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Abstract

The advent of high-temperature superconductivity in 1986 [1] shook the
foundations of superconductivity. First identified in the cuprate

BanLa5−nCu5O5+x, it propelled these elusive materials unto the center
stage of physics. To let the cuprates divulge their secrets, quasi-particle

interference is nowadays an indispensable tool. In the nascent days of the
field research using this method primarily has been performed on the

underdoped version of the cuprates. The overdoped regime however is
less intensively studied. In this study we apply the T-matrix method to

model QPI in the overdoped phase. We modify a simulation for
underdoped cuprates to make it suitable for application on the desired
regime. Then, in order to obtain a quantative analysis of our result we

compare experiment and simulation using the Structural Similarity Index
Measure. Using this method the filling of the gap, the characteristics of

the dispersion bands and the van Hove singularity are investigated.
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Chapter 1
Introduction

”By straight Fourier analysis I found to my delight that the wave differed
from the plane wave of free electrons only by a periodic modulation.”
This quote is atrributed to Felix Bloch, spoken after he had invented the
epynomous Bloch wave. While the Bloch wave is delightful to him, to ex-
perimental physicists using a scanning tunneling microscope (STM) it is
rather uninteresting. The point is that from a plane Bloch wave no infor-
mation about the local electronic properties of a material can be obtained.
For example, an STM scanning a perfect metal, in which electrons behave
like Bloch waves, simply sees a flat surface.
To our delight not every physical system is described by a perfect Bloch
wave. As calculated by Friedel [2] impurities in the lattice cause ripples
in the flat electronic surface. These so-called Friedel oscillations can actu-
ally be observed. Furthermore, any non-periodic potential would break
up the plane Bloch waves and reveal the enigmatic electronic properties
of the material. The first application of this principle to cuprates was by
Hoffman [3]. Using Fourier transformed STM data she managed to im-
age the pattern resulting from the interference of the Bloch waves. This
interference did not result from ordinary electrons, but existed because
of Bogoliubov quasi-particles. These quasi-particles are broken Cooper
pairs, existing in the superconducting phase. With the advent of a theo-
retical explanation for the scattering by Wang [4] the use of quasi-particle
interference (QPI) to study cuprates was a resounding succes. The theory
invoked to explain the experiment by Hoffman was the T-matrix calcula-
tion. Using Quantum Field Theory the scattering of quasi-particles against
each other, using a single point-like impurity, was calculated. The main fo-
cus of their research was however on the underdoped cuprates.
This thesis will apply the T-matrix to QPI in the overdoped regime. Prin-
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2 Introduction

cipally a method is suggested to better simulate the non-periodicity of the
QPI in experiments. Having obtained a suitable algorithm, real exper-
imental data will be compared with the simulation in order to deduce
physical characteristics of the overdoped cuprates. The dispersion rela-
tion of the Bogoliubov quasiparticle will be investigated, as well as the
filling of the superconducting gap. Concludingly a search will be led into
identifying the van Hove singularity in the experiments. All of this will
not merely be performed by eye, but a measure to quantatively analyse re-
sults shall be used. The Structural Similarity Index Measure will compare
experiment to simulation, to vilify or sanctify the conclusions obtained by
human analysis.

2
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Chapter 2
Theory

The goal of this research is to match a model to measurements on over-
doped cuprates. Hence this section starts with a general exposé about
cuprates. Only the superconducting part of the phase diagram will be dis-
cussed in depth. The physical aspects of the other phases are either encap-
sulated in the interaction of the superconducting gap with the Fermi sur-
face or not relevant. Next the physics behind quasi-particle interference
is explained. Without this interference, reconstructing the Fermi-surface
would be impossible, as the local density of states would not depend on
the dispersion relation. Special emphasis will be placed on the difference
between k-space and q-space.

2.1 Cuprates

Cuprates are layered perovskites. Hence they consist of at least two two-
dimensional layers stacked on top of each other. These layers look repet-
itive in plane, but differ from each other out of plane. In plane the atoms
are bounded by strong metallic bonds. However out of plane the layers
are connected through van der Waals bonds. Therefore it is often relatively
easy to seperate the layers of these materials very cleanly. As an example
the perovskite structure of Bi2Sr2Ca1Cu2O8+x is shown in Fig 2.1.

In the case of the cuprates, the common denominator is that one layer
is a copper oxide plane. The main conductivity happens in this plane.
The other layers can be made of all kinds of exotic atoms. The cuprate to
be modelled is Bi2Sr2Can−1CunO2n+4+x. Here the n is an integer indicat-
ing that several different species of this material exist. Every increase of
n gives additional planes and tweaks the characteristics of the material.
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4 Theory

Figure 2.1: The perovskite structure of Bi2Sr2Ca1C1O6+x. The unit cell has a size
of 5.4Åx5.4Å. Taken from Ref. [5]

Often the versions of Bi2Sr2Can−1CunO2n+4+x are labelled by the nomen-
clature Bi-22(n-1)(n). The third number indicates the amount of calcium
atoms, the fourth the amount of copper atoms. An example of the varying
characteristics is the critical temperature Tc. This may range from roughly
33K for Bi-2201 up to 105K for Bi-2223 [6]. There is one other pecularity of
the cuprates, resembled by the x in the aforementioned formula. Namely,
the copper oxide plane can be doped. This happens through the intro-
duction of oxygen atoms. Generally this is done by annealing the formed
BiSCCO in a high oxygen atmosphere. By adding oxygen atoms holes are
introduced into the system. A somewhat simplified explanation for this is
that oxygen has a higher electronegativity than copper. Therefore when in-
troducing an oxygen atom, it tends to bind free electrons very tightly. This
removal of the freedom of movement of an electron basically amounts to
creating a hole. In order to fathom how this affects the cuprates, we take a
concrete example. Looking at Fig. 2.2 we see the phase diagram of Bi-2212.
Here the x-axis represents the amount of holes in the material, called the
doping. By doping the compound the system moves through a plethora
of phases. On the left side of the diagram the system is in the antiferro-
magnetic phase. Here the system behaves as an insulator. Completely to
the right Bi-2212 is in a Fermi liquid regime and behaves like a conductor.
An important doping level is the so called optimal doping. In the figure
the optimal doping is indicated by the arrow with Pc2. Here the critical
temperature is highest. To the left of the doping a cuprate is called under-
doped. Right to the critical temperature the cuprate is called overdoped.
As mentioned our main area of interest will be the overdoped region.

4

Version of August 25, 2021– Created August 25, 2021 - 12:14



2.1 Cuprates 5

Figure 2.2: The phase diagram of Bi-2212, reprinted from Ref. [7].

