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Chapter 1

Introduction

1.1 Overview

For some decades now, archaeology has been subjected to a data de-
luge (Bevan 2015). This refers to an enormous influx of archaeolo-
gical information in the digital format. One major source for this is
remotely sensed spatial data, which has undergone numerous tech-
nological developments such as improved resolutions of commercial
satellites and an increase in geographic coverage of image-based re-
mote sensing data (Bevan 2015, 1474-1475). Analysing all of this
image data manually has become an increasingly daunting task, par-
ticularly when considering the increasing complexity of the imagery.
It is thus no surprise that much research in recent times, focuses on
the development of new methodologies, particularly digital, for the
analysis of image based remote sensing, in order to make the process
more cost and time efficient (Opitz and Herrmann 2018; Lambers
2018).

Since the 1970s, computational tools have been developed for re-
mote sensing imagery analysis, within the disciplines of geodesy, carto-
graphy and earth observation (Lambers 2018, 114). These approaches
however differ from archaeology, as they concentrate on entire land-
scapes as opposed to selective traces of human activity of archaeolo-
gical importance (Lambers 2018, 115). Analysis of remote sensing
from an archaeological perspective can be done by automating the
detection of specific archaeological objects and features in such data.
Doing so allows a more efficient allotment of human expertise and re-
sources to more domain specific interpretive tasks, such as connecting

A Deep Learning & Computer Vision Based Approach to Airborne Laser Scanning data 1



CHAPTER 1. INTRODUCTION

the presence of these archaeological traces to wider human-landscape
dynamics of the past. Research on the same has been conducted since
the early 2000s, through interdisciplinary approaches of computer and
earth science (Lambers 2018, 115).

One such approach is the use of Artificial Intelligence. Concepts
from the discipline have been formerly used for archaeological re-
search, with applications ranging from identification and reconstruc-
tion of ceramic sherds, determination of sex and anatomical properties
from human remains, management of exhibitions in museums to iden-
tification of archaeological sites and features from various landscapes
(Mantovan and Nanni 2020). The primary idea driving this thesis
project is to use artificial intelligence based computer algorithms to
create a methodology for the automated detection of archaeological
objects from airborne remote sensing data, test it against an archae-
ological case study and evaluate its role from the wider perspective of
archaeological prospection and landscape archaeology.

1.2 Methodological Context

1.2.1 Airborne Remote Sensing in Archaeology

”Remote sensing is the science and art of obtaining information about
an object, area, or phenomenon through the analysis of data acquired
by a device that is not in contact with the object, area, or phenomenon
under investigation.” (Lillesand and Kiefer 2015, 1). As per European
terminology, the definition of this includes the use of the airborne and
satellite technology, but not near-surface non-invasive geophysical pro-
spection. Remote sensing techniques of the spaceborne and airborne
variety have been the most popular form within archaeology, since
around 1900 (Luo et al. 2019, 2). Its non invasive nature and ability
to provide a wider look at the landscape from above has rendered
it especially useful for analysis and detection of objects and features
of archaeological importance. There has been a growing prominence
of airborne remote sensing in archaeology in the past few decades,
and as a result almost an explosion of large amounts of data of vary-
ing qualities, new technologies for data collection, sensors and so on
(Opitz and Herrmann 2018; Lambers 2018; Agapiou et al. 2014; Chen
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CHAPTER 1. INTRODUCTION

et al. 2018). Prominent technical developments been discussed below.
It should be noted that this non-exhaustive overview focuses on only
different imaging technologies, as the role of LiDAR as a data source is
significant with respect to the archaeological case study (discussed in
subsequent sections). Airborne remote sensing technologies also differ
in terms of platforms (satellite-based, low altitude, Unmanned Aer-
ial Vehicles), sensors (active and passive) and image format (digital
format) (Lambers 2018).

The first use of remote sensing for archaeological purposes was
brought about by aerial photographs acquired for the purposes of mil-
itary reconnaissance and mapping, during the First and Second World
War (Leisz 2013, 12). Crawford (1923) used aerial image data from
Southern England to identify crop marks on cultivated land, other-
wise undetectable from the ground. This was the first archaeological
study that highlighted the potential in using aerial survey imagery for
archaeological mapping. Aerial photography however, often fails to
detect important archaeological landscape proxies such as crop marks
and soil marks (Luo et al. 2019, 6). This is because detection of these
features in photographs often requires specific weather, landscape and
phenological conditions, thus making the technology limited in its ef-
ficacy (Luo et al. 2019). The advent of hyperspectral/multispectral
imaging technologies, in combination with dimensionality reduction
techniques such as Principal Component Analysis (PCA), helped mit-
igate this issue to some extent (Luo et al. 2019; Aqdus et al. 2012).
Their ability to detect bandwidths outside the visible spectrum al-
lowed enhancement of soil moisture stress in growing plants, which is
linked to the appearance of crop marks (Aqdus et al. 2012).

