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Abstract

Quantum phase estimation is a cornerstone in quantum algorithm
design, allowing for the inference of eigenvalues of exponentially-large
sparse matrices. The maximum rate at which these eigenvalues may be
learned, –known as the Heisenberg limit–, is constrained by bounds on

the circuit depth required to simulate an arbitrary Hamiltonian.
Single-control qubit variants of quantum phase estimation have garnered

interest in recent years due to lower circuit depth and minimal qubit
overhead. In this work we show that these methods can achieve the

Heisenberg limit, also when one is unable to prepare eigenstates of the
system. Given a quantum subroutine which provides samples of a ‘phase

function’ g(k) = ∑j Ajeiφjk with unknown eigenvalue phases φj and
probabilities Aj at quantum cost O(k), we show how to estimate the

phases {φj} with accuracy (root-mean-square) error δ for total quantum
cost T = O(δ−1). Our scheme combines the idea of Heisenberg-limited

multi-order quantum phase estimation for a single eigenvalue phase
[1, 2] with subroutines with so-called dense quantum phase estimation
which uses classical processing via time-series analysis for the QEEP

problem [3] or the matrix pencil method. For our algorithm which
adaptively fixes the choice for k in g(k) we prove Heisenberg-limited
scaling when we use the time-series/QEEP subroutine. We present

numerical evidence that using the matrix pencil technique the algorithm
can achieve Heisenberg-limited scaling as well.

1Technically, we might need up to two qubits – see the note under Lem. 2.3.2.
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Chapter 1
Introduction

Quantum computers should be used to simulate nature efficiently. This
idea was suggested by Feynman as early as 1980s [4], long before quan-
tum computers came to be. We now live the exciting times that see the
first quantum computers come to life. In the last year we reached the
milestone of a quantum device running a calculation that could not be
performed using any classical algorithm at the time [5]. This comes with a
promise of quantum advantage – solving unsolved practical problems in
e.g. chemistry and condensed matter physics.

To achieve quantum advantage in the near term, it is crucial to focus
on designing clever quantum algorithms. This is because current ”Noisy
Intermediate Scale Quantum” (NISQ) devices are limited in size and sub-
ject to noise, which limits the depth of practically realisable algorithms
[6]. Thus, problems to solve must be carefully selected and the algorithms
have to be tailored to the (prospectively) available quantum processors.

Quantum Phase Estimation (QPE) has been a cornerstone of quantum
computing since the beginning of the field. It is the foundation of the
quantum part of Shor’s ground-breaking algorithm [7] and other known
algorithms that provide exponential speedup over their classical analogues
[8, 9]. While the original algorithm is thought to be infeasible on NISQ de-
vices, in the last years a lot of interest has been drawn to its less costly
versions. In this work, we focus on an algorithm that is more suited for
near-term use. We design a classical post-processing scheme that is prov-
ably asymptotically optimal in the estimation precision.
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2 Introduction

1.1 Digital Quantum Simulation

The term quantum simulation refers to using a quantum computer to study
a model quantum system. It was the first task suggested for quantum com-
puters [4] and remains one of the most promising directions for quantum
computing nowadays. This suggestion was motivated by the fact that the
number of parameters needed to describe the state of a quantum system
grows exponentially with the number of particles. As a consequence, sys-
tems larger than around 50 particles cannot be classically simulated on
even the world’s largest supercomputers [6]. In contrast, because quan-
tum computers store data as quantum states, the number of qubits needed
scales linearly with the simulated system size.

A fundamental problem in quantum simulation is mimicking the dy-
namics of another quantum system. More precisely, Hamiltonian simulation
is defined as the task of approximating the unitary evolution generated by
a Hamiltonian H, given a classical description of H. As even merely writ-
ing down the matrix elements of the unitary operation is exponentially
difficult, this task is expected to be in general intractable for classical com-
puters. Conversely, in 1996 Lloyd showed that any open or closed sys-
tem whose dynamics is determined by local interactions can be efficiently
modeled on digital quantum computers [10]. The core of the method is
time-slicing (dividing the evolution into discrete time steps) and noting
that for sufficiently short times the unitary can be easily approximated
(e.g. using the Trotter-Suzuki decomposition [11] or randomised compila-
tion [12]). The method was improved in the next few years [13, 14]. It was
shown that computation time has to scale at least linearly with the evolu-
tion time [15]. In 2017, Low and Chuang formulated lower bounds on the
cost of Hamiltonian simulation and designed an optimal algorithm using
the framework of quantum signal processing [16].

After successfully implementing time evolution, we need to find a way
to extract relevant physical information. Hamiltonian simulation on its
own is not practically useful, as its output is a quantum state that takes ex-
ponential space to store on a classical computer. Algorithms have been de-
scribed and experimentally implemented to obtain many different quan-
tities. In the field of quantum chemistry, important properties include
molecular energies [17–25] and their derivatives such as polarisability or
magnetisability [26], with which we can classically calculate activation en-
ergies, equilibrium bond lengths, and reaction paths. In condensed matter,
we wish to learn e.g. dynamic properties such as correlators [27], expecta-
tion values at finite energies and for micro- or macrocanonical ensembles
[28]. The main focus of high energy physics is on scattering amplitudes

2
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1.2 Complexity theory 3

[29] and cross sections [30].
Digital quantum simulation has promising applications to many fields

of science. Before the year 2000, Lloyd’s scheme was adapted to simulate
non-interacting fermions [31], nonrelativistic many-body systems [13, 32]
and equilibration to the Gibbs state [33]. Subsequently, it was applied
to electronic structure Hamiltonians [17, 18], and experimentally imple-
mented for small molecules [22–26, 34–36], condensed matter systems [27,
37, 38] and quantum magnets [34, 39]. One of the holy grails in the field,
that could result in reducing the world energy usage by up to 3%, is sim-
ulation of FeMoCo (FeMo cofactor of the Nitrogenase enzyme) and so far
remains beyond our reach [21, 40]. We hope that in the future quantum
computers will help to improve efficiency of chemical reactions of indus-
trial importance, design new pharmaceuticals, and efficiently collect solar
energy [6].

1.2 Complexity theory

Computational complexity theory aims to classify computational prob-
lems based on their difficulty – the amount of resources, such as compu-
tational time, needed to solve them on a particular computational model.
Problem refers to the abstract task to be solved, that can be viewed as an
infinite set of instances – inputs of variable size, with solutions for every in-
stance. For example, the instances of the Hamiltonian simulation problem
are particular local Hamiltonians, whose size is measured by the num-
ber of particles they describe, and the solutions are descriptions of quan-
tum circuits that implement the time evolution up to the desired precision.
There are many types of computational problems: search problems, opti-
misation problems, sampling problems. A collection of problems of the
same type that require similar resources is called a complexity class.

The fundamental complexity classes, P (Polynomial time) and NP (Non-
deterministic Polynomial time), consist of decision problems, for which the
answer is either yes or no. They are usually represented as formal lan-
guages. A language L over an alphabet Σ is a subset of the set Σ∗ of all
finite strings of symbols from Σ (usually Σ = {0, 1} and Σ∗ are binary rep-
resentations of integers). Every element of Σ∗ represents an instance of the
problem, and the problem is encoded as the set L ⊂ Σ∗ of all instances for
which the answer is yes. This type of problems is particularly important
because every computational problem can be reformulated as a number
of decision problems (for example, if the answer to the original problem is
an integer, we may ask for each bit of its binary representation).
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4 Introduction

The class of problems thought to be feasible on a quantum computer
is called BQP (Bounded-error Quantum Polynomial time). It is a set of
decision problems such that there exists a polynomial size quantum circuit
that decides whether x ∈ L with probability at least 2/3. We often use
an equivalent generalised definition, including all types of computational
problems that can be solved by a quantum computer in polynomial time
with a fixed probability of error [41, 42].

While BQP can be thought of as a quantum equivalent of the class P,
a quantum analog of NP is called Quantum Merlin Arthur (QMA). It is
defined as a set of decision problems for which there exist polynomial-
time quantum verifiers: quantum circuits that take as an input x and an
additional quantum state (called a quantum proof ), such that if x ∈ L there
exists a proof for which the verifier outputs 1 with high probability, and if
x /∈ L the verifier outputs 0 with high probability for any proof [42]. It is
known that P ⊆ BQP ⊆ QMA ⊆ PSPACE [43].

Every complexity class contains the subset of ”hardest” problems, such
that finding a polynomial-time algorithm for any of them gives polynomial-
time algorithms for all problems in the class. More precisely, a problem L
is called BQP-hard if every problem in BQP can be reduced to it, i.e an
algorithm that solves L can be adapted to solve any problem in BQP with
a small overhead. If moreover L ∈ BQP, then L is called BQP-complete.

Identifying which problems are easy or hard to solve on a quantum de-
vice is crucial to understand the power and limitations of quantum com-
puting. A problem that is well known to be feasible is Hamiltonian simu-
lation [10], described in section 1.1. On the other hand, the first problem
proven to be hard (more specifically QMA-complete) was the local Hamil-
tonian problem – finding the ground energy of a local Hamiltonian [44].
Further research in this area could determine whether quantum comput-
ers are strictly more powerful than classical computers and help to prove
important conjectures in complexity theory, such as P 6=NP.

Complexity theory is mostly concerned with polynomial versus expo-
nential separation. On the contrary, in practice polynomial improvements,
or even reduction of constant factors, may be significant in the field. In
particular, the focus of this thesis is on a quadratic speedup. It was re-
cently shown that quantum algorithms that only quadratically outperform
their classical counterparts are unlikely to lead to quantum advantage [45].
However, in this thesis we compare two quantum algorithms and there-
fore achieving quadratic speedup is certainly worthwhile.

4
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1.3 Quantum Metrology 5

1.3 Quantum Metrology

Quantum metrology is the study of making optimal measurements by ex-
ploiting quantum phenomena such as entanglement [46]. It seeks to find
fundamental limits on what precision is achievable when our resources,
such as computation time or number of samples, are finite – bounded by
N, and design experiments that saturate these limits. Specifically, the fo-
cus is often on the estimation rate i.e. the scaling of precision with N in the
limit of large N and the goal is to achieve accuracy beyond the O(N−1/2)
bound imposed by the central limit theorem, termed sampling noise limit or
standard quantum limit (SQL). The best achievable scaling is known to be
O(N−1); it is called the quantum metrology limit (QML) or Heisenberg limit
[47] as it is derived from the generalised Heisenerg uncertainty relations.

Uncertainty relations are intrinsic to the formalism of quantum me-
chanics, the most celebrated example being the position-momentum un-
certainty principle. In the early days of quantum mechanics, time and en-
ergy were believed to be related in the same way. That would mean that to
estimate energy up to precision ∆E we need our experiment to last at least
O(1/∆E) – the Heisenberg limit. This reasoning is not rigorous, as time
is not an operator in quantum mechanics. Already in 1960 Aharonov and
Bohm gave an example of a situation where this principle can be violated
to an arbitrary extent [48].

The term ”Heisenberg limit” has been used since the 1990s in the field
of interferometry [49]. In this context, it relates two conjugate variables:
the number of photons N and the accuracy of estimation of the phase of
light φ, introduced when the light passes through the studied sample. It
can be easily derived from the uncertainty principle for these variables
∆φ∆N ≥ 1/2: if the number of photons in an experiment is bounded by
N, then clearly ∆N ≤ N/2 and so ∆φ ≥ N−1 [50–52]. This scaling can be
achieved, for instance, by using squeezed states of light, while for classical
states such as coherent light we get the sampling limit ∆φ ∈ O(N−1/2) [50,
51]. However, this derivation is again not strict due to the phase operator
being ill-defined. In fact, there exist states of light for which ∆φ ∈ O(N−2)
– seemingly enabling sub-Heisenberg estimation [51, 53].

These discrepancies revealed the need for a more precise framework
[50, 54, 55]. In Ref. [50], conditions were defined on validity of the Heisen-
berg limit. Firstly, appropriate accuracy measures have to be chosen that
correctly take into account contributions from unlikely data [1, 50, 55]. Sec-
ondly, no prior information about the phase can be used [49, 50]. If either
of those conditions is breached, sub-Heisenberg limits can be achieved
[49, 52, 53].
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6 Introduction

The aforementioned studies revealed that temporal and physical re-
sources can be exchanged: using N photons is the equivalent of a single
photon passing through the sample N times. These ideas can be unified
by counting ’total number of passes’ as a resource, allowing physical sys-
tem that give mathematically identical results to be treated by the same
formula. [1, 54]. This framework also encompasses digital quantum phase
estimation (which is the main focus of this thesis and described in Sec. 1.4)
– a single pass through the phase shift is equivalent to a single application
of the unitary operator whose parameters we aim to estimate. In Ref. [47],
Atia and Aharonov show that the time-energy uncertainty relation holds
for unknown Hamiltonians, if the time is replaced by the computational
complexity of simulating the measurement, linking back to the origins of
the formula.

Optimal algorithms for phase estimation have been proposed in the
late 2000s, both in the framework of interferometry [50, 56] and digital
quantum computing [55]. Unfortunately, these algorithms were difficult
to implement in practice. Quantum metrology in the last 10 years has been
focused on designing algorithms that are both practical and efficient. A lot
of research has been done on how to beat the classical limit without using
entanglement [1, 24, 28, 57–59], as entangled states are usually very costly
to prepare. It was shown that this goal does not require not only entangled
states, but also pure states [60, 61]. Another obstacle is decoherence in-
duced by the environment; surprisingly, it was demonstrated that in some
cases it can be used to enhance measurement accuracy [62, 63]. Other stud-
ies have shown that the presence of depolarising noise decreases the pre-
cision, but can be compensated for [2, 19, 64]. Realistic noise, however,
might degrade our ability to measure [19].

1.4 Quantum Phase Estimation

The task of Quantum Phase Estimation (QPE) is to estimate the eigen-
phases of unitary operator U, given access to a quantum circuit that imple-
ments U. Most QPE algorithms are based on phase kickback – introducing
an additional qubit register (called the ancillary register or control register),
that can control U’s action on the original register (called the system regis-
ter). Controlled operations are used to encode information about U on the
control register, so that the eigenphases can be learned by tomography of
the ancillary qubits.

QPE is a basic building block of quantum algorithms. Many of them,
including Shor’s ground-breaking factoring algorithm [7] consist only of

6
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QPE and classical calculations. QPE plays a central role in quantum simu-
lation. It has mostly been proposed to determine eigenenergies [17, 18, 21–
24, 65], but can also be adapted to calculate mean values [66] and en-
ergy derivatives [26] or prepare thermal equilibrium states [33, 67]. Most
known quantum algorithms that achieve exponential speedups, such as
order finding, period finding, discrete logarithm, Deutsch-Jozsa algorithm,
quantum counting, linear equations [43], use QPE as their quantum sub-
routine.

QPE was from the very beginning described as a universal framework
to design quantum algorithms. The first paper formally introducing QPE
[8] in fact describes the much more general Hidden Subgroup Problem
(HSP) [43]. Instances of the HSP include many important problems in
Mathematics and Computer Science, such as graph isomorphism and prime
factorization [8, 43]. It has even been suggested that all problems for
which exponential quantum speedup is possible can be reduced to the
HSP [43]. In Ref. [8] Kitaev gave an efficient algorithm to solve the HSP
for all abelian groups – the Abelian Stabiliser Problem (ABS), which can be
easily mapped to phase estimation [9]. The idea of QPE’s universality was
formalised later by proving that a sampling variant of phase estimation is
a BQP-complete problem [41], as described in detail in Sec. 2.1.

The first algorithm for QPE was proposed by Kitaev in 1995 [8] in the
context of ABS. In 1998, Cleve, Ekert, Macchiavello and Mosca adapted it
to the task of estimating arbitrary phases [9] and formulated in the way
that is commonly used to this day [43]. This standard algorithm uses an
n-qubit control register to estimate the first n bits of the phase. As the
correct estimate is returned with high probability, the algorithm appears
to achieve the Heisenberg limit. However, as first pointed out in Ref. [1], if
contributions from outlying data are correctly included, one only gets the
sampling noise limit.