2.1.1 D-wave superconductivity

The cuprates are a type-II superconductor. This means, that contrary to
type-I superconductors, magnetic flux is capable of penetrating the ma-
terial while it is superconducting. For an ordinary superconductor there
is critical field Hc upon which superconductivity breaks down. Since for
a type-II superconductor the magnetic flux can gradually penetrate, the
supercurrent densities can be much higher. However, the magnetic flux
penetration is not even the most fascinating part of the cuprate supercon-
ducting phase. To understand why cuprates are so special, first normal
superconducitivity needs some explanation. In an ordinary superconduc-
tor below a certain temperature, called the critical temperature (Tc), elec-
trons start to form so-called Cooper pairs. Because the electrons form these
pairs and condense in a single wavefunction, a gap opens in the DOS at
the Fermi energy. The opening of a gap means that there are no allowed
electron states anymore with the gap energy. A sketch of the DOS for a
conventional superconductor is given by the black line in Fig. 2.3. The size
of the gap depends on the temperature (apart from material characteris-
tics). The lower the temperature, the bigger the gap. Furthermore the size
of the gap also indicates the difficulty of breaking the Cooper pairs and
therefore the resilience of the superconductivity. The bigger the gap, the
harder it is to break the superconductivity using a current or a magnetic
field.

In contrast with s-wave superconductors, the cuprates are d-wave su-
perconductors. This ephemeral quality was long uncertain, but it was
conclusively shown by Tsuei et al. [8]. The characterisation of the type
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6 Theory

Figure 2.3: The black line resembles the s-wave superconductor with zero DOS
within the gap. The red line indicates the additional filling of the gap by a d-wave
superconductor.

of wave is similar to the terminology used for electron orbitals [9]. The
Cooper pairs consist of two electrons. Just like electrons around nuclei, the
combined electrons can have an angular momentum. This momentum is
characterised by the same letters: s, p, d, f. Thus a d-wave means that the
Cooper pair has a non-zero angular momentum. Importantly a d-wave
superconductor has an anisotropic bandgap. The gap can be parametrised
as

∆(k) =
∆0

2
(cos(kx)− cos(ky)) (2.1)

Which results in a gap shown by Fig. 2.4. The direction where the gap is
zero is generally designated as the nodal direction. The part where the gap
is maximal is termed the antinode. In the figure the antinodes are deep-red
and the nodes are shown in blue.

Obviously the anisotropic gap yields a non-zero density of states within
the gap, contrary to s-wave superconductors. This effect is shown by the
red line in 2.3.

The superconducting gap is both dependent on temperature and dop-
ing. General agreement stipulates that in the underdoped phase the gap
increases with increased doping. However in the overdoped phase, the
gap does not necessarily decrease with even further doping. According to
research using ARPES [10] [11] the gap is more likely to fill, than to shrink.
Looking at Fig. 2.3 a shrinking gap means that the peaks move closer to-
gether. Gap-filling would mean peaks at the same location, but an even
further increase of density of states between them. This is rather odd. As
mentioned, we expect the difficulty of breaking the superconducting state
with the gap size. Therefore, a non-decreasing gap would suggest ongoing

6
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2.1 Cuprates 7

Figure 2.4: The anisotropic d-wave gap. The nodal direction is along the blue
crevice, while the antinodes are given by the red tops. Observe how the gap is
zero along the nodal direction.

superconductivity. However, at high doping the cuprates do stop super-
conducting, so apparantly filling up the gap is sufficient to suppress it.

Finally a very important remark on the excitations around the super-
conducting gap is in place. Contrary to being electrons these excitations
are Bogoliubov quasiparticles [12]. The excitations can be thought of as
broken Cooper pairs. The Bogoliubovs are linear combinations of elec-
trons and holes. The creation operators for the two spin directions are
given by Eq. 2.3. In the linear combination a(†)k gives the annihilation (cre-
ation) operator for an electron. Of course the annihilation of an electron
equals the creation of a hole.

b†
k0 = u∗ka†

k↑ − v∗ka−k↓ (2.2)

b†
k1 = u∗ka†

−k↓ + v∗kak↑ (2.3)

The coefficients of these relations have to obey

|vk|2 = 1− |uk|2 =
1
2
(1− εk

Ek
) (2.4)

The dispersion relation of these quasiparticles is given by

E(k) =
√

ε2
k + ∆2

k (2.5)

With εk the dispersion relation of the normal particles and ∆k the size
of the gap. The coefficients are clearly energy dependent. Therefore quasi-
particles are turned back into normal particles at high energies relative to
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8 Theory

the gap. When for example the gap is zero (and thus all energies are high
compared to it), u∗k = 1 and v∗k = 0. The creation of a quasi-particle is equal
to creating an electron in that case. It is the quasi-particles resulting from
Eq. 2.3 that interfere and thereby create the covetted anisotropic LDOS.

2.2 Quasi-particle Interference

In general when measuring the local density of states (LDOS) one expects
it to be locally independent of the Fermi surface. The reason for this is the
Bloch wavefunction. The Bloch wavefunction arises as an eigenfunction
and hence solution to an periodic potential and is given by

ψk(r) = eik·ruk(r) (2.6)

With uk(r) a function that is periodic with the lattice. Since the local den-
sity of states is defined by

g(E) ∝ ∑
k
|ψk(r)|2δ(E− ε(k)) (2.7)

it is obvious that the LDOS is locally independent of k in space, af-
ter substituting the Bloch wavefunction. When the Bloch wavefunction
is multiplied by its complex conjugate the exponentials cancel. There-
fore only the |uk(r)2|-term remains. This term does only very weakly de-
pend on k, thus all spatial information regarding k is lost. The remaining
|uk(r)2| is the source of the Bragg peaks and is often used to determine the
rotation of the unit cell. In the case of the presence of impurities the afore-
mentioned line of reasoning does not hold. Now the new eigenfunctions
are linear combinations of the unperturbed Bloch wavefunctions. We may
write the new Bloch wavefunction as:

ψk1,k2(r) = c1eik1·ruk(r) + c2eik2·ruk(r) (2.8)

Taking both uk(r)-terms as equal since we expect these waves to exist on
the same lattice and therfore experience the same potential. Plugging this
into Eq. 2.7 gives

g(E) ∝ ∑
k1

∑
k2

(c1c∗2ei(k1−k2)·r|uk(r)|2 + c∗1c2ei(k2−k1)·r|uk(r)|2

+ |c1uk(r)|2 + |c2uk(r)|2)δ(E− ε(k1))δ(E− ε(k2)) (2.9)

8
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2.2 Quasi-particle Interference 9

Resulting in waves with a new wavevector q = k1 − k2. For spatial
variations dependent on q there now exist a k1 and k2 that differ but
for which the energy is equal, e.g. ε(k1) = ε(k2). An one-dimensional
quadratic dispersion relation yields a trivial example. if ε = k2, then
ε(k) = ε(−k) resulting in waves with q = ±2k. The next section will
explain how these new waves results in comprehensible patterns.

2.2.1 The octet-model

The octet model is used to qualitatively explain the QPI patterns seen in
the underdoped cuprates. Though research was mainly concerned with
overdoped cuprates, it is nevertheless insightfull to glean at this model
to obtain a rough feeling for how QPI works. The generalisation to over-
doped cuprates is straightforward. The scattering amplitude in a super-
conductor is given by [13]:

w(i→ f ) ∝
2π

h̄
(uki u f f

± vki vk f
)|V(q)|2gi(Ei, ki)g f (E f , k f ) (2.10)

Here uk and vk are the same coefficients used in Eq. 2.3. As in Eq. 2.9
g(E, k) gives the density of states at a given E and k. From Eq. 2.10 it is
clear that locations in k-space with a high density of states overwhelm-
ingly contribute to the scattering. Especially scattering from one location
with a high DOS towards another location with a high DOS is pronounced.
The question is now of course where these high DOS lie. This is where the
octet model comes into play. The Fermi surface in the underdoped phase
namely has pretty well defined loci of high DOS. In Fig. 2.5a such a surface
is shown. Generally the axis for such a k-space image run from −π

a to π
a

with a the length of the unit cell. For convenience we set this a to unity in
all further reference. Since the density of states is given by

g(E) ∝
1
∇kEk

(2.11)

it is inverse to the steepness of the Fermi surface. At the tips of the
banana-shaped forms the contour of constant energy (CCE) are relatively
far apart. This means that the surface is quite flat, and hence at the tips
of contours in Fig. 2.5a, the DOS is very high. In the octet model the ap-
proximation is that only these tips of the CCE contribute to the scattering,
resulting in 8 distinctive scattering vectors. We note that the length of a
vector q only depends on the difference between k1 and k2, not on their
absolute location in k-space. Hence all q-vectors point outward from the
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10 Theory

(a) Contours of constant energy. The
closer the contours, the steeper the
Fermi surface and the lower the density
of states. The main scattering scattering
vectors are shown by the arrows.

(b) The scattering vectors of Fig 2.5a
translated in to q-space. Observe how
all vectors originate from the origin and
that therefore q-space is twice as big as
k-space.

point (0,0) in q-space. An important note is that due to this relocation at
the origin, q-space is twice as big as k-space. If an inappropriately sized
q-space is taken, the vectors that are too long are folded back into it. Also
the scattering between two loci of high DOS works of course both ways.
Therefore, as can be seen in Fig. 2.5b, every scattering vector also exists
as minus itself. Because every point scatters to all others in reality the
q-vectors are fourfold symmetric, for clarity this is not shown.

An interesting course of action is continuously increasing the energy
and thereby extending the CCE’s even further. In that case the Fermi sur-
face at the tips of the CCE becomes flat. A flat surface means a gradient of
zero and therefore Eq. 2.11 diverges. The location with a diverging DOS
due to the flatness of the surface is called the van Hove singularity.

2.2.2 The appropriate size of q-space

Briefly glanced over in the previous section, the appropriate size of q-space
merits its own analysis. As mentioned q-space should be twice the size
of k-space. In theoretical simulations however q-space is generally taken
to be the same size as k-space. The reason for this is that for a perfectly
periodic Fermi surface all q-vectors that differ by an integer multiple of
2π in both qx and qy are physically equivalent. Therefore if a vector q1

lies outside the q-space from −π to π there is a q-vector q
′
1=q1mod2π with

exactly the same characteristics. Because most of the time QPI patterns are
calculated using a tight-binding model, which assumes perfect periodicity,

10

Version of August 25, 2021– Created August 25, 2021 - 12:14



2.2 Quasi-particle Interference 11

Figure 2.6: The black arrow represents the original vector. The vector modulo
2π is drawn in blue. Only because of the additional contour there exists such a
vector. Of course in order for all vectors to be periodic the underlying CCE’s also
have to be fully periodic.

taking a perfectly periodic Fermi surface seems legitimate. A visualisation
of why different vectors modulo 2π are equivalent for a periodic Fermi
surface is shown in Fig. 2.6.
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Chapter 3
Modelling the scattering

3.1 Tight-binding model

In order to obtain the LDOS it is necessary to parametrize the dispersion
relation of the material in question. A general way of doing this is using
the tight-binding model. In this model the electrons are assumed to be
closely bound to their respective nuclei, and have only a chance to move to
another atom. The generic dispersion relation for the tight-binding model
looks like

ε(k) = −2t0 ∗ [cos(kx) + cos(ky)]− 4t1 ∗ cos(kx)cos(ky)

− 2t2 ∗ [cos(2kx)+ cos(2ky)]− 4t3 ∗ [cos(2kx)cos(ky)+ cos(kx)cos(2ky)]− µ

(3.1)

Here ti is a hopping parameter, which can be roughly interpreted as
the possibility that an electron moves from one nucleus to another. The µ
term is the chemical potential which can be seen as the amount of charge
in the system at every location. Later the chemical potential will be used to
implement the doping of the system. It is assumed also that µ is the only
way the system depends on the doping. So once the ti’s are determined for
the system, they are representative as long as the tight-binding approach
does not break down. For a good fit of the cuprates, at least hopping to the
next-nearest neighbour is required. This corresponds to using parameters
up to t1. However, in order to get the most detailed dispersion relation
we use the parameters given by the supplementary material of Hoffman
et al. [14] for Bi-2201. These parameters are given by: t0 = 0.22; t1 = -
0.034315; ; t2 = 0.035977; t3 = -0.0071637. Both the hopping parameters
and the chemical potential have dimension of energy and are expressed
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14 Modelling the scattering

in electronvolt (eV). Having obtained the dispersion relation for ordinary
electrons in solids we again turn our mind to the dispersion relation of
the Bogoliubov quasiparticles. Reprinting Eq. 2.5 for convenience, it is a
matter of filling in the dispersion relation for normal particles Eq. 3.1 and
the gap function Eq. 2.1.

E(k) =
√

ε2
k + ∆2

k (2.5’)

The new-found dispersion relation can easily be plotted and is shown
in Fig. 3.1b next to the dispersion relation for the non-superconducting
state. In the case of Bogoliubov quasiparticles the dispersion relation flips
up at the Fermi energy because of the square root in Eq. 2.5. This flipping
is peculiar to superconductors, and caused the zero LDOS in the gap. The
spectrum now has two branches of dispersion. The old winglike part at
the corners, and the central bulge. The difference between these branches
resides in the fact that Bogoliubov quasiparticles are a linear combination
of electrons and holes. The wing parts are the electron-like branch, the
bulge is the hole-like branch. In the electron-like branch the coefficients
of the electrons increase with higher energy and the hole coeffcients de-
crease. Therefore at high enough energy this branch returns to just behav-
ing as electrons. The same goes for the bulge-branch but then it reduces to
a hole band. As a rule of thumb, only around an energy of ≈±2∆ [13] the
Bogoliubov quasiparticles are truly quasiparticles. The d-wave gap how-
ever allows the Fermi surface not to be completely gapped in the official
gap range. For the gap size parameter we choose ∆0 = 0.01 Ev[15], to be
implemented in Eq. 2.1.

Having set all parameters we are now free to choose µ to appropriately
simulate the experimental results. For the samples attemped to be repro-
duced only the critical temperature was known. Setting µ can be done in
two ways for such samples. Firstly, for a given µ the doping can be calcu-
lated. This can be done by first counting all states under the Fermi energy.
To obtain the average occupation, 〈n〉, then the fraction of occupied states
versus total states is calculated. The total states being the amount of al-
lowed momentum states multiplied by two because of spin degeneracy.
The doping follows from p = 1− 〈n〉. Then from the phase diagram the
corresponding critical temperature can be gauged. If the critical tempera-
ture of the material differs from the one given for µ the chemical potential
can be tweaked accordingly. Doping however can be a bit ambiguous, es-
pecially in the overdoped phase. Therefore the preferred method is just
fitting the calculated QPI to the experimental data by trial and error. By
now for several critical temperatures the value for µ is known. Extrapo-

14
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3.2 Autocorrelation 15

(a) The dispersion relation for the non-
superconducting state.

(b) The dispersion relation for the su-
perconducting state.

Figure 3.1: The dispersion relations for Bi-2201 due to a tight-binding fit. The
surface flips up around the gap as it is supposed to. Due to the nature of the d-
wave gap the Fermi surface still exists in the gap. The gap has been exaggerated
to ∆ = 0.2 for clarity.

lating from these values to other Tc’s is much easier. We need two known
points from Hoffman et al. [14]. For optimally doped their paper obtained
µ = -0.21 with Tc = 35K. For overdoped the value was µ = -0.25 with Tc =
15K. Both were obtained using the joint density of states (JDOS) method,
to be explained in the next section. Hence we choose µ = -0.255 for the sim-
ulation at 12K. Furthermore we will choose µ = 0.235 to simulate OD23K
and µ = 0.28 to simulate OD3K.

3.2 Autocorrelation

The simplest method to qualitatively reproduce the QPI pattern is by us-
ing an autocorrelation function. As could be glanced from Eq. 2.10, the
scattering can be somewhat approximated by setting all coherence factors
and |V| to unity. The scattering then reduces to the product of two densi-
ties of state. Calculating this quantity for all ki basically amounts to taking
the autocorrelation of the Fermi surface. The formula for this joint density
of states (JDOS) is given by:

JDOS(q, E) =
∫

BZ
A(k, E)A(k + q, E)dk (3.2)

Here A(k, E) is called the spectral function. In this case A(k) = ε(k),
for the energy range of which the JDOS is to be calculated. Out of these
bounds A(k) = 0. For the JDOS-calculation to work it is necessary for
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16 Modelling the scattering

both the lattice of the Fermi surface to be sufficiently large and for the en-
ergy range to be sufficiently broad. Generally a grid size of 1000x1000 pix-
els is taken. The thermal broadening taken is of a temperature of 4K, the
temperature of the samples. This gives a thermal broadening of roughly
4kbT ≈1.44 meV. An example of the QPI resulting from a Fermi surface can
be seen in Fig. 3.2. An interesting observation regards the way autocorrela-
tions are easily calculated. The quick way to calculate the autocorrelation
is by squaring the inverse Fourier transform of the spectral function, and
then Fourier transforming it back. Because both this autocorrelation and
the T-matrix rely on this calculation a quick proof is given. The basic idea
is to write the spectral function as a Fourier decomposition in its real space
components. So substituting A(k) = 1√

2π

∫
drA(r)e−ik·r in Eq. 3.2 we get

JDOS(q, E) =
1

2π

∫
BZ

∫
drA(r, E)e−ik·r

∫
dlA(l, E)e−i(k+q)·ldk

=
1

2π

∫
dr
∫

dl
∫

BZ
e−i(r+l)·kdkA(r, E)A(l, E)e−iq·l

=
1√
2π

∫
dr
∫

dlδ(r− l)A(r, E)A(l, E)e−iq·l

=
1√
2π

∫
dr[A(r, E)]2e−iq·r

. (3.3)

The result is clearly the Fourier transform of the square of the real-space
spectral function.

3.3 T-matrix method

The first application of the T-matrix to cuprates was by Wang et al. [4].
Their method resulted in qualitative agreement, but the peaks they ob-
served were not of the right intensity and sharpness. Though over the
years the results improved somewhat, the main conclusion was that the
T-matrix method could only qualitively reproduce the octet model, but
not quantitively [4] [16] [17]. In order to explain the theory behind the T-
matrix method some quantum field theory machinery is necessary. To re-
main as lucid as possible a hybrid approach combining Balatsky et al. [9],
Hussey [18] and Joynt [19] will be used. So as to keep things tractable
we will simply start out with a reduced mean-field BCS Hamiltonian,

16
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3.3 T-matrix method 17

(a) The Fermi surface at E=0 for an under-
doped cuprate. The gap is set to zero for
clarity.

(b) The JDOS calculation for the Fermi sur-
face given in the left image.

Figure 3.2: The result of the autocorrelation calculation. Notice how the size of
the space doubles.

of which the derivation can for example be found in for example Tin-
kham [13]. Immediately writing the mean-field BCS Hamiltonian in a
Nambu basis results in

H0 = ∑
k

Ψ†
k(εkσ3 + ∆kσ1)Ψk (3.4)

Himp = ∑
kk
′
Ψ†

kU
kk
′σ3Ψ

k
′ . (3.5)

The completely Hamiltonian is the sum of these terms. Because the equa-
tion is written in a Nambu basis we have Ψ†

k = (a†
k↑, a−k↓). The a(†)k ’s are

again the annihilation (creation) operators for electrons. The spinor Ψ†
k is

equivalent to the Bogoliubov operators from Eq. 2.3, as it creates a quasi-
particle. As usual the σi are the Pauli spin matrices. The Green’s function
is now defined as the time ordered average of these spinors, given by

G
kk
′ = −〈TΨkΨ†

k〉. (3.6)

Getting the evolution in time for these operators can be done through us-
ing the Heisenberg picture: ∂

∂τ Ψ = [HBCS, Ψ]. In order to proceed Wick’s
theorem or Feynman diagrams can be used. Both cases result in calculat-
ing the Feynman propagator. Solving for the unperturbed Hamiltonian

G0k =
1

(ω + iη)σ0 − εkσ3 − ∆kσ1
. (3.7)
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18 Modelling the scattering

Figure 3.3: A schematic showing how to express Gkk
′ in G0k and Ukk

′ . The thick
black line on the left hand side corresponds to the perturbed Green’s function
Gkk′ . The thinner lines indicates the unperturbed Green’s function G0k. As can be
seen the total scattering is the sum several iterative scatterings using the unper-
turbed Green’s function. All these scatterings can be encapsulated in the T-matrix.

The iη is added to ensure the analytic continuation of the Green’s func-
tion. Of course what remains is to calculate the perturbed Green’s func-
tion G

kk
′ . Luckily we can express G

kk
′ in terms of G0k. Observing that the

full scattering consists of a sum of scattering processes for the unperturbed
Green’s function, as shown in Fig. 3.3, we can write

G
kk
′ = G0k + G0kU

kk
′G

0k
′ + ∑

k
′′

G0kU
kk
′′G

0k
′′U

k
′′

k
′G

0k
′ + ... (3.8)

= G0k + G0kT
kk
′G

0k
′ . (3.9)

With the T-matrix given by

T
kk
′ = U

kk
′ + ∑

k
′′

U
kk
′′G

0k
′′U

k
′′

k
′ + ..... (3.10)

= U
kk
′ + ∑

k
′′

U
kk
′′G

0k
′′T

k
′′

k
′ . (3.11)

The scattering potential U is written as a combination of magnetic and
potential scattering given by

U
kk
′ = V

kk
′ ⊗ σ3 + J

kk
′ ⊗ I2. (3.12)

Here V
kk
′ is the scattering potential for a normal impurity and J

kk
′ is the

scattering potential for a magnetic impurity. The equation can be greatly

18
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3.3 T-matrix method 19

simplified by assuming the scattering to be isotropic, and hence take U
kk
′

to be independent of k. If this assumption is made, T can be written as

T(±ω) =
±(V ⊗ σ3 + J ⊗ I2)

1− (V ⊗ σ3 + J ⊗ I2)g0(iω)
(3.13)

with
g0 = −∑

k

1
πN

G0k (3.14)

to solve the self-consistent equation. Substituting Eq. 3.13 in Eq. 3.11
proves the point. In order to calculate the total scattering the perturbed
Green’s function should be calculated for all k. This amounts to calcu-
lating the integral

∫
dk, which reduces the problem to almost exactly the

JDOS calculation in Eq. 3.3. Thus the scattering is easier to calculate in real
space, therefore we write

Grr′ = G0r + G0rTG0r′ . (3.15)

In order to calculate the QPI pattern in q-space, now Eq. 3.15 only has to
be Fourier transformed. Having obtained the Green’s function and the
T-matrix some physical interpretation is in place. Simply put we have

LDOS(ω, k) ∝ − 1
π

Im(
∫

drGrr′ (ω, r)eik·r) (3.16)

Since Grr′ is a 2x2 matrix we have two densities of state. The imaginary
part of the G11

rr′
element is interpreted as the density of electron states. With

the same constraints the G22
rr′

element represents the hole density of states.
Naively for STM measurements it is assumed only the G11

rr′
is needed, be-

cause the STM solely measures electrons. Later we will try and answer
whether that is indeed the case.

3.3.1 The effect of the potential

In order to see how the potential affects the Green’s function Grr′ we ex-
plicitly calculate its elements. Combining Eq. 3.9 and Eq. 3.13 and writing
out the elements we get

G11
rr′

= g11
0 + G11

0r
U11

1−U11g11
0 (iω)

G11
0r′

+ G12
0r

U22

1−U22g22
0 (iω)

G21
0r′

(3.17)

G22
rr′

= g22
0 + G22

0r
U22

1−U22g22
0 (iω)

G22
0r′

+ G21
0r

U11

1−U11g11
0 (iω)

G12
0r′

(3.18)
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20 Modelling the scattering

with

U11 = V + J (3.19)

U22 = −V + J (3.20)

As expected the perturbed function G11
rr′

mainly depends on the scatter-
ing from the unperturbed function G11

0r to G11
0r′

. This amounts to electron-
electron scattering. The same reasoning holds for the hole part. However
of interest is the fact how the scattering intensity depends on the choice
of potential. For it is clear that by setting V = −J all scattering between
electrons can removed, because it reduces U11 to zero. Identically putting
V = J kills of the hole scattering. Starting from a scenario where the scat-
tering of either component is extinguished, the potential can slowly be
tweaked to balance the different scatterings to the right intensity. Con-
cluding the parallels between the JDOS calculation and the Green’s func-
tion are touched upon. Comparing with Eq. 3.15 the autocorrelation now
makes sense. The JDOS calculation is basically a T-matrix approach with
the identity for the T-matrix. Even more succintly put, in the limit of infi-
nite scattering strength the T-matrix approach and the JDOS become iden-
tical up to a proportionality constant and a sign. In this case

T(±ω) = lim
U→∞

±U
1−Ug0(iω)

= ∓ 1
g0(iω)

(
1 0
0 −1

)
. (3.21)

3.4 Adressing non-periodicity in q-space

Having obtained a parametrization for the energy, and a way to calcu-
late scattering, we seem ready to simulate experiment. There is however
a final discrepancy to adress. With the current model, the QPI pattern in
q-space would be periodic in 2π. When observing the experimental data
the periodicity is not seen. As can be glanced from Fig. 3.4a signal inten-
sity drops precipiously beyond the Bragg peaks, causing the q-space to
be non-periodic. Physically there can be a speculative explanation for the
non-periodic q-space. When simulating a periodic QPI pattern in q-space
we assume interference vectors up to an infinite q-length. This in turn im-
plies quasiparticles that start to behave more and more like particles and
therefore have more difficulty navigating the disordered lattice. The exact
mechanism is however not understood.
While the QPI anisotropy is due to a decrease in scattering between the
first Brillioun zone and higher Brillioun zones, we will model the reduc-
tion in a different way. To simulate the decrease in scattering the Fermi

20
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3.4 Adressing non-periodicity in q-space 21

surfaces in higher Brillioun zones will be reduced in intensity. The higher
the Brillioun zone, the more the Fermi surface will be weakened. Every
higher Brillioun zone will be multiplied by cn with c a constant and n the
order of the Brillioun zone. As a result, the calculated QPI pattern will be
weakened as if there was less scattering between the Fermi surfaces. Of
course now that the strict periodicity of k-space is broken, merely plotting
q-space from −π to π does not suffice. To properly compare experiment
and theory we will additionally show q-space from−2π to 2π. Even more
poignant, also within the q-space −π to π the QPI pattern changes if scat-
tering between Brillioun zones is truly weaker. For example, if in Fig. 2.6
the downmost CCE is reduced in intensity, the interference vector lying
within −π and π becomes less pronounced. Therefore the litmus test for
the model with the weakened Fermi surface is to yield better results in q-
space both between −π and π, as well as between −2π and 2π. To get a
preliminary grasp of how the periodicity of the QPI simulation is broken
we show the results for the different approaches. In Fig. 3.4 we show the
periodic Fermi surface (Fig. 3.4b) and the resulting QPI pattern (Fig. 3.4c).
The pattern is indeed periodic in q-space. Below these in Fig. 3.4e the
periodicity of the Fermi surface is broken by weakening higher Brillioun
zones with a factor 0.1. The resulting QPI pattern now also decays in q-
space. we reiterate that in reality it is decreased scattering that causes the
non-periodicity, not the weakening of the Fermi surface.
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22 Modelling the scattering

(a) The experimental QPI pattern in q-space. The
Bragg peaks are indicated by the red crosses in the
corners of the signal.

(b) The periodic Fermi surface
generally assumed for T-matrix
simulations.

(c) The simulated QPI pattern
resulting from perfect scatter-
ing.

(d) The non-periodic Fermi sur-
face used to simulate decreased
scattering.

(e) The simulated QPI pattern
for a non-periodic Fermi sur-
face.

Figure 3.4: The breaking of periodicity in q-space due to the weakening of higher
order Brillioun zones in k-space.

22
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Chapter 4
Results

In this section we will give the results for three subjects. First we will
test whether weakening higher Brillioun zones results in better simula-
tions of the experiment. Secondly, we will use the weakening constant
resulting from this to investigate whether both electron and hole scatter-
ing should be considered in the simulation. During this analysis we will
compare both QPI patterns generated with and without gap. Finally we
turn to identifying the van Hove singularity in the experimental data with
the use of the simulation. In order to obtain quantitative results about
the correspondence of images we have used the Structural Similarity In-
dex Measure. This index developed by Wang et al.[20] provides a way of
comparing images more reliably than root-mean-square calculations of the
intensities. A slight elaboration on the algorithm can be found in the ap-
pendix, including the steps taken to fit the data to the algorithm. A higher
SSIM value means a better fit. In order to be consistent with theoretical lit-
erature we will rotate the experimental image to align it along the qx and
qy axis. The comparison will be performed for three different dopings.

4.1 Breaking of periodicity in q-space

To truly be able to conclude that breaking the periodicity of q-space pro-
vides better results we will compare experiment and simulation at three
different q-space sizes. The lengths range from −π to π, −2π to 2π and
finally the full experimental image. Although not completely appropri-
ate, for convenience we will refer to −π to π as the first Brillion zone in
q-space, and to −2π to 2π as the second Brillioun zone.
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24 Results

(a) The experimental QPI pat-
tern of the first Brillioun zone in
q-space.

(b) The experimental QPI pat-
tern of the second Brillioun
zone in q-space.

(c) The theoretical QPI for a per-
fectly periodic Fermi surface in
the first Brillioun zone.

(d) The theoretical QPI for a per-
fectly periodic Fermi surface in
the second Brillioun zone.

(e) The theoretical QPI for a
Fermi surface that is weak-
ened by 0.1 for every higher
zone. The first Brillioun zone is
shown.

(f) The theoretical QPI for a
Fermi surface that is weakened
by 0.1 for every higher zone.
The second Brillioun zone is
shown.

Figure 4.1: The different results for the first and second Brillioun zone.

24

Version of August 25, 2021– Created August 25, 2021 - 12:14



4.2 Filling the gap 25

The first two zones both for experiment and simulation are shown in
Fig. 4.1. When applying the SSIM the generated QPI is rotated instead of
the experimental as is shown here. Furthermore the strength with which
the Fermi surface is reduced is also varied. The constants chosen are 1, 0.5,
0.1 and 0. As already mentioned, the higher order Brillioun zones will be
multiplied by these constants. Thus c=1 means that the Fermi surface is
still perfectly periodic. For the strength of the scattering potential we take
V=-0.05 eV and Vm = 0.04 eV for the calculations with only electrons. Cru-
cially the scattering potential for both electrons and holes, to be used later,
will be set to V=-0.05 and Vm=-0.026. The gap is set to 10 meV according
to Li et al.[15]. Since the gap is more likely to fill than close this gap is cho-
sen for all dopings. The SSIM values comparing simulated patterns with
experiment for all these parameters are shown in Fig. 4.5.

4.2 Filling the gap

Our preliminary results show that a QPI pattern generated with C=0 yields
the best fit. Because setting the higher order Fermi surfaces to zero is some-
what unphysical we will choose a weakening constant of 0.1 for further
simulations. Though the modelling works reasonably well, there is still
an important aspect of the simulated QPI that we have neglected so far.
While the fits at higher energies are quite representative, the simulation at
energy close to and especially at E=0 is not. The experimental data for E=0
is given in Fig. 4.2a. The simulation with a gap is given in Fig. 4.2b. Clearly
large parts of the required pattern are missing. As mentioned earlier this
might be to the filling of the gap. An image showing the QPI pattern with
the gap set to zero is shown in Fig. 4.2c. Because the no-gap image seems
more representative we will compare QPI patterns with zero gap to pat-
terns with normal gap. The result of this comparison is shown in Fig. 4.6.

4.3 Adding holes

The images achieved by extending k-space and filling the gap are a huge
improvement. However, the correspondence is still not perfect. From the
patterns generated we can glance three possible areas of improvement,
indicated by the colored circles in Fig. 4.3.

Firstly, the center of the experimental images (Fig. 4.3a) has a much
higher intensity than the pure electron simulation (Fig. 4.3b). Also, their
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26 Results

(a) The experimental
data for OD3K at 0
meV.

(b) The simulated QPI pattern
of OD3K at 0meV. The gap is
still 10 meV.

(c) The simulated QPI pattern of
3K at 0meV. The gap is set to
zero.

Figure 4.2: To observe the filling of the gap experimental data is compared with
simulated data without gap and with simulations of where the gap and no-gap
pattern have been combined.

form does not corresponds exactly to experiment. Secondly, in between
the corners of the arcs of the experimental data the intensity is higher than
in the simulation. This location is indicated by the red circle. Finally the
lack of a central square, indicated by the orange circle, could be improved.
In order to increase the intensity an approach suggested by Wang [4] and
Hirschfelt et al. [21] is taken. The authors propose that for broken SU(2)
symmetry in spin space, the hole density of states also has to be taken
into account when calculating the QPI pattern. The new density of states
therefore reads:

LDOS(k, E) = − 1
π

Im(G11
kk
′ (k, ω)− G22

kk
′ (k,−ω)) (4.1)

The reason this might work is that at positive energies the hole bands are

26
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4.4 The van Hove singularity 27

closer together than the electron bands. Therefore the scattering vectors
will be shorter, which will result in an increase in the density of states
around the center. In order to observe the maximal effect we choose a high
energy. At higher energies the electron and hole band are farther apart
and therefore their impact should be better recognizable. The results of
comparing electrons only versus electrons and holes are shown in Fig. 4.6.

4.4 The van Hove singularity

Finally being able to agreeably simulate the QPI pattern we turn to analysing
the experimental images. For example, an interesting question is whether
the van Hove singularity is seen in the data. From Fig. 3.1b we can see that
the vHS lies at ~q = (±π, 0) and ~q = (0,±π). Therefore the value of the
vHS for the model can be calculated by substituting these values in Eq. 2.5.
This yields vHS23K ≈ 0.047eV, vHS12K ≈ 0.028eV and vHS3K ≈ 0.010eV.
Although the intensity of the peaks in the QPI measurement Fig. 4.4b does
speculatively suggests its presence, proving it would be worthwhile. To
show what part of the measurement can be contributed to the vHS the
Fermi surface was masked before the QPI calculation. All parts of the
Fermi surface not showing the vHS were blocked out. That way all QPI
signal can be atrributed to the diverging DOS. The masked Fermi surface
is shown in Fig. 4.4a. The general padding of the surface was applied,
but for clarity this is not shown. The result of the QPI calculation with re-
duced Fermi surface is shown in Fig. 4.4c. A final interesting observation
was that the vHS is also visible at plus 30 meV. The comparison of the vHS
above the Fermi energy with experiment can be found in the appendix.
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28 Results

(a) The experimental data
for OD3K.

(b) The simulated QPI pattern for
only the electron band with a gap of
10 meV.

(c) The simulated QPI pattern with
both the electron and hole band
with a gap of 10 meV.

Figure 4.3: The differences between only modelling the electron band and mod-
elling both the electron and hole band. All simulations are made at OD3K at 50
meV. Areas of interest are circled.
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4.4 The van Hove singularity 29

(a) The partially masked
Fermi surface at the vHS.

(b) The experimental
data for OD12K at -30
meV.

(c) The simulated QPI pat-
tern resulting from the masked
Fermi surface.

Figure 4.4: Comparison between experiment and the QPI of the masked Fermi
surface at -30 meV.
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4.4 The van Hove singularity 31

(a) The SSIM values for different ener-
gies in OD23K.

(b) The SSIM values for different ener-
gies in OD12K.

(c) The SSIM values for different ener-
gies in OD3K.

Figure 4.6: The results of simulating only electrons and both electrons and holes.
Also the results for setting the gap to zero are given.
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Chapter 5
Discussion

Having both the SSIM for quantitative analysis and the images for a qual-
itative analysis we are in a position to discuss the results. Before starting
of, a caveat is in place. To compare images quite some manipulations have
to be performed to substitute the data in the algorithm. Henceforth the re-
sults may not always be reliable. Especially the fact that the experimental
images are fed into the algorithm, instead of the raw data makes vigilance
about the results necessary. Additionally as can be seen in the appendix a
cut-off is necessary when turning simulation images into greyscale. This
only influences central peak intensity.

5.1 The periodicity of q-space

In Fig. 4.5 the SSIM values for different weakenings of the higher Brillioun
zones are given. Firstly, we observe that on average a stronger breaking
of the periodicity gives better results. Especially at the extremes of the en-
ergy scale the simulation with broken periodicity prevails. Logically the
difference in SSIM is biggest when comparing the simulation with the full
experimental image. This conclusion is also supported by qualitatively
comparing images, where we indeed see that the QPI signal after the sec-
ond Brillioun zone rapidly drops off. The telling sign that there really is
reduced scattering between higher BZ’s is given by looking at the first Bril-
lioun zone SSIM values (Fig. 4.5a, Fig. 4.5d and Fig. 4.5g). The difference
between different weakenings is smallest here. Such is expected, consid-
ering that most of the signal in this area results from scattering within the
first Brillioun zone in k-space. However, there is signal in the first Bril-
lioun zone that actually does depend on the periodicity of the lattice. The

Version of August 25, 2021– Created August 25, 2021 - 12:14

33



34 Discussion

fluctuating signal is the result of the peaks that would otherwise extend
beyond the first zone. Though not beyond doubt, it is probably the de-
crease in intensity of these areas that causes a better fit with experiment.
When looking at Fig. 4.1c and Fig. 4.1e it is likely that the difference in arc
intensity causes the change in SSIM values. Interestingly the main region
where the SSIM deviates from showing C=0 on top is between -10 meV
and +10 meV. This does for example happen in Fig. 4.5a. Though hard to
say for certain, the deviation might result from the fact that the gap is set
at 10 meV. Therefore the DOS peak lies around this energy. Either the sim-
ulation is not capable of representing this peak correctly, or because of the
high DOS the simulated images are harder to substitute into the algorithm.
We always need renormalise the data to the interval -1 to 1. When there are
extreme values in the original, these have to be carefully removed to pre-
vent them from spoiling the signal. Otherwise the extreme values are set
to one, and all else to -1. That way the algorithm can’t compare properly.
At E=0 also something interesting happens. Both in Fig. 4.5a and Fig. 4.5d
we see that the SSIM deteriorates. The deterioration might be due to filling
of the gap. The filling is not modelled and therefore the simulation might
resemble the experiment less. However, we would expect the fit to be
worst in the most overdoped scenario. But looking at the most overdoped
cuprate, Fig. 4.5g the SSIM value is not significantly lower. Fascinatingly,
the order of breaking constants is reversed here. Perhaps the additional
signal generated by the periodicity in q-space gets mistaken for the filling
of the gap.

5.2 Including holes in the model

Observing the quantitative results in Fig. 4.6 the possibility of improving
the simulation by including holes is dissolved. Practically at every point
the electron simulation surpasses the combined simulation. The difference
is not massive, but nevertheless stubbornly present. A very important re-
mark here is that in order to obtain almost equal SSIM values for both
simulations the potentials had to be different. As mentioned here the po-
tentials used were V=-0.05 eV and Vm = 0.04 eV for the calculations with
only electrons and for both electrons and holes V=-0.05 and Vm=-0.026. If
the electron simulation uses the scattering for the combination simulation
the SSIM value drastically change. In such a case it actually seems that us-
ing both holes and electrons is an improvement. The reason why we need
the specific electron parameters is that we need to maximize the scatter-
ing between the non-diagonal elements of the Green’s function. These G12
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5.3 Setting the gap to zero 35

and G21-terms are dependent on the gap and scatter through the imagin-
ery part of T22. As T22 is determined through T22 = V −Vm it will be more
sizable than T11 when V and Vm have opposite sign and are about equal.
In retrospect the whole venture of adding holes to solve a problem with
intensities for the T-matrix approach seems rather hubristic. The model is
known to deviate from experiment in especially the intensities. Adding
holes to solve the defficiency only makes things worse.

5.3 Setting the gap to zero

Looking at the quantitive results in Fig. 4.6 there is tentative evidence that
setting the gap to zero in the simulation could be an improvement occa-
sionally. Though soundly beaten everywhere above the gap, the zero-gap
simulation performs better than the gap simulation at E=0. On the basis
of our qualitative analysis of Fig. 4.2 this makes sense. The difference is so
immense that even the ”bad” simulation of both electrons and holes with
gap set to zero is better than the ”good” simulation of pure electrons with
a non-zero hole. In future simulations a method to simulate the filling of
the gap should definitely be included. Of course this also corresponds to
experiment where the filling of the gap is tentatively seen.

5.4 Final remarks

Two additional observations can be made. Interestingly, the overall high-
est SSIM score is obtained for the 12K case. Fascinatingly enough this
was also the doping for which the closest value of µ was known. Though
the chemical potential was determined by a combination of doping calcu-
lations, literature and qualitative analysis it might very well be that the
SSIM could be improved by better chosing µ. The reverse is of course also
true. By trying different values of µ and calculating the SSIM, the best fit
and hence the doping could theoretically be determined. The other obser-
vation is that the SSIM values tend to decrease at higher energies for the
full image and the second BZ. Only a guess can be ventured, but a plau-
sible explanation would be that the scattering potentials are not properly
chosen. At the higher energy ranges the hole van Hove might very well
play an important role, and up or down tuning its intensity could prove
key to flattening the curve. This tuning can of course be done by more
judiciously choosing the scattering parameters.
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Chapter 6
Conclusion and outlook

The goal of research was applying the T-matrix method to simulate QPI
in overdoped cuprates. The T-matrix was originally intended for use on
underdoped cuprates. Its incipiency was caused by the observation that in
the underdoped regime there were clearly defined peaks in the QPI-signal.
Knowing the arc-like nature of the Fermi surface, Wang et al. [4] deduced
that the QPI-pattern had to arise from scattering between the locations of
high DOS at the tips of these arcs. Thus the T-matrix approach was devel-
oped. This approach qualitatively corresponded to the experiments. The
peaks however were not of the right intensity, and were lacking the correct
sharpness.
Extending the T-matrix approach to the overdoped regime was not triv-
ial because the application to underdoped cuprates already gave these
mixed results. Making things worse, the octet-model relied on for un-
derdoped materials breaks down in overdoped cuprates. When using the
octet model sometimes a peak folded back, but it could nevertheless be
easily indentified. In the overdoped case, entire arcs folded back into the
Brillioun zone. If the QPI pattern were perfectly periodic this would be
no problem. The entire q-space can in such a case be understood from
the first Brillioun zone. From experiment it was very clear however, that
the QPI signal was far from periodic. At and beyond the Bragg peaks the
signal intensity deteriorates quickly. Therefore it was crucial to properly
expand the T-matrix into at least the second Brillioun zone. The suggestion
to do so was to weaken the Fermi surface in k-space for higher Brillioun
zones. Thereby the break down of perfect scattering between all Brillioun
zones is simulated, and the periodicity in q-space is broken. To verify that
this slightly unphysical approach truly yielded better results the Struc-
tural Similarity Index Measured was used. As a quantative measure of
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similarness, it can be used to reinforce or undermine qualitative observa-
tions. To prove the correctness of the suggested improvement, simulation
was compared with experiment for three different dopings and all rele-
vant Brillioun zones. To find the optimal weakening also four different
breaking constants were compared. From this analysis resulted the con-
clusion that weakening the Fermi surface definitely improved the simu-
lation. The vastest improvement was obtained when comparing the full
image, but even for the first Brillioun zone breaking the periodicity in k-
space yielded a better simulation. Because of this approach it was finally
possible to generate QPI patterns actually resembling the experiments in
overdoped cuprates using the T-matrix method.
First the T-matrix was used to check whether both the electron and hole
band had to be included for proper QPI results. Applying the SSIM to
compare measurements with simulation the answer sounded negative.
Secondly through comparing gapped and non-gapped QPI patterns a check
was performed testing whether the superconducting gap really fills when
increasing doping. The answer to that question sounded affirmative, as
the non-gapped simulation outperformed the gapped ones at E=0. For
future application this deficiency of the T-matrix within the gap should
be remedied. For better simulating the filling of the gap introducing more
scatterers into the T-matrix is recommended. Thirdly the improved method
was used to identify the van Hove singularity in the QPI patterns. By
masking the non-van Hove part of the Fermi surface it could be shown
that the areas of high intensity were definitely due to the aforementioned
singularity.
For future research the combination of the T-matric and SSIM seems quite
synergetic. Because of the speed of the T-matrix it is easy to generate sim-
ulated data for a lot of different parameters. The SSIM can then be used to
prune these solutions to find the optimal values for the variables. As the
T-matrix relies on parameters in both the scattering strength and chemical
potential there is plenty of room to further improve the simulations. For
example, having even better simulations could allow for determining the
width of the van Hove singularity in real space. As we have been able
to identify which part of the QPI signal causes the signal intensities, an
inverse Fourier transform should yield its real space form. Theoretically
also the doping of a sample can be determined from studying the QPI mea-
surement and finding the chemical potential with the best fit. There have
been other methods that generate a q-space of the right size. This has been
done either by the JDOS calculation [3] or by using Wannier functions [22]
after diagonalising a real space Hamiltonian. As the T-matrix is more de-
tailed than the JDOS calculation, and quicker than the Wannier function,
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it is a usefull addition to the arsenal for studying QPI. Anyway, through
correctly expanding the size of q-space and the the use of SSIM we hope
to have added a droplet to the vast ocean of knowledge about simulating
quasi-particle interference.
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Appendix A
Comparing images using the SSIM

Comparing images is quite hard for computers. The reason being that
most algorithms compare images pixel by pixel. For images containing
more structured data, such an approach does not yield satisfactory results.
By using the SSIM this problem is allayed [20]. The improvement is ob-
tained by using three independent measures for comparison. The lumi-
nance, constrast and structure. The equation used to calculate the SSIM is
given by

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2 + µ2 + C1)(σ2
x + σ2

y + C2)
(A.1)

Here x and y are the input images. The luminance µx and contrast σx are
respectively given by

µx =
1
N

N

∑
i=1

xi (A.2)

σx =

√√√√ 1
N − 1

N

∑
i=1

(xi − µx)2 (A.3)

(A.4)

So the luminance is given by the mean of the intensity of an image,
and the contrast as the deviation from this mean. Finally, for the structure
coefficient we have

σxy =
1

N − 1

N

∑
i=1

(xi − µx)(yi − µy) (A.5)
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48 Comparing images using the SSIM

(a) The steps taken to make the data ready to
be fed into the SSIM algorithm

(b) Experimental images compared with
processed QPI simulations.

The structure coefficient can be roughly interpreted as an innerproduct be-
tween the images after the luminance has been substracted. The SSIM is
then a product of these factors. As was the goal, comparison is not simply
pixel by pixel. For the algorithm to produce sensible results additionally
some image manipulation was necessary. Firstly all images had to be con-
verted to greyscale. This means that all pixels should have values between
-1 and 1. The experimental images were converted using CV2. For the
generated QPI-patterns manual conversion was necessary. The procedure
is shown in Fig. A.1a. First the extremes of the simulation are removed.
Generally the simulation has a few extreme pixels in the center. Removing
these is essential to avoid all other pixels to become zero when normal-
ising. Next the values were inverted. The SSIM considers high values to
be zero signal and vice versa. Then, to get into the appropriate range 1

2 of
the maximum was substracted. Lastly the values were normalised and the
size of the simulation was adjusted to the size of the image.
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Appendix B
Images for mentioned parameters

In this section we digress on some minor variations that occur for differ-
ent parameters. First we have the images with the gap set to zero. As
mentioned in the text, this is rather unphysical around the gap, but might
but usefull far above or below it. The most important observation is that
the electron simulation in Fig. B.1a has no peaks at the corners between
the arcs. The electron-hole simulation does have these peaks, and there-
fore looks more like the experimental image. This difference is obviously
reduced when the gap is non-zero. Secondly we show the van Hove sin-

(a) The electron QPI pattern
with gap set to zero.

(b) The electron and hole QPI
pattern with gap set to zero.

Figure B.1: Simulations for different bands with the gap set to zero.

gularity above the Fermi energy at 30 meV. This singularity can be both
due to the flipping of the quasi-particle dispersion relation or due to the
scattering of electrons into empty hole states. Do note that compared to
Fig. 4.4c the signal is slightly weaker. As can be seen in the experimental
data in Fig. B.2a this should be the case.
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50 Images for mentioned parameters

(a) The experiment for
OD12K at 30 meV.

(b) The QPI resulting from
masking the Fermi surface at 30
meV.

Figure B.2: The comparison for the van Hove singularity at +30 meV, so above
the Fermi energy.
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