The aforementioned are ’passive’ technologies i.e. they simply cap-
ture reflections and radiations of the Earth’s surface. In contrast, act-
ive technologies such as Synthetic Aperture Radar (SAR) and Light
Detection and Ranging (LiDAR) actively send signals to the Earth’s
surface and then re-capture the partially reflected wave (Lambers
2018, 113). Thus, they can overcome limitations relating to weather
conditions and nighttime acquisition, ability to penetrate through
forest cover and greater accuracy in sensing buried features, soil-marks
and archaeological micro-relief, by creating Digital Elevation Models,
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CHAPTER 1. INTRODUCTION

as compared to passive sources (Luo et al. 2019, 11-14).

Remote Sensing provides a significant advantage over traditional
methods of archaeological prospection due to the sheer amount of
area that can be surveyed and analysed in a small amount of time.
It also provides a much wider perspective at the landscape. This has
proven particularly useful when studying complex networks, such as
road and quarry systems or determining the extent of historical land-
scapes (Traviglia and Cottica 2011; De Laet et al. 2015). In fact,
previous research has shown an ability of remote sensing techniques
to even penetrate through submerged environments (Traviglia and
Cottica 2011). Moreover, different categories of information from re-
mote sensing data can have different archaeological implications. For
example, a remote sensing project investigating roads and quarry sys-
tems in the Middle Egypt region showed that while the data generated
provides an efficient way to visualise spatial context, the spectral in-
formation also gave information on road characteristics (Traviglia and
Cottica 2011). Undoubtedly though, there are also certain challenges
which require consideration and reflection, such as access to relevant
and useful data, management of databases and archival responsibilit-
ies, and improving integration of datasets acquired through different
sources (Opitz and Herrmann 2018).

1.2.2 Dataset Type: LiDAR

The term LiDAR is an acronym for Light Detection and Ranging. It
is an active remote sensing system which transmits a pulse of energy
to the Earth’s surface, records the amount of time it takes for the
signal to return through a sensor, and determines ranges or distances.
The technology can be connected to either ground systems such as
Terrestrial Laser Scanning, or airborne ones, such as Airborne Laser
Scanning (ALS). The latter refers to LiDAR systems which can be
mounted on aerial vehicles such as aircrafts and helicopters and is
currently used extensively for archaeological application. In more re-
cent research, drones equipped with LiDAR technology have also been
employed (Risbøl and Gustavsen 2018).

The application of airborne LIDAR remote sensing techniques has
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CHAPTER 1. INTRODUCTION

surpassed more traditional mapping approaches due to the digital
elevation models that can be created from LiDAR collected data.
Through the highly detailed raster imagery derived from 3D point
clouds, entire landscapes can be viewed in 2D, 2.5D or 3D format,
giving an extensive look at the topography, elevations, vegetation and
built structures. It has proven to be more cost effective and displays
significantly more amount of information, particularly in hilly and
forested terrains with dense canopies, in a very short amount of time
(Chase et al. 2012; Evans et al. 2013).

In certain areas of research, such as Mesoamerican archaeology, the
use of LIDAR over other remote sensing techniques caused a notice-
able difference. Past remote sensing based research was able to cover
only smaller sample sites, instead of being able to conceptualise set-
tlements in terms of the overall landscape (Chase et al. 2012). This
is because other techniques cannot effectively filter out dense veget-
ation cover and forest canopies. This property is also what makes
LiDAR an effective remote sensing tool for the Veluwe region, which
is laregly under forest cover. Figure 1.1 and Figure 1.2 show a 2D
and 2.5D (respectively) LIDAR Digital Terrain Model (DTM) of a re-
search area from the archaeological site of Caracol, Belize. Through
these, we can see the success of LIDAR in detecting not only the
more easily visible and larger architecture, but also smaller features
such as storage units, traces of agricultural terracing and looted burial
chambers, after filtering out larger surface features (Chase et al. 2012,
12917-12919).

Past projects have shown how LIDAR can contribute to the ana-
lysis of micro-topographic earthworks and ancient landscapes. DTMs
can allow the detection and analysis of different paleoenvironmental
features. We see an example of this in the case of a natural park at
Boscodell’Incoronata (Southern Italy) (Coluzzi et al. 2010).

One of the main factors of archaeological investigation is that in
studies relating to the landscape, it is not enough to see it as a static
entity. Rather, it is equally important to assess the dynamic sys-
tems associated with it, such as growth and decline of ancient urban
centres and human-environment interactions. Research has shown
that LIDAR collected data shows potential in providing better under-
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CHAPTER 1. INTRODUCTION

Figure 1.1: 2D LIDAR DEM of central Caracol(Chase et al. 2012, 12918)

standing of socio-economic models. Due to an absence of well defined
spatial parameters (based on archaeological evidence), it was diffi-
cult to connect information from iconography or epigraphy, to socio-
political models in Mesoamerican archaeology (Chase et al. 2012).
LiDAR DTMs provided the necessary data required to make these
comparisons. In the Khmer empire, road networks and hydraulic
systems were unparalleled in the pre-industrial world, and caused re-
peated transformation of landscape for over a millenia, at a regional
scale. These networks were identified in LiDAR imagery (Evans 2016).

