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Abstract

The Milky Way halo embeds several satellites galaxies that carry informa-
tion about the structure formation history of our Galaxy. Some of these
satellites are disrupted by the galactic tidal forces and form the stellar
streams, which typically have a lower mass compared to their progenitor.
The Laser Interferometer Space Antenna (LISA) can detect these structures
in gravitational wave emission, allowing us to study their properties. The
most numerous gravitational sources in the Galactic halo are the popula-
tion of white dwarf (WD) binaries. In this work, we combine a cosmo-
logical simulation of the Milky Way halo with a binary population syn-
thesis model to find the realistic distribution of WD binary systems. We
study the properties of the detectable binary systems in the Galactic halo
and constrain the total stellar mass, distance, and age of its satellites and
streams. A spectacular example of a disrupted satellite is Sagittarius. Its
stream extends all across the sky, and due to its large stellar mass and close
distance, it is expected to host several LISA detections. We provide the
first estimation of the Sagittarius WD binary population using a similar
approach employing positions and densities from a Sagittaruis simulation
and inferred age distribution from observation. We predict that LISA will
detect ∼ 30 binaries, from which 10 will be in the Sagittarius stream.
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Chapter 1
Introduction

1.1 Gravitational wave astronomy

Einstein proposed the theory of general relativity (GR) (Einstein, 1915).
According to this theory, the geometry of spacetime, as characterized by
curvature, is determined by the existence of matter and energy. Under
certain conditions, accelerating massive objects can disturb the curvature.
Einstein anticipated gravitational waves (GWs) as the perturbations in
spacetime curvature that propagate at the speed of light (Einstein, 1916).
He later demonstrated that when a system emits GWs, it must also emit
energy, which reacts by dampening the motions in the system (Einstein &
Rosen, 1937).

When GWs pass through an observer, the observer’s frame deforms
according to the strain of the GWs. The strain of GWs is intrinsically very
small (∼ 10−22, see also Section 5.3) and decreases by distance from the
source. Because of the long distance to GW sources, their effects on Earth
are predicted to be quite small, making them hard to detect. Sources of
noise, on the other hand, may also dominate the signal. As a result, there
are two methods for detecting these waves: creating highly sensitive in-
struments or measuring energy loss over a lengthy period of time. Many
attempts have been made to detect GWs since the existence of GWs was
proposed. Hulse & Taylor (1975) made the first indirect observation of
GWs as they discovered a binary system consists of a neutron star and a
pulsar PSR1913+16 whose orbit decays in agreement with the energy loss
due to GWs emission . However, GWs had not been directly detected until
2015 by the Laser Interferometer Gravitational-Wave Observatory (LIGO)
Abbott et al. (2016b). The existence of such waves was demonstrated by
the observation of the merger event GW150914 of a pair of black holes
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8 Introduction

with masses of about 36 and 29 solar masses. This discovery established
a new era of gravitational-wave astronomy, allowing for the observation
of dynamical strong-field gravity and providing a direct probe for test-
ing the validity of GR in the nonlinear range. Furthermore, if GR holds
across all ranges, we can look for unexpected local matter and new exotic
fields that may exist near black holes. GWs may also be able to provide
us with firsthand observation of the very early moments of the Universe
(Amaro-Seoane et al., 2017a). Later in 2017, GW170817, the first merger of
binary neutron stars was discovered from gravitational wave and electro-
magnetic (EM) radiation. Combining the gravitational-wave data with the
observations of emissions enables us to gain new insights into the astro-
physics of compact binary systems, gamma-ray bursts, and independent
cosmological tests (Abbott et al., 2017).

The ground-based interferometer LIGO is composed of two 4 km long
arms in an L-shape. It splits a beam directed from a laser source into these
two arms. Splitted waves are reflected back to the beam splitter, where
they are combined and directed to the detector. If both beams travel equal
distances, the combined beam destructively interferes. Therefore, there
will be no pattern signal. However, when the GW passes through, it
changes the distance between the mirrors, resulting in a phase shift be-
tween the light beams that LIGO receives at the detector and produces.
This phase shift is the physical observable that indicates the presence of
a GW. Laser Interferometer GW detectors look for temporal variations in
time series data rather than spatial variations caused by a passing GW
(Maggiore, 2007). As a result, LIGO can detect GWs that are substantially
smaller than the detector size. The Earth is constantly moving, causing
the mirrors in the detectors to shake at a frequency ranging from 1 to 10
Hz. This, combined with Seismic noise, precludes ground-based interfer-
ometers from searching for GWs at frequencies lower than around 10 Hz.
Consequently, the frequency range of LIGO sensitivity is 10 Hz to 10 kHz
(Abbott et al., 2016a).

1.1.1 Laser Interferometer Space Antenna

To overcome the low frequency sensitivity limit set by seismic noise on
Earth, space-based GW experiments have been proposed (Folkner et al.,
1998). For example, the Laser Interferometer Space Antenna (LISA) com-
prises three spacecraft separated by 2.5 million kilometers that form an
equilateral triangle following Earth in its orbit around the Sun at a dis-

8
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1.1 Gravitational wave astronomy 9

tance of 50 million kilometers from Earth and is scheduled for launch in
2034. As planned in the L3 mission, LISA will provide observation over a
science lifetime of at least four years. The frequency range of LISA sensi-
tivity is 10−4 Hz to 1 Hz. Hence, it will be able to detect objects with longer
wavelengths in GWs corresponding to wider orbits and perhaps consid-
erably heavier than those detected by LIGO (Amaro-Seoane et al., 2017b).
LISA is predicted to be able to pinpoint the position of GW sources to ten
squared degree or less – this is in favorable conditions – due to the orbital
motion of the detector and, to a lesser extent, the inherent directionality of
the detectors (Amaro-Seoane et al., 2017a).

1.1.2 GW Sources

In general, LISA GW sources can be categorized into (Hughes, 2006):

• Stochastic sources from cosmological backgrounds: They consist
of a superposition of various, uncorrelated sources, the majority of
which are cosmological in origin and have been amplified by infla-
tion. They feature a broad, flat, or widely peaked spectrum, and their
frequency can range from 10−16 to 1010 Hz.

• Periodic sources, Galactic binary stars: They are guaranteed sources
of GWs as we measure their GW radiation indirectly with telescopes
(see the example of PSR1913+16 above) which are in binary systems
(mostly WD binaries) that radiate at nearly a pure tone (monochro-
matic) in their rest frame.

• Chirping sources, Massive black hole coalescence: Binaries with
a total mass of 104 − 107M� formed by the merging of large struc-
tures – galaxies and protogalaxies – and the dark matter halos that
host them, emitting a pure tone that swiftly passes through the LISA
band.

• Complicated chirping sources, Extreme mass ratio inspirals: They
consist of a binary system, one of which is a massive Galactic core
black hole and the other a stellar mass compact object.
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10 Introduction

1.2 Probing our Galaxy with gravitational wave
sources in LISA

Our galaxy, the Milky Way (MW), is expected to host a large number of
stellar binaries (composed of WD, neutron star (NS), and black hole (BH)
in short-period orbits of < 1 hour) emitting GWs (Nelemans et al., 2001b).
We can use LISA as a tool for studying our Galaxy through GW radiation
from these binaries. The MW can be divided into visible components: a
thin disk, a thick disk, a bulge, and a stellar halo, each with its own spa-
tial and kinematic distribution, as well as age and chemical composition.
The stellar halo is the most extended stellar component that contains very
metal-poor and old stars (e.g. Helmi, 2020). According to the hierarchical
structure formation hypothesis, galaxies like the MW have formed via a
series of accretion events (e.g. Bullock & Johnston, 2005). This implies that
the stellar halo should also be formed from disrupted accreted systems
(Purcell et al., 2010; Zolotov et al., 2009).

1.2.1 Stellar streams

Numerical simulations suggest that stars of an infalling satellite become
unbound and orbit around the parent galaxy, spreading across configura-
tion space, i.e. phase mix. Once the debris has filled the configuration-
space volume, it is considered to be fully phase-mixed. However, accord-
ing to Liouville’s theorem, the phase-space density of debris is conserved
as it evolves, establishing a link between kinematics and the progenitor
mass (Johnston, 2016). Tidal disruption of low mass progenitors (globular
clusters or dwarf galaxies) with low eccentric orbits forms stellar streams
that are kinematically cold and thin. The study of stellar streams in the
Galactic halo gives us the opportunity to probe the MW formation history
and its gravitational field (Ibata et al., 2002; Johnston et al., 1999), as well
as studying the nature of dark matter (Helmi, 2020).

Gaia and other EM surveys give us astrometric and photometric mea-
surements for various regions of the sky. There are typically three different
methods applied to these data for detecting and characterizing the stellar
streams. One method uses matched filter techniques on color-magnitude
diagrams to identify a specific population of stars (e.g. Dehnen et al., 2004).
This technique performs poorly on structures with substantial distance
gradients. Another is to trace groups of stars such as RR Lyrae stars that
are confined in a small phase-space volume (e.g. Duffau et al., 2006). This
method needs complete kinematic information of the stars, which is not

10
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1.2 Probing our Galaxy with gravitational wave sources in LISA 11

fully provided by existing measurements. More recently, Malhan & Ibata
(2018) presented the STREAMFINDER algorithm, which more efficiently
detects stellar streams by tracking the orbit of their stars within a Galac-
tic potential. Figure 1.1 shows a number of stellar streams detected by
STREAMFINDER within 30 kpc distance. All of the above methods are lim-
ited by foreground contamination stars and observational errors.