Although the standard algorithm uses an n-qubit register, Kitaev sug-
gested in 1997 that one can use multiple preparations of a single control
qubit and classical calculations instead (so-called iterative QPE) [44, 68].
This class of QPE algorithms is much more practical – the first works fo-
cused on it, published in 2000s by Higgins et al., already included exper-
imental demonstrations [1, 57]. Moreover, these schemes were proven to
be Heisenberg-limited. They were further improved [2, 64, 69] and shown
to be robust against noise [2, 64]. Recently, it was found that, for cer-
tain classes of Hamiltonians, no ancillary qubits or control operations are
needed [28, 59].

Most analyses of single-control QPE were done with an unpractical
assumption that we can prepare exact eigenstates of the unitary U. In
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8 Introduction

Ref. [19] it was demonstrated numerically that this requirement is unnec-
essary; one may infer single eigenvalues from mixed or superposed ini-
tial eigenstates using a single ancilla qubit and standard classical signal
processing techniques [70]. By a clever adjustment of the quantum phase
estimation problem to target estimation of the spectral function, Eq. (2.14),
of the input state, Ref. [3] was able to prove rigorous results, with bounds
that were subsequently improved in Ref. [71]. Due to the need to ‘densely
sample’ the phase function g(k) = ∑j Ajeiφjk (i.e. drawing samples at
k = 0, 1, . . . , K as opposed to k = 2d used by textbook QPE), and a lack
of optimization of the classical post-processing techniques, these schemes
failed to achieve the Heisenberg limit. This year, the first algorithms were
published that aim to estimate multiple phases with a single ancilla qubit
at Heisenberg limit – Ref. [72] demonstrated numerical evidence for ac-
complishing this task, and the algorithm of Ref. [73] was shown to achieve
Heisenberg scaling up to polylog factors. However, providing a rigorous
solution that removes these log factors remains an open problem.

1.5 In this work

In this work, we demonstrate single-control qubit quantum phase esti-
mation at the Heisenberg limit. We extend the methods used in Refs. [1,
2] that obtain Heisenberg-limited scaling for single eigenphases to the
multiple-phase setting by the use of a multi-order scheme and phase match-
ing subroutines between different orders. We show that to make this phase
matching unambiguous requires the sampling scheme to be adaptive, i.e.
the next choice for k of g(k) depends on the current phase estimates. At
each order the multi-order algorithm requires input from a dense phase
estimation method: for a given order k we use samples from g(kk) with
k = 0, 1, . . . , K. Using the time-series or QEEP analysis of Ref. [3] as
classical processing subroutine, we are able to obtain a rigorous proof of
Heisenberg-limited scaling of our multi-order scheme. Using the matrix
pencil method analysed in Ref. [19], as such a dense subroutine, we are
able to show numerical results consistent with the Heisenberg limit, with
a performance improvement over the time-series analysis results.

In essence, our work is concerned with what choices of k in g(k) and
what classical processing are needed to enable Heisenberg-limited scal-
ing, i.e. scaling which minimizes the total number of applications T of
(controlled) U given a targeted error δ with which to estimate multiple
eigenvalue phases of U present in some input state |Ψ〉. It can thus be
viewed as purely solving a problem of classical signal processing. This

8

Version of July 23, 2021– Created August 4, 2021 - 18:05



1.5 In this work 9

does not mean that such questions are trivial: for example, the question
of how to estimates phases if one is allowed to only get single samples
from g(k) for a set of randomly chosen k relates to the dihedral hidden
subgroup problem in quantum information theory [74].

1.5.1 Outline

Chapter 2 provides the necessary background to understand our new re-
sults. It is concerned with the case we only wish to estimate a single eigen-
phase. We describe in detail the textbook QPE algorithm of Ref. [9, 43]
and evaluate its performance. We split phase estimation into quantum
and classical parts and give quantum circuits to perform the quantum part
with a single control qubit. We calculate information theoretic bounds on
the estimation precision with given resources. We present the algorithm of
Ref. [2] that estimates a single eigenvalue with one ancilla qubit at Heisen-
berg limit.

In chapter 3 we present our results. We begin by defining the problem
that we aim to solve, i.e. estimation of multiple eigenvalues. We present
the algorithm of Ref. [3] that targets a similar task and adapt it to serve as
a subroutine for our multi-order scheme. We discuss the problems with
estimating multiple phases and how we circumvent them. We define our
algorithm and prove that it achieves the Heisenberg scaling. We demon-
strate the scaling numerically for two different subroutines – the rigorous
one based on Ref. [3], and a more practical one using matrix pencil method
of Ref. [19].

In chapter 4 we discuss the results and propose possible ways to im-
prove our scheme.

Version of July 23, 2021– Created August 4, 2021 - 18:05
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Chapter 2
Quantum Phase Estimation

The goal of this chapter is to present the known results about Quantum
Phase Estimation. In Sec. 2.1 we define a sampling variant of phase esti-
mation (Def. 2.1.1) and show that it is a BQP-hard problem (Thm. 2.1.3).
In Sec. 2.2, we present the best known algorithm for QPE and its perfor-
mance in the case where we want to estimate a single phase and are able
to prepare the corresponding eigenstate. We show the naive reasoning
that suggests this algorithm achieves the Heisenberg scaling, and that with
a correct choice of accuracy measure it only achieves the sampling-noise
scaling. In Sec. 2.3 we separate the quantum part of a phase estimation
problem, namely sampling of the phase function g(k) (Eq. (2.13)) given
an input unitary U and input state |Ψ〉 in Definition 2.3.3 through run-
ning some quantum circuits, and the classical processing of samples from
g(k) to extract the eigenvalue data of U. We prove several Cramer-Rao
bounds on the scaling of the error versus the total quantum cost for the es-
timation of a single eigenvalue phase (Thm. 2.4.1). We state the previous
result on getting Heisenberg-limited scaling for a single eigenvalue phase
(Alg. 2.5.1).

2.1 BQP-hardness

The problem of phase estimation is BQP-hard – every problem in BQP can
be reduced to this problem. In order to prove this, we define a sampling
variant of phase estimation, as in Ref. [41]:

Definition 2.1.1 (Phase Estimation Sampling, PES). Let U be a unitary acting
on an n-qubit register, described by a poly(n)-size quantum circuit. Suppose
the eigenvalues of U are λj = eiφj and the corresponding eigenstates are

∣∣φj
〉
.
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12 Quantum Phase Estimation

Given an estimation precision ε = Ω(1/poly(n)), a sampling error probability
1 − p = Ω(1/poly(n)) and a polynomial size circuit that prepares an initial
state |Ψ〉, return an estimate of φj up to ε with probability at least p|〈Ψ

∣∣φj
〉
|2.

We also need a rigorous definition of BQP-hardness.

Definition 2.1.2 (BQP [42]). A language L is in BQP if and only if there exists a
polynomial-time generated family of quantum circuits {Qn : n ∈N}, such that

1. for all n ∈ N, Qn takes n input qubits (the circuit Q|x| is applied to the
state |x0...0〉) and produces one output qubit.

2. For all x ∈ L, the probability of measuring 0 on Q|x|(x) is < 1
100 .

3. For all x /∈ L, the probability of measuring 1 on Q|x|(x) is < 1
100 .

We note that BQP is usually defined for error probability 1/3 instead
of 1/100. However, it is a standard result from complexity theory that
these definitions are equivalent [42]. We use the above definition for con-
venience.

Theorem 2.1.3. [PES is BQP-hard] For every L ∈ BQP there exists a polynomial-
time generated family of quantum circuits {Un : n ∈N}, ε, p ∈ (0, 1) such that
running PES with U = U|x|(x), |Ψ〉 = |0〉⊗n, precision ε and sampling error
probability 1− p decides whether x ∈ L with probability at least 2/3.

Proof. Let L ∈ BQP, and let {Qn} be as described in Def. 2.1.2. Without
the loss of generality, we can assume the decision is made by measuring
the first qubit. We can write the state Q|x| |x0...0〉 as α0 |0〉 |ψ0〉+ α1 |1〉 |ψ1〉
for some α0, α1 and |ψi〉 – some state on the other qubits. Then |αi|2 is
the probability of measuring i = 0, 1 on the first qubit. If x ∈ L, then
|α0|2 < 1/100, and if x /∈ L, then |α1|2 < 1/100.

Now we construct the following circuit Un:

Qn

Z

Q†
n...

...

It is obvious that since {Qn} is polynomial-time generated, {Un} is also
polynomial-time generated. We have

U|x| |x0...0〉 = Q†
|x| (α0 |0〉 |ψ0〉 − α1 |1〉 |ψ1〉) = (2.1)

= + |x0...0〉 − 2α1 |1〉 |ψ1〉 (2.2)
= − |x0...0〉+ 2α0 |0〉 |ψ0〉 . (2.3)

12
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2.2 Quantum Phase Estimation Algorithm 13

Hence |x0...0〉 is almost an eigenstate of U|x|, with an eigenvalue +1 or
−1 depending on whether x ∈ L. We can determine which is the case by
running PES with U = U|x|, |Ψ〉 = |x0...0〉, ε = 1/8 and p = 3/4. We
accept x if the output value ϕ ∈ [1/4, 3/4], and reject otherwise. From the
calculation in Ref. [41] we have

P(correct outcome) ≥ p
(

1− |αx,1|2
sin2(π/8)

)
≥ 2

3
. (2.4)

The phase estimation problem turns out to be feasible – it can be solved
on a quantum computer in polynomial time. In the next sections we present
some algorithms that accomplish this task. We evaluate the performance
of these algorithms for a simpler problem than PES. Namely, in the rest
of this chapter we focus on the case where the register is prepared in an
eigenstate of the unitary and we are only trying to estimate a single eigen-
value corresponding to this state.

2.2 Quantum Phase Estimation Algorithm

The most well-known phase estimation algorithm is usually referred to
simply as Quantum Phase Estimation Algorithm (QPEA) [9, 43]. The al-
gorithm uses an n-qubit control register, coupled to the system register
(on which the oracle U acts). It consists of 3 steps, as presented by the
quantum circuit in figure 2.1. First, we create a uniform superposition of
all states of the ancillary register by applying Hadamard gates. Then, we
perform a number of controlled U operations to encode information about
U on the ancillary register. The total number of applications of U is

T =
n−1

∑
k=0

2k = 2n − 1. (2.5)

Finally, we perform inverse Fourier transform on the control register and
measure in the computational basis. If the initial state of the system reg-
ister is an eigenstate of U |φ〉, the state of the ancillary register before the
measurement is ∑2n−1

l=0 αl |l〉, where

αl =
1− ei2nφ

2n
1

1− ei(φ− 2πl
2n )

(2.6)
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14 Quantum Phase Estimation

(see Ref. [43] for details). Measuring the register in state |l〉 results in an
estimate φ̃l = 2πl/2n and happens with probability

|αl|2 =
1− cos 2nφ

4n
1

1− cos (φ̃l − φ)
. (2.7)

For the optimal outcome l∗, we have

1
2π
|φ̃l∗ − φ| < 2−(n+1). (2.8)

As we always have 1− cos(x) < x2/2, the probability of obtaining this
result is

|αl∗ |2 ≥
1− cos 2nφ

4n
4n

π2 =
1− cos 2nφ

π2 . (2.9)

The probability averaged over all possible values of φ is π−2. So with
fixed probability we get an estimate with error < πT−1. This claim can be
made more precise – by using extra qubits we can make this probability
arbitrarily close to 1, while still preserving the O(T−1) scaling [43].

However, as first pointed out in Ref. [57], other uncertainty measures
fail to reach this optimal scaling. To talk about the Heisenberg limit, the
error δ should be quantified by an expectation value of some error func-
tion C(φ̃− φ) over the distribution P(x|φ) of possible measurement out-
comes x, averaged over all possible values of the phase φ:

δ2 = ∑
x

∫ 2π

0
dφP(x|φ)C(φ̃(x)− φ). (2.10)

Other measures do not take into account the contribution of outliers or
make use of pre-existing information about the phase, and therefore do
not necessarily translate into a correspondingly small standard deviation
(on the other hand, the standard deviation can be used to bound all other
commonly used uncertainty measures). Admittedly, if they give a small
value, results from multiple separate measurements can be combined in
an estimate with small standard deviation. However, if the number of the
separate measurements needed is not constant, the scaling is not preserved
[50, 55].

Following Ref. [57], we quantify the error by the square root of the

14
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2.3 Single-ancilla QPE 15

Holevo variance

VH = |〈ei(φ̃−φ)〉|−2 − 1 ≈ 2〈1− cos(φ̃− φ)〉

= 2
2n−1

∑
l=0
|αl|2[1− cos(φ̃l − φ)]

= 2
1− cos 2nφ

4n

2n−1

∑
l=0

1

=
1− cos 2nφ

2n−1 . (2.11)

The average phase uncertainty
√
〈VH〉 = 2(n−1)/2 scales as O(T−1/2),

which is the Standard Quantum Limit. QPEA clearly does not achieve
the Heisenberg limit.

It turns out a similar scheme can achieve not only the optimal scaling,
but even optimal accuracy [55]. The encoding (second) and measurement
(third) steps of QPEA are optimal; we only need to change the first step.
Instead of preparing an equal superposition we need to prepare an op-
timal initial state. The way to find this state for any cost function C is
described in Ref. [55]. However, for commonly used cost functions, this
states are highly entangled and therefore very difficult to prepare. Alter-
natively, we can accomplish the same goal with repeated measurements
of a much simpler circuit, as we will show in the next section.

Figure 2.1: Quantum circuit for QPEA

|0〉 H
· · ·

•

FT†

...
...

|0〉 H •

|0〉 H •

|φ〉 U20
U21 · · · U2n−1 |φ〉

2.3 Single-ancilla QPE

The QPEA calls for one extra qubit in the control register for each bit of the
estimate and requires operations controlled by this large entangled regis-
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16 Quantum Phase Estimation

ter, which makes it infeasible on near-term devices. It has been known
since the 1990s that the control register can be replaced by a single qubit
using classical feedback and re-preparation of the control state [75], also
known as iterative QPE [8, 44]. The algorithms that use a single ancilla
qubit are particularly promising for the NISQ era. They require smaller
quantum processors and circuit depths, and instead off-load part of the
computation to a classical computer. In this section we describe how the
task can be split into the quantum and classical part.

2.3.1 The classical and quantum tasks of phase estimation

One may separate quantum phase estimation into the extraction of a signal
which consists of oscillations at eigenvalue frequencies φj at a chosen time
k, and the processing of this signal to resolve the frequencies. Let us first
define the following:

Notation 2.3.1 (Signal or Phase Function). Let U ∈ U(2N) be an N-qubit
unitary operator, and |Ψ〉 ∈ C2N

an N-qubit state. We label the eigenstates |φj〉
of U by their phase — U|φj〉 = eiφj |φj〉. We can decompose |Ψ〉 in terms of these
eigenstates,

|Ψ〉 = ∑
j

aj|φj〉, (2.12)

and write the probability Aj := |aj|2. We define the phase function – also called
the signal– g(k) for k ∈ R of a state |Ψ〉 under U as

g(k) = ∑
j

Ajeikφj . (2.13)

The spectral function A(φ) is defined as

A(φ) = ∑
j

Ajδ(φ− φj). (2.14)

Note that
∫ 2π

0 dφA(φ) = 1, and g(k) =
∫ 2π

0 dφeikφ A(φ); i.e. the phase function
sets the Fourier coefficients of the spectral function.

Note that one may change seamlessly between the description of a uni-
tary U and its eigenvalues and a Hermitian operator H and its eigenvalues
using the transform U = eiHt for an appropriate choice of t.

One may consider algorithms estimating g(k) at integer k ∈ Z, which
require the quantum circuits using controlled-Uk in Fig. 2.2 with k ∈ Z. In

16
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2.3 Single-ancilla QPE 17

our final Alg. 3.2.1 we will however use k ∈ R. This generalization can be
pulled back to k ∈ Z without additional overhead in a query-based model
via a result from [76]:

Lemma 2.3.2. [76] Fix k ∈ R. Given a quantum circuit that implements a uni-
tary U with circuit depth tU, one may construct a quantum circuit to implement
Uk with error ε with circuit depth bkctU + O

(
log(1/ε)

log log(1/ε)
tU

)
.

Crucially, the additional term is additive, and does not affect the scal-
ing in k. However, the gadget required to implement Uk does require an
additional control bit. (In the case of performing Hamiltonian simulation
U = eiHt this additional control is typically not needed.)

The following task summarizes the quantum subroutine for phase es-
timation which is to be executed with the quantum circuits in Fig. 2.2:

Definition 2.3.3 (Phase Function Estimation, PFE). Let U be an N-qubit uni-
tary operator and |Ψ〉 an N-qubit quantum state. Assume

1. A polynomial-size (in N) quantum circuit implementation of U (condi-
tional on a control qubit) and,

2. A polynomial-size (in N) quantum circuit that prepares |Ψ〉.

Given a parameter k ∈ Z, error ε > 0, and confidence 0 < p ≤ 1 ∈ R, PFE out-
puts an estimate g̃(k) of the phase function g(k) of |Ψ〉 under U, with P(|g̃(k)−
g(k)| ≤ ε) ≥ 1− p with quantum cost T = poly(N)M|k| where M is the num-
ber of repetitions of both experiments in Fig. 2.2 and M = Θ(log(1− p)ε−2)
via a Chernoff bound. Lemma 2.3.2 shows that an identical statement holds when
k ∈ R with cost T scaling as poly(N)M(bkc+ O(1)).

Note that estimating the quantum cost of the subroutine in Def. 2.3.3
as linear in k is consistent with general no-fast forwarding statements [15]
which state that for general Hamiltonians one cannot implement Ut =
exp(itH) in time sublinear in t. It is expected that phase function estima-
tion is hard to do efficiently on a classical computer.

The quantum subroutine for PFE proceeds by executing the circuits in
Fig. 2.2 for a given k. The control qubit is prepared in the 1√

2
(|0〉 + |1〉)

state, and is used to control k applications of the unitary U on the system
register prepared in |Ψ〉. The reduced density matrix of the control qubit
then takes the form

ρ =
1
2

(
1 g(k)

g∗(k) 1

)
. (2.15)

Version of July 23, 2021– Created August 4, 2021 - 18:05

17



18 Quantum Phase Estimation

|+〉 •
X

Uk|Ψ〉
...

...

|+〉 •
Y

Uk|Ψ〉
...

...

Figure 2.2: For an input state |Ψ〉 = ∑j aj
∣∣φj
〉

the probability for the ancilla mea-
surement outcome to be±1 is P(±1) = 1

2 ∑j Aj[1± cos
(
kφj
)
] (left circuit measur-

ing in the X-basis) and P(±1) = 1
2 ∑j Aj[1∓ sin

(
kφj
)
] (right circuit measuring in

the Y-basis).

The phase function g(k) can thus be extracted by state tomography of
the control qubit: one estimates the real and imaginary parts of g(k) =

g(r)(k) + ig(i)(k) by M repetitions of the circuit in Fig. 2.2 and measure-
ments of the control qubit in the X- or Y-basis respectively. We will ignore
any dependence of phase function estimation on N in the rest of the thesis.

2.4 Limits for single-eigenvalue phase estimation

In the previous section we have shown how to accomplish the quantum
part of phase estimation, the generation of the signal function g(k). Now
we approach the classical part – constructing the optimal estimator of
the phase φ given access to the quantum subroutine 2.3.3. We are inter-
ested in how accurately we can estimate the phase with given quantum
resources T, which we quantify by total number of applications of the uni-
tary U – so a single realisation of the circuit in Fig. 2.2 has quantum cost k.
In particular, we focus on the rate of phase estimation – the rate of con-
vergence of the estimation error δ as a function of the quantum resources
used. We will see that to complete this task efficiently, we need to split our
resources wisely, i.e. carefully select the values of k to sample g(k) at. The
following theorem introduces and proves the Heisenberg limit (the opti-
mal rate at which the phases can be learnt), the sampling limit, and the
dense signal limit, which hold depending on how we decide to distribute
our resources.

Theorem 2.4.1 (The Heisenberg, Dense Signal and Sampling Limits). The
(root-mean-square) error δ of an estimator φ̃ of the eigenvalue phase φ employing

18
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2.4 Limits for single-eigenvalue phase estimation 19

the circuits in Fig. 2.2 on a eigenstate of U is always lower bounded as

Heisenberg Limit : δ ≥ cT−1 (2.16)

where T is the quantum cost of implementing the circuits. If we choose to use only
quantum circuits with k = 1, the sampling noise limit holds:

Sampling Noise Limit : δ ≥ T−1/2 (2.17)

If we choose circuits with k = 0, 1, . . . , K with a fixed number of repetitions M
for each circuit we are bound by a so-called ‘dense signal’ limit:

Dense Signal Limit : δ ≥ cT−3/4 (2.18)

In these statements c is some constant.

Proof. Let φ̃ be an estimator of φ which is inferred from the data x. Here
the data x is the string of outcomes of the ancilla qubit measurements for
all the experiments using the left and right circuits in Fig. 2.2. We have

δ2 = ∑
x

P(x|φ)(φ− φ̃(x))2 ≥ I−1(φ), (2.19)

by the Cramer-Rao theorem [77, 78] where the Fisher information is de-
fined as

I(φ) = ∑
x

P(x|φ)
{

∂

∂φ
ln [P(x|φ)]

}2

. (2.20)

Thus I(φ) limits the information we may learn about φ given a dataset
x drawn from P(x|φ) and we can calculate I(φ). Let Mr

k be the number
of experiments, using the circuit with the X measurement, and Mi

k be the
number of experiments using the circuit with the Y measurement with a
certain chosen k. The Fisher information for all independent experiments
together is additive, i.e. I(φ) = ∑k[Mr

k I(φ|k, r)+ Mr
i I(φ|k, i)] with I(φ|k, r)

and I(φ|k, i) the Fisher information of a single experiment. For a single
experiment we can calculate, using Eq. (2.20) and the probability for the
output bit given in Fig. 2.2, that I(φ|k, r) = I(φ|k, i) = k2 and thus

I(φ) = ∑
k

k2(Mr
k + Mi

k). (2.21)

At the same time the total quantum cost of all experiments is

T = ∑
k

k(Mr
k + Mi

k). (2.22)
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20 Quantum Phase Estimation

The key insight here is that the relative dependence on k is different be-
tween T and I and this implies that the trend of the number of experimen-
tal runs Mr/i

k as a function of k will affect the maximum rate of estimation.
If we choose only k = 1 and Mr

k=1 = Mi
k=1, we see that δ2 ≥ 1

T which is
the sampling noise limit.

Clearly the biggest value for I(φ) for a given T is obtained when choos-
ing a single largest possible k = K so that T = KMK and I(φ) = K2MK =
T2/MK. This implies the Heisenberg limit, i.e. δ ≥ cT−1 where c is
some constant. If we however make the ‘dense signal’ choice, that is,
Mr

k = Mi
k = M for k = 0, 1 . . . K, then

I(φ) =
M
3

K(K + 1)(1 + 2K), (2.23)

while the total quantum cost is T = MK(K + 1). To leading order in K we

then have δ ≥ I(φ)−
1
2 =

√
3
2 M

1
4 T−

3
4 , which is the dense signal limit.

Remark: We note that a randomized version of the dense signal choice
can potentially scale in Heisenberg-limited fashion [69]. In this method,
one would draw k at random from 1, . . . , K and repeat this S times to gen-
erate random variables k1, . . . , kS and repeat experiments with fixed M for
each such ki. With the right choice of S×M = polylog(K), one can argue,
using the Cramer-Rao lower bound analysis above, that the expected error
E(δ) ≥ polylog(E(T))

E(T) where E(T) is the expected quantum cost.

2.5 Heisenberg-limited algorithm for a single phase

Clearly, the sampling noise limit can be achieved by choosing k = 1 in
the circuits of Fig. 2.2. However, one can ask whether the dense signal-
ing limit or the Heisenberg limit can also be achieved, in particular when
we demand that the efficient classical post-processing is efficient. For the
dense signaling limit one needs a classical method to process the estima-
tions of g(k) at k = 0, 1, . . . , K to estimate φ̃. Using perturbation theory in
the noise, the matrix pencil method has been claimed to achieve this for a
single eigenvalue [79].

Achieving the Heisenberg limit is non-trivial due to phase aliasing: the
phase function g(k) obtained by the experiments using Uk remains invari-
ant if any phase φ is shifted by 2π

k . This implies that a strategy of esti-
mating φ from a single point g(k) at large k will fail unless φ is already
known to sit within a window of width 2π

k . This issue may circumvented

20
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2.5 Heisenberg-limited algorithm for a single phase 21

by sampling g(k) at multiple orders k = 2d to gradually zoom in on φ. To
get Heisenberg scaling, one takes the number of samples M and thus the
confidence to depend on the order, so that the most significant bits of φ
are determined with highest confidence. Methods for doing this were first
introduced in Ref. [1], and improved in Ref. [2] for the purpose of gate
calibration. Here we state the result:

Algorithm 2.5.1 (Heisenberg Algorithm For Single Eigenvalue [1, 2]). Given
an targeted error δ > 0, and numbers α, γ ∈ Z+. The Heisenberg algorithm out-
putting an estimate φ̃ for φ proceeds as follows:

1. Fix d f = dlog2(1/δ)e.

2. For d = 0, 1 . . . , d f :

(a) Use the PFE subroutine, Def. 2.3.3, circuits in Fig. 2.2, to obtain an
estimate g̃(k) of g(k) for k = 2d using Md = α + γ(d f + 1− d)
repetitions of both experiments.

(b) Compute θ̃(d) = Arg[g̃(2d)] ∈ [0, 2π)

(c) If d = 0, set φ̃(0) = θ̃(0).

(d) Else, set φ̃(d) to be the (unique) number in [φ̃(d−1) − π
2d , φ̃(d−1) + π

2d ]
such that

2dφ̃(d) = θ̃(d) mod 2π. (2.24)

3. Return φ̃ = φ̃(d f ) as an estimate for φ.

It was proved in [2] that for some choices of α and γ the root-mean-square error
δ on the final estimate φ(d f ) is at most cT−1 for a constant c and total cost T =

2 ∑
d f
d=0 2dMd, thus reaching the Heisenberg limit.
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Chapter 3
Heisenberg-limited algorithm for
multiple phases

So far we have discussed the phase estimation of a single eigenvalue,
when the system register is prepared in the eigenstate. However, in re-
alistic setting this is not possible – preparing exact eigenstates is typically
very costly on a quantum device, and something we would want to avoid.
In this chapter we consider the case where the initial state has significant
overlap with multiple eigenstates, and aim to estimate all the correspond-
ing eigenphases.

In Sec. 3.1 we properly define a multi-eigenvalue phase estimation prob-
lem (with assumptions). We state the algorithm that can accomplish this
task (Alg. 3.1.4) without the optimal scaling, that we will use as a subrou-
tine. In Section 3.2 we present our Heisenberg-limited algorithm (Alg. 3.2.1).
We discuss a critical aliasing problem to be solved which occurs when es-
timating multiple eigenvalues. We show that an adaptive choice for k in
g(k) can solve this issue and we prove that such adaptive choice always ex-
ists (Lem. 3.2.2). We prove that our algorithm achieves Heisenberg-limited
scaling (Thm. 3.2.5), which is the main result of this work. In Sec. 3.3 we
numerically compare this rigorous implementation to an implementation
using the matrix pencil method, used in Ref. [19], for which we are unable
to find a rigorous proof of Heisenberg scaling.
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24 Heisenberg-limited algorithm for multiple phases

3.1 Defining the task of multiple-eigenvalue phase
estimation

In this section we define the goal of estimating multiple eigenvalue phases
of some unitary U. When the input state |Ψ〉 is supported on multiple
eigenstates, choosing a single k does not suffice, simply since knowing
Eq. (2.13) at a single point k does not give a unique solution {Aj, φj} [19].
A simple way to circumvent this problem is thus to estimate densely —
estimating g(k) for all integers 0 ≤ k ≤ K would allow us to fit up to
O(K) (φj, Aj) pairs. However, this does not saturate the Heisenberg limit
as shown in Theorem 2.4.1, hence we need to come up with a different
method.

Separate from this, the full eigenspectrum of an arbitrary N-qubit uni-
tary U has up to 2N unique values, making it impossible to describe in
polynomial time in N. In addition, the spectral content of the input state
|Ψ〉 could be very dense, with many eigenvalues clustered together in-
stead of separated by gaps, and the probability for these eigenvalues, Aj,
could be sharply concentrated or uniformly spread. To deal with general
input states, Ref. [3] thus formulated the quantum eigenvalue estimation
problem (QEEP): instead of estimating individual phases, the focus is on
estimating the spectral function A(φ) in Eq. (2.14) with some resolution.

Definition 3.1.1 (Quantum Eigenvalue Estimation Problem, QEEP). Let
A(φ) be the spectral function defined in Eq. (2.14) for a unitary U and |Ψ〉.
Given an error bound ε > 0 and a confidence bound p > 0, and a set of nonnega-
tive (approximate indicator) functions f l(φ) for φ ∈ [0, 2π) for l = 0, . . . L− 1,
L = d2π

ε e, where f l(.) has support on only the interval bin

Vl = [(l − 1)ε, (l + 1)ε]T, (3.1)

and f l(φ) + f (l−1)(φ) = 1 for all φ ∈ Vl ∩ Vl−1. Assuming access to the
PFE subroutine, Def. 2.3.3, the goal is to output an approximation b̃l for l =
0, . . . , L− 1 to the integral

bl =
∫ 2π

0
dφA(φ) f l(φ), (3.2)

which satisfies
L−1

∑
l=0
|b̃l − bl| ≤ ε, (3.3)

with probability at least p.
Note that the bins Vl have width 2ε and overlap on a region of width ε

and ∑L−1
l=0 bl = 1.

24

Version of July 23, 2021– Created August 4, 2021 - 18:05



3.1 Defining the task of multiple-eigenvalue phase estimation 25

3.1.1 Methods of dense signal phase estimation

For estimating multiple phases there are two dense signal methods using
estimates of g(k) with k = 0, 1, . . . , K. These are the matrix pencil method
first studied for QPE in Ref. [19], see Algorithm 3.3.1, and the ‘time series
analysis’ proposed in Ref. [3] to solve the QEEP problem above. We can
examine the scaling of the total cost in light of the dense signal limit of
Theorem 2.4.1. Ref. [3] proved the following

Theorem 3.1.2 (QEEP Algorithm [3]). One can solve the QEEP problem in
Definition 3.1.1 with { f l(.)} a set of ‘bump’ functions

f l(φ) =
2a
ε

∫ lε+ ε
2

lε− ε
2

exp

{
−
[

1− 4
ε2 (φ− φ′)2

]−1
}

dφ′, (3.4)

with normalization constant a ≈ 2.252, using PFE in Def. 2.3.3 with k =

0, . . . , K − 1 with K = O
(

ε−1 ln2(ε−1)
)

. The total quantum cost is T =

O(| ln(1− p)|ε−6).

We note that the approximate indicator functions f l(.) are designed
to have a quickly decaying Fourier series, which is required to achieve
polynomial-time scaling. We also refer the reader to Ref. [71], which has
extended the result by relaxing the requirement that f l(φ) + f (l−1)(φ) = 1
on the interval Vl ∩ Vl−1. The idea of the QEEP algorithm is as follows.
Since bl = ∑j Aj f l(φj), using Eq. (2.14), periodically extending f l(φ) be-
yond [0, 2π) and Fourier decomposing gives bl = ∑j Aj ∑k∈Z eikφj f̃ l(k) =
∑k∈Z g(k) f̃ l(k). At the same time, the fact that f l(.) is an indicator func-
tion ensures that bl ≈ ∑φj∈Vl

Al. Thus knowledge of g(k) for a range of
k allows one to estimate the weights bl. The requirement to estimate the
spectral function to within a 1-norm ε, Eq. (3.3), is very stringent, hence
the scaling of T with error ε is quite costly, T = O(ε−6). It is possible that
one can improve the scaling by re-examining the analysis in [3].

Given estimates of g(k) for k = 0, . . . , K (dense signal), one can ask
for error bounds of processing this data to estimate phases φj and their
associated probabilities Aj using the matrix pencil technique. Bounding
the error of the matrix pencil method naturally requires a gap ∆ between
these phases, namely a necessary condition to get convergent estimates for
φj and Aj is that K ≥ 1/∆ [80]. We do however not want to impose the
presence of a gap in this work.
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26 Heisenberg-limited algorithm for multiple phases

Here is our precise definition of the problem to be solved and achieving
the Heisenberg limit for multiple eigenvalues requires solving this prob-
lem with a total quantum cost T = O(δ−1):

Definition 3.1.3 (Multiple eigenvalue estimation problem). Fix an error
bound δ > 0, a probability bound A, and a number of phases nφ > 0. For a
unitary U and state |Ψ〉, we assume that Aj > A for exactly nφ phases φj and
Aj = 0 for all other phases so that nφ ≤ A−1. Let g(k) = ∑j Ajeikφj be the
phase function in Def. 2.3.1 and assume access to the PFE quantum subroutine
in Def. 2.3.3 for any k ∈ R. The task is to output a set {φ̃l} of nφ or fewer esti-

mates of the phases {φj} such that, if we take the closest estimate φ̃
(closest)
j of each

phase φj,

φ̃
(closest)
j = arg min

φ̃l

(|φ̃l − φj|T), (3.5)

the accuracy error

δj =

√
∑
x

P (x|{φl, Al})
∣∣∣φ̃(closest)

j (x)− φj

∣∣∣2
T

, (3.6)

is bounded by δj ≤ δ for all j = 1, . . . , nφ.

Remarks: Def. 3.1.3 allows us the freedom to assign a single estimate to
multiple phases when calculating the final mean-square-error.

The accuracy error that we target is uses the distance measure |.|T – a
natural distance on the circle that respects the 2π periodicity. The precise
definition of this metric and some of its properties that are used in the
proofs later in this chapter are given in App A.

We intend to solve the problem considered in Def. 3.1.3 by identifying
phases from the output of the QEEP problem in Def. 3.1.1 that have prob-
ability above the minimum A. To extend this to the Heisenberg limit we
will use this QEEP algorithm in Theorem 3.1.2 for a unitary V = Uk with
exponentially growing k, thus with eigenphases

θj = kφj mod 2π. (3.7)

Hence in Algorithm 3.1.4 and Lemma 3.1.5 below we refer to estimating
eigenvalue phases θ of such V = Uk.

Algorithm 3.1.4 is an extension to the QEEP algorithm allowing us to
output maximally nφ phases by solving the QEEP problem. Lemma 3.1.5

26
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3.1 Defining the task of multiple-eigenvalue phase estimation 27

then states what error is obtained on the estimates for θ when the QEEP
algorithm 3.1.2 succeeds with probability p.

Let us first motivate Algorithm 3.1.4. One may identify phases with
sufficient probability in the output of the QEEP algorithm as the bins l
with bl > bcutoff with bl in Eq. (3.2). Then to convert this into an estimate
of a phase θj, for each such bin we could yield an estimate εl in the middle
of the corresponding bin Vl.

We calculate appropriate values of bcutoff and the QEEP error ε to guar-
antee an estimate for each θj with Aj > A with a provable confidence,
and to guarantee no estimate in the absence of any θj. Def. 3.1.1 states that
when there exists such a θj ∈ Vl ∩Vl−1, we are guaranteed with confidence
p that b̃l + b̃l−1 + ε > A (as bl + bl−1 > A). To guarantee that at least one
of b̃l or b̃l−1 is larger than bcutoff with the same confidence, we thus require
bcutoff ≤ (A− ε)/2.

Similarly, Def. 3.1.1 states that when there exists no θj ∈ Vl with Aj > 0,
we are guaranteed with confidence p that bl < ε. To prevent a spurious
estimate in this case, we require bcutoff ≥ ε. Solving this to maximise ε
(which minimizes the cost of the QEEP routine) yields bcutoff = ε = A/3.

A further small complication exists in solving the problem posed in
Def. 3.1.3: we require that one outputs at most nφ phases. This will be sat-
isfied if we can guarantee at most one phase estimate per θj with Aj > A,
as we know there are nθ = nφ such estimates. As the bins Vl (Def. (3.1))
overlap, a phase θj may participate in up to two neighbouring bins — cor-
responding to amplitudes bl, bl+1 > A/3. To ensure that this does not
result in two estimates being generated, one could take all contiguous sets
bl1 , bl1+1, . . . , bl2 > A/3 and prune away every second index l. In doing
this we need to respect the periodicity of the Vl: VL−1 ∩ V0 6= ∅, so these
contiguous sets may wrap around the circle. Pruning every second index
when starting from the middle of one of these contiguous sets may result
in two neighbouring l, l + 1 being removed, which is not what we desire.
Instead, in the following pseudocode, after generating the set of all l with
sufficient bl, we find the first gap (in l) between these regions (correspond-
ing to the first bl < A/3). We then iterate (from this point lmin to L − 1
and then from 0 to lmin) over the bl, and remove each l from our set if
bl−1 > A/3 and l − 1 was not itself removed.

Algorithm 3.1.4 (Conservative QEEP Eigenvalue Extraction). Fix a proba-
bility bound A, an error bound 0 < ε < A

3 , and a confidence bound 0 < p < 1.
Assume access to a QEEP Algorithm 3.1.2 for a unitary V. Define +L and−L as
addition and subtraction modulo L (so 0−L 1 = L− 1). The algorithm proceeds
as follows:
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28 Heisenberg-limited algorithm for multiple phases

1. Use the QEEP subroutine with error ε, Alg. 3.1.2, and confidence p to
generate an estimate b̃l for bl as defined in Eq. (3.2)

2. Construct the set

S = {l ∈ {0, . . . , L− 1}|b̃l ≥ A/3}. (3.8)

3. Find the smallest l ∈ {0, . . . , L} with l 6∈ S and call it lmin.

4. For l′ = lmin, . . . , lmin +L (L− 1):

(a) if l′ ∈ S and l′ −L 1 ∈ S, remove l′ from S.

5. Return the set {θ̃l = lε}l∈S as a set of estimates of eigenphases of V.

The following Lemma then relates the performance of Alg. 3.1.4 to the
performance of the QEEP subroutine. Here {θj} is an ordered list of nφ

phases, while {θ̃l} is an (ordered) list of at most nφ phases.

Lemma 3.1.5. Fix a confidence bound 0 < p < 1, a probability bound A, a
number of phases nθ ≥ A−1, and an error bound 0 < ε < A

3 . Let g(k) =

∑j Ajeikθj be the phase function Def. 2.3.1 for a unitary V. Let {θ̃l} be a set of
estimates of {θj} generated by Alg. 3.1.4 with error ε and confidence bound p.
With probability at least p, the following statements are true:

1. For each phase θj with Aj > 0, there exists at least one estimate θ̃l such that
|θj − θ̃l|T ≤ 2ε.

2. For each estimate θ̃l there exists at least one phase θj with Aj > 0 such that
|θj − θ̃l|T ≤ 2ε.

3. The number of estimates |{θ̃l}| ≤ nθ.

Proof. Our proof follows by showing that the output from Alg. 3.1.4 satis-
fies these statements whenever Eq. (3.3) holds. This yields our confidence
bound as Eq. (3.3) holds with probability p by Def. 3.1.1.

To see that statement 2 holds when Eq. (3.3) is satisfied, note that if Vl
contains no phases θj with Aj > A and Eq. (3.3) is satisfied, b̃l < ε < A/3,
and l will not be added to the set S in Alg. 3.1.4. This implies that when
Eq. (3.3) holds, if l ∈ S there exists some θj ∈ Vl with Aj > A, in which
case |θj − θ̃l|T = |θj − εl|T ≤ 2ε. To see that statement 3 holds when
Eq. (3.3) is satisfied, note that θj ∈ Vl ∩ Vl+L1 for exactly one l (and θj /∈ Vm

for m 6= l, l +L 1). Then, when Eq. (3.3) holds, b̃l + b̃l+L1 > 2A/3, so

28

Version of July 23, 2021– Created August 4, 2021 - 18:05



3.2 Multiple eigenvalues: multi-order estimation and the phase matching problem 29

max(b̃l, b̃l+L1) > A/3, and either l, l +L 1 or l and l +L 1 will be added
to the set S during step 2 of Alg. 3.1.4 for each phase θj. Then, step 4
of Alg. 3.1.4 will remove l +L 1 if l remains in S, so each phase θj can
contribute to only one final estimate θ̃l = lε, and the number of estimates
is bounded from above by the number of phases.

To see that statement 1 holds, we use the point in the previous para-
graph that, when Eq. (3.3) is satisfied, each phase θj with Aj > A adds
either l, l +L 1, or l and l +L 1 to the set S during step 2. of Alg. 3.1.4. Then
in step 4. of Alg. 3.1.4, l is removed from S only if l −L 1 remains in S,
and l +L 1 is removed from S only if l remains in S. This implies that the
distance from θj to an estimate is bounded by

max
θj∈Vl∩Vl+L1

max
l′=l−L1,l,l+L1

|θj − εl′|T = ε(l +L 1)− ε(l −L 1) = 2ε, (3.9)

as required.

3.2 Multiple eigenvalues: multi-order estimation
and the phase matching problem

To achieve Heisenberg-limited scaling for multiple phases, we combine
the dense signal algorithms of the previous section which can resolve mul-
tiple phases with the single-phase Heisenberg limited algorithm, Algo-
rithm 2.5.1, which achieves the correct scaling.

A natural way to achieve such combination is to estimate phases {θ(d)j }
of U2d

for multiple orders d = 0, 1 . . . , d f via a dense signal method (e.g.
Alg. 3.1.4), and then combine them in the same manner as in Algorithm
2.5.1. If we would manage to get an estimate of θ

(d)
j = φj2d at each order

d with error ε and be able to combine these estimates in an unequivocal
manner, then reaching the Heisenberg limit for multiple phases may be
feasible. Note that the error in the final d f th estimate in this case would be
δ ∼ ε/2d f ; one may achieve arbitrarily small δ for fixed ε by thus making
d f arbitrarily large. This allows us to use (possibly non-optimal) routines
such as the QEEP algorithm since the scaling with ε does not propagate to
a scaling in δ for a sufficiently small ε.

However, this may not be feasible when we use only U2d
for increasing

d. Consider the binary expansion of φj = 2π × 0.bj
1bj

2 . . . with bits bj
i =

0, 1. Consider two phases with probabilities Aj ≥ A which differ in their
most significant bits, are identical in a next set of bits and differ again
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30 Heisenberg-limited algorithm for multiple phases

in lesser significant bits. Based on using the lowest d, we estimate these
phases as different, hence we keep two separate estimates. However, for
somewhat larger k, we get identical θ

(d)
j estimates as there is no sensitivity

to the initial differing bit string segment and very little sensitivity to the
least significant bits. Hence we improve the separate estimates with this
information in identical manner. However, at some point we reach a d
such that we measure two different θ

(d)
j again, but how do we match these

two different estimates to the previous estimates and avoid swapping the
last bit string segment between the phases?

Instead, we will not focus on the estimation of subsequent binary dig-
its of the phases φj, but we will estimate the eigenphases of V = Ukd for
kd = ∏d

d′=1 κd with κd ≥ 2 a, possibly non-integer, multiplier. We can make
use of non-integer κd efficiently by virtue of Lem. 2.3.2. Still this algorithm
needs a means of associating the dth order estimates θ̃

(d)
j with estimates

{φ̃(d)
j } made at previous orders, and as it turns out this requires an adap-

tive strategy for choosing the next multiplier κd in Alg. 3.2.1. A key part
of this scheme is that we need to determine κd based on only the estimates
φ̃
(d−1)
j from the previous round. Although this scheme requires some clas-

sical processing of the experimental data before the experiment is finished,
it is not an adaptive scheme in the same sense as iterative QPE [8], as we do
not require feedback within the coherent lifetime of a single experiment.

The generalization from estimating U2d
to Ukd for kd ∈ R presents one

small additional complication. In order to prove bounds on the estima-
tion at each order we will require invoking Lemma A.0.2. However, this
requires that our phases φj satisfy Eq. (A.3) (unless kd ∈ N ). If a phase
φj does not satisfy Eq. (A.3), one can construct a situation where two cor-

responding estimates φ̃
(d)
j are found on either side of the branch cut at

2π, and where we cannot guarantee that our algorithm would choose the
‘correct’ one (without knowledge of the hidden φj). To solve this issue,
we note that one may shift the phases of U by a constant χ by performing
phase estimation on Ue−iχ instead of U. This need not even be done on the
quantum device, as one simply multiplies estimates of g(k) by e−ikχ. As
we assume the existence of only nφ phases, we can always find some Ueiχ

with phases in some window [φmin, φmax) with φmin ≥ π
k , φmax ≤ π(2bkc−1)

k
when k ≥ 3nφ. This will allow us to invoke Lem. A.0.2 to match esti-
mates of eigenphases of Ueiχ and estimates of eigenphases of (Ueiχ)k as
we require. We also note that the above issue can be circumvented when

30
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3.2 Multiple eigenvalues: multi-order estimation and the phase matching problem 31

U = eiHt by a suitable choice of t.

3.2.1 Heisenberg-limited algorithm for multiple phases

We now describe our Heisenberg-limited phase estimation algorithm. This
algorithm targets a final error δ = O(δc), where δc is a fixed input to the
algorithm itself (We will calculate the constant of proportionality in the
proof of Theorem 3.2.5). The Heisenberg limit will be achieved by making
this δc smaller while keeping the error ε of the phase extraction subroutine,
Alg. 3.1.4, constant.

Algorithm 3.2.1. [Adaptive multi-order phase estimation algorithm] We assume
access to the conservative QEEP eigenvalue extraction algorithm, Alg. 3.1.4 for
a unitary V = Uk (for arbitrary k > 0 ∈ R), and an initial state |Ψ〉. Fix a
final error δc, a probability bound A, a number of phases nφ ≤ A−1, and error
parameters ε0 and ε bounded as

ε0 ≤ εcrit,0 ≡
2π

300n4
φ

(3.10)

and

ε ≤ εcrit ≡
2π

300n2
φ

. (3.11)

Let the confidence parameter pd be

pd = 1− e−α

(
kdδc

π

)γ

, (3.12)

given some real numbers α > 0 and γ > 2 (which can be further specified in the
proof of Theorem 3.2.5). The algorithm proceeds as follows:

1. Let d = 0 and kd=0 = 1. Use Alg. 3.1.4 to find a set of first estimates
{φ̃(0)

j } of eigenvalues of U with error parameter ε0 in Eq. (3.10), probability
bound A, and confidence pd=0 in Eq. (3.12). If this set is empty or has more
than nφ elements, return {0}.