1.2.3 Deep Learning approach to analysis of LIDAR data

The main methodology of this project is based on two concepts -
Deep Learning and Computer Vision. Deep Learning is a type of Ar-
tificial Intelligence algorithm which uses ’neural networks’ to predict
a desired result on the basis of relevant input data, without human
interference. A neural network in turn is a computational learning
system which has been inspired by the way the human brain func-
tions, through the interaction of connected neurons. A neuron takes
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Figure 1.2: 2.5D LIDAR DEM of central Caracol(Chase et al. 2012, 12919)

multiple inputs, performs a function on them and sends the final result
to an output.

Computer Vision, in accordance with its name, is an attempt by
the computer science discipline to replicate the human vision and
train computers to process and analyse data from images and videos.
(These concepts will be explained in more detail in the ’Research
Background’ chapter).

The data deluge in archaeology, specifically with respect to remote
sensing opens up various possibilities with respect to archaeological
research. The uncertainty in archaeological data, combined with its
density, highlights the need for computational methods in its treat-
ment. Manually analysing such large amounts of data is a cost and
time inefficient process. Aside from the quantity of the data, one must
also take into account the different imaging technologies developed for
remote sensing data collection, leading to a vast difference in quality,
resolution and spectral information. A machine can computationally
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update itself to adhere to the changes in quality and type of data,
thus possibly providing a more efficient way of recognising relevant
information data, in comparison to human visual judgment based on
previous experiences (Soroush et al. 2020, 2). However, other parts
of the wider framework, post the identification of archaeological fea-
tures, still require human expertise for analysis and interpretation, or
a combination with other digital tools. This is also the case for this
thesis project.

Automated detection techniques using Deep learning for LiDAR
data is a fairly new research field, going back approximately 5 years,
within the archaeology discipline (Verschoof-van der Vaart and Lam-
bers 2019; Kazimi et al. 2019; Caspari and Crespo 2019; Verschoof-van
der Vaart et al. 2020; Bundzel et al. 2020; Verschoof-van der Vaart
and Landauer 2021; Guyot et al. 2021). These implementations centre
around Convolutional Neural Networks or CNNs, a deep learning
architecture used specifically to solve pattern recognition tasks and
other computer vision based tasks in image data (O’Shea and Nash
2015). Its framework for classification and mapping tasks is useful for
archaeological analysis. In particular, they have greater sensitivity in
identifying more obscure patterns in image data than other compar-
ative AI algorithms (Caspari and Crespo 2019, 1). This is due to their
method of taking inputs in the form of matrices as opposed to single
row vectors, allowing the algorithm to extract information from all
adjacent pixels (Caspari and Crespo 2019, 1).

Past research has shown successful detections of objects and fea-
tures within archaeological landscapes, using CNN based Deep Learn-
ing algorithms. A higher number of true positives (i.e. correct pos-
itive detection of objects) have been observed, and more notably for
archaeological prospection, a lower number of false positives (i.e. an
incorrect positive detection of objects). CNN based detections have
also worked effectively for landscapes that may have undergone nat-
ural changes or disturbances such as ploughing or post-depositional
processes (Soroush et al. 2020, 4). The general consensus is that while
deep learning based approaches in archaeology are not a complete re-
placement for human expertise, they facilitate effective use of time
and resources in the research of large and complex datasets (Soroush
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et al. 2020; Verschoof-van der Vaart et al. 2020).

1.3 Archaeological Case Study

1.3.1 Research Area: The Veluwe

The research area consists of a largely forested area known as the
Veluwe in the Gelderland province of Central Netherlands (Figure
1.3). The area comprises the largest Pleistocene push moraine in
the Netherlands, extending to length and width dimensions of 50 km
and 12 km respectively (Bakker and Meer 2003, 144). Large wooded
areas in the region were cut down around the 8th to 10th century AD
for the purposes of agriculture, obtaining open grasslands for farm
animals and iron production (van der Heide et al. 2008, 206). The
over-exploitation led to soil erosion and large-scale sand drifts. Part of
the total forested region is also a national park, providing important
economic benefits, specially in terms of tourism (Hein 2011). It is
considered an important area ecologically as well, due to having a wide
variety of plant and animal species as well its size (van der Heide et al.
2008, 206). The Veluwe currently holds one of the biggest clusters of
archaeological objects in the Netherlands, which are currently well
documented due to a number of archaeological projects carried out
in recent times (Arnoldussen 2018; Bourgeois 2013). These include
charcoal kilns, barrows, Celtic fields, and hollow roads (Verschoof-
van der Vaart and Lambers 2019; van der Heide et al. 2008).

The area is characterised by the covering of plaggen soil over the
landscape. From the Medieval Period to the 19th century, the agri-
cultural practice of stripping heather or grass sods and using them
as bedding material in stables was done within the Pleistocene areas
of northwestern Europe (Groenman-van Waateringe 1992, 87). This
led to an artificially raised layer of soil, with a 50 cm thick humic
topsoil, consisting of sand, clay and loam (Groenman-van Waateringe
1992, 87). Modern agriculture, involving the digging of this plaggen
topsoil to reach the coversand underneath destroyed large amounts of
the archaeological features (Groenman-van Waateringe 1992, 87). As
a result, much of the archaeological traces in the region have low vis-
ibility and thus, are less identifiable using traditional survey methods.