Figure 1.1: The heliocentric distance solutions for 5960 stars from the Gaia DR2
catalog provided by STREAMFINDER software taken from Ibata et al. (2021), Fig-
ure 2.

Simulations of galaxy formation estimate that the stellar halo of the
MW contains 300-500 satellites at present (Moore et al., 1999). However,
only 60 satellites of the same size have been observed so far (Koposov
et al., 2018; Newton et al., 2018). The one order of magnitude discrep-
ancy between the number of observed and estimated satellites could be
explained by the fact that only a tiny portion of stars in stellar halos can
be observed in EM waves, which are also dispersed over a large volume.
This makes it challenging to study the stellar halo substructures and their
global properties. However, GW astronomy can help us in overcoming
this limitation.

1.2.2 Double white dwarf binaries

From GW sources, double white dwarf (DWD) binaries, which may be
discovered at all galactocentric distances and span a wide range of ages,
can be employed as tracers of the properties of the MW and its substruc-
tures. They can also be studied to constrain the outcome of the common

Version of August 18, 2021– Created August 18, 2021 - 10:17

11



12 Introduction

envelope phase and the progenitors of type Ia supernovae, as well as to
obtain a better knowledge of WDs, their masses, and their interactions in
binaries (Amaro-Seoane et al., 2013). The detectability of DWDs in the
MW has been extensively studied, and LISA is estimated to detect from a
few to several 104 DWDs. (Korol et al., 2017; Lamberts et al., 2019; Nele-
mans et al., 2001a; Ruiter et al., 2010). Korol et al. (2018) and later Roeb-
ber et al. (2020) demonstrated that LISA would be able to detect DWDs
in our galaxy’s satellites and the Local Group. When compared to black
hole (Sesana et al., 2020) and neutron star (Lau et al., 2020) binaries, DWD
sources in the LISA band are roughly three orders of magnitude more
numerous in the MW. According to population synthesis studies, there
will be so many binaries at sufficiently low frequencies (below 3 mHz)
that they will be indistinguishable and form a contaminated foreground
(Evans et al., 1987; Hils et al., 1990). However, frequency bins will be de-
void of Galactic binaries at higher frequencies and allow to obtain infor-
mation about signals from weaker extragalactic sources. This noise con-
tains information about the distribution of stars (Hughes, 2006) and the
structural properties of our galaxy (Benacquista & Holley-Bockelmann,
2006).

DWDs are classified as detached and semi-detached binary systems,
the latter of which involves mass transfer beyond the Roche Lobe and
therefore may be observable in X-ray (Nelemans et al., 2001b). It is gener-
ally difficult to detect DWDs at optical wavelength because they are faint
and rapidly cooling down and because the dust contamination inhibits
them. (Korol et al., 2019), on the other hand, we already know 25 DWDs
detectable that can be detected by LISA. These binaries are referred to as
”verification binaries.”

1.2.3 Sagittarius

Sagittarius dwarf galaxy (Sgr) is one of the MW’s closest and most mas-
sive satellites originally discovered by Ibata et al. (1994). Due to its prox-
imity and large mass, the Sgr is expected to host several LISA detectable
binaries. The ongoing tidal disruption of Sgr has resulted in a magnificent
stellar stream wrapping around the MW, which may be used as a model to
study the hierarchical structure formation as well as constraining the MW
potential (e.g. Law & Majewski, 2010). Majewski et al. (2003) revealed the
two arms of the stream, the leading in the Northern Galactic hemisphere
and the trailing in the Southern Galactic hemisphere, by exploiting the
prominent population of M giant stars from the Two Micron All-Sky Sur-

12
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1.2 Probing our Galaxy with gravitational wave sources in LISA 13

vey (2MASS). Observational surveys such as Gaia have provided us with a
detailed map of the Sgr satellite using stellar tracers, specifically RR Lyrae
stars, to quantify its properties and structural characteristics such as stel-
lar mass, distance (Hamanowicz et al., 2016), metallicity (Cseresnjes et al.,
2000), and the 50 kpc difference between the apocentric distances of the
leading and trailing arms (Belokurov et al., 2014). The progenitor of Sgr
is located behind the Galactic bulge at a distance of ∼ 26.7 kpc and has
Galactic coordinates ` = 275◦ and b = −14◦ (Belokurov et al., 2014). Since
its discovery, there has been a debate about the mass of the Sgr at present
and initially before being disrupted by the MW. According to simulations
of the disruption of Sgr, it is estimated that Sgr started merging with the
MW around 10 Gyr ago with a relatively large total (stellar + dark matter)
mass of M = 1011M� (Gibbons et al., 2017; Jiang & Binney, 2000), indi-
cating that it is not a minor merger. Law & Majewski (2010) estimated a
mass of 2.5+1.3

−1.0 × 108M� for the remnant by comparing the resulting ve-
locity dispersion in the stream from a series of N-body simulations to its
actual observed value in the trailing arm. Another estimation is provided
by Vasiliev & Belokurov (2020), comparing the magnitude distribution of
the observed stars with a number of well-known globular clusters of sim-
ilar metallicity. They infer a total mass of around 2× 108M� for Sgr.

This work is organized as follows. In Chapter 2, we provide a review
of the generation and detection of GWs from DWD binaries. In Chapter 3,
we study the population of DWDs, the Galactic halo of the MW, using a
binary population synthesis model combined with a cosmological hydro-
dynamic simulation of a MW-like galaxy. We identify detectable DWDs
by LISA and try to constrain the properties of the satellites and their de-
tectable binaries. We then narrow our focus to Sgr to make predictions
for its detectability in LISA. Our results are presented in Chapter 4. We
discuss them and provide a summary of our findings in Chapter 5.

Version of August 18, 2021– Created August 18, 2021 - 10:17

13





Chapter 2
Review of gravitational waves
generation and detection

At this section we will review the mathematical description of the binary
emission in GWs mainly based on Maggiore (2007) book, and Tong (2019)
lecture notes. We begin by introducing linearized gravity in the context
of the weak field approximation in a flat background. We determine the
equations of motion for the metric perturbation and demonstrate that it
has a plane wave solution with two polarizations. We then identify the
characteristics of GWs emitted by a binary system of WDs by using some
approximation.

2.1 Linearized gravity

Einstein developed theory of general relativity to generalize special rel-
ativity and refine Newton’s law of gravity. At the core of the theory of
general relativity, Einstein’s field equations governs how the geometry of
spacetime responds to energy and momentum.

Rµν −
1
2

gµνR =
8πG

c4 Tµν, (2.1)

where gµν is the metric. R and Rµν are the corresponding Ricci scalar and
Ricci tensor. G is the Newton constant, c is the speed of light, and Tµν is
the energy-momentum tensor of matter. The Ricci scalar R is defined by
R = gµνRµν, where the Ricci tensor Rµν is

Rµν = ∂λΓλ
µν − ∂µΓλ

λν + Γλ
µνΓρ

ρλ − Γλ
νρΓρ

µλ. (2.2)
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16 Review of gravitational waves generation and detection

We will consider the torsion-less metric formalism ,∂λgµν = 0, which im-
plies that the connections Γα

βγ can be expressed in terms of the metric ten-
sor gµν, as

Γα
βγ =

1
2

gαλ
(
∂βgγλ + ∂γgλβ − ∂λgβγ

)
. (2.3)

The linearized theory assumes that the field is weak and that it varies with
time. As a result, the metric can be decomposed into a flat background
and a perturbation which we will see it describes the GW.

gµν = ηµν + hµν,
∣∣hµν

∣∣� 1. (2.4)

Here ηµν = diag(−1,+1,+1,+1). We expand the field equations (2.1) to
the first order in terms of hµν. Equation (2.4) does not specify the coordi-
nate system on spacetime. In fact considering coordinate transformation
from xµ to xµ + ξµ, hµν tansforms to hµν − 2∂(µξν). Thus, slowly varying
diffeomorphisms (

∣∣∂µξν

∣∣ � 1) keeps the metric perturbation small and
hence is a gauge transformation in linearized theory. We will later fix this
gauge to simplify our field equations.
By ignoring higher order of hµν, we obtain the inverse metric

gµν = ηµν − hµν, (2.5)

where hµν = ηαµηβµhαβ. We can then expand the Christoffel symbols

Γρ
µν =

1
2

ηρλ
(
∂µhνλ + ∂νhλµ − ∂λhµν

)
. (2.6)

The Riemann tensor can be written in terms of Christoffel symbols

R ρ
µν σ = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ. (2.7)

Since the Christoffel symbols are at leading order in the metric perturba-
tion h, we can neglect Γ2 terms.

R ρ
µν σ = ∂µΓρ

νσ − ∂νΓρ
µσ =

1
2

ηρλ
(
∂µ∂σhνλ − ∂µ∂λhνσ − ∂ν∂σhµλ + ∂ν∂λhµσ

)
.

