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Abstract

In this work we present a novel quantum algorithm to sample from the
Gibbs distribution of a classical system. The algorithm consists of directly
preparing an encoding of the +1 eigenstate of a stochastic matrix P via adi-
abatic state preparation. The key mechanism that is investigated is a state
encoding such that measuring the state proportional to the Gibbs distribu-
tion at inverse temperature β is equivalent to sampling from the Gibbs dis-
tribution at 2β. We present analytical observations and numerical analysis
of the time complexity of this algorithm and compare it to classical mix-
ing times for a specific spin model and find at most a quadratic speedup
under some assumptions. We also extend the numerical results and give
more analytical observations for algorithms found in Orsucci (2019) [1] for
a similar problem to higher spin numbers by using a symmetric subspace
projection and find that the indication of an exponential speed up reported
there does not seem present at higher spin numbers. Instead an indication
of a polynomial speedup over classical mixing is present.
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Chapter 1
Introduction

One of the fundamental objects in classical (computational) statistical
physics is the Gibbs distribution* πG(β). This distribution gives the prob-
ability to find a system, with a finite state space, in the state x when the
system is in thermal equilibrium at a temperature T and is defined for a
system with a Hamiltonian H(x) as

πG(β)x =
exp(−βH(x))

Z(β)
(1.1)

where Z(β) is the partition function and, β = 1/T†. The Hamiltonian
H(x) is a function that gives an energy for each state x. Sampling from
this distribution allows one to study most of the physics of a system in
thermal equilibrium [2]. Sampling from the Gibbs distribution also has
applications outside of computational statistical physics. In general, ap-
plications of Gibbs sampling are e.g. in statistical inference [3] and train-
ing machine learning models like (restricted) Boltzmann machines used
throughout generative modelling [4].

Sampling from the Gibbs distribution is usually performed using a stochas-
tic matrix P such that PπG(β) = πG(β). Here we want to look at the
problem of sampling from πG(β) given (sparse) access to the matrix P. By
the Perron-Frobenius theorem [5] we are guaranteed that every irreducible
stochastic matrix P has an unique stationary distribution. Therefore we
could find πG(β) by finding the kernel of 1− P or the +1 eigenvector of

*This distribution is also referred to as the thermal distribution or Boltzmann distri-
bution; in this work we will use the term Gibbs distribution.

†We are working in units where kB = 1.
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P, however, classically finding eigenvectors has time complexity polyno-
mial in the matrix size [6]. As the state spaces of the systems we are inter-
ested in typically have exponentially many states, this way of preparing
the Gibbs distribution is not classically efficient. Classically, these sam-
pling problems are commonly solved using Markov chain mixing. When
P is irreducible and aperiodic then for every probability vector x we are
guaranteed liml→∞ Plx = πG(β) [7]. Given this we can start in any initial
state and if we update that state often enough using the probability rules
given by P we obtain a sample from the distribution πG(β). How often
we need to perform this updating to be within total variation distance ε of
the stationary distribution is called the mixing time and is lower bounded
by the inverse spectral gap of P. Sampling from this distribution is in
general a computationally hard problem: for certain Hamiltonians it is re-
lated to problems which are known to be NP-Hard [8, 9]. For a general
Hamiltonian the mixing time can be exponentially large, however, there
are instances [10] where we know the mixing time increases logarithmi-
cally with state space dimension.

The connection between Gibbs sampling and NP-Hard problems implies
that we do not expect quantum computers to be able to efficiently perform
this sampling for a general Hamiltonian [11]. There has however been
interest in finding quantum algorithms to perform this sampling [12–15].
Algorithms have been proposed that offer a polynomial speedup in the
spectral gap [13, 15] of the stochastic matrix giving potential for a polyno-
mial speedup over classical mixing. Preparing an encoding of the Gibbs
distribution is also a step used in the initialisation of other algorithms
[14, 16, 17]. These algorithms use complex constructions using e.g. quan-
tum walk operators [14, 15] or complex annealing schedules [13]. The al-
gorithm we propose is conceptually more straightforward.

In this work we look at systems that consist of a collection of classical
spins. Each spin has two possible states (up or down), therefore the com-
posite system has a number of possible states that increases exponentially
with the number of spins. As we are interested in these exponentially
large state spaces, directly finding the +1 eigenstate of P is not classically
efficient. There are quantum algorithms that solve some linear algebra
problems logarithmically in the matrix dimension (e.g. the algorithm pro-
posed by Harrow, Hassidim and, Lloyd (2009) [18] (HHL) for linear sys-
tems solving). This might be an indication that instances exist where quan-
tum computers are able to efficiently directly prepare an encoding of the
+1 eigenvector of P. Note that preparing such a state is not equivalent to
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classically finding the vector. Measuring the state allows one to sample
from the encoded distribution, but to construct the entire vector typically
requires exponentially (in the number of spins) many samples. An advan-
tage of being able to directly do this through linear algebra routines is that
it allows to use techniques from numerical linear algebra to improve the
time complexity. One such technique we look at is preconditioning. Pre-
conditioning has been shown to enable exponential speedup for quantum
linear systems solving over classical algorithms for some problems [19].

In this work we present a novel algorithm to directly prepare an encoding
of the Gibbs distribution as a quantum state through an eigenstate prepa-
ration method which allows us to sample from the stationary distribution
by measuring the prepared state. In particular, our objective is to prepare
the state |πG〉 such that (1− P) |πG〉 = 0. For this to work the stationary
distribution πG has to be encoded as

|πG〉 = ∑
i

(πG)i

||πG||2
|i〉 , (1.2)

where the states |i〉 are the computational basis states. Many other quan-
tum algorithms used for Gibbs sampling aim to produce a different encod-
ing of πG which is given by (again in the computational basis)

|
√

πG〉 = ∑
i

√
(πG)i |i〉 . (1.3)

Measuring this encoded state allows to sample directly from πG. One key
observation we make is that using the encoding of a vector x as a quantum
state |x〉 as in equation 1.2 has the consequence that measuring this state
is equivalent to sampling from a different distribution which we call the
squared distribution and is given by

(x2)i =
x2

i
||x||22

=
x2

i

∑j x2
j

. (1.4)

For the Gibbs distribution with inverse temperature β the squared distri-
bution is equivalent to the Gibbs distribution at 2β‡. At 2β the system is
closer to the ground state of the system than at β. Since sampling from the

‡See section 3.1 for details.
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ground state is (often exponentially) harder compared to sampling from
the high temperature distribution, for many systems classical mixing has
a time complexity transition at some critical inverse temperature βC. The
main question we will be looking into in this thesis is whether this temper-
ature doubling allows for an exponential speedup in some circumstances.
Preparing encodings of the Gibbs distribution like we propose here has
applications outside of sampling problems. One of the necessary steps of
many quantum machine learning algorithms is to prepare specific input
states [20]. When these distributions are close to uniform this can be done
efficiently. However, when some elements dominate this can be expo-
nentially hard. Gibbs distributions are often sharply peaked below some
critical temperature so efficient Gibbs sampling might have applications
in preparing sharply peaked input states for other algorithms. Encoding
a distribution as in equation 1.2 additionally has applications outside of
preparations of Gibbs distributions. The squared distribution amplifies
the biggest elements in the original distribution, which is comparable to
methods used in machine learning.

There are many algorithms to prepare the desired state. The new algo-
rithm we propose here prepares this encoded state using adiabatic state
preparation [21]. Adiabatic state preparation is a quantum computing
paradigm that uses time dependent evolution to prepare eigenstates of
Hamiltonians that encode the problem one wants to solve. This paradigm
was shown to be polynomially equivalent to standard gate-based quan-
tum computing [22] and has been studied for a wide array of computa-
tional problems [23, 24]. We give analytical observations and numerically
study this algorithm for one of the simplest model with such a phase tran-
sition, the uniform zero-field Curie-Weiss model. We compare our algo-
rithm to the classical mixing time and to two other state preparation al-
gorithms proposed for preparation of a similar state in Orsucci (2019) [1].
We add novel analytical analysis to two of the algorithms proposed therein
and we extend the numerical analysis presented there to higher spin num-
bers by using a projection to the symmetric subspace (see section 2.5) of
the transition matrix P.

The novel results in this work include the definition of a novel algorithm
for Gibbs sampling using adiabatic state preparation. We optimise the de-
pendence on the minimal adiabatic gap to a linear dependence for the uni-
form zero-field Curie-Weiss model under some assumptions. We further
give numerical analysis of the scaling of the minimal adiabatic gap for this
model. We also present novel analytical observations for the algorithms

4
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presented in Orsucci (2019) [1]: we give an expression for the overlap be-
tween two encoded Gibbs distributions for the projection-based algorithm
defined in Orsucci (2019) [1] and we give novel bounds on the condition
number for the algorithm based on the so-called relaxation method. We
also extend the numerical analysis done in [1] to higher spins number. For
both the numerical analysis of our adiabatic algorithm and for the two al-
gorithms defined by Orsucci (2019) [1] we use a novel closed form expres-
sion for the projection of the stochastic matrix of the uniform zero-field
Curie-Weiss model onto the symmetric subspace.

This thesis is structured as follows: We start in chapter 2 by giving some
background on (adiabatic) quantum computing, (quantum) complexity
theory and how it relates to the problem we are trying to find an algo-
rithm for, Markov chain mixing processes, the Curie-Weiss model and the
symmetric subspace projection. In the same chapter we also define the
used notation and give numerical results for the classical mixing time for
our problem to be able to directly compare the time complexity of our
quantum algorithms. In chapter 3 we define our algorithm and give a
brief description of the other algorithms from Orsucci (2019) [1]. In the
same chapter we also give numerical results for the time complexities of
the three algorithms and offer analytical observations on all three algo-
rithms. Finally in chapter 4 we offer an interpretation of the results and
sketch further research directions.
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Chapter 2
Relevant Background & Notation

2.1 General Notation

For a n× n matrix A there are n eigenvalues λ such that Av = λv for an
eigenvector v. We write the i-th eigenvalue as λi(A) where they are or-
dered descending and counted with multiplicity, i.e. |λ1(A)| ≥ |λ2(A)| ≥
. . . ≥ |λn(A)|.

For a n × n matrix A there are n singular values σ such that Av = σu
and A†u = σv for a left singular vector u and a right singular vector v.
The singular values of A are denoted with σi(A) where σ1(A) ≥ σ2(A) ≥
. . . ≥ σn(A) ≥ 0.

When an matrix is Hermitian (i.e. when A† = A) the singular values
of A are the absolute values of the eigenvalues of A. In general the singu-
lar values of a matrix A are given by the square root of the eigenvalues of
A† A.

We define the singular value gap as ζ(A) = σn−1(A) − σn(A) and the
spectral gap as δ(A) = |λ1(A)| − |λ2(A)|. Note that when P is an irre-
ducible stochastic matrix (see section 2.3.1 for definitions) we are guaran-
teed λ1(P) = 1 and so δ(P) = 1− |λ2(P)| and therefore δ(P) = λn−1(1−
P).

We denote vectors in bold by x and their individual elements by xi. With
||x||p we denote the Lp norm defined by

6



2.2 Quantum Computing & Algorithmics 7

||x||p =

(
∑

i
|xi|p

)1/p

, (2.1)

where in this thesis we will be using the L1 and L2 norm. General quantum
states are denoted by |ψ〉 and |x〉 is used for the encoding of a vector x in
a quantum state as

|x〉 = ∑
i

xi

||x||2
|i〉 (2.2)

where |i〉 are the computational basis states. All quantum states in this
work are in the computational basis.

We will be considering classical spin systems with N spins with a state
space of dimension n = 2N.

2.2 Quantum Computing & Algorithmics

2.2.1 Adiabatic Quantum Computing

In quantum computing (QC) we use aspects of quantum mechanics to
solve computational problems. A QC process is described using (normal-
ized with respect to the L2 norm) complex vectors in a Hilbert space H
and unitary operatorsH → H. In general these Hilbert spaces can be infi-
nite dimensional however in this work we only look at finite dimensional
spaces. We call these vectors states and denote them by |ψ〉 ∈ H. Since we
are looking at finite dimensional states we can choose a basis {|λi〉} and
write every state in that space as

|ψ〉 = ∑
i

ai |λi〉 , (2.3)

with ai a complex coefficient for each of the basis states. We call such a
state a superposition of basis states. When we measure we do so with re-
spect to a chosen basis and when we perform the measurement the system
is projected to one of those basis vectors. When we have a system in a state
as in equation 2.3 the probability of it being in |λi〉 after measurement is
given by |ai|2. This relation is called the Born rule. All states are therefore

7



2.2 Quantum Computing & Algorithmics 8

normalised with respect to the L2 norm, i.e. such that ∑i |ai|2 = 1. We con-
sider quantum systems consisting of a collection of qubits. A single qubit
is a two state system that has two basis states which we call up (denoted
as |0〉) and down (denoted as |1〉). An N qubit system is the N fold tensor
product of such two state systems. The exponentially increasing collection
of basis states we write as N bit strings, i.e. they are written as e.g. |00101〉.
We call this basis the computational basis.

In the most common form of QC the operators used to perform the com-
putations take the form of unitary gates and there the QC process is de-
scribed by a circuit composed of those gates acting on some initial state.
In this work we look at a different form of QC called adiabatic quantum
computing (AQC) [25]. AQC has been shown to be polynomially equiv-
alent to the standard gate based paradigm [22]. The time dynamics of a
quantum system are governed by the Schrödinger equation* [26]

H(t) |ψ(t)〉 = i
d
dt
|ψ(t)〉 , (2.4)

with the operator H(t), which is the Hamiltonian, the operator that gener-
ates infinitesimal time translations for the system. The quantum adiabatic
theorem [26] states that if we initialize a system close to an eigenstate of
H(0) and we apply the time evolution slow enough we remain close to an
eigenstate of H(t) at a time t. We can use this to solve computational prob-
lems by encoding the solution to a problem as the eigenstate of a problem
Hamiltonian Hp. We prepare this eigenstate by starting from some initial
Hamiltonian HI for which we can easily prepare the corresponding eigen-
state and which does not commute with HP. We then adiabatically evolve
from HI to HP. To do so we define an interpolating Hamiltonian

H(t) = f (t)HI + g(t)HP (2.5)

with f , g monotonic functions that satisfy f (0) = g(T) = 1 and f (T) =
g(0) = 0. The time T is chosen such that the evolution is slow enough to
remain adiabatic. The time complexity of preparing a state via this algo-
rithm is determined by how big T has to be for the evolution to remain
adiabatic. Here we look at the often used approximation of the adiabatic
condition, in appendix A.1 we give a more rigorous version of the adia-
batic condition. If |Ei(t)〉 denotes the eigenstate of H(t) we want to re-

*In units where h̄ = 1.

8



2.2 Quantum Computing & Algorithmics 9

main close to and |ψ(t)〉 the state of the system, both at time t, then we are
guaranteed that at the final time T

| 〈Ei(T)|ψ(T)〉 |2 ≥ 1− ε2 (2.6)

when

max|〈dH(t)
dt 〉|

∆2
min

≤ ε (2.7)

where ∆min is the smallest eigenvalue gap of the time dependent Hamil-
tonian H(t) along the path between the state we want to remain in and
the next excited state. max|〈dH(t)

dt 〉| denotes the maximal matrix element
between the eigenstate which we want to remain close to and the next
excited state.

2.2.2 Complexity Theory

There exists a large zoo of complexity classes that are used to describe
and categorize problems both in classical and quantum computing. See
e.g. [27] for an overview of classical complexity classes and [28] for an
overview of quantum complexity classes. Here we give a background of
the complexity of the problem we are trying to find an algorithm for in
this work.

Two of the main classical complexity classes are P and NP. Those classes
are defined in terms of decision problems which are problems that allow
only two possible answers, either YES or NO. A decision problem is in
P if it can be solved in polynomial time and in NP if there exists an al-
gorithm to verify a proof in polynomial time by a deterministic Turing
machine. The ability to solve the problem in polynomial time implies that
we can also verify an input in polynomial time, and as such we find that
P is a subset of NP. A class of problems that are conjectured† to be strictly
harder than those in P are those which are NP-Hard. NP-Hard problems
are those to which every problem in NP can be reduced to in polynomial
time, i.e. a solution of every problem A ∈ NP can be mapped to a solution
B of a specific NP-Hard problem in polynomial time.

†This conjecture holds when P 6= NP.

9



2.2 Quantum Computing & Algorithmics 10

One of the problems in NP-Hard is graph partitioning. This problem is
stated as: ”given a graph G with an even number of vertices and an integer k, is
there a partition in two subsets of equal size such that there are at most k edges
between the subsets?” This problem can be connected to statistical physics.
It can be shown that graph partitioning is equivalent to minimizing the en-
ergy of a formulation of an Ising model [9]. When looking at low enough
temperatures Gibbs sampling allows one to find the lowest energy spin
configurations. From those configurations the ground state energy can
easily be determined therefore classical Gibbs sampling has to be hard in
general. It is widely believed that quantum computers will not be able to
solve worst-case instances of NP-Hard problems efficiently. Therefore we
also do not expect a quantum computer to be able to efficiently perform
Gibbs sampling in the general case. This does however not exclude the
possibility of the ability of quantum computers to solve specific instances
of NP-Hard problems for which classical algorithms fail. There is also the
possibility of quantum algorithms offering a polynomial speedup over the
fastest classical algorithm for an NP-Hard problem.

When analysing algorithms we are often mainly interested in how they
scale for increasing problem sizes. In order to describe this we define the
big-O notation. This notation denotes that a function f (x) scales at most as
fast as some other function g(x). We write f (x) = O(g(x)) if there exists a
positive constant such that f (x) < Cg(x) when x is bigger than some con-
stant x0. A similar notation exists for the asymptotic lower bound which
is denoted by big-Ω. When an asymptotic scaling involves terms with ln x
those contribute very little to the overall scaling so those can often be ig-
nored. For algorithms that scale in such a way we use the soft O-notation
which we write as Õ to suppress the logarithmic factors.

2.2.3 (Quantum) Linear System Solving

One problem where QC offers potential for an exponential speedup over
the fastest classical algorithm is solving linear systems of equations. That
is, given a non-singular n× n matrix A and vector b find the vector x such
that Ax = b. The fastest classical algorithm to find x has a time complex-
ity that scales polynomially in n [29]. The related quantum version of this
problem asks to prepare a state proportional to A−1 |b〉 = |x〉. The main
example of an algorithm that solves this problem was proposed by Har-
row, Hassidim, and, Lloyd (2009) [18] (HHL). The HHL algorithm has a
time complexity that scales polynomially with κ log n, where κ(A) is the

10



2.2 Quantum Computing & Algorithmics 11

condition number of the matrix A. The condition number of a matrix A is
defined as

κ(A) = ||A|| ||A−1|| (2.8)

where ||A|| is any consistent norm‡. For numerical analysis we here choose
the || · ||2 norm such that

κ(A) = ||A||2 ||A−1||2 =
σ1(A)

σn(A)
(2.9)

So when A is a matrix with constant condition number this algorithm of-
fers an exponential speed up over the fastest classical algorithm. The com-
plexity of the HHL algorithm was later optimised to quasilinear in κ(A)
and ln n (e.g. in [30]) giving a time complexity of Õ(κ(A)). Note that the
quantum version of the problem solves a different problem than the classi-
cal algorithm. When one prepares the state |x〉 one can use measurements
to either sample from the encoded vector or determine some other related
quantities. To reconstruct the complete distribution requires roughly n
samples losing the potentially exponential speedup.

Since solving systems of linear equations is ubiquitous in many scientific
fields there has been a significant amount of work done to improve the
time complexity of solving these problems on a quantum computer [31–
33]. One of those methods we look at here is preconditioning. The goal of
preconditioning is to multiply the matrix A by some other matrix that low-
ers the condition number of the product. Here we look at multiplicative
left-preconditioning where instead of solving the system Ax = b we want
to solve PAx = Pb where P is called the preconditioner. This precondi-
tioner is chosen to be such that κ(PA)� κ(A) such that the algorithm can
more efficiently find the solution for that problem. The choice that would
improve the condition number the most is to choose P = A−1, however,
finding the inverse of the matrix is equivalent to solving the linear sys-
tem itself so that option is inefficient. There are multiple algorithms to
find preconditioners for the classical problem and recently there has been
interest in optimising the quantum version of the problem using precon-
ditioning [19, 34]. One algorithm to find a preconditioning matrix is the
SParse Approximate Inverse (SPAI) algorithm [35]. The SPAI algorithm
is used to find the best approximation of the inverse of A satisfying an a
priori chosen sparsity pattern.

‡A matrix norm is called (self) consistent when it satisfies ||AB|| ≤ ||A|| ||B||.

11



2.3 Markov chains and Gibbs Samplers 12

2.3 Markov chains and Gibbs Samplers

2.3.1 Markov Chains and Classical Mixing

Here a Markov chain (MC) process is a discrete-time stochastic process
over a finite state space where the probability to transition from state to
state is only dependent on the current state of the system. We describe
such a process by a stochastic matrix P where here we use left stochastic
matrices§ which are matrices with all elements entry-wise non-negative
and all columns summing to unity. The element Pji of such a matrix gives
the probability of going from state i to state j. When we start the system in
some state then each time step the system probabilistically goes to some
other state. Therefore after some time has passed there is a distribution
over all possible states the system can be in at that point. We write that
distribution as a probability column vector x, which is a non-negative real
vector where all elements sum to unity. When at some point the system
has a state distribution given by x the distribution at the next step is given
by x′ = Px. The element xi denotes the probability to find the system in
state i. A special state distribution is the stationary distribution π which is
the state distribution π such that Pπ = π. Since for every column stochas-
tic matrix the transpose PT has the uniform vector as its +1 eigenvector.
This guarantees that every stochastic matrix P an +1 eigenvector.

For our purposes we need some extra conditions for the MC. We define
that a MC is irreducible if we can reach every state from every other state
in a finite number of steps with a non-zero probability. For each irreducible
MC we are guaranteed by the Perron-Frobenius theorem [5] that there ex-
ists an unique stationary distribution [7]. A state of a MC is periodic if
the process can only return to that state in a number of steps which is a
multiple of some integer larger than one. When all states are aperiodic we
call the MC aperiodic. When an MC is irreducible the existence of a single
aperiodic state implies that all states are aperiodic. When a MC is both
irreducible and aperiodic we are guaranteed that from every initial state x
we converge to the unique stationary distribution. This process is called
mixing, i.e.. this guarantees that

lim
l→∞

Plx = π (2.10)

§We use left stochastic matrices here since that mirrors how operators are applied to
states in quantum computing. In mathematics right stochastic matrices, where each row
sums to unity and elements Pij denote the transition probability from state i to state j, are
more common.

12



2.3 Markov chains and Gibbs Samplers 13

for any probability vector x and π the stationary distribution of P. In
physics literature the term Ergodic MC is widely used, a process is called
ergodic if all statistical properties can be inferred from a sufficiently long
sample of the process. A MC process is ergodic if it is irreducible and has
at least one aperiodic state.

An MC is called time-reversible when for its stationary distribution the
detailed balance condition holds, i.e.

πjPij = πiPji . (2.11)

This guarantees that, when the chain has reached the stationary distri-
bution, the transition i → j is as probable as the transition j → i. This
guarantees the chain is invariant under time reversal. The number of
steps needed to converge to within distance ε of the stationary distribu-
tion in a mixing process is called the mixing time tmix(ε). This distance is
defined with respect to the total variation distance defined as d(x, x′) =
1/2 ∑i |xi − x′i|, we further define d(k) = maxxd(Pkx, π) as the maximum
distance between any initial state x and the stationary distribution π after
k steps. Then tmix(ε) is the smallest time such that d(tmix(ε)) ≤ ε. For
aperiodic, reversible and irreducible MCs this mixing time is bounded by
[7] (

1
δ(P)

− 1
)

log
(

1
2ε

)
≤ tmix(ε) ≤

1
δ(P)

log
(

1
επmin

)
(2.12)

with δ(P) the spectral gap, the gap between the highest and second highest
eigenvalue, of the transition matrix P and πmin the smallest element of the
stationary distribution. When δ(P) � 1 this gives a tight bound on the
mixing time and tmix = Õ(1/δ(P)).

2.3.2 Gibbs Samplers

One family of stochastic matrices which we are interested in here are those
where the stationary distribution has the form given by the Gibbs distri-
bution

πG(β)x =
exp(−βH(x))

Z(β)
(2.13)

where β ∈ [0,+∞) is a parameter often called the inverse temperature,
H(x) is a function that gives a scalar value for every state x and Z(β) is

13



2.4 Curie-Weiss Model 14

the normalisation factor called the partition function. The function H(x)
is called the Hamiltonian and the values it gives are called the energy of a
state x. We call this family of stochastic matrices for any H(x) Gibbs sam-
plers¶ which we will denote by PG(β).

Here we look at systems that consist of classical spins which can either
be +1 or −1. A state of the system is described by a specific configu-
rations of those spins which we denote by σ with σi denoting a specific
configuration i (not to be confused with the i-th element of a vector). Here
the element PG(β)ji gives the probability to go from spin configuration σi
to spin configuration σj. These transition matrices are therefore given in
the basis consisting of all possible configurations {σ}. We only look at
Markov chains where we change at most one of those spins in a state tran-
sition. We consider two stochastic matrices that satisfy those constraints.
For Glauber dynamics the transition matrix is given by [7]

PG(β)ji =
1
N

exp(−βH(σj))

exp(−βH(σi)) + exp(−βH(σj))
(2.14)

when i, j differ by only one spin, Pii = 1− ∑j Pji and Pji = 0 otherwise.
Here N is the total number of spins in the system. The other transition
matrix we consider is from the Metropolis-Hastings algorithm which is
given by [6]

PG(β)ji =
1
N

min(1, exp(−β(H(σj)− H(σi)))) (2.15)

when i, j differ by only one spin, Pii = 1 − ∑j Pji and Pji = 0 other-
wise. Both of these stochastic matrices have the Gibbs distribution as their
unique stationary distribution and are aperiodic, irreducible and time-
reversible.

2.4 Curie-Weiss Model

2.4.1 Model background

We want to consider a model where there are inverse temperatures β such
that the mixing time at 2β is exponentially larger. One of the simplest ex-

¶Note that Gibbs sampler is also used for a specific Monte Carlo sampling algorithm,
here we use it to denote the family of stochastic matrices with the Gibbs distribution as
the stationary distribution.

14



2.4 Curie-Weiss Model 15

amples of such a model is the Curie-Weiss model. Here we briefly define
the terms we need, for a more detailed overview see e.g. [36]. The Curie-
Weiss model is the Ising model on the complete graph with the Hamilto-
nian for a spin configuration σ given by

H(σ) = − J
N ∑

1≤i<j≤N
σiσj − µB

N

∑
i=1

σi (2.16)

with J the coupling strength between the spins, µ the magnetic moment of
each spin and B the magnitude of the external field in the direction of the
spins. We look at the simplest case and set J = 1 and B = 0 which we call
the uniform zero-field Curie-Weiss model. Since the model is defined on
the complete graph, the model is invariant under exchanges of the spins
so we can write the state of the model as a bit string where a 0 denotes
spin up and 1 spin down. Since we can freely exchange spins the Ham-
ming weight of a state, which is defined as the number of 1s in a bit string,
fully describes the macroscopic state of the system.

The absolute magnetisation |M| of a spin configuration is defined as the
absolute value of the sum over all spins. This model has a phase transition
at the critical inverse temperature βC = 1 (see figure 2.1). Below βC the
Gibbs distribution is close to uniform, giving an average absolute mag-
netisation close to zero. Above βC the Gibbs distribution goes towards a
bimodal distribution with the two lowest energy spin configurations as
the modes of the Gibbs distribution. Those configurations are all spins up
or all spin down giving an average magnetisation above βC that goes to
one. We call those states the ground states of the system.

15



2.4 Curie-Weiss Model 16

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
|M

|/
N

Figure 2.1: Average absolute value of the magnetisation per spin of the Gibbs
distribution for the uniform zero-field Curie-Weiss model at a range of inverse
temperatures β for 600 spins.

This model also has a phase transition in the classical mixing time at the
same critical inverse temperature βC. In [10] the following theorem is
proven.

Theorem 2.1 Let α(N) > 0, then:

• For β = 1− α the spectral gap is given by (1+O(1))α/N where the O(1)
term tends to 0 as N → ∞.

• When α = O(1/
√

N) the spectral gap is O
(

N−3/2).
• For β = 1 + α the spectral gap is

O
(

α

N
exp

[
−N

2

∫ ξ

0
log
(

1 + g(x)
1− g(x)

)
dx
])

(2.17)

with g(x) = (tanh(βx)− x)/(1− x tanh(βx)) and ξ the unique positive
root of g(x).

From this theorem we see that the inverse spectral gap below βC increases
linearly with N and above βC increases exponentially resulting in a sharp
transition in the mixing time for this model.

16



2.4 Curie-Weiss Model 17

2.4.2 Numerical Mixing Time Bounds

To be able directly compare the time complexity of the quantum algorithm
(which we will define later in chapter 3) to the classical time complexity,
we look numerically at the mixing time bounds for the stochastic matrices
we defined in section 2.3.2 for the uniform zero-field Curie-Weiss model.
From equation 2.12 we know the mixing time is bounded by 1/δ (sup-
pressing logarithmic factors). We first look at the stochastic matrix corre-
sponding with Glauber dynamics for the uniform zero-field Curie-Weiss
model at three inverse temperatures: β = 0.7, β = 1.0, and β = 1.4. These
inverse temperature were chosen to be below, at and above the phase tran-
sition point. In figure 2.2 we see these results. These results support the
analytical results given in theorem 2.1. Note that for two of the chosen
inverse temperatures sampling at β is linearly easy and sampling at 2β ex-
ponentially hard, making this an interesting case to look at with regards
to the time complexity of our quantum algorithm.

100 125 150 175 200 225 250 275 300
N

103

105

107

109

1011

1013 = 0.7:   2.789N^(1.028)
= 1.0:   1.4282N^(1.484)
= 1.4:   7.1308N exp(0.08N)

Figure 2.2: Inverse spectral gap of the stochastic matrix corresponding with
Glauber Dynamics for the uniform zero-field Curie-Weiss model at three different
inverse temperatures (see legend) for a range of N. Points indicate simulated val-
ues and lines indicate the best fitted functions as predicted by [10] (see legend).
Note that below the critical inverse temperature β = 1 the inverse spectral gap
scales linearly and exponentially above.

We also want to look at the same results for the stochastic matrix corre-
sponding with the Metropolis-Hastings algorithm (see figure 2.3). We ob-
serve the same scaling behaviour.

17



2.5 Symmetric Subspace Projection 18

100 125 150 175 200 225 250 275 300
N

103

105

107

109

1011

1013 = 0.7:   1.7585N^(0.997)
= 1.0:   0.9951N^(1.449)
= 1.4:   4.0993N exp(0.08N)

Figure 2.3: Inverse spectral gap of the stochastic matrix corresponding with the
Metropolis-Hastings algorithm for the uniform zero-field Curie-Weiss model at
three different inverse temperatures (see legend) for a range of N. Points indicate
simulated values, and lines indicate the best fitted functions as predicted by [10]
(see legend). Note that below the critical inverse temperature β = 1 the inverse
spectral gap scales linearly and exponentially above.

2.5 Symmetric Subspace Projection

Here we give a brief description of how we used symmetric subspace pro-
jection to reduce the dimensionality of our numerical problem. See [37] for
an overview of the relevant group- and representation theory and [38] for
a more in depth discussion on symmetric subspace projection in quantum
information. For a digression on the representation theory of the symmet-
ric group see [39].

To study the time complexities of our classical and quantum algorithms
we need to find the eigenvalues and singular values of the matrices PG(β).
For a system with N spins those matrices have dimension 2N × 2N which
makes directly finding their eigenvalues and singular values numerically
tractable in a reasonable time frame for up to N ∼ 20. The matrices we
look at are in the basis given by all 2N possible configurations of N clas-
sical spins. Since our model is defined on the complete graph the macro-
scopic physics of the model is the same if we exchange any two spins, i.e.
our model is invariant under all permutations of spins. Due to this in-
variance with respect to the symmetric group, all spin configurations with

18



2.5 Symmetric Subspace Projection 19

the same Hamming weight represent the same macroscopic state of the
system. When we represent a spin configuration as a bit string with 0 de-
noting spin up and 1 denoting spin down the configurations |110〉, |101〉,
and |011〉 represent the same macroscopic state. As such our exponentially
large matrices contain information on the configuration of specific micro
states which is irrelevant for the macro state of the system. We can use this
to reduce the dimension of the matrix we need to look at by projecting it
onto the symmetric subspace which is the space spanned by the uniform
combination of states with the same number of spins up or down. For ex-
ample for N = 3, this is the subspace spanned by the spin configurations
|000〉, 1/

√
3(|001〉+ |010〉+ |100〉), 1/

√
3(|110〉+ |101〉+ |011〉) and |111〉.

This reduces the matrix from dimension 2N × 2N to (N + 1)× (N + 1). For
our numerical analysis we need to find the second smallest eigenvalues
and singular values of 1− PG(β) for the uniform zero-field Curie-Weiss
model. Since we conjecture that the physics of the system is described
by the part of the matrix that is projected onto the fully symmetric sub-
space we expect that those relevant eigenvalues and singular values can
be found by looking at the projection. To numerically investigate whether
the eigenvalues and singular values we are interested in are given by the
symmetric subspace projection we look at the relative difference between
the full transition matrix and the projection onto the subspace. In fig-
ure 2.4 we see relative difference between the second smallest eigenvalues
and second smallest singular values for the transition matrix for Glauber
dynamics for the uniform zero-field Curie-Weiss model. These are for N
where we can directly compare the results. The difference is given in units
of a fraction of the full matrix values. The difference is in the order of
magnitude of the precision the numerical eigenvalue algorithms we used
(ARPACK & LAPACK) work to.

19
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Figure 2.4: Relative difference between the full transition matrix for Glauber dy-
namics for the uniform zero-field Curie-Weiss model. Red and blue dots denote
the second smallest eigenvalue at β = 0.7 and β = 1.4 respectively and orange
dots the second smallest singular values at β = 0.7.

If we can find a closed expression for this symmetric subspace of the tran-
sition matrices we are interested in we can numerically analyse the eigen-
values and singular values for far higher spin numbers.

Theorem 2.2 Let Hlk(β) denote the probability for a single spin flip Markov
chain at inverse temperature β on the complete graph to go from a state with
Hamming weight k to a state with Hamming weight l. Then the projection S(β)
of the Gibbs sampler PG(β) for such a N-spin model onto the symmetric subspace
is given by

S(k+1),k(β) =
N − k

N

√√√√ (N
k )

( N
k+1)

H(k+1),k(β) =
N − k

N

√
k + 1
N − k

H(k+1),k(β)

(2.18a)

S(k−1),k(β) =
k
N

√√√√ (N
k )

( N
k−1)

H(k−1),k(β) =
k
N

√
N − k + 1

k
H(k−1),k(β) (2.18b)

Sk,k(β) = 1− S(k+1),k(β)− S(k−1),k(β) (2.18c)

with the other elements equal to zero.

This can be proven by directly writing out the transition matrices and the
relevant basis transformation.
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2.6 Numerical Implementation 21

2.6 Numerical Implementation

For the numerical analysis performed for this thesis the eigenvalues and
singular values of large tridiagonal matrices needed to be found. This was
done with SciPy [40] and NumPy [41] in Python [42]. For the eigenval-
ues the matrices were transformed to a basis in which they are symmetric
and then the SCIPY.LINALG.EIGH TRIDIAGONAL routine for the eigenval-
ues of symmetric tridiagonal matrices was used to find the eigenvalues.
This routine uses calls to LAPACK for the eigenvalue finding. For the sin-
gular values the routine SCIPY.SPARSE.LINALG.SVDS for singular values of
sparse matrices was used. This routine uses calls to ARPACK for the sin-
gular value finding.

The plots seen in this thesis are made using MatPlotLib [43] in Python
[42].
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Chapter 3
Quantum Linear Algebra for Gibbs
Sampling

3.1 Quantum Linear Algebra

In section 2.3.1 we defined the stationary distribution of a Markov Chain
P as the distribution π such that Pπ = π. We can reformulate the prepa-
ration of the stationary distribution as finding the kernel of 1 − P. The
stationary distribution is given as a probability vector meaning it is nor-
malised to unity with respect to the L1 norm. Since any scalar multiplied
with this vector is also in the kernel the same vector normalised to unity
with respect to the L2 norm is also in the kernel of P. As such we can find
an encoding of the stationary distribution by preparing the state |π〉 such
that (1− P) |π〉 = 0. This state is given by

|π〉 = ∑
i

πi

||π||2
|i〉 (3.1)

where π is the stationary distribution. If we prepared such a state we can
sample from the encoded distribution by measuring the state |π〉. How-
ever because of the Born rule measuring this is equivalent to sampling
from the distribution

(π2)i =
π2

i
||π||22

(3.2)

which we call the squared distribution. For the Gibbs distribution we de-
fined in section 2.3.2 measuring the state |πG(β)〉 is equivalent to sampling

22



3.1 Quantum Linear Algebra 23

from

(π2
G(β))i =

(πG(β))2
i

||πG(β)||22
=

exp(−βH(i))2

Z(β)2
1

∑x
exp(−βH(x))2

Z(β)2

(3.3)

=
exp(−2βH(i))

∑x exp(−2βH(x))
=

exp(−2βH(i))
Z(2β)

(3.4)

which is exactly the Gibbs distribution at 2β. So preparing and measuring
the stationary state of a Gibbs sampler with parameter β in this manner is
equivalent to classically sampling from the same sampler at 2β. In section
2.4.2 we observed that the model we look at here has a time complexity
phase transition where classically sampling below β = 1 is exponentially
easier than sampling above β = 1. This might offer potential for a speedup
by preparing a quantum state with β in the classically easy regime such
that it allows us to sample at 2β in the classically hard regime. This is
visualised in figure 3.1.
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Figure 3.1: Visualisation of the β doubling. The dots indicate the average absolute
value of the magnetisation per spin of the Gibbs distribution for the uniform zero-
field Curie-Weiss model at a range of inverse temperatures β for 600 spins. The
black, red and, blue lines indicate β = 1.0, β = 0.7 and, β = 1.4 respectively. The
plot visualises that preparing an encoding at some temperature below the phase
transition allows to sample from above the phase transition.

One observation we make, when we promote the vector πG(β) to the state
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3.2 Adiabatic State Preparation 24

|πG(β)〉 we introduce a normalisation factor 1/||πG(β)||2. Writing this
factor out gives

||πG(β)||2 =

(
∑

i
|(πG(β)i|2

)1/2

(3.5)

=

(
∑

i

exp(−βH(i))2

Z(β)2

)1/2

(3.6)

=
1

Z(β)

(
∑
x

exp(−2βH(x))

)1/2

(3.7)

=

√
Z(2β)

Z(β)
. (3.8)

and therefore 1/||πG(β)||2 = Z(β)√
Z(2β)

. So when we look at preparing

|πG(β)〉 we are implicitly including a normalisation factor that depends
on the partition function at 2β. We know that at the critical inverse tem-
perature the partition function has a transition from magnitude ∼ 2N to
magnitude ∼ eN. So when 2β is above the critical inverse temperature
even when we would sum over all 2N elements in the basis the pre-factor
would be similar to (2/e)N which is exponentially decreasing. If this con-
juncture holds we would expect there to be a complexity transition occur-
ring for the preparation of |πG(β)〉 at exactly half the inverse temperature
where the complexity transition occurs for the preparation of πG(β). This
would imply we would not expect to find a possibility of an exponential
speedup by using this encoding for the Gibbs distribution.

3.2 Adiabatic State Preparation

3.2.1 Set-up

To be able to sample using preparation of |πG(β)〉 we need an algorithm
to prepare such a state given sparse access to the stochastic matrix PG(β).
Here we propose to do this via adiabatic state preparation. As discussed
in section 2.2.1, we need to define a problem Hamiltonian HP, an initial
Hamiltonian HI , and an interpolation function. We found that we can
prepare |πG(β)〉 by preparing the state such that (1− PG(β)) |x〉 = 0. As
we need a Hermitian matrix, we use an ancilla qubit to encode our matrix
in a Hamiltonian as
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3.2 Adiabatic State Preparation 25

H(β)P =

(
0 1− PG(β)

1− PG(β)T 0

)
. (3.9)

This Hermitian operator has the stationary distribution of P encoded as(
0 πG(β)

)T as one of its two zero eigenvalue vectors*.

In the limit where β→ 0 the Gibbs distribution goes towards the uniform
distribution. The encoding of this uniform distribution (uniform superpo-
sition) is easy to prepare, so we can use the same Hamiltonian at low β as
the initial Hamiltonian. This gives the adiabatic Hamiltonian

H(t) = f (t)Hs + g(t)Hp (3.10)

=

(
0 A(t)

AT(t) 0

)
, (3.11)

where we define

A(t) = f (t)(1− PG(0)) + g(t)(1− PG(β)) (3.12)

with f , g the still to be defined interpolating functions. In section 2.2.1 we
saw that the time complexity of the adiabatic algorithm is dominated by
the eigenvalue gap between the zero eigenvalue state and the next excited
state.

To consider the time complexity of the adiabatic algorithm we need to
know the eigenvalues of matrices of the form

M =

(
0 A

AT 0

)
, (3.13)

where we notice that the square of these matrices is given by

M2 =

(
AAT 0

0 AT A

)
, (3.14)

*The other zero eigenvalue state is the +1 eigenvector of P†, denoted by U encoded as(
U 0

)T . This state has zero overlap with the desired state so the transition probability
between the two options is zero. Therefore by initialising in the correct state we will end
up in the correct state.
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3.2 Adiabatic State Preparation 26

The eigenvalues of M2 are given by the eigenvalues of AAT which implies
that the absolute values of the eigenvalues of M are given by the square
root of the eigenvalues of AAT. These are exactly the singular values of A,
so the absolute values of the eigenvalues of M are given by the singular
values of A. We are interested in the gap between the zero energy state and
the next excited state, this eigenvalue gap is exactly given by ζ(1− PG(β)).
We use here the notation we defined in section 2.1.

Therefore the eigenvalue gap we are interested in of H(t) is given by
ζ( f (t)(1− PG(0)) + g(t)(1− PG(β))). When we have two irreducible and
aperiodic Markov chains P, Q then aP + bQ is also a irreducible and ape-
riodic Markov Chain if a + b = 1, and a, b are real and non-negative†. So
when we restrict the interpolating functions such that f (t) + g(t) = 1 ∀t
then f (t)(1− PG(0)) + g(t)(1− PG(β)) is a stochastic matrix for all t. This
implies λn((t)(1− PG(0)) + g(t)(1− PG(β))) = 0 ∀t. Following Weyl’s
inequality‡ [44] this also implies σn((t)(1− PG(0)) + g(t)(1− PG(β))) =
0 ∀t. So to find the minimum eigenvalue gap along the path for H(t) we
need to find the smallest value of σn−1( f (t)(1− PG(0)) + g(t)(1− PG(β)))
for 0 ≤ t ≤ T.

Theorem 3.1 The singular value gap of (1− g(t))(1− A) + g(t)(1− B), with
A, B irreducible and aperiodic symmetric column stochastic matrices such that
ξ(1− A) is exponentially larger compared to ξ(1− B), is smallest at t = T.

Proof For a symmetric matrix A we have λi(A) = σi(A) ∀i. If A, B are both
symmetric A + B is symmetric. So for symmetric A, B finding the singular
value gap of (1− g(t))(1− A) + g(t)(1− B) is equivalent to finding the
gap between λn((1− g(t))(1− A) + g(t)(1− B)) and λn−1((1− g(t))(1−
A) + g(t)(1− B)). Since A, B are irreducible and aperiodic stochastic ma-
trices, (1− g(t))A + g(t)B is a irreducible and aperiodic stochastic matrix,
and therefore λn((1− g(t))(1− A) + g(t)(1− B)) = 0. From Horn’s in-
equalities [45] we get

†The defining characteristic for a column stochastic matrix is that all columns sum to
unity and thus all columns of P + Q sum to two. When a + b = 1, and a, b are real we
therefore have that every column of aP + bQ sums to unity making it a column stochastic
matrix.

‡Weyl’s inequality states that ∏k
i=1 |λi(A)| ≤ ∏n

i=1 σi(A) with equality only when
k = n. When λn(A) = 0 the product of all singular values has to be zero. This implies
that the lowest singular value of A also has to be equal to zero.
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λi((1− g(t))(1− A)) + λj(g(t)(1− B)) ≤
≤ λk((1− g(t))(1− A) + g(t)(1− B)) if i + j = n + k (3.15)

which we can write as

g(t)λn−1(1− B) ≤ λn−1((1− g(t))(1− A) + g(t)(1− B)) (3.16)

and

(1− g(t))λn−1(1− A) ≤ λn−1((1− g(t))(1− A) + g(t)(1− B)) (3.17)

which gives two monotonic lines as lower bounds, one increasing and one
decreasing. From this we see that λn−1((1− g(t))(1− A) + g(t)(1− B))
is lowest at the intersection point of those two lines at

g(t) =
λn−1(1− A)

λn−1(1− A) + λn−1(1− B)
. (3.18)

Plugging this point into the lines gives a lower bound of

λn−1(1− A)λn−1(1− B)
λn−1(1− A) + λn−1(1− B)

. (3.19)

Now when N large we have λn−1(1− A) � λn−1(1− B) which results
in a lower bound for large N that tends towards λn−1(1− B) which con-
cludes the proof. �

To make a similar statement for general, non-symmetric, A, B we would
need lower bounds for the singular values of sums of matrices which is
a challenging question even if the singular values of both matrices are
known. However from numerical results we conjecture that a similar re-
sult holds for the problem we are looking at (see figure 3.2) and for a col-
lection of other stochastic matrices (see appendix B). If we assume that the
gap is indeed smallest at t = T we can drastically reduce the number of
numerical computations that are needed to analyse the time complexity of
the adiabatic algorithm here.
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Figure 3.2: The second lowest singular values of (1− g(t))PG(0) + g(t)PG(β) as a
function of g(t). Here N = 10 and β = 0.7 for the stochastic matrix corresponding
with Glauber dynamics for the uniform zero-field Curie-Weiss model.

In general the adiabatic algorithm has a quadratic (or higher power) de-
pendence on the inverse minimal gap along the path. For many applica-
tions of the adiabatic algorithm the minimum gap is at an unknown point
somewhere along the path between t = 0 and t = T. This makes it hard
to optimize the interpolating function g(t) to improve the dependence on
the gap in the time complexity. Roland & Cerf (2002) [46] showed that
when an analytic expression for the gap along the path is available the
time complexity can be optimised to linear in the gap. When we observe
figure 3.2 we see that for our case the gap along the path seems to be a
(linear) line. If we assume the gap along the path has this form at every N
we can use the same argument as used in Roland & Cerf (2002) to optimise
the dependence of the eigenvalue gap of the time complexity of the algo-
rithm. This derivation uses the approximate adiabatic condition defined
in section 2.2.1. To see that this also holds for the more rigorous adiabatic
condition see appendix A.1. When we look at figure 3.2 we see that the
energy levels are closer together for t close to T. We can therefore speed
up the adiabatic evolution at lower t and only slow down when we get
close to t = T. To find what function to use for g(t) we want to impose the
adiabatic condition locally. To do this we want to solve the a differential
equation of the form
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dg(t)
dt

= ε∆2
min = ε[A− (A− B)g(t)]2 (3.20)

which we can integrate (and use that g(0) = 0) to find

g(t) =
A2εt

Aεt(A− B) + 1
(3.21)

To find the adiabatic time T we solve g(T) = 1 to find

T =
1
ε

[
1

AB

]
. (3.22)

For our problem A = σn−1(1− P(0)) and B = σn−1(1− P(β)). We are
interested in the case where σn−1(1− P(0))� σn−1(1− P(β)) for large N.
So for large N the adiabatic time goes with 1/σn−1(1− P(β)), i.e. linearly
in the inverse smallest gap along the path.

3.2.2 Curie-Weiss model Numerical Results

We start by considering the singular value gap of 1− PG(β) for the stochas-
tic matrix corresponding with Glauber dynamics for the uniform zero field
Curie-Weiss model at β = 0.7. For this model we earlier found in section
2.4 there exists a classical mixing time transition at the critical inverse tem-
perature βC = 1. In figure 3.3 we compare those to the spectral gap of
the stochastic matrix at β = 0.7 and β = 1.4. Keeping in mind that the
quantum algorithm at β = 0.7 samples from the same distribution as the
classical algorithm at β = 1.4, we see that our quantum algorithm seems
to scale quadratically faster than the comparable classical mixing time.
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Figure 3.3: Inverse spectral gap of PG(β) (red and blue) and the inverse singu-
lar value gap of 1− PG(β) (orange) for the stochastic matrix corresponding with
Glauber dynamics for the zero-field Curie-Weiss model at the temperature in the
caption. Points indicate numerical results and lines fitted functions as given in
the legend.

One interesting aspect we can see from this plot is that the relevant in-
verse eigenvalue at β = 0.7 scales almost linearly in N while the relevant
inverse singular value at the same value for β scales exponentially. We can
look whether and at what value of β the singular value has a complexity
transition. This is shown in figure 3.4. The transition point for the singu-
lar value seems to be at β = 0.5 which is exactly half of the transition β
for the mixing time. This might be an indication that there is indeed an
underlying connection between quantum complexity at β and the classi-
cal complexity at 2β. To see whether this is an effect specific to our choice
of Gibbs sampler we look at the stochastic matrix corresponding with the
Metropolis-Hastings sampler as well. In figure 3.5 we see the singular
value gap and eigenvalue gaps for the stochastic matrix corresponding
with Metropolis-Hastings for the uniform zero-field Curie-Weiss model at
the same inverse temperatures. We observe the same behaviour as found
for the stochastic matrix corresponding with Glauber dynamics. In figure
3.6 we again look where the complexity transition occurs. It again seems
to occur where 2β crosses the critical inverse temperature.
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Figure 3.4: The inverse singular value gap of 1− PG(β) for the stochastic matrix
corresponding with Glauber dynamics for the zero-field Curie-Weiss model at
the temperature in the caption. Points indicate numerical results and lines fitted
functions as given in the caption. Note the complexity phase transition some-
where between these two inverse temperatures.
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Figure 3.5: Inverse spectral gap of PG(β) (red and blue) and the inverse singular
value gap of 1− PG(β) (orange) for the stochastic matrix corresponding with the
Metropolis-Hastings algorithm for the zero-field Curie-Weiss model at the tem-
perature in the legend. Points indicate numerical results and lines fitted functions
as given in the legend.
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Figure 3.6: The inverse singular value gap of 1− PG(β) for the stochastic matrix
corresponding with the Metropolis-Hastings algorithm for the zero-field Curie-
Weiss model at the temperature in the legend. Points indicate numerical results
and lines fitted functions as given in the caption. Note the complexity phase
transition somewhere between these two inverse temperatures.

3.2.3 Ising model on Regular Graphs

So far we considered the Ising model defined on the complete graph. To
extend the results we got so far we want to look at the Ising model on
different underlying graphs. When we consider the Ising model on a dif-
ferent graph we can no longer use the symmetric subspace projection to
simplify the problem for higher spin numbers. For the low spin numbers
we can calculate directly, we expect that finite size effects will distort the
scaling of the time complexity. One aspect we can however look at for
lower spin numbers is whether instances which are hard for the quantum
algorithm are also instances which are hard for classical mixing. For this
we need to look at a graph ensemble with multiple possible graphs at a
given N. We choose to look at the Ising model on k-regular graphs. These
k-regular graphs are graphs where each vertex has exactly k edges. There
are multiple possible k-regular graphs for a given number of spins so k-
regular graphs are a graph ensemble. Here we want to look at the relative
instance hardness for the classical and quantum algorithm.

For the Ising model on a k-regular graph we have a mixing time transition
occurring at the critical inverse temperature βC such that (k− 1) tanh βC =

32



3.2 Adiabatic State Preparation 33

1 [47]. Here we look at instances of 4-regular graphs and compare the sin-
gular value gap of PG(β) and the spectral gap of PG(2β). In figure 3.7 we
see that the instances that are hard for classical mixing are also hard for
our quantum algorithm.
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Figure 3.7: Deviation from the mean of the inverse spectral gap for β = 0.5 (blue)
and inverse singular gap for β = 0.25 (orange) in units of standard deviations
for the stochastic matrix corresponding with Glauber dynamics of an instance of
the Ising model on 4-regular graphs. Each dot shows the result for 1 randomly
sampled N = 10 4 regular graph.

In figure 3.7 the sampled graphs are unordered. We can see some more
structure by ordering the sampled graphs by some parameter. Here we
choose to order the graphs by their average local clustering coefficient
which is defined as how connected the neighbours of a node are on aver-
age. In figure 3.8 we see the results for both gaps. We see that for both the
classical and the quantum algorithm, the time complexity seems to have
the same connection to how clustered the graph is giving further evidence
to some connection between the hardness of preparing the quantum state
at β and classical sampling at 2β.

33



3.3 Other State Preparation Methods 34

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Average local clustering coefficient

49.50

49.75

50.00

50.25

50.50

50.75

51.00

51.25

51.50

1/
(P

G
(0

.5
))

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Average local clustering coefficient

118

119

120

121

122

123

1/
(1

P G
(0

.2
5)

)

Figure 3.8: Inverse spectral gap for β = 0.5 (left panel) and inverse singular
gap for β = 0.25 (right panel) against the average local clustering coefficient for
the stochastic matrix corresponding with Glauber dynamics of an instance of the
Ising model on 4-regular graphs. Each dot shows the result for 1 randomly sam-
pled N = 10 4 regular graph.

3.3 Other State Preparation Methods

To see whether the observed behaviour is an effect of our specific algo-
rithm or indicative of a more general result we look at other algorithms.
The problem of preparing (an encoding of) the state |πG(β)〉 was stud-
ied earlier by Orsucci (2019) [1]. Therein other algorithms to prepare a
similar state were considered. Here we consider two of the proposed al-
gorithms and use the symmetric subspace projection to extend the numer-
ical analysis done in that work for higher spin numbers. For both these
algorithms an indication of an exponential speed up over classical mixing
was reported in Orsucci (2019) [1] when looking at numerical results for
Nmax = 20.

3.3.1 Projection Methods

Another way to prepare |πG(β)〉 is to directly project a state to the kernel
of 1− PG(β). For this algorithm we assume we have an efficient α-block-
encoding [48] of 1− PG(β) and use qubitization [48] to approximate a pro-
jection on the kernel of 1− PG(β) [49]. In Orsucci (2019) [1] it is derived
that the time complexity of this algorithm is given by

Õ(αζ(1− PG(β))−1| 〈ψ|πG(β)〉 |−1) (3.23)

with |ψ〉 an initial state we choose and α the normalisation parameter for
the block encoding. The contribution from the inverse singular value gap
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ζ(1− PG(β))−1 was already looked at for the adiabatic algorithm, those
results can be found in section 3.2.2. In Orsucci (2019) [1] it was assumed
we have some |ψ〉 with constant overlap with the state we want, we will
here extend the analysis on this contribution to the time complexity. One
possible advantage of looking at this contribution is that it is independent
of the choice of Gibbs sampling matrix, i.e. when this contribution also
scales exponentially in N it might offer evidence for a broader effect. For
this contribution we need to choose an initial state |ψ〉. Our goal is to
sample in the high inverse temperature regime where |πG(β)〉 becomes a
multi-modal distribution, where the modes are the ground states. Finding
those ground states is at least as hard a problem as sampling so the closest
distribution we can start at is |πG(β)〉 with β in the easy regime, i.e. β <
0.5. To see how this overlap behaves we look at the overlap of two encoded
Gibbs distribution at two different inverse temperature β,β′

〈πG(β)|πG(β′)〉 = ((∑
i
〈i| (πG(β))i

||πG(β)||2
)(∑

j

(πG(β′))j

||πG(β′)||2
|i〉) (3.24)

= ∑
i,j

(πG(β))i(πG(β′))j

||πG(β)||2||πG(β′)||2
〈i|j〉 (3.25)

= ∑
i

(πG(β))i(πG(β′))i

||πG(β)||2||πG(β′)||2
(3.26)

= ∑
i

1
Z(β)Z(β′)

exp(−βHi) exp(−β′Hi)

||πG(β)||2||πG(β′)||2
(3.27)

=
Z(β + β′)

Z(β)Z(β′)

1
||πG(β)||2||πG(β′)||2

. (3.28)

We earlier found that the L2 norm of πG(β) is given by

||πG(β)||2 =

√
Z(2β)

Z(β)
. (3.29)

Plugging this into our expression for 〈πG(β)|πG(β′)〉 gives

〈πG(β)|πG(β′)〉 = Z(β + β′)

Z(β)Z(β′)

1
||πG(β)||2||πG(β′)||2

(3.30)

=
Z(β + β′)√
Z(2β)Z(2β′)

. (3.31)
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When β < βC we have Z(β) ∼ 2N and when β > βC we have Z(β) ∼ eN.
When we choose β,β′ both below βC we expect this overlap to decrease
relatively slowly while when we choose β below βC but β′ above βC the
overlap will decrease exponentially fast. To see whether this result holds
for our model we want to numerically look at this overlap. Due to the per-
mutation invariance of our system we can find the partition number by
a weighted sum over the energy contribution for each Hamming weight
state. We start by looking at the inverse overlap for the Gibbs distribution
for β = 0.7 and β′ = 0.4 for the uniform zero-field Curie-Weiss model
(figure 3.9). In that figure we see that this overlap seems to decrease ex-
ponentially fast for these choices of β,β′. When we combine these results
with those found in figure 3.3 and figure 3.5 we see potential for at most
a polynomial speed up over the relevant classical mixing results in those
same two figures.
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Figure 3.9: The inverse overlap between |πG(0.4)〉 and |πG(0.7)〉. Point indicate
numerical results and lines the fitted functions given in the legend.

We again want to know where this transition occurs, see figure 3.10. We
see that the transition again seems to occur where 2β is above the critical
inverse temperature.
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Figure 3.10: The inverse overlap between |πG(0.4)〉 and |πG(β)〉 for β given in
the caption. Point indicate numerical results and lines the fitted functions given
in the caption. Note there seems to be a complexity transition in between those
two inverse temperatures.

3.3.2 Relaxation Method

The algorithms shown so far aim to prepare the state |πG(β)〉 by finding
the kernel of 1− PG(β). In Orsucci (2019) [1] it was shown that we can
instead solve the linear system problem given by

(1− µPG(β))x = b (3.32)

with µ ∈ (0, 1) a free parameter and b ∈ Cn an arbitrary vector. Since
(1− µPG(β)) is a non-singular matrix we can write x = (1− µPG(β))−1b.
We now use the geometric series to write

x = (1− µPG(β))−1b = ∑
k

µkPkb . (3.33)

In Orsucci (2019) [1] it is shown that when we choose µ = 1− 1/(γtmix(ε))
the solution x is within distance ε + 1/γ of the stationary distribution
πG(β) for an arbitrary choice of b.

We showed in section 2.2.3 that the time complexity of preparing a state
that is proportional to the solution of a linear system of equations on a
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quantum computer is quasilinear in the condition number κ and log n. We
now want to introduce new bounds on the condition number of 1− µP.
We write the condition number as

κ(1− µP) = ||1− µP||2 ||A(1− µP)−1||2 . (3.34)

We now use the following inequality (which is derived from Hölder’s in-
equality [50])

||A||2 ≤
√
||A||1 ||A||∞ (3.35)

to write

||1− µP||2 ≤
√
||1− µP||1 ||1− µP||∞ . (3.36)

The || · ||1 is given by the maximum absolute column sum of the matrix
and || · ||∞ by the maximum absolute row sum. 1− P has all columns ab-
solute summing at most two so 1− µP with µ ∈ (0, 1) has a maximum col-
umn sum smaller or equal to two. Since we are looking at time-reversible
single spin flip Markov chains the maximum absolute row sum of 1− µP
is O(N). Hence we have

||A||2 ≤ O(
√

N) . (3.37)

We know that there have to be instances where κ(1− µP) increases expo-
nentially so this contribution has to be from the ||A(1− µP)−1||2 term. We
can again use the geometric series to write (1− µP)−1 = ∑∞

l=0 µlPl and

||(1− µP)−1||2 = ||
∞

∑
l=0

µlPl||2 . (3.38)

When l ≥ tmix we have that d(Plb, π) ≤ ε for every stochastic matrix b
hence for l ≥ tmix we get that P is a matrix where every column is ap-
proximately equal to the stationary distribution π (see appendix A.3). We
define this matrix as Q and therefore write for l ≥ tmix that Pl = Q. Using
this we write
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∞

∑
l=0

µlPl = ∑
0≤l<tmix

µlPl + ∑
tmix≤l<∞

µlPl (3.39)

= ∑
0≤l<tmix

µlPl + Q ∑
tmix≤l<∞

µl < ∑
0≤l<tmix

µlPl + Qγtmix (3.40)

using that µ < 1 so ∑tmix≤k µk < ∑k µk = 1/(1− µ) = γtmix in the last
step. We thus write

||
∞

∑
l=0

µlPl||2 < || ∑
0≤l<tmix

µlPl||2 + γtmix||Q||2 . (3.41)

The || · ||2 norm of a matrix is given by the highest singular value of that
matrix. When β below the critical inverse temperature for high N the sta-
tionary distribution is close to uniform and therefore the matrix Q is close
to uniform as well. Here the matrix is symmetric so the 2-norm is given by
the largest eigenvalue of Q. For the uniform stochastic matrix§ the largest
eigenvalue is equal to one. When β above the critical inverse tempera-
ture the stationary distribution for large N goes towards a sharply peaked
multi modal distribution. In general the largest singular value of a matrix
A is given by the square root of the largest eigenvalue of AT A. Here Q
is given by vectors with all elements close to zero except at the ground
states. Hence QTQ tends towards a diagonal matrix where the only non-
zero elements are those corresponding to the ground states which have
magnitude ∼ 2N. This might explain why for β above the critical inverse
temperature the condition number has to increase exponentially fast.

To investigate these bounds and to compare the time complexity of this
algorithm with our adiabatic preparation algorithm we numerically look
this at condition number. With the right choice of operator norm the con-
dition number is given by σ1(1− µPG(β))/σn(1− µPG(β)). We start by
looking at the stochastic matrix corresponding with Glauber dynamics for
the uniform zero-field Curie Weiss model at β = 0.7 in figure 3.11. We
see behaviour that is very similar to what we saw in section 3.2.2 for the
adiabatic based algorithm and since the QLSP runtime is quasilinear in κ
we see a quadratic speed up over the relevant classical mixing results. We
again wish to see where the transition occurs. In figure 3.12 we see that
this transition again seems to occur where 2β is above the critical inverse
temperature.

§Stochastic matrix where every element is given by 1/n, where n is the number of
states in the Markov chain.
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Figure 3.11: Inverse spectral gap of PG(β) (red and blue) and the condition num-
ber of 1− µPG(β) (orange) for the stochastic matrix corresponding with Glauber
dynamics for the zero-field Curie-Weiss model at the temperature in the caption.
Points indicate numerical results and lines fitted functions as given in the legend.
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Figure 3.12: The condition number of 1− µPG(β) for the stochastic matrix cor-
responding with Glauber dynamics for the zero-field Curie-Weiss model at the
temperature in the caption. Points indicate numerical results and lines fitted func-
tions as given in the legend. Note the complexity phase transition somewhere
between these two inverse temperatures.

In figure 3.13 and 3.14 these results are repeated for the stochastic matrix
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corresponding with the Metropolis-Hastings algorithm giving the same
transition inverse temperature and quadratic speed up.
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Figure 3.13: Inverse spectral gap of PG(β) (red and blue) and the condition
number of 1− µPG(β) (orange) for the stochastic matrix corresponding with the
Metropolis-Hastings algorithm for the zero-field Curie-Weiss model at the tem-
perature in the caption. Points indicate numerical results and lines fitted func-
tions as given in the legend.
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Figure 3.14: The condition number of 1− µPG(β) for the stochastic matrix corre-
sponding with the Metropolis-Hastings algorithm for the zero-field Curie-Weiss
model at the temperature in the caption. Points indicate numerical results and
lines fitted functions as given in the legend. Note the complexity phase transition
somewhere between these two inverse temperatures.

As mentioned in section 2.2.3 we can use preconditioning to lower the
condition number of the matrix. The matrix we are looking at here nu-
merically seems to be close to diagonally dominant. To use the SParse Ap-
proximate Inverse (SPAI) algorithm we defined in section 2.2.3 we need
to choose a sparsity pattern. For diagonally dominant matrices a banded
matrix sparsity pattern is often used [35]. Since applying this precondi-
tioning breaks the permutation invariance we can only numerically look
at the condition number from the full matrix. As a baseline we first look at
the condition number at β = 0.7 for stochastic matrix corresponding with
Glauber dynamics for the uniform zero-field Curie-Weiss model without
any preconditioning applied (see figure 3.15).
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Figure 3.15: Condition number of 1 − µPG(β) for the stochastic matrix corre-
sponding with Glauber dynamics for the zero-field Curie Weiss model without
any preconditioning at β = 0.7. Points indicate numerical results and lines fitted
functions as given in the legend.

We then apply the SPAI using the banded matrix sparsity pattern for an
increasing number of bands (see figures 3.16 and 3.17). Each of the ap-
plied preconditioners lowers the condition number of the matrix as ex-
pected. However the preconditioning seems to have the effect that, while
for each instance the condition number decreases, the scaling seems to be-
come more steep. This could potentially be understood since the applied
sparsity pattern has a fixed number of bands the pattern becomes more
sparse for increasing N so the SPAI works better at lower N giving rise to
a steeper scaling.

43



3.3 Other State Preparation Methods 44

4 6 8 10 12
N

102

2 × 101

3 × 101

4 × 101

6 × 101

= 0.7:   3.271N exp(0.063N)

Figure 3.16: Condition number of 1 − µPG(β) for the stochastic matrix corre-
sponding with Glauber dynamics for the zero-field Curie Weiss model with a
2 band SPAI applied at β = 0.7. Points indicate numerical results and lines fitted
functions as given in the legend.
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Figure 3.17: Condition number of 1 − µPG(β) for the stochastic matrix corre-
sponding with Glauber dynamics for the zero-field Curie Weiss model with a
5 band SPAI applied at β = 0.7. Points indicate numerical results and lines fitted
functions as given in the legend.

One potential improvement could therefore be to let the number of bands
scale linearly with increasing N. Since the matrix dimension scales ex-
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ponentially in N the linearly increasing number of bands still results in a
sparse sparsity pattern. In figure 3.18 we see that this preconditioner has
the a similar effect as the fixed band number preconditioners.
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Figure 3.18: Condition number of 1 − µPG(β) for the stochastic matrix corre-
sponding with Glauber dynamics for the zero-field Curie Weiss model with a
N band SPAI applied at β = 0.7. Points indicate numerical results and lines fitted
functions as given in the legend.
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Chapter 4
Discussion & Conclusions

4.1 Discussion

We proposed an algorithm that prepares the stationary distribution of a
stochastic matrix P by using the adiabatic algorithm to prepare a state pro-
portional to the 0 eigenstate of 1− P. We noticed that when we prepare
the quantum state proportional to this stationary distribution measuring
the state corresponds to sampling from a different distribution we called
the squared distribution. For stochastic matrices where the stationary dis-
tribution is given by the Gibbs distribution this squared distribution is
equivalent to the Gibbs distribution at twice the inverse temperature. For
many stochastic matrices with the Gibbs distribution sampling at twice
the inverse temperatures is in some conditions exponentially harder. We
explored whether this might allow for a potential exponential speedup by
preparing the quantum state proportional to the stationary distribution at
inverse temperature β and measuring that state to sample from the sta-
tionary distribution at inverse temperature 2β.

We offered an analytical argument why this exponential speedup might
not be possible due to the presence of the partition function at 2β in the
normalisation constant. If this argument holds there should be an com-
plexity transition for the quantum algorithm at half the inverse temper-
ature at which the classical mixing time has a complexity transition. We
numerically investigated this argument by looking at two stochastic matri-
ces that have the Gibbs distribution as the stationary distribution for the
uniform zero-field Curie-Weiss model. For both matrices we found that
there exists a complexity transition for the quantum algorithm at halve
the classical critical temperature giving evidence that our argument could
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be valid. A question that remains is what mechanism in the specific al-
gorithm causes this transition to happen at that point. The classical mix-
ing time is bounded by the second smallest eigenvalue of 1− PG(β) and
the time complexity of the adiabatic state preparation algorithm for this
state is bounded by the second lowest singular value of 1− PG(β). A link
between the quantum complexity at 2β and the classical complexity at β
would therefore imply a link between the singular values of 1 − PG(β)
and the eigenvalues of 1 − PG(2β). The singular values of a matrix A
are given by the square root of the eigenvalues of the matrix AA†. To
analyse the possible connection between the singular values at β and the
eigenvalues at 2β we therefore need to look at eigenvalues of 1− PG(β)−
(PG(β))T + PG(β)(PG(β))T which is a challenging problem. We know that
when P symmetric the eigenvalues are equal to the singular values so the
link between the the singular values at β and the singular values at 2β
can not exist in general. For the Gibbs samplers we looked at we always
observe the second lowest singular value to be smaller than the second
lowest eigenvalue, however, when looking at more general stochastic ma-
trices this does not always have to be the case. These observations make it
unlikely that there exists a general rule for this connection.

From numerical results we noticed that the adiabatic gap along the path
for this problem seems to be close to linearly decreasing as a function of
the interpolating function. When we assume this linear relation holds in
general we can optimise algorithm and find a quadratic speedup for our
algorithm over classical mixing in some circumstances. However unless
an analytic proof is found for this linearly decreasing adiabatic gap it is un-
clear whether this assumption holds for higher values of N. This quadratic
speedup over classical mixing is however for a model for which there ex-
ists faster classical algorithms to sample from the Gibbs distribution than
classical mixing. The method we used to analyse our algorithm with time
complexity increasing polynomially with N time can also be used to find
the Gibbs distribution for this model polynomially with N for every tem-
perature. To show that our algorithm offers a speedup over the fastest
classical algorithm we would need to look at a different model. However,
the models for which there is no faster algorithm than classical mixing are
also the models we can only analyse for low spin numbers where the scal-
ing is distorted by finite-size effect.

When looking at the family of regular graphs we noticed that the instances
that are classically hard also seem to be the instances which are hard for
our quantum algorithm. For both the classical and quantum algorithm

47



4.2 Outlook 48

the hardness seems to scale inversely proportional to how clustered the
graphs are. Giving again evidence to a link between the quantum algo-
rithm at β and the classical mixing at 2β.

We also looked at two algorithms proposed by Orsucci (2019) [1]. For
these algorithms we extended the numerical analysis from Nmax = 20 to
Nmax = 290 and found the indication of an exponential speed up pre-
sented in Orsucci (2019) [1] to not be present at higher N. For those two
algorithms we do see evidence for a polynomial speed up for this model
over classical mixing. These algorithms also prepare the same encoding of
|πG(β)〉 as our adiabatic based algorithm and therefore also allow to sam-
ple from the distribution at 2β. For these algorithms we also see a time
complexity transition at the point where the quantum algorithms would
allow to sample from the classically hard regime. For all three algorithms
for preparation of |πG(β)〉 there seems to be the same time complexity
transition at the point where measuring |πG(β)〉 would allow to sample
from the classically hard regime. Presence of this behaviour for all three
quite different algorithms further points to an underlying connection be-
tween sampling from |πG(β)〉 and classically sampling from πG(2β).

In section 3.2.1 we offered an argument for why an exponential speedup
using this state encoding is unlikely, however, this does not disprove the
existence of an algorithm that does offer an exponential speedup. We
looked at a straightforward preconditioning scheme to see if that offers
potential for a further speedup however that is not present in our results.

4.2 Outlook

The main open question is whether the quadratic speedup over classical
mixing by preparing this state encoding found here for the uniform zero-
field Curie-Weiss model extends to Gibbs sampling for other classical sys-
tems. To explore this numerical analysis could be performed for more
models. A difficulty is that for many systems the scaling of the mixing
time at low dimensions of the system size is dominated by finite-size ef-
fects. For the uniform zero-field Curie-Weiss model we circumvented this
by using the symmetric subspace projection, however, for most systems
that is not possible. To make a more general (analytical) statement on the
possibility of a general quadratic speedup for Gibbs sampling we would
need to find an expression for the second lowest singular value or condi-
tion number of 1 − PG(β). This is a challenging problem even if all the
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singular values of PG(β) are known.

We proposed to use the state encoding for sampling from Gibbs distri-
butions. The main advantage of applying this to Gibbs distributions is
that there we have an interpretation of the squared distribution. The al-
gorithms proposed here could also be used to sample from the stationary
distribution of more general stochastic matrices, however, there we have
no interpretation for the squared distribution making comparison to clas-
sical algorithms difficult.

In this work we looked at applications of the encoding we defined for
Gibbs sampling. There are other places where this encoding could be rel-
evant. When we have a distribution with one element given by 1/

√
2N

and uniform elsewhere the squared version of this distribution gives the
marked element with constant probability 1/2 (see appendix A.2 for more
details). Here the original distribution offers no information on the marked
element in the large N limit where the squared distribution gives the marked
element with constant probability. This could potentially be used in rela-
tion to oracular problems.

4.3 Conclusions

We introduced a novel quantum algorithm to prepare an encoding of the
Gibbs distribution through adiabatic state preparation of an encoding of
the +1 eigenvector of a stochastic matrix P. We found that measuring this
encoding of the Gibbs distribution at inverse temperature β to be equiv-
alent to sampling from the Gibbs distribution at 2β. We found that adia-
batic preparation of this encoding of the +1 eigenstate to be quadratically
faster compared to classical mixing for the uniform zero-field Curie-Weiss
model. We also looked at two algorithms from Orsucci (2019) [1] and ex-
tended the analysis and numerical results therein. We found that the in-
dications of an exponential speedup presented there to not be present at
higher N however an indication of a polynomial speedup over classical
mixing remains. We conjectured that the presence of a normalisation fac-
tor of 1/Z(2β) might fundamentally limit the potential for speedup for
algorithms based on this state encoding.
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Cincio, and Patrick J. Coles. Variational quantum linear solver. 2020.
arXiv:1909.05820.

[32] A. M. Childs, R. Kothari, and R. D. Somma. Quantum algorithm
for systems of linear equations with exponentially improved depen-
dence on precision. SIAM J. Comp., pages 1920–1950, 2017.

[33] L. Wossnig, Z. Zhao, and A. Prakash. Quantum linear system algo-
rithm for dense matrices. Phys. Rev. Lett., 5, 2018.

[34] Changpeng Shao and Hua Xiang. Quantum circulant preconditioner
for a linear system of equations. Phys. Rev. A, 98, 2018.

[35] Edmond Chow. A priori sparsity patterns for parallel sparse approx-
imate inverse preconditioners. SIAM J. Sci. Comput., 21(5):1804–1822,
2006.

52



BIBLIOGRAPHY 53
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Appendix A
Extended Mathematical
Arguments

A.1 Extended Optimisation Adiabatic Condition

In the main work we use the approximate adiabatic condition to optimize
the time complexity of the adiabatic algorithm to a linear dependence on
the smallest inverse gap along the path. Here we will show this result also
holds when considering a more rigorous version of the adiabatic condi-
tion. We will be adapting the work done in Jansen, Seiler & Ruskai (2007)
[51] to our algorithm.

In [51] it is shown that the adiabatic condition

| 〈Ei(T)|ψ(T)〉 |2 ≥ 1− ε(T)2 (A.1)

holds when ε(T) satisfies

ε(T) ≤ 1
T

m||Ḣ||
∆2

∣∣∣∣
u.b.

+
1
T

∫ T

0

(
m||Ḧ||

∆2 + 7m
√

m
||Ḣ||2

∆3

)
dt (A.2)

with ∆ the eigenvalue gap at a point in the adiabatic evolution and m the
degeneracy of the eigenstate of H(t) we want to remain close to. We use
the notation f |u.b. = f (0) + f (1). Here we have a Hamiltonian

H(t) = (1− g(t))H0 + g(t)H1 (A.3)
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and we assumed that the gap along the path is of the form

∆(g(s)) = A− (A− B)g(s) , (A.4)

where for our problem A is second lowest singular value of 1− PG(0) and
B the second lowest singular value of 1− PG(β) for some β. Now we want
to find a function f that is the solution of

g(0) = 0 (A.5)
ġ(t) = k∆p(g(t)) (A.6)

k =
∫ T

0
∆−p(t)dt (A.7)

with p a parameter we want to optimise. From this we get

Ḣ(s) = k∆p(g(t))(H1 − H0) (A.8)

Ḧ(s) = k2∆2p−1(g(t))∆̇( f (s))(H1 − H0) (A.9)

Now we want to plug this all into equation A.10 and see ||H1 − H0|| ≤ 2
to write

ε(T) ≤ 1
T

m||Ḣ||
∆2

∣∣∣∣
u.b.

+
1
T

∫ T

0

(
m||Ḧ||

∆2 + 7m
√

m
||Ḣ||2

∆3

)
(A.10)

≤ 2k
T

(
∆p

∆2

∣∣∣∣
u.b.

+
∫ T

0

[
2k∆2p−1(g(t))|∆̇(g(t))|

∆2(g(t))
+

28k∆2p(g(t))
∆3(g(t))

])
(A.11)

=
2k
T

(
∆p−2

∣∣∣
u.b.

+
∫ T

0

[
2k∆2p−3(g(t))|∆̇(g(t))|+ 28k∆2p−3(g(t))

])
(A.12)

=
2k
T

(
∆p−2(0) + ∆p−2(1) +

∫ 1

0

[
2∆p−3(u)|∆̇(u)|+ 28∆p−3(u)

])
(A.13)

where we used the change of integration variables u = g(t) in the last
line. For our problem we are interested in cases where ∆(1)� ∆(0) so for
1 < p < 2 we get ∆p−2(0) + ∆p−2(1) = O(∆p−2(1)) = O(∆p−2

min ). We also
observe that
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∫
∆−p(u)du =

∫
(∆(0)− (∆(0)− ∆(1))u)−pdu (A.14)

=
∆(u)1−p

(p− 1)(∆(0)− ∆(1))
+ c (A.15)

with c the integration constant. We therefore get

∫ 1

0
∆−p(u)du =

∆(1)1−p − ∆(0)1−p

(p− 1)(∆(0)− ∆(1))
(A.16)

Now when p > 1 we have ∆(1)1−p � ∆(0)1−p so
∫ 1

0 ∆−p(u)du = O(∆1−p
min ) =

k. Since ∆(s) is strictly deceasing we can also show that
∫ 1

0 ∆p−3(u)|∆̇(u)| =
O(∆p−2

min ). Combining this gives

ε(T) ≤ O(T−1∆1−p
min ∆p−2

min ) = O(T−1∆−1
min) (A.17)

So the adiabatic time is O(ε−1∆−1
min) which confirms the result we got using

the approximate adiabatic condition.

A.2 Marked Distribution Squared

In this thesis we looked at sampling from the squared distribution where
the original distribution is the Gibbs distribution. There are other circum-
stances where the distribution doubling could be useful. We could look
at sampling from the distribution with 2N elements and one marked ele-
ment s with the other elements uniform, i.e. the distribution with elements
given by

πs =
1√
2N

πother =
1− 1√

2N

2n − 1
.

The marked element of the squared distribution is then given by

(π2)s =
1

2N

1
2N + ∑i 6=s

(1− 1√
2N

)2

(2N−1)2

=
2N − 1

2N − 1 + (
√

2N − 1)2
.
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In the N → ∞ limit this goes to

lim
N→∞

2N − 1

2N − 1 + (
√

2N − 1)2
= lim

N→∞

d
dN 2N

d
dN 2N + 2(

√
2N−1)

2
√

2N
d

dN 2N
.

For N → ∞ this goes to 1
2 , so here limN→∞(π2)s = 1

2 . So in this con-
text the original distribution gives the marked element with exponentially
decreasing probability where the squared distribution gives the marked
element with constant probability.

A.3 Expression for Ptmix

In the main text we claimed that Pk ≈ Q with P an irreducible and ape-
riodic column stochastic matrix and k ≥ tmix with tmix the mixing time of
the stochastic matrix. Here Q was defined as a matrix where every column
is equal to the stationary distribution of P.

When P is irreducible and aperiodic we are guaranteed to converge to
within total variation distance ε of the stationary distribution π

d(Pkb, π) ≤ ε (A.18)

for any probability vector b when k ≥ tmix. So the matrix Pkb can be
approximated by the matrix that maps every probability vector to the sta-
tionary distribution. We want to find the matrix Q such that

Qb = π . (A.19)

Writing elements of Q as qi,j gives


q1,1 q1,2 . . . q1,n
q2,1 q2,2 . . . q2,n

...
... . . . ...

qn,1 qn,2 . . . qn,n




b1
b2
...

bn

 =


π1
π2
...

πn

 , (A.20)

which can be written as
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
q1,1b1 + q1,2b2 + . . . + q1,nbn
q2,1b1 + q2,2b2 + . . . + q2,nbn

...
qn,1b1 + qn,2b2 + . . . + qn,nbn

 =


π1
π2
...

πn

 . (A.21)

This should hold for any stochastic matrix b. This can be solved by setting
every column of Q equal to π which gives


π1b1 + π1b2 + . . . + π1bn
π2b1 + π2b2 + . . . + π2bn

...
πnb1 + πnb2 + . . . + πnbn

 =


π1(b1 + b2 + . . . + bn)
π2(b1 + b2 + . . . + bn)

...
πn(b1 + b2 + . . . + bn)

 =


π1
π2
...

πn

 ,

(A.22)

which is what we wanted to show.
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Appendix B
Other Examples Adiabatic
Evolution Stochastic Matrices

In the main text we proved theorem 3.1 and showed numerical results that
give an indication that a similar result holds for the stochastic matrix cor-
responding with Glauber dynamics for the uniform zero-field Curie Weiss
model. In this appendix we give some other instances where numerical re-
sults give an indication of the possibility that theorem 3.1 holds for more
stochastic matrices. We first consider the stochastic matrix correspond-
ing to the Metropolis-Hastings algorithm for the uniform zero-field Curie
Weiss model. In figure B.1 we see the gap along the path again seems to
be minimal at the end point.
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Figure B.1: The second lowest singular values of (1− g(t))PG(0) + g(t)PG(β) as a
function of g(t). Here N = 10 and β = 0.7 for the stochastic matrix corresponding
with Glauber dynamics for the uniform zero-field Curie-Weiss model.

We can also consider the stochastic matrix corresponding with the Ising
model on an instance of the 4-regular graphs as discussed in section 3.2.3.
In figure B.2 we see that there the gap along the path also seems to be
minimal at the right most end point.
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Figure B.2: The second lowest singular values of (1− g(t))(1− PG(0))+ g(t)(1−
PG(β)) as a function of g(t). Here N = 10 and β = 0.7 for the stochastic matrix
corresponding with Glauber dynamics for the uniform zero-field Ising model on
an instance of a 10 spin 4-regular graph.

To consider an Ising like model with different behaviour we look at
Metropolis-Hastings for the Random Energy Model. In this N-spin model
each of the 2N possible states has a energy that is randomly chosen from
a Gaussian distribution with the mean at zero and the variance given by
N/2. The evolution for an instance of this model is given in figure B.3, we
see again that the smallest gap is at the end of the evolution.
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Figure B.3: The second lowest singular values of (1− g(t))(1− PG(0))+ g(t)(1−
PG(β)) as a function of g(t). Here N = 10 and β = 0.25 for the stochastic matrix
corresponding with Glauber dynamics for the Random Energy model.

To consider matrices other than Gibbs samplers we need to define a dif-
ferent initial matrix for which we can easily prepare the encoding of the
stationary distribution. We do this by defining the uniform stochastic
matrix U which has the uniform distribution as the stationary distribu-
tion. We now consider the interpolation from U to a maximally dense (see
figure B.4) and maximally sparse (see figure B.5) random stochastic ma-
trix. Where we define the maximally dense random stochastic matrix as a
stochastic matrix where every element is non-zero and chosen randomly
from a distribution and the maximally spares random stochastic matrix as
a matrix where every column has one element uniformly randomly cho-
sen and set to one. We see that for both the gap along the path also seems
to be minimal at the right most end point.
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Figure B.4: The second lowest singular values of (1− g(t))(1−U) + g(t)(1− P)
as a function of g(t). Here P is a maximally dense random stochastic matrix of
dimension n = 210.
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Figure B.5: The second lowest singular values of (1− g(t))(1−U) + g(t)(1− P)
as a function of g(t). Here P is a maximally sparse random stochastic matrix of
dimension n = 210.
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