [us], which has the topology of a torus.
The vortex ring has a high degree of ionization, classifying as a plasma.
Following similar research, the plasma’s response to RF-heating has been
studied when the plasma is placed at the location of the cavity with the
highest electric field amplitude.

The microwave cavity contains a TE-101 mode, and it is placed inside
a vacuum chamber filled with helium-gas (rather than the CO2-gas to be
ultimately used in applications). The choice for helium is motivated by
the aim to study the RF-properties of the LI-plasma proper; the chemical
inertness of this noble gas ensures that absorbed power is converted only
to the sustenance of the plasma through ionization and heating. No gas
is injected or extracted. All research is focused on the RF-efficiency ηRF,
which is the ratio of power absorbed in the toroidal laser-induced plasma
Pa over the input power Pin.

Goals

The response of the LI-plasma to the 2.45 [GHz] magnetron frequency
was studied during the first 100 microseconds after the laser-pulse and
in two forms: power reflection measurements near 2.45 [GHz] for Pin = 1
[mW], and CCD-images of the LI-plasma’s radiant intensity with or with-
out magnetron heating at Pin = 3 [kW]. These preliminary experiments
indicated that capacitive heating of a LI-plasma were unsuccessful in sus-
taining it, with both measurements providing evidence that RF-power is
absorbed in a cloud around the toroidal vortex ring instead of the torus
itself.

By comparing CCD-images of the LI-plasma with and without mag-
netron heating, the (relative) excess plasma radiant intensity indicates lo-
calized power absorption. The first excess radiant intensity appears be-
yond t = 30 [us] after the laser pulse, and is situated exclusively within a
cloud, 1 [mm] around the toroidal plasma. Excess radiant intensity within
the toroidal plasma itself is identified only beyond a ”cutoff time” tc ≈ 50
[us], in which case the toroidal plasma would have decayed well below its
initial ionization grade.

Frequency-swept mW-power-reflection measurements on the plasma-
filled cavity provided the dynamic development of the resonance frequency
shift ∆ f and the quality factor Q. With respect to the empty cavity (Q∅, f∅ ∼
∆ f = 0), a reduced quality factor indicates the presence of an absorbing

4
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sample, and a high (negative) frequency shift indicates the presence of a
beyond-cutoff sample. Around the cutoff time tc = 50 [us], the previously-
stable frequency shift ∆ f ≈ −6 [MHz] decreases to zero within the next
20 microseconds. Simultaneously, the previously-increasing quality factor
decreases during the next 20 microseconds after cutoff time, after which it
steadily increases again to the empty cavity quality factor. This provides
additional evidence for a composite plasma, with one component absorb-
ing all RF-radiation up to tc, and with the other component remaining
beyond cutoff up to tc.

Our hypothesis is that during the laser pulse, the heavy ions remain
in place around close to the focal point of the laser beam, while the elec-
trons are scattered around this focus due to their lower mass, resulting
in respectively in a dense and a diffuse component. The dense, toroidal
component is coined the Laser-Plasma (LP), consisting of ions and slightly
fewer electrons. The diffuse component is coined the Electron-Cloud (EC),
consisting of electrons scattered from the laser focus.

Since we only want to supply energy to the dissociation reactions of
the ions inside the LP, the energy absorbed by the EC or cavity walls is
regarded as lost, and lastly any magnetron energy leaked by the cavity
is lost as well; ηRF ≡ Pa(LP)

Pin
. The focus in this project will be entirely on

maximizing the power absorption into the LP with respect to the EC or
the cavity walls. Our main research question in this Bachelor Research
Project being: ”How do we maximize the RF-power absorption into the
Laser-Plasma, and minimize the power absorption into Electron-Cloud
and cavity?”

General plan of attack

A full characterization of the plasma is made by a dynamic formulation of
the dielectric- and geometric properties of the two components separately.
The plasma geometry and its decay constant will be derived from CCD
images. The plasma dielectric properties will be derived by a paramet-
ric sweep of the electron density (and to a lesser degree the temperature)
within simulations of the measurement setup. A characterization is con-
cluded accurate if the |S11|2 and |S21| analysis on the 2.45 GHz resp. 57
GHz simulation setups with the same plasma reproduces both measure-
ments. The plasma with such properties is then subjected to heating under
magnetic induction, and the RF-efficiency under this new system is com-
pared to the efficiency under the old capacitive heating system.
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Chapter 1
Theory

1.1 Resonant cavity matching

The goal of this section is to describe how the EM-waves radiated by the
magnetron are channeled through a waveguide, and thereafter completely
contained by the cavity. This will therefore require a description of a cavity
resonator. A cavity resonator can be built in three steps: the waveguide,
a short at the waveguide’s end, and finally an iris - at some distance from
this short - forming a matched cavity. Analogously with this order, we
will cover the modes in a guide, along with the associated solutions for
equivalent voltage and current. Then we will combine these solutions to
come with a formula for the impedance, leading to an equivalent circuit
description. Finally, we will cover the matching and tuning of this circuit
through the equivalent circuit theory equations for a series circuit.

1.1.1 Transmission lines

We will begin transmission line theory from the structure of the modes
propagating through it. Transmission line theory describes the transmis-
sion of EM-waves along a waveguide. From the boundary conditions of
the E- and B-field for conductors, one can deduce the distribution of the
field within this guide. Whereas unrestricted EM waves originating from
a point source would emanate into all directions of 3D space attenuating
quadratically with the distance from the source, placing the source within
a waveguide constricts the waves to radiate along the 1D depth of the
waveguide, conserving all EM-energy within it. A waveguide is a hollow
conductive pipe that is of constant shape along its depth, the wave propa-
gation direction +ẑ. This periodicity of the waves in the z-direction can be
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represented as E(x, y, z) = E(x, y) · e−iβz, H(x, y, z) = H(x, y) · e−iβz. The
waves must satisfy the curl equations ∇ × E = −iωµ0H and ∇ × H =
iωε0E. This gives for the curl of the Electric field:

∂yEz + iβEy = −iωµ0Hx (1.1a)

∂xEz + iβEx = iωµ0Hy (1.1b)

∂xEy − ∂yEx = −iωµ0Hz (1.1c)

and for the curl of the Magnetic field:

∂yHz + iβHy = iωε0Ex (1.2a)

∂xHz + iβHx = −iωε0Ey (1.2b)

∂xHy − ∂yHx = iωε0Ez (1.2c)

Additionally, from Maxwell’s equations, we should get:

∂xHx + ∂yHy = iβHz (1.3a)

∂xEx + ∂yEy = iβEz (1.3b)

And lastly, we will need the boundary conditions of the electric and mag-
netic field:

E‖ = 0 (1.4a)

H⊥ = 0 (1.4b)

We will merely be considering the case of a rectangular waveguide,
with a and b the lengths in the x- and y-direction respectively. The re-
quirements on the propagation of the EM-wave naturally leads to formu-
lae describing the wave.

Suppose that the waveguide is irradiated at one end by EM-waves with
the electric field polarized in the y-direction. An electric plane wave prop-
agating in the +z-direction alone cannot propagate through the waveg-
uide, because the wave has no restriction such that Ey(x = 0) = Ey(x =
a) = 0 in order to satisfy equation (1.4)a. However, this restriction can be
implemented when considering two plane waves superimposed, with:

E1 = E0eikxxeikzzŷ

E2 = −E0e−ikxxeikzzŷ

The superposition of these plane waves equals

Etot = E1 + E2 = 2iE0 sin(kxx)eikzzŷ

8
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Such a superimposed wave is called a mode of the waveguide. The mode
that will propagate through our waveguide is represented as being a TE10
mode. For the general TEmnl form, the subscript s ∈ {m, n, l} indicates a
corresponding periodicity of s · λŝ

2 . Therefore, the TE10 mode E-field dis-
tribution follows a period π over x̂ and is homogeneous over ŷ. In order
to satisfy (1.4), we must have Etot(x = 0) = Etot(x = a) = 0. Combined
with the minimal periodicity m = 1, we therefore need kx = 2π

λx
= π

a . This
relation, combined with k2

x + k2
z = k2

0 and kz = β, we obtain:

λg =
2π

β
=

(
1

λ2
0
− 1

λ2
c

)− 1
2

[m] (1.5a)

λc = 2 · a [m] (1.5b)

λ0 =
c
f0

[m] (1.5c)

Here c is denotes the light speed constant c ≈ 3 · 108 [m/s], and the
third geometric parameter of the waveguide is its depth d which conven-
tionally means the distance from the waveguide’s short. Combining the
equations in (1.5), we can derive the resonant frequency for a ”boxed”
cavity with dimension a× b× d sustaining a TEmnl mode:

f0 =
c
2

√(m
a

)2
+
(n

b

)2
+

(
l
d

)2

[Hz] (1.6)

The first expression, λg, is called the guide wavelength. It is the length
along the z-direction for which the travelling TE-mode wave has com-
pleted one period. The second expression, λc, is the cutoff wavelength
and for a TE1nl mode, this is equal to twice the waveguide width. Lastly,
λ0 is the free space wavelength of the signal.

The propagation of the waves along the waveguide can be described by
a periodicity and an attenuation. The waves are able to propagate because
of currents induced along the walls of the waveguide, in order to cancel
the field where required by (1.4). Since the waveguide is constructed from
a lossy conductor, we also need to account for these losses in the ampli-
tude of the propagating fields. The periodicity along ẑ is given by the
wavevector β. The loss of amplitude along this depth of the waveguide
is given by the attenuation constant α, computed for the TE10 mode in [2,
(14a)]. They are encapsulated under a complex propagation constant γ:

γ = α + iβ [m−1] (1.7a)
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α =

√
ε0ω

2σ

1 + (2b/a)(λ0/(2a))2

b
√

1− (λ0/(2a))2
[m−1] (1.7b)

β =
2π

λg
[m−1] (1.7c)

We have established that the individual Electric waves forming the
TE10 mode propagate in the x- and z-direction, and are polarized in the
y-direction. Therefore,

Ex = 0, Ey 6= 0, Ez = 0

Using, (1.1) a to c, we get:

Hx 6= 0, Hy = 0, Hz 6= 0

From (1.2) a and c, and (1.3) b, we get:

∂yHx = 0, ∂yEy = 0, ∂yHz = 0

We can now deduce the expressions for Hx and Hz from the expression
for Ey with (1.1) a and c, and write the coefficients in terms of Zh = ωµ0

β ,
kc =

π
a , and arbitrary amplitude A to deduce (1.8).

Hz(x, z) = A cos (kcx)eγz (1.8a)

Hx(x, z) =
iβ
kc

A sin (kcx)eγz (1.8b)

Ey(x, z) = −iAZh
β

kc
sin (kcx)eγz (1.8c)

When a waveguide is terminated at a conductive plane covering the
waveguide’s cross-section at depth z = 0 within the waveguide, a short-
circuit is formed at this plane. The incident TEmn travelling wave of the
waveguide (1.8) is reflected at the short, and the superposition of the in-
cident (+) and reflected (−) travelling wave results in a TEmnl standing
wave. The shorted waveguide corresponds to a closed circuit in which
equivalent voltage and current are proportional to the transverse electric
field resp. -magnetic field, as per [2, equation (10)]; with voltage- and cur-
rent phase shift equal to φV = π resp φI = 0 upon reflection at the short by
[3]. Consequent expressions for the total voltage and current are provided
in (1.9), and are the superposition of the incident- (∝ exp (+γz)) and re-
flected (∝ exp (−γz + φ)) travelling waves. The expressions (1.9) result in
zero-valued E-field at the short E(z = 0) ∝ V(z = 0) ∝ sinh (z = 0) = 0,

10
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satisfying boundary condition (1.4a). Moreover, ignoring losses such that
γz = iβz, the B-field is evidently π/2 out of phase with the E-field by
B(z) ∝ cosh (iβz) = cos (βz) = sin (βz + π/2) ∝ E(βz + π/2).

V = V+ + V− = V0eγz + V0e−γz+π = V0 · sinh γz (1.9a)

I = I+ + I− = I0eγz + I0e−γz+0 = I0 · cosh γz (1.9b)

1.1.2 Circuit theory

Shorted waveguide

Now that we have found solutions for the equivalent voltage and current,
we can combine these under Ohm’s law to get the impedance associated
with some depth of waveguide from the short. The impedance can then
be used to construct the corresponding equivalent RLC-circuit. A shorted
waveguide can be seen as a one port network. The impedance Z11 = Z
associated with a shorted waveguide can be determined with Ohm’s law:
Z = V/I, with V and I the total voltage resp. current, which are the
superposition of incident and reflected. From (1.9):

Z =
V+ + V−

I+ + I−
=

V0

I0

eγz − e−γz

eγz + e−γz = Zwg tanh (γz)

Zwg = V0
I0

is the characteristic impedance of the waveguide. It can be com-
puted from [2, (11a)] for TE-modes, the value Z0 = 377Ω, and the relations
(1.5):

Zwg = Z0
λg

λ0
(1.10)

Substituting the identity for the propagation constant and defining the
terminal plane as the distance d from the short, we can make a few approx-
imations. Firstly, we can use the trigonometric identities: tanh (x + y) =
tanh x+tanh y

1+tanh x tanh y , and tanh (i · x) = i tan x, giving:

Z = Zwg tanh [(α + jβ)d] = Zwg
tanh (αd) + j tan (βd)

1 + tanh (αd) tanh (βd)

For low losses αd << 1. Moreover, near resonance βd ≈ π. Therefore, we
can approximate:

Z ≈ Zwg(αd + j tan (βd))
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Instead of the tan function, the imaginary term is more suitably written
as a product of constants. In the next section, we will see matching the
cavity with an iris or stub will alter the resonant frequency of the cavity.
Near resonance, the deviating angular frequency ω can be implemented
by taking β(ω) close to the value for which the ”boxed” cavity is resonant.
By ”boxed” cavity will henceforth mean the case of box-shaped domain of
dimensions a× b× d completely encapsulated by conductors, as opposed
to being completely open at a a× b surface (shorted waveguide) or having
a circular aperture at that plane (iris-matched cavity). In order to get the
properties of the TE101 cavity, we need to set the depth d of the cavity
along ẑ to d =

λg
2 , where λg is the guide wavelength associated with the

resonant frequency by (1.5a) of the cavity with resonant frequency (1.6) for
dimensions a× b× d. Suppose β0 ≡ β(ω = ω0) is the guide wave vector
for angular resonant frequency ω0 of the boxed cavity. Then a deviating
angular frequency ω ≈ ω0 near the resonant angular frequency would
produce a new wave vector β along ẑ according to Taylor’s theorem:

β(ω)|ω≈ω0 = β0 +
∂β(ω0)

∂ω
· (ω−ω0)

We then use the chain rule:

∂β(ω0)

∂ω
= 2π

∂(λg)−1

∂λ0

∂λ0

∂ω
δ =

2π

λg

λ2
g

λ2
0

δ(ω)

ω0
, δ(ω) = ω−ω0

This can be substituted to give:

tan (βd) = tan

[
π ·
(

1 +
(

λg

λ0

)2 δ

ω0

)]
≈

λ2
g

λ2
0

π

ω0
δ

The impedance of a shorted waveguide, a distance l from the short is
thus:

Z ≈ Zwg

(
αd + j

λ2
g

λ2
0

π

ω0
δ

)
For the impedance of a series RLC circuit, where ω2

0 = 1
LC , we have:

Z = R + jX = R + j
(

ωL− 1
ωC

)
= R + j2Lδ

Combining the last two equations, we get the formulae for the (longitu-
dinal) resistance and inductance of a short-circuited length of waveguide:*

*The resistance of the short-circuited length of waveguide is not represented properly
by Rl alone, which leads to it being given the subscript l. The resistance including the
transverse walls, R, is given in the section on matching.

12
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Rl = Zwgαd (1.11a)

L =
Zwg

2
λ2

g

λ2
0

π

ω0
(1.11b)

For a series RLC circuit, the formulae for the angular resonance fre-
quency ω0 and the quality factor Q are generally known to be:

ω0 =
1√
LC

(1.12)

Q =
ω0L

R
(1.13)

Iris-coupled shorted waveguide

We can view our setup as a resonant series R,L,C circuit. Resonance is
achieved by the insertion of an iris at d ≈ n · λg/2 from the short. The
depth d of the cavity has circuit parameters R, L, C, and a circular aperture
in transverse direction has inductance L which can be inserted in parallel
with the cavity parameters R, L, C. This is represented in figure 1.1a.

More suitably, we would like to write the entire circuit of lumped nodes
that are all in series, meaning that the iris inductance is brought from par-
allel to series relation to the cavity parameters. We can do this by making
an approximation for the impedance in front of the terminal plane, with
Za = Zwg, Zb = iωL, and the formula 1

Ztot
= 1

Za
+ 1

Zb
for two parallel

impedances Za and Zb. Rewriting the parallel source impedance in Figure
1.1a to a series impedance, we get:

Z =
iωLZwg

Zwg + iωL ·
Zwg − iωL
Zwg − iωL ≈ iωL+

ω2L2

Zwg

for ωL << Zwg, which is the case of high Q systems.

1.1.3 Matching

The matching of the cavity will prove to involve the most tedious math-
ematics. Therefore, we will be referring to the derivation of formulae in
literature [4] rather than explain these in order to keep this section con-
cise. Our plan of attack will be very structured. Firstly, the Q of a boxed
cavity (no iris) will be determined. Then from this Q of the cavity and
its known inductance L, we will determine its resistance R. Thereafter, we
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14 Theory

(a) Parallel (b) Series

Figure 1.1: Equivalent circuit for 1cav, parallel and series expressions. The ter-
minal plane of the iris is represented by the vertical dotted line in between S and
L.

will introduce matching by setting up an analogy between the shorted cav-
ity with iris and an L-section. Matching criteria will be determined for an
L-section, and these will then be projected on the normalized impedance
values of a cavity resonator in order to determine the required iris induc-
tance L as mentioned in the previous section. Finally, a formula is ad-
vanced for the iris radius r0 in terms of cavity dimensions and the value of
L. Simulations and the experimentally used iris radius will later be found
to equal the calculated iris radius for matching.

When a guide is short-circuited at a load, the superposition of the in-
coming wave and the reflected wave creates a standing wave. The power
absorbed at the load is maximized if the reflected voltage Γ ≡ |S11| is zero,
so if ZS = Z∗L by (1.14).

|S11| =
ZS − Z∗L
ZS + ZL

, |S11|2 =
|ZS − Z∗L|2
|ZS + ZL|2

(1.14)

In this case, the cavity (load) is said to be ’matched’ to the waveguide
(source). This is also formulated as ’critical coupling’ by the iris. The
characteristic impedance of the waveguide is ZS = V0

I0
= Zwg. In most

literature on RF, to circumvent involving Zwg coefficients in our calcula-
tions, calculations are made in terms of normalized impedance defined as
Z̄ ≡ Z

Zwg
. Interpreting the load as the cavity (ZL = R + iX) and the source

as the waveguide (ZS = Zwg + iXwg), we thus arrive at two criteria by
which we will determine the condition for critical coupling (read: match-
ing) for ω = ω0 : (1.15) and (1.16). Here, κ = R/Rl is the normalization
factor raising the waveguide resistance Rl to the cavity resistance R.

14
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1.1 Resonant cavity matching 15

Zwg = RL →
ω2

0L2

Zwg
= R =

ω0L
Q0

= κZwgαl (1.15)

Xwg = −X → ω0L = −2Lδ = −(−ω0L) (1.16)

First of all, it is worth pointing out that the second matching criterion
(1.16) is automatically satisfied. As we will see in our calculations of the
lumped element parameters later on, the inductance L of the cavity is in
order 100 [nH] whereas the inductance L of the iris is in the order 1 [nH].
The influence of the iris can be equated to an increase in the total system
inductance L → L′ = L + L, and therefore as a decrease in the system
resonant frequency ω0 → ω′0. By (1.12) and L << L:

ω′0 =
1√

L′ · C
=

1√
(L + L) · C

=
1√

L · C
· 1√

1 + L
L

≈ ω0 ·
(

1− 1
2
L
L

)

The shifted angular resonance frequency ω′0 due to insertion of the iris
therefore causes a default cavity reactance XL equal to the complex con-
jugate of the source reactance XS associated with its insertion. In other
words, the iris slightly decreases the cavity resonance frequency in order
to compensate for its reactance so as to ensure that matching depends only
on the real impedance.

XL = −j2Lδ = −j2L · (ω′0 −ω0) = −j2L · 1
2
L
L

ω0 = −jLω0 = −XS

Therefore, we may conclude that (1.16) is automatically satisfied and that
only (1.15) is of concern when determining the iris radius to match the
cavity to the waveguide. Before continuing to the issue of matching the
real impedances, it is worth pointing out that the iris reactance Xir changes
the resonant frequency of the cavity. For a TE101-mode, this iris reactance
is compensated by (slightly) decreasing the cavity depth by an amount
∆d = ω0L/(Zwg · β).

Determination of cavity resistance R

We aim to satisfy criterion (1.15) by computing the resistance of the iris-
coupled waveguide R which needs to be equal to the cavity resistance RL.
In order to find what radius r is required for matching, the waveguide
resistance is already known from (1.10), leaving us to determine two as-
pects: the resistance of the cavity and the coupling associated with the iris
radius.
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16 Theory

As for the resistance of the cavity, (1.11a) provides a resistance that is
lower than the actual cavity resistance: it yields the resistance over some
depth of waveguide d. As for the cavity, however, this ”longitudinal” re-
sistance does not take into account losses at the cavity’s two transverse
planes; at the short and at the aperture plate. This discrepancy can be ex-
posed by use of the ”boxed cavity” quality factor, ”boxed” indicating a
TE101 cavity completely encapsulated by walls. This boxed quality factor
Q0 can be determined from cavity volume and -surface integration over
the squared magnitude of the magnetic field equations [4, (7.48)], corre-
sponding to the rectangular TE101 mode formalized in (1.27b) by deriva-
tion from (1.8). Substitution yields (1.17a).

Q0 =
ωW
Pl

=
(k0ad)3bZ0

2π2Rm(2a3b + 2d3b + a3b + d3a)
(1.17a)

W = 2 ·Wm =
µ0

4

˚
Vs

|H|2dτ , Pl =
Rm

2

‹
S
|H|2dS (1.17b)

Rm =
1

σδs
=

1
σ

(√
2

ωµ0σ

)−1

=

√
ωµ0

2σ

By (1.15), the iris-matched cavity quality factor equals half the boxed
quality factor Q0 in (1.22b). In combination with (1.13), one can verify that
R > Rl, and the actual cavity resistance should actually be higher.

It is important to now make a distinction between the resistance as-
sociated only power loss along the cavity depth - being the longitudinal
resistance Rl -, and the power loss along the surface of the transverse cav-
ity walls on either end of the cavity - being the transverse resistance Rt.
The mode contained in the cavity induces currents along the six planes
encasing the cavity, four of which are placed along its longitudinal direc-
tion ẑ× (x̂ ∨ ŷ), and two of which are placed along its transverse direction
x̂× ŷ. The resistance of the cavity is previously given as Rl given in (1.11a).
However, - for arbitrary a, b, c, σ - substituting Rl and (1.11b) into (1.13)
gives a value for the quality factor that is much higher than when com-
puted from (1.17a). Relying on the validity of (1.11b) this indicates that
the resistance of the cavity is supposed to be higher than Rl alone. This
leads us to the formula for the total cavity resistance R, which for a TE101
mode is:

R = Rl + Rt = (
Rt

Rl
+ 1) · Rl = κ · Rl

This factor κ can be computed by comparison of the integral of power loss
P for the TE101 to only the longitudinal boundaries Sl with respect to the

16
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1.1 Resonant cavity matching 17

integral of power loss over all boundaries (transverse and longitudinal)
St ∪ Sl. The integral expression [4, (7.46)] is applied to the mode field
equations in (1.27). Expressing the power loss over planes St and Sl as
Pt resp. Pl yields the equation (1.18), accounting for the resistance at the
cavity’s transverse planes. Per illustration, the case of a cubic cavity with
a = b = c yields κ = 3/2, exposing the necessity of accounting for the
losses at the cavity’s transverse planes.

κ =
Pl + Pt

Pl
=

‚
Sl∪St

|H|2dA˜
Sl
|H|2dA

=
2a3b + 2d3b + ad3 + da3

2d3b + ad3 + da3 (1.18)

Determination of matching iris radius r

Making a circular aperture at either of these transverse planes causes a
reduction in the quality factor due to the radiation of power through the
aperture. Equation (1.15) gives the aperture inductance required for criti-
cal coupling.

From the geometry and conductivity of the cavity, we have thus de-
duced R0, and from this we can determine the required iris inductance L0
needed to achieve matching. The only step left is to determine the iris ra-
dius r0 for matching the waveguide with resistance Zwg to a cavity with
resistance R0. In literature, the iris radius is expressed in terms of the iris
reactance. The iris normalized reactance is:

X̂L1 =
ω0L
Zwg

From [4, (5.41)], the normalized reactance of the matching iris radius r0 for
an infinitely thin iris-plate (t = 0) is given as (1.19).

X̂L1 =
1

B̂L1
=

8βr3
0

3ab
(1.19)

We can thus write the iris inductance L in terms of the iris radius:

L =
8Zwgβ

3ω0ab
· r3

However, ignoring the thickness of the iris-plate containing the aper-
ture gives only an approximation of its inductance, because a circular
mode with admittance Y1 and guide wavelength λg1 is briefly held along
its thickness t. In practice, this slight cutoff by the iris-hole decreases the
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18 Theory

iris reactance L significantly, thus requiring larger r than in the case t = 0.
In order to illustrate by orders of magnitude involved: the iris radius on
t = 1 mm that matches a WR-340 waveguide to a TE-101 cavity is raised
from about 9 to 10 mm. This is a significant difference, forcing us to ex-
pand the theory on matching slightly more with the perturbed values of
iris reactance for some thickness t. A thick iris is modelled by the circuit
as depicted in 1.1a, but with the iris inductance Xir substituted by a Π-
section. Two parallel reactances Xa with double the initial reactance as
well as a thickness perturbation. In between these is a series reactance Xb
only depending on the iris thickness, but this is usually so small that we
will ignore it. The reactances can be computed from formulae that have
are directly taken from [2, paragraph 5.4]:

1
Xa

=
B
2
+ Y1 · tanh (

πt
λg1

) (1.20a)

Y1 =
1

Zwg
·

0.446abλg

d3 ·

√
1−

(
p · d
λ0

)2

(1.20b)

λg1(r) =
p · d√

1− ( p·d
λ0
)2

, p = 1.706 (1.20c)

Because of the complexity of calculations involved with iris thickness,
it is hard to solve the required matching radius r with the thickness cor-
rection directly incorporated in calculations. Therefore, it is best to intro-
duce some approximate correction ψ(r0) to the matching iris radius for
zero thickness r0 = r(t = 0), easily found from (1.19). Because ψ(r0) is a
small correction, we may approximate it as locally constant such that the
required iris reactance X(rt) such that rt gives matching for thickness t is
about equal to the iris reactance X(r0) such that r0 gives matching for zero
thickness t = 0 multiplied by a correction factor ψ(r0):

Xt(r) = ψ|t(r)Xt=0(r) ≈ ψ(r0) · X(r0)

, where

ψ(r)|t =
Xt=0(r)

Xt(r)
=

Xa(r)|t=0

Xa(r)|t
= (1 +

4πtY1(r)
λg1(r) · B(r)

)−1

Inserting the functions (1.20) in the above equation yields:

ψ(r)|t =
1

1 + 3.44 · t
r (1 + (2pr

λ0
)2)

(1.21)

18
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1.1 Resonant cavity matching 19

This factor ψ can then be implemented as a correction into the factor
a relating the iris inductance to the iris radius. The correction factor has
an influence on the quality factor and mismatch, but not on the resonant
frequency.

The covered theory can be encapsulated in equations (1.22), with for-
mulae for the corrections κ and ψ given in (1.18) resp. (1.21). The equa-
tion for the mismatch (1.22c) assumes the iris-coupled cavity resonance
frequency (1.22a), meaning that the mismatch is dependent on resistance
only, independent of the reactance. Additional power reflection is caused
by non-zero reactance brought on by deviation of the input frequency from
the iris-coupled cavity’s resonance frequency; this leads to the Lorentzian
curve.

f0 =
1

2π

1√
(L + L) · C

=
ω0

2π
(1.22a)

Q = ω0
L + L

R0 +
ω2

0L2

Zwg

(1.22b)

∆M = |Γ|2 =

∣∣∣∣RS − RL

RS + RL

∣∣∣∣2 =

ω2
0L2

Zwg
− R0

ω2
0L2

Zwg
+ R0

(1.22c)

L(r)|t = a0 · ψ(r)|t · r3, a0 =
Zwg

ω0

8β

3ab
(1.22d)

R0 =
ω0L
Q0

= κ · Zwg · α · d (1.22e)

The Lorentzian curve

The RF-parameters f0, Q, and ∆M are three parameters defining the frequency-
dependent power reflection curve |S11|2( f ) of the (plasma-filled) cavity
system for an incoming RF-signal with a certain frequency f . The power
reflection at signal frequency f is determined by its deviation from the
resonance frequency ∆ f ≡ f − f0 (which we will henceforth call the mis-
tune), by the base power reflection ∆M = |S11|2( f = f0), and lastly by the
quality factor, which determines the frequency-dependent power reflec-
tion attenuation from the magnitude of the frequency shift | f − f0| over
the FWHM (full-width-half-max). The FWHM ∆ f1/2 is defined such that
within the range f ∈ [ f0 − ∆ f1/2, f0 + ∆ f1/2], power reflection is at most
twice the minimum power reflection: |S11|2( f0 ± ∆ f1/2/2) = (1/2) · (1 +
∆M).
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The signal frequency deviation ∆ f from cavity resonance frequency f0
yields a surplus load inductance X = i · 4π · L · ∆ f by (1.11b), which in
turn causes a surplus power reflection by (1.14). Evaluating the power
reflection (1.14) over a range f around f0 yields the power reflection curve
in (1.23b), which is known as a Lorentzian curve [5, (2.15)]. Its shape is
visualized in Figure 2.5b.

Q ≡ f0

∆ f1/2
(1.23a)

|S11|2( f ) = 1− 1− ∆M(
2Q·( f− f0)

f0

)2
+ 1

(1.23b)

Matching using stub

Even having used such expansive theory on the matching with a circular
iris, in practice there will always be corrections or errors not taken into
account in calculations, thus leading to some small mismatch under r0.
The iris aperture radius is usually a pre-built component, making ”fine-
matching” difficult. In order to match the cavity reliably, it is customary to
decrease the iris coupling by taking the iris radius a few tenths millimetre
larger than r0, and to insert a cylinder axisymmetric with the E-field at
the E-field anti-node λg/4 in front of the iris with which coupling can be
perfected. This is called stub-matching, which can easily be implemented
by screwing or unscrewing a bolt protruding through the waveguide wall.
For theory on this, refer to the literature of the capacitive post addressed
in [2, paragraph 5.14].

1.2 Cavity perturbation theory

Cavity perturbation theory (CPT) can be used to derive characteristics of
the plasma from the associated resonant frequency and quality factor shift.
The frequency shift, in turn, can be computed for both a perfectly conduct-
ing volume and for a resistive volume. Moreover, we can predict the com-
pensated dimensions for a cavity containing a large amount of dielectric.

General CPT equation

CPT can be encapsulated into the general formula:

20
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1.2 Cavity perturbation theory 21

f̃s − f̃0

f̃0
= −

˝
Vs
(∆µ|H|2 + ∆ε|E|2)dτ˝

V0
(µ0|H|2 + ε0|E|2)dτ

(1.24)

Here, f̃s ≡ Re( f̃s) + i · Im( f̃s) and f̃0 ≡ Re( f̃0) + i · Im( f̃0) are the com-
plex frequencies of the perturbed and unperturbed cavity respectively. Vs
and V0 are the volume of the sample and the cavity respectively. The per-
mittivity and permeability of the sample are given by εs resp. µs. This
makes the difference in sample- permittivity and -permeability the val-
ues ∆ε ≡ εs − ε0 and ∆µ ≡ µs − µ0 , representing their difference for the
perturbed and unperturbed case respectively. It is convenient to normal-
ize both by division by their respective free-space values. This gives the
relative permittivity:

εr ≡
ε

ε0

1.2.1 Frequency shift and quality factor from sample be-
low cutoff

It is convenient to simplify the expression on the right hand side. Firstly,
the expression in the denominator equals the total energy W stored in the
cavity. The energy stored in the cavity is the sum of equal electric- and
magnetic field energy by [4, top of p. 503]. Therefore, the integral over
the two integrands equals twice the integral over the second integrand.
Secondly, for the numerator we set ∆µ = 0, because for the purposes of
this paper only the perturbation from the difference in complex permit-
tivity ∆ε will be considered. This leaves us with the fraction of volume
integrals of the electric field energy density. For simplification, we convert
the volume integrals over position-dependent energy density to a product
of volume times average energy density. For a small sample placed at the
E-field antinode of the rectangular TE101-cavity, we will later determine
the fraction of energy densities to be χE = 4.

From power reflection measurements on the cavity, we will determine
the relative permittivity of the sample by the complex resonance frequency
shift. As we will determine from (1.24)†, the real part ∆ε′r perturbs the
real-valued resonant frequency shift and the imaginary part ∆εr” perturbs
the imaginary-valued resonant frequency shift, the latter embedded in the

†For objects well below cutoff, meaning that the surrounding field fully penetrates the
sample.
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quality factor. By [6], the quality factor of a system α with complex reso-
nant frequency f̃α ≡ Re( fα) + Im( fα) · i is defined as:

Q ≡ Re( f̃α)

2 · Im( f̃α)
=

fα

∆ fα,1/2
(1.25)

The imaginary part of the resonant frequency can be determined ex-
perimentally from a frequency sweep f near the resonant frequency as the
Full-Width-Half-Max of the power reflection curve |S11|2( f ). This yields
|S11|2( fα ± ∆ fα,1/2/2) = (1/2) · (1 + ∆M), where ∆M = |S11|2( fα) is the
minimum power reflection, which is attained at the (real) resonant fre-
quency. These properties produce a Lorentz curve, used for data analysis
given by [5, (2.15)].

For a small sample well below cutoff, placed at the E-field antinode of
the rectangular TE101-cavity, the value of the constant χE equals four. The
meaning of this constant is the ratio of field energy density at the sample
with respect to the average over the cavity volume, and the determination
of its value will be explained soon. We can relate the frequency shift and
quality factor to the sample’s relative permittivity with (1.26) where we
assume empty cavity as free space such that ∆εr = εr − 1.

∆ f ≡ fs − f0 = −χE

2
· Vs

V0
· ∆ε′r · f0 (1.26a)

1
Qs
− 1

Q0
= χE ·

Vs

V0
· ∆εr” (1.26b)

As we will see from Drude theory, the difference in real relative per-
mittivity of a plasma ∆ε′r is always negative. Therefore, the correspond-
ing frequency shift is always positive. In measurements on the plasma,
however, a downward frequency shift is measured (see Figure 2.2a). This
cannot be the result of the sample dielectric, and we will see that this is the
result of cutoff, where the field energy within the sample is reduced with
respect to its surroundings.

Field equations in rectangular and cylindrical cavity

As will be identified from the central CPT equation (1.24), it will come
in handy to know the field equations of the electric and magnetic field in
the rectangular and cylindrical modes to be investigated. Relevant here is
to determine the field magnitude near the plasma E0 / B0 relative to the
average field magnitude across the cavity < E > / < B >.

22
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1.2 Cavity perturbation theory 23

The field equations of the rectangular TE101-mode can be determined
from (1.8) in combination with (1.9) to give equations (1.27).

E(x, y, z) = E0 · sin (kcx) · sin (βz) · ŷ (1.27a)

B(x, y, z) = B0 · sin (kcx) · cos (βz) · x̂ + B0 · cos (kcx) · sin (βz) · ẑ (1.27b)

The field equations of the cylindrical TE011-mode (subscript denoting
2π, π, π periodicity respectively in φ, r, z) for a cylindrical cavity with ra-
dius a are useful later on, but will not be derived here. In [7, paragraph
2.19], field equations for the travelling cylindrical TE01-mode over r are de-
rived in terms of the zeroth order Bessel function of the first kind J0, and
its derivative J′0 ≡ ∂J0/∂r. These equations reconcile condition (1.4a) with
E ∝ J′0(ν · r/a) · φ̂, ν ∈ R, and satisfy half-periodicity in r by requiring:
ν = X′01 equals the first root of J′0 [2, table 2.2]. In combination with the
superposition relation in (1.9), the travelling wave TE01-mode equations
produce the standing wave TE011-mode equations in (1.28).

E(r, φ, z) = E0 ·
λc

λg
· Z0 · J′0

(
X′01 · r

a

)
· sin

2π · z
λg
· φ̂ (1.28a)

B(r, φ, z) = B0 ·
λc

λg
· J′0
(

X′01 · r
a

)
· cos

(
2π · z

λg

)
· r̂ + (1.28b)

B0 · J0

(
X′01 · r

a

)
sin
(

2π · z
λg

)
· ẑ (1.28c)

λc =
2π · a
X′01

, X′01 = 3.832

For CPT purposes, we will extract the essential information about the
field energy density wY distributions, being the absolute square of these
field distributions. For the purposes of heating, the plasma is placed at a
field antinode, where the field magnitude |Y|2 attains its maximum mag-
nitude Y2

0 with the other field at zero density. For resulting perturbations
∆ f and ∆Q−1 by the plasma on the empty cavity RF-properties f0 resp.
Q0, we require the ratio of the field energy density near the plasma over
the average field energy density across the cavity volume. We will call this
ratio χY, which for the field type Y ∈ {E, B}with a small sample (Vs � V0)
at the field antinode, equals:

χY ≡
˝

Vs
|Y(x1, x2, x3)|2dτ˝

V0
|Y(x1, x2, x3)|2dτ

V0

Vs
≈ Y2

0 ·
V0˝

V0
|Y(x1, x2, x3)|2dτ

(1.29)
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The values of χ for both fields, and both modes (1.27) resp. (1.28) are
computed for future reference. Values for the rectangular cavity modes are
determined analytically. Values for the cylindrical mode are determined
numerically for radius a = 82 mm and height h = 150 mm, and might
therefore vary for different (a, h).

rectangular: TE101, TE102 cylindrical: TE011
χE 4 4.18
χB 2 10.24

Table 1.1

1.2.2 Frequency shift from insertion of dielectrics

When addressing the frequency shift due to the presence of a dielectric,
it will be useful to refer to the values of their characteristic real relative
permittivity Re(εr) = ε′r to deduce order of magnitudes. The materials
we will be working with are air, helium, and fused quartz. Their relative
permittivities are as follows by [8] and [9] the values in Table 1.2.

Air He2 Quartz, fused Si O2
ε′r 1.00059 1.000065 3.78
∆ε′r,Air→x 0 -5.25e-4 2.78
ε′′r ≈ 0 ≈ 0 -4e-4

Table 1.2

The resonance frequency shift due to a non-absorbing dielectric in the
cavity can be described by a real frequency shift. This particular subsec-
tion will not pertain to the characterization of plasma. Rather, it will ad-
dress the shift in resonance frequency of the cavity due to substituting
large parts or the entirety of the cavity volume with a different dielectric,
and the re-tuning of the cavity when this shift is large. The dielectric is
non-resistive, meaning that the imaginary parts of f̃s and f̃0 on the left
hand side of (1.24) cancel.

Insertion of dielectric in entire cavity volume

The resonance frequency due to the insertion of a different dielectric within
the entire cavity domain can be evaluated by simplifying (1.24) under the

24
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1.2 Cavity perturbation theory 25

assumption of total field energy W =
˝

V0
(µ0|H|2 + ε0|E|2)dτ = 2

˝
V0
(ε0|E|2)dτ =

2 ·WE equal to twice the E-field energy, and with the substitution Vs = V0
in the numerator; yielding (1.30).

∆ f =
− f0 ·WE

W
∆ε

ε0
=
−1
2
· ∆ε′r · f0 (1.30)

The validity of this formula can be tested by considering the effect of
filling the cavity with gases of two different relative permittivities, and
measuring the shift in resonance frequency. For substitution of air with
helium, for example, ∆ε′r ≈ −5e− 4. The resulting frequency shift is only
very small; in the order of ∆ f ≈ +7 MHz � f0. We see that for the
dielectric and cavity volumes in the same order of magnitude Vs ≈ V0, the
frequency shift is in the order ∆ f ≈ −∆ε′r · f0. If, however, we were to
have a large difference in permittivity over a significant part of the cavity,
the frequency shift will be very large. In the case of substituting parts of
the air-filled cavity with fused quartz, such that ∆ε′r = 2.78, the frequency
shift will be in the order of magnitude of the old cavity resonant frequency,
such that the cavity needs to be ’retuned’ to the magnetron frequency. Per
illustration, disregarding any frequency shift due to ∆µ of the fused quartz
cavity: if we fill an air-filled cavity previously resonant at 2.45 GHz with
fused quartz, then ∆ fAir→FQ = (1/2) · f0 · ∆ε′r = 3.43 GHz. This issue of
retuning will now be addressed.

1.2.3 Frequency tuning for cavity with dielectric slabs

In our case, two 10 mm thick slabs of FQ will be placed in the cavity, placed
some distance apart. We will derive the total length of the cavity for a
given window distance in order to satisfy tuning at some frequency. We
do this by substituting the formula for the resonant frequency for given
cavity dimensions into the left hand side (LHS) of (1.24), and solve the
equation for the occupation of the electric field energy density and relative
permittivity shift at the right hand side (RHS).

As will eventually be discussed, we need to find the required cavity
depth d containing a TE102 mode in case of two windows with thickness
δ placed symmetrically to the half-depth z = d/2 of the cavity. The win-
dows are placed a distance w apart, and have a real relative permittivity εr
that is ∆εr ≈ εr − 1 higher than the surroundings. From (1.8), we see that
the electric field is distributed as a sine. The electric energy is therefore
distributed as a sine squared, and the total electric energy is half the total
cavity energy. Implementation in (1.24) yields:
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f ′0 − f0

f0
= −∆εr

2

[ˆ (d−w+δ)/2

(d−w−δ)/2
sin2

(
2πz

d

)
dz +

ˆ (d+w+δ)/2

(d+w−δ)/2
sin2

(
2πz

d

)
dz

]

We will denote the left hand side and right hand side of this equation
by LHS and RHS respectively. The windows are placed symmetrically in
the half-plane. The electric field is symmetric in the half-plane as well.
This symmetry leads to an equal value of the integrals. Therefore, we can
rewrite RHS to:

−∆εr

ˆ (d−w+δ)/2

(d−w−δ)/2
sin2

(
2πz

d

)
dz =

−2
d

∆εr

{
d

8π

[
sin
(

2π

d
(−d + w + δ)

)
− sin

(
2π

d
(−d + w− δ)

)]
+

δ

2

}
As for the LHS, we can use the formula for the resonance frequency of

a cavity as (1.6):

f0 =
c
2

√
(

m
a
)2 + (

n
b
)2 + (

l
d
)2

We have m = 1, n = 0, l = 2 with d = λg. To tune the lower resonant
frequency resulting from the dielectric, we need a shorter cavity depth
d < λg to be implemented into this same term. We thus get

f ′0 − f0

f0
=

c
2

√
(1

a )
2 + ( 2

d )
2 − c

2

√
(1

a )
2 + ( 2

λg
)2

c
2

√
(1

a )
2 + ( 2

λg
)2

Which can be simplified to:

f ′0 − f0

f0
=

√
a−2 + 4d′−2

a−2 + 4λ−2
g
− 1 (1.31)

For our total equation, we arrive at:

1−
√

a−2 + 4d′−2

a−2 + 4λ−2
g

= ∆εr

ˆ (d−w+δ)/2

(d−w−δ)/2
sin2 (

2πz
d

) dz (1.32)

Solving this equation for d gives the required cavity depth for tuning
at f0 in case of a window distance of w and window thickness δ.

26
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1.2 Cavity perturbation theory 27

1.2.4 Frequency shift from sample beyond cutoff

When studying the frequency shift by a sample beyond cutoff, we ought
to study the electric field inside the sample. This issue is addressed in
[10], and equations derived there are mentioned in this subsection, though
with a minor correction 1/x. The paper states that the frequency shift
is proportional to the sample volume Vs. The paper only addresses thin
films, and therefore, amendments need to be made for ’thick’ samples. To
account for the structure shape, we determine its shape factor x, inspired
by [5, p. 16]. The shape factor x is the share of sample surface area that
is orthogonal to the E-field-direction y. In the case of a torus, this shape
factor is x = 1/2, and for a very flat disk with a� h the shape factor is x =
1. Through simulations on different shapes, the author has found that the
frequency shift is inversely proportional to the shape factor.‡ This means
that for a flat disk axisymmetric to the electric field, an axisymmetric torus
of the same volume causes twice the frequency shift. The equation for the
frequency shift for the sample beyond cutoff is (1.33a). It is analogous to
[10, (12)] multiplied by the inverse of the shape factor as in x−1.

∆ f
f0

=
−1
2
· χY

x
· Vs

V0
(1.33a)

x ≡ 1
A‖
A⊥

+ 1

Note that the frequency shift for a sample well beyond cutoff is inde-
pendent of the permittivity. The reason for this is that in a sample well
beyond cutoff, neither the electric field nor magnetic field permeate far
into the sample because of (primarily) the skin effect. Small perturbations
in the permittivity properties of the sample do not influence the frequency
shift, because there is no field to respond to these changes.

By [10, (7)], the frequency shift due to the presence of a conductive
torus (x = 1/2) at the magnetic field antinode is equal to the opposite sign
of (1.33a), with χB instead of χE. For the TE10n rectangular modes, there-
fore, the frequency shift of a cavity with an object at the magnetic field
antinode is about −1/2 times the frequency shift of the same object at the
electric field antinode within that cavity. However, simulations on such
a configuration will expose that the frequency shift for the plasma at the
magnetic field antinode is more tedious than for electric field antinode,

‡The author was unable to verify equation (1.33a) through analytical deduction. This
proportionality can be easily tested in simulations by the analysis of frequency shift of
different geometries with different shape factor but equal volume.
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because the full proportionality of Vs and ∆ f no longer holds. This issue
is discussed in appendix C, where a function is fitted to simulation data.
Nevertheless, by these same simulations the formula (1.33a) with substi-
tution χE → −χB already provides an order of magnitude estimate of ∆ f
for magnetic induction.

Although this paragraph marks the end of the section on CPT, CPT
will be used for the formalization of additional equations in the section
on electrodynamics at the end of this chapter. We have thus far only
formalized equations for samples with two extremes of their material
properties: well below cutoff and well beyond cutoff. In the section
on electrodynamics, equations will be introduced for objects ”around”
cutoff.

1.3 Drude model

Having addressed CPT, the measurable quantities Qs and fs of the plasma-
filled cavity can be converted to relative permittivity of the plasma sam-
ple. The next step is to convert the relative permittivity to properties of
the plasma itself: charge density and temperature. This is done using a
Drude model of plasma, which models the behaviour of the plasma - con-
sisting of electrons and ions - as a ”pinball” machine where these act as
balls resp. bumpers. The RF-field accelerates only the electrons, and these
subsequently lose their momentum to collisions with the ions. The funda-
mental equation for the Drude model is (1.34) [11, page 21, first equation].(

d
dt

+
1
τ

)
< p(t) >= q ·

(
E +

< p(t) > ×B
m

)
(1.34)

The relaxation time of collisions is τ (not to be confused with the de-
cay constant), which is the average time between collisions. The average
momentum of the charges is < p(t) >, with their charge and mass given
by q resp. m. Converting to plasma parameters, the charges are the elec-
trons such that q = e and m = me, and the relaxation time is equal to
one over the electron-neutral collision frequency such that τ = ν−1

en . In
conventional (capacitive) heating systems, the charges are accelerated by
the electric field, which oscillates at a frequency ω. Therefore, the time
derivative of the momentum gives d/dt < p(t) >= iω < p(t) >. The
electron momentum term can be eliminated by converting to its current
density J ≡ e · ne < p(t) >, which in turn can be related to the E-field with

28
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1.3 Drude model 29

Ohm’s law: J = σE. Making these substitutions for the LHS and RHS
independently we obtain the equation:

(νen + iω)
me

e · ne
J =

e
σ

J (1.35)

Complex conductivity

In equation (1.35), three degrees of freedom νen ne and σ are related, with
former two being ”real” properties of the plasma and the latter being the
single property describing RF-behaviour; the conductivity σ must there-
fore contain two degrees of freedom, making it a complex parameter. Its
complex value will become clear under elimination of σ in (1.35), and in
order to prevent confusion over its usual real value, it will be denoted
with a Tilde, σ̃. We will now determine the expression for this complex
conductivity.

In order to shorten the formalization of our equations, we will normal-
ize the two parameters ne and νen with the ”normalized electron density”
η and ”normalized collision frequency” γ respectively [12]. This is done
through division by nc resp. ω:

η ≡ ne

nc
, nc =

meω
2ε0

e2 (1.36a)

γ ≡ νen

ω
(1.36b)

The cutoff density nc is a meaningful parameter derived under a dif-
ferent context in [13, (1.32)], and represents the approximate value of the
electron density ne beyond which the transmitted field undergoes signifi-
cant attenuation. By (1.36), both η and γ depend on the field frequency ω;
it is important to keep in mind that normalization of the same real param-
eters ne and νen yield unique values of η and γ for different frequencies.
Solving (1.35) for σ, we obtain the equation for the complex-valued con-
ductivity σ̃:

σ̃ = ωε0η
γ− i

1 + γ2 (1.37)

It is worth mentioning how to interpret the real and imaginary parts
of the complex permittivity. We know from our pinball-model that if
νen = 0 = γ · ω no losses occur. Therefore, the real part of the conduc-
tivity represents losses to power absorption in the plasma, as well as field

Version of July 8, 2021– Created July 8, 2021 - 13:14

29



30 Theory

attenuation. Logically, the imaginary part of the conductivity might de-
termine the propagation of waves through the sample. However, future
use of the conductivity will only cover the real part, with the imaginary
part of the conductivity being incorporated in the real value of the relative
permittivity.

Complex permittivity

In order to relate to parameters required in CPT, we require a conversion
of complex conductivity to complex permittivity, which is formalized in
[13, (1.26)]:

εr = ε′r − iε′′r = 1− i · σ

ε0ω
(1.38)

Substitution of (1.37) in (1.38) yields:

ε′r = 1− η

1 + γ2 (1.39a)

ε′′r =
ηγ

1 + γ2 (1.39b)

The (electron-neutral) collision frequency νen is dependent on the tem-
perature of the plasma, in terms of T0 = 300 [K]:[13, (4.24)]

νen ≈ navth,el < σa >≈ n0
T0

T
· v0

√
T
T0

< σa >∝

√
1
T

(1.40)

The temperature-dependent molecular density na is equal to the Loschmidt
number n0 ≈ 2.67 · 1025 [m−3] for room temperature, and is inversely pro-
portional to the temperature by the ideal gas law. The thermal velocity
of electrons is conventionally equal to vth,el =

√
(8kBT)/(πme) [11, (3.4)]

with electron mass me and Boltzmann constant kB, but it is approximated
to vth,el =

√
kBT/me yielding v0 = vth,el(300 K) ≈ 6.74 · 104 [m/s]. § The

cross-sectional area of a helium molecule equals < σa >≈ 6 · 10−20 [m2],
and is averaged over the relevant range of temperatures.

It is convenient to calculate values of γ (rounded as 0.5 resp. 0.05 multi-
ple), from (1.40) for half order of magnitude temperatures, and for the two

§The implemented thermal velocity is reduced by a factor
√

1
2 and

√
π
8 with respect

to [13, (4.24)] resp. [11, (3.4)]. This might be an error, and it might explain why the future
characterization of the plasma alludes to the requirement of higher γ. This possible error
was identified too late to amend.

30
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1.4 Electromagnetic power absorption 31

measurement frequencies f = 2.45 GHz and f̃ = 57 GHz. These values
are given in Table 1.3.

T 300 K 1000 K 3000 K
γ 6.5 4.0 2.5
γ̃ 0.3 0.2 0.1

Table 1.3

Opacity

When covering magnetic induction, the real-valued conductivity of the
plasma will be a more useful parameter to describe the plasma. In order
to incorporate its imaginary part, this is converted to real relative permit-
tivity. This is gives the two degrees of freedom in terms of two real-valued
parameters, and is useful when implementing conductivity in simulations.

ε′r = 1− η

1 + γ2 (1.41a)

σ = ωε0
ηγ

1 + γ2 = ωε0εr” (1.41b)

1.4 Electromagnetic power absorption

This section gives the theory needed to explain why heating the LI-plasma
sample at the microwave E-field does not work, and why heating it at the
B-field is more successful. Parts of the paper will later refer to the the-
ory introduced here. However, in order to provide simplified equations,
order of magnitude estimates for the properties of the LI-plasma (to be
found independently later on) are used. Using these order of magnitude
properties, we can simplify the equations. The properties apply for time
t ∈ [30, 60] us. As for the geometry of the LI-torus, a ≈ r

3 , and for the
inner cylinder we thus have R < 1

2 · R, with both r and a in the millimeter
range.¶ As for the material properties of the LI-torus, the conductivity of
components lies within the range σ ∈ [0.01, 100] S/m.

The fundamental equation for the total power absorption of a sample
with volume Vs, conductivity σ and induced current J is given in (1.42).

¶Please refer to the appendix on toroidal coordinates for the meaning of the parame-
ters.
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P(σ) =
˚

Vs

J2

σ
dτ = 2π

ˆ 2π

θ=0

ˆ a

ρ=0

(J(ρ, φ, σ))2

σ
· (r + ρ · cos φ) dρ dφ

(1.42)
The specific form of the equation for the plasma heating in our setups is

also given in (1.42). Both the LP and EC can be described by the topology
of a torus or a ring. The symmetric axis of the geometry is always chosen
parallel to the field, such that it’s parallel to E in the rectangular TE-101
cavity, and parallel to B in the rectangular TE-102- and cylindrical TE-011
cavity. This implies that the induced current density is constant over θ̂,
which can thus be resolved as a factor 2π in front of the integral.

1.4.1 Electric power absorption: capacitive heating

The previous heating setup used capacitive heating, where a conducting
sample (LI-plasma) is placed at the location of the cavity with an os-
cillating electric field. The electric field at some point of the conductor
exerts a force on the (opposite and negative) charges, displacing them.
This induced current density J aims to cancel the external field strength E0
entering the region. Upon entry, the (transmitted) electric field strength
will attenuate as it propagates further into the sample entry-boundary
of the sample. This field attenuation is zero in the absence of charges
(η → 0 ∼ σ → 0), but becomes very steep for σ → ∞. The field atten-
uation goes exponentially over distance from the boundary, with the field
dying down a factor e−1 each skin depth δ into the sample. This skin depth
follows the formula (1.43), where σ can be determined from the plasma
properties η and γ by substitution of (1.41b) into [13, (1.30) and (1.33)].

δ(σ) =

√
2

ωµ0σ
·

√√
1 +

ωε0

σ
+

ωε0

σ
(1.43)

In order for calculations of the total RF power absorption into the plasma
by an oscillating electric field, it is convenient to introduce the distance z
from the outer boundary of the plasma. By the fact that the LP-torus is
axisymmetric with the electric field and the E-field boundary condition
(1.4), the induced current density is concentrated at parts of the boundary
that are parallel to the electric field. The induced current density is thus
mostly situated at the surfaces closest to the axis (R ≈ r− a), and farthest
away from it (R ≈ r + a). Integrating both boundaries over θ yields that
the latter part accounts for most of the torus volume by its larger axial

32
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1.4 Electromagnetic power absorption 33

radius. Moreover, assuming homogeneous conductivity, the total induced
current at the inner section is proportional to that in the outer section, such
that accounting for the outer section alone will provide the correct order
of magnitude of the total induced current. We will therefore only account
for induced current density near z = (r + a)− R ≈ 0, and we simplify the
integration over the torus cross-section by (very roughly) approximating
the circular toroidal cross-section of radius a as a square cross-section of a
ring of side-lengths 2 · a and cross-sectional center radius r. This conver-
sion from torus to ring shape is justified as follows. Imagining the torus
semi-circular cross-section with R > r and with effective volume power
absorption at r + a − δ

2 ≤ R ≤ r + a. At each φ, multiplying the effec-
tive thickness δ

2 ·
1

sin φ by the share of parallel boundary-components sin φ,

gives constant effective power absorption over ẑ into a thickness δ
2 , with

R ∈ [r, r + a]. Since for φ ∈ [0, π], the effective radius of the absorbing
components lies mostly around R ≈ r + a · sin 1

2 π = r + a. Therefore for
small skin depth δ, the effective volume along the torus-boundary with
φ ∈ [0, π] is thus approximately equal to the effective volume of a ring-
shape with R ≈ r + a.

By Ohm’s law, J(z) = E(z)
σ . Therefore, for the power absorption inte-

gral over the (transmitted) Electric field inside a good conductor, where
δ(σ) << a, yields:

Ptot(σ) ∝
ˆ z=2·a

z=0
exp

(
−2z
δ(σ)

)
≈ δ(σ)

2

This means that, for a good conductor σ >> ε0ω, the integral over
thickness z for an electric field decaying e−2 each δ, is equivalent to the
non-decaying electric field times the thickness δ/2. This in turn implies
that the (transmitted) field is limited to an effective fractional volume hence-
forth called G(σ), where G = 1 for full field penetration and G = 5 · δ/2
for the high conductivity limit.

G(σ, r, a) ≡
˝

Vs
exp−2z/δ(σ)dτ˝

Vs
1dτ

(1.44)

The author leaves it to the reader to verify that for a ring as described
above with (r, a) ≈ (3.75, 1.58) [mm,mm], the effective fractional volume
G for σ (under γ ≈ 6.5) over the range 10 log η ∈ [−2, 3] yields (1.46b).

Aside from being a good approximation in the good-conductor limit,
this expression also illustrates that the skin depth alone does not explain
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reduced power absorption in good conductors. Namely, for good conduc-
tors σ ≈

√
2

ωµ0σ , such that power absorption diverges under increasing
conductivity.

Ptot(σ) ≈ 2π(r + a) · (2a)
1
2
·
√

2
ωµ0σ

· σ ∝
√

σ

Accounting for the skin depth field reduction only, power absorption
would diverge for infinite conductivity; the reduced RF-power absorption
for good conductors under capacitive heating is thus not fully described
by the skin depth. In reality, the external field is attenuated upon transmis-
sion across the boundary interface of the homogeneous plasma. According
to boundary conditions given in [4, 2.9], the complex transmission ratio T,
equal to transmitted field Et over external field E0 is given by:

T ≡ 2Zm

Zm + Z0
, Zm ≡ Z0 ·

(
ε′r(σ, γ)− i · σ

ε0 ·ω

)−1

(1.45)

The transmitted power is therefore the absolute value squared of this
transmission coefficient. In terms of the plasma parameters η and γ one
can substitute with (1.41b) and (1.39a) to obtain the approximate equation
(1.46c).||

The approximate total capacitive power absorption Pc into the toroidal
plasma can be computed from the volume Vs, minor radius a, material
properties (η, γ), with corresponding conductivity σ by (1.41b). By Ohm’s
law, the integrand becomes σ · |E(z)|2, where the depth-dependent squared
field magnitude |E(z)|2 can be postulated in terms of the above approxi-
mations for G and |T|2. The volume integral over |E(z)|2 can be substi-
tuted as a product of effective field and effective volume: (i) the transmit-
ted ”un-decayed” squared field amplitude (E2

0 · T2), and (ii) the sample
volume times the effective fractional volume (Vs · G). The full product
yields the equation (1.46a), which is given in terms of the simplified torus-
/ring-shape approximations (1.46c) and (1.46b).

Capacitive total power absorption Pc for a toroidal sample with mi-
nor radius a and volume Vs, normalized electron density η, normal-
ized collision frequency γ, corresponding conductivity σ by (1.41b),

||This means that for η ≈ γ ≈ 1, the transmission can be greater than one, which seems
erroneous. Usually, the issue is masked by the exponential nature involved, but became
an issue that at the cutoff transition around these same values, ∆ f exceeded (1.26a).

34
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at an electric field strength E0 with angular oscillation frequency ω.

Pc(η, γ) = σ · (E2
0 · |T|2(η, γ)) · (Vs · G(σ)) (1.46a)

G(σ) =
1

8πra2

ˆ 2a

z=0
4πa(r + a− z) exp

−2z
δ

dz ≈ 1
1 + 2.5a

δ(σ)

(1.46b)

|T|2(η, γ) ≈ 4

4 + η2−4·η
1+γ2

(1.46c)

σ(η, γ) = ε0ωηγ/(1 + γ2)

The volumetric approximation used to obtain equation (1.46a) means
that it will only apply to the sample if it is toroidally- / ring-shaped. As
we will see from analysis of IAT-CCD images of the two components, both
LP and EC identify as such shapes. There are limits to the accuracy of
the equation, however. Firstly, its derivation relied on the assumption
that they are material properties are homogeneous, which will be refuted
by CCD-image analysis of the LP cross-section. Secondly, the equation
for the EC is different from (1.46a) when the nearby LP is beyond cutoff,
thus altering the field strength within the EC-volume. The field ampli-
tude E0 near the EC may be negated or be amplified by up to a factor two:
E(EC)

0 = 2 · E0, making the EC-power absorption P(EC)
c some coefficient

times (1.46a). Evidence for field amplification will be addressed near Fig-
ure 2.5a later on, along with an estimate of the amplification value.

1.4.2 Magnetic power absorption: inductive heating

Whereas capacitive heating favours the resistive EC over the conductive
LP, magnetic induction will reverse these roles. The theory in this section
will be focused on magnetic induction heating of the plasma (a.k.a induc-
tive heating), where the symmetric axis is parallel to the magnetic field.
By Faraday’s law of induction, a loop shaped conductor catching flux of
an oscillating magnetic field will have current induced within it. From the
conductivity of a material and the known field near it, we can predict the
amount of induced current. This can then be used to deduce the power
absorption into the loop.

There are two limits to the power absorption of a loop in a time-varying
magnetic field over sigma. For the limit sigma to zero, the loop acts like
free space, because there won’t be any charges present in the loop to re-
spond to the magnetic field oscillation. For the limit sigma to infinity, the
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loop acts like a superconductor, meaning that the induced currents do not
feel any resistance and therefore no power can be absorbed. We know,
however, from real life experience that power is absorbed for conductiv-
ities in between these limits. Therefore, by Roll’s theorem there must be
some optimal conductivity σopt for which this absorbed power is maxi-
mized, which we will aim to determine.

The induced current within the loop induces an eddy field Be that can-
cels the external field B0.

Induced current density in sample, from sample conductivity, field strength,
and oscillation frequency

To deduce the induced current density within a torus placed in an oscillat-
ing magnetic field, we use the formulae for excitation of an infinitely long
cylinder, as found by [14]. There are two formulae based on the two possi-
ble orientations of a cylinder with respect to the magnetic field direction.
If the symmetric axis of the cylinder is parallel to the magnetic field, we
speak of longitudinal excitation. If its symmetric axis is perpendicular to
the field lines, we speak of transverse excitation.

Jl(R, σ) =
k(σ)B0

µ0
· J1(k(σ) ∗ R)

J0(k(σ) · R)
θ̂, (0 ≤ R < R) (1.47a)

Jt(ρ, σ) =
−2iωσB0a

k(σ)aJ′1(k(σ) · a) + J1(k(σ) · a)
· J1(k(σ) · ρ) · sin φ · θ̂ (1.47b)

(0 ≤ ρ < a), (0 ≤ φ < 2π)

Where J′1 ≡
dJ1
dρ . Here, k(σ) =

√
(1

2)(1− i)
√
(ω0σµ0) with ω0 the angu-

lar resonant frequency. The constants involved are B0 the magnetic field
strength near the torus in cases of empty cavity resonance, µ0 the vacuum
permeability, and r and a the major respectively the minor radius of the
torus. J0 and J1 are the zeroth respectively first order Bessel functions of
the first kind. The induced current density is given for the longitudinal
and transverse orientations, represented by subscripts l and t respectively.
Under longitudinal excitation, the cylinder’s symmetric axis is parallel to
the B, while under transverse excitation the symmetric axis is perpendic-
ular to B.

The formulae for the two types of induction for a cylinder can be com-
bined to compute the total magnetic induction for a torus. For the ultimate
purpose of the determining the total absorbed power under an oscillating

36
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magnetic field, we will argue that the absorbed power into our LI-torus (r,
a, σ) can be approximated as a volume integral of the longitudinal induced
current density Jl over a toroidal sub-domain of the infinite cylinder. If the
torus is axisymmetric with the magnetic field lines, then the induced cur-
rent density within the torus is roughly the summation of longitudinal and
transverse excitation for an infinite cylinder, as will now be justified. We
will do so by making two topological adjustments to an infinite cylinder
of radiusR = r + a (axisymmetric to the magnetic field) that turn it into a
torus with major/minor radius (r, a). Starting with the initial state of an
infinitely long cylinder axisymmetric with B, this has only longitudinal
excitation. With each topological adjustment, we argue why the solution
for the longitudinal induced current density is retained.

Step 1: we cut away the inner cylindrical sub-domain with R < r− a,
leaving a tube-shape with r− a ≤ R < r + a. We will find the LI-torus to
have roughly a ≈ r

3 , and for the inner cylinder we thus have R < 1
2 · R,

with both r and a in the millimeter range.
Firstly, the perturbation of the induced current density at R = r − a

can be ignored. Considering the much smaller induced current density
towards the center in (1.47a), Jl(R) << Jl(R).

Secondly, the (see appendix on torus cross-section) total volume power
absorption is also much lower. Namely, integration yields that the inner
cylinder volume 0 < R < 1

2R is much smaller than the outer tube-like
volume 1

2R < R < R.
The solution for the total power absorption into an infinitely long tube

is thus similar to the solution for the infinitely long cylinder.

Step 2: we cut out and retain a circular cross-section of this infinitely
long tube that is perpendicular to θ̂ and has cross-sectional radius a con-
centric with the point R = r away from the tube axis. We are now left with
a torus-shape with major/minor radius (r, a). We will now formalize the
influence on the original induced current density solution Jl(R) = Jl(ρ · φ)
in terms of the toroidal coordinates defined in the appendix. Consider
any point on the boundary of the toroidal cross-section: this has perpen-
dicular unitary normal vector n̂ in terms of cylindrical coordinates: n̂ =

x · R̂ +
√

1− x2 · ĥ, with x ∈ [0, 1]. At local coordinates n̂ ≈ R̂ → x ≈ 1,
the torus geometry is locally equivalent to the tube-geometry, and the in-
duced current density remains unchanged.

At local coordinates n̂ = ĥ→ x ≈ 0, however, the solution changes. By
the boundary condition for the magnetic field given in (1.4), the magnetic
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field should locally be cancelled, requiring the introduction of a transverse
induced current density at x ≈ 0. The solutions for the transverse induced
current density of a torus with minor radius a is equal to the solution for
the transverse excitation of an infinite cylinder with radius a. ** This dis-
tribution is given in (1.47b). We will later find the LI-torus to have conduc-
tivity σ ∈ [0.01, 100] S/m.

Firstly, the range of conductivities gives the transverse excitation Jt to
have a much smaller order of magnitude than Jl within the toroidal slice.
By Ampere’s law for eddy currents, ∇× Be = µ0J→ ∂Be

∂h = µ0 J, both cur-
rents simultaneously cancel the incoming field B0 through induction cur-
rents. Taking the ratio of coefficients for both solutions (1.47a) and (1.47b)
therefore reflects the dominant induced current density field solutions. It
provides us with the familiar skin depth δ over the torus minor radius a:

|Jl|
|Jt|

=

√
ωµ0B0√

µ0
· 1

ωσaB0
=

1√
2

δ

a

The skin depth under the range of conductivities takes the values δ ∈
[1, 100] [mm]. Under a ≈ 1 [mm], this indicates that the ratio of the longi-
tudinal induced current density coefficient is mostly of a higher order of
magnitude than the transverse induced current density over the range of
conductivities. We will

Therefore, theoretical computation of the induced current density from
magnetic induction for σ < 100 S/m into a torus with (r, a) will be approx-
imated as equal to the absolute longitudinal induced current density Jl for
radius R = r + a. We substitute axial radius in terms of toroidal cross-
sectional coordinates R = ρ · sin φ + r with (0 ≤ ρ ≤ a), (0 ≤ φ ≤ 2π),
and we take the absolute value J = |J| to determine (1.48a). The total
inductive power absorption Pi corresponding to the induced current den-
sity in (1.48a) can be found by substitution of J in (1.42). Integrating of the
cross-sectional distribution over the torus volume yields (1.48b).

Inductive induced current density magnitude Ji and corresponding
total power absorption Pi for a toroidal sample with major/minor
radius (r, a) and conductivity σ, at a magnetic field strength B0 with
angular oscillation frequency ω.

Ji(ρ, φ, σ) = B0

√
ωσ

µ0
· J1(k(σ)(ρ sin φ + r))

J0(k(σ)(ρ sin φ + r))
(1.48a)

**By the argument that the torus is a cylinder that bites itself in the tail.
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Pi(σ) =

˚
V

J2
i
σ

dτ = 2π

ˆ 2π

φ=0

ˆ a

ρ=0

(Ji(ρ, φ, σ))2

σ
· (r + ρ · cos φ) dρ dφ

(1.48b)

Where the cross-section of the torus follows a circle with radius a, con-
centric with a distance r from the symmetric axis. No further approxima-
tions will be made here, and future evaluations of the integration will be
implemented numerically in Python.

1.4.3 CPT-effects from absorbing plasma

In this subsection, we give additional miscellaneous theory. Firstly, formu-
lae are deduced for the empty cavity-field amplitudes E0 and B0 needed
to determine the (non-renormalized) capacitive resp. inductive power ab-
sorption. Afterwards, we will give a strategy for the determination of the
cavity characteristics - the quality factor Q and the resonant frequency
shift ∆ f - in order to test the validity of the power absorption theory to
experimental data and simulation data. Here, the quality factor Q is com-
puted on the basis of a required renormalization of the cavity field ampli-
tude under absorption by the plasma. Also, the resonance frequency shift
∆ f from the plasma with complex permittivity ε′ + ε” is determined from
the sum of upward- (ε′) and downward (G(σ) · T2(σ)) frequency shift.

Magnetic field strength B0

We will determine the approximate electric- and magnetic field strengths
E0 and B0 inside a cavity. Field strength within the cavity can be deter-
mined from the cavity’s RF-properties Q and f0, the energy density dis-
tribution of the field, and lastly the input power of the RF-signal Pin. By
definition, at resonance, the quality factor equals the frequency times the
cavity energy divided by the power loss [15]:

Q ≡ ω0
U0

Pl
(1.49)

For the case of the matched and tuned empty cavity, all input power
ends up in the cavity walls. Therefore, the power loss equals the power
input and we can state for the total empty cavity field energy:

U0 =
Pin ·Q

ω0
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Since the total energy contained in the cavity U0 is half magnetic and
half electric by [4, p. 503], the value for the total magnetic energy density
is Um = U0/2. ††

By integration of the magnetic field distribution given in (1.27), we de-
duce that:

˚
V0

|B|2dτ =
1

χB
· B2

0 ·V0 =
B2

0 ·V0

2

The magnetic field energy density um is given by [16]:

um =
1
2

B2
0

µ0

Integration over the total cavity volume in combination with the field
equations in (1.27b):

Um =
1

2 · µ0

˚
V0

|B|2dτ =
1

4 · µ0
B2

0 ·V0

Finally, we can thus determine the equations for the non-time-averaged
magnetic field amplitude B0 and the associated electric field amplitude E0
by [17, (32.4)] in (1.50).

B0 =

√
χBµ0

ω0
·

√
Pin ·Q

V0
, E0 ≈ c · B0 (1.50)

Renormalization of field amplitude under absorption

The field amplitudes B0 and E0 given by (1.50) determine the power ab-
sorption in the plasma computed through (1.46a) and (1.48b). As we will
see for properties Vs, η, and γ of the LI-plasma, the power absorption de-
termined under the empty cavity field amplitudes may exceed the input
power. This is obviously impossible, and we therefore require a correc-
tion that lowers the field amplitude based on the power absorption into
plasma such that the sum of power loss, both into cavity walls Pcav and
into plasma Ppl, equals the input power.*

††Moreover, the magnetic mode within the cavity is an oscillating field, which implies
that the associated energy must have deviant time averaged value. However, this re-
quired time-average correction will not be explored, because the author found too much
ambiguity in the literature providing the equations.

*This inherently implies that we ignore CPT-tuning and -matching effects from the
plasma.
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Requirement: Pin = Pcav + Ppl = Pl

To keep our calculations on power absorption straightforward, we will
not alter the equations (1.48b) and (1.46a) for the new field, because there
is a danger of introducing a recursiveness. Rather, the power absorption is
computed under the empty-cavity magnetic field strength and calibrated
a posteriori to determine power absorption under constant Pin into the
cavity. This calibration can be intuitively determined from the new total
quality factor Q′ of the cavity containing the absorbing plasma, which is
decreased w.r.t. Q0. For the empty-cavity field amplitudes B0 with respect
to decreased field B′, the corresponding plasma power losses are P(0)

pl resp.
P′pl. By the proportionality of field energy density and quality factor B2 ∝
Q:

P′pl =
Q′

Q0
· P(0)

pl

By the proportionality of total power loss and quality factor:

Q′ =
Q0 · Pin

Pin + P(0)
pl

Renormalizing the uncalibrated power absorption P(0)
pl to the calibrated

power absorption P′pl is done simply by the following multiplication:

P′pl = Pin
1

1 + Pin

P(0)
pl

(1.51)

Theoretical determination of total cavity quality factor and resonance
frequency shift from composite plasma properties

The theory expansions of effective fractional volume and the amplitude
transmission into a homogeneous plasma will allow us to rough estimates
of the properties of both LP and EC from measurement data of f0 and Q.
Formulae thus far given only apply to plasma well below cutoff (1.26a)
and (1.26b) or plasma well beyond cutoff (1.33a). Measurement data on
the plasma (to be given in Figure 2.2a) will be over a time domain where
the plasma decays from being well beyond cutoff to well below cutoff. In
order to determine the properties of the plasma over the entire time range,
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it is paramount that we determine formulae for ∆ f and Q that reliably
describe the transition in order to cover the full time range.

If a sample is well beyond cutoff, this means that field energy density
is severely reduced within the sample domain. If a sample is well below
cutoff, this means that the field energy density is equal to the empty cav-
ity field energy density. In terms of CPT, these two extremes correspond
to the two extremes of the numerator expression in (1.24). The volume in-
tegral over a sample beyond cutoff equals zero, whereas the integral for a
sample well below cutoff equals the local squared electric field amplitude
times the sample volume. Upon transmission through the sample volume
boundary, the field is attenuated a factor |T|2 and on average such ampli-
tude is occupied over an effective sample volume of G ·Vs. This yields the
transition equation:

˚
Vs

|E|2dτ ≈ Vs · G(σ) · |T|2 · E2
0

This integral has already been reduced to the effective fractional vol-
ume G(σ) in (1.46b) and the energy transmission coefficient |T|2 in the sec-
tion on capacitive power absorption, and the product of these two param-
eters provide a convenient function by which to provide a simple model
of CPT around the cutoff transition (G(σ) · |T|2 ≈ 1/2). The product of
the effective fractional volume and field energy transmission coefficient
are always found in unison, and together form the effective fractional energy
H within the sample with respect to the case of its absence, the equation
of which is given in (1.52d). Here, H = 0 represents a sample well beyond
cutoff, with H = 1 well below cutoff.

We can now postulate full formulae for the quality factor and resonant
frequency shift of the total cavity under the presence of plasma at the E-
field antinode.

The resonance frequency is the sum of the upward frequency shift from
∆ε′r < 0 in (1.26a) and the downward frequency shift from field negation
across Vs in (1.33a). Adding the two shifts together, we reach the expres-
sion for the total frequency shift due to a sample, as given in (1.52a).

The LI-plasma consists of two sample components, both with (very)
roughly homogeneous properties of η and γ and separate sample vol-
umes Vs. The total frequency shift measured in Figure 2.2a is the sum
of the total frequency shift from the two samples LP and EC simultane-
ously. This sum rule does not hold for the quality factor. Therefore, we
involve the two sample components simultaneously when addressing
the quality factor.

42
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The total quality factor under the presence of two samples (1) and (2)
at the E-field antinode results from the rule for the total quality factor Qtot

1
Qtot

= 1
Q0

+ 1
Q1

+ 1
Q2

, implying that the quality factor of the total system
in terms of respective sample power absorption P1 and P2 is as given in
(1.52b).

The power absorption is given by a simplified version of (1.46a) that
also allows for a field-amplitude amplification due to presence of nearby
objects beyond cutoff, accounted for if α = 2 and not if α = 1, with
α ∈ {1, 2}. This expression is nearly equivalent to only α ∈ {1}, but is
repeated along with the quality factor for good measure in (1.52c). This
model thus assumes sample (1) to be beyond cutoff if sample (2) gives
significant power absorption.†

Total frequency shift and quality factor of a TE101 cavity contain-
ing samples α ∈ {1, 2} (read: LP resp EC) with normalized electron
density ηα, normalized collision frequency γα, corresponding con-
ductivity σ in (1.41b), and sample volume Vα.

∆ ftot =
2

∑
α=1
−χE

2
· Vα

V0
· f0 ·

(
−H(ηα, γα) ·

ηα

1 + γ2
α
+

1− H(ηα, γα)

x

)
(1.52a)

Qtot = Pin ·
Q0

Pin + ∑2
α=1 P(ηα, γα, Vα)α

(1.52b)

P(η, γ, Vs)α = |E0|2 ·Vs · σ(η, γ) · 2α−1 · H(η, γ) (1.52c)

H(η, γ) ≡
˝

Vs
|E|2dτ

Vs · |E0|2
= G(σ(η, γ)) · |T|2(η, γ) (1.52d)

1.5 Thermodynamics

1.5.1 Boltzmann-normalized Saha equation

The electron density associated with the plasma’s gas temperature can be
determined with the Saha-equation (1.53a), where ni, gi, and εi are re-
spectively the particle density, degeneracy, and energy potential of the

†The relevance of this relation will become evident from Figure 2.5a, where this re-
lation of samples (1) and (2) is equivalent to how LP and EC relate under simultaneous
decay.
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i-th ionization level, and λe is the electronic de Broglie wavelength as
expressed in (1.53b). Assuming the helium plasma to be singly-ionized,
we need only consider the case i = 0, with associated values g1 = 2,
g0 = 1, ε1 = Uioniz, ε0 = 0. Additionally, assumption of quasi-neutrality
yields ion density equal to electron density ni = ne, and assumption of
low ionization grade (ne � n0) yields ni=0 = n0 − ne ≈ n0 the num-
ber density ni=0 of ground state particles roughly equals that of neutral
particles n0. Lastly, the reduction in the number density of gas particles
due to increased temperature is accounted for using the ideal gas law:
n0(T) = n0(T = 300[K]) · (300[K])/T. The combination of the above as-
sumptions and correction yields the terms after the arrow in (1.53a), with
ne isolated at LHS.

Evidently, the electronic De Broglie wavelength depends on the elec-
tron temperature Te, whereas the gas density (n) and ionization grade
(χ ∝ exp −Uioniz

kBT ) depend on the gas temperature Tg. The electron tempera-
ture is usually higher than the gas temperature, because the RF-absorption
accelerates the light electrons (me = 9.11 · 10−31 [kg]) to greater magnitude
than the heavier gas atoms (mi = 1.34 · 10−26 [kg]), where the electrons in
turn raise the gas temperature through collisions with rate νen. However,
the electron- and gas temperatures are assumed to be equal due to the
more dominant temperature-dependence of remaining terms in the equa-
tion with respect to the factor (Te/Tg)3/4.

Naively evaluating (1.53a) for η = 1 ∼ ne = nc yields the plot in [18,
Figure 5.5]; a higher-than expected gas temperature Tg ≈ 6500 [K], which
is much larger than measured- [19, Figure 5.9] and simulated [18, Figure
4.9] gas temperatures.

The resolution to this overestimate of the gas temperature is to ac-
knowledge the unequal temperature distribution of gas particles. The dis-
tribution of the amount of particles with some particular temperature T
near the global system temperature T0 follows the Maxwell-Boltzmann
distribution, the probability density function P(T′)T of which is formal-
ized in (1.53c). Consequently, the actual value of the electron density asso-
ciated with the average temperature T is an integral over all temperatures
with the integrand the product of (1.53a) and (1.53c). This normalized
electron density by (1.53d) yields for plasma-stability with ne ≈ nc a cor-
responding gas temperature Tg ≈ 1000 [K].

n2
i+1
ni

=
2

λ3
e

gi+1

gi
exp

(
−εi+1 − εi

kBT

)
→ ne(Tg) = 2 ·

√
n0

λe(Tg)3 ·
300[K]

Tg
· exp

(
−Uioniz

kBTg

)
(1.53a)
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λe(T) =

√
h2

2πmekBT
(1.53b)

fT(T, T0) = 4π · ( mi

2πkBT0
)(3/2) · v(T)2 · exp (

−mi · v(T)2

2kBT0
), v(T) =

√
2kBT

mi
(1.53c)

η(T) =
ˆ ∞

T=0
fT(T, T0)dT

dv
dT

ne(T)
nc

(1.53d)

10 log (η(T)) = p0 − exp (p1 + p2 · T) + p3 · sin(
T
p4
)

pi∈[0,5] = {3.49, 2.33,−1.01e− 3,−3.44,−7.25e3}

1.5.2 Heat conduction power loss of the plasma

The heat transfer coefficient of Helium is k ≈ 1 [W · m−1 · K−1] with
corresponding conduction power loss given in (1.54).

P(c)
l = Q̇ = k · A · ∇T (1.54)
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Chapter 2
Experimental setup and
measurements on setup

2.1 System overview

This subsection will provide a full walk-through of the 2.45 GHz capaci-
tive heating setup, which also facilitates measurements on the LI-plasma
through CCD images and frequency-dependent power reflection mea-
surements. Independently, another setup has been used for measurements
at 57 GHz frequency, and these have yielded transmission measurements.
The heating setup will be walked through from front to back in 3 sections.
Then the laser creating the plasma is addressed. Finally, the setup facili-
tating 57 GHz measurements is outlined. This subsection’s categorization
of the system overview is illustrated in Figure 2.1 below.

(a) 2.45 GHz setup idealized (b) 57 GHz setup idealized

Figure 2.1: Measurement setups, conducting components in black, active compo-
nents in green, measurement components in blue. Created using Powerpoint
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I: Heating source

The setup is being heated by a magnetron operating at a frequency of
fmag = 2.46895 GHz ≈ 2.469 GHz. The goal for cavity tuning is therefore
to make sure that the cavity resonance frequency f0 equals the magnetron
frequency fmag. The signal exits the magnetron through a WR-340 waveg-
uide.

Apart from the requirement of tuning, the cavity also needs to be matched
to the waveguide. If this is not the case, some power is reflected by the cav-
ity, back into the waveguide and thereafter possibly the heating system.
Any signal leaking back into the source can be damaging. In order to de-
viate this reflected power away from the magnetron, a circulator is placed
between the magnetron and the waveguide. A circulator is a three port
network that ’circularly’ transmits power among the three ports, that is:
power from port 1 to port 2, from port 2 to port 3, and from port 3 to port
1. In analogy with our setup, the power originating from the magnetron
is transmitted to the waveguide, and power reflected by the waveguide is
transmitted to the third port of the circulator.

Once the signal has gone from the magnetron, through the circulator,
to the first waveguide, the signal is converted from a rectangular mode to
a coaxial mode.

II: Waveguide components

The plasma is supposed to be contained and heated in cavity at the back
end of a custom 90× 40 mm2 waveguide. This waveguide has been en-
cased in a vacuum chamber, which will be repeatedly drained of air and
filled with helium gas to ensure adequate purification. The magnetron
signal enters this final waveguide as a coaxial mode at its front end. This
coaxial mode is converted by a mushroom-shaped antenna at λg/4 dis-
tance from the front waveguide end into a rectangular mode of the waveg-
uide, with geometry given in [5, par. 4.2.1]. Along the waveguide walls,
the forward and backward signals within the waveguide are measured by
the forward and backward couplers respectively, [5, par. 4.2.2]. A coupler
is implemented as a table-shaped conductor encased by a cylinder, that
is placed along the depth of the waveguide, at the height of the waveg-
uide walls. On either side along ẑ of the table-shape, rods extend into the
core and sheath of the coaxial cable connected to it. The RF signal induces
a current in the table, which is then transferred to the coaxial cable with
some attenuation with respect to the waveguide signal amplitude. Typi-
cally, such a coupler transmits -60 dB of the RF signal amplitude travelling
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2.1 System overview 49

through the waveguide. Measurements on the forward coupler have been
used to make 2.45 GHz measurements.

III: Cavity

Just before reaching the iris, the signal encounters an M14 stub (r = 7 mm,
h = 13.5 mm) at λg/4 in front of the iris. This is the first of the two match-
ing elements along with the iris. The signal then travels through a circular
aperture called the iris, which has a radius r = 10.5 mm. The iris is placed
at a distance d ≈ λg/2 from the waveguide short at the back end, thus
forming a rectangular TE101 mode. Tuning is accomplished by translat-
ing the position of the iris-plate within the waveguide, thus changing the
cavity depth d respect to the short.

The cavity furthermore has three openings, all followed by tubes with
similar inner radius, elongated axisymmetrically with the cavity holes.
The tubes have a height of about ten times the radius of the hole, resulting
in only −60 dB cavity power leakage from the outer end of the tubes. Two
tubes are placed along the y-axis, at the centers of the upper and lower
planes of the cavity (x=a/2, z=d/2). One tube contains a lens with a fo-
cal length of 50 mm, thus placed at 30 from the opening, creating a focus
at the cavity center. At its outer end, this tube has a high-power laser to
be discussed in the next subsection. The two remaining tubes contain a
CCD camera at their outer end, one opposite the first tube, the other at the
center of the short.

IV: Laser

The plasma is created by a laser-pulse originating from a type Nd:YAG
laser, operating at a power of Plaser = 20 MW and a frequency of flaser =
1064 nm. For a full description of the setup of the laser, as well as the CCD-
cameras please refer to [19]. The laser beam is focused into the center of
the cavity by a lens with a focal length of l = 50 mm. The pulse dura-
tion is ∆tlaser = 16 ns. The emitted power over time follows a Gaussian
development, such that the effective time at which full power is emitted
is only around 10 ns. The total pulse energy deposited by the laser was
set to U0 = 275mJ, which is an upper limit to the energy absorbed at
the focus. Flow simulations [18] of the first 30 microseconds after laser-
pulse reproduce the torus-formation measured through CCD images for
an initial deposited energy of roughly Uinit = 42 [mJ]. Because the de-
position time ∆t ≈ 16 [ns] is much shorter than that of subsequent ex-
pansion ∆t = 10 [us] (see Figure 3.5a), atmospheric, room-temperature
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particle density may be assumed. CCD images of the plasma during at
t = 100 [ns] after the laser-pulse [18, Figure 3.1] indicate deposition into
a roughly cylindrical volume V(t = 0) = 6.8 [mm3]. Substitution of
V(t = 0) and U(t = 0) into the ideal gas law yields an initial tempera-
ture T(t = 0) = 2U(t=0)

3n0V(t=0)kB
≈ 104 [K], to be used later on.

V: 57 GHz measurement setup

Transmission measurements are made on the plasma midway in between
two trapezoidal-shaped horns facing each other.[12] One horn is excited
by a Gunn-oscillator operating at 57 GHz. At the end of the opposite horn,
the transmitted signal is measured. Measurements on the plasma are then
made by aligning the laser focus at the center of the domain between the
horns. These measurements yield a phase shift and an attenuation of the
transmitted signal with respect to the input signal. In simulations, these
two degrees of freedom were then used to convert to the two degrees of
freedom of the plasma: electron density and collision frequency. A para-
metric sweep was made of these properties to the plasma domain and the
combination of properties that reproduced experimentally measured val-
ues would thus characterize the plasma. However, this method heavily
relies on the right shape (r, a) and volume Vs of the plasma. For the re-
mainder of this paper, 57 GHz will only be involved in simulations to fact
check the final solutions for the characterization of the plasma.

2.2 Measurements on plasma

Previous experiments on the plasma have aimed to characterize the ge-
ometry, electron density, and collision frequency of its components. CCD
measurement on the plasma have aimed to deduce the geometry of the
plasma’s components. As for the characterization of the plasma’s material
properties, two different measurements of the plasma have been made
with different frequencies and setups. Both experiments study the same
laser-induced plasma over a period of about 100 us since its inception.
Both experiments approach such a measurement by creating a setup that
is excited by some RF signal (input), measuring the reflected/transmitted
signal (output calibration) in absence of plasma, and measuring this re-
flected/transmitted signal in the presence of plasma (uncalibrated out-
put). Output signals in the presence of plasma are then calibrated by com-
parison with output signals in absence, to get the effects of the plasma
proper. Finally, the plasma is characterized in terms of electron density

50

Version of July 8, 2021– Created July 8, 2021 - 13:14



2.2 Measurements on plasma 51

and collision frequency by either converting measurement values to plasma
properties under theory, or by reproduction of measurement values under
simulations.

A: CCD images

The next chapter will devote itself to an analysis of the plasma geometry
and material properties of the plasma. This will be done by studying CCD
images of the plasma. There are two types data sets of these images. One
of the unperturbed evolution of the plasma - that is without RF - and one
with RF heating on. As for the images, the raw images can be studied to
give a raw side view of the plasma, and the Inverse Abel Transform (IAT)
of said raw images which give the cross-section of the plasma by its ax-
isymmetric property. Equivalently, multiplying the pixels in each row of
the (IAT) by the distance from central row, reproduces the raw image. The
downside to the IAT is that it creates a numerical instability at the sym-
metric axis - visible as unexpectedly high luminosity around the symmet-
ric axis. * For this reason, the IAT is used only when the raw image would
not give an accurate representation for the parameter to be deduced. This
will be relevant when studying the LP major radius and the EC electron
density distribution.

The iris-coupled heating setup used is sketched in Figure 2.1a with
(near-constant) input power Pin = 3 [kW] active over time t ∈ [20, 100]
[us]. The (reduced) transmitted power (due to mismatch or mistune) is
unknown, because of the inability to apply diagnostics under high input
power. The plasma-filled cavity is matched with iris radius r = 10.5 [mm]
and tuned to air-filled empty-cavity resonance frequency fempty,Air = fmag−
5 [MHz] in order to compensate for the deviant Helium-permittivity and
the LI-plasma’s downward frequency shift.

B: 2.45 GHz measurements

The LI-plasma is created by depositing the laser energy into a focus at the
center of the cavity sustaining the TE101 mode at a frequency of 2.45 GHz,
illustrated in figure 2.1a. The measurement method may be fully char-
acterized as Reflection coefficient spectrum measurements and is explained in
[5]. For multiple frequencies, each in a spectrum of frequencies around the
empty cavity resonant frequency, the power reflection coefficient |S11|2( f )

*This is most likely due to the abel inverse working ”outside-in” meaning that any
leftover intensity upon reaching the axis (due to noise) is attributed to the pixels around
there.
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is measured at said frequency over a time span t ∈ [−3, 270] us relative to
the laser pulse instant t = 0 us. The empty cavity is matched and tuned to
a frequency of f ≈ 2.448GHz. The measurements consist of a multitude
of separate measurements over a range of frequencies near f ∈ [2.4, 2.46]
GHz, with an input power of Pin = 1 mW is connected to the input. For
each frequency, the reflected power with respect to the input power |S11|2
is determined over the time span, using a spectrum analyzer. Afterwards,
these data sets are unified to form a dynamic frequency spectrum mea-
surement. At each instant, the Lorentz curve is interpolated to deduce the
resonant frequency f0, quality factor Q, and mismatch ∆M at said instant,
which gives the dynamic data as visualized in Figure 2.2a. The geometry
of the setup is provided in Figure 2.1a.

(a) Resonant frequency f0 and quality factor
Q over time. Obtained from data obtained
by [5].

(b) Normalized voltage transmis-
sion |S21| at time t after laser pulse
for the 57 GHz setup. Obtained by
a direct copy of Figure 5.5 in [12].

Figure 2.2

C: 57 GHz measurements

Higher frequency measurements are made on the frequency of f = 57
GHz, where the plasma is created in between two identical horns with
trapezoidal prism shape, and transmitting a signal created by a Gunn-
oscillator. At the f = 57 GHz excitation frequency, the transmitted voltage
of the signal is measured over a time span similar to that of the 2.45 GHz
measurements. This method of which is fully explained in [12], and pro-
vides a dynamic attenuation of the transmitted voltage by the plasma. Set-
ting the plasma’s absence as |S21| = 1, the attenuation |S21| by the plasma
provides additional information over the 2.45 GHz measurements. Fore-
most, this higher frequency causes the field to permeate further into an
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identical sample, with respect to 2.45 GHz. The author assumes that be-
yond 30 us at least, this allows us to ignore effects of the EC, such that
the |S21| plasma response is fully determined by the LP. The measurement
results involve the phase shift as well, but the utilization of this data has
not been pursued by the author. The transmission measurements consist
of data measured in [12], and are plotted in Figure 2.2b. The geometry of
the setup is given in Figure 2.1b

2.3 Simulation models of measurement setups

Now that we have introduced the setup properties for 2.45 and 57 GHz, it
is logical to already come with a detailed description of the modelling in
simulations. Simulations will make up the majority of the data that this
paper will supply and analyze. Moreover, having explained the simula-
tion models allows us to focus on the characterization of the plasma in
future chapters.

Our ultimate goal in this paper is to characterize the composite plasma.
However, as for the 2.45 GHz measurements, this requires first character-
izing the empty cavity. RF measurements on the plasma have been made
in a microwave cavity, changing the cavity’s mismatch ∆M, quality factor
Q, and resonance frequency f0. Before we can study the perturbations on
these parameters by the plasma, we first need to accurately characterize
the setup by the empty-cavity parameter values.

2.3.1 Introduction to Comsol’s RF-module

Comsol’s RF-module simulates electro-magnetic waves travelling through
(domain-wise) and being trapped (boundary-wise) in some object. In or-
der for RF-simulations to be run on said object, three aspects must be de-
fined on the object:

1. The geometry

2. The material properties

3. The electro-magnetic properties: wave equations within domains
and conditions on the set of boundaries that encapsulates these do-
mains

In addition, the author has found functions for parameters R and ρ
in terms of arbitrary Cartesian coordinate (x, y, z) within the simulation
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model. Using these, one can assign distributions of material properties
within the domain of the LI-plasma.

Complete description of model-building

Firstly, the geometry of the model is must be defined by some combina-
tion of common topological shapes (block, cylinder, torus, etc), each cen-
tered at some coordinate (x, y, z), and with its dimensions defined (a ×
b × d, (R, h), (r, a)). Additionally, topological relations (such as union,
intersection, difference) can be defined as relations on two or more dif-
ferent shapes to create the desired final geometry. This final geometry
- on which simulations are made - is henceforth called the ’object’. If
consisting of multiple topological shapes, the object will be a union of
these (non-overlapping) shapes which are designated as unique domains.
Each domain allows the designation of unique material- and meshing-
properties in pre-simulation, or analysis of electro-magnetic properties in
post-simulation.

Secondly, material properties must be assigned to the different do-
mains within the object, and to the boundaries encapsulating the object.

As for domains, the material properties needed to fully define a do-
main under RF is a set of three values that depend on the wave equation
chosen under electro-magnetic properties. The two different wave equa-
tions are ”relative permittivity” and ”dielectric loss” corresponding to the
set of material properties (µr, εr, σ) respectively (µr, ε′r, εr”). In both ap-
proaches to the wave equation, the propagation of waves (between two
mesh elements) is determined by all three material properties. The losses
within a mesh element are defined by a single material property: under
”Relative permittivity” depending on σ, and under ”dielectric loss” de-
pending on εr”.

As for the boundaries, the only boundary type requiring material prop-
erties is the ”Impedance boundary condition”. If a boundary-element of a
mesh-element is assigned an IBC, then the field-element of the wave-vector
perpendicular to the boundary element is reflected with some loss de-
pending on the material property σ assigned to this boundary.

Lastly, electro-magnetic waves are computed within the object. By de-
fault, the initial conditions within the object are such that there is no field.

The simulation computes the resulting field within the object under the
excitation by some ”Port” boundary. The Port condition is assigned some
input power, and a port mode. This mode type causes its corresponding
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travelling wave to emanate perpendicular to the port boundary, and into
the object. The input power determines the amplitude of the resulting
field.

The propagation of waves through the object is determined: by the
general wave-equation and the material properties of the domains (as dis-
cussed); and by the boundary type and material property of the remaining
boundaries encapsulating the object. Aside from the Port-condition and
IB-condition already mentioned, there are two other boundary conditions
to be used in future. Firstly, the ”Perfect electric conductor”-condition (PEC),
is equivalent to IBC but with σ→ ∞. Secondly, the scattering boundary con-
dition (SBC) acts like a plane into free space, similar to a perfectly matched
layer, in that all of the field incident on the plane disappears.

Domain-based material properties will always fall into the category of
helium, air, quartz, EC plasma, and LP plasma. Boundary-based mate-
rial properties will always be those of aluminum. The input port will be
placed at just before the iris, and will introduce a rectangular mode (repre-
senting the preceding length of rectangular waveguide excited by a coax
to waveguide transition) with an input power of Pin = 3 kW.

There are two types of study for the RF-simulations. The Eigenfrequency
study determines a list of complex eigenfrequencies of the model, around
a user-delivered real-valued frequency, but does this for arbitrary port 1
input power. The Frequency domain study determines the response of the
model to a single user-delivered real-valued frequency and pre-determined
port 1 input power.

Extraction of useful data after running simulations

The following parameters can be evaluated after running the model in
order to derive useful data from the simulation run:

As for global evaluations:

• emw.freq : Used in Eigenfrequency study. Gives the resonant fre-
quency of the entire system

• emw.Qfactor: Used in Eigenfrequency study. Gives the quality factor
of the entire system

• emw.S11: Used in Frequency domain study. Gives the complex re-
flection coefficient of the entire system for a given frequency.

As for local evaluations:
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• emw.Qe : Used in Frequency domain study. Gives the RF- power
absorption density in [W/m3] at some coordinate. Its slice represen-
tation is given in the right-most column of Figure 3.1. In data extrac-
tion, the volume integration of this parameter is made over either the
LP or EC domain in order to derive the power absorption ratio

• emw.normE : Used in either study. Gives the time-averaged electric
field magnitude |E0| in [A/m2] at some coordinate. Its slice repre-
sentation is given in Figure 5.4c and in Figure 5.6b

• emw.normB : Used in either study. Gives the time-averaged magnetic
field magnitude |B0| in [T] at some coordinate. Its slice representa-
tion is given in Figure 5.4d and in Figure 5.6c

Useful coordinate transformations in terms of Cartesian coordinates

As will become clear later, we require the definition of coordinates near
the plasma in order to implement distributions within the plasma. The
origin of the coordinate systems we used is the coordinate of the laser fo-
cus, or equivalently the center of mass coordinate of the LI-plasma. There
are two coordinates over which material properties of the plasma will be
assigned distributions: the radial distance from the laser axis R, and the
radial distance from center of the torus cross-section ρ. The latter coordi-
nate ρ is most intuitively explained as the closest distance to a torus with
major radius r(t) and minor radius 1/∞.

We can fully characterize the geometry of the domain and the distri-
bution of material properties assigned within it with parameters in the
following units:

• time t in [us]

• major radius r, minor radius a, axial radius R, and torus-cross-sectional
radius ρ in [mm]

• volume V in [mm3]

In terms of some point with Cartesian coordinates (x, y, z) within the
plasma domain, we can express the parameters R and ρ with the following
equations, where we take the torus axisymmetric with ŷ:

R(x, z) =
√

x2 + z2 (2.1a)

x0(x, z, t) =
x · r(t)
R(x, z)

(2.1b)

56

Version of July 8, 2021– Created July 8, 2021 - 13:14



2.3 Simulation models of measurement setups 57

z0(x, z, t) =
z · r(t)
R(x, z)

(2.1c)

ρ(x, y, z, t) =

√[
r(t)−

√
(x− x0(x, z, t))2 + (z− z0(x, z, t))2

]2

+ y2

(2.1d)

2.3.2 Simulation model of empty TE-101 cavity

As for the geometry, the setup waveguide and cavity have cross-sectional
dimensions (along ẑ) of a× b = 90× 40 mm2. The cavity is enclosed by an
iris-plate with a thickness δ = 1 mm, a distance d from the short, and with
a circular aperture at its centre of radius r0 = 10.5 mm.

For finer matching, only the stub at λg/4 ≈ 42 mm from the iris has
been protruded into the waveguide, at a stub protrusion height of hs =
13.5 mm. This is an M14 stub, which has a radius of about 7 mm.

For optical access, the cavity has three more openings aside from the
iris-aperture. Each of the optical openings are elongated by roughly cylin-
drical tubes to be characterized their inner cylindrical shape with radius
and height (r, h). Two of the tubes are centered at the upper and lower x̂×
ẑ-planes respectively. The lower tube with (r f , h f ) = (7.5, 60) mm2, and
the upper tube a stack of a bottom cylinder and upper horn with (rl, hl) =
(5, 5) mm2 and (ru, hu) = (7.2, 22) mm2 respectively. Lastly, a tube that is
centered at the short (x̂× ŷ-plane), with (rs, hs) = (10, 80) mm2.

As for the material properties, the cavity and waveguide are filled with
helium gas allowing us to approximate (ε′r, εr”) ≈ (1, 0) for the domain
material properties. All boundary components are made of aluminum. By
[2, p. 21], aluminum conductivity is in the range σAl ∈ [1, 3] · 107 S/m. This
possible error of a factor 3

1 = 3 would lead to an error for the quality factor
Q by a factor Q(σ=3e7)

Q(σ=1e7) =
√

3 ≈ 1.7, as follows from (1.17a). Therefore,
we determine the aluminum conductivity σAl specific to our setup by a
sweep of the value applied to the geometry in Figure 2.3. and determining
for what value of σAl the pre-pulse measurement values Q0 = 2850 and
∆M = 0 are reproduced. The same is done for the cavity depth d, as this
should provide f0 ≈ 2.4497 GHz.

Reproducing these values in Comsol, for the geometric properties al-
ready known, requires the following additional parameters for the setup:

• d = 82.52 mm
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• σAl ≈ 1 · 107 S/m

The simulation model of the 2.45 GHz shown in figure 2.3 is modelled
as follows. Input port (1) at the left-most surface, just in front of the stub.
All remaining boundaries are IBC with σAl = 107 S/m. Domains other
than plasma are given free space material (µr, ε′r, εr”) = (1, 1, 0). The
plasma is a torus axisymmetric with ŷ and centered in between the upper
and lower tube, with major and minor radius r(t) resp. a(t). The plasma
is given separate properties to be discussed.

Simulation model of 57 GHz setup

The simulation model of the 57 GHz shown in Figure 2.4 is modelled as
follows. Input port (1) at the left-most surface, and output port (2) at the
right-most surface. Domains other than plasma are given free space mate-
rial (µr, ε′r, εr”) = (1, 1, 0). The horn boundaries are PEC, and the cylinder
boundaries not adjacent to the horn-openings are SBC. The plasma is a
torus axisymmetric with ŷ and centered in between the horns, with major
and minor radius r(t) resp. a(t). The plasma is given seperate properties
to be discussed.
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Figure 2.3: Simulational model of the 2.45 GHz setup. Geometry is indicated in
[mm].

Figure 2.4: Simulational model of the 57 GHz setup. Geometry is indicated in
[mm]. Model geometry is symmetric in the x̂ × ŷ-plane at the center (I’m just
saying that the horns have the same geometry)
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2.4 Preliminary simulations on torus-shape in TE-
101 cavity

(a) Magnitude of simulated electric field
norm [V/m] near a torus-shape beyond
cutoff at the center of the TE101 cavity.
The 2.45 GHz oscillating electric field is
parallel to the torus symmetric axis.

(b) Comparison of frequency-dependent
power reflection-curve, for simulation data
sim. and measurement data meas. of
the empty cavity. An additional theoreti-
cal power reflection curve (1.23b) is plot-
ted for example-parameters ( f0, Q, ∆M) =
(2.4465[ GHz], 2850, 0.2).

Figure 2.5

Electric field near a plasma beyond cutoff

Before continuing on, it is worth mentioning the shape of the E-field near
a torus beyond cutoff at the electric field antinode of (read: center of) the
microwave cavity. This can be seen as a linear rainbow-colour plot of the
E-field near the plasma in Figure 2.5a.

The perturbed electric field influences the energy density within a shell
of 1 mm around the the torus, with the energy density either amplified or
reduced depending on the normal direction n̂ of the boundary element of
the plasma closest to some nearby element. For nearby elements with n̂
such that n̂⊥R̂ ∼ n̂ × R̂ = θ̂ 6= 0, the field is doubled and the energy
density thus quadrupled. Vice versa, for nearby elements with n̂ such that
n̂ ‖ R̂ ∼ n̂ × R̂ = 0, the field is negated and the energy density is thus
zero.

Direct reproduction of power-reflection data

The ratio of reflected power at t=0 µs, should accurately overlap with the
|S11|2 plot produced by simulations of this empty cavity model. The ge-
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ometry of the empty cavity is visualized in 2.3, with the corresponding
reflected power plotted in 2.5b with label meas. From the accordance of
simulated values of |S11|2 for the Helium-filled empty cavity (sim. He2)
with values from measurements at t < 0, we see that we have accurately
modeled the empty cavity in simulations. It is useful to address some of
the components influencing the RF-properties in small ways in order to
justify ignoring them. Such small deviations include the substitution of
air with helium, and the tubes opening up the cavity. These differences
will be studied in the simulation model of the empty cavity.

Deviating resonance frequency of Air- vs. Helium-filled cavity

An interesting detail was that upon substituting the air in the vacuum
chamber for Helium gas, the resonance frequency measurement of the
same system shifted upward with ∆ fAir→He2 = +0.7MHz. Of course, it
is logically determined from (1.30) that ∆ fAir→He2 ≈ +0.65 MHz. More-
over, this shift can also be verified in simulations, and this is seen in Figure
2.5b by comparison of the curve indicated with sim. Air and that with sim.
He2 to identify the same frequency shift ∆ f = +0.65 MHz correspond-
ing to substitution of the Helium with Air into the empty cavity domain,
values of dielectric in Table 1.2.

Influences on f0 and Q by the tube openings

Secondly, the three cavity tubes (characterized in Figure 2.3) influence the
cavity RF-properties. Near the tube at the short, the B-field is at maxi-
mum. Near the other two tubes, the E-field is at maximum. Any field
close to the tube entry leaks into the tube. A field forms in the tube that
drops exponentially over the distance from the entry plane, due to cutoff.
Because of the tubes are so long, the resulting field near the other end of
the tube is nearly ignorable (-60 dB field strength, I believe). The tubes
act like an enlargement of the cavity volume, approximated as the sum
of tube-volumes containing significant field strength E(d) > e−1 · E0 with
E(d = δ) = e−1 · E0, as in ∆V ≈ ΣA · δ. This virtual increase of cavity
volume relates to a decrease in cavity resonant frequency, which for this
tube-system is ∆ f∅→tubes = −3.6MHz. To a lesser degree, the power lost to
the leakage from the outer ends of the tubes and induced currents within
the tube walls cause a reduction of the quality factor which has been found
to be a factor 0.95 reduction of the empty cavity quality factor. These are
small differences that henceforth will be ignored.
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2.5 Transmission line calculations on empty TE-
101 cavity

In this section, we aim to construct an equivalent circuit model of setup
based solely on the conductivity of the walls, the setup dimensions, and
resonant frequency. The behaviour of the resulting resonant circuit is then
compared to simulations of the setup. We compute that for the custom
waveguide: Zwg = Z0 ·

λg
λ0

= 377 · 166.9
122.45 = 513 Ω.

Starting with the Q-factor of the boxed empty cavity, equation (1.17a),
we get Q0 ≈ 6466. From equation (1.11b), we get L = 97.25 nH. From
equation (1.13) with L = 0 we thus get R = 231.5 mΩ. This value is ver-
ified by equation (1.11a), where R = κZwgαd = 1.365 · 513 · 3.97 · 10−3 ·
83.45 · 10−3 = 232 mΩ and equivalently, R = ω0L/Q0 =. For the ca-
pacitance to give the resonant frequency in (1.12) with the value of L, we
must thus have: C = 1

ω2
0 L

= 43.4 fF. The resulting equivalent circuit is vi-

sualized by substitution of these values into their corresponding lumped
elements in 1.1b.

By (1.15), the value for the resistance of the cavity needs to be equal
to the resistance associated with the source, which gives us the required
value for L: L = 0.708 nH, as must be the case for ideal power trans-
fer. By first approximation, modelling the iris as infinitely thin, we deduce
r0 = 3

√
L/a|ψ=1 ≈ 9.1 mm. The iris thickness we will use in our setup

is t = 1 mm. The corresponding iris correction factor for this radius and
thickness by (1.21) equals ψ = 0.713. By the relation r ∝ 3

√
1/ψ, the re-

quired iris radius for the iris thickness equals:

r′0 = 3
√

1/ψ · r0 = 1.12 · 9.1 mm = 10.2 mm

, which is exactly the iris radius to give matching in simulations of the
empty TE101 cavity, as will be confirmed in Figure 2.6b.

In order to visualize the equations (1.22), we should justify our ap-
proach by comparison with simulations in Comsol. The simulation model
in Figure 2.3 is used, but without a stub such that hs = 0. We make para-
metric sweeps of the iris radius r in simulations and analyze f0, Q, and
∆M in each run. We can then compare these simulation data with the rela-
tions deduced in theory (1.22). These plots are given in Figures 2.6a, 2.6b,
and exhibit good accordance for all RF-parameters.
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(a) Resonant frequency and quality fac-
tor over iris radius

(b) Mismatch and iris correction factor over
iris radius

Figure 2.6: Simulated (line) and theoretical (scatter) values of f , Q, ∆M, and ψ
over r, compared. Theoretical values correspond to equations (1.22a), (1.22b),
(1.22c), and (1.21) for t = 1 mm. The simulated values are extracted from a sweep
over r in the simulation model of the TE101 cavity in Figure 2.3.

Some useful parameters of the rectangular TE101 cavity

For the purposes of power absorption calculations in the plasma (1.48b)
and (1.46a), we require the approximate empty cavity field amplitudes B0
and E0. For the rectangular TE101-mode heating setup, the approximate
quality factor is Q = 3000, and the input power Pin = 3 kW, with the mag-
netic field distribution given in (1.8). Insertion of these setup parameters
into (1.50) yields B0 ≈ 0.002 T. Simulations on the TE102 rectangular cav-
ity yield B0 ≈ 0.004 T.† This might be due to time-average field not being
accounted for, or due to some other discrepancy. Nevertheless, this value
for the magnetic field antinode amplitude and the corresponding value
of the electric field amplitude will be used in theoretical capacitive- and
inductive power absorption calculations of the plasma for the rectangu-
lar TE101 and rectangular TE102 heating setups. All properties of the TE101
setup (also providing approximate properties of the TE102 setup) are given
in Table 2.1.

†The author forgot to analyze field strength in simulations on the TE101 cavity. The
simulation model of the TE102 mode is similar in size and quality factor, however, and is
described in Figure 5.4.
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B0 4 · 10−3 T Zwg 513 Ω
E0 1.2 · 106 V/m R0 0.2315 Ω
Pin 3000 W L 97.25 nH
Qempty 2850 [1] C 43.4 fF
ω0 2π · 2.45 · 109 Hz λg 166.9 mm
V0 3 · 10−4 m3 L 0.708 nH
λ0 122.45 mm α 3.97 · 10−3 m−1

a 90 mm b 40 mm
d 83.45 mm a0 9.3 · 10−4 Ω · s ·m−3

Table 2.1: Properties of the rectangular 90× 40 [mm] TE101-mode 2.45 GHz mea-
surement setup.
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Chapter 3
CCD image interpretation

The LI-plasma is observed by a CCD camera with select-able view direc-
tion; either behind the short (side view), or the opposite to the laser (front
view). Only the side view image of the plasma are used, as they best visu-
alize the plasma’s composition; because the LP and -EC luminous regions
will not overlap and because their axial symmetry allows for the determi-
nation of the cross-section emissivity. In Figure 3.1 left and center column,
the side view image of the plasma is plotted with colour scale along linear
intensity, with raw image on the left and Inverse-Abel-Transformed (IAT) im-
age at the center for luminosity under capacitive heating. In terms of the
left column, the LP is the vertical disk-shape in the center of the image, and
the EC are the two vertical disk-shapes on either side of the LP; the EC is
only visible/luminous if capacitive heating is activated. The first goal is to
find functions for the geometric parameters of the LP and EC, from the size
and position of their luminous regions. Secondly, to make Ansatz function
for the (exponential) decay of the LP-electron density, and Ansatz function
for the (crescent-shaped) charge distribution within the LP. Lastly, the to-
tal intensity inside and outside the LP-demarcation (from LP-geometry
(r, a)(t)) is used to derive the stability time for the LP resp. EC.

The CCD-images are contained in .SPE-files, which are 512× 512 [px2]
(1 [mm] ∼ 41.45 [px]) arrays representing the radiant intensity measured
at each pixel. Aside from section 3.4, analysis in this chapter is limited
entirely to the two data-sets zmage-17678.SPE and zmage-17679.SPE corre-
sponding to inactive resp. active RF-heating. They cover a time period
t ∈ [22, 104] [us] after the laser-pulse, possess a gate width of ∆t = 0.25
[us], and are averaged over 50 exposures. The description of the heating
setup used under active heating is explained in subsection 2.2.1.

Version of July 8, 2021– Created July 8, 2021 - 13:14

65



66 CCD image interpretation

Figure 3.1: Collage of plasma representations. Each row represents the plasma
at - from top to bottom - time t ∈ [30, 41, 50, 60], obtained from zmage-17679.SPE
frames 5, 11, 15, 20. Each column represents the plasma as - from left to right - raw
image, IAT image, slice of simulated emw.Qe under final characterization.

66

Version of July 8, 2021– Created July 8, 2021 - 13:14



3.1 LP-geometry: major and minor radius 67

3.1 LP-geometry: major and minor radius

The LP major radius and minor radius will be determined by summa-
tion over either of the two axes of the (raw/IAT) CCD images, over time.
Both parameters will be determined by analysis of a horizontal/vertical
intensity-spectrum I(x) to be obtained by summation over one of the .SPE-
array-axes. The array has two axes; one being the vertical axis v̂ with a
range of coordinates v, the other being the horizontal axis ŵ with a range of
coordinates w. The major radius will be determined by the spectrum sum-
mation over the vertical axis ŵ, giving a spectrum I(v). The minor radius
will conversely be determined by summation over v̂ giving a spectrum
I(w). Spectra hence obtained are noisy. For this reason, such a spectrum
will always be converted to a polynomial with a Savitsky-Golay filter.

3.1.1 Determination of major radius r(t)

We determine r(t) for two different time domains when the region within
the torus-outline (associated with the LP-torus geometry) is luminous, em-
ploying a different method and data set on each. During the initial period
(t ∈ [22, 46] [us]), radiant intensity originates from the natural decay of the
highly-ionized LP-torus, after which the radiant intensity is indistinguish-
able from noise. During the final period (t ∈ [60, 100] [us]), radiant in-
tensity within the torus-outline emerges above noise-level, and originates
from RF power absorption.

Evident from Figure 3.1 (first column, second row t = 41 [us]), the
LP-torus is pierced into a crescent-shape by a (cold, lowly-ionized) split-
ting gas disk (SGD), and images [19, Figure 5.8] at t = 50 [us] reveal that
the LP has been split entirely into two separate disks. In contrast, the
late-period (t > 60 [us]) radiant intensity consistently appears from a sin-
gle torus-shape centered at the LP-cross-sectional outline. Unless the two
LP-toruses have merged before t > 60 [us], this single-torus power ab-
sorption is more likely emergent from the low-conductivity SGD. A study
of the early-period LP cross-sectional intensity profile is done in Figure
3.7 of Section 3.3 , and extrapolation of the data yields a merger (or at the
least a very close proximity) of the separated LP-toruses around t = 55
[us] into a single torus, situated just below the SGD in the R̂-direction.
Consequently, capacitive RF power absorption necessarily favours the LP
at any time over its decay from beyond cutoff to below cutoff, assuming
LP-conductivity to be consistently well above SGD-conductivity. If the
LP is beyond cutoff, then by Figure 2.5a, no RF-energy is present within
the SGD. If the LP is below cutoff, then RF-energy is absorbed into the
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LP. In conclusion, radiant intensity within the torus-outline is always at-
tributable to the LP.

Firstly, over time t ∈ [22, 46] [us] when the LP radiates its initial ioniza-
tion energy, no heating is used. Analysis starts at the earliest picture t = 22
[us] up to the time t = 46 [us] where the SNR is too low. For each t, on the
corresponding array, a torus-outline associated with the side view of a torus
with some major radius r and minor radius a is drawn, coinciding with
the set of pixels that have closest distance a = 1 [mm] to the center-line.
The center-line is the vertical line between the LP’s cross-sectional centers
(w, v) = (c ± r, c). To derive the most probable major radius r(t) of the
torus at time t, the major radius is swept around r ≈ 3 [mm] and the vari-
ance of the pixel-intensities at the torus-outline is calculated. By sweeping
the outline’s major radius r, the optimal major radius r(t) is identified as
the major radius r for which the variance is at minimum; this process is
outlined in Figure 3.2a. The left column shows the raw image (above) and
its IAT (below), and the central column shows normalized intensity of the
raw images, with zero-intensity within the torus-outline. From top to bot-
tom, outlines are drawn around optimum, r = r(t) + ∆r, with a margin of
∆r = −10, 0,+10 [px]. In the right column, the IAT-intensity within the
torus-outline is given for smaller minor radius 0.75 · a in the red scatter
plot, where r = r(t) yields gradient of the outline parallel to the gradient
of the crescent-shape.

Secondly, over time t ∈ [60, 100] [us] when the LP radiates energy from
RF-power-absorption, heating is used. Analysis starts at the first increase
of LP luminosity under RF-excitation at t = 60 [us] (see future Figure
3.12a) up to time t = 100 [us] when the magnetron is shut off. This pro-
cess is automated and results are plotted in Figure 3.3. When the raw im-
age is summed over the vertical axis v̂, a spectrum I(w) = ∑v=512

v=1 I(v, w)
is obtained with three maxima, with two minima in between called w1
and w2 coinciding with the ”dark regions” in between the LP and EC.
Having obtained this information from the I(w)-spectrum, we can filter
out the influence of the EC by setting the intensity of the array to zero
for w ∈ [0, w1] ∪ [w2, 512]. Within the slice [w1, w2] representing the LP-
domain (mid-bottom), the highest luminosity lies just below the center of
the actual LP cross-section, because of the raw image being a line integral
over the full side view of the LP-torus. In order to obtain the (more suit-
able) cross-section of this torus, the IAT image J(v, w) = F−1 I(v, w) of the
raw image is taken, and the LP’s intensity-spectrum J(v) = ∑w2

w1 J(v, w) is
obtained by summation over the horizontal axis ŵ for w ∈ [w1, w2]. We
obtain two peaks above and below the central axis, with the distance in
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3.1 LP-geometry: major and minor radius 69

between evidently equal to the diameter d = 2r of the LP-torus.
We now have two data sets of r(t) for two different time domains,

with a hiatus for t ∈ [46, 60] us. We must find a function r(t) to fit to
the data in order to interpolate between known data values, and extrap-
olate to acquire data within the hiatus. A visual inspection of the data
alone led to the choice of an asymptotic, logarithmic increase r(t) = r(t =
∞)− exp

(
(t0−t)

b

)
. However, this is an educated guess, and flow dynam-

ics of vortex ring expansion might correct this radial expansion to follow
some nth-root function. By the curve fit-module in Python (which employs
the Levenberg Marquardt algorithm [20]), the optimal fit r(t) in (3.1a) is
deduced, with optimal fit-parameters r(t = ∞) = 5.8 [mm], t0 ≈ 75 [us],
and b = 42 [us]. This fit-function is formalized in (3.1a).

3.1.2 Determination of minor radius a(t)

The minor radius a(t) of the LP will be determined by the value a for the
torus-outline that best corresponds with the interface of LP and EC, under
the effects of heating. The LP domain is necessarily restricted in between
the two luminous EC-domains, but it is a matter of debate whether the LP
occupies the entire region in between the EC as it contains a large dark
region. From the left-most column of Figure 3.1, the dark region is visible
in between the luminous LP and -EC; in between two plasma-components.
Logically, the dark region must also likely classify as a plasma with an
electron density somewhere in between that of LP and EC. Parts of the
plasma can be luminous either due to radiation during its natural decay
or due absorption of the local electric field. For t < 46 [us], the LP is
luminous because of the former, and the EC is luminous because of the
latter. As for the dark region - situated at the edge of the LP-torus such
that ρ ≈ a -, intensity is surpassed by the higher charge-density-based
radiation well inside of the LP η(ρ) � η(ρ/2), yet with electron density
beyond cutoff density η(ρ) � η0 such that no RF-radiation is absorbed.
The dark region is therefore classified as LP, and is most likely due to non-
homogeneous cross-sectional LP-electron density.

The minor radius of the LP is determined using three different rou-
tines on the horizontal intensity spectrum, and the method is explained
in Figure 3.4a. Before, summation over the vertical axis, in order to filter
out the EC ’curling’ around the LP (above and below), the pixel-intensities
for v ∈ [0, c − r(t)] ∪ [c + r(t), :] are turned to zero. After summation of
intensities over the vertical axis, a Savgoy filter is applied to smooth out
the spectrum. The three maxima of the resulting polynomial are identified
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(a) Parametric sweep of the major ra-
dius r, and subsequent initialization
of the set of pixels {(vi, wi)} com-
prising the race-track, and calculation
of the intensity-variance σI of pixel-
intensities {I(vi, wi)} at outline-set. The
most likely major radius r(t) equals
sweep-parameter r for which intensity-
variance σI is minimal. Method for t ∈
[22, 46] [us], example: t = 30 [us].

(b) Calculation of LP-domain horizon-
tal range [w1, w2] by the two minima
of the horizontal intensity spectrum
I(w) (from vertical summation), and
subsequent calculation of the maxima
of the vertical intensity spectrum J(v)
(from horizontal summation) from the
IAT-image with non-zero-intensity only
within the slice [w1, w2] (horizontal sub-
domain between pixels w1 and w2). The
major radius r(t) equals half-distance
between the maxima of J(v). Method
for t ∈ [60, 100] [us], example: t = 80
[us].

Figure 3.2: Visualization of the two methods used for determination of LP major
radius, with results plotted in Figure 3.3. The methods are used to determine the
most likely major radius ’r(t)’ associated with the LP-torus on the CCD-image at
time t. Sub-figures (a) and (b) study non-heated- resp. heated plasma.

and ordered from high to low value. From highest to lowest maximum,
a Gaussian I(w) = g(w, µ, σ) is fitted to the peak and subsequently sub-
tracted from the polynomial. After three-fold repetition of this process,
only background noise is left and the spectrum is thus a superposition of
the three Gaussian fits. From here, two types of peaks are identified: the
outer peaks belonging to the EC, and the inner peak belonging to the LP.

As for the EC, with the outer two Gaussian-fits, the position a is eval-
uated as half of: (i) the distance between the half-maxima closest to the
center, and (ii) the distance between the maxima. As for the LP, corre-
sponding to the inner Gaussian-fit, a is taken as (iii) half the distance be-
tween the two one-fifth-maxima (the inner Fifth-Maximum threshold con-
sistently yields comparable magnitude of minor radius to the outer Half-
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3.1 LP-geometry: major and minor radius 71

Figure 3.3: LP major radius r(t). Scattered data obtained by the method in Figure
3.2. Interpolation of an exponential, asymptotic fit is made to the data to obtain
equation (3.1a).

Maximum threshold). The three analyses are visualized at the top-right of
Figure 3.4a, and provide the data plotted in Figure 3.4b. A fit to these data
is hypothesized as (3.1b), with more reliable evidence to be provided in
future.

LP geometry: major radius r(t) [mm] and minor radius a(t) [mm],
over time t [µs], under constant volume V

r(t) = 5.8− exp
(76.64− t)

42
(3.1a)

a(t)|V =

√
V

2π2 · r(t) =

√
180

2π2r(t)
(3.1b)

V = 180 mm3 (3.1c)

3.1.3 Determination of luminous volume V(t), area A(t),
and decay length R(t)

Although the geometry of the plasma is thus far characterized during its
toroidal phase at 30 to 60 microseconds after the laser-pulse, the next sec-
tion will touch on the thermodynamics of the plasma, in which case we
want to characterize the plasma’s volume during the early stages of its ex-
pansion and subsequent contraction. Namely, the energy deposition of the
laser leads to a high temperature at the laser-focus, and thereby to an in-
crease of the plasma’s volume. Because the plasma’s radiation originates
from regions of high temperature, the volume of the plasma’s hot region
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(a) Method for determining LP minor radius
a(t), example: t = 70 [us]. (b) Plot of evaluation of a(t) from method in

(a).

Figure 3.4: Three-fold approximate value of LP minor radius a(t) plotted in
(b), with method illustrated in (a). Goal: determine minor radius a(t) associ-
ated with CCD-image at time t. Method: derivation of horizontal intensity spec-
trum I(w) by summation of pixel-intensities in between the cross-sectional cen-
ters v ∈ [c− r(t), c + r(t)] associated with (3.1a), then determine the spectrum’s
maxima µ1, µ2, µ3 ordered in decreasing intensity, then in order of i ∈ {1, 2, 3} fit
a Gaussian g(w, µi, σ) and subtract it from the intensity spectrum. Result: minor
radius is calculated three-fold (i) from the distance between the outer Gaussian
maxima, (ii) from the closest distance between the outer Gaussian half-maxima,
(iii) from the distance between the inner Gaussian fifth-maxima.

can be determined by volumetric integration of the its most luminous re-
gion.

The volume is determined by re-ordering the N = 512 × 512 pixels
comprising the CCD-image from highest luminosity (I(n = 1) = I(vn, wn))
to lowest luminosity (I(n = 5122) = I(vn, wn)) and applying normaliza-
tion (∑n=5122

n=1 I(n) = 1) on the ordered list of pixel-intensities. Cumula-
tive summation of this list yields an ordered list J(n) = ∑n

i=1 I(i) that
is used in post-processing. By setting an arbitrary threshold tr ∈ (0, 1)
for the luminosity, the corresponding critical index icrit(tr) = {i : J(i ≤
icrit) ≤ tr}, where the set [1, icrit] is the set of the icrit(tr) most lumi-
nous pixels comprising 100 · tr% of the total CCD-luminosity. Lastly, the
set of pixels {(vi, wi)}i∈[0,icrit]

is converted to the corresponding volume

V = ∑icrit
i=1 V(vi, wi) = ∑icrit

i=1 π · |vi− 256| · dx3 with dx ≈ 2.4 [m·px−1], upon
the assumption of axial-symmetry (symmetry in the horizontal axis).

The set of pixels under threshold covers a horizontal range of pixels
w ∈ [wmin, wmax] wmax/min = max/min({wi}i∈[0,icrit]

), where each w with
has a maximum radius corresponding to maximal distance to the laser
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axis equal to ri = |vi − 256| · dx, vi = max({vj : wj = wi}j∈[0,icrit]
). The

subset of pixels {vi, wi}wi∈[wmin,wmax] covers the outline/contour of the sub-
threshold pixel-set, were the area of this pixel-set then roughly equals A =

∑icrit
i=1 A(vi, wi) = ∑icrit

i=1 π · |vi − 256| · dx2.
By setting three arbitrary thresholds tr ∈ {tra = 0.78, trb = 0.89, trc =

0.95} for the outline, we obtain three contours of roughly homogeneous
intensity, and these are locally parallel. The three contours can be com-
pared pairwise, with each two contours {(wa, va)}a≤Na and {(wb, vb)}b≤Nb

possessing average intensities < Ia >≡ 1
Na

∑a=Na
a=1 I(wa, va) and likewise

< Ib > along their subset. The average distance between two contours
equals < dab >≡ 1

Na
∑a=Na

a=1 min(
√
(wa − wb)2 + (va − vb)2). This will be

referred to as the characteristic decay length R of the intensity. The ratio
of the intensity of the two contours will be referred to as I1/I2. All of the
above mentioned geometric parameters are encapsulated in Figure 3.5a.

(a) Geometric properties of the plasma for three
threshold values on left axis. Ratio of average inten-
sity at two adjacent contours plotted at right axis.

(b) Raw image of the
plasma’s radiant intensity
at time t = 2.5 [us] after
the laser-pulse. The pixels
within a threshold’s con-
tour are represented by the
three coloured contours;
with the white, yellow, and
pink contours representing
the thresholds tra = 0.78,
trb = 0.89, and trc = 0.95
respectively.

Figure 3.5
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3.2 Dynamic electron density η(t), power loss Pl(t),
and temperature T(t)

Aside from providing the shape of the plasma, the CCD images may also
provide information on the material properties of the plasma. Namely,
the total radiant intensity of the plasma, the wavelengths at which radi-
ant intensity is emitted, and the relative intensity of the wavelength emis-
sions each provide additional information on the material properties of
the plasma: electron density and temperature. From the spectral lines of
the plasma’s radiant intensity we can deduce the type of radiation process,
and the radiation process in turn provides the relation between the inten-
sity and electron density. The relative intensity of the spectral lines pro-
vides data on the temperature [21, Equation (7.4)]. Lastly, the - indepen-
dently calculated - electron density and temperature can then be compared
in order to test our equation on the Boltzmann-normalized Saha-equation
function η(T) in (1.53d).

During the timespan of 10 to 25 microseconds after the laser pulse,
the photons emanating from the radiating plasma predominantly possess
three wavelengths: λ1 = 587.5 [nm], λ2 = 687.8 [nm], and λ3 = 706.5
[nm] [21, Figure 7.8]. These are spectral lines of the neutral helium atom
(He I) [21, Figure 7.3], emitted upon de-excitation of neutral helium atoms.
The de-excitation is most likely spontaneous, because this assumption pro-
vided a temperature decay [21, Figure 7.4] that provides values in line with
simulations on the laser-induced plasma [18, Figure 4.9]. De-excitation of
He I is necessarily preceded by its excitation, which probably occurs from
impact collision with an energetic electron [22, Paragraph 2.1]. There-
fore, the intensity of the spectrum is logically proportional to the elec-
tron density, as has been determined for He I in [22, Figure 3(a)] over
ne ∈ [1016, 1020] ∼ η ∈ [10−1, 103] and for Ar I in [23, Figure 5] over
ne ∈ [5 · 1015, 2 · 1017] ∼ η ∈ [10−1, 101], meaning I(t) ∝ ne(t) ∝ η(t).

Upon the assumption that I(t) ∝ η(t), we want to evaluate the time-
dependent normalized electron density η0(t) of the LP from the total non-
RF-heated CCD-image intensity I(t) = ∑512

w=1 ∑512
v=1 I(w, v, t). We assume

that all CCD-intensity I(t) from plasma is due to spontaneous He I de-
excitation emissions preceded by electron-impact excitations. Because the
intensity I(t) originates predominantly from the LP (to be verified later
from the comparison of the intensities in Figure 3.12a), the electron density
to be deduced is the electron density of the LP. Substitution of T(t = 0) =
104 [K] into (1.53d) yields η(t = 0) = η(T(t = 0)) = 7.3e6. Under this
constraint of normalization, we obtain the plot of the normalized electron
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density over time in Figure 3.6a.

(a) LP normalized electron density over
time. Obtained by normalization of
the curve radiant intensity I(t) such
that the initial normalized electron den-
sity for nc(2.45 [GHz]), equals η(T =
104 [K]) = 7.3e6. Plotted in black, elec-
tron density under time-independent
decay constant τ = 4 ± 1 [us], τ̇ = 0,
with pivot at t = 45 [us]. Plotted in
green is the volume of Figure 3.5a times
η(t).

(b) Temperature of the plasma over
time. Spectrometry measurements are
data points as plotted in [21, Figure
7.4]. Simulation data are the maxi-
mum values of the temperature as pro-
vided in [18, Figure 4.9]. The data la-
beled ”T(η(t)) from I(t)” are deduced
by the substitution of η(t)-data in Fig-
ure 3.6a into the inverse function T(η)
of (1.53d).

Figure 3.6

In order to implement these data into simulations in the next chapter,
we aim to extract a function η0(t) over the exponential decay. The function
fit is applied over the time range t ∈ [30, 60] [us], because the compos-
ite plasma will be characterized only during this period. The choice for
restricting the characterization of the plasma only to this period is moti-
vated by the future method of the reproduction of measurement data: the
dynamics of measurements are most outspoken during this same period in
both the 2.45 GHz measurements in Figure 2.2a as well as the 57 GHz mea-
surements in Figure 2.2b. Different decay constants are plotted along the
pivot η(t = 45), and we can infer from these that a suitable value for the
LP-decay constant is τLP = 4 [us]. Although the decay constant is not ex-
actly time-independent, a time-independent decay constant is used with
the aim of simplifying our equations as well as reducing the amount of
degrees of freedom. The dynamic homogeneous normalized LP-electron
density η0(t) is only an order of magnitude estimate, and its implemen-
tation in simulations will be made with a parametric sweeps over half or-
der of magnitudes, thereby rendering more unnecessary complexity of the
η(t) function a mere nuisance.
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At the central instant of the characterized period, we read the value
η0(t = 45) = 1e3, but we will scale this down to the convenient factor
540 ≈

( 57
2.45

)2
in order to ease the normalization of the electron density

between 2.45 GHz- and 57 GHz-measurements. In the LP-decay Ansatz
(3.2a), we correspond this value to a coefficient cLP with η0(t = 45) =
1e3 ∼ cLP = 1. Implementation of the Ansatz in simulations will rely
on reproduction of the measurements by a parametric sweep of cLP. Be-
cause of the exponential decay of η0(t), we will implement this coefficient
logarithmically, such that η0(t) = 10∆p · f (t) = c · f (t). Sweeping the
electron density over half orders of magnitude ∆p ∈ {0, 0.5, 1}, roughly
corresponds with sweeping the coefficient c along c ∈ {1, 3, 10}. For LP
and EC, exponential decay of electron density is expressed in two degrees
of freedom; time-independent decay constant τ and logarithmic sweep-
parameter c, unified in the Ansatz (3.2).

Ansatz for homogeneous LP and EC electron density η0 over time t
in [µs], for decay constant τ in [µs]

η0(t)LP = cLP · 540 · exp(−(t− 45)/τLP), cLP ≈ 1, τLP ≈ 4[us] (3.2a)

η0(t)EC = cEC · exp(−(t− 30)/τEC), cEC, τEC unknown (3.2b)

Aside from the material properties, the power loss of the plasma can
also be approximated. The electron density decays roughly exponentially
after t = 10 [us], while decaying inversely with time during the period be-
fore 10 [us], as noted in [18]. From these types of decay, it was concluded
that the early period was likely recombination-based power loss, while
the latter period was diffusion-dominated. Although the latter interpre-
tation is most likely true due to the near-constant late-period volume, the
rapid increase in volume during the first 10 microseconds has not been ac-
counted for. Multiplying the electron density with the volume yields the
green curve in Figure 3.6a, which does not exhibit η ∝ t−1 dynamics but
rather an exponential decrease that carries over into the late period. There-
fore, the diffusion-dominated power loss is most likely dominant through-
out the entire evolution of the plasma, in the form of heat conduction. The
heat conduction power loss is provided in (1.54), and can be expressed in
terms of the distance R (decay length) between two contours and ratio of
the intensity between two contours by a conversion using (1.53d), using
I2/I1 = η2/η1, and the approximation of the temperature at the boundary
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of T = 3000 [K]:

∆T = (I2/I1 − 1)
(T2/T1 − 1)
η2/η1 − 1

|T≈3000 [K] · T ≈ 0.2 · 0.1 · 3000 [K] = 60 [K]

With area A ≈ 60 [mm2], and ∇T = ∂T/∂y = ∆T/R = 3 · 105 [K/m].
Evaluation of (1.54) yields Pl = 1 · 10−4 · 3 · 105 [W]≈ 20 [W]. Supposing
constant power loss over the plasma’s significant temperature over the
period of 60 [us], this would yield an energy loss of 1.2 [mJ], which is quite
close to the order of magnitude of the initial thermal energy U(t = 0) = 42
[mJ].

3.3 LP radial electron density distribution η(ρ)

Although we will mostly deal with the LP as a domain with homoge-
neous properties, this does not accurately model the LP, in particular for
the LP around cutoff in both the 2.45- and 57 GHz simulations. For this
reason, we again assume η ∝ I in the CCD images, and derive the ”cross-
sectional” (cs) LP-electron-density η(ρ) by studying the intensity I(ρ) within
the cs of the IAT-image. This cs-array is a circular sub-array of IAT, in
terms of the larger array coordinates, center [c + r(t),c] and radius a(t)
from (3.1a) resp. (3.1b). By a partition of the cs into radial (ρ, ρ + dρ) and
angular (φ, φ+ dφ) domains represented in Figure 3.8, computing the aver-
age value of I at every domain of the mask to characterize the distributions
I(ρ) and I(θ).

Determination of LP radial electron density distribution η(ρ)

When we plot the average intensities of the mask-domains over their cor-
responding radii ρ, we obtain the scattered data plotted in Figure 3.9a. The
choice for the function used to fit the data will be explained.

When we plot the average intensities of the mask-domains over their
corresponding radii ρ, we obtain the scattered data plotted in Figure 3.9a.
The (scatter-plot) data indicate that the distribution over ρ is some power
of a sine that elapses roughly half a period π between the cs-center ρ = 0
and the cs-outline ρ = a(50) ≈ 1.3 mm. This leads us to the fit I(ρ) to the
spectrum (3.3).

I(ρ)|(a, α) = A · sinα (
π · ρ

a
) (3.3)
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(a) t=22 [µs] (b) t=34 [µs] (c) t=40 [µs]

(d) t=46 [µs]

(e) Angles φl and φr of maximum intensity along
cross-section.

Figure 3.7: Intensity sub-arrays of the IAT-image, with size 150× 150 [px2] cen-
tered on the toroidal cross-sectional (cs) center. At time t, the sub-array has time-
dependent center-coordinate [c − r(t)[px], c]. Radial distance (red circle) from
center coordinate consistently equals a(t = 48) ≈ 1.56 [mm] ∼ 75 [px], with
zero-valued intensity outside. The angles φl and φr to the left resp. right of the
vertical line indicate maximum total intensity within the cone [φ± 3◦, φ∓ 3◦].

Fitting this spectrum to the data for degrees of freedom α and a, we get
the data represented as scatter-plot in Figure 3.9b. The parameter a in (3.3)
relates to the position of the spectrum maximum I(ρ = a/2) = A. Sub-
stituting the parameter a = a(t) with previously-derived minor radius in
(3.1b) provides good correspondence with the data. The other parameter
is on average α = 4 over time, which provides the average distribution
over α ∈ [1, 8]. As a result, fixing of the DOFs a = a(t) and α = 4, with
DOF A as fit parameter, (3.3) is plotted alongside the I(ρ) spectra in Figure
3.9a, providing excellent correspondence with data on the cs-distribution.

Finally, the DOF A in the curve fits can be resolved as well by the dom-
inance of radiant intensity from the LP corresponding to I(t) ∝ η0(t) in
(3.2a), under the premise of a homogeneous and time-independent decay-
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(a) Radial mask of cross section. It
segments into regions of similar cross-
sectional radial distance ρ

(b) Angular mask of cross section. It
segments into regions of similar angle φ

Figure 3.8: Masks used in determination of electron density distribution over
their respective segmentation

(a) Intensity over radial distance. Spec-
tra k ∈ [0, 5] normalized and translated
within range [0.2 · k, 0.2 · k + 0.2].

(b) Fit parameters α and a over time

Figure 3.9

constant τLP. One final amendment needs to be made as to the renormal-
ization in converting from a homogeneous electron distribution η(ρ) =
const to a radial distribution η(ρ) ∝ sin4 (πρ/a). As can be seen from the
appendix on toroidal coordinates, to retain an equal amount of total elec-
trons under both homogeneous and sin4 distribution requires the renor-
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malization factor factor 2.5. With that, we come to the LP cross-sectional
electron density Ansatz (3.4).*

Ansatz for the non-homogeneous LP normalized electron density
distribution η over ρ [mm] for time t in [µs]. a(t) from (3.1b), η0(t)
from (3.2)

η(ρ, t) = 2.5 · η0(t) · sin4(
πρ

a(t)
) (3.4)

Determination of LP angular electron density distribution
η(φ)

A parameter over which η also varies but will not be implemented is the
cross-sectional angle φ. A mask that segments the cross-section into an-
gles is made, with the angle φ of the segment rotating counter-clockwise
and with φ = 0 at the point (1, 0) in the complex plane. We can derive a
polynomial periodic distribution that is therefore fitted to a sum of sines
in the function (3.5).

(a) Intensity over angle (b) Angular intensity profile, fit parameters
A, B, C over time

Figure 3.10

*It is confusing to call the function an Ansatz since the only DOF to be determined in
parametric sweeps is the OoM electron density constant cLP, which is already embedded
in η0(t) (3.2a). After fixing cLP, we will however identify the necessity for adding some
offset ηa to η(ρ, t) in order to reproduce Q(t). Due to the high gradient over ρ, parts of
the lobes that are below cutoff η(ρ ≈ a) < 1, are predominantly too small to cause losses
by ε” Vs

V0
� 1

Q0
. The offset ηa resolves this problem by boosting the power absorption into

outer lobes of the sin4.
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3.4 EC-geometry 81

I(φ) = A · sin2 (φ) + B · sin (φ) + C (3.5)

The numerical values of the data, and the fit to the data with equa-
tion (3.5) are plotted in Figure 3.10a. However, this dependence of η on φ
will not be implemented for two reasons. Firstly, examination of the dis-
tribution in Figure 3.10b gives the impression that the distribution varies
radically over the examined time period [22,44] us; we cannot reliably ex-
trapolate to times [44,60] where the distribution will have a larger impact.
Secondly, for each separate t, a horribly complex re-normalization for this
new distribution η(ρ, φ) would need to be made, at the risk of fallacies.

In conclusion, we conclude non-homogeneous distributions over both
parameters ρ and φ, with only the distribution η(ρ) to be finally imple-
mented in simulation. Whereas I(ρ) requires a near-constant single-DOF
α(t) ≈ 4 distribution and its parameter ρ has a predictable effect on the re-
sponse to RF-fields, I(φ) follows radically-dynamic triple-DOFs (A, B, C)(t)
and its parameter φ has an unpredictable response to RF-fields.

3.4 EC-geometry

Without RF-heating activated, CCD images on the plasma do not give any
reliable indication of the presence of a plasma outside of the LP-domain.
Namely, radiant intensity outside of the LP-domain (torus-outline (3.1),
shown in middle-column of Figure 3.1) is much lower compared to in-
tensity within the outline and might be attributable to aberration of the
lens or charges that have diffused from the LP. Per illustration, setting
zero-intensity to pixels within the outline, a ”glow” remains as shown in
the center column of Figure 3.2a, and is identified by steadily decreas-
ing intensity over distance from the outline. The summation of all pixel-
intensities outside of the LP-domain over time is given in Figure 3.12a,
with labels EC, RF off and EC, RF on representing the total intensity with-
out capacitive heating resp. with capacitive heating during t ∈ [30, 100]
[us]. Heating (RF on) is abruptly deactivated at t = 100 [us], and is vis-
ible as an abrupt decrease of the radiant intensity of LP- and EC-domain
to their relative intensities under the absence of heating (RF off ). The non-
zero noise-intensity for LP- and EC-domain at t → ∞ is most likely at-
tributable to background-intensity from leakage of light from the laboratory-
setting to the CCD-camera. The noise is homogeneous over the CCD-
pixel-array, with unequal noise-intensity for LP- and EC-domain due to
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unequal amount of pixels N within these domains: IEC : ILP ∼ NEC :
NLP ∼ 5122 − (2r) · (2a) + πa2 : (2r) · (2a) + πa2 ∼ 4 : 1.

Under the absence of heating, the EC-intensity stagnates at t = 45 [us]
to logarithmic Signal-to-Noise-Ratio ∼ SNRdB = 0. Under heating, in con-
trast, the EC-intensity decreases more slowly beyond t = 30 [us], with
intensity maintained beyond t = 45 [us] at one order of magnitude above
background-intensity.

Upon studying IAT CCD images of the plasma under capacitive heat-
ing in Figure 3.11, intensity outside of the LP domain can be identified in
two region types, with both types present at either side (w ∈ {[c − a −
h, c− a], [c + a, c + a + h]}) of the LP, in terms of center c = 256 [px] and
approximate horizontal height h = 41.45 [px]. A first ring-shape structure
with inner and outer radius a1 = 1.5 resp. a2 = 2.5 mm, that is luminous
between 36 and 50 [us]. A second ring-shape structure with inner and
outer radius a3 = 3.75 resp. a4 = 4.75 [mm], that is luminous from 40 [us]
until magnetron shut-off at 100 [us]. The intensity within these regions
indicate the presence of significant electron density within, classifying as
plasma.

Independence of EC on capacitive heating

Before asserting this as the definitive EC-geometry, we need to justify that
the geometry observed under capacitive heating is not an artifact of heat-
ing only. Namely, under the presence of an (absorbing) LP only, capacitive
heating leads to ambipolar diffusion: charges are torn from the LP and
diffuse outside of its domain. This would form plasma near the outline of
the LP that becomes luminous under heating, similar to what is (possibly
wrongly) identified as a pre-existing EC.† In order to prove that these lumi-
nous regions are pre-existing (read: formed by the laser-pulse), we require
evidence that the luminous regions are independent from: (i) capacitive
heating in general, (ii) from nearby induced current density within the LP,
and (iii) from the local electric field magnitude.

Firstly, the quality factor Q(t) in Figure 2.2a provides evidence for a
composite plasma, the two components of which simultaneously decay.
The quality factor is based on power-reflection measurements, where no
heating was applied; the composite LI-plasma decays unperturbed. The
low quality factor before t = 35 [us] indicates that some resistive domain
is pre-existing. The likely candidate for this resistive domain is the EC-

†Credit goes to Vincent Kooij bringing this up.
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3.4 EC-geometry 83

domain in CCD-images indicated by the excess intensity for EC beyond
t = 30 [us] in Figure 3.12a, associated with the luminosity within the
boxes of Figure 3.11. Additionally, subsequent quality factor reduction
beyond t = 42 [us] indicates that there must be some highly conductive
domain that is beyond cutoff. The likely candidate for this conductive do-
main is the LP-domain in CCD-images indicated by excess intensity for
LP beyond t = 45 [us], associated with the luminosity within the outline
of Figure 3.11. We may therefore conclude that the EC is a pre-existing
domain below cutoff, and the LP is a torus shape that is beyond cutoff.

Secondly, by the fact that the LP is beyond cutoff, the nearby Electric
field magnitude is perturbed as visible from Figure 2.5a. By (1.4a) induced
current density within the LP is situated at parts of its surface parallel
with the E-field, next to low E-field magnitude. This possibly causes the
formation of charges, identified as luminosity in the outer cylinders at t ∈
{36, 38, 40} [us] Figure 3.11. However, this does no explain the presence
of the inner cylinders, because no nearby (absorbing) regions of the LP are
present. Moreover, ambipolar diffusion and power absorption by the LP
are negligible, to be proven later in section 4.3 resp. Figure 4.7.

Thirdly, the location of the Electric field magnitude in Figure 2.5a can-
not be reconciled with the stationary properties of the luminous EC-regions.
The regions of luminosity remain roughly static, whereas the high E-field
magnitudes move outward, along with r.

Relation of the EC with flow-simulations

The inner radius of the luminous inner EC-rings in Figure 3.11 t ∈ {36, 38, 40}
[us] coincides with the radius of an inward moving, ”self-piercing” shock-
front concluded from flow simulations on the torus-formation in [18, Fig-
ure 4.9] with radiusR ≈ 1.5 [mm] = a1. The high temperature of the laser-
kernel causes its expansion from the rough initial condition of a sphero-
cylinder (which is a union of a cylinder and two hemispheres axisymmet-
ric with the circular boundaries at either end, all objects having equal ra-
dius). Assuming homogeneous initial pressure, outward expansion along
the entire surface leads to loss of shock-front-energy; the spherical expan-
sion is more energy-intensive, leading to (near-simultaneous) collapse of
the shock front on either end while cylindrical expansion continues. The
two shock-fronts simultaneously meet at the initial location of the laser-
focus, creating the torus-topology. The near-equal momentum of the col-
lapsing fronts leads to a net circular ”splitting” shock-front expanding ra-
dially outward into the torus, creating the crescent-shape. Although the
simulation assumes equal energy deposition on either side of the focal
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point, higher energy deposition closer to the laser is more plausible be-
cause of the laser-intensity decaying along the beam’s path. Consequently,
unequal collapsing shock-front energy creates a net counter-clockwise vor-
ticity identifiable for the LP in Figure 3.11(a,b,c), as well as a net draft from
left to right. The cold gas dragged behind the collapsing shock-fronts with
radius R ≈ 1.5 [mm] = a1 would explain displacement of charges within
R < a1, and their deposition in the surrounding region a1 < R < a2.

As a side note: future implementations of the EC-characterization are
focused on reliably proving that no power absorption takes place within
the EC under inductive heating, where power absorption favours high
conductivity. By CPT (1.26b), under constant quality factor, a decrease
in sample volume implies an increased electron density and thereby an
increased conductivity. Although the EC-geometry does not include all
radiant-intensity outside of the LP-domain, the use of this minimalistic
geometry will provide an upper limit for the EC-conductivity. This will
allow us to rule out power absorption by the EC under inductive heating,
later on.

Another noteworthy remark: by Figure 3.11(d,e,f), the majority of EC-
intensity - and thereby the majority of power absorption - originates from
the outer cylinders for t ≥ 50 [us]. Naively, this would indicate non-
homogeneous η. However, assigning homogeneous η across the EC-domain
remains realistic by Figure 2.5a; the field at the inner cylinders is negated
because r(t ≥ 50)� a2. Simulations on the homogeneous EC near beyond-
cutoff-LP reproduce this principle, visible in the right column of Figure
3.1.

The EC-geometry described above is formalized in (3.6). Here σ(x)
is the sign function with parametrization σ(x) = −1, x ≤ 0 and σ(x) =
1, x > 0. Over R, f (R) = 1 for a1 < R < a2 and a3 < R < a4, whereas
f (R) = 0 elsewhere.

EC geometry in terms of laser-axis radius R in [mm] and distance
from focal plane h in [mm], and t in [us]

η′(R, h) = η′0(R, h) · f (R, h) = f (h) · f (R)

Optional: f (h) = 1 +
1
2
· [σ(|h| − a(t)) · σ(−|h|+ a(t) + 1[mm])]

(3.6a)
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3.4 EC-geometry 85

f (R) = 1 +
1
2
· [σ(R− a1) · σ(−R + a2) + σ(R− a3) · σ(−R + a4)]

(3.6b)
(a1, a2, a3, a4) = (1.5, 2.5, 3.75, 4.75) (3.6c)

Vs = 50 mm3, Effective EC volume; volume of outer cylinders

Topological definition of the EC in simulations

The definition of the EC-geometry in (3.6) is made in a block-function form
because of the inconvenience of implementing a cylindrical shape in simu-
lations. Whereas the EC-domain is static, the LP domain undergoes many
changes, as seen in (3.1a) and (3.1b). The close proximity of the LP and
EC implies that their interface boundaries may overlap or leave tiny gaps,
all of which causes complications with the meshing. For this reason, the
EC-domain is implemented in simulations as a coordinate-wise Boolean
of material properties. For f (R) = 1, EC material properties are assigned,
whereas for f (R) = 0 free-space material properties are assigned. It is
applied to the shell-topology explained below.

The EC-geometry can be defined as a topological combination of four
axisymmetric objects - two toruses and two cylinders. Each point on the
EC’s outer boundary has a distance of 1 mm from the closest point on
either (i) the outer boundary of the LP torus with major/minor radius
r/a or (ii) the outer boundary of the LP-concentric cylinder with radius r
and height 2 · a(t). The inner boundary of the EC domain is equal to the
outer boundary of the union of objects (i) and (ii). The EC-geometry thus
defined is equivalent to the union of (iii) a torus with (r, (a + 1)), and (iv)
a LP-concentric cylinder with (r, 2 · (a + 1)), subtracted by the union of (i)
and (ii). The entity thus created acts like a one-mm-thick shell around the
LP-torus for R ≥ r(t), but with flat circular shape for R < r(t). Within the
this EC-domain, the electron density is limited to four cylinders, two on
either side by the material function (3.6).
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(a) t=36 µs (b) t=38 µs

(c) t=40 µs (d) t=50 µs

(e) t=60 µs (f) t=80 µs

Figure 3.11: IAT CCD images under capacitive RF heating. Boxes in red-white
indicate outline of the EC cross-section in (3.6). Data-sets: zmage-17382 RF 35-46
us step 0.5 20 avg gain 250 gate 500ns yields (a-c), zmage-17679 yields (d-f).
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3.5 Total intensity of LP and EC under RF-heating 87

3.5 Total intensity of LP and EC under RF-heating

The CCD images of the plasma under RF-radiation have exposed differ-
ent behaviour for LP and EC. There is an increase/stability of luminosity
for the EC beyond 45 us, and for the LP beyond 60/70 us. This indicates
that the RF power absorption attains the magnitude of power loss at dif-
ferent times ts,EC and ts,LP for EC resp. LP. They can be studied separately
and compared, by a dichotomy of the CCD image in their associated do-
mains through the torus-outline, corresponding to the geometry in (3.1a)
and (3.1b).

Our theory assumes that the intensity I of a region in the CCD image is
proportional to the power loss Pl in that region. Therefore, if the plasma-
specific intensity remains stable, the power loss Pl radiated by the plasma-
component must be equal to the power absorption Pa in that component,
and therefore a stable intensity I reflects plasma stability Pa = Pl. It is
evident that the EC is stable beyond ts,EC = 45 us. The LP intensity starts
increasing at t = 60 us and stabilizes at t = 75 us.

The torus-outline presents a sharp cut at the LP and EC interface that
inescapably assigns some EC radiant intensity to the LP. Around mini-
mum LP-intensity under RF-heating, ILP(t ∈ [50, 60]), the noise-like LP-
intensity without RF-heating is exceeded by a factor ten. This minimum
intensity is most likely attributable to the EC, and therefore LP stability
must correspond to the end of the intensity-increase: ts,LP = 75 [us].

(a) Normalized intensity over time, RF
on and RF off compared.

(b) Normalized intensity over time,
starting just before LP-equilibrium

Figure 3.12: Total intensity over time, over LP- and EC-domain, with and without
heating, of the raw CCD images. The LP-intensity is the sum of pixel-intensities
within the torus-outline, and the EC-intensity is the sum of intensity over all pix-
els outside of the outline.
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Chapter 4
Characterization of capacitive
plasma heating

This chapter will determine the dynamic material properties of the two
components of the plasma: LP and EC. Characterization is made by repro-
duction of experimental from the presence of the LI-plasma at the E-field
antinode of the rectangular TE101 cavity. The dynamic characterization of
the plasma is made for t ∈ [30, 60] us after the laser-pulse. Afterwards,
based on these material properties, the efficiency of capacitive heating of
the plasma at each time will be investigated.

Firstly, under the assumption of homogeneous material properties, we
will theoretically determine the material properties of both plasma- com-
ponents. This is accomplished by solving the formulae (1.52a) and (1.52b)
to follow experimental measurements in Figure 2.2a. Degrees of freedom
are eliminated by applying steady exponential decay of η; Ansatz (3.2) for
(cLP, τLP) and (cEC, τEC).

Secondly, under assumption of non-homogeneous material properties,
we will simulation-wise determine the material properties of the plasma-
components. This is accomplished by implementation of Ansatz (3.4) to
the LP-domain, and subsequent parametric sweep of cLP and γLP to follow
experimental measurements of Figure 2.2a as well as Figure 2.2b.

Lastly, the material properties deduced through the simulation-wise
characterization are implemented in the capacitive heating model of Fig-
ure 2.3. Under this unperturbed plasma-decay characterization over t ∈
[30, 60], the efficiency of RF-power absorption is determined by analysis of
the share of power absorption into LP- and EC-domain and the reflected
power.
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4.1 Characterization of the homogeneous compos-
ite plasma

The goal of this section is to characterize the LP and EC under the assump-
tion that they possess homogeneous material properties η and γ.

Firstly, a simulation-wise investigation is made of the response of cav-
ity RF-properties ∆ f and Q to the presence of a LP-torus at the center of
the cavity in Figure 2.3. For σ → ∞ a variation of its geometric properties
around (r, a)(t ≈ 45 us) is used to verify (1.33a). For (r, a)(t ≈ 45 us), a
variation of its the material property η ≈ 1 around cutoff is used to verify
(1.52a) and (1.52b) under existence of LP only (η, γ, V, p)α = (0, 0, 0, 0).

Secondly, an order of magnitude estimate of the dynamic material prop-
erties of the EC is made by inferring from the 2.45 GHz data for (1.26b).

Lastly, a dynamic characterization (c[·η], γ, τ)α by combining the si-
multaneous LP and EC decays under (1.52a) and (1.52b) and resolving
remaining degrees of freedom for the material properties.

4.1.1 Characterization of the LP

This subsection fully focuses on the effects of the LP in both simulation
and theory. By comparison of simulation data with evaluation of the the-
oretical formulae for the simulation parameters, we verify the validity of
equations (1.33a), (1.52a), and (1.52b).

Frequency shift due to presence of conductive torus

We know from (1.33a) that a downward frequency shift from the plasma is
caused by the presence of an object within the cavity that is beyond cutoff.
Almost the entire frequency shift is caused by the LP, which is conductive.*
We have already accurately determined the major radius over time r(t)
found in (3.1a). The minor radius a(t), however, could not be determined
accurately, as seen in (3.4b) and (3.3). In order to ensure constant frequency
shift ∆ f ≈ 5.7 MHz, the final equation for a(t) (3.1b) has been postulated
such that - under (1.33a) - constant volume Vs = 180 mm3 is kept under
growing major radius r(t).

In order to verify the validity of equation (1.33a) and therefore also
the validity of the formula for the minor radius (3.1b), a simulation-wise
sweep of a is made under r for different t around the presumed LP-volume

*Another cause of the frequency shift might be the EC. However, the low impact of
the EC will be proven independently in the next subsection.
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4.1 Characterization of the homogeneous composite plasma 91

Vs = 180 mm3. The torus is implemented at the center of the cavity in
Figure 2.3 with infinite conductivity, and the above sweep of values a and
r delvers the data visualized in Figure 4.1b. From the figure, we determine
that the frequency shift remains at ∆ f ≈ −5.7 MHz for a torus volume of
Vs = 180 mm3. This must thus be the volume of the LP, and it is thus
correctly implemented for the formula of a(t) (3.1b).

As a matter of reflection, we visualize the corresponding torus-size by
implementation of the torus-outline corresponding to (3.1a) and (3.1b) in
CCD images. This is done in Figure 3.1 and in Figure 3.11, with the latter
providing the interesting information about luminosity under RF-heating.
The torus-outline consistently touches the outer edge of the dark region in
between the luminous regions. The fact that a region of the CCD image
can be dark yet be beyond cutoff indicates that the radiant intensity is not
necessarily indicative of a high electron density. Although this will only
become relevant later, it alludes to the possibility that the electron density
in the outer regions of the non-homogeneous LP η(ρ) distribution in (3.4)
is underestimated. We will eventually recognize the necessity of raising
η(ρ) by some offset ηa.

(a) Total system quality factor and fre-
quency shift over η for a homogeneous
toroidal plasma with γ = 6.5, (r, a) =
(3.75, 1.58) [mm] at the center of the TE-
101 cavity. Simulation-data named sim.,
theoretical estimation theor. from (1.52a)
and (1.52b).

(b) Frequency shift from LP beyond cut-
off over volume. The vertical axis on the
right is not exact! It is only a representa-
tion of the five volumes swept over for
the four major radii.

Figure 4.1
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Frequency shift and quality factor reduction due to presence of torus
near cutoff

In order to verify equations (1.52a) and (1.52b), it is useful to test these by
comparison with simulations on the torus with material properties around
cutoff (η ≈ 1). Under 2.45 GHz measurements, the electron density decays
exponentially over (possibly) multiple orders of magnitude, while the col-
lision frequency changes over at most an order of magnitude by Table 1.3.
Therefore, we assume room temperature γ = 6.5 and constant geometry
(r, a)(t = 45 us) = (3.75, 1.58) for the torus and make a sweep of η for
multiple orders of magnitude. The resulting material dielectric properties
(from (1.39a) and (1.39b)) (ε′r, εr”) are then implemented for the material
properties of the toroidal domain, the field under RF-excitation is com-
puted for dielectric loss-wave equations, from which finally the frequency
shift and quality factor of the cavity are then extracted.

The resulting simulated data is visualized as the scatter-plots in Figure
4.1a as ”sim.”. As for the theory, the same sample properties η ∈ [1e −
2, 1e3], γ = 6.5, Vs = 180 mm3, and a = 1.58 mm are implemented in
formulae (1.52a) and (1.52b), and their evaluations are plotted alongside
the simulation data in line-form as ”theor.”. We identify good accordance
of theory with simulations.

As a side note, we see that the upward frequency shift (η ≈ 0.5) pales
in comparison to the downward frequency shift (η > 0.5) . This makes
it alluring to simplify equation (1.52a) by setting the upward frequency
shift equal to zero. However, this severely decreases the gradient of the
frequency shift transition around cutoff, which might lead us to wrongly
underestimate the decay constant τ per compensation. Therefore, the up-
ward frequency shift due to ∆ε′r is an essential component in accurately de-
termining the plasma characterization parameters and needs to be main-
tained in formulae.

4.1.2 Characterization of the EC

This subsection fully focuses on the effects of the EC on the RF-properties
of the cavity. This mostly deals with the quality factor reduction due to
power absorption, which is briefly gone through.

Field-amplification and -negation within the EC-domain

We have seen from simulation on a torus beyond cutoff in Figure 2.5a
that the electric field amplitude distribution, and consequently the elec-
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tric field energy density near the torus is perturbed. The EC is situated
within a distance of 1 mm of the LP. Therefore, at some coordinate within
the EC-domain, if R � r(t) the field is negated and if R ≈ r(t) the field
is amplified. These two cases lead to reduced resp. increased power ab-
sorption into the plasma, and the consequent influence on Q must thus be
taken into account in determining εr” of the EC. We know from (3.6) that
electron density is mostly situated in two bands with 1.5 < R < 2.5 mm
and 3.75 < R < 4.75 mm. As for the positions of amplified E-field, we
know from (3.1a) that over the range t ∈ [30, 60] us, < r >t≈ 3.6 mm.
This time-averaged major radius corresponds with a net field amplifica-
tion in the outer ring of the EC and a net field negation in the inner ring
of the EC. For the reason of field negation into the inner rings, we approx-
imate the effective volume of the EC as the volume of the outer cylinders
only, such that Vs ≈ 50 mm3, already mentioned in (3.6). As for the field
amplification visible in Figure 2.5a, this can be as high as a factor 2, cor-
responding with an energy density amplification of a factor 4. To account
for the shifting position of the field amplification r(t), and to account for
the decreasing energy density away from the torus boundary, we average
the field amplification at a factor

√
2 corresponding with energy amplifi-

cation at a factor 2 for the outer EC domain. This is already implemented
in (1.52c) for the EC-sample α = 2.

Approximation of decay-Ansatz-parameters cEC and τEC

The imaginary part of the relative permittivity, ε′′r , can be determined di-
rectly from the total system quality factor using (1.26b) with Vs = 50 mm3.
To account for the field-energy amplification (factor 2), the evaluated εr”
is divided by two a posteriori.

Before the quality factor is significantly influenced by the LP (around
the peak at t = 42 us) the quality factor of the system rises due to re-
combination within the EC. From Figure 2.2a, Q(t = 30us) = 400 and
Q(t = 40us) ≈ 700. Inserting both values in the formula (1.26b) and di-
viding by field amplification factor (2), we get: εr,EC”(t = 30us) ≈ 1.6, and
εr,EC”(t = 40us) = 0.8. For the Ansatz of the EC decay of electron density
(3.2b), we infer for a cold EC γ = 6.5:

cEC = ηEC(t = 30 us) =
η · γ

1 + γ2 ≈ 11

From the gradient of εr”, which is also the gradient for η under constant
γ, we can determine the decay constant τEC using (3.2b). The factor 1/2
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decrease over a 10 us time-span yields:

τEC =
−10

ln (1/2)
≈ 15 us

4.1.3 Dynamic characterization of homogeneous plasma

We can now finalize the characterization of the homogeneous plasma by
implementing the above Ansatz-parameters for the LP and EC samples in
(1.52a) and (1.52b). At any point in time, these equations require for both
the LP and EC the following DOF-parameters: (η, γ, V). The parameter
of the LP- and EC-sample volume V is already known in (3.1) and (3.6).
The two remaining parameters for both components are to be determined
from simulations: (ηLP, γLP, ηEC, γEC), all of which are reasonably approx-
imated - for t ≈ 45 us - to be close to:

(540 · cLP = 540, γ(T = 3000 K) = 2.5, cEC · exp (−15/τEC) = 4, γ(T =
300 K) = 6.5)

This raises the following issue.
Suppose for the moment that we do not know the dynamics Q and ∆ f

nor the exponential decay of η; we are only given the values Q and ∆ f
caused by the composite plasma at a single point in time t′. We cannot re-
solve the four degrees of freedom embedded in the plasma-parameters
(η, γ)LP,EC(t′) from two values of measurement data Q(t′) and ∆ f (t′).
This exposes the necessity for having postulated the Ansatz (3.2) and the
knowledge of the full time range of data of Q and ∆ f . Under the assump-
tion of exponential decay and its Ansatz, the DOF η(t) requires two DOFs
τ and c. Although adding two more degrees of freedom τLP,EC seems like
a step in the wrong direction, these parameter-values will allow us to ex-
trapolate for the full range t, which will now be done.

The objective: we require the determination of the parameters: (ηLP,
τLP, γLP, ηEC, τEC, γEC) from the Ansatz formulae (3.2) with constant γLP
and γEC such that reproduction of Figure 2.2a is accomplished upon im-
plementation in (1.52a) and (1.52b).

By identifying that the dynamics of Q for t ∈ [30, 40] us is dominated
by the EC, we have already deduced cEC and τEC. Similarly, we can apply
this strategy to deduce LP-parameters using constraints:

QLP(t = 42) ≈ QEC(t = 42),
Q(t = 60) ≈ QLP(t = 60),
d/dt QLP(t = 60) = 60.

94
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We could then solve the equations (1.52a) and (1.52b) to resolve any re-
maining DOFs, but these equations are monstrosities. Therefore the equa-
tions have been implemented numerically in Python, and a fit to measure-
ment data is made under a parametric sweep of the six parameters. Trial
and error eventually yielded the good fit in Figure 4.2, the parameters of
which are presented in Table 4.1.

LP theor. EC theor. LP sim. EC sim.
c 0.21 5.5 3 3.67
τ [us] 9 10 4 15
γ 6.5 5 2.5 4
Vs [mm3] (constraint) 180 50 ” ”

Table 4.1: Parameters of LP and EC that provide reproduction of 2.45 GHz mea-
surement data for implementation in (1.52a) and (1.52b) with constant decay un-
der (3.2).

(a) (b)

Figure 4.2: Theoretical frequency shift and quality factor over time, compared to
experimental data of the 2.45 GHz capacitive setup. Parameters are represented
in Table 4.1, and are swept over some deviating cLP. Parameters are implemented
in (1.52a) and (1.52b), with η produced from c and τ in (3.2). The measurement
data are represented with meas.

Some remarks about the theoretical model

The above theoretical model of the plasma influences on f0 and Q has
some short-comings.
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Firstly, the model is constructed for homogeneous material proper-
ties of the plasma, whereas cross-sectional CCD-image analysis have in-
dicated a non-homogeneous LP- normalized electron density distribution
over cross-sectional radial direction η(ρ) in (3.4). Implementing this η(ρ)-
distribution in theory would require segmenting the torus cross-section
into radial shells of infinitesimal thickness dρ, and computing the infinites-
imal transmission d|T|2 and attenuation exp (−dρ/δ(η)). However, this
would be so complex that we are better off relying on simulations only
when implementing the radial distribution.

Secondly, the implementation of material homogeneity of the LP can-
not possibly reproduce the measurement data. By (1.52b) with γ = 6.5,
the model necessarily leads to a minimum quality factor Q ≈ 200 caused
by the LP; this is endemic to its homogeneous nature and cannot be cir-
cumvented. Moreover, the low gradient of ∆ f (t) and Q(t) can only be
reproduced for very high LP decay constant τLP = 9 [us] � 4 [us], as
found from CCD-image intensity decay in Figure 3.6a. These two issues
are solved simultaneously upon implementation of the non-homogeneous
distribution η(ρ) in (3.4). The endemic property of such a distribution is
that near t ∈ [40, 50] us the shallow tails at (ρ = a) are well below cutoff,
while the peak at (ρ = a/2) is well beyond cutoff; with two consequences.

With respect to the homogeneous distribution with same τ, the non-
homogeneous distribution will imply a lower gradients d/dt Q and d/dt ∆ f .
Instead of the entire LP-domain absorbing optimally all at once, the power
absorption gradually shifts from ρ = a to ρ = a/2. Likewise, this non-
simultaneous decrease below cutoff leads to a more gradual gradient of
∆ f .

Examination of the electron density distribution η(ρ) ∝ sin4 (ρ · π/a)
yields a large simultaneous difference in the magnitude at (ρ = a) with
respect to (ρ = a/2). Supposing optimal power absorption near elec-
tron density at cutoff density ηopt = 1 for a volume element. Peak-value
ηopt implies low absorption at the edges which act like free space η � 1.
Edge-value ηopt implies low absorption at the peak which acts like a good
conductor η � 1.

We thus conclude that the implementation of non-homogeneous mate-
rial properties of the LP is a necessary condition for the reproduction of
measurement data.
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4.2 Characterization of the non-homogeneous composite plasma 97

4.2 Characterization of the non-homogeneous com-
posite plasma

In transitioning to the non-homogeneous plasma, we will apply non- ho-
mogeneous properties only to the normalized LP electron density distribu-
tion ηLP(ρ). The remaining material-parameters ηEC, γLP, and γEC will be
presumed homogeneous and constant. The latter will be justified shortly.

Simulations will be made under the model in Figure 2.3, which (like the
2.45 GHz measurement setup) is matched when empty with correspond-
ing Q = 2850. The LP-geometry is a torus with major radius r(t) and mi-
nor radius a(t) given in (3.1a) resp. (3.1b). The material properties within
LP and EC are determined by corresponding γ and η, yielding complex
permittivity (1.39a) and (1.39b) for which the field is computed from the
”dielectric loss”-wave equations in simulations. The resulting Q and f is
extracted as data. The normalized collision frequency γ is homogeneous
over the plasma. The normalized collision frequency η(ρ) is a sine to the
power four distribution that elapses half a period from ρ = 0 (the center
of the torus cross-section) to ρ = a (the edge of the torus cross-section) as
argued in (3.4).

Justification for homogeneous γ

The normalized collision frequency is determined from the LP temper-
ature T. The temperature of the unperturbed plasma for t = 30 [us]
roughly equals T = 3000 [K] by Figure 3.6b, finding accordance both un-
der spectrometry- and simulation data values. If we extrapolate the tem-
perature decay above, temperatures may drop well below T = 3000 K for
t ∈ [30, 60] us. However, spectral emission measurements by both [24]
and [19] discredit this. Most importantly, by [19, figure 5.9], spectral emis-
sion measurements indicate (electron) temperatures as high as Te = 5000
K.† The figure also shows a non-homogeneous distribution of temperature
over a crescent-shape similar to the intensity profile found from CCD im-
ages in Figure 3.7.

The remarks indicate many possible sources of error if we implement
γ as non-homogeneous or time-dependent; whether to use the electron
temperature or the gas temperature for implementation in (1.36b), and

†Electron temperature is expected at least one order of magnitude higher than the
gas temperature, making the steep gas temperature decay suggested by flow simulations
plausible.
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what temperature decay to expect. Whatever the resolution to these is-
sues, the resulting deviations of γ ∈ [1, 6.5] for all possible gas tempera-
tures T ∈ [104, 300] [K] would be small compared to the steep exponential
decay of η ∈ [540 · 10−15/4, 540 · 1015/4], justifying a loose approach to γ.
Therefore, the normalized collision frequency γ is assumed to be a con-
stant, and assumed to be homogeneous across the sample.

Preliminary characterization of EC

For the geometric properties in the simulation-model, we use the formulae
for LP major/minor radius in (3.1a) and (3.1b), and the constant geometry
of EC cylinders as a block function on a geometry occupying 1 mm around
the LP, as explained in (3.6).

Beforehand, the properties of the EC are constrained by the assump-
tion of the LP well beyond cutoff at t = 30 us. Thus, simulations have
been made on an LP entirely beyond cutoff upon which ηEC, τEC, and γEC
are swept to reproduce the values of ∆ f and Q for t between 30 us and
40 us. Reconciliation of the simulation data with both measurement data
could only be made under γEC = 4. The right gradient of Q(t) could only
be achieved by taking τEC = 15 us. Finally, the frequency shift at t = 30 us
of an additional −0.3 MHz with value Q = 400 could only be reproduced
by taking ηEC = 1.35.

EC material properties in terms of axial radius R in [mm] and time t
in [us], applied to shell-topology

η′(R, t) = η′0(t) · f (R) (4.1a)

η′0(t) = 1.35 · exp(−(t− 45)/15) (4.1b)

γEC = 4 (4.1c)

4.2.1 Ansatz- and data comparison for 2.45 GHz

On the equations for the plasma material properties in equation (4.2), two
parameters are swept.

Firstly, the LP electron density over half orders of magnitude with a
sweep factor cLP ∈ {1, 3, 10, 30}

Secondly, the LP collision frequency for LP- temperatures 300 K and
3000 K corresponding respectively to γLP ∈ {6.5, 2.5}. ‡

‡The simulation data is actually for a dynamic γLP(t) with the sweep parameter im-
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4.2 Characterization of the non-homogeneous composite plasma 99

η(ρ, t) = 2.5 · η0(t) · sin4
(

ρπ

a(t)

)
η0(t) = 540 · cLP · exp(−(t− 45)/4)

γ(t) = γLP

Measurement data for the 2.45 GHz setup and the simulation data for
its simulation model under the combined sweep of {cLP} × {γLP} are
plotted together in figure 4.3.

(a) (b)

Figure 4.3: Quality factor and resonant frequency shift over time, experimental
and swept simulation values compared

For the dynamics of ∆ f (t) in Figure 4.3a, there are two solutions that
accurately follow the measurements.

(c, γ) ∈ {(3, 2.5), (10, 6.5)}

As for the solutions to the dynamics of Q(t) in Figure 4.3b, the only
possibility is c = 1 with γ almost irrelevant. Evidently, the peak of the
quality factor is postponed for higher values c. Therefore, we rule out the
most extreme parameter c = 30 in any future simulation-runs.

(c, γ) ∈ {(1, 2.5), (1, 6.5)}

plemented as γLP = γ(t = 60) under linear decay γLP(t)′ = 2.5 + (t− 30)/30 · (γLP −
2.5) . However, this has been simplified to constant γ due to the main deviation ∆γ
mainly at t = 30, where its effect can be ignored due to the LP being well beyond cutoff
this early on.
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Improvements on the η(ρ) ∝ sin4 model

There is thus not clearly one combination (c, γ) that gives accordance in
both ∆ f and Q. However, we will not consider more solutions to γ and
c, but rather advance the following (possible) resolutions to more accurate
reproduction of measurement data.

Firstly, an instinct would be to decrease γ below the values here con-
sidered. For γ = 6.5, c is an entire order of magnitude apart. For γ = 2.5 c
is half an order of magnitude apart. Therefore, it would be logical that Q
and ∆ f both coincide for γ = 1 and c = 1. However, this would imply a
temperature of T = 10, 000 K, which is in conflict with the initial value of
the temperature under simulations on flow[18], and in conflict with spec-
tral measurements in [19]. Both of these sources indicate a temperature of
T = 5000 K at the most. Therefore, we will definitively assume constant
γLP = 2.5, equivalent with TLP = 3000 K.

Secondly, the current distribution η(t, ρ) could be refined to a distribu-
tion η(t, ρ, φ). Analysis of CCD images exposed a strong angular intensity
dependence η(φ), evident from Figure 3.10a. Implementation of this dis-
tribution over φ endemically requires a higher normalization factor (factor
2.5 for renormalization of η(ρ) ∝ sin4) in order to sustain

˝
V η(t, ρ, φ)dτ =

η0(t). This more accurate distribution would possibly allow for measure-
ment data reproduction under (c, γ) = (1, 2.5).

Lastly, processes such as diffusion of charges and imperfections of the
η(ρ) distribution would introduce some offset electron density ηa on top of
the ideal sin4(ρπ/a) distribution, yielding a hybrid electron density distri-
bution η(ρ) = sin4 ρπ

a + ηa. This is further supported by the fact that across
the above parameter-sweeps, the ideal sin4-distribution achieved data-
reproduction of ∆ f only, whereas simulated Q was consistently higher
than in measurement data. This is the exact opposite to the problem with
the homogeneous distribution in Figures 4.2a and 4.2b, where Q consis-
tently went below the measured minimum quality factor Q ≈ 350. This is
strong backing to the argument for a hybrid solution to be presented as the
final characterization of the plasma.

4.2.2 Ansatz- and data comparison for 57 GHz

Having dropped the sweep-parameter-values cLP = 30 and γLP = 6.5 to
be unlikely solutions, we can narrow down to three sweeps in the 57 GHz
simulations detailed in Figure 2.1b, with the aim to reproduce measure-
ment data of Figure 2.2b.

We will now implement the sweep cLP ∈ {1, 3, 10} and γLP ∈ {2.5}.
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4.2 Characterization of the non-homogeneous composite plasma 101

We re-normalize the parameters for the response to the 57 GHz measure-
ment frequency by:

˜η0(t) = η0(t) · (ω
ω̃ )

2 ≈ η0(t)/540
γ̃ = γ · ω

ω̃ = 6.5 · 2.45
57 ≈ 0.1

The sweeps are implemented on the plasma containing the LP only, ac-
cording to (4.3). Visualizing the simulation-model in the Figure 2.1b with
propagation direction from left to right: port 1 is at the left-most boundary
and port 2 is at the right-most boundary. The transmission data in Figure
4.4 are made by the following evaluation:

|S21| ≡ |S21|(c, γ, t)/|S21(0, γ, t)|

, with |S21(0, γ, t)| and |S21|(c, γ, t) ≈ 0.8 evidently the transmitted voltage
between ports for absence resp. presence of plasma.

η̃(ρ, t) = 2.5 · η̃0(t) · sin4
(

ρπ

a(t)

)
η̃0(t) = cLP · exp(−(t− 45)/4)

˜γ(t) = 0.1

Examination of the graph yields the best accordance for the single so-
lution:

(c, γ̃)LP = (10, 0.1)→ (c, γ)LP = (10, 2.5)

This is well outside of the set of solutions {(c, γ)LP} = {(1, 2.5), (3, 2.5)}
that gave best accordance with measurement values on the 2.45 GHz setup.
For this reason, we will settle the final solution as a logarithmic golden
mean c = 3 with an error factor that encapsulates the optimal solutions
for both setups c = 1 resp. c = 10. We do this by introducing a power
factor p with an error of ±∆p = ±0.5, where c in the above equation is
substituted accordingly:

c→ 3 · 10±∆p = 3 · 10±0.5

4.2.3 Hybrid model- and data-comparison for 2.45 GHz

The parametric sweep will be narrowed down once more to just cLP ∈
{1, 3} and γLP ∈ {2.5}. The parameter c = 10 is not considered be-
cause it is at the ”wrong” side of the error margin with ∆p = +0.5. The
offset-value to give the correct minimum value of min(Q) for both sweeps
(c, γLP) ∈ {(1, 2.5), (3, 2.5)} under 2.45 GHz simulations was found by

Version of July 8, 2021– Created July 8, 2021 - 13:14

101



102 Characterization of capacitive plasma heating

Figure 4.4: Comparison of simulated transmitted voltage with measurements on
the 57 GHz setup. The corresponding simulation model is as detailed in 2.4, with
the LP-torus centered between the two horns, no EC present. The electron den-
sity is swept with c, with normalized collision frequency γ̃ = 0.1 and the distri-
bution of the electron density as detailed in (4.3). Not all instances of time are
represented in the figure, because the simulation would not find convergence to
a solution in a reasonable amount of time.

trial and error to be ηa = 2. § This offset superimposed on the sin4 distri-
bution delivers the equations laid out in (4.4).

η(ρ, t) = 2.5 · η0(t) · sin4 (
ρπ

a(t)
) + ηa, ηa = 2

η0(t) = 1.5 · 103 · 10±0.5 · exp (−(t− 45)/4)

γ(t) = 2.5

The simulation data corresponding to the implementation of the hy-
brid-distribution in (4.4) with ηa = 2 are plotted in Figure 4.5, where
c = 3 ∼ ∆p = 0 represents the ”golden mean” with 57 GHz simulations

§The corresponding offset for 57 GHz is ηa = 2/540 which will barely make a dif-
ference for the transmitted voltage, dominated by scattering behaviour. Therefore, the
results of Figure 4.4 are likely reproduced under the additional offset ηa, so no new sim-
ulations for the hybrid distribution are required for 57 GHz.
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4.2 Characterization of the non-homogeneous composite plasma 103

and where c = 1 ∼ ∆p = −0.5 represents the ”right side” of the error
margin ∆p, reproducing the 2.45 GHz simulations.

Figure 4.5: Simulation data for (4.4). Plotted for c = 3, along with c = 1

Final characterization equations of LP and EC, with error

Under the hybrid distribution, the offset ηa = 2 is consistently lower than
the sine-amplitude amplitude 2.5 · η0(t). The offset was only proof that
higher values c = 3 and c = 10 are valid solutions, unlike was presumed
from Figure 4.3b. Therefore, we set the offset to zero again, and conclude
the parameter-solutions cLP = 3, ∆p = ±0.5, γLP = 2.5.

LP material properties in terms of cross-sectional radius ρ in [mm]
and time t in [us]

η(ρ, t) = 2.5 · η0(t) · sin4 (
ρπ

a(t)
) (4.5a)

η0(t) = 1.6 · 103 · 10±0.5 · exp(−(t− 45)/4) (4.5b)

γLP = 2.5 (4.5c)

σLP(ρ, t) = ε0ω
η(ρ, t) · γLP

1 + γ2
LP

(4.5d)

In order to determine the conductivity of the plasma, we convert the
values of eta and gamma for each to sigma by (1.41b). For the theoret-
ical homogeneous parameters, and for the simulated non-homogeneous
parameters, the conductivity is plotted in Figure 4.6.
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104 Characterization of capacitive plasma heating

Figure 4.6: Conductivity over time for LP and EC computed from σ(η, γ) in equa-
tion (1.41b) in combination with η(t) in (4.5a) and (4.1a), and γ(t) in (4.5c) and
(4.1c). Margin of error for σLP is half an order of magnitude ±∆p = ±0.5. The
margin of error for σEC (with the presumed decay constant τEC = 15 us) is based
off of the extremes τEC ∈ (1/∞, ∞), pivot at t = 30 us.

4.3 Characterization of capacitive power absorp-
tion efficiency

In the previous section, we characterized the plasma by reproducing ex-
perimental values from the plasma-filled cavity. Under these properties
of the plasma-components LP and EC, placed within the rectangular TE-
101 cavity, we will characterize the efficiency of capacitive heating of the
plasma across and beyond the characterized period t ∈ [30, 70] [us]. As
mentioned in the introduction, our ultimate goal is to devise an effective
and efficient heating method; where this last section on capacitive heating
concerns the evaluation effectiveness and efficiency of capacitive heating.
Effectively, capacitive heating should stabilize the LP at a high tempera-
ture or ionization grade. Efficiently, this state of LP-stability should pos-
sess a high RF-efficiency ηRF ≡ Pa,LP/Pin, with Pa,LP the power absorption
in LP and Pin the magnetron input power.

Firstly, a simulated determination is made for the (0% < P̄a,α(t) <
100%) share of power absorption into the absorbing components α ∈ {LP,
EC, and cavity}. Secondly, the properties of the stable LP and EC at the
measured stability time are determined, as well as the associated power

104
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4.3 Characterization of capacitive power absorption efficiency 105

absorption under reduced transmitted power to the cavity from subse-
quent mismatch and mistune. Lastly, the total power absorption associ-
ated with the measured stability times in LP- and EC-components (Pa,LP ≈
Pa,EC ≥ 100 [W]) is used to evaluate the heat-conduction power loss, and
whether this is comparable to the simulated power absorption.

4.3.1 Simulated capacitive power absorption ratio

Although a theoretical equation has been developed in order to estimate
the capacitive plasma’s power absorption in (1.52c), this will not be used
to determine the power absorption ratio. Namely, this equation was for-
malized only for (invalid) homogeneous LP electron density η(ρ) = η0,
and the theoretical LP decay constant τLP is an underestimate with respect
to that of the (realistic) non-homogeneous LP. This can be identified from
Table 4.1.

The estimated plasma properties in (4.5) and (4.1) are implemented in
the TE101 simulation model of Figure 2.3. For different t, three evaluations
are made, from which share of power absorption P̄α into component α ∈
{LP, EC, cav} is extracted by the following equations:

P̄LP ≡
˝

V,LP emw.Qe dτ · (1− |S11|2)−1 · P−1
in ,

P̄EC ≡
˝

V,EC emw.Qe dτ · (1− |S11|2)−1 · P−1
in ,

P̄cav ≡ Pin · (1− |S11|2)−
˝

V,LP emw.Qe dτ −
˝

V,EC emw.Qe dτ.
Adding these shares of power absorption into a bar-plot produces Fig-

ure 4.7.

Expected vs. measured LP- stability time

The data for the power absorption ratio P̄LP(t) in Figure 4.7 represents
the share of power absorption into the LP at each time. However, this
ignores any (mismatch- and mistune) power leakage by the cavity and as-
sumes that the input power is activated at precisely the time of evaluation
t. Namely, if the power input is activated before the evaluation time, com-
ponents of the plasma are perturbed, thus no longer being comparable
to power absorption under the unperturbed decaying plasma properties
determined at a glance from Figure 4.7.

As for the plasma’s power absorption, under the supposition of match-
ing and tuning, the RF- input power of Pin = 3 [kW] can be multiplied
with the power absorption share in Figure 4.7 to yield the total power ab-
sorption Pa(t).
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Figure 4.7: Power absorption ratio for capacitive heating in the old TE101 setup.
The plasma properties are materially (4.5) and (4.1), and geometrically (3.1) resp.
(3.6). The bar values are solutions for ∆p = 0 ∼ c = 3, and the associated error σ
in black for each t is the difference of power loss with the case ∆p = −0.5 ∼ c = 1,
such that σ = ∆P13/P1 = {|PLP(c = 3)− PLP(c = 1)|+ |PEC(c = 3)− PEC(c =
1)|}/2.

The expected LP stability time ts,LP follows from the intersection of the
approximate heat conduction power loss (1.54) in the order Pl(t) ≈ 10
[W] with the curve P̄a,LP(t) · Pin with Pa(t) in Figure 4.7, with the inter-
section for both LP and EC likely well before the measured stability time
ts,LP = 75 [us], by constant intensity in Figure 3.12.

In order to deny that this discrepancy follows from mismatch or mis-
tune, we take into account the factors that reduce the RF-power available
to the LP, such absorbing components (EC and cavity walls) or power re-
flection from the cavity (mismatch, mistune).

Power loss to EC, mismatch and mistune

Parasitic components that absorb RF-power simultaneously with the LP
are the cavity walls and the EC. As per the measured EC-stability ts,EC =
45 [us] with Q = 300 (Figure 2.2a), the EC-power absorption is much
larger than cavity power absorption, because Pcav/PEC = Q(t = t s, EC)/Q =
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300/2850. Evident from Figure 3.12a, the EC and its properties stabilize.
In contrast to Figure 4.7, the share of capacitive EC power absorption is
perturbed beyond the EC- stability time ts,EC = 45 [us], with PEC ≥ PLP →
PEC ≥ 50%.

Mismatch ∆M is one of two causes of power reflection, and is caused
by the absorption by the EC and LP under an expected total quality factor
Q ≈ 300. Suppose that the cavity is matched to the waveguide only when
empty, with empty-cavity resistance R = R0 ≈ 0.25 Ω by Table 2.1. The
absorption of the plasma raises the total cavity resistance with the plasma
resistance which equals Rp ≈ 4.5 Ω, by (1.13). By substitution in (1.22c),

the mismatch equals ∆M ≈ R2
p

(2·R0+Rp)2 ≈ 0.67. The associated power at-

tenuation equals |S21|2∆M = 1− ∆M ≈ 0.3
Mistune ∆ f = fmag− f0 is the other cause of power reflection. Suppose

that the cavity is tuned to the magnetron frequency only when empty. As
per Figure 2.2a, the mistune due to the presence of the plasma is about
∆ f = −5 [MHz]. The reflected power associated with this mistune can be
computed in combination with the cavity full-width-half max ∆ f1/2 ≈ 8
[MHz] in case Q ≈ 300. By substitution in (1.23b), the associated attenu-
ation of power transmission equals |S21|2∆ f =

(
(2 · ∆ f /∆ f1/2)

2 + 1
)−1

=

((2 · 5/8)2 + 1)−1 ≈ 0.4.

The total power transmission attenuation due to mismatch and mis-
tune is therefore |S21|2 = |S21|2∆M · |S21|2∆ f = 0.3 · 0.4 ≈ 0.1. Combined
with 0.5 share of total power absorption in the EC as well as a 0.5 share of
total power absorption in the LP, this yields a minimum total available LP
power absorption of about Pa ' 100 [W] at the LP stability time ts,LP = 75
[us].

Properties of the stable plasma under capacitive heating

Because of plasma stability, the power loss is equal to the power absorp-
tion and we must thus have for the plasma (both LP- and EC-) power
loss Pl ' 100 [W]. Evaluation requires the properties of the stable plasma
under which these losses need to be calculated.

As for the electron density, we have seen for both LP and EC that their
stability times ts correspond to similar electron density by (4.1b) and (4.5b)
accounting for η

(EC)
0 (ts = 45) = 0.5 resp. η

(LP)
0 (ts = 75) = 0.83. For both

LP and EC, η0 ≈ 1 corresponding to T = 1000 [K] by (1.53d). Because a
power loss of Pl = 10 [W] assumed a boundary temperature T = 3000 [K],
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its remains unexplained why the plasma stabilizes so late.

Note on improvement of capacitive heating

The method of capacitive heating (when started before t = 30 us), has
the issue of stabilizing the EC well before the stabilizing the LP by Fig-
ure 3.12a, whereby the plasma settles at an unfavourable share of power
absorption to the EC by Figure 3.12b.

An improvement on the efficiency of capacitive heating would be to
postpone the RF signal well beyond the EC stability time t = 45 us and
near LP stability time t = 60 us. This postponement would ensure that
the EC decays well below significant losses. By CPT (1.26b), a plasma of
the size Vs = 100 mm3 within the capacitive heating setup only decreases
the available RF-power if Qs ≤ 1/2 · Q0 meaning εr” � 1

Q0

V0
χEVs

= 0.25 ∼
ηEC ≈ 2. Therefore, postponing RF-heating until ts ≈ 75 us - where ηEC ≈
0.07� 1 by (4.1a) - will ensure that virtually all RF-power absorption will
take place in the LP.

However, after such a decay, the LP has lost its hallmark high ioniza-
tion grade. Moreover, when the capacitive heating stabilizes the LP, the
skin effect concentrates most heating near the boundary of the LP, leading
to high heat conduction losses due to the proximity to the cold surround-
ings. Consequently, this dissipation of heat - possibly in combination with
ambipolar diffusion - might form a plasma around the LP over time, pos-
sibly creating the unfavourable situation analogous to the presence of the
EC.

Conclusively, capacitive heating of a LI-plasma is inefficient and poorly
optimizable. We require a new (inductive) heating method that will be
discussed in the next chapter.
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Chapter 5
Characterization of inductive
plasma heating

Where the previous chapter has investigated heating the plasma through
the oscillating electric field, this chapter will investigate heating the plasma
by its positioning at the oscillating magnetic field. The power absorption
over conductivity will (in both theory and simulation) be analyzed with
the goal of determining whether inductive power absorption favours LP
over EC, and to determine at what optimal conductivity σopt the LP power
absorption is maximal. Two new cavity types are designed to facilitate
this inductive heating by the magnetic antinode at the center of the cavity
volume: the rectangular TE102-, and the cylindrical TE011-cavity. Through
simulation, we predict how these cavities affect the plasma power absorp-
tion ratio P̄a into LP, EC, and cavity walls. For inductive heating in the
rectangular TE102 cavity, we will estimate the power absorption theoreti-
cally and compare these evaluations with simulations of inductive heat-
ing. Afterwards, we explore benefits by transitioning to inductive heating
in the cylindrical TE011 cavity.

5.1 Characterization of inductive power absorp-
tion

In order to provide a lucid characterization of the power absorption into
LP and EC, it is convenient to maintain a single degree of freedom in
homogeneous conductivity σ applied to a static geometry; the geometry
should reflect both LP- and EC-geometry over the time-domain t ∈ [30, 60]
[us], (the time domain for which we have characterized both components).
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An oscillating magnetic field strength |B| then induces a current density
J within the domain, to be derived from (1.48a). This is finally integrated
over the (toroidal) geometry along (1.48b) to obtain the power absorption
within the domain.

Firstly, the geometry we maintain will be the geometry of the LP at
central time t = 45 us, which by (3.1) roughly entails a torus with (r, a) =
(3.75, 1.58) [mm]. This approximate static geometry roughly models that
of the EC (3.6) as well, because the EC is concentrated within two pairs of
rings with central radii r1 ≈ 2 [mm], r2 ≈ 4 [mm], and square cross-section
with side-length h = 1 mm. Subsequently, the combined EC-volume Vs =
80 [mm3] is in the same order of magnitude as that of the LP (Vs = 180
[mm3]), with most of this volume concentrated near r2 ≈ r = 3.75 [mm].
The geometry is thus a valid approximation for both LP and EC, and this
can be confirmed with some imagination from the cross-sectional geome-
try of the composite plasma visualized in the third column of 3.1.

Secondly, the conductivity must span the full range of conductivities of
LP and EC within the characterized time-span t ∈ [30, 60] us. At a glance
from Figure 4.6, this means that the lower limit of the range must coincide
with σEC(t = 60) = 1e− 2 [S/m] and the upper limit of the range must co-
incide with σLP(t = 30) = 1e4 [S/m], giving σ ∈ [1e− 2, 1e4] [S/m]. Theo-
retical computations of the induced current density and power absorption
will be made under fixed real free-space relative permittivity ε′r = 1, to
ignore effects from ε′r. Although the characterization of the plasma esti-
mated γ ≈ 2.5, which for σ � 1 [S/m] implies ε′r � 1, simulations on
inductive heating of the plasma indicated that effects of ε′r on power ab-
sorption could be ignored, with absorption dominated by σ.

Lastly, the local amplitude |B| of the oscillating magnetic field equals
B0 by the plasma’s placement at the cavity’s center (x, y, z) = (a/2, b/2, d/2),
as is evident from the field equations (1.27). Unlike the plasma-parameters
r, a, σ, the amplitude B0 of the magnetic field is dependent on the cavity
type chosen - cylindrical or rectangular - because these possess different
quality factor Q, cavity volume V0, and energy density ratio χB - as evi-
dent from (1.50). However, this paper only covers and will only provide
power absorption simulation data on the initial rectangular TE102-setup,
and we limit ourselves to the rectangular cavity magnetic field amplitude
only. This possesses properties that closely resemble that of the rectan-
gular TE101-setup, with comparable cross-sectional dimensions a and b,
volume V0, quality factor Q, and equal density ratio χB. Under the as-
sumption of matching and tuning along with 3 kW input power, by Table
2.1, the local amplitude near the plasma equals B0 = 0.004 [T].
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5.1 Characterization of inductive power absorption 111

5.1.1 Induced current density

In order to determine whether the theoretical calculation of the inductive
current density is accurate, it is compared with simulations on the induced
current density within the plasma. This comparison is executed for a sin-
gle conductivity σ = 30 [S/m], which is the mean conductivity of theoret-
ical and simulated approximation at t = 45 [us] in Figure 4.6. Moreover,
this is a representative sample-value of conductivity because it is close to
the logarithmic average of the range of conductivities to be investigated
later.

The theoretical evaluation of the induced current density distribution
is numerically determined by insertion of plasma-cross-sectional coordi-
nates (r, φ) into equation (1.48a) for the geometric properties as described
above, with magnetron frequency fmag ≈ 2.45 GHz (but with reduced
field B′0 to be determined soon). The coordinate-dependent absolute value
of the induced current density |Ji|(r, φ) is evaluated in Python for a mesh-
grid of the torus cross-section (0 < r < a, 0 < φ < 2π). The simulated
evaluation of the induced current density across the cross-section is made
by positioning the plasma at the center of the TE102 model axisymmetric
with x̂ in Figure 5.4 and evaluating the slice across a plane through the cen-
ter of the torus, parallel to x̂. This simulation model is excited with an RF-
signal at the system’s resonance frequency and with input power Pin = 3
kW. Although thus tuned, the model is not matched; it is matched only
for the empty cavity (read: for no plasma power absorption). Moreover,
plasma power absorption reduces the available field energy and thereby
the system’s quality factor. This needs to be accounted for in theoretical
evaluations, by the introduction of the plasma resistance Rp.

In terms of transmission line theory, the total cavity resistance is raised
by plasma power absorption incorporated into the plasma resistance Rp,
leading to a non-zero mismatch and reduced quality factor by (1.22c) resp.
(1.22b). Here, P0 is the total plasma power absorption under un-reduced
field magnitude B0, Pin is the input power, and R0 is the cavity resistance.
We can compensate for the subsequent reduction in magnetic field ampli-
tude B0 by substitution of this plasma resistance (5.1a) into (1.50). Con-
sequently, we account for the non-zero mismatch and the reduced quality
factor by reducing B0 to B′0 through the two equations (5.1), lucidly en-
capsulating the required theory for determining the re-normalization factor
c (5.1c) of the field magnitude.
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Rp =
P0

Pin
· R0 (5.1a)

B′0 ≡ c · B0 ∝
√

Q
√

P ∝
√

Q
√
(1− ∆M) (5.1b)

c ≡ B′0
B0

=

√
2

2 + α

√
1− α2

(2 + α)2 , α ≡ P0

Pin
(5.1c)

The power absorption under un-reduced field magnitude for (r, a) =
(3.75, 1.58) [mm], σ = 30 [S/m] and B0 = 4 [mT] equals P0 ≈ 12 [kW] by
evaluation of (1.48b) (or see un-reduced field power absorption computed
for the full range of σ and plotted in Figure 5.2a). Subsequently, evalua-
tion of (5.1a) yields Rp = 12/3R0 = 4 · R0, such that α = 4 in (5.1c), and
thereby the field is reduced by a factor c = 0.43 with B′0 ≈ 1.8 mT. How-
ever, this is only a zeroth order estimate of the reduced field. Firstly, the
recursive nature of the re-normalization means that this new reduced field
implies a higher quality factor and lower mismatch than the un-reduced
field, raising B′0, moreover requiring infinite subsequent re-evaluations.
Secondly, the magnetic field magnitude B0 and cavity resistance R0 of the
TE102 setup are only estimates based on the TE101-setup leading to a pos-
sibly erroneous value of B′0.

Simulations on the tuned, empty-matched TE102-setup with input power
Pin = 3 [kW] and the plasma-parameters as above, the induced current
density slice over the cross-sectional plane yields Figure 5.1b, with upper
limit of the induced current density max(|J|) = 6.5e5 [A/m2]. In theoret-
ical evaluation on the plasma-parameters combined with c = 0.43, on the
other hand, evaluation of (1.48a) yields maximum induced current density
of 9.5 [A/m2]. For a nice side-by-side comparison of the cross-sectional in-
duced current density distributions, the field magnitude renormalization
factor has been reduced further from c = 0.43 to c = 0.3 and the subse-
quent distribution is plotted in Figure 5.1b.
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5.1 Characterization of inductive power absorption 113

(a) Theoretical induced current density

(b) Simulated induced current density

Figure 5.1: Comparison of theoretical vs. simulated induced current density |J|
[A/m2] along torus cross-section for σ = 30 S/m and (r, a) ≈ (3.75, 1.58) [mm].
Simulation-data for torus at center of matched and tuned rectangular TE102 cavity
with Pin = 3 kW matched cavity. Theoretical data from numerical implementa-
tion of (1.47a) with normalized reduced field strength B′0 = 0.3 · B0 = 1.2 mT.

From comparison between theoretical (Figure 5.1a) and simulated (Fig-
ure 5.1b) induced current density, we conclude good magnitude of |J| from
theory. Accordance under c = 0.3 with |J| ∝ |B| also implies that the in-
duced current density would have been at most half an order of magni-
tude off had it not been normalized (in which case c = 1). Moreover, the
simulated distribution resembles that of the induced current density un-
der magnetic induction, and we may conclude that magnetic induction is
indeed dominated by the longitudinal excitation assumed in (1.48a).* As
for its deviation, this is likely because the simulations incorporate induced
current from transverse magnetic field as well, which is visible as a non-
axisymmetric (w.r.t. the laser-axis, R̂) distribution in Figure 5.1b, whereas
Figure 5.1a is axisymmetric.

Regardless, the developed theory on magnetic induction holds up to
simulation in the two main aspects: the magnitude of |J| and subsequently
the magnitude of Pa, as well as the re-normalization factor c. Now that the
accuracy of theory is proved for single σ, we can rely on the theory in an
inquiry of the plasma’s magnetic-induction power absorption over the full
range of σ.

*One can rule out that transverse excitation dominates by comparison with [14, Figure
3(a)], rotated 90 degrees with respect to Figure 5.1.
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5.1.2 Power absorption ratio

Inspired by the previous subsection, this subsection on power absorption
will employ the same approach to determining the power absorption of
the plasma under inductive heating: for each σ in the range of LI-plasma
conductivities, the total power absorption is computed under un-reduced
field and is then re-normalized by this magnitude through the constraint
Pin = 3 [kW]. For starters, the total power absorption is determined at
the un-reduced magnetic field strength B0 = 4 [mT], and for the average
toroidal geometry (r, a)(t = 45) = (3.75, 1.58) [mm] over the range of
σ ∈ [1e− 2, 1e4] [S/m]. The total absorbed power is computed over this
range of conductivities σ, and it is plotted in Figure 5.2a. The subsequent
power absorption far exceeds the input power, and must therefore be re-
normalized. We have concluded previously that renormalization required
both the mismatch and quality factor. By far the largest error in calculat-
ing c is due to the mismatch, because (5.1c) relies on accurate empty-cavity
resistance R0.† Therefore, the cavity has been matched for each σ by sub-
stitution of un-reduced power absorption corresponding to plasma resis-
tance Rp in (5.1a) which, by implementation of theory on matching, leads
us to a matching iris radius r as follows:

r =
3

√√√√L ·√1 + P0
Pin

γ · ψ(r0)

Because the order of magnitude of the induced current density - and thus
the magnitude of the power absorption - is similar for both theory and
simulation, the theory can be used for cavity matching in simulations. The
iris radii thus deduced were checked to have a maximum tuned reflected
power of (|S11|2) = 0.1, but they have been calibrated further to give max-
imally (|S11|2) = 0.01.

The values in Figure 5.2a are renormalized under reduced quality fac-
tor and zero mismatch using (1.51), and are plotted with label theor. in
Figure 5.2b. The plasma power absorption in simulations are determined
from simulations on the tuned and matched TE102 cavity, and are plotted
with label Sim..

†This will not be computed for the TE102 cavity because of the presence of FQ-slabs,
with subsequent perturbed field equations as well as interference behaviour leading to
reflection/transmission at Air-FQ interfaces.
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5.1 Characterization of inductive power absorption 115

(a) Theoretical total power absorption
for constant field strength

(b) Calibrated values of theoretical
power absorption, plotted along simu-
lated power absorption in a TE-102 cav-
ity.

Figure 5.2

Power absorption ratio of LP and EC, and stability

From Figure 5.2b, an accurate comparison is made between total plasma
power absorption within the TE102-cavity predicted by theory and by sim-
ulation. We identify from the curve maximum a theoretical optimal power
conductivity σopt = 10 [S/m], whereas simulations predict half an order
of magnitude higher at σopt = 30 [S/m]. We also see that for modelling
the EC with the geometry of the LP (a torus), its corresponding power
absorption is much lower by comparison of the logarithmic time-average
conductivity σEC ≈< σEC >t≈ 1e− 1.5 [S/m] and σLP ≈< σLP >t≈ 1e2
[S/m]:

P(σ = 10−1.5 [S/m])� P(σ = 102 [S/m])→ Pa(σEC)� Pa(σLP)

This indicates than we can likely ignore influence of the EC under induc-
tive heating. However, the deviation of the LP geometry from the EC as
well as possible perturbations of the field amplitude distribution due to
LP-cutoff have not been accounted for. Therefore, we will confirm this hy-
pothesis of negligible EC inductive power absorption later, through simu-
lations on the composite plasma under inductive heating (to be plotted in
Figure 5.5).

Resonant frequency shift ∆ f from beyond-cutoff torus under inductive
heating

As could be seen from the simulation data in Figure 5.2b, the plasma ab-
sorbs a large amount of energy even for high conductivity. Therefore, if a
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high input power is chosen, it is likely that the plasma will stabilize (power
equilibrium Pa = Pl) for a high conductivity σ � σopt. At such conduc-
tivities, important effects on the frequency shift need to be considered.
Firstly, the corresponding skin depth is so small that the torus can be con-
sidered perfectly conducting, thus settling at some geometry-dependent
frequency shift ∆ f , by reasoning similar to η → ∞ under capacitive heat-
ing in Figure 4.1a. Under (capacitive) placement at the E-field, a conduc-
tive torus causes a frequency shift fully determined by its (constant) vol-
ume and the torus-specific shape factor x = 1/2. However, for (inductive)
placement at the B-field, this proportionality might not (and will not) hold.
Secondly, the temperature increase due to (now successful) power absorp-
tion under inductive heating will cause an increase of temperature within
the torus, such that its cross-section expands radially outward along ρ̂ (a
increases, r remains unchanged). The subsequent increase in volume leads
to a frequency shift, and per compensation requires additional re-tuning
of the cavity. Therefore, we require an inquiry into the frequency shift for
major radius r at different instances, and containing different volumes V
around the LP’s unperturbed (constant) volume Vs = 180mm3. This is
(roughly) attempted in the appendix on the frequency shift under induc-
tive plasma heating.

5.2 Characterization of rectangular TE-102 cavity

The new setup that will be used to heat the LP will be a rectangular cav-
ity. Instead of the previous dimensions of a custom waveguide, a WR-340
waveguide will be used with a circular aperture (same iris type) isolating
the cavity at its short. The dimensions of the WR-340 waveguide cross-
section are a × b = 86.36× 43.18 [mm2], with corresponding λg| fmag =
171 [mm].

First, we will address the issue of tuning when inserting slabs of fused
quartz into the cavity. Then we will derive the appropriate cavity dimen-
sions. The power absorption ratio of LP, EC, and cavity walls will then be
studied for the composite LI-plasma at the cavity-center, with EC as (4.1),
and non-homogeneous LP as (4.5).

5.2.1 Tuning-relation (w, d)|δ for the rectangular TE-102 cav-
ity containing FQ slabs

CPT tells us that inserting a dielectric in a cavity changes its resonant
frequency. Aside from the requirement of heating the plasma, injection
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5.2 Characterization of rectangular TE-102 cavity 117

of gas and extraction of plasmolysis-products requires the plasma to be
preferably isolated from the remainder of the cavity. Conventionally, fused
quartz is used in applications of flow confinement because of its low di-
electric loss factor ε”. The plasma is usually confined within a (hollow)
FQ-tube placed concentric with the cavity’s E-field antinode, while gas is
injected on one end, and extracted on the other.

In the case of this setup, the plasma is placed axisymmetrically- and
concentrically with B-field antinode. In case of a concentric and axisym-
metric placement of the FQ-tube partially occupying the nearby E-field,
the homogeneity of the E-field along ŷ (1.27) for the TE101-mode is violated
by the non-homogeneous relative permittivity. Therefore, the plasma and
surrounding gas are confined by placement of two rectangular FQ-slabs
with a thickness δ = 10 mm, each on either side of the plasma and ori-
ented orthogonal to the propagation direction ẑ.

The cavity resonance frequency is reduced because of the electric-field
energy within the above-unitary relative permittivity of the FQ-slabs; we
thus need to reduce the cavity depth d in order to raise the cavity reso-
nant frequency to the magnetron frequency fmag. In the absence of ad-
ditional constraints, the two slabs could be translated along ẑ at constant
inter-window-distance w, differently perturbing and occupying the cav-
ity standing-wave E-field pattern depending on each slab’s position z by
(1.27). For the sake of simplicity, the two slabs provide equal frequency-
shift if placed symmetrically with respect to the half-plane of the cavity
(plane through the cavity’s volumetric center, orthogonal to ẑ). Addition-
ally, symmetric placement of the FQ-windows are supported by the goals
to be satisfied by the final setup:

1. Tune the cavity resonant frequency to the magnetron frequency (tun-
ing)

2. Match the cavity with or without plasma to the waveguide (match-
ing)

3. Position the laser focus, and thus plasma, midway between the slabs
(minimal influence on flow-dynamics of torus-formation, minimal
electron density at the interface with the slabs)

4. Have the laser focus - and thus the plasma - at the position of the
magnetic field antinode (magnetic induction heating)

Fulfilment of the final two bulletin-constraints requires symmetric place-
ment of the dielectric slabs from the cavity half-plane d/2. Namely, both

Version of July 8, 2021– Created July 8, 2021 - 13:14

117



118 Characterization of inductive plasma heating

slabs will then contain equivalent electric field strength and thereby per-
turb the cavity’s resonant frequency equally, yielding equation (1.32). Con-
sequently, equal field perturbation in either slab settles the magnetic field
antinode exactly halfway the cavity depth and exactly halfway both slabs,
thus satisfying the final two bulletins.

In order to derive the relation d(w), simulations are made on a fully-
enclosed (”boxed”) WR-340 TE102-mode cavity containing two WR-340-
cross-section FQ-slabs of thickness δ = 10 [mm] symmetric to the cavity
center, with distance w between their (volumetric) centers. By a parametric
sweep of the cavity depth d for sample window-distance w, combinations
(w, d) satisfying resonant frequency f0 = fmag = 2.469 [GHz] are plot-
ted in Figure 5.3. Additionally, the solutions (w, d) to equation (1.32) are
plotted for comparison.

Figure 5.3: Cavity depth d over window distance w for empty-cavity resonance
frequency tuned to magnetron frequency f0 = 2.469 [GHz]. Both windows with
FQ-permittivity occupy a thickness δ = 10 [mm], while the remainder of the
cavity-volume contains free-space-permittivity, as provided in Table 1.2. Theo-
retical solutions ”Theory” are provided by (1.32), simulated solutions ”Simulation”
are provided by the simplified simulation model in Figure 8.2a, and full-model
solution ”Total setup” is provided by the full simulation model in Figure 5.4.

From Figure 5.3, we see that there is some discrepancy between the
theory and simulations. This is most likely due to the electric field en-
ergy distribution over the cavity depth - |E|2(z) - not being a perfect sine
squared - sin (z)2 - but a perturbation of such a distribution. This is due to
EM-waves travelling more slowly through the FQ-dielectric - z ∈ [±w−
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5.2 Characterization of rectangular TE-102 cavity 119

δ/2,±w + δ/2] - : the phase change along a depth of 10 mm in air being
smaller than the phase change along a depth of 10 mm of FQ. Neverthe-
less, by examination of Figure 5.3, the theory is usually in accordance up
to an error of about ± 5 mm.

5.2.2 Properties of the TE-102 cavity setup

Matching of the (plasma-filled) TE-102 cavity

Just like in the case of the old TE101 cavity setup, matching is achieved
through a combination of a circular aperture iris with fixed radius placed
at the interface of waveguide and cavity, and a stub with variable height
at quarter guide wavelength in front of the iris. The variability of the stub
height allows for matching at different cavity resistivities associated with
plasma power absorption. The motorized stub with maximum protrusion
max(hs) = 25 [mm] (along with the possible addition of a stub opposite
in ŷ) corresponds to maximum turn ratio and minimum (empty) cavity
resistance. In case of non-zero plasma power absorption, thus raising the
cavity resistance, the stub can be lowered per compensation. Because we
have not addressed theory on the stub height and because the iris alone
matches the cavity for unknown (non-empty) cavity resistance, the equiv-
alent circuit investigations will not be made for the WR-340 TE102 setup. In
comparison with the 90× 40 [mm2] custom waveguide of the TE101-cavity,
the approximate shape a× b and waveguide impedance Zwg are roughly
equal. Moreover, the insertion of FQ-slabs will reduce the cavity depth
down to d ≈ 95 [mm] (see Figure 5.3, Total setup), which is comparable to
that of the old TE101-setup with d ≈ 83 [mm]. By comparable magnitude
of Zwg and d, the cavity resistance is equal and the approximate empty-
cavity-matching iris radius is likely about r0 ≈ 11 [mm]. For additional
properties of the TE102-mode cavity, refer to Table 2.1.

Tuning of the (plasma-filled) TE-102 cavity

As for engineering constraints on cavity design, an analysis of the dimen-
sions of the components in between the slabs (optical tubes and window-
flanges) have yielded that the minimum possible distance between the
closest slab-surfaces of min(w− δ) = 55 [mm], corresponding to required
window distance w ≥ 65 [mm]. Another constraint was the need for a
distance of di,S = 10 [mm] between iris and the closest surface of the first
window. By the requirement of symmetric placement of the slabs, the lat-
ter constraint completely solves all cavity dimensions. Namely, we re-
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quire (nearly)‡ equal distance ds, S ≈ di,S = 10 [mm] between the sec-
ond slab and the short. Consequently, the total depth of the cavity equals
d = 2 · di,S + δ + w, with the corresponding relation between depth d and
window distance w of: Constraint: d = w + 30 [mm]. From the intersec-
tion of the constraint-relation with simulation data in Figure 5.3, we read
the solution (w, d) ≈ (77, 107) [mm]. However, solutions d(w) did not
account for the insertion of the iris, the slab-flange protrusion, and the op-
tical tubes, all of which decrease the resonant frequency, and thereby result
in a smaller cavity depth d. Therefore, a sweep (w, d) = (w, w + 30), w ∈
(77] [mm] is made on the full simulation model with iris, slab protrusion,
and optical tubes in Figure 5.4, yielding resonance at magnetron frequency
fmag = 2.469 [GHz] for the actual solution (w, d) = (65.25, 95.5) [mm], in-
dicated with a red cross in Figure 5.3. This solution only just satisfies the
constraint on the minimum window distance, where the reduced cavity
depth d has the convenient benefit of increasing the (magnetic) field en-
ergy density within the cavity.

Below the dimensions in Figure 5.4, the E- and H-field magnitude for
the TE102 are visualized for the induction heating configuration on the
LP with properties (3.1), (4.5) at laser-pulse-delay-time t = 45 [us]. Fol-
lowing the strategy outlined in the subsection on power absorption share
for capacitive heating on the capacitive TE101 heating setup, the share of
power absorption into the identical composite plasma with characteriza-
tion properties ((4.5), (4.1), (3.1), (3.6)) upon its implementation in mag-
netic induction heating configuration in the TE102-setup is accomplished.
Resulting magnetic induction heating power absorption shares P̄a (into LP,
EC, and cavity) are plotted in Figure 5.5.

5.3 Characterization of inductive power absorp-
tion efficiency

5.3.1 Simulated inductive power absorption ratio

Evidently from examination of Figure 5.5, the parasitic EC power absorp-
tion under inductive heating is vastly reduced with respect to capacitive
heating in Figure 4.7. Although, the RF-energy efficiency ηRF has increased
by reduced power absorption in the EC, the LP does not absorb as much

‡Tuning is done through a sliding short, necessarily requiring variability of ds,S. In
the final dimensions of the setup, ds,S is given extra distance to provide additional tuning
leeway in case some frequency-shift-effects have not been accounted for in simulation.
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5.3 Characterization of inductive power absorption efficiency 121

(a) View above the final double cavity
(b) Side view of the final double cavity
matching circuit

(c) Free view and the electric field strength. (d) Top view and the magnetic field strength

Figure 5.4: Geometry of the rectangular TE102-mode setup given in [mm]. Along
with field norms of Electric and Magnetic field for simplified version.

power under inductive heating as it did under capacitive heating. As a
consequence, the LP now competes for power absorption with the cavity
walls. The maximum inductive power absorption ratio P̄a for the LP is
at t ≈ 50 [us], with the cavity walls still absorbing up to 30 percent of
power (∼ α = 2). In contrast, under capacitive power absorption, the
LP absorbs optimally at t ≈ 70 [us], with cavity walls absorbing only
up to 5 percent of RF-power (∼ α = 20). In other words, capacitive
heating into the LP at the E-field antinode of the TE101-cavity and with
σ(t = 70) = σ(η = 2, γ = 2.5) = 0.7 [S/m] leads to more power ab-
sorption than the LP at the B-field antinode of the TE102-cavity and with
σ(t = 50) =< σ(ρ, η = 300, γ = 2.5) >ρ≈ 0.4 · 21 [S/m] = 8 [S/m]. By
(3.1), the LP-geometry is roughly the same at both instances, and is thus
not the cause of this different behaviour.

The question becomes: what makes capacitive heating at optimum ca-
pacitive conductivity more absorptive than inductive heating of the same
sample at optimum inductive heating. This different behaviour is domi-
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Figure 5.5: Power absorption ratio for inductive heating in the TE102 setup-model
of Figure 5.4. Plasma properties are materially (4.5) and (4.1) with ∆p = 0, and
geometrically (3.1) resp. (3.6).

nated primarily by the optimum conductivity σopt, which is different for
capacitive and inductive heating. In both cases, conductivity is expected
to be optimal at the transition of cutoff, meaning: the field within the sam-
ple volume is negated to induce (current) losses (G, Y < 1) yet such that
enough field penetrates the sample in order for most of the sample volume
to contribute to absorption (G, Y � 0). Under capacitive heating of the LP,
this is evident in case of optimum power absorption σ = σopt, because
by (1.46b) G(σopt = 0.7 [S/m]) = 1/(1 + 2.5 · 1.6/12.2) = 0.75 such that
losses occur within virtually 75 percent of the sample volume. Under in-
ductive heating of the LP, the effective fractional volume is equal to Y(σ) in
(5.2) [25, Self-inductance of thin wire shapes, bulletin two, cross-reference
to: Rosa (1908)], and attains a form similar to that of (1.46b).

Y(σ) ≡ 1/(1 + 0.5 · a/δ(σ)) (5.2)

It is therefore no surprise to find under substitution of the optimal in-
ductive conductivity that Y(σopt = 8 [S/m]) = 1/(1+ 0.5 · 1.6/3.5) = 0.81
such that (current) losses occur within virtually 81 percent of the sample
volume, which is almost identical to the ”optimal” fractional effective vol-
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5.3 Characterization of inductive power absorption efficiency 123

ume in the case of capacitive heating.
Finally, we can now explain why power absorption under inductive

heating is endemically lower than power absorption under capacitive heat-
ing. Substitution of these effective fractional volumes G and Y into (1.42)
allows extract the integrand and derive proportionality relation of P(σ),
the power absorption at optimum conductivity. For capacitive heating,
this yielded (1.46a) simplified with |T|2 ≈ 1 to P(opt)

c ≈ Vs · G · J2/σc,opt.
For inductive heating, the equivalent relation can be found through substi-
tution G → Y such that P(opt)

i ≈ Vs ·Y · J2/σi,opt. We can thus find the ratio
of optimum power absorption for capacitive over inductive heating, by
the convenience Y ≈ G for optimal absorption as well as (very roughly)
equal induced current densities by < Jc > c · σ · E ≈ 0.3 · 0.7 · 1.2e6 ≈
2.5e5 ≈< Jl >:

P(opt)
c

P(opt)
i

=
σ
(opt)
i

σ
(opt)
c

=
8.4
0.7
≈ 10

By the renormalization equation (1.51) this means that αc = 10 · αi,
which is exactly what was found from the peak power absorption ratios
in Figure 5.5 and Figure 4.7, with α = 2 resp. α = 20. In summary:
with respect to capacitive heating, the higher optimum conductivity for
inductive heating implies that peak inductive power absorption is lower.

5.3.2 Plasma power loss at stability under inductive heat-
ing

In order to determine the total reactor energy efficiency in equation (1),
we need to supplement the RF-efficiency ηRF ≈ 0.7 with an account of
the plasma power loss associated with the stable plasma under inductive
heating, which requires an estimate of the plasma’s properties at stability.
At stability under inductive heating, we may assume that the LP will sta-
bilize near its optimum conductivity attained at t = 45 [us], by (4.5d) and
(4.1) corresponding to LP-conductivity σLP(t = 45[us) = σopt = 30 [S/m]
and EC-conductivity σEC(t = 45[us) = 0.03 [S/m]. Due to the low power
absorption associated with the EC-conductivity, Pl � Pa and the EC will
die out. At optimum conductivity, the LP attains η ≈ 1, 600, by (1.53d)
corresponding to Tg ≈ 2000 [K]. The LP- heat conduction power loss at
optimum conductivity by (1.54) equals roughly Pl(Tg = 2000 [K], R ≈
0.75 [mm]) ≈ 60 [W]. The total LP- power loss Pl ≈ 100 [W] is less than
or equal to the expected power absorption Pa = ηRF · Pin ≈ 2000 [W], jus-
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124 Characterization of inductive plasma heating

tifying the assumption of LP stability near optimum conductivity as well
as justifying ignoring plasma power loss with respect to power loss to the
cavity.

5.4 Characterization of cylindrical TE-011 cavity

Although the rectangular TE102 cavity will likely be successful in sustain-
ing the LP beyond 30 us, its simulated maximum efficiency ηRF = 0.8
(t = 50 us in Figure 5.5) can be improved upon with a different cavity
design. Since the power loss to the EC has already been mitigated by im-
plementing inductive heating, the efficiency can only be optimized by re-
ducing the power loss to the cavity walls. With respect to the rectangular
cavity, the topology of the more symmetric cylindrical counterpart inher-
ently possesses a higher quality factor, mitigating the power loss to the
cavity walls.

The ground cylindrical TE011 mode is the likely candidate for imple-
mentation of inductive heating upon examination of its field equations in
(1.28). For this cylindrical cavity with dimensions (radius, height) = (a, h)
this mode sustains the magnetic field antinode at the center of the cavity
(0, h/2), providing a location for inductive heating of the LI-plasma.

Moreover, the ratio of magnetic energy density χB is raised, with χB ≈
10 for the cylindrical mode (a, 2a) , a.o.t. χB = 2 for the rectangular mode.
By (1.50) in combination with (1.17a), this implies that RF-inefficiency is
reduced by a factor 1/5 (even) if rectangular- and cylindrical cavity pos-
sess equal quality factor and volume.

Out of all combinations (a, h) such that the cylindrical cavity is reso-
nant at 2.45 GHz, the corresponding quality factor can be proved to be
maximal if cylinder diameter equals height a ≈ h/2. The equation for
the resonance frequency of the cylindrical cavity mode can be found by
substitution of λg, λc (equations (1.28)) into the relations (1.5) to obtain
λ0 = c/ f0. Under the constraint λ0 = 122.45 [mm], the relation a(h) can
be substituted into formula (5.3b), with maximum Q at a = h/2. Conse-
quently, the distance from cavity-center to cavity-walls is maximal, thus
minimizing loss of heat to the walls as well as perturbations on flow by re-
flection of laser-pulse-shock-waves by the walls, thereby nicely satisfying
engineering goals (3.) and (4.) mentioned in the engineering of the rectan-
gular inductive heating setup. The dimensions have already been derived
under the constraint of tuning (1.), which leaves only the goal of matching
(2.) the cavity to be accomplished.
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5.4 Characterization of cylindrical TE-011 cavity 125

Cylindrical cavity design

The cylindrical cavity design to be discussed here is not a proper cylin-
der, but a cylinder with its sharp corners (r ≈ a, z ≈ ±h/2) rounded by
a circular boundary. This shape has been built through simulations, and
is visualized in 5.6a. It can be formed by a union of four axisymmetric
topological objects, consisting of two toruses and two cylinders. An in-
ner cylinder (R, h) = (82.2, 90) [mm]. Centered at the top and bottom
planes of this cylinder are toruses with (r, a) = (52.8, 29.4) [mm]. Concen-
tric with the first cylinder is a more longitudinally shaped cylinder with
(R, h) = (52.8, 149) [mm]. The exciting waveguide is chosen to be 90× 40
[mm], and transitions into the cylinder with h = 90 [mm] at an interface of
a circular aperture with radius r through a cross-sectional plane of thick-
ness δ = 1 [mm]. In simulations, the iris radius r0 = 11.8 [mm] causes
matching under the premise of a homogeneous Aluminum-wall conduc-
tivity σAl = 107 [S/m], although this cannot be confirmed through conven-
tional theory. The iris’s position at the interface-transition of rectangular
TE10- and cylindrical TE011-modes requires tailored calculations, and may
even require additional implementation of an inductive iris in front of the
circular iris [26].

Equivalent circuit for cylindrical cavity

This setup’s properties can be approximated by those of a cylindrical cav-
ity with radius a and height h such that (a, h) = (82.2, 149), sustaining a
cylindrical TE011 mode with field equations given in (1.28). This validity of
this approximation can be derived from an examination of the distribution
of the square field magnitudes |H|2 and |E|2 corresponding to the TE011
mode, which do not carry much energy density at the corners. Therefore
this cut has little impact on the general properties of the cavity, and we will
be therefore be working with the formulae for the perfect cylinder. From
the height of the cavity being h = 148.8mm, we find λg = 2 · h = 297.6mm.
By (1.10) this yields Zwg = 916 Ω.

Formulae regarding mode losses - α and Q0 - are taken from [7, para-
graph 2.19], where parameters can be found in equations (1.28), and de-
liver the propagation constant α and boxed quality factor Q0 specific to the
cylindrical cavity mode.

α =

√
ωε0

2σ

1
a

(
λ0

λc

)2

·
[

1−
(

λ0

λc

)2
]−1/2

= 2 · 10−3 [m−1] (5.3a)
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126 Characterization of inductive plasma heating

(a) Geometry of cylindrical cavity in [mm]

(b) Free view and the electric field strength. (c) Top view and the magnetic field strength

Figure 5.6: Simplified setup of cylindrical TE011-mode cavity.

Q0 = π

√
2σ

ωε0

λ0

a

(
λ0

λc

)2

+
4
n

(
1−

(
λ0

λc

)2
)3/2

−1

= 25, 008 (5.3b)

Matching of the cylindrical TE-011 cavity

As for matching, we require that the cavity resistance equals the waveg-
uide resistance. The cavity resistance is (like previously) computed over
two approaches. Approach (i): determining the value of ”boxed” qual-
ity factor Q0 from (5.3b) and the value of the cavity inductance L from
(1.11b) and substituting these values in (1.13) to deduce the cavity resis-
tance R. Approach (ii): determining the value of the cavity resistance R
directly from the attenuation constant α of the cylindrical TE01 waveguide
by (5.3a), from the waveguide impedance Zwg by (1.10), the depth d of
the cavity along the propagation direction, and lastly the constant κ from
integration of the squared magnetic field amplitude |H|2 along the entire
waveguide boundary divided by this integration along the boundary par-
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5.4 Characterization of cylindrical TE-011 cavity 127

allel to d̂.

As for the (indirect) boxed cavity approach, the boxed cavity qual-
ity factor (5.3b) is Q0 ≈ 25, 000, which is confirmed through simulation.
The equation for the cavity inductance L in (1.11b) was derived through
formulae that likewise hold for the cylindrical cavity. Equation (1.11b)
may therefore be assumed to apply to the cylindrical cavity and evalua-
tion yields L ≈ 552 nH. Substitution of these parameters in (1.13) yields
R = 0.34 Ω. Moreover, the capacitance can be found by substitution of L
and f0 in (1.12) yielding C = 7.64 fF.

As for the (direct) shorted waveguide approach, the attenuation con-
stant by (5.3a) yields α = 2e− 3 [m−1]. The only remaining unknown is
the value κ which has been estimated numerically in Python by comput-
ing a meshgrid-array of the magnetic field energy density distribution |B|2
in a domain θ = 0, R ∈ [0, a], z ∈ [0, h] using (1.28b) and then determin-
ing the magnetic field energy distribution by a virtual revolution around
the cavity symmetric axis by multiplication of each of the array elements
with corresponding R. The constant κ is then evaluated by a ratio of en-
ergies at cavity-boundary elements, with the numerator the summation
over transverse and longitudinal grid-elements h| (R = a), R| (z = 0),
R| (z = h), and with the denominator the summation over longitudinal
grid-elements R| (z = 0), R| (z = h), yielding κ ≈ 1.4. Substitution of all
parameters into (1.22e) yields R = 0.382 mΩ. The boxed quality factor of
the cylindrical cavity is found by substitution of L and R into (1.13) and
yields Q0 ≈ 22, 300.

The two approaches are roughly in accordance over Q and we can thus
reliably state that the cavity resistance of the cylindrical cavity is roughly
R0 = 0.35 mΩ. Substitution of this cavity resistance in (1.22c) will yield the
iris radius for the relation (1.22d) because the same 90 by 40 mm waveg-
uide is used to excite the cavity. Zeroth order (ψ = 1) estimate of required
iris inductance yields L = 0.86 nH corresponding to r = 9.73 [mm]. Eval-
uating (1.21) yields ψ(r) = 0.75, such that r0 = 10.7 [mm]. However, as
we have determined from simulations, the actual matching radius should
be r0 = 11.8 [mm]. This discrepancy likely arises from the multitude of
differences between the conventional interface of the iris for the rectan-
gular TE101-setup on which the theory is accurate and the interface of the
rectangular waveguide to the cylindrical TE011-cavity. Firstly, this iris is
the transition from rectangular to circular waveguide. Theory has been
derived for such a transition in [2, section 5.32], but only applies if both
rectangular and cylindrical cavity possess parallel propagation direction,
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128 Characterization of inductive plasma heating

along the same direction ẑ. Secondly, thereby, the modes in the cylindrical
setup possess orthogonal propagation direction. This requires the devel-
opment of new theory specific to this scenario. If the reader would try
to develop such theory, then they should look for the literature recom-
mended in [4, page 340, references in footnote].

Some properties of the cylindrical cavity are different from that of the
rectangular TE101-cavity. Properties of the cylindrical cavity are provided
in Table 5.1, where unmentioned properties w.r.t. Table 2.1 are upheld.

B0 6 · 10−3 T Zwg 916 Ω
E0 1.8 · 106 V/m R0 0.35 Ω
Qmatched

empty 12, 500 [1] L 552.25 nH
V0 3 · 10−3 m3 C 7.64 fF
a× h 82.2× 148.8 mm2 λg 297.6 mm
α 2 · 10−3 m−1 L 0.86 nH

Table 5.1: Properties of the cylindrical TE011-mode 2.45 GHz heating setup.
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Chapter 6
Discussion of results

Before the end of this paper, it is appropriate to come full circle to the
ultimate goal of its implementation in CO2-dissociation. Chapter 1 to 5 ad-
dressed the optimization of heating through maximization of RF-efficiency
ηRF. This was accomplished through the transition from capacitive heat-
ing to inductive heating, and through the transition from the rectangular-
TE101- and TE102-mode to the cylindrical TE011-mode.

The next goal in the application of the LI-plasma in CO2 dissociation is
the implementation of gas-injection and -extraction in this new cylindrical
TE011-mode inductive heating setup, which brings us back to the theory
on the overall reactor efficiency ηtot in equation (1) of the introduction.

Goals in engineering of CO2 dissociation reactor

Similar to the engineering of the inductive heating setups, goals for the
implementation of CO2 dissociation set constraints by which to pursue
engineering of the reactor setup, aiming for effective and efficient conver-
sion into the dissociation reaction products. The reactor is like a black box,
where input-parameters RF-input power Pin and CO2-gas injection flow
rate V̇ result in the output-parameter of conversion rate α. Effective dis-
sociation is accomplished if a high flow rate (V̇ high) can be applied to
the reactor while also delivering a high conversion rate (α → 1). Efficient
dissociation is accomplished if the SEI (associated with the input power
Pin, flow rate V̇, and conversion rate α) is raised to the enthalpy ∆H; ac-
complished through the maximization of RF-efficiency (ηRF / 1) and the
minimization of the total plasma power loss (Pl � Pin). These goals are
summarized as follows:
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130 Discussion of results

1. Maximize the conversion rate of the reactor-plasma

(a) Maintain plasma temperature beyond dissociation temperature

(b) Ensure that all extracted molecules have passed through the re-
actor plasma to undergo dissociation

2. Minimize power lost to processes other than dissociation

(a) Minimize power loss by the reactor-plasma

(b) Minimize the rate of reverse reactions through quenching

(c) Minimize the power reflection of the cavity

(d) Maintaining plasma conductivity at optimum conductivity (thus
reducing share of parasitic power absorption)

Although the paper will not address (CO2) injection- and extraction,
knowledge of the plasma’s effect on RF-properties are best mentioned to
set some expectations in the engineering of a successful reactor setup.

Necessary reactor plasma properties

First and foremost, dissociation can be achieved only if the plasma main-
tains at least the required dissociation temperature; T ≥ Tdis by goal 1(a) .
The approximate dissociation temperature of CO2 is about Tdis = ∆H/∆S =
5.5 [eV]/1.53 [meV] ≈ 3600 [K], the ratio of enthalpy of the primary dis-
sociation reaction over entropy [27]. Goal 2(a) requires minimized plasma
recombination-, heat conduction-, and thermal radiation-based power loss
Pl, each requiring either minimized plasma temperature Tp or its associ-
ated ionization grade; such that preferably T ≤ Tdis. Constraint I: T ≈ 3600
[K] ∼ γ ≈ 2.

Secondly, assuming the approximate geometry (r, a) = (3.75, 1.58) [mm]
for the reactor-plasma yields required plasma conductivity σopt = 30 [S/m]
by goal 2(d), associated with η ≈ 600 by (1.41b) and γ = 2. Constraint II:
σ ≈ 30 [S/m] ∼ η ≈ 600.

Lastly, goal 2(c) requires the minimization of power reflection, which
results from either mismatch or mistuning to the plasma-filled cavity. As-
suming the cavity’s proper turn-ratio Zwg : R and resonance frequency
fempty cannot be adjusted, then constant cavity resistance/resonance-frequency
Rtot = R · (1 + Pa(r, a, σ)/Pin) (see (1.48b)) resp. ftot = fempty + ∆ fp(r, a, σ)
(see Figure 8.3, and (5.2)) need to be maintained, and consequently stable
plasma-properties σ, r, a. Constraint III: σ̇ = ṙ = ȧ = 0.
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The above constraints do not cover goal 1(b) and goal 2(b), because
these involve plasma- and flow-physics. Likewise, the geometric proper-
ties (r, a) were chosen for the LI-plasma at t ≈ 45 [us] ∼ (3.75, 1.58) [mm],
because very little is known about the relation with flow. Passive flow
completely changes the geometric properties in (3.1a)& (3.1b) [18, Figure
5.6 and 5.7], while active flow might influence the geometry for the fulfil-
ment of goals 1&2(b). In order to influence and fixate the geometry, active
intervention on the flow may be necessary, which may be accomplished
through the creation of a flow vector field that equilibrates the reactor
plasma geometry. For example, the vorticity inherent to the (LP-) reac-
tor plasma may lead it to equilibrate for major radius r on the interface of
two opposing axisymmetric streamlines.

Convenient reactor plasma properties, and convenient FQ-tube inser-
tion

By goal 2(b), molecules being ejected from the plasma (by thermal veloc-
ity) pass through a steep temperature gradient, and undergo ”quenching”.
A steep temperature gradient mitigates the amount of molecules undergo-
ing the reverse reaction 2CO + O2 → 2CO2 that molecules can undergo
between room- and dissociation temperature. Successful quenching is
achieved for a local temperature gradient of at least∇T · n̂ = ∂T/∂ρ ≥ 106

[K/s], perpendicular to the plasma’s toroidal surface [28]. Supposing a
steady state central temperature T(ρ = 0) = 4000 [K] (ignoring cross-
sectional power absorption dependence over φ), toroidal minor radius
a ≈ 2 [mm], (minimal) room-temperature thermal velocity, evaluation in-
dicates that backward-dissociation will likely not occur, and a may possi-
bly be raised.

∂T
∂ρ
≥ ∆T

∆ρ
· ∆ρ

∆t
=

4000 [K]
2e− 3 [m]

· 300 [m/s] = 6 · 108 [K/s]� 106 [K/s]

A different combination r, a, σ of the reactor plasma may enhance the
conversion rate and power absorption. Most notably, high major radius
r combined (supposing constant a ≈ 2 [mm]) has two main advantage:
higher inductive power absorption by (1.48b) (due to the encapsulation
of a larger magnetic flux) and lower associated optimum conductivity
σopt consequently yielding higher optimum power absorption because of
P(opt) ∝ 1/σ(opt).

The reactor design might involve the injection and extraction of gas
through a FQ-tube used conventionally for microwave heating purposes.
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132 Discussion of results

If - for cavity radius a - a high thickness δ / a/2 of the tube is chosen
occupying the cavity-section Rinner < a/2 < Router, the cavity volume can
be decreased in similar fashion to the insertion of the FQ-slabs in the TE102
setup. Namely, the high dielectric constant then overlaps with the high
electric field magnitude at R ≈ a/2 as per field equations (1.28), allowing
for a decreased cavity volume, increased magnetic field energy density,
and consequently increased plasma power absorption.
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Chapter 7
Conclusions

In conclusion, the employment of inductive heating of the LI-plasma is
more effective and more efficient than capacitive heating. High heating
efficiency is attained because of more favourable power absorption within
the higher conductivity of the LP with respect to EC during the charac-
terized period of 30 to 60 microseconds after the laser-pulse. High effec-
tiveness is attained because of the inductive-heating optimal conductivity
possessed by the LP at 50 microseconds into its decay, corresponding to ab-
sorption of 70 percent of the unattenuated input power upon central place-
ment within the rectangular TE-102 cavity, axisymmetric with its magnetic
field. Examination of the cylindrical TE-011 cavity yielded higher quality
factor and higher magnetic field magnitude at the central magnetic field
antinode, providing a suitable candidate for future increase of the induc-
tive heating efficiency of the LI-plasma.

The properties of the LI-plasma had been determined both theoreti-
cally for homogeneous properties and simulation-wise for non-homogeneous
properties, through reproduction of the dynamic quality factor and -frequency
shift determined through 2.45 GHz power-reflection measurement data.
These methods possessed overall good accordance on the EC-conductivity
to be between 0.01 and 0.1 [S/m], but with approximate accordance on
the LP-conductivity only between 50 to 60 microseconds after the laser-
pulse corresponding to between 1 and 10 [S/m]. Whereas the theoreti-
cal model could not implement the non-homogeneous electron density of
the LP, simulations in COMSOLTM were able to account for the sine-to-
the-fourth dependence, with a subsequent reduction of the decay constant
to four microseconds. As a consequence, simulations reproduced exper-
imental data under dynamic LP-conductivity between 1 and 1e4 [S/m]
over 30 [us] period.
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The requirement of the LP’s electron density non-homogeneity along
with the decay constant equal to four microseconds were both inspired
by the analysis of CCD-images. The total intensity of the CCD-images
likewise decayed 1/e about every four microseconds over the post-laser-
pulse-period 30 to 60 microseconds, and the cross-sectional intensity dis-
tribution of the LP-torus also followed approximately the sine-to-the-fourth
dependence within the same time period. By the proportionality of elec-
tron density and radiant intensity, the average electron density within
the LP was deduced by normalization through the Boltzmann-normalized
Saha equation and the initial temperature from initial 42 [mJ] thermal en-
ergy from the laser. The EC- and LP-geometry were derived for the former
by the identification of luminous areas under RF-heating, while the latter
was derived from the absence of luminosity in regions between the lu-
minous EC. This analysis concluded an EC-volume of 50 [mm3] confined
mainly within two rings of central radius∼ 4 [mm] and with square cross-
section of side-length 1 [mm] on either side of the LP; the LP-volume was
estimated to be a torus with a volume of 180 [mm3] and with average
major radius of 4 [mm] over the relevant time period. The latter geome-
try was confirmed to reproduce the plasma’s ∼ 6 [MHz] downward fre-
quency shift in simulations on a torus beyond cutoff at the center of the
rectangular TE-101 cavity, as well as CPT-calculations corresponding to
the ratio of sample- and cavity volume along with the torus shape-factor.

Lastly, two cavities were engineered to employ inductive heating, with
the rectangular TE-102- and cylindrical TE-011 cavities. Theoretical cal-
culations that ensure tuning and matching were confirmed to reproduce
the dimensions of the TE-101 cavity, and were then applied to engineering
the inductive-heating cavities. As for the TE-102 cavity, additional theory
was developed to ensure tuning upon insertion of fused-quartz windows
through reduction of the cavity depth, encapsulated in an equation relat-
ing the downward frequency shift from reduced depth and the upward
frequency shift from insertion of dielectric. Both inductive heating cavi-
ties were also built in simulations, and their geometries were refined to
ensure tuning and matching.
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Chapter 8
Appendices

Appendix A: Toroidal coordinate system

This section of the appendix addresses the parametrization of the toroidal
coordinate system (ρ, φ, θ) by a two-step conversion. First from Cartesian
coordinates to a more intuitive cross-sectional coordinate system (R, h, L).
Then from the cross-sectional coordinate system to the toroidal coordinate-
system (ρ, φ, θ).

(a) Top view of torus
(b) Cross-sectional view of torus

Figure 8.1: Top and cross-sectional view of the torus with definitions of both
the cylindrical (left of the vertical) and toroidal coordinate system (right of the
vertical).

Consider the cross-section of the torus. In Cartesian coordinates, the
center of the torus is at (r, 0, 0). The radial distance R from the toroidal
symmetric axis can reaches from r− a to r + a. The height L on the cross-
section reaches from −a to a. Lastly, the cross-section is revolved around
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the symmetric axis to form a torus, and the revolution length L of a surface-
element of the cross-section is dependent on the axisymmetric distance R
and the revolution angle θ by L = θ · R with L ranging from 0 · R to 2π · R.
The next step is to rewrite the three parameters in terms of a cross-sectional
radius from the center ρ ranging from 0 to a, and a cross-sectional angle φ
ranging from 0 to 2 ·π. Doing so, we can define the following coordinates:

R = r + ρ · cos φ (8.1a)

h = ρ · sin φ (8.1b)

L = θR (8.1c)

By converting an integral from the more intuitive cross-sectional coor-
dinate system to the toroidal coordinate system, we can use the Jacobian
theorem on integrals:

ˆ
V

f (x, y)dx · dy =

ˆ
V′

f (x(α, β), y(α, β)) · J(α, β) · dα · dβ (8.2)

Where the Jacobian is the determinant of a matrix of derivatives:

J(ρ, φ, θ) =


∂R
∂ρ

∂R
∂φ

∂R
∂θ

∂h
∂ρ

∂h
∂φ

∂h
∂θ

∂L
∂ρ

∂L
∂φ

∂L
∂θ

 =

 cos φ −ρ sin φ 0
sin φ ρ cos ρ 0

θ cos φ −θρ sin φ r + ρ · cos φ

 = ρr+ ρ2 · cos φ

We can now implement this Jacobian in the integral theorem of (8.2) to
find the volume of a torus with major/minor radius r/a:

V =

ˆ
R

ˆ
h

ˆ
L

dR · dh · dL =

ˆ 2π

θ=0

ˆ 2π

φ=0

ˆ a

ρ=0
ρr+ ρ2 cos φdρ · dφ · dθ = 2π2ra2

We can also calculate the normalization factor required to maintain a
constant amount of electrons for a homogeneous distribution η(ρ, φ, θ) =
1 of electron density and a non-homogeneous η(ρ, φ, θ) = 1 · sin4 ( ρπ

a ) dis-
tribution of electron density:

N =

ˆ 2π

θ=0

ˆ 2π

φ=0

ˆ a

ρ=0
sin4 (

ρπ

a
) · [ρr + ρ2 cos φ]dρdφdθ = r · a · 3

4
· π2

We thus require a normalization factor:
˝

V sin4 ( ρπ
a )dτ˝

V 1dτ
=

r · a · 3
4 · π2

2π2ra2 =
3
8
≈ (2.5)−1
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Appendix B: Transmission and reflection of two
consecutive dielectric slabs

As before mentioned, the dielectric slabs influence the electric field due to
their high permittivity. What is not studied yet, however, is the possible
effect that the perturbed distribution of the electric field has on the tunabil-
ity of the cavity, and possibly on the matching of the cavity. The reason for
this is that the combination of the two dielectric slabs may be regarded as
a lumped element transformer with some power transmission coefficient
0 < T < 1 and a power reflection coefficient R = 1− T. The reason for
this is the fact that the high ε′ of a single slab may be converted to a real
refraction index n′

√
ε′ ≈ 2 by [13]. A signal travelling across a boundary

to higher refractive index is partially reflected; not only does reflection oc-
cur at the front-most plane of both slabs, field reflected at the front-most
plane of the second slab is incident at the back-most plane of the first slab,
creating interference of the two signals.

The field in between the two slabs is thus a superposition of the net
signal transmitted by the first slab and of the net signal reflected by the
second slab. Depending on the phase and magnitude of the net signal, de-
structive or constructive interference may occur in between the two slabs
some center-distance w apart. Additionally, a power reflection coefficient
R > 0 would lead to a decrease in the tunability ∂ f0

∂d of the cavity, because
of the reduced E-field energy density at the short. Simulations on the slabs
are made without such a short, but will nevertheless indicate whether tun-
ability is possible at all: if R = 1 then the insertion of a short would not
make a difference.

A system with power- transmission- and reflection coefficient corre-
sponds to the lumped element of the transformer, with scattering matrix
[S](m) in (8.3) from [29, Figure A.2.6]. Phase shift corresponding to the sig-
nal in between the two slabs can be represented by the scattering matrix
[S](θ) from [29, Figure B.3.c].

[S](m) =
1

m2 + 1

[
m2 − 1 2m

2m 1−m2

]
, [S](θ) =

[
0 exp iθ

exp iθ 0

]
(8.3)

A sequence of multiple scattering matrices can be represented by a
single scattering matrix, but can only be computed after conversion to
a wave-amplitude transmission matrix [T], with the conversion relation
[T]([S]) in (8.4). The total wave amplitude transmission matrix of a se-
quence of wave amplitude transmission matrices equals their matrix-product.
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(a) Simulation model of window setup in
WR-340 waveguide, distances in [mm]. The
yellow domains are assigned FQ-material
with ε′r = 3.78 and the grey domains are as-
signed free space-material with ε′r = 1. In
reflection- and transmission simulations, the
boundary conditions encapsulating the ob-
ject are IBC with σAl = 107 [S/m] parallel to
ẑ, and input- (1) and output-port (2) at the
front and back of the waveguide perpendic-
ular to ẑ. In cavity tuning simulations, both
ports are substituted with IBC, with variable
full-model-depth d along ẑ.

(b) Comparison of theoretical and sim-
ulated total reflection- R = |S11|2 and
transmission-coefficient T = |S21|2.
Theoretical functions are given by equa-
tions (8.6a) and (8.6b). Simulation data
are extracted from the system depicted
in Figure 8.2a. The turn ratio giving the
best accordance of theory with data is
m = 2.2.

Figure 8.2

Afterwards, the inverse relation to (8.4) can be used to derive the total scat-
tering matrix [S]tot (8.5) of the system, for two consecutive transformers
with equal turn ratio m, an angular phase distance θ = w

λg
apart.

[T] =
1

S12

[
1 −S22

S11 S2
12 − S11S22

]
(8.4)

[S]tot =
1
γ

[
γ− 2(cos θ − im2 sin θ) 2m2

2m2 −γ + 2(cos θ − in2 sin θ)

]
(8.5)

, where γ = (1 + 2m4) cos θ − i(2m2) sin θ
We thus come to a system of equations:

S11(m, θ) =
1

γ(m, θ)
·
(

γ(m, θ)− 2 · (cos θ − im2 sin θ)
)

(8.6a)

S21(m, θ) =
2 ·m2

γ(m, θ)
, θ(w) =

2πw
λg

+
π

4
(8.6b)
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The value of the turn ratio m = 2.2 for which data optimally corre-
spond with simulations can be derived theoretically by solving the Fresnel
equation S11 = n1·cos θ1−n2·cos θ2

n1·cos θ1+n2·cos θ2
for the reflection of the E-field parallel with

the Air-FQ interface with n(ε′r) ≈ 2. The angle of incidence on the FQ-slab
is θ1 = arccos (λ0

λg
, and the angle of refraction within the FQ-slab is θ2 =

arcsin (n2
n1

sin θ1) by Lenz’s law. However, the author’s calculations did not
provide accordance. Moreover, as visible in (8.6b), the angle θ associated
with a distance w elapsed by the travelling-wave needs to be raised by a
phase-offset π/4 in order to provide accordance with the simulation data.
The likely cause of this is the phase variability φ of the travelling wave
upon incidence with the slab. For each phase φ ∈ [0, 2π], the scattering
matrix response is different, with plausibly the average effect correspond-
ing to the π/4 phase shift, meaning < [S]tot(m, θ) >φ= [S]tot(m, θ + π/4).

Regardless, we should draw the conclusion that the interference-effects
of the slabs can be ignored in order of magnitude. Whatever value of
w is chosen for the setup, the transmitted power to the short end of the
waveguide is at least 20 percent, such that the cavity will remain tunable,
although to a lesser degree.

Appendix C: Frequency shift from conductive torus
under inductive heating

In the case of a torus placed in the electric field maximum, axisymmetric
with the direction, the frequency shift caused by the plasma is constant
for constant volume. This was derived theoretically from CPT on conduc-
tive samples, and calibrated with a shape factor 1

x . However, this constant
frequency shift over constant volume is not the case for a torus in the mag-
netic field maximum, axisymmetric with the magnetic field direction. For
this reason, simulations are made on different major radii and some set of
volumes of the torus in order to deduce what the resonant frequency shift
is as a function of the torus geometry ∆ f (r, a). The results for a standard
TE102-cavity with length 2 · λg/2, is shown in 8.3.*

Under capacitive heating, we saw that the frequency shift ∆ f from in-
sertion of a sample at the electric field maximum is constant in case of

*This does not take into account the reduced cavity volume V0 in the case of the pres-
ence of FQ-slabs. The predicted frequency shift from B-field placement is given by (1.33a)
for the substitution χE → −χB. Because ∆ f ∝ 1/V0, the data in 8.3 does not accurately
reflect the frequency shift in the case of the new setup in Figure 5.4.
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Figure 8.3: Cavity resonant frequency shift ∆ f [MHz] containing a torus at its
center, with (r, a)(t) [mm,mm,µs], σ → ∞, and volume V [mm3]. The simulation
model is an iris-matched WR-340 rectangular TE102 cavity of depth d ≈ λg.

constant volume V of the sample. Moreover, in that case ∆ f was indepen-
dent of the specific geometry (r, a), but was simply multiplied determined
by the torus shape factor x = 1/2. Because ∆ f was measured to remain
constant, we deduced that the torus must remain at constant volume V.
The constant value of ∆ f because of constant shape factor and constant
volume meant that the cavity containing the plasma could be easily tuned
over the lifetime of the LP, simply by tuning the cavity to a resonant fre-
quency fres = f0 − (∆ f )LP = f0 + 5.7MHz before starting the heating ex-
periment.

However, from figure 8.3, we deduce that ∆ f is no longer constant for
constant V. Moreover, we see that ∆ f is non-linearly dependent on both
r and a. First, we would like to deduce a function that expresses this ∆ f
accurately in terms of (r, a). Different functions have been fitted to the
data through trial and error, and the most simple function that accurately
followed the data was:

∆ f (r, a) [MHz] ≈ 0.064 · r2 · (a
3
2 + 1), (r, a) [mm,mm] (8.7)

One can predict the resonant frequency over time by following the
curve V = 180mm3 for t from 30 us to 60 us, to find ∆ f (t = 30us) = 1.9
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MHz and ∆ f (t = 60us) = 3.3 MHz. If we suppose we can only tune
the cavity beforehand, then the cavity can never be tuned over the en-
tire lifetime of the LP. We need to make a concession to tuning at some
instances over the LP lifetime, while tuning the system during the time-
period where this is most efficient. The LP has optimal conductivity around
45 us, in which case the function can be called to deduce ∆ f (t = 45us) ≈
∆ f (3.7, 1.57) = 2.6 MHz to be the frequency shift. This means that in or-
der to tune the cavity with the plasma at 45 us, we need to tune the empty
cavity resonant frequency to f0 = fmag − 2.6 [MHz]. This downward tun-
ing will ensure that the power absorbed into the LP over its lifetime is
maximized.
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