(2.8)
Contracting over µ and ρ, we obtain the Ricci tensor

R µ
µν σ = Rσν =

1
2
(
∂µ∂σhνµ −�hνσ − ∂ν∂σh + ∂ν∂µhµσ

)
. (2.9)

16
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2.1 Linearized gravity 17

Where h = ηµνhµν is the trace of perturbation and � = (−1/c2)∂2
0 + ∂2

i is
the d’Alambertian in the flat space. Renaming the indices we obtain Ricci
tensor Rµν and Ricci Scalar as

Rµν =
1
2
(
∂µ∂σhνσ + ∂ν∂σhµσ −�hµν − ∂µ∂νh

)
,

R = ηµνRµν = ∂µ∂νhµν −�h.
(2.10)

To linear order in h, lhs of the Einstein’s equation become

Rµν −
1
2

ηµνR =
1
2
(
∂µ∂σhνσ + ∂ν∂σhµσ −�hµν − ∂µ∂νh− ηµν∂ρ∂σhρσ + ηµν�h

)
(2.11)

We can express the above more convinently by introducing the trace-reversed
metric perturbation, h̄µν = hµν − 1/2bµνh, which transforms as follows

h̄µν → h̄µν −
(
∂µξν + ∂νξµ + ηµν∂ρξρ

)
,

∂νh̄µν → ∂νh̄µν −�ξµ.
(2.12)

Rewriting the fields equation in terms of the trace-reversed metric pertur-
bation, we obtain

�h̄µν + ηµν∂ρ∂σh̄ρσ − ∂µ∂σh̄νσ − ∂ν∂σh̄µσ = −16πG
c4 Tµν. (2.13)

One can easily check that the Bianchi identity in the linearized theory is
satisfied and results in the conservation of energy-momentum

∂µ

(
Rµν −

1
2

ηµνR
)
= ∂µTµν = 0. (2.14)

Equation (2.13) can further simplified by fixing the gauge freedom. We
choose Lorenz gauge,

∂νh̄µν = 0, (2.15)

which reduces the field equation to the linear inhomogeneous wave equa-
tion

�h̄µν = −16πG
c4 Tµν. (2.16)

For any solution h̄µν of the field, a gauge transformation can cancel its
divergence.

∂νh̄µν → ∂νh̄µν −�ξµ = 0. (2.17)
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18 Review of gravitational waves generation and detection

So we can always impose the Lorenz gauge. Outside the source, where
Tµν = 0, equation (2.16) becomes

�h̄µν = 0. (2.18)

Equation (2.18) is similar to the wave equation. We will show in the next
section that (2.18) has a plane wave solution which describes GWs. We can
still simplify this equation by imposing a further coordinate transforma-
tion such that �ξµ = 0 which keeps the Lorenz gauge condition fulfilled.
This also implies �ξµν = 0 where ξµν ≡ ∂µξν + ∂νξµ + ηµν∂ρξρ = 0. The
field equation (2.18) then become

�(h̄µν − ξµν) = 0. (2.19)

We choose ξ0 in order that the trace h̄ = 0, which then implies h̄µν = hµν.
So equation (2.18) reduces to

�hµν = 0. (2.20)

Moreover, we choose ξ i such that h0i = 0. Imposing these conditions, we
can write the Lorenz gauge for µ = 0 as ∂0h00 = 0. This shows that h00 is
constant and time-independent. As GWs are the time-dependent part of
the metric, it means h00 = 0. Bring it all together we have

h0µ = 0, hi
i = 0, ∂jhij = 0. (2.21)

The conditions in (2.21) are known as transverse-traceless gauge or TT-
gauge. Now we can do some counting. We have started with a symmet-
ric perturbation hµν which has ten degrees of freedom. Imposing Lorenz
gauge with four conditions, and also the transverse-traceless gauge with
another four conditions, reduces the number of degrees of freedom to two
which are the two polarization of a GWs.

2.2 Energy of GW

A source which emits GWs loses energy. We are interested in calculating
this energy carried by the emitted GWs. Since there is no local energy-
momentum tensor for GWs (Tong, 2019), there is no straight forward way
to do so. In the linearized theory, we can define an energy-momentum
non-tensor tµν such that ∂µtµν = 0. This, however, is not invariant under
gauge transformations. Our approach is to expand the Einstein equation
to the second order in hµν

18
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2.2 Energy of GW 19

[
Rµν −

1
2

gµνR
](1)

+

[
Rµν −

1
2

gµνR
](2)

=
8πG

c4 Tµν. (2.22)

In each term, the superscript (n) specifies the order hn. We can rewrite this
as [

Rµν −
1
2

gµνR
](1)

=
8πG

c4

(
Tµν + tµν

)
, (2.23)

and consider the second order expansion to be the gravitational energy-
momentum non-tensor tµν,

tµν = − c4

8πG

[
Rµν −

1
2

gµνR
](2)

= − c4

8πG

[
R(2)

µν −
1
2

ηµνR(2) − 1
2

hµνR(1)
]

= − c4

8πG

[
R(2)

µν −
1
2

ηµνR(2)
]

.

(2.24)

Where in the third equality we have used the fact that R(1) term vanishes
at linear order by the equation of motion far from the source, Tµν = 0.
Notably the bianchi identity in the linearized theory (2.14) implies that
∂µtµν = 0. We now need to expand the Ricci tensor to the second order

R(2)
µν =

1
2

hρσ∂µ∂νhρσ − hρσ∂ρ∂(µhν)σ +
1
4

∂µhρσ∂νhρσ + ∂σhρ
ν∂[σhρ]µ

+
1
2

∂σ

(
hσρ∂ρhµν

)
− 1

4
∂ρh∂ρhµν −

(
∂σhρσ − 1

2
∂ρh
)

∂(µhν)ρ.
(2.25)

Substituting this in the expression (2.24), we can calculate tµν. However,
in order to obtain a physical tensor, we need to make it gauge invariant.
The GWs has a characteristic length scale, we denote by λ. We take the
average over the GW oscillations over some region V of typical size a〈

tµν

〉
≡
∫

V
d4x W(x− y)tµν(y). (2.26)

Where the weighting function W(x) varies smoothly over V with
∫

V d4xW(x) =
1 and W(x) = 0 on ∂V. The resulted

〈
tµν

〉
is known as coarse-grained

energy tensor. The averages of total derivatives scale as
〈
∂X
〉
∼ 1/a

and so it goes to zero for large a. We can also integrate by part inside
the average and the total derivatives go to zero,

〈
X∂Y

〉
= −

〈
(∂X)Y

〉
. In
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20 Review of gravitational waves generation and detection

the transverse-traceless gauge, the averaged energy-momentum tensor be-
come 〈

tµν

〉
=

c4

32πG
〈
∂µhρσ∂νhρσ

〉
. (2.27)

We can prove this tensor is conserved

∂µ
〈
tµν

〉
=

c4

32πG
〈
(�hρσ)∂νhρσ +

1
2

∂ν(∂µhρσ∂µhρσ)
〉
. (2.28)

Where the first term vanishes based on the equation of motion and the
second term is a total derivative and goes to zero for large a. Furthermore,
we can verify that the residual gauge do not change this averaged energy-
momentum tensor

δ
〈
tµν

〉
=

1
16πG

〈
∂µhρσ∂ν(∂

ρξσ + ∂σξρ)
〉
= 0. (2.29)

First term vanishes by integrating by parts ∂ρ, and using the Lorenz con-
dition ∂ρhρσ = 0. The second term vanishes in the same way. Therefore,
taking a → ∞,

〈
tµν

〉
is gauge invariant. We can now compute the energy

flux. The GW energy inside the volume V is

EV =
∫

V
d3x

〈
t00〉. (2.30)

We obtain the energy flux by taking the time derivative of equation (2.30)

1
c

dEV

dt
=
∫

V
d3x ∂0

〈
t00〉 = − ∫

V
d3x ∂i

〈
ti0〉

= −
∫

S
dA ni

〈
t0i〉. (2.31)

Where in the second equality we have used the conservation law for av-
eraged energy-momentum tensor which implies ∂0

〈
T00〉 + ∂i

〈
Ti0〉 = 0.

We then applied divergence theorem in the third equality, where ni is or-
thonormal to the surface S. If we assume a spherical surface far from the
source, the surface element become dA = r2dΩ, and n̂ = r̂. Then we can
write the energy flux as

dE
dAdt

= c
〈
t0r〉, where

〈
t0r〉 = c4

32πG
〈
∂0hTT

ij ∂rhTT
ij
〉
. (2.32)

Since decreasing of the total energy in the volume is equivalent to the
energy carried by the outward-propagating GWs, −dEV = dE, we have
omitted the minus sign.

20
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Figure 2.1: A schematic representation of Equation (2.36).

2.3 Plane waves

Now we try to solve the field equation (2.20) in the TT-gauge. One solution
is provided by GW

hµν = Re
(
eµνeikρxρ)

. (2.33)

Here the eµν is a symmetric polarization tensor and the wave vector kµ =
(ω/c, k) is a real 4-vector and satisfy kµkµ = 0 which implies ω/c = ±|k|.
We can then conclude that the GWs in vacuum travel at speed of light. The
lorenz gauge condition on a plane wave solution become kµeµν = 0 which
shows that the polarization is transverse to the direction of propagation. If
we assume that the wave is propagating in the z direction, k = (0, 0, ω/c),
the hµν can be written as

hab(t, z) =
(

h+ h×
h× −h+

)
ab

cos[ω(t− z/c)], (a, b) = (1, 2). (2.34)

where h+ and h× are known as plus and cross polarization of the GWs.
This solution corresponds to a free wave coming in from infinity, and prop-
agating to infinity. However, in reality GW sources emit waves at a finite
distance from observer. We are interested in looking at the perturbation
hµν far away from these sources. Equation (2.16) can be solved using re-
tarded Green’s function as

h̄µν(t, x) =
4G
c4

∫
V

d3x′
Tµν(tret, x′)
|x− x′| . (2.35)

Here we denote (t, x) and (tret, x′) as the observer and source coordinates
as shown in Figure 2.1, and the retarded time as tret = t − |x−x′|

c . We
assumed that the source is localized to V with a size of d. If |x− x′| � d,
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we can approximate

|x− x′| = r− x · x′
r

+ . . .→ 1
|x− x′| =

1
r
+

x · x′
r3 + . . . (2.36)

Here r ≡ |x|. We can then approximate the retarded time tret in the energy-
momentum tensor

Tµν(tret, x′) = Tµν

(
t− r

c
+

x · x′
cr

+ . . . , x′
)
. (2.37)

We can further taylor expand argument (2.37) by assuming that the typical
velocity of the source is non-relativistic. This assumption for a binary with
characteristic frequency ω and hence an energy-momentum Tµν ∼ eiωt

becomes ωd� c. So we have

Tµν(tret, x′) = Tµν(t−
r
c

, x′) + Ṫµν(t−
r
c

, x′)
x · x′

cr
+ . . . (2.38)

So at the leading order in d/r in argument (2.35), we would have

h̄µν(t, x) =
1
r

4G
c4

∫
V

d3x′ Tµν(t− r/c, x′), (2.39)

from which we are more interested in the spatial components of the per-
turbation

h̄ij(t, x) =
1
r

4G
c4

∫
V

d3x′ Tij(t− r/c, x′). (2.40)

For convenience, we introduce the second momenta of mass density or
quadrupole moment of the energy,

Mij(t) =
1
c2

∫
V

d3x T00(t, x)xixj. (2.41)

The second derivative of Mij turns out to give the integration of energy-
momentum density over the source region

1
2

M̈ij(t) =
∫

V
d3x′ Tij(t, x′). (2.42)

To show this we start by taking the first derivative of Mij defined in (2.41),

c2Ṁij =
∫

V
d3x ∂0T00xixj = −

∫
V

d3x ∂kTk0xixj

=
∫

V
d3x Tk0∂k(xixj) =

∫
V

d3x (Ti0xj + T j0xi).
(2.43)

22
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Here in the second equality we have used the conservation law for energy-
momentum which implies ∂0T00 + ∂iTi0 = 0. We then used integration
by part in the third equality. We can now take the second derivative of
quadrupole moment Mij,

c2M̈ij =
∫

V
d3x (∂0Ti0xj + ∂0T j0xi) = −

∫
V

d3x (∂kTikxj + ∂kT jkxi)

=
∫

V
d3x (Tik∂kxj + T jk∂kxi) =

∫
V

d3x (Tikδ
j
k + T jkδi

k) = 2
∫

V
d3x Tij.

(2.44)
Which prove our claim (2.42). We introduce the projection and Lambda
operators as defined in (Weinberg, 1972), which allow us to transfer any
tensor to TT-gauge.

Pij(n̂) = δij − ninj, Λij,kl(n̂) = PikPjl −
1
2

PijPkl, hTT
ij = Λij,kl(n̂)hkl.

(2.45)
Considering the Lambda operators, equation (2.40), and (2.42) we may
obtain the leading term of the perturbation in TT-gauge far from a non-
relativistic source in terms of the quadrupole moment

hTT
ij =

1
r

2G
c4 Λij,kl(n̂)M̈kl(t− r/c) (2.46)

Implementing the explicit expression for the Lambda operators we can
calculate the perturbation for the GWs propagating in the z direction.

hTT
ij =

1
r

2G
c4

(M̈11 − M̈22)/2) M̈12 0
M̈21 −(M̈11 − M̈22)/2 0

0 0 0

 . (2.47)

Which we may interpret the amplitudes of plus and cross polarization as
defined in (2.34),

h+ =
1
r

G
c4 (M̈11 − M̈22),

h× =
2
r

G
c4 M̈12.

(2.48)

The incident GWs, on the other hand, can propagate in any direction with
regard to the gravitational detector frame. To obtain the generalized plus
and cross polarization for a GW travelling in a generic direction n̂, we need
to describe the propagation direction in the detector frame. A convenient
way is to relate the z-direction of the detector frame to the propagation
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Figure 2.2: The projection of a generic propagation direction n̂, on the (x̂, ŷ, ẑ)
frame. θ is the angle formed by n̂ with ẑ; φ is the angle formed by the projection
of the n̂ on the x− y plane, with x̂, and ŷ.

direction by performing a rotation. Similarly the second mass moment
tensor will transform as M→ RT MR. Where the rotation matrixR is

R =

cos φ sin φ 0
sin φ cos φ 0

0 0 1

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 . (2.49)

As illustrated in Figure 2.2, this involves a rotation in the direction of the
orbital phase φ, and another in the direction of the inclination θ. Applying
the transformation on the second mass momenta tensor, we can calculate
the generalized plus and cross polarization as,

h+(t; θ, φ) =
1
r

G
c4

(
M̈11

(
cos2 φ− sin2 φ cos2 θ

)
+ M̈22

(
sin2 φ− cos2 φ sin2 θ

)
− M̈33 sin2 θ − M̈12 sin 2φ(1 + cos2 θ) + M̈13 sin φ sin 2θ + M̈23 cos φ sin 2θ

)
,

h×(t; θ, φ) =
1
r

G
c4

((
M̈11 − M̈22

)
sin 2φ cos θ + 2M̈12 cos 2φ cos θ − 2M̈13 cos φ sin θ

+ 2M̈23 sin φ sin θ

)
.

(2.50)
Using the expression (2.46) and (2.32), we can calculate the energy flux of
the GWs far from the source,

dE
dAdt

=
c5

32πG
〈
∂0hTT

ij ∂rhTT
ij
〉
. (2.51)

24
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2.4 Binary Inspiral: circular orbit 25

We are now able to calculate the radial derivative of the perturbation

∂rhTT
ij = − 1

r2
2G
c4 Λij,kl(n̂)M̈kl(t− r/c) +

1
r

2G
c4 Λij,kl(n̂)∂r M̈kl(t− r/c)

' 1
r

2G
c4 Λij,kl(n̂)

−1
c

∂tM̈kl(t− r/c)

=
1
r

2G
c4 Λij,kl(n̂)∂0M̈kl(t− r/c) = ∂0hTT

ij ,
(2.52)

where we have neglected O(1/r2) in the second equality. We are now able
to write the expression for the energy flux of the GW

dE
dAdt

=
c3

32πG
〈

ḣTT
ij ḣTT

ij
〉
. (2.53)

We can rewrite the result in terms of plus h+ and cross h× polarization,

dE
dAdt

=
c3

16πG
〈

ḣ2
+ + ḣ2

×
〉
. (2.54)

We can also find an expression for the radiated power per unit solid angle
by rewriting dP = dE/dt, and dA = r2dΩ in (2.54),

dP
dΩ

=
r2c3

16πG
〈

ḣ2
+ + ḣ2

×
〉
. (2.55)

2.4 Binary Inspiral: circular orbit

Consider a system consisting of two WDs with mass m1 and m2 in close
orbit around each other. We choose the origin for the coordinate sys-
tem to be the WDs’ center of mass. Doing so, we can describe the mo-
tion of two bodies to an equivalent one-body problem with mass µ =
m1m2/(m1 + m2) known as reduced mass. It is worth noting that we ig-
nore frictional losses. Without loss of generality we can consider circular
orbits for double WDs. GWs are emitted most strongly at periastron for el-
liptical orbits. This radiation reaction slows the motion and hence the orbit
circularizes (Glampedakis & Kennefick, 2002). Therefore, circular orbits
are expected. Assuming the relative coordinate is performing a circular
motion in the x− y plane, we have

x0 = R cos
(

ωst +
π

2

)
, y0 = R sin

(
ωst +

π

2

)
, z0 = 0. (2.56)
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Where we added the phase π
2 to obtain a positive sign for perturbation

later. If we treat the WDs as point particles (Broek et al., 2012), then the
energy density can be written as

T00(t, x) = µδ
(
x + R sin ωst

)
δ
(
y− R cos ωst

)
δ(z). (2.57)

Implementing above in (2.41) we can calculate the quadrupole moment
Mij for this system,

Mij(t) =
∫

d3x µδ
(
x− x0

)
δ
(
y− y0

)
δ(z− z0)xixj = µxi

0(t)y
j
0(t). (2.58)

Which results in

Mij = µR2

 sin2 ωst − sin ωst cos ωst 0
− sin ωst cos ωst cos2 ωst 0

0 0 0

 . (2.59)

Putting the quadruple expression above in (2.50), the cross and plus polar-
ization modes can be represented as

h+(t; θ, φ) =
4
r

G
c4 µR2ω2

s

(
1 + cos2 θ

2

)
cos

(
2ωstret + 2φ

)
,

h×(t; θ, φ) =
4
r

G
c4 µR2ω2

s cos θ sin
(
2ωstret + 2φ

)
.

(2.60)

From which we can conclude that the angular frequency of quadrupole
radiation is twice the orbital angular frequency of the binary. We now use
Kepler’s third law to eliminate R in favor of ωs,

ω2
s =

G(m1 + m2)

R3 . (2.61)

Introducing the chirp mass of the binary system Mc ≡ µ3/5(m1 + m2)
2/5,

we can combine the mass dependant parameters and then we can express
the plus and cross polarization modes of the GWs (2.60) emitted by the
binary system in terms of its chirp mass, distance, and the frequency as,

h+(t; θ, φ) = A 1 + cos2 θ

2
cos

(
2π f tret + 2φ

)
,

h×(t; θ, φ) = A cos θ sin
(
2π f tret + 2φ

)
,

(2.62)

where the dimensionless GW strain A is defined as

A =
4

rc4

(
GMc

)5/3(
π f
)2/3 ' 6× 10−20

(
1kpc

r

)(
Mc

M�

)5/3( f
1Hz

)2/3

,

(2.63)
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2.4 Binary Inspiral: circular orbit 27

and GW frequency is expressed as f = 2ωs/2π. Substituting the above
expression for the GWs polarization (2.62) into (2.55), we can calculate the
radiated power per solid angle by the GWs

dP
dΩ

=
2
π

c5

G

(
GMcπ f

c3

)10/3[(1 + cos2 θ

2

)2

+ cos2 θ

]
. (2.64)

We used the fact that
〈

cos2 (2π f tret + 2φ)
〉

=
〈

sin2 (2π f tret + 2φ)
〉

=
1/2. By integrating over the solid angle, we can compute the total radi-
ated power carried out by GWs from a pair of WDs spiralling in towards
each other

PGW =
32
5

c5

G

(
GMcπ f

c3

)10/3

. (2.65)

If we neglect the frictional loss, the orbital energy loss is radiated away
completely by GWs, Ėorbit = PGW . We would then have

− d
dt

(
Gm1m2

2R

)
=

32
5

c5

G

(
GMcπ f

c3

)10/3

. (2.66)

Again we use the Kepler’s third law to eliminate R and its derivative Ṙ, in
favor of the GW frequency f and its derivative ḟ . As a result, we get

ḟ =
96
5

π8/3
(

GMc

c3

)5/3

f 11/3. (2.67)

Consider at the time of coalescence tcoal, the frequency diverges. Then
by integrating (2.67) over time, we obtain the explicit expression for the
frequency of the GW emitted by our binary system in terms of the chirp
mass Mc, and the time to coalescence τ ≡ tcoal − t

f ' 151 Hz
(

M�
Mc

)5/8(1s
τ

)3/8

. (2.68)

We can estimate that for a typical WD binary, each star with a mass of
0.7M�, the chirp mass is Mc = 0.61M�. LISA detects GWs in a fre-
quency range of [10−4, 1] Hz. Consequently, using (2.68) this system of
two stars can be detected in time to coalescence range of around [0, 2] Gyr.
In other words, the emitted GWs from this binary will be detectable by
LISA for a period of roughly 2 Gyr prior to merger. When merging stars
approach closer to each other, the flat background assumption becomes in-
valid, and we must replace it with the Scwartzschild background, which
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establishes a boundary for the minimum radial distance at which a sta-
ble circular orbit can exist. This innermost stable circular orbit is located
at r = 6G(m1 + m2)/c2. Below this orbital distance, the stars begin to
merge, necessitating a different set of considerations. We can use Kepler’s
law to demonstrate that this limitation imposes a maximum for the above-
calculated frequency (2.68).

fmax = 2.2 kHz
(

M�
m1 + m2

)
. (2.69)

For the above binary, we have fmax ∼ 3600 Hz. Using the theoretical maxi-
mum mass that a WD star might have, known as the Chandrasekhar mass,
for both WDs in the binary, we find a maximum frequency of fmax ∼ 800
Hz. Then we may conclude that all of the DWDs will merge long enough
after passing through the LISA frequency range for the estimated wave-
form above to be valid. We can also understand why the LIGO sensitivity
range is unsuitable for detecting DWDs in GWs.
We use a distance of 10 kpc to calculate the GW amplitude for a typical
DWD system in the LISA frequency range. This amplitude is very tiny,
in the range of 10−23 to 10−21, making the detection challenging. Further-
more, the total power radiated away by GW from this binary at mHz fre-
quency is around 2.1× 1027 watts. In comparison, this is almost ten times
greater than the total emitted power from the Sun.

2.5 Signal Detection

It is estimated that the GW signal will be buried in considerably greater
noise in the present detectors (Maggiore, 2007). The typical method for
recovering signals from the coalescence of compact binaries is to use op-
timal matched filtering with theoretically predicted waveform templates.
Following the selection of the best-fitting template, the confidence of this
method is characterized by the signal to noise ratio of the data. The signal
to noise ratio (SNR) for a typical DWD detectable in LISA averaged over
sky location, polarization, and inclination is given by (Robson et al. 2019)

ρ2 = A2 TLISA

Sn( f )
, (2.70)

whereA is the amplitude of GW signal defined in (2.63), TLISA is the LISA
mission life time, and Sn( f ) is the power spectral density (PSD) of the
detector noise. As numerous templates are considered in data analysis,

28
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the SNR threshold has to be set to a quite large value 7 in order to avoid
false alarms (e.g. Korol et al., 2020). The total PSD of the detector noise can
be noted as the sensitivity curve and be expressed as (Robson et al., 2019)

Sn( f ) =
10

3L2

(
Sshot( f ) +

4Sacc( f )
(2π f )4

)
× 1
R( f )

+ Sc( f ), (2.71)

where L = 2.5 Gm is the arm length of the LISA. We shall now explain
each components of the sensitivity curve of the LISA. LISA arm lengths
will fluctuate significantly during the mission (∼3 percent of total arm
Length). This large mismatch in arm lengths produces a frequency noise
that is many orders of magnitude higher than the expected signal (McKen-
zie et al., 2009). To reduce the signal noise, the armlocking technique will
be adopted for LISA. This technique locks the laser frequency to the length
of the LISA arm. However, it also generates two types of other noises:

• Shot noise is a phase error in the signal received from a distant
spacecraft caused by stochastic fluctuations due to the discrete na-
ture of the field. The shot noise is estimated to be

Sshot( f ) = (15 pm)2 Hz−1. (2.72)

• The spacecrafts are designed to move drag-free around the test masses.
However, controlling the relative location of the spacecraft and the
test mass causes the acceleration noise in the laser beam that travels
between the spacecrafts. The acceleration noise is approximated as

Sacc( f ) =
(
3× 10−15 m/s2)2

(
1 +

(
0.4 mHz

f

)2)
Hz−1. (2.73)

The transfer functionR( f ) in (2.71) relates the amplitude spectral density
of the wave Sh( f ), and the spectral density of the signal recorded in the
detector Ss( f ), by Ss( f ) = Sh( f )R( f ). However, it was decided to in-
clude its inverse in the noise spectral density rather than the signal. This
function is numerically calculated in Larson et al. (2000) and well-fitted by
the expression:

R( f ) =
3

10

(
1 +

6
10

(
f

19.09 mHz

)2)−1

. (2.74)

The last contributor to the sensitivity curve, Sc( f ), stems from unresolved
Galactic binaries, which generate a time-varying confusion noise foreground.
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Figure 2.3: The characteristic strain and frequency of a typical DWD with an
orbital period of T = 1000 s, and a chirp mass of Mc = 0.61M� placed at d = 10
kpc, indicated by a blue point. Solid and dashed lines show the sensitivity curve
in terms of characteristic strain for the mission duration time of 4 and 10 years,
respectively.

Cornish & Robson (2017) analyzed a population of Galactic binaries to
forecast this noise. They created the unresolved population by iteratively
removing detected sources with SNR > 7, which is the nominal LISA SNR
threshold. They then estimated the power spectral density of the residual
signal as

Sc( f ) = 1.80e−44 f−7/3e− f α+β f sin (κ f )(1 + tanh (γ( fk − f )) Hz−1, (2.75)

where for a mission duration of 4 yr, α = 0.138, β = −221, κ = 521,
γ = 1680, fk = 0.00113. To account for maintenance operations and data
gaps, we use a 75% duty cycle computed by the LISA pathfinder mission
(estimated by LISA consortium). As a result, we must rescale the obser-
vation duration by a factor of 3/4. In Figure 2.3, the characteristic strain
of LISA sensitivity curve hn =

√
f Sn( f ), and that of the typical DWD

hc = A
√

f TLISA with a chirp mass of Mc = 0.61 M�, orbital period of
1000 s, and at a distance of 10 kpc are shown. The binary is detectable be-
cause it appears above the sensitivity curve. Based on (2.62), the phase
component in the plus and cross polarization modes may be used to di-

30
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rectly detect the GW frequency, f . The chirp mass of the coalescing object
Mc can be described in terms of the GW frequency f , and its derivative
ḟ , as can be seen in (2.67). Therefore, the chirp mass can be calculated by
combining the derivative of GW frequency, which is challenging to mea-
sure for low-frequency (< 1 mHz) slowly evolving sources, with the ob-
served frequency. Now that we have the chirp mass, we can use the plus
and cross GW strain in (2.62) to calculate the luminosity distance r and
binary orbital inclination angle θ.
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Chapter 3
Methods

In order to study the detectable DWDs in the MW Galactic halo, we first
need to have a distribution of these binaries. However, only a few DWDs,
typically mass transferring ones, have been detected in EM radiation. There-
fore, we have to rely on the binary population synthesis method. This
chapter introduces the binary population synthesis model that provides
us DWDs’ properties, then combines it with a cosmological simulation of
MW-like halos to create a model that allows us to predict MW Galactic
halo properties. Finally, we present a simulation of the Sgr satellite and
use our technique to investigate its detectability in LISA.

3.1 Synthetic population of DWDs

In this work, we take advantage of a binary population synthesis model
of DWDs provided by Toonen et al. (2017), which has been calibrated us-
ing observations and represents the properties of binary populations in
our Galaxy well. This model is constructed from a population of Zero-
age Main Sequence Stars (ZAMS) in binaries, assuming a binary fraction
of 50% (Nelemans et al., 2001a). The mass of primary stars m1 are drawn
from a Kroupa initial mass function (IMF) (Kroupa, 2001) in the range of
[0.95 M�, 10 M�]. For secondary stars m2, they use a uniformly drawn
mass in the range of [0.08 M�, m1] (Duchêne & Kraus, 2013). They adopt
a uniform distribution in log space for the initial orbital separations (Abt,
1983) with an upper boundary of 106R�, and a Maxwell-Boltzmann distri-
bution in the range of [0, 1] for the initial eccentricity (Heggie, 1975).

They performed the binary population synthesis code SeBa (Porte-
gies Zwart & Verbunt, 1996; Toonen et al., 2012) ultimately resulting in
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N = 901078 DWDs, which represent a total mass of 2.28× 107M�, with
metallicity of Z = 0.0001 – appropriate for MW satellites – to evolve stars
from the ZAMS until remnant formation, tracking the systems that form
DWD binaries. They treat the common envelope phase by employing a
γα formalism (Zorotovic et al., 2011). It is worth mentioning that Korol
et al. (2020) demonstrated metallicity has a limited impact on the DWD
evolution. Throughout the evolution, they processed the interactions be-
tween the components of each binary, such as stellar winds, mass transfer,
angular momentum loss, common envelope, magnetic braking, and grav-
itational radiation. After the formation of a DWD binary, we assume that
it only loses energy due to GW emission. As a result, by adopting a cir-
cularized orbit, we may evolve its orbital separation using Equation (2.68)
and find its orbital properties at a given time.

The mass transfer may occur before merging time in some binaries,
resulting in a fast merger (Marsh et al., 2004). When the star radius in a
binary system exceeds its Roche lobe, the matter outside this region will
fall onto the companion star. The approximate Roche lobe for a star in a
binary system is calculated by (Eggleton, 1983)

r1 = R
0.49q2/3

0.6q2/3 + log(1 + q1/3)
, (3.1)

where q is the mass ratio q = m1/m2, and R is the orbital separation. In
this work, we assume that a binary has merged through the evolution if
their radii exceed their Roche lobe.

Different progenitor mass and binary evolution channels result in dif-
ferent subtypes of DWDs based on their core composition. Indicating
different core compositions, He (helium), CO (carbon/oxygen), and ONe
(oxygen/neon) for WDs, we can classify the binaries as

• CO-CO: They account for 75% of our binary population. They have a
relatively larger orbital separation at the DWD formation time, mak-
ing them less relevant for LISA. Although, as they form fast, they
account for the majority of DWDs with short orbital periods in a rel-
atively short time (less than a Gyr). They have a median chirp mass
of 0.61 M� (and a minimum of 0.37 M�).

• CO-He: 8% of our binary population consists of binaries, in which
one star is CO type, and the other has a He core composition. They
have a median chirp mass of 0.43 M� (and a minimum of 0.22 M�),
and their formation takes about 2 Gyr.
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3.2 Simulated Galactic halo 35

Figure 3.1: The chirp mass (left), the formation time (middle), and the orbital
period at the time of formation is illustrated for different subtypes of DWD.

• He-He: Our binary population is made up of 14% of low mass bina-
ries with a median chirp mass of 0.3 M�. They take a relatively long
time to form, about 6 Gyr.

• ONe-X: Only 3% of our binary population consists of binaries with
at least one star with ONe core composition. They form relatively
fast and are typically rare.

Now to get more insight into the binary population, we would like to
visualize some of its physical properties. Figure 3.1 shows how different
DWD subtypes differ in terms of formation time, chirp mass, and orbital
period at their formation time. From time zero to 14 Gyr, in 100 steps,
we find the contribution of binaries that has formed and not merged yet.
In Figure 3.2 we demonstrate the contribution of different subtypes to the
total number of DWDs at five different times. Figure 3.3 shows the chirp
mass and orbital periods of DWDs at three different times. Finally, assum-
ing a distance of 10 kpc for the DWDs in the synthetic population, Figure
3.4 shows the characteristic strain and frequency as well as the histogram
of the chirp mass of DWDs at three different times.

3.2 Simulated Galactic halo

We use a publicly available suite of simulated Galactic halos by Bullock &
Johnston (2005). They construct the MW-like halos by modeling a series of
accretion events initiated in a cosmological context based on the extended
Press-Schechter formalism (Lacey & Cole, 1993). By calculating the ex-
pected mass accretion rate of dark matter and assuming a cold baryonic
mass fraction of f = 0.02, they determine the baryonic component in each
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Figure 3.2: Contribution of DWDs with different core composition in time. The
CO-CO binaries are dominant at first (0.1 Gyr, top left), then the He-CO binaries
take over at 1.9 Gyr (top right) and grow until 4.9 Gyr (middle left). After that, the
gap between He-CO and He-He contribution decreases until, at 7.5 Gyr (middle
right), He-He binaries become the dominating type. Their contribution increases
until 14.0 Gyr (bottom). The total number of DWDs at each time is indicated in
the panel.
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Figure 3.3: Orbital period P and chirp mass Mc of DWDs in the LISA sensitivity
range at three different times. Each point indicates a DWD which its formation
time is shown on the color bar. The dashed-dotted lines show the time to coa-
lescence in Gyr, and the dashed lines represent the approximate boundaries be-
tween different types of DWDs based on their core composition. At younger ages,
the CO-CO binaries, as expected, dominate the population of the high-frequency
DWDs (top panel). At later times (middle and bottom panel), He-CO and He-He
binaries contribute to the high frequency DWDs which are relevant for LISA.
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Figure 3.4: Left panels show the characteristic strain of population of DWDs lo-
cated at a distance of 10 kpc and their frequency f at three different times. Bina-
ries that lay above the blue curve indicating LISA sensitivity curve, has a SNR> 1,
thus may be detectable. we observe that DWDs with a larger chirp mass – shown
in the color bar – have a larger GW strain at each frequency bin. Furthermore,
we find that low mass binaries contribute to the observable DWDs by LISA at
later ages. Right panel shows the histogram of the chirp mass of DWDs. In the
center right panel, the peaks from low to high masses are associated with He-He,
He-CO, and CO-CO binaries. We see in the top right panel that He-He binaries
do not contribute to younger population of DWDs.
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3.2 Simulated Galactic halo 39

Figure 3.5: The density map of simulated particles in halo 02.

satellite. They adopt an average star formation timescale of t? = 15 Gyr to
estimate the stellar mass of each satellite, then distribute it in the satellite
by the spherically symmetric King profile (King, 1962). Finally, they track
the disruption of satellites within a Navarro-Frenk-White (NFW, (Navarro
et al., 1996)) potential using a high-resolution N-body simulation. They
created 11 different Galactic halos, the validity of which is demonstrated
by effectively reproducing observed structural properties of MW satel-
lites such as luminosity function, luminosity-velocity dispersion relation,
and surface brightness distribution. There is a substantial variance in the
global properties of the resulted simulated halos as a result of the stochas-
tic nature of hierarchical structure formation.

In their simulations they assume a ΛCDM cosmology with Ω = 0.3, ΩΛ =
0.7, Ωbh2 = 0.024, h = 0.7, σ8 = 0.9. For each simulated halo, we get the
position, age, and mass of every star particle from this simulation. The
density map of halo 02 is illustrated in Figure 3.5. Figure
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Figure 3.6: Distribution of the mass (left), the distance (middle), and the
age(right) of the simulation particles in a the halo 02 is shown.

3.3 Combination of binary and Galactic halo mod-
els

In order to find the population of DWDs in the MW Galactic halo, we com-
bine the binary population synthesis with our simulated halos following
the methodology presented in Korol et al. (2020). We select stellar particles
in simulated halos as the progenitors of DWDs and assign NDWD DWDs
drawn randomly from the synthetic population proportional to the mass
of the simulation particles M?

NDWD,? =
NDWD,SeBa

MSeBa
M? = 0.039 DWD/M�, (3.2)

where the fraction is determined by dividing the total number of DWD in
our synthetic population NDWD,SeBa by the total mass it represents MSeBa.
The DWDs in the sample inherit the position and formation time of the
progenitor simulated particle. We then evolve their orbits for the age of
their progenitor simulated particle, removing any binaries that have yet
to be formed or have already merged. Finally, we have the population of
DWDs in the Galactic halos. With the chirp mass, distance, and the or-
bital period for each DWD, we can calculate its GW strain using Equation
(2.63). The SNR is then calculated for the binaries with a frequency above
10−4 Hz, by Equation (2.70), and those binaries with SNR > 7 are kept as
detectable DWDs.
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Figure 3.7: Histogram of the simulation particle distance for the progenitor (left),
the leading arm (middle), and the trailing arm(right) of the Sgr.

3.4 Simulated Sagittarius

Similar to the Galactic halo, we require the three parameters position,
mass, and age to combine with the synthetic population in order to find
the population of DWDs in the Sgr satellite. We recover the positions and
masses from the simulation provided by Vasiliev et al. (2021). They model
the disruption of a spherical dark halo with an embedded stellar mass
distribution following from King profile with an initial stellar mass of
2× 108M� and a halo mass 18× larger. They first find the time-dependent
perturbed potential of the MW + Large Magellanic Cloud (LMC) with a
mass of 1.5× 1011M� using Gyrfalcon code and then track the evolution
of Sgr within the pre-calculated combined potential by an N-body simu-
lation. They adopt 2× 105 particles of each light and dark matter compo-
nent of the Sgr satellite. The simulations are carried for 2.5 orbital periods
(3 Gyr) and indicate that nearly half of the stellar mass gets stripped to the
present time. For verification of their model, they demonstrate that it can
fit most of the observed Sgr remnant.

We divide the simulated Sgr into three components: the progenitor
(bounded to the satellite), the leading arm, and the trailing arm. Figure
3.7 shows the distance distribution for the simulation particles of the Sgr
galaxy. We use the definition of the right-handed celestial coordinate sys-
tem Λ, B from Vasiliev et al. (2021). The center of the Sgr progenitor is
located at Λ = 0. Positive and negative Λ correspond to the leading and
the trailing arms, respectively, as shown in Figure 3.9.

de Boer et al. (2015) estimated the star formation history (SFH) of the
Sgr streams using the Sloan Digital Sky Survey (SDSS) observational data
within the stripe 82 region. They compare the observed Color Magnitude
Diagrams (CMD) to a grid of synthetic CMDs to determine the SFH in the
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Figure 3.8: Normalized probability distribution function of the age for the pro-
genitor (left), the leading arm (middle), and the trailing arm (right) of the Sgr
satellite.

Figure 3.9: The Sgr simulation particles in the right-handed celestial coordinate.
The bound particles which represent the progenitor of the Sgr are illustrated by
grey points. The leading and trailing arms are shown in yellow and cyan colors.

two arms. They find that the interaction of Sgr with the MW potential
led the gas to strip away, truncating the star formation about ≈ 5− 7 Gyr
ago. The leading arm has a SFH, which peaks at 7 and 11 Gyr, whereas
the trailing arm has a relatively older population and peaks at 9 Gyr ago.
We adopt an average SFH for the progenitor of the Sgr. We assign ages
to Sgr simulation particles such that they reconstruct the estimated age
distributions shown in Figure 3.8.

Similar to the Galactic halos, we use the Sgr simulation particles as the
progenitors for the DWDs, and then randomly draw a number of binaries
from the synthetic population according to Equation (3.2). The masses
and positions from the Sgr simulation are passed down to the sample, as
are the ages from the estimated SFH. The DWDs are then evolved to their
assigned ages. Again, binaries with SNR > 7 are identified as potential
GW sources in LISA detections.
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Chapter 4
Results

4.1 Galactic halo

Based on a combination of the cosmological simulation and the DWD bi-
nary population synthesis model, we obtain the population of detectable
binaries in a MW-like Galactic halo. We demonstrate how DWDs can be
used to constrain the global properties of satellites and streams within the
Galactic halo.

The first four columns in Table 4.1 show the properties of the simulated
Galactic halos. Only about 1.5 percent of the binary systems in this popu-
lation have formed and not merged yet, with frequencies that fall within
the LISA sensitivity range. In the simulations, the Z direction is set up to
be perpendicular to the plane of the Galactic disk. We adopt three equally
distant points on the x− y plane for the Sun location, assuming it is located
at a distance of R� = 8.1 kpc from the Galaxy center (Abuter et al., 2018).
We calculate the number of binary systems within each halo that can be
individually resolved for mission durations of 4 and 10 years considering
a duty cycle of 75% and 100% averaged on three solar viewpoints. As we
would expected, the number of resolved binaries increases as the obser-
vation time gets longer. We observe that the most massive halo, halo07,
with a relatively large distance from the galactic center, halo contains 1066
detectable DWDs. On the other hand, a halo with an intermediate-mass,
halo 09, contains almost the same number of detectable DWDs because
of its relatively small distance. According to our findings, the most mas-
sive and youngest halo, halo 07, with a relatively large median distance
from the Galactic center, includes the most detectable DWDs. Also, halo
09 with an intermediate mass contains almost the same number of observ-
able binary systems because of its significantly lower median distance. As
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expected, halo 08 has the fewest detected binaries with a smaller mass, a
large distance, and a relatively old population.

In Figure 4.1, we observe the surface density of the resolved binary
systems in halo 02, with an edge on and face on view. Assuming that the
Sun is located at (8.1, 0, 0) kpc, we observe that, with the exception of
the density peak in the Galactic center, the number of detectable DWDs
decreases with increasing distance from the Sun.

Figure 4.2 shows the characteristic strain and frequency of the DWDs
within halo 02 in the LISA sensitivity range. We see that almost all of the
DWDs with f > 2 mHz have a SNR> 1, regardless of distance, and may
therefore be resolved. It is worth noting that we used a SNR threshold of
7 for detectability.

As an example, we describe the population of DWDs and those that
are detectable in satellite 37 of halo 02. Since we considered a constant
density of 0.039 DWD/M�, we expect that the DWD population traces
the stars’ density. The satellite with a mass comparable to that of Sgr, an
old population (> 9 Gyr), and a median distance of 30 kpc, includes 22
resolved binaries in a single populating run.

We would like to now investigate the global characteristics of satel-
lites such as mass, age, and distance within the simulated halos via their
detectability in LISA. Combining the detectable satellites, which contains
more than two resolved binaries, we see no clear correlation between the
number of the detected binaries and the satellites’ median age and median
distance, as shown in Figure 4.4. However, we see a weak correlation be-
tween the number of resolved binaries and the total mass of the satellites.
Ignoring the outliers which lose detectability due to their large median
distances, we can fit a power law relation Ndet = 6.55× 10−9M1.16

? to it.
Figure 4.5 shows the histogram of the total stellar mass, the median

age, and the median distance of the satellites and those that contain more
than two detectable binary systems from all of the simulated Galactic ha-
los combined. The detection efficiency in each bin is defined as the ratio
of detected satellites to all satellites in that bin. As a result, satellites with
masses greater than 108M� are most likely visible in LISA. We may also
conclude that a satellite must have a minimum mass of 5× 106M� in order
to host LISA detections. The Galactic halos contain a relatively old pop-
ulation of stars. Therefore, they lack a dominating population of CO-CO
tracers and do not provide us with useful data for satellites with stellar
populations younger than 10 Gyr.. At older ages > 10 Gyr, we can nearly
observe that the satellite’s detectability is independent of its age. We see
that the satellites are typically positioned approximately 30 kpc from the
center of the Galaxy. At lower distances, detection efficiency correlates
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Figure 4.1: Density map of the detectable binary sources in the simulated Galactic
halo 02, viewed faced on (left) and edge-on (right).

with the distance, and over 30 kpc, satellites’ abundance and detectability
decline.

In Figure 4.6, we observe the median distance and the total stellar mass
of the satellites, as well as the number of observable binaries indicated
by their color. More massive satellites, in general, have more detectable
binaries. At each mass bin, we see that the satellites contain less detectable
binary systems at higher distances. The massive satellites located in the
upper right of Figure 4.6 do not have many observable binaries due to
their far distances.

We may now describe the contribution of different subtypes of DWDs
to the population of resolved binaries by LISA. Table 4.2 indicates that He-
He and He-CO DWDs are over-represented in the population of resolved
binaries compared to the binary population synthesis model (assuming
a burst star formation). Because the formation time for He-He DWDs is
comparatively longer and due to the old population of Galactic halo stars,
this subtype dominates the population of resolved binaries. On the other
hand, CO-CO and ONe-X DWDs generated from recent star formations
have already merged and are under-represented.
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Halo ID Mtot D τ NDWD,LISA Resolved with LISA
(×109 M�) (kpc) (Gyr) (×106) 4yr 10yr

75% 100% 75% 100%

02 5.37 30.9 11.5 3.23 853 989 1322 1482
05 3.53 21.3 12.3 2.05 810 909 1185 1327
07 6.91 39.1 11.3 4.29 1066 1244 1668 1900
08 3.21 28.8 12.4 1.97 291 351 489 574
09 4.63 16.3 11.9 2.73 1046 1203 1568 1763
10 3.58 29.0 12.3 2.17 465 540 733 835
12 5.65 25.9 11.9 3.47 480 557 770 889
14 3.84 25.6 12.6 2.34 515 588 791 910
15 2.88 28.7 15.6 1.76 353 416 563 651
17 3.53 25.9 12.5 2.15 426 510 721 848
20 2.86 26.8 12.4 1.66 444 508 690 782

Avg 4.18 27.1 12.4 2.53 613 710 954 1087

Table 4.1: Summary of the properties of the simulated Galactic halos, as well
as the number of sources individually resolved by LISA over time. From left to
right, we mention the Halo ID, which shows the halo number in the Galactic halo
simulations given by Bullock & Johnston (2005), the total mass (Mtot), the median
distance (kpc), and the median age of the halos. Then the number of DWDs that
are in the LISA frequency range is presented for each halo. The four columns on
the right indicate the number of resolved binary systems for 4 and 10 years of
observation with 75% and 100% duty cycles.

Halo ID CO-CO He-CO He-He ONe

02 5.5% 24.2% 69.8% 0.5%
05 5.5% 23.8% 69.7% 1.0%
07 6.7% 21.2% 71.5% 0.6%
08 5.1% 25.1% 69.4% 0.4%
09 4.1% 21.7% 73.5% 0.7%
10 8.1% 23.2% 67.7% 1.0%
12 7.2% 26.8% 65.2% 0.8%
14 7.7% 21.6% 70.5% 0.2%
15 8.3% 24.4% 66.8% 0.5%
17 6.9% 26.5% 66.1% 0.5%
20 7.0% 24.0% 68.1% 0.9%

Avg 6.6% 23.9% 68.9% 0.6%

Table 4.2: Summary of the contribution of DWDs with different core composi-
tions to the detectable binaries in each simulated Galactic halo.
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Figure 4.2: Characteristic strain and frequency of the population of DWDs in the
simulated halo 02. The color bar represents the chirp mass of the DWDs. The
solid line indicates the Sensitivity curve of LISA.

4.2 Sagittarius

Combining the binary population synthesis model with the Sgr simula-
tion and using the observed SFH, we may calculate the number of its
detected binaries. Random selection of binaries from the synthetic pop-
ulation causes one result to differ slightly from another. To eliminate this
random error, we run the populating code ten times and average the re-
sults. Table 4.3 shows the summary of the number of resulted binaries
in the progenitor, the leading arm, and the trailing arm of the Sgr. The
progenitor is the most massive component of the Sgr and hosts around 20
binaries with 4 years of observation and a 75% duty cycle. The leading
and trailing arms have almost similar masses and contain the same num-
ber ≈ 5 of detected binaries. The simulated Sgr has a mass of 2× 108M�
and contains an average of around 30 detected DWDs. The fitted equation
from the analysis of the simulated halo, shown in Figure 4.4, predicts 31
observed binaries, which is consistent with this result.

Figure 4.7 shows the Gaussian kernel density estimated from the re-
solved binaries of the Sgr satellite. We show that observable binaries are
most likely found in streams near the Sgr’s progenitor, which correlates to
a higher mass density. Therefore, the likelihood of finding streams distant
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Figure 4.3: Description of the population of DWDs in satellite 37 of halo 02. Top
panels demonstrate the population of DWDs (grey points) and those that can be
detected (red points) within this satellite on the x− y and x− z planes. The yel-
low star indicates the position of the sun. The normalized histogram of distance
(bottom left) and the cumulative distribution of the satellite’s age (bottom right)
are shown. The detected binaries have an age and a distance within the range of
the yellow patches.
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Figure 4.4: The number of resolved binary systems as a function of the median
age (top left), the median distance (top right), and the total stellar mass (bottom)
of the satellites from all simulated halos combined. In these figures, each point
indicates a satellite that contains more than two detectable binaries. We include
a power law fit to satellites with masses more than 108M�, while disregarding
satellites with large masses and extremely large median distances.
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Figure 4.5: Histogram of the total mass (top left), the median age (middle left),
and the median distance (bottom left) of all satellites (in blue) and those that con-
tain more than two detectable binaries (in green). The right panels indicate the
ratio of detected satellites to total satellites in each bin.
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Figure 4.6: The median distance as a function of the total mass of the satellites
from the simulated Galactic halos. The number of resolved binaries within each
satellite is indicated by the color bar. Green triangles represent some of the known
satellites: LMC, SMC, and Sgr.

from the progenitor is low. In Table 4.4 we can see the core composition of
the detectable binaries in the Sgr components. We adopted an old age dis-
tribution with a median age of > 10 Gyr, which resulted in the resolved
binary systems having a dominant He-He type population. We can also
observe that the leading arm with younger population of stars contains
more CO-CO types of DWDs than the trailing arm.
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Mtot NDWD,LISA Resolved with LISA
(×106 M�) (×103) 4yr 10yr

75% 100% 75% 100%

Progenitor 111 38.4 19.5±3.1 22.0±3.5 34.2±5.4 40.5±5.7
Leading arm 45 15.8 4.8±1.6 5.9±1.6 8.9±2.5 10.3±2.9
Trailing arm 43 14.4 5.1±2.9 6.6±3.2 8.6±4.4 10.2±4.1

Table 4.3: Summary of the number of sources resolved by LISA in the Sgr satel-
lite, averaged over ten runs. From left to right, we list the total mass of each
component of Sgr, the number of DWDs within the LISA frequency range, and
the number of resolved binaries considering mission duration of 4 and 10 years
with 75% and 100% duty cycles.

CO-CO He-CO He-He ONe

Progenitor 6.7% 37.9% 52.3% 3.1%
Leading arm 18.8% 35.4% 45.8% 0.0%
Trailing arm 7.8% 21.6% 64.7% 5.9%

Avg 8.8% 34.7% 53.4% 3.1%

Table 4.4: Summary of the core composition of resolved sources by LISA in the
Sgr satellite.
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Figure 4.7: Contours on the celestial coordinate system representing the Gaus-
sian kernel density estimated from detectable binaries with levels at 10%, 30%,
50%, 70%, and 90% of the peak density for the progenitor (top), the leading arm
(middle), and the trailing arm (bottom) of the Sgr.
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Chapter 5
Discussion and Conclusion

We have constructed a DWD population model for the Galactic halo com-
bining a binary population synthesis model and a simulation of MW like
halo. Eleven Galactic halo models are taken from a cosmological simula-
tion by Bullock & Johnston (2005), which consistently reproduced the ob-
served characteristics. We then determined how binaries can be detected
by LISA. We studied the global properties of these halos, and their satel-
lites and streams by their detected binaries. According to their mass and
distance distributions, they contribute differently to the GW signals.

We estimated ∼ 200 million binaries in each halo, of which over ∼
2.5 million are within the LISA frequency range, and about 600 will be
individually resolved throughout the nominal four-year course of mission
with a 75% duty cycle. We demonstrated that all binaries with f > 2
mHz have a SNR> 1, thus may be potential sources for LISA, consistent
with Lamberts et al. (2019). Our binary evolution model predicts that 6%
of the detected systems are CO-CO, 24% CO-He, 69% He-He, and less
than 1% ONe-X. Since the Galactic halo has an old stellar population, the
fraction of He-He systems, which have a relatively long formation time,
increases over time. On the contrary, CO-CO and ONe-X binaries, which
trace the young population of stars, are under-represented. By studying
the substructures of the Galactic halos, we showed that the most important
parameter affecting a satellite detectability in GWs is the total stellar mass.
At the same time, larger distances may significantly reduce the number of
detected binaries. We found an empirical relation between the number of
LISA detections and the total stellar mass for the satellites.

In comparison, Ruiter et al. (2009) used the similar technique of em-
ploying a binary population synthesis model to investigate the contribu-
tion of halo DWDs to LISA signals. They obtain 27.5× 106 DWDs, which
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is an overestimation based on our results and is most likely due to the
lower frequency sensitivity of 0.01 mHz they adopt for LISA. They find
that He-He systems dominate in the Galactic halo, which is supported by
our findings. Roebber et al. (2020) demonstrated in a similar study that
the MW satellites with a stellar mass of 106M� host enough binaries to
be detected by LISA. We confirm this conclusion requiring the satellites to
have a factor of 5 larger stellar mass to host LISA detectable binaries. The
bulge, thin and thick disk, and the halo of MW are extensively studied by
Korol et al. (2020), and Lamberts et al. (2019) employing binary population
synthesis models. They predicted that the Galactic halo and its substruc-
tures contain LISA detections. Our work produces a similar number of
detectable sources and complements their efforts by looking further into
the MW satellites and streams.

In this work, we showed that GW astronomy can be used to probe the
MW halo. We provided one of the first studies looking into the MW satel-
lites and stellar streams in GWs. We demonstrated that LISA detections
could help us to constrain the stellar mass of the MW satellite and streams.
Moreover, we showed that LISA could detect known MW satellites and
streams and potentially discover new ones with masses of > 5× 106M�
through populations undetected in the EM observations.

We provide the first model of the population of DWDs in the Sgr satel-
lite and streams by combining the binary population synthesis model with
a Sgr simulation and using a SFH determined by photometric and spectro-
scopic observations. The Sgr model is constructed by an N-body simula-
tion of the tidal disruption of a spherical progenitor on the MW + LMC
potential. We study the Sgr potential LISA resolved binaries.

We estimated ∼ 8 million binaries in the Sgr, of which over ∼ 65 thou-
sands are within the LISA frequency range. About 30 will be individually
resolved throughout the nominal four-year course of mission with a 75%
duty cycle. Our binary evolution model predicts that 9% of the detected
systems are CO-CO, 35% CO-He, 53% He-He, and fewer than 3% ONe-X.
Since we adopted an old age for the population of stars in the Sgr, He-He
types dominate in the observable binaries similar to the Galactic halo. In-
side the Sgr, the leading arm hosts more CO-CO DWDs as of its younger
age compared to the trailing arm.

5.1 Limitations

Our research is based on a cosmological simulation of the Galactic halo
showing consistency with the observed characteristics of the MW halo and
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its satellite. However, the eleven simulated halos vary in global properties.
None reconstruct the MW halo perfectly, and they all lack the equivalent
of the LMC, which hosts a large number of LISA sources. The main un-
certainty in these simulations is caused by employing a smoothly grow-
ing potential, which prevents them from predicting any major or minor
merger with good accuracy. Another drawback is that the interactions be-
tween satellites are not tracked.

The binary population synthesis model we used is consistent with the
observations. However, it is highly dependent on the assumptions for the
binary and stellar evolution parameters, affecting the mass distributions,
formation time, and the orbital separation of the binaries. More specifi-
cally, the main uncertainty stems from the common envelope phase treat-
ments. However, the current and the future EM surveys, such as Gaia,
Vera Rubin Observatory and possibly E-ELT, will supply us with a large
number of DWD statistics, reducing the uncertainties in our synthetic pop-
ulation models.

In the study of the Sgr, we used an N-body simulation data calibrated
by the observations. This model also inevitably contains several uncer-
tainties rising from their assumptions. The most notable is that the Sgr
has a spherical, non-rotating progenitor that prevents reproducing the ob-
served bifurcation in the stream. In addition, the leading arm shows a 2◦

offset comparing to the observed track.

5.2 Further research

The measurements of several observable parameters, such as the chirp
mass, which is computed by the measurement of the frequency deriva-
tive, benefit from a longer observation time. Furthermore, accuracy of the
measurement of sky localization is enhanced by a longer mission dura-
tion, which can be employed to extract the EM counterparts from wide-
field surveys such as Gaia and E-ELT. LISA can give us an independent
distance measurement that can be combined with the posterior probabil-
ity distribution derived from parallax measurements by Gaia to enhance
the distance estimations. Our method provides a DWD population of the
Galactic halo that may be used to improve LISA data analysis, particularly
to compute the background confusion noise caused by the unresolved bi-
naries.
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