2. Find the point ζ ∈ [0, 2π) defined by

ζ = arg max
ζ ′∈[0,2π]

min
j

∣∣∣φ̃(0)
j − ζ ′

∣∣∣
T

, (3.13)
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32 Heisenberg-limited algorithm for multiple phases

i.e. ζ is the midway point in the largest gap between the phase estimates
φ̃
(0)
j . Let

dζ = min
j

∣∣∣φ̃(0)
j − ζ

∣∣∣
T

, (3.14)

i.e. dζ is half the size of the largest gap. Shift the unitary U → Ue−i(ζ+ 1
2 dζ−8ε0),

φ̃
(0)
j → φ̃

(0)
j − ζ − dζ/2 + 8ε0 mod 2π.

3. Choose κ1 = k1 with k1 ∈ [3nφ, 3nφ + 1] such that for all φ̃
(0)
j 6= φ̃

(0)
l ,

either
|φ̃(0)

j k1 − φ̃
(0)
l k1|T > 4(ε0 + k1). (3.15)

or
|φ̃(0)

j − φ̃
(0)
l |T <

π

k1
. (3.16)

4. While kd < 2ε
δc

:

(a) Set d→ d + 1.

(b) Use Alg. 3.1.4 to find a set of estimates {θ̃(d)l } of eigenvalues of V =

Ukd with error parameter ε in Eq. (3.11), probability bound A, and
confidence pd in Eq. (3.12).

(c) If there exists some φ̃
(d−1)
j such that

min
l
|kdφ̃

(d−1)
j − θ̃

(d)
l |T > 2ε(1 + κd), (3.17)

or there exists some θ̃
(d)
l such that

min
j
|kdφ̃

(d−1)
j − θ̃

(d)
l |T > 2ε(1 + κd), (3.18)

or the number of estimates |{θ̃(d)l }| > nφ, return {φ̃(d−1)
j + ζ +

dζ/2− 8ε0 mod 2π}. This is a failure mode.

(d) If not, for each θ̃
(d)
l , find the estimate φ̃

(d−1)
j and an integer n ∈ [0, kd)

which minimizes

|φ̃(d−1)
j − (θ̃

(d)
l + 2πn)/kd|T, (3.19)

and set {φ̃(d)
l } = {(θ̃

(d)
l + 2πn)/kd}.

32
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3.2 Multiple eigenvalues: multi-order estimation and the phase matching problem 33

(e) If any φ̃
(d)
j ∈ [0, π

kd
)∪ (π(2bkdc−1)

kd
, 2π], return {φ̃(d−1)

j + ζ + dζ/2−
8ε0 mod 2π}. This is a failure mode.

(f) Choose the multiplier κd+1 ∈ [2, 3] such that for all φ̃
(d)
j 6= φ̃

(d)
l ,

either

|φ̃(d)
j kdκd+1 − φ̃

(d)
l kdκd+1|T > 4ε(1 + κd+1). (3.20)

or
|φ̃(d)

j − φ̃
(d)
l |T <

π − 2ε(1 + κd+1)

kdκd+1
, (3.21)

and set kd+1 = kdκd+1.

5. Return {φ̃(d)
j + ζ + dζ/2− 8ε0 mod 2π}.

In the rest of this section, we prove that Alg. 3.2.1 can achieve the
Heisenberg limit. We note that Alg. 3.1.4 which is invoked in this algo-
rithm assumes that the error parameter ε or ε0 is at most A/3 ≤ 1/(3nφ)
which is fulfilled by Eq. (3.10) and Eq. (3.11).

We note that the first use of the QEEP subroutine possibly needs to
use a smaller error parameter, called ε0, bounded by Eq. (3.10) than subse-
quent uses where ε needs to be only bounded by Eq. (3.11). This relates to
a technical issue, namely k1 ≥ 3nφ in order for Lemma C.0.1 in Appendix
C and thus Lemma A.0.2 to apply. For later rounds kd ≥ 3nφ automati-
cally, not putting a constraint on the multiplier κd, and indirectly allowing
to relax the region of valid choices for ε. The first step in proving the per-
formance of Algorithm 3.2.1 is to show that the multipliers can be chosen
in the first (step 3 in Alg. 3.2.1), and subsequent rounds (step 4f in Alg.
3.2.1), which obey the desired conditions. This is accomplished by the fol-
lowing Lemma which is proved in Appendix B.

Lemma 3.2.2. Let {φ̃(0)
j } ∈ [0, 2π) be a set of at most nφ phases. Assuming

Eq. (3.10), for a randomly chosen k1 ∈ [3nφ, 3nφ + 1] with probability at least

1/2, either Eq. (3.15) or Eq. (3.16) for all φ̃
(0)
j 6= φ̃

(0)
l . Fix a kd. Let {φ̃(d)

j } ∈
[0, 2π) be a set of at most nφ phases. Assuming Eq. (3.11), for a randomly chosen
κd+1 ∈ [2, 3] with probability at least 3/4, either Eq. (3.20) or Eq. (3.21) for all
φ̃
(d)
l 6= φ̃

(d)
j .

Remarks: The probability with which a multiplier can be found which
obeys the desired property is rather arbitrary in this Lemma and can be
increased by choosing a smaller ε. Note that it is easy to verify whether
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34 Heisenberg-limited algorithm for multiple phases

for a randomly chosen multiplier the desired conditions hold or not. The
validity of this Lemma importantly does not depend on whether the phase
estimates are actually accurate, it only depends on the number of phases
nφ. In practice, we do not generate a random multiplier κd+1 through this
Lemma, but simply exhaustively search for a valid κd+1 starting at the
maximal value.

The reason to adaptively choose the multiplier κd+1 for d = 0, . . . is
that two (estimated) phases in principle need to lead to separate estimates
at the next order: this is expressed in Eq. (3.20). An exception to this oc-
curs when the (estimated) phases are still close enough, as in Eq. (3.21), so
that their next-order refined estimates could merge at the next order, see
Fig. 3.1. Phase estimates can thus split and merge over the multiple orders.
They split when sufficient accuracy is available at the next order to distin-
guish them, they can stay or are allowed to merge when such accuracy is
not yet needed at the given order.

In what follows below we will assume, just for simplicity of the proof,
that the error parameter ε is bounded by εcrit,0 in Eq. (3.10) for all rounds,
and ε is the same for all rounds, including the first one.

3.2.2 Bounding the error with and without failures

In this section we state and prove the two key intermediate lemmas, Lemma
3.2.3 and Lemma 3.2.4 on our way towards proving that Alg. 3.2.1 reaches
the Heisenberg-limit. Together, these lemmas allow us to bound the error
in Alg. 3.2.1, –assuming that the phase extraction subroutine succeeds for
the first d rounds–, to within O(ε/kd).

These Lemmas deal with the issue of ‘aliasing’ or the correct match-
ing of new estimates with older estimates which is solved by the specific
choice of κd+1 in step 4f of Alg. 3.2.1, see also Fig. 3.1. It is important to
note that there is no 1-1 relation between these estimates and the actual
phases as the number of estimates is at most the number of phases.

Let d f be the last order executed in Alg. 3.2.1, i.e. the last order for

which we go through step 4b, construct the estimates {θ̃(d f )

l } and pass the

tests at step 4c and 4e and output {φ̃(d f )

l }. When none of the failure modes
is encountered, d f is set by the first kd such that kd ≥ ε

δc
(since the next

kd+1 ≥ 2ε/δc as κd+1 ≥ 2). Since κd ≥ 2, we observe that

d f ≤ log2

(
2ε

δc

)
. (3.22)

34
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Figure 3.1: Schematic of the execution of Alg. 3.2.1 to estimate three hidden
phases, φ0, φ1 and φ2 (dashed lines). The algorithm progresses from bottom to top
as the estimation order d increases. At each order d, the phase extraction subrou-
tine (Alg. 3.1.4) promises to return an estimate θ̃

(d)
→j of each θ

(d)
j = kdφj mod 2π

that corresponds to an estimate φ̃
(d)
→j (solid lines) lying within the promised esti-

mate region about φj (coloured boxes). By matching phases at subsequent orders
(arrows), the algorithm is able to converge to an ever-more accurate estimate of
each φj. The phase extraction subroutine only promises that each region will
contain at least one phase (and that the total number of estimates at each order
is bounded by nφ) - when two regions overlap, the subroutine may merge the
phases to give a single estimate (green and purple lines). Estimates at subsequent
orders may continue to separate and even re-merge until the regions separate, at
which point the algorithm promises with high confidence a separate estimate for
each hidden phase. The estimate φ̃

(d)
→j at each order is only known mod (2π)/kd,

leading to a set of potential aliases (dotted lines at d = 4) for each phase. We do
not know a priori which alias is correct, and must rely on the fact that the true
estimate φ̃

(d)
→j needs to be close to a previous estimate φ̃

(d−1)
→j . By carefully choos-

ing each kd, we can guarantee that no alias will satisfy this condition (so long as
Alg. 3.1.4 succeeds), and our phase matching will be unambiguous.

In Corollary 3.2.3.1 we argue that when the QEEP subroutines, Alg. 3.1.4,
succeed up to order d f , we indeed never exit via these failure modes.

Lemma 3.2.3. If each invocation of the QEEP subroutine, Alg. 3.1.4, succeeds in
Alg. 3.2.1 up to order d f , then in this last round d f in step 4d it holds that

• (Property 1a) For every phase φj there exists an estimate φ̃
(d f )

l such that
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36 Heisenberg-limited algorithm for multiple phases

|φj − φ̃
(d f )

l |T ≤ 2ε/kd f
.

• (Property 1b) For every estimate φ̃
(d f )

l there exists a phase φj such that

|φj − φ̃
(d f )

l |T ≤ 2ε/kd f
.

Proof. We prove this Lemma by induction. Consider the first round d = 0
(kd=0 = 1), i.e. step 1 of Alg. 3.2.1. If the QEEP subroutine, Alg. 3.1.4,
succeeds (with probability p0) then Lemma 3.1.5 holds, namely for each φj

there exists an estimate φ̃
(0)
l such that

|φj − φ̃
(0)
l |T ≤ 2ε. (3.23)

and for each estimate φ̃
(0)
l there exists at least one φj such that

|φj − φ̃
(0)
l |T ≤ 2ε. (3.24)

Hence the statement to be proven holds at d = 0. Now consider step 2 of
Alg. 3.2.1 and invoke Lemma C.0.1 for which the assumptions are fulfilled
by Eqs. (3.23),(3.24). This implies that with the choice of k1 ≥ 3nφ in step
3 in Alg. 3.2.1 the shifted phases and their 0th-order estimates obey the
technical condition in Lemma A.0.2 and we can use Eq. (A.4). In the next
steps we work with these shifted phases but for simplicity we don’t use
any new notation.

Now assume the statement to be proven holds at order d i.e. let {φ̃(d)
l }

be a set of at most nφ estimates of the phases {φj} with

• (Assumption 1a) For every phase φj there exists an estimate φ̃
(d)
l such

that |φj − φ̃
(d)
l |T ≤ 2ε/kd.

• (Assumption 1b) For every estimate φ̃
(d)
l there exists a phase φj such

that |φj − φ̃
(d)
l |T ≤ 2ε/kd.

Note that these assumptions certainly imply that one can apply Lemma
A.0.2 to the estimates φ̃

(d)
l . That is, given that the real phases φj are 2ε/kd

close to these estimates and that the (shifted) φj obey Eq. (C.2), it implies
that Eq. (A.4) can be used with k ≥ 3nφ (which is the case for all rounds
d ≥ 1).

We consider the QEEP subroutine, Alg. 3.1.4, with a given choice of κd
obeying the conditions in step 3 (for d = 1) and 4f (for higher d), executed

36
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3.2 Multiple eigenvalues: multi-order estimation and the phase matching problem 37

in step 4b with confidence pd. In the math below we refer to conditions on
κd>1, namely Eq. (3.20) and Eq. (3.21), but the conditions on κ1 in Eq. (3.15)
and Eq. (3.16) are of identical form (so we don’t make a separate argument
for the d = 0→ d = 1 induction step).

Let thus {θ̃(d+1)
l } be a set of estimates of the eigenphases {θ(d+1)

j } of

Ukd+1 corresponding to the set {φj}, that is,

θ
(d+1)
j = kd+1φj mod 2π. (3.25)

and kd+1 = kdκd+1. By assuming that Alg. 3.1.4 succeeds we can invoke
Lemma 3.1.5, namely

• (Assumption 2a) For every phase θ
(d+1)
j there exists an estimate θ̃

(d+1)
l

such that |θ(d+1)
j − θ̃

(d+1)
l |T ≤ 2ε.

• (Assumption 2b) For every estimate θ̃
(d+1)
l there exists a phase θ

(d+1)
j

such that |θ(d+1)
j − θ̃

(d+1)
l |T ≤ 2ε.

To prove the induction step, we thus need to show that the set φ̃
(d+1)
j gen-

erated by step 4d of Alg. 3.2.1 satisfies the following two properties

• (Property 1a) For every phase φj there exists an estimate φ̃
(d+1)
l such

that |φj − φ̃
(d+1)
l |T ≤ 2ε/kd+1.

• (Property 1b) For every estimate φ̃
(d+1)
l there exists a phase φj such

that |φj − φ̃
(d+1)
l |T ≤ 2ε/kd+1.

First consider Assumption 2a. Assumption 2a implies that for every
phase φj there exists a θ̃

(d+1)
l such that

|kd+1φj − θ̃
(d+1)
l |T ≤ 2ε. (3.26)

In this proof we will use the label l =→ j for this θ̃
(d+1)
l associated with φj.

Thus, also using Eq. (A.4), the last inequality is equivalent to

min
n∈{0,...,bkd+1c−1}

|φj − (θ̃
(d+1)
→j + 2πn)/kd+1|T ≤

2ε

kd+1
, (3.27)

with
nideal

j,→j = arg min
n∈{0,...,bkd+1c−1}

|φj − (θ̃
(d+1)
→j + 2πn)/kd+1|T. (3.28)
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38 Heisenberg-limited algorithm for multiple phases

Similarly, by Assumption 1a, there is some φ̃
(d)
l=→j which is 2ε/kd-close to

φj, again using a label which shows this association.

Consider the optimization at step 4d in Alg. 3.2.1

ξl = min
j

ξ j,l, ξ j,l ≡
∣∣∣φ̃(d)

j − (θ̃
(d+1)
l + 2πnjl)/kd+1

∣∣∣
T

(3.29)

in Eq. (3.19) with

nj,l = arg min
n∈{0,...,bkd+1c−1}

∣∣∣φ̃(d)
j − (θ̃

(d+1)
l + 2πn)/kd+1

∣∣∣
T

, nl = arg min
nj,l

ξ j,l.

(3.30)
The goal is thus to prove that for each φj, using the corresponding θ̃

(d+1)
→j ,

we have n→j = nideal
j,→j which directly implies Property 1a.

We can bound using Eq. (A.2) and then Eq. (A.4), Assumptions 1a and
2a and optimality of n→j,→j

ξ→j,→j =
∣∣∣φ̃(d)
→j − (θ̃

(d+1)
→j + 2πn→j,→j)/kd+1

∣∣∣
T

≤
∣∣∣φ̃(d)
→j − φj

∣∣∣
T
+
∣∣∣φj − (θ̃

(d+1)
→j + 2πnideal

j,→j )/kd+1

∣∣∣
T

≤ 2ε

kd
+

1
kd+1

∣∣∣kd+1φj − θ̃
(d+1)
→j

∣∣∣
T

=
2ε

kd
+

1
kd+1

∣∣∣θ(d+1)
j − θ̃

(d+1)
→j

∣∣∣
T
≤ 2ε(1 + κd+1)

kd+1
. (3.31)

Now if Eq. (3.20) holds for some other m 6=→ j, we claim on the other
hand that

ξm,→j >
2ε(1 + κd+1)

kd+1
, (3.32)

hence matching θ
(d+1)
→j with such φ̃

(d)
m , with m 6=→ j is non-optimal and

will not be chosen in the Algorithm. To indeed see that Eq. (3.20) implies

38
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Eq. (3.32), we can calculate

4ε(1 + κd+1)

kd+1
<

1
kd+1

∣∣∣kd+1φ̃
(d)
→j − kd+1φ̃

(d)
m

∣∣∣
T

≤ 1
kd+1

∣∣∣kd+1φ̃
(d)
→j − θ̃

(d+1)
→j

∣∣∣
T
+

1
kd+1

∣∣∣θ̃(d+1)
→j − kd+1φ̃

(d)
m

∣∣∣
T

≤ 2ε(1 + κd+1)

kd+1

+ min
n∈{0,...,bkd+1c−1}

∣∣∣φ̃(d)
m − (θ̃

(d+1)
→j + 2πn)/kd+1

∣∣∣
T

⇒ 2ε(1 + κd+1)

kd+1
< min

n∈{0,...,bkd+1c−1}

∣∣∣φ̃(d)
m − (θ̃

(d+1)
→j + 2πn)/kd+1

∣∣∣
T
= ξm,→j.

(3.33)

Here we have used that Eq. (A.4) holds for the estimate φ̃
(d)
m .

Alternatively, for those m 6=→ j for which Eq. (3.21) holds, we claim
that

nm,→j = n→j,→j, (3.34)

hence for those φ̃
(d)
m 6= φ̃

(d)
→j the algorithm produces a single new estimate

equal to (θ̃
(d+1)
→j + 2πn→j,→j)/kd+1.

To see that Eq. (3.21) implies Eq. (3.34) indeed, note that it is sufficient
to prove that ∣∣∣φ̃(d)

m − (θ̃
(d+1)
→j + 2πn→j,→j)/kd+1

∣∣∣
T
<

π

kd+1
, (3.35)

as one can then show that for n′ 6= n→j,→j ∈ {0, . . . , bkd+1c − 1} that

2π

kd+1
≤
∣∣∣∣ 2π

kd+1
(n→j,→j − n′)

∣∣∣∣
T

=
∣∣∣(θ̃(d+1)
→j + 2πn→j,→j)/kd+1 − (θ̃

(d+1)
→j + 2πn′)/kd+1

∣∣∣
T

≤
∣∣∣(θ̃(d+1)
→j + 2πn→j,→j)/kd+1 − φ̃

(d)
m

∣∣∣
T

+
∣∣∣φ̃(d)

m − (θ̃
(d+1)
→j + 2πn′)/kd+1

∣∣∣
T

<
π

kd+1
+
∣∣∣φ̃(d)

m − (θ̃
(d+1)
→j + 2πn′)/kd+1

∣∣∣
T

⇒ π

kd+1
<
∣∣∣φ̃(d)

m − (θ̃
(d+1)
→j + 2πn′)/kd+1

∣∣∣
T

, (3.36)
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40 Heisenberg-limited algorithm for multiple phases

so n→j,→j is optimal. Using Eq. (A.2), Eq. (3.21) and Eq. (3.40), we can
prove Eq. (3.35) since∣∣∣φ̃(d)

m − (θ̃
(d+1)
→j + 2πn→j,→j)/kd+1

∣∣∣
T
≤
∣∣∣φ̃(d)

m − φ̃
(d)
→j

∣∣∣
+
∣∣∣φ̃(d)
→j − (θ̃

(d+1)
→j + 2πn→j,→j)/kd+1

∣∣∣
T

<
π − 2ε(1 + κd+1)

kd+1
+

2ε(1 + κd+1)

kd+1

=
π

kd+1
. (3.37)

We have thus shown that for each φj, there is a θ̃
(d+1)
→j , such that step

4d will output (θ̃(d+1)
→j + 2πn→j,→j)/kd+1 with n→j,→j defined in Eq. (3.30),

related to the previous order estimate φ
(d)
→j which was already close to φ

(d)
j .

The last step is to show that n→j,→j = nideal
j,→j using Property 1a. It holds

that

|φj − (θ̃
(d+1)
→j + 2πn→j,→j)/kd+1|T ≤|φj − φ̃

(d)
→j|T

+ |φ̃(d)
→j − (θ̃

(d+1)
→j + 2πn→j,→j)/kd+1|T

≤2ε

kd
+

2ε(1 + κd+1)

kd+1
<

π

kd+1
, (3.38)

where we used that 4ε(κd+1 + 1) < π. Indeed for d > 1, ε < π
16 (κd+1 ≤ 3)

and for d = 0, ε < π
4(3nφ+2) (κ1 ≤ 3nφ + 1) given the upper bounds on

ε in Eqs. (3.11) and (3.10). This implies through the same argument as in
Eq. (3.36) that nideal

j,→j achieving the minimum in Eq. (3.27) equals n→j,→j

and hence we obtain Property 1a.
Now let’s prove Property 1b. Given a θ̃

(d+1)
l , let φj=→l be the real phase

for which, by Assumption 2b, it holds that

|kd+1φ→l − θ̃
(d+1)
l |T = kd+1|φ→l − (θ̃

(d+1)
l + 2πnideal

→l,l )/kd+1|T ≤ 2ε. (3.39)

To prove Property 1b, we need to show that nl = nideal
→l,l with nl defined

in Eq. (3.30). Let also φ̃
(d)
→j be the previous order 2ε/kd-close estimate to

φj=→l by Assumption 1a. The idea is that φ̃
(d)
→j = φ̃

(d)
→(→l) is matched to

θ̃
(d+1)
l in the optimization step of the algorithm, so that this leads to a better

estimate for the phase φj=→l.
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3.2 Multiple eigenvalues: multi-order estimation and the phase matching problem 41

Given a θ̃
(d+1)
l we can deduce, as before, that

ξ→j,l =
∣∣∣φ̃(d)
→j − (θ̃

(d+1)
l + 2πn→j,l)/kd+1

∣∣∣
T

≤
∣∣∣φ̃(d)
→j − φ→l

∣∣∣
T
+
∣∣∣φ→l − (θ̃

(d+1)
l + 2πnideal

→l,l )/kd+1

∣∣∣
T

≤ 2ε

kd
+

1
kd+1

∣∣∣kd+1φ→l − θ̃
(d+1)
l

∣∣∣
T

=
2ε

kd
+

1
kd+1

∣∣∣θ(d+1)
→l − θ̃

(d+1)
l

∣∣∣
T
≤ 2ε(1 + κd+1)

kd+1
. (3.40)

Using previous arguments, all other ξm,l are either larger or give the same
integer n→j,l and thus nl = n→j,l. In addition, we can bound, using this
equality and Assumption 1a

|φ→l − (θ̃
(d+1)
l + 2πn→j,l)/kd+1|T ≤
|φ→l − φ̃

(d)
→j|T + |φ̃(d)

→j − (θ̃
(d+1)
l + 2πn→j,l)/kd+1|T

≤ 2ε

kd
+

2ε(1 + κd+1)

kd+1
<

π

kd+1
, (3.41)

implying that nl = n→j,l = nideal
→l,l as desired.

Algorithm 3.2.1 has a few failure modes, namely steps 1, 4c and 4e
where we exit and return an estimate of lower order. Arguments in Lemma
3.2.3 show that these failure modes are only encountered when the QEEP
subroutine, Alg. 3.1.4, fails at some order. For clarity, we collect these
observations in a single Corollary:

Corollary 3.2.3.1. If each invocation of the QEEP subroutine, Alg. 3.1.4, suc-
ceeds in Alg. 3.2.1, we never exit at step 1, 4c or 4e.

Proof. Consider step 1 in Alg. 3.2.1 applying Alg. 3.1.4 which obeys Lemma
3.1.5, showing that success of Alg. 3.1.4 implies that the number of phases
is at most nφ. By assumption there is at least one phase with Aj > 0, and
hence success means that Alg. 3.1.4 cannot return the empty set due to 1.
in Lemma 3.1.5. Hence if Alg. 3.1.4 succeeds we do not exit at step 1. Now
consider step 4c: again success of Alg. 3.1.4 implies that the number of es-
timates does not exceed nφ. Consider Eq. (3.17) and Eq. (3.18). If Alg. 3.1.4

succeeds up to order d− 1, the phase estimates φ̃
(d−1)
j obey Eq. (A.4) for

kd, hence the condition in Eq. (3.18) equals, for each θ̃
(d)
l

min
j

min
n
|φ̃(d−1)

j − (θ̃
(d)
l + 2πn)/kd|T >

2ε(1 + κd)

kd
. (3.42)
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As we argued, via induction, this does not happen when Alg. 3.1.4 suc-
ceeds up to order d, as minj ξ j,l is upper-bounded as in Eq. (3.40) for all

d′ ≤ d. Similarly, Eq. (3.17) implies the existence of a φ̃
(d−1)
j with

min
l

min
n
|φ̃(d−1)

j − (θ̃
(d)
l + 2πn)/kd|T >

2ε(1 + κd)

kd
. (3.43)

which can not happen due to the success of Alg. 3.1.4 which implies the
bound in Eq. (3.31). Consider lastly step 4e which exits if the current dth
order estimates do not lie in the region for which Eq. (A.3) holds with
given kd. We have argued in Lemma 3.2.3 that, assuming success of the
subroutines implementing Alg. 3.1.4, that Eq. (A.3) holds for the phase
estimates at all orders.

Now let us consider failures of the QEEP subroutine, Alg. 3.1.4, which
do not lead to exiting. Let’s imagine that the first failure occurs at some
order d0. Now we want to make sure that continuing with higher orders
after such failure still leads to an error of order ∼ ε/kd0−1, even though
the failure (or any subsequent failure) is not detected.

To show this, we check that if Alg. 3.2.1 exits at some later round,

namely during d = d f + 1 and outputs estimates φ̃
(d f )

j that these will be
sufficiently close to the estimates right before failure, that is, the set of
phases φ̃

(d0−1)
j .

Then, by Lem. 3.2.3, these estimates will also be sufficiently close to the
true phases φj.

Lemma 3.2.4. Let Alg. 3.2.1 exit at order d = d f + 1 and let the QEEP subrou-
tine, Alg. 3.1.4, of step 4b first fail at d = d0 ≤ d f + 1. For each φj, there will be

an estimate φ̃
(d f )

l , produced at step 4d in Alg. 3.2.1 which satisfies∣∣∣∣φj − φ̃
(d f )

l

∣∣∣∣
T
≤ 14ε

kd0−1
. (3.44)

Vice-versa, for each estimate φ̃
(d f )

l there exists a phase φj such that∣∣∣∣φj − φ̃
(d f )

l

∣∣∣∣
T
≤ 14ε

kd0−1
. (3.45)

Proof. Since each QEEP subroutine, Alg. 3.1.4, in Alg. 3.2.1 succeeds up to
order d0 − 1, Lemma 3.2.3 garantees that
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• (Property 1a) For every phase φj there exists an estimate φ̃
(d0−1)
l such

that |φj − φ̃
(d0−1)
l |T ≤ 2ε

kd0−1
.

• (Property 1b) For every estimate φ̃
(d0−1)
l there exists a phase φj such

that |φj − φ̃
(d0−1)
l |T ≤ 2ε

kd0−1
.

Then, since the algorithm does not exit at step 4c through Eqs. (3.17) or
step 4e for any order d = d0, . . . d f , it implies that for each estimate φ̃

(d−1)
l

we can associate some θ̃
(d)
ml that satisfies

1
kd

∣∣∣kdφ̃
(d−1)
l − θ̃

(d)
ml

∣∣∣
T
= min

n∈{0,...,bkd+1c−1}
|φ̃(d−1)

l − (θ̃
(d)
ml + 2πn)/kd|T

≤ 2ε(1 + κd)

kd
, (3.46)

where the second equality follows from being allowed to apply Eq. (A.4)
(which is validated by passing the test at step 4e). This implies that in
step 4d of Alg. 3.2.1 at round d, for a given θ̃

(d)
ml , the optimization of ξn,ml

over n will pick the integer nl,ml
, i.e. the integer associated with matching

θ̃
(d)
ml with φ̃

(d−1)
l . Indeed, similar as in the proof of Lemma 3.2.3, we can

argue about other estimates φ̃
(d)
k 6= φ̃

(d)
l . Since κd+1 is chosen in step 4f of

Alg. 3.2.1, we claim that either Eq. (3.20) holds, in which case

min
n∈{0,...,bkd+1c−1}

∣∣∣∣∣φ̃(d)
k −

2πn + θ̃
(d+1)
ml

kd+1

∣∣∣∣∣
T

>
2ε

kd+1
(1 + κd+1), (3.47)

hence this ξk,ml
is not optimal, or that Eq. (3.21) holds, in which case

nl,ml
= arg min

n∈{0,...,bkd+1c−1}

∣∣∣∣∣φ̃(d)
k −

2πn + θ̃
(d+1)
ml

kd+1

∣∣∣∣∣
T

= nk,ml
. (3.48)

The proofs of these claims are exactly the same as in the proof of Lemma
3.2.3, i.e. using Eqs. (3.35), (3.36),(3.37).

Now let’s us prove Eq. (3.44). Given a phase φj, we can use Prop-

erty (1a) to find an associated estimate φ̃
(d0−1)
→j within 2ε/kd0−1. Then

for this estimate let θ
(d0)
m→j be the matched estimate in the next round for
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which Eq. (3.46) holds, so that the round produces a new estimate φ̃
(d0)
→j =

θ̃
(d0)
m→j+2πn→j,m→j

kd0
(which we label with→ j again) for which

|φ̃(d0−1)
→j − φ̃

(d0)
→j |T ≤

2ε

kd0

(1 + κd0). (3.49)

Then again for φ̃
(d0)
→j there exists some matching θ

(d0+1)
m→j etc. and this gen-

erates a series of estimates φ̃
(d)
→j up to order d f . For a given φj we can then

bound, using this series of estimates and κd ≥ 2 for all d,∣∣∣∣φ̃(d f )

j − φj

∣∣∣∣
T
≤
∣∣∣φ̃(d0−1)
→j − φj

∣∣∣
T
+

d f

∑
d=d0

∣∣∣φ̃(d−1)
→j − φ̃

(d)
→j

∣∣∣
T

≤ 2ε

kd0−1
+

d f

∑
d=d0

2ε(1 + κd)

kd

=
2ε

kd0−1

1 +
d f

∑
d=d0

1 + κd
κd0κd0+1 . . . κd


≤ 2ε

kd0−1

(
1 +

∞

∑
n=0

3
2n

)
=

14ε

kd0−1
. (3.50)

Now let’s prove Eq. (3.45) and start with an estimate φ̃
(d f )

l which was ob-

tained from some θ̃
(d f )

l matched with a previous estimate φ̃
(d f−1)
l (just for

convenience we again use the same label) such that |φ̃(d f )

l − φ̃
(d f−1)
l |T ≤

2ε
kd f

(1 + κd f
), using that we do not exit through Eq. (3.18). Then again for

this previous estimate φ̃
(d f−1)
l we can repeat the argument and create a

sequence of estimates up to φ̃
(d0−1)
l . For the last estimate, we invoke Prop-

erty (1b), namely that there is a nearby φj. Then we can upperbound for

this φj: |φ̃
(d f )

l − φj|T ≤ |φ̃(d0−1)
l − φj|T + ∑

d f
d=d0
|φ̃(d)

l − φ̃
(d−1)
l |T etc., exactly

as in Eq. (3.50), leading to Eq. (3.45).

3.2.3 Algorithm 3.2.1 achieves the Heisenberg limit

We have seen that the success of the QEEP subroutines in Alg. 3.2.1 leads
to an error scaling as ε/kd f

∼ δc. Now we must choose the success proba-
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bility pd of these subroutines in Eq. (3.12), depending on α, γ so that the to-
tal mean-square-error is bounded by some δ2 = O(δ2

c ) while the quantum
cost T = O(δ−1). We note that the next theorem contains no logarithmic
factors in δ−1, as in [73], but achieves pure Heisenberg scaling.

Theorem 3.2.5. Algorithm 3.2.1 solves the multiple eigenvalue estimation prob-
lem in Def. 3.1.3 with accuracy error δ and total quantum cost T = O(δ−1),
given A, nφ and a fixed ε0 and ε obeying Eqs. (3.11) and (3.10), and some choice
for the constants α > 0 and γ > 2.

Remarks: Note that the dependence on the number of phases nφ is not
made explicit in the statement of this Theorem, but this dependence will
be polynomial in nφ, not necessarily a very low-order polynomial. This
dependence comes through the choice for ε0 (and ε) via Eq. (3.10) which
sets the error and thus the running time of the QEEP Algorithm 3.1.2.

Proof. Our proof is motivated by the analysis in [2] for a single phase φ
leading to Theorem 2.5.1. The idea is to bound the mean-square-error in
the final estimation of φ by summing over error contributions at each or-
der d at which the phase extraction subroutine may fail (with probabil-
ity 1 − pd). By the right choice of pd depending on d and parameters α
and γ, the idea is that δ2 = O(δ2

c ) where δc is a final targeted error and
δ2 is mean-square-error of the phase estimate. The point is then to show
that the quantum cost T scales as δ−1

c and thus δ = O(T−1), reaching the
Heisenberg limit.

In our case the multipliers at each order are not fixed (as in Theorem
2.5.1) but depend on phase estimates at previous orders and thus measure-
ment data at previous orders. Our confidence parameter pd in Eq. (3.12),
which determines the number of repeats of experiments, and hence the
cost, in Alg. 3.1.4, depends on kd and is thus a random variable depending
on previous measurement data. All measurement data are denoted by x
and thus we have random variables kd({κd′(x)}d

d′=1) and pd({κd′(x)}d
d′=1).

Consider the mean-square-error δ2
j for the jth phase φj in Eq. (3.27) in

Definition 3.1.3.
We have three error contributions to consider given a choice for the

random variable kd.

1. With probability 1− p0 the subroutine Alg. 3.1.4 in Alg. 3.2.1 fails at
step 1 (d = 0). In this case, as we always return some estimate, δj is
bounded for all j by π.

2. With probability at most (1− pd0)∏d0−1
d=0 pd ≤ 1− pd0 = e−α

( kd0
δc

π

)γ
,

the subroutine Alg. 3.1.4 in Alg. 3.2.1 fails for the first time at some
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order 1 ≤ d0 ≤ d f , and the algorithm proceeds in any way after-
wards (by possibly exiting or not). In this case, Lemma 3.2.4 bounds
δj for all j by 14ε

kd0−1
or Lemma 3.2.3 bounds δj for all j by 2ε

kd0−1
≤ 14ε

kd0−1
.

3. With probability less than ∏
d f
d=0 pd < 1 the subroutine Alg. 3.1.4 in

Alg. 3.2.1 succeeds up to the final round d f , and Lemma 3.2.3 implies
that δj ≤ 2ε/kd f

≤ 2δc for all j as kd f
≥ ε/δc.

We can now bound the mean-square-error as a sum over the above
three contributions weighted by their relevant probabilities:

δ2
j ≤ (1− p0)π

2 + ∑
x

P(x)

d f−1

∑
d0=1

P(κ1, . . . , κd0 |x)(1− pd0({κ′d}
d0
d′=1))

[
14ε

kd0−1({κ′d}
d0−1
d′=1 )

]2
+ 4δ2

c

= π2e−α

(
δc

π

)γ

+ ∑
x

P(x)

d f−1

∑
d0=1

P(κ1, . . . , κd0 |x)e−α

(
kd0 δc

π

)γ 196ε2

k2
d0−1

+ 4δ2
c

≤ πe−α

(
δc

π

)γ

+ 0.15× δ2
c ∑

x
P(x)P(κ1, . . . , κd0 |x)

d f−1

∑
d0=1

(
kd0 δc

π

)γ−2

+ 4δ2
c . (3.51)

Here we have removed the dependency of kd0 and kd0−1 on the previous
multipliers for notational simplicity. For d = 1 we have

e−ακ2
d0

196(ε/π)2 = e−αk2
1196(ε0/π)2 ≤ 196× 16× 4

(300)2 ≤ 0.15 (3.52)

due to Eq. (3.10). For d > 1, e−ακ2
d0

196(ε/π)2 ≤ 9×196×4
(300)2 = 0.08, due to

Eq. (3.11).

To evaluate the middle term, we write kd0 = kd f

kd0
kd f

, and note that as

kd = ∏d
d′=1 κd′ , we have

kd0
kd f
≤ 2d0−d f as the multiplier κd ≥ 2. As kd f

≤
2ε
δc

< π
2δc

, we have

d f−1

∑
d0=1

(
kd0δc

π

)γ−2

≤ 1
2γ−2

d f−1

∑
d0=1

(2γ−2)(d0−d f ) ≤ 24−γ

2γ − 4
, (3.53)

where the last inequality holds since γ > 2. By letting the upperbound be
independent of the κds, we can remove the dependence on x in Eq. (3.51)
using that ∑x P(x)P(κ1, . . . , κd0 |x) = 1. This yields a final bound on δj of

δ2
j ≤ δ2

c

[
π1−γe−αδ

γ−2
c +

0.15× 24−γ

2γ − 4
+ 4]

]
. (3.54)
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As γ > 2, this scales as δ2
c as δc → 0.

Let us now calculate the cost of executing Alg. 3.2.1 in terms of the
number of unitary applications. Again this depends on the choice of mul-
tiplier κd at each step. Let us fix a sequences of kds, and let d f be the final
round of estimation in this algorithm, i.e. the final round for which we
invoked the quantum subroutine in Alg. 3.1.4. At each order d we use
Vk = Ukdk, where k = 0, 1, . . . , K, with 2Md samples where K is a function
of ε as in Theorem 3.1.2. By Lemma 2.3.2 the cost of each experiment is
bkdkc+ O(Md). We can calculate

T = ∑
x

P(x)P(κ1, . . . , κd0 |x)
d f

∑
d=0

K

∑
k=1

(2Mdbkdkc+ O(M2
d))

≤
d f

∑
d=0

MdkdK(K + 1) + (d f + 1)KO(M2
d=0) (3.55)

where we have used Md=0 ≥ Md. The QEEP algorithm in Theorem 3.1.2
requires Md = O(| ln(1− pd)|ε−b1) with pd in Eq. (3.12) and K = O(ε−b2)
for some integers b1 > 0 and b2 > 0. (We keep these integers free to
account for any polylog factors.). Let the constant of proportionality in this
scaling be b3. The last term in Eq. (3.55) only has poly(ln δ−1

c ) dependence,
using Eq. (3.22) for d f and the expression of M0 in terms of δc, and we
ignore it in the rest of the proof. We may bound

T ≤ b3ε−b1−2b2

d f

∑
d=0

kd

∣∣∣∣−α + γ ln
(

kdδc

π

)∣∣∣∣
= b3ε−b1−2b2

d f

∑
d=0

kd

[
α− γ ln

(
kdδc

π

)]
. (3.56)

We again bound kd = kd
kd f

kd f
≤ 2d−d f π

2δc
, which yields

T ≤ δ−1
c

πb3

2
ε−b1−2b2

d f

∑
d=0

2d−d f
[
α− γ(d− d f − 1) ln(2)

]
≤ δ−1

c πb3ε−b1−2b2(α + 2γ ln(2)). (3.57)
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Combining our bounds then yields

δ ≤ δc

[
e−απ1−γ + 4 +

0.15× 24−γ

2γ − 4

] 1
2

≤ T−1
[

e−απ1−γ + 4 +
0.15× 24−γ

2γ − 4

] 1
2

πb3ε−b1−2b2 [α + 2γ ln(2)]

= O(T−1), (3.58)

which is the Heisenberg limit.

3.3 Numerical implementation

Thm. 3.2.5 requires using the QEEP algorithm (Theorem 3.1.2 and Al-
gorithm 3.1.4) in order to obtain provable bounds. Instead of analytic
bounds, we now turn to a numerical demonstration, giving the oppor-
tunity to implement and test Algorithm 3.2.1 with a few modifications.
We test the algorithm using two different sub-routines, one based on the
matrix pencil method [79], and one based on the QEEP time-series analy-
sis of Theorem 3.1.2, as described in Algorithm 3.1.4. Code to implement
all simulations can be found at https://github.com/alicjadut/qpe.

To improve the practical performance of Alg. 3.2.1, we make the fol-
lowing two small changes. Firstly, instead of choosing κd+1 in step 4f in
the ranges declared in Lem. 3.2.2, we choose the largest κd+1 consistent
with Eq. (3.20) and Eq. (3.21) for all φ̃

(d)
j , φ̃

(d)
l . We note that the maximum

such κd+1 is bounded above by π
2ε − 1, as the left-hand side of Eq. (3.20) is

bounded above by 2π and the left-hand side of Eq. (3.21) is bounded below
by 0. (In practice, tighter bounds can be found by checking the boundaries
of the regions R(n)

jl defined in Eq. (B.5), and we find the largest possible
κd+1 by iterating backwards through these boundaries till a gap is found.)
Secondly, as the bounds for ε and ε0 in Lem. 3.2.2 are rather loose, and our
performance scales rather badly in both, we choose the largest ε = ε0 that
allows all simulations to find a value of κd+1 > 2 at each order.

When using the matrix pencil processing subroutine, we follow the im-
plementation described in Ref. [19]:

Algorithm 3.3.1. The matrix pencil method takes as input estimates of the phase
function g(k) = ∑j Ajeikθj for a unitary V at points k = 0, 1, . . . K and a proba-
bility bound A, and proceeds as follows:

48
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1. Construct the LK × (2K − LK + 1) Hankel matrices G(0), G(1), where
G(a)

i,j = g(i + j + a− K) for i ∈ {0, 1, ...LK − 1}, j ∈ {0, 1, ..., 2K− LK},
a = 0, 1, with LK = b(K + 1)/2c, and using g(−k) = g∗(k).

2. Construct the LK × LK shift matrix T by least-squares minimization of the
matrix 2-norm ‖TG(0) − G(1)‖.

3. Calculate the eigenvalues of T, λj = |λj|eiθ̃j and from there the phase esti-
mates θ̃j.

4. Calculate the probability estimates Ãj by least-squares minimization of the
vector 2-norm ‖BA− g‖, where B is the (K + 1)× LK matrix

Bk,j = λk
j , (3.59)

and g = [g(0), ...g(K)]T.

5. Return the phase estimates θ̃j for which the corresponding probability esti-
mate Ãj ≥ A.

To use this algorithm as a subroutine in Alg. 3.2.1 (in place of Alg. 3.1.4),
we implement it on the matrix V = Ukd , which requires implementing
Vk = Ukkd for a range of integer k on a quantum device.

To isolate the performance of the estimation routine from the genera-
tion of the signal itself, we do not test our protocols on data generated from
simulating or approximating a particular unitary. Instead, we test the abil-
ity of the protocols to estimate nφ = 2 and nφ = 4 randomly-chosen phases
φj ∈ [0, 2π] when sampling from the true phase function g(k). We take all
phases with equal weight — Aj = 1/nφ. We simulate the sampling from
g(k) in Algorithm 3.3.1 or Algorithm 3.1.2 for some V = Ukd by simulating
the readout of a control qubit with the reduced density matrix of Eq. (2.15).
(In practice this would be generated by the quantum circuit in Fig. 2.2.) We
first draw Md i.i.d. samples from the two Bernoulli distributions

Pr
k(+1) =

1
2

nφ

∑
j=1

Aj(1 + cos
(
θjk
)
), (3.60)

Pi
k(+1) =

1
2

nφ

∑
j=1

Aj(1− sin
(
θjk
)
), (3.61)

where θj = kdφj mod 2π are the eigenvalues of V. Then, we return the
fraction of +1s drawn as estimates for the real and imaginary parts of g(k)
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Figure 3.2: Convergence of the algorithm with total quantum cost T. Phase es-
timates were obtained with either QEEP (blue) or matrix pencil (green) subrou-
tines with parameters described in the text. Individual points show the error
δ = |φ̃j − φj|T on individual phases in each simulation. This data is binned in the
x-axis, and for each bin a root-mean-square error and standard deviation (error
bars) are plotted in the x- and y-direction. Dotted lines show a fit of these means
to δ ∼ T−1.

respectively. This is then repeated at all points k = kdk for k = 0, 1, . . . , K.
Following the discussion in Sec. 2.4 and using the notation from Eq. (3.55),
we sum the total quantum cost for the algorithm over all requested g(k)
queries; T = 2 ∑d ∑K

k=1 kkdMd. (We ignore the sub-leading correction from
the final term in Eq. (3.55) as this will not affect the scaling of our result.)
For the signal length K and number of points Md to sample each g(k) at,
we follow the bounds given in Ref. [3] (both when using the QEEP and
matrix pencil subroutines):

• signal length: K = d0.1L ln2 Le, with L = d2π
ε e the number of bins

used in the QEEP subroutine (Def. 3.1.1).

• number of measurements of each circuit: Md =
⌈
|ln (1− pd)| ε−4⌉.

Here, pd is given in Eq. (3.12) for a given kd. This equation requires
fixing a choice of α and γ — across all experiments we take α = 2 and
γ = 2.1.

To demonstrate that our methods achieve the Heisenberg limit, in Fig. 3.2
we plot the error as a function of the total quantum cost for a set of sim-
ulations using the methods described above. Each simulation draws a

50
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different set of nφ random phases, and a final error δc ∈ [10−5, 10−2] (for
each choice of δc we use the same 50 sets of phases). We plot the error for
each phase estimate separately in Fig. 3.2 (i.e. each simulation corresponds
to nφ points in the plot). As both the total quantum cost and the error is
different between simulations, we bin all experiments within a range of
T values, and calculate the root mean square error and root mean square
total quantum cost. This gives a good approximation to the accuracy er-
ror defined in Def. 3.1.3 for the restricted data set used. For the QEEP
subroutine, we observe a clear fit of the data (blue points) to a δ ∼ T−1

trend, as expected from Thm. 3.2.5, but with a rather large constant fac-
tor; we find T ∼ 1010δ−1 for estimating 2 phases and T ∼ 1015δ−1 for
estimating 4. Further optimization of the QEEP algorithm for these pur-
poses may yet improve this constant factor. However, as the methods of
Ref. [3] were not designed for estimating individual phases, it may be ex-
pected that this method performs somewhat badly for this purpose, so we
have not pursued this further. Simulations using the matrix pencil sub-
routine outperform simulations using the QEEP subroutine by a factor of
104 − 106, and clearly demonstrate Heisenberg-limited scaling δ ∼ T−1 as
well. We take this result instead of an analytic proof as strong numeri-
cal evidence for Heisenberg-limited scaling when a version of Alg. 3.2.1
is constructed using the matrix pencil method as a subroutine. We no-
tice that the error in two phase estimates the first bin of the matrix pencil
method is significantly above the remainder of the population (by about a
factor 100×). Further investigation shows that the two phases in question
are from the same simulation, and separated by only 1.5× 10−4. By con-
trast, for the simulation in question (at d = 1) our algorithm sets k1K ∼
3× 103 < (1.5× 10−4)−1 (where k1K is the largest value of the phase func-
tion g(k) sampled during this simulation). This implies that our signal lies
within the region where improving our estimation accuracy by increasing
the number of shots Md is exponentially hard [80]. In latter simulations
with the two phases we see that our estimation error regresses to similar
results as all other estimates.
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Chapter 4
Future outlook and conclusions

In this work we studied Heisenberg-limited quantum phase estimation
using a single control qubit. In this form of phase estimation, we rely
on classical signal processing to extract eigenvalue data from the phase
function g(k) in Eq. (2.13).

It has been an open question whether these methods can achieve the
Heisenberg limit in the case of multiple phases: Ref. [73] answered this
question up to log factors with a Heisenberg-limited Monte Carlo algo-
rithm, providing a sampling of the spectral function A(φ) in Eq. (2.14)
from which to estimate the phases. In this work we also answered this
question in the affirmative exactly with a new adaptive multi-order phase
estimation algorithm, for which we prove Heisenberg scaling if the algo-
rithm uses a QEEP phase extraction subroutine. We numerically show the
performance of this algorithm, also when instead of using a QEEP subrou-
tine, one uses the matrix pencil method to extract phase estimates from the
phase function g(k).

In obtaining our results we encountered at least two details of quantum
phase estimation that we have not seen discussed in the literature. The
first is the dense signal limit, Eq. (2.18) in Thm. 2.4.1: sampling g(k) at
all integer point k = 1, . . . , K is sub-optimal regardless of what method is
used to process the data. However, we also briefly argued that by picking
points among k = 1, . . . , K at random one may go beyond this, and one
could interpret this as allowing the results obtained in [73] in which such
randomized choices for k are taken.

The second is the need for adaptive choices of kd to solve the phase
matching problem. It is unclear to us how far this problem extends; al-
though Lemma 3.2.2 provides a practical solution, others may still exist.
Another open question with respect to Algorithm 3.2.1 is whether one can
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remove the need to choose real-valued multipliers κd and restrict to inte-
ger choices. Restricting κd ∈ N would significantly simplify some techni-
cal issues, i.e. the applicability of Lemma A.0.2 and the need for shifting
phases in step 2 of Alg. 3.2.1, but we don’t know how to prove a version of
Lemma 3.2.2 for kd ∈ Z+. In fact, we don’t know whether there is a funda-
mental difference in performance between only using data obtained with
integer k in g(k) versus data obtain with real-valued, –in practice rational–,
k in g(k).

We have assumed in our problem description, Def. 3.1.3, that the spec-
trum in the input state is discrete consisting of nφ phases with probability
above some cut-off. In practice this condition may not be fulfilled and
thus studying the performance of the algorithms on more typical spec-
tra induced by many-body Hamiltonians and easy-to-prepare input states
will be of interest.

A direction for future research is to make this algorithm efficient in
practice (i.e. improve the parameter dependence and the practical run
time) or devise yet-different Heisenberg-scaling algorithms and examine
their performance in the presence of experimentally-noisy signals g(k).

54
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Appendix A
Properties of the metric |.|T

Quantum phase estimation describes a series of protocols to estimate the
eigenphases φj. As these eigenvalues are defined on the circle [0, 2π), we
need a notion of distance which respects this periodicity:

Definition A.0.1. For x ∈ R we define the distance | · |T ∈ [0, π] as

|x|T := min
m∈Z

(|∆|), with x = ∆ + 2πm, with ∆ ∈ [−π, π). (A.1)

Clearly, the distance obeys the triangle inequality: for x1, x2 ∈ R

|x1 + x2|T ≤ |x1|T + |x2|T. (A.2)

The following Lemma addresses a technical issue in the proof of per-
formance of Algorithm 3.2.1. For integer k, we have |kx|T = minm∈Z |k∆+
2πm| = |k|minm∈Z |∆ + 2πm

k |T, implying Eq. (A.4) directly. However, for
k ∈ R (or rational numbers k ∈ Q) we need to specify a range of x for
which such a statement holds, i.e.

Lemma A.0.2. Suppose k ∈ R > 1, θ, φ ∈ [0, 2π). If

π

k
≤ φ ≤ π(2bkc − 1)

k
, (A.3)

we have for any θ

min
n∈{0,...,bkc−1}

∣∣∣∣φ− θ

k
− 2πn

k

∣∣∣∣
T
=

1
k
|kφ− θ|T . (A.4)

Proof. Let x = φ− θ
k , then Eq. (A.3) and θ ∈ [0, 2π) imply that

− π ≤ kx ≤ 2πbkc − π. (A.5)
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66 Properties of the metric |.|T

and thus kx = ∆ + 2πm with m ∈ {0, . . . bkc − 1} and ∆ ∈ [−π, π) and
|kφ− θ|T = |∆|. Hence x = ∆

k + 2πm
k with m ∈ {0, . . . bkc − 1}, implying

Eq. (A.4) where the minimum can be achieved by m = n.
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Appendix B
Proof of Lemma 3.2.2

Let us first prove the existence of κd+1 ∈ [2, κmax] with κmax = 3 that
satisfies our conditions (the proof for k1 is similar), for small enough ε in
Eq. (3.11). Note that Eq. (3.11) implies

ε ≤ π

300
≈ 0.01. (B.1)

Given some pair φ̃
(d)
j 6= φ̃

(d)
l , j < l, let ∆j,l = |φ̃(d)

j − φ̃
(d)
l | and let Rj,l be

a set of κd+1 such that neither Eq. (3.21) nor Eq. (3.20) hold for the chosen
phases, that is,

Rj,l =

{
κd+1 ∈ [2, κmax] : |∆j,l|T ≥

π − 2ε(1 + κd+1)

kdκd+1

∧ |kdκd+1∆j,l|T ≤ 4ε(1 + κd+1)

}
. (B.2)

We call ∪j,lRj,l the forbidden region and want to show that we can
choose a value for κd+1 ∈ [2, 3] outside this forbidden region if ε is suf-
ficiently small. We do this by bounding the size of the forbidden region
above and showing that this is smaller than the region [2, 3], leaving room
to choose κd+1.

Note that Rj,l is nonempty only if

kd∆j,l ≥ kd|∆j,l|T ≥
π − 2ε(1 + κd+1)

κd+1
≥ π − 2ε(1 + κmax)

κmax
>

73π

225
, (B.3)

using Eq. (B.1).
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68 Proof of Lemma 3.2.2

We may write the set Rj,l as

Rj,l =

[
max

(
2,

π − 2ε

kd|∆j,l|T + 2ε

)
, κmax

]
∩
⋃

n∈N

R(n)
j,l , (B.4)

where R(n)
j,l is the set of κd+1 for which

|kdκd+1∆j,l|T =

∣∣∣∣kdκd+1∆j,l − 2πn
∣∣∣∣ ≤ 4ε(1 + κd+1), (B.5)

for some n ∈N.
Solving this equation for κd+1 yields

R(n)
j,l =

[
2πn− 4ε

kd∆j,l + 4ε
,

2πn + 4ε

kd∆j,l − 4ε

]
. (B.6)

The size of each interval R(n)
j,l can then be calculated

∣∣∣R(n)
j,l

∣∣∣ = 8ε(2nπ + kd∆j,l)

k2
d∆2

j,l − 16ε2
. (B.7)

We can bound

∣∣Rj,l
∣∣ ≤ ∣∣∣∣∣nmax⋃

n=1

R(n)
j,l

∣∣∣∣∣ ≤ nmax

∑
n=1

∣∣∣R(n)
j,l

∣∣∣ = 8ε

k2
d∆2

j,l − 16ε2
(πnmax(nmax + 1)+ kd∆j,lnmax).

(B.8)
Here, nmax = nmax(j, l) is the largest index of a set R(n)

j,l in Eq. (B.5) for
which κd+1 ∈ [2, κmax]. Since κd+1 ≤ 3, Eq. (B.5) implies that

nmax ≤
3(kd∆j,l + 4ε) + 4ε

2π
, (B.9)

Now using Eq. (B.3) and Eq. (B.1) gives

∣∣Rj,l
∣∣ ≤ 1

1− (4ε/kd∆j,l)2

(
30ε(864000ε2 + 248160επ + 11899π2)

5329π3

)
≤ 3ε(864000ε2 + 248160επ + 11899π2)

532π3 ≤ 0.24, (B.10)

where the last inequality used Eq. (B.1). As there are nφ ≥ 2 phases
the length of the total forbidden region ∪j,lRj,l is bounded from above by
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n2
φ

2

∣∣Rj,l
∣∣. We want to this interval to be, say, at most 1/4, so that by choos-

ing κd+1 randomly we have a 75% change of not landing in the forbidden
interval. For larger nφ we thus should use

ε ≤ εcrit =
2π

300n2
φ

, (B.11)

leading to Eq. (3.11).
We now repeat the above approach for the special case of finding the

multiplier in the first round κ1 = k1. Consider thus k1 ∈ [3nφ, κmax] with
κmax = 3nφ + 1. The key difference here is that there is a stricter lower
bound on this multiplier κmax so that ε needs to be chosen smaller, de-
pending on nφ, namely we choose

ε0 ≤ εcrit,0 =
2π

300n4
φ

, (B.12)

as expressed in Eq. (3.10).
Given some pair φ̃

(0)
j 6= φ̃

(0)
l , j < l, and again let ∆j,l = |φ̃(0)

j − φ̃
(0)
l |.

Then, let Rj,l be the set of k1 such that neither Eq. (3.21) nor Eq. (3.20) holds
for the chosen phases. That is,

Rj,l =

{
k1 ∈

[
3nφ, κmax

]
: |∆j,l|T ≥

π − 2ε0(1 + k1)

k1
∧ |k1∆j,l|T ≤ 4ε0(1 + k1)

}
.

(B.13)
We again call ∪j,lRj,l the forbidden region and want to show that we

can choose a value for k1 ∈ [3nφ, 3nφ + 1] outside this forbidden region,
assuming that ε0 is chosen small enough. Note that the logic of the first
few inequalities in Eq. (B.3) still holds in this new calculation, leading to

∆j,l ≥
π − 2ε0(1 + κmax)

κmax
≥

π(1− 2+3nφ

75n4
φ
)

1 + 3nφ
, (B.14)

where the second inequality used Eq. (B.12) and the value for κmax. Note
that for large nφ this allows ∆j,l to decrease like ∼ 1/nφ, while previously
∆j,l was lowerbounded by a constant, Eq. (B.3).

This time, we may write the set Rj,l as

Rj,l =

[
max

(
3nφ,

π − 2ε0

|∆j,l|T + 2ε0

)
, κmax

]
∩
⋃

n∈N

R(n)
j,l , (B.15)

Version of July 23, 2021– Created August 4, 2021 - 18:05

69



70 Proof of Lemma 3.2.2

where R(n)
j,l is the set of k1 satisfying∣∣∣∣k1∆j,l − 2πn

∣∣∣∣ ≤ 4ε0(1 + k1), (B.16)

for some n ∈N. Solving this equation for k1 yields

R(n)
j,l =

[
2πn− 4ε0

∆j,l + 4ε0
,

2πn + 4ε0

∆j,l − 4ε0

]
. (B.17)

with length ∣∣∣R(n)
j,l

∣∣∣ = 8ε0(2nπ + ∆j,l)

∆2
j,l − 16ε2

0
. (B.18)

We can then bound

∣∣Rj,l
∣∣ ≤ ∣∣∣∣∣ nmax⋃

n=nmin

R(n)
j,l

∣∣∣∣∣ ≤ nmax

∑
n=nmin

∣∣∣R(n)
j,l

∣∣∣
=

8ε0
[
π(n2

max − n2
min) + (∆j,l + π)(nmax − nmin) + 2πnmin + ∆j,l

]
∆2

j,l − 16ε2
0

.

(B.19)

Here, nmax = nmax(j, l) and nmin = nmin(j, l) are the largest and smallest
indices of sets R(n)

j,l in Eq. (B.16) for which k1 ∈ [3nφ, 3nφ + 1]. Finding the
minimal and the maximal value for n in Eq. (B.16) given the bounds on k1
gives

3nφ(∆j,l − 4ε0)− 4ε0

2π
≤ nmin ≤ nmax ≤

(3nφ + 1)(∆j,l + 4ε0) + 4ε0

2π
.

(B.20)
As there are nφ phases, the length of the total forbidden region ∪j,lRj,l

is bounded from above by
n2

φ

2

∣∣Rj,l
∣∣. By plugging the bounds for ε0 in

Eq. (B.12) and ∆j,l in Eq. (B.14) in Eq. (B.19), one can verify that

|Rj,l |
n2

φ

2
≤
−16− 168nφ − 621n2

φ + 552n4
φ + 14400n5

φ + 44550n6
φ + 40500n7

φ + 73125n8
φ + 270000n9

φ + 202500n10
φ

450n3
φ(−4− 9nφ − 100n3

φ − 150n4
φ + 1875n7

φ)
,

(B.21)

which can be verified to be less than 0.5 for all nφ. Hence a random choice
for k1 in the interval [3nφ, 3nφ + 1] gives at least a 50% chance to not land
in the forbidden region.
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Appendix C
Range of shifted phase estimates

In this Appendix we prove that when the unitary U is shifted in step 2
of Alg. 3.2.1, and as long as the output of the phase extraction subroutine
(Alg. 3.1.4) meets the promises given in Lem. 3.1.5, all phase estimates of
Ukd will lie in the region for which Lem. A.0.2 holds. This allows us to
invoke Lem. A.0.2 as required during Lem. 3.2.3 and Lem. 3.2.4. Note that
if we were to shift the spectrum such that the middle of the largest gap
would sit at 0, we would do U → Ue−iζ . However, the ‘stay-away-from-
the-boundary’ condition of Lem. A.0.2 is not symmetric, hence we shift
by a different amount which also depends on the error ε0 in the phase
estimates.

Lemma C.0.1. Let {φj} be the list of eigenphases of unitary U, and let nφ,

{φ̃(0)
l }, ζ, dζ be as defined in steps 1 and 2 of Alg. 3.2.1. Assume:

• (Assumption 1a) For every phase φj, there exists an estimate φ̃
(0)
l such that

|φj − φ̃
(0)
l |T ≤ 2ε0.

• (Assumption 1b) For every estimate φ̃
(0)
l , there exists a phase φj such that

|φj − φ̃
(0)
l |T ≤ 2ε0.

Then for all k ≥ 3nφ, for the estimated shifted eigenphases {ϕ̃
(0)
l } it holds that

π

k
+ 16ε0 ≤ ϕ̃

(0)
l ≤

π(2bkc − 1)
k

− 16ε0. (C.1)

which implies Eq. (A.4) for ϕ̃
(0)
l = φ. In addition, the eigenphases {ϕj} of the
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72 Range of shifted phase estimates

shifted unitary Ue−i(ζ+dζ /2−8ε0) satisfy

π

k
+ 14ε0 ≤ ϕj ≤

π(2bkc − 1)
k

− 14ε0. (C.2)

which again implies Eq. (A.4) for ϕj = φ.

Proof. Let

ϕ̃
(0)
l =

(
φ̃
(0)
l − ζ − dζ

2
+ 8ε0

)
mod 2π. (C.3)

Let us first show that

ϕ̃
(0)
l ∈

[
π

2nφ
+ 8ε0, 2π − 3π

2nφ
+ 8ε0

]
. (C.4)

By definition of ζ (as the midway point in the largest gap) and dζ (as half
the largest gap) we have(

φ̃
(0)
l − ζ − dζ

2

)
mod 2π ∈

[
dζ

2
, 2π − 3dζ

2

]
. (C.5)

We have dζ ≥ π/nφ (with equality corresponding to nφ uniformly dis-
tributed estimates). By Eq. (3.10) it follows that

ε0 ≤
π

48nφ
, (C.6)

and thus ε0 <
dζ

16 , leading to Eq. (C.4). By the assumptions the shifted

phases ϕj lie within 2ε0 from the estimates ϕ̃
(0)
l . Thus for each ϕj there

exists a ϕ̃
(0)
l such that

ϕj − 14ε0 ≥ ϕ̃
(0)
l − 16ε0 ≥

π

2nφ
− 8ε0 ≥

π

2nφ
− 8π

48nφ
=

π

3nφ
≥ π

k
. (C.7)

and

ϕj + 14ε0 ≤ ϕ̃
(0)
l + 16ε0 ≤ 2π− 3

(
π

2nφ
− 8ε0

)
≤ 2π− 3π

k
≤ π(2bkc − 1)

k
.

(C.8)
where we have used Eq. (C.4), Eq. (C.6), k ≥ 3nφ and bkc > k − 1. This
implies Eq. (C.2) and also Eq. (C.1).
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