A Deep Learning & Computer Vision Based Approach to Airborne Laser Scanning data 9
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Figure 1.3: Research Area, highlighted in red (Verschoof-van der Vaart and Lambers 2019, 32)

Computational models have been used in the past to study cul-
tural and environmental dynamics in the Veluwe. An example is the
modelling of climate change for the purposes of forest management,
using the Bayesian update theory (Yousefpour et al. 2015). Historical
routes and path-networks have also been studied using a multi model-
ling approach (Vletter and Van Lanen 2018). The research combined
GIS based modelling techniques such as network friction and least
cost path, with environmental, ecological, historical and ALS data-
sets to reconstruct the historical, complex route networks within the
areas (Vletter and Van Lanen 2018).
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1.3.2 Archaeological Object: Celtic Fields

Celtic fields are prehistoric field systems found widely within North-
Western Europe, including Sweden, Denmark, the Netherlands, Ger-
many and Ireland (Spek et al. 2003; Nielsen and Dalsgaard 2017;
Whitefield 2017). They date approximately from the late Bronze Age
up to the Roman Iron Age. The name ’Celtic’ fields in itself is a mis-
nomer, as these field systems have no connection to the named ethnic
group, although being initially attributed to the Celts by British ar-
chaeologists (Curwen and Curwen 1923).

Within the Netherlands, research on Celtic fields or rattakers in-
volved a number of initial theories as to their function. These ranged
from categorisations as military encampments, sheep-management areas
and funerary ritual sites, before finally being identified as prehistoric
field systems by Albert E. Van Giffen (Giffen 1939 in Arnoldussen
2018, 3). Most of them are located in the northern and southern
parts, with the province of Drenthe in the north being a focus of past
studies. With the advent of the digital elevation model database - the
Actual Height Model of the Netherlands (AHN), combined with ALS
technology, more Celtic field systems were identified in the central
part of the Netherlands (Kooistra and Maas 2008, 2320). This area
had been previously neglected, due to the large amounts of vegetation
and woodlands. Due to the use of LiDAR derived AHN data, almost
1500 ha more of surface area covered by Celtic fields was discovered,
as compared to before (Kooistra and Maas 2008, 2327). In geomor-
phological terms, they were mainly found in the slopes of ice-pushed
ridges, formed during the Saalian glacial period (Kooistra and Maas
2008, 2323).

Celtic fields consist of a number of small, square or rectangular
adjacent plots, which form a larger rectangular checkerboard pattern
on the landscape. Figure 2.4 shows an artist’s impression of these
Celtic fields (as presented by Arnoldussen (2018)). The individual
plots are approximately 20 to 40 m wide and are separated from each
other by sandy ridges or stone walls (Spek et al. 2003, 142-143). Due
to disturbances caused by natural and man-made processes, traces of
these fields are often not visible, even from a close distance. The use of
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LiDAR on landscapes that contain Celtic Fields has allowed a better
look at the extent of wider and bigger field systems. Research so far on
them has included prospection (through aerial photographs), mapping
(through various geodetic methods), excavations, study of landscape
and land-use history through paleobotanic and stratigraphic studies
(Spek et al. 2003, 143). However, they are still vastly understudied
due to their general lack of visiblity.

Figure 1.4: Celtic Fields (Arnoldussen 2018)

The research undertaken by Arnoldussen (2018) extensively reviews
the importance of studying Celtic Fields for archaeology in the Neth-
erlands. These are the most time sustainable historical field systems
in the Netherlands, preserved for over 400-600 years, through a mutlti-
tude of changing landscape phases and agricultural practices (Arnol-
dussen 2018, 19). They show morphometric similarity across regions
in the Netherlands, which leads to a wider understanding of field sys-
tems in the area (during this time period).

12 A Deep Learning & Computer Vision Based Approach to Airborne Laser Scanning data



CHAPTER 1. INTRODUCTION

As an archaeological feature, they are relatively underused in the
LIDAR automation research. The only implementations found (so far)
while researching for this thesis is a Kriging based filtering technique
applied on a case study from Doorwerth (Netherlands) (Humme et al.
2006) and one use of CNN-based object methodology by Verschoof-
van der Vaart and Lambers (2019).

1.4 Research Goals

The use of Deep Learning for automated detection has shown largely
successful results within archaeological research. However, these have
concentrated on more uniformly shaped, localised and compact ob-
jects, such as barrows, charcoal kilns, mounds etc, which are easier
to detect due to their morphology. Detection of more complex, inter-
connected landscape systems such as road networks and field systems
are rare, as discussed by Traviglia and Torsello (2017). As dicussed
by Davis (2021) discusses, it is important that a shift be made to de-
tection of more widespread and complex patterns of human activity
and landscape transformation, in order to fully utilise automated re-
mote sensing for answering wider archaeological questions relating to
cultural activity. A notable example is the reconstruction of hollow
roads in the Veluwe from LiDAR data by Verschoof-van der Vaart and
Landauer (2021). This methodology also used a Deep Learning based
approach to detect and highlight an interconnected system of road
networks, which could contribute to the understanding of transport
networks in the Veluwe’s post-Medieval period.

Celtic Fields are one such example of broader archaeological sys-
tems, which are relatively understudied in the archaeological record.
Celtic Fields are one of the major large scale archaeological systems
in the Veluwe region. Reconstructing these large-scale field systems
could allow us to understand important agricultural practices in the
region. Due to these reasons, they were selected as the archaeological
case study for this project. By embedding an automated detection
methodology of Celtic Fields into a wider framework consisting of
other sources, we can gain important information about the role they
played in the archaeological landscape of the Veluwe.

A Deep Learning & Computer Vision Based Approach to Airborne Laser Scanning data 13
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The data for this thesis was collected for a PhD project by Wouter
Verschoof-van der Vaart, conducted as part of the Data Science Re-
search Programme at the Faculty of Archaeology, Leiden University.
This initiative is a collaborative effort to combine different fields of
the humanities and sciences with data science technologies. The pro-
ject involves using Deep Learning technologies for the automated ob-
ject detection of archaeological objects from LiDAR data within the
Veluwe region in the Netherlands (Verschoof-van der Vaart and Lam-
bers 2019; Lambers et al. 2019; Verschoof-van der Vaart et al. 2020;
Verschoof-van der Vaart and Landauer 2021). This also includes the
detection of Celtic Fields. However, a different methodology is ap-
plied in this thesis project, and one of the motivations is to compare
the performance of the two methodologies for this task.

Deep Learning comprises of different types of techniques for differ-
ent tasks. The one used for this project is instance segmentation, using
a state-of-the-art method called Mask R-CNN. An instance segment-
ation approach gives the exact outline of an object within a detected
area of interest (Kazimi et al. 2019). This would be an advantage
in the case of detecting and mapping out objects in the landscape
which are non-discrete and non-uniform in shape. Therefore, it is hy-
pothesised that this methodology will prove fruitful in the mapping of
individual plots within the Celtic Field systems. This is especially due
to the fact that the boundaries between plots often appear blurred on
the input data, due to landscape changes such as erosion or human
activity. The methodology will comprise of literature review and a
practical application of the Mask R-CNN technique on the research
data.

The main methodological research aim of this thesis is to evalu-
ate the use of this instance segmentation technique for Celtic Fields.
However, it will also be assessed in terms of how the results of this
method can contribute to archaeological prospection and wider land-
scape archaeology research of the region.

The main research question that will be explored is: How does
a Deep Learning based Mask R-CNN algorithm perform with respect
to the instance segmentation of pre-historic Celtic Fields, from re-
motely sensed LIDAR data of the Netherlands and subsequently con-
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tribute to archaeological prospection?. To answer this, the following
sub-questions have been defined:
1. To what extent can the model identify instances of individual Celtic
Field plots and delineate between them?
2. In what way do the results compare to a comparative object detec-
tion approach, previously applied on the data of the region?
3. How can the results obtained from the methodology contribute to
archaeological interpretations of Celtic Field systems in the Veluwe
region?

1.5 Thesis Structure

In the introductory chapter, a basic research background was given,
outlining the process that led to the development of this research, and
aims and research questions were discussed.

Chapter 2 titled ’Research Background’ expands on the overview
given in the introduction. It consists of a brief non-exhaustive review
of past research on automated detection in archaeology, explanation
of technical aspects of the methodology, results of the comparative
methodology previously used on the dataset and finally some critiques
present in archaeological literature with regards to the role of Deep
Learning based techniques for automated detection.

Chapter 3 outlines the complete methodology used for this project.
This includes a comprehensive review of the data. It also covers the
steps undertaken to eliminate some limitations of the methodology for
archaeological datasets, the practical experiments conducted and the
metrics used for evaluation. Finally, the chapter ends with a section
on integration of the method into a wider workflow in the future, that
could help in contextualising the results better.

Chapter 4 presents the results of the experiments conducted and
explanations for the same.

Chaper 5 comprises a discussion of the results obtained in the pre-
vious chapter. It also covers the significance of these results in terms
of methodological evaluation and comparative research. In addition,
the results are assessed in terms of archaeological research and the role
played by this methodology for assisting archaeological prospection.

A Deep Learning & Computer Vision Based Approach to Airborne Laser Scanning data 15



CHAPTER 1. INTRODUCTION

Finally, some of the limitations of the technique are also highlighted.
Chapter 6 is the last chapter of this thesis which contains conclu-

sions formed on the basis of research results and answers to the re-
search questions defined at the start of the thesis. In the end, future
scope of the study is also highlighted.
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Chapter 2

Research Background

In the first chapter, we touched upon the hypotheses and reasoning
that drove this research. This section expands on the methodological
and theoretical research background. Technical theory used has been
reviewed here, with a more detailed description present in Appendix
B. The section also covers a literature review of comparative methods
used in the past.

2.1 Automation in archaeological remote sensing

The idea of building automated systems for detecting archaeological
features in remote sensing and satellite data, using digital tools, dates
back to the 1990s. This paradigm followed a success in the use of com-
putational methods for image enhancement and processing in aerial
photography & remote sensing (Redfern 1998a). Examples of earlier
foray into this sub-field can be seen in the research done by Lemmens
for the detection of circular objects (Lemmens et al. 1993) and Red-
fern’s development of a morphology & topography based automated
classification system for archaeological monuments (Redfern 1998b),
using various mathematical and computational concepts. For an over-
view of papers relating to the use of automated detection techniques
in archaeological remote sensing (up to 2016), refer to Lambers and
Traviglia 2016.
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2.1.1 Comparative Techniques

In the past decade, this topic of study has gained much prominence,
with new techniques and methodologies being proposed constantly. It
is out of the scope of this thesis to discuss all of these new develop-
ments, however two significantly categories have been reviewed. An
overview of research papers on various automated detection methods
can be seen in Lambers et al. 2019.

1. Geographic Object-Based Image Analysis: The advent of GEO-
BIA or Geographic Object-based Image Analysis brought about
a shift in automated detection techniques from predominantly
pixel-level computation, to a contextual object oriented approach.
A formal definition of GEOBIA, as given by Hay and Castilla
(2008) is ”...a sub-discipline of GIS devoted to developing auto-
mated methods to partition remote sensing imagery into mean-
ingful image-objects, and assessing their characteristics through
spatial, spectral and temporal scales, so as to generate new geo-
graphic information in GIS-ready format.” (Hay and Castilla 2008,
77).

GEOBIA follows a segmentation based-approach i.e. it consists
of mathematically partitioning the image in order to find signi-
ficant pixel clusters (as opposed to computing information from
each individual pixel). Subsequently, a rule-set is defined to per-
form classification within these meaningful segments. The most
common software used for GEOBIA processing is the eCognition
software (Trimble Germany 2011).

Around the 2010s, the implementation of GEOBIA on LIDAR
datasets increased. The method when tested with multiple ap-
proaches to fossil landscapes in Italy and detection of barrows in
Spain showed great promise in the mapping of ground level fea-
tures and detection of sites in previously unsurveyed areas(De Guio
et al. 2015; Cerrillo-Cuenca 2017). However, limitations were seen
in accounting for depositional & post-depositional ladscape pro-
cess, detecting objects in the ’border’ regions of the input images
& a high number of false positives (Trier et al. 2009; De Guio
et al. 2015; Cerrillo-Cuenca 2017).
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2. Template Matching: Template-based approaches involve manu-
ally isolating a representative section of the image, to form a
’template’ of each object class. A correlation technique is then
used over the dataset to search out comparable patterns (Cheng
and Han 2016, 3. The limitations to this method are that it is
a case-study sensitive method, thus having limited transference
potential, and is also computationally expensive (Cheng and Han
2016). This is exemplified in Boer (2007)’s paper, wherein the au-
thor mentions that separate templates would have to be designed
for detection of similarly shaped archaeological objects, such as
burial mounds, village-mounds & coversand-dunes (Boer 2007,
247). Applications have also revealed a high number of false pos-
itives as compared to true positives (Menze et al. 2006), however
Schneider et al. (2015) showed that these can be somewhat mit-
igated by other techniques, such as use of morphometric variables
(Schneider et al. 2015).

2.2 Basic Theoretical Concepts

This section presents definitions of basic concepts imperative for un-
derstanding the methodology used in this thesis. As a whole, these
concepts are sub-fields which belong to the wider discipline of Arti-
ficial Intelligence (AI). AI is a computer science discipline devoted
training machines to perform tasks usually associated with human
intelligence, without human intervention.

2.2.1 Deep Learning

Before diving into the intricacies of Deep Learning, we first need
to understand the more commonly used concept of Machine Learn-
ing. Machine Learning is a branch of AI, that can be defined as
’training’ computational algorithms to detect patterns in past data,
and subsequently make decisions and predictions regarding new data
(Alpaydin 2014), using mathematical models and statistics.

The process of creating and implementing a machine learning model
can be roughly categorised into four steps - Data Collection & Prepar-
ation, Training, Evaluation/Inference and Tuning. The first step, i.e.
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Data collection and preparation is the collection of relevant data which
is used to train the algorithm. It also includes the pre-processing step
of ”cleaning” the data and converting it into the required format.
Ideally the dataset is divided into three sets - training, validation and
test. A training set consists of the input data examples which the
algorithm utilises for ’learning’. The validation set is an unseen
part of the training set which is used to check the performance of
the algorithm on the training data, and tune it accordingly. These
are the two sample sets, used in the second stage i.e. Training. The
Evaluation/Inference is done using the test set which comprises of
new data, unused in the learning stage, to evaluate the predictive
capabilities of the created model (Mohri et al. 2012, 4). Finally, the
Tuning stage includes maximising model performance by optimizing
the input parameters.

Machine Learning paradigms make use of a set of object proposals &
feature representations, to perform feature extraction and dimension-
ality reduction on an input set, & output class labels for the objects
within the image (Cheng and Han 2016, 10). They have shown an
ability to play an important role in analysing archaeological research
data, including numerical, textual, geospatial and image data (Bick-
ler 2021). The use of the Random Forest algorithm for detection of
Neolithic burial mounds showed that ML was able to overcome the
specificity required for rule-based methods, therefore acting as a more
robust system for a heterogenous archaeological landscape & also im-
proved the ratio of true positives to false positives (Guyot et al. 2018).
ML methods have also been successful in automated detection when
applied on other datasets (Menze et al. 2006; Orengo et al. 2020).

Deep Learning is a subset of Machine Learning, which utilises deep
architecture of Artificial Neural Networks (ANNs). These are com-
putational systems, built to mimic the learning process of the human
brain. It consists of a number of processors called neurons, which
are interconnected to one another and collectively collect an input
and optimise the output (Schmidhuber 2015, 86). A basic structure
of ANN architecture can be seen in Figure 2.1. The significance of
DL algorithms is that as opposed to general ML algorithms, they
have the ability to extract relevant features from the data for training
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by themselves, on the basis of architectural hyper-parameters, rather
than requiring they be fed by the user. In that sense they are more
of a ’self-learning’ set of algorithms.

Figure 2.1: Basic structure of an Artificial Neural Network(ANN) (O’Shea and Nash 2015, 2)

2.2.2 Computer Vision

Computer Vision is a field of computer science which centers around
the ability of computers to see and interpret digital images and videos.
It computationally mimics all tasks performed by the biological vision
system - including visually sensing stimuli, interpreting it and extract-
ing relevant information to be used for other processes (Szeliski 2011).

Deep Learning applications of Computer Vision can be broadly cat-
egorised into three types - classification, detection and segmentation.
Some examples can be seen in Figure 2.2.
1.Image classification: Consists of assigning class labels to objects
within a complete image. The input image is labelled on the basis of
probability that an object class exists within the image (Guo 2017,
38).
2.Object detection: Aside from indicating the presence of a specific
class, object detection also localises the position of the objects within
the image. This is done by generating a bounding box and class label
around the object instance. The detection is considered a correct one
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(a) Classification (b) Object Detection

(c) Image Segmentation

Figure 2.2: Applications of Deep Learning in Computer Vision (Guo 2017)

if there is more than 50% overlap between the ground truth and de-
tected boxes. This threshold can also be varied (Guo 2017, 41). The
most commonly used dataset for object detection are the PASCAL
VOC datasets (Everingham et al. 2010).
3. Image Segmentation: This process involves partitioning an image
into multiple segments, so that each segment can be analysed more
easily to detect an object. The difference between object detection
and image segmentation is that in the latter, each pixel within the
image is assigned a class label. This helps in identifying the image at
the pixel level, and creating a binary mask which helps identify the
exact shape of the object (Szeliski 2011).
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2.3 Convolutional Neural Networks

To summarise the different comparative methods reviewed previously,
rule-based algorithms see a large difference in the ratio of false posit-
ives to true positives, which is not viable for purposes of archaeological
prospection. Moreover, these approaches have a more task-specific ap-
proach, which makes it harder to compare with other different objects
or landscapes (Soroush et al. 2020, 2). They also find it difficult to
account for landscape diversity and heterogeneous nature of archae-
ological structures within a landscape (Guyot et al. 2021). Machine
learning approaches mitigate this to some extent. However, one of
the biggest problems to overcome in computer vision is specifying
the ’right’ features for the machine to learn. Neural Networks have
overcome this limit as self-learning algorithms, which extract relevant
features from within the image itself, without relying on human as-
sistance. This aspect specifically has a lot of potential for applications
in archaeological landscapes, which are often vastly heterogeneous, in
terms of objects and topography.

Convolutional Neural Networks or CNNs are the deep learning al-
gorithms most commonly used for Computer Vision applications (for
a more detailed review of CNNs and their architecture, see Appendix
B). Their main tasks are pattern analysis and recognition within im-
ages, and they are built to handle the computational complexity of
the same (O’Shea and Nash 2015). A CNN network is trained in two
stages. The first stage, or the forward stage comprises representing
the input image with the associated weights for each layer(Guo 2017,
10). A loss cost is then calculated by comparing the predicted output
with the ground truth labels (Guo 2017, 10). In the second stage, or
the backward stage, the loss costs are used to re-update the paramet-
ers, which is followed by a another stage of forward transmission. This
process continues for a defined number of iterations (Guo 2017, 10).
When the entire dataset completes one cycle of forward and backward
transmission, it is known as an epoch.

A CNN comprises of three main layers - convolutional layers, pool-
ing layers and fully connected layers. The first two layers perform
the task of feature learning and are generally placed in alternating
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layers. The last fully connected layers perform the task of assigning
class labels to the input image (Voulodimos et al. 2018, 2). The basic
structure of a CNN network can be seen in Figure B.3.

Figure 2.3: Basic structure of a CNN architecture

2.3.1 Object Detection

CNNs showed significant results with respect to image classification
in 2012 (Krizhevsky et al. 2012), on the ImageNet Large Scale Visual
Recognition Challenge (Deng et al. 2009; Russakovsky et al. 2015).
However, object detection differs from classification as it also requires
localisation of objects within an image. This an important require-
ment for archaeological prospection, as the position of a feature or
object and its context within the landscape play an important part.

To solve this issue, R-CNN or Regions with CNN features was de-
veloped (Girshick et al. 2014). This method however is computa-
tionally expensive. Therefore Fast R-CNN was developed to reduce
the computational time, and also improve detection. (Girshick 2015).
Faster R-CNN further brings down computation time and makes the
process relatively cost free (Ren et al. 2017).

In the last decade, a number of research projects have been imple-
mented using CNN-based object detection approaches. These have
been shown to successfully detect a number of archaeological objects
on different types of landscapes, such as barrows, charcoal kilns, Celtic
Fields & burial mounds (Verschoof-van der Vaart et al. 2020; Caspari
and Crespo 2019. Verschoof-van der Vaart and Lambers (2019) &
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Caspari and Crespo (2019) provide a comparison of their CNN based
methodology to others, and show better performance metrics, as well
as lower percentage of false positives (Verschoof-van der Vaart and
Lambers 2019; Caspari and Crespo 2019). The former of these is sig-
nificant in terms of the technical efficiency of the methodology, while
the latter from the standpoint of archaeological prospection.

2.3.2 Automated object detection project for the Veluwe

The PhD research project at Leiden University on the automated
detection of objects from Veluwe-focused LIDAR data consists of im-
plementing an integrated methodology, including the use of remote
sensing, CNN, citizen science and a domain-specific Location Based
Ranking (at present), for archaeological prospection of the Dutch
landscape. Initial research was on the use of Faster R-CNN to create
a multi-class detector for barrows, Celtic Fields and charcoal kilns
(Verschoof-van der Vaart and Lambers 2019). The first workflow
developed, titled WODAN (Workflow for Object Detection of Ar-
chaeology in the Netherlands), was able to perform quite well in the
detection of barrows and Celtic Fields, notably the former, in com-
parison to other detection methodologies. The predictions from the
deep learning model were also assessed in a GIS environment during
post processing to get a more ’real world’ interpretation of the results
(Verschoof-van der Vaart and Lambers 2019, 36). The results were
subsequently validated through traditional fieldwork strategies and a
citizen science initiative (Lambers et al. 2019).

A modified workflow (categorised as WODAN2.0) was designed to
improve the model. This was done by first increasing the dataset,
by adding more random data, including negative samples with no ar-
chaeological objects present in them. In addition, concepts of domain
based predictive modelling was applied. This was done through a
Location Based Ranking method, which made use of landscape char-
acteristics, natural depositional process and human influence, and ac-
counted for their impact on the visibility of archaeological objects
(Verschoof-van der Vaart et al. 2020). The new workflow outper-
formed the previous one, showing the significance of using domain
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knowledge (Verschoof-van der Vaart et al. 2020, 14). The results
however did not still outperform those from the citizen science pro-
ject.

Finally, a novel CNN algorithm was developed and combined with
image processing techniques, to reconstruct hollow roads (Verschoof-
van der Vaart and Landauer 2021). This was dubbed CarcassonNet
and is a state-of-the-art methodology for the archaeological domain.
The research followed an interesting approach, wherein the input data
was fed as small sections of roads, rather than entire ones. This was
done to account for the different geomorphological processes that had
disturbed the landscape, and affected the orientation and morphology
of the tracks.

Figure 2.4: Results from the WODAN2.0 object detection workflow: Barrows - blue, Charcoal
Kilns - red, Celtic Fields - green (Verschoof-van der Vaart et al. 2020, 15)

2.3.3 Image Segmentation

CNN-based object detection methods are limited in extracting ac-
curate morphological information, by the strictly rectangular/square
bounding boxes used. Post-processing techniques can be applied to
mitigate the same, however a more efficient methodology would be
to use image segmentation, which ’search’ for objects in the image
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through pixels rather than trying to identify the entire object. Al-
though a pixel-oriented approach, it is not to be confused with pixel-
based image classification methods that have been used in the past
(Custer et al. 1986; Bennett et al. 2012; Lasaponara and Masini 2018).
The latter consists of assigning a class to each pixel in image, in order
to construct a thematic image. A major limitation of this method,
with respect to archaeological prospection and landscape archaeology
is that it does not account the contextual relationship between pixels
and their environment. Therefore it is largely unfeasible for detec-
tion of archaeological objects. Image segmentation however takes ex-
tracts of relevant pixels within a partitioned image, thus making it
more accountable for contextual information (for example the GEO-
BIA method is also an image segmentation method).

Image segmentation can be classified into two categories - semantic
and instance. Past research using segmentation techniques have used
both instance (Kazimi et al. 2019; Guyot et al. 2021; Bonhage et al.
2021) and semantic segmentation methods (Bundzel et al. 2020). A
semantic segmentation algorithm clusters pixels within an image that
belong together semantically, and embeds the spatial information of
objects. Therefore, each pixel within the image is assigned a class
label, rather than detecting complete objects. A common deep learn-
ing semantic segmentation architectures is UNet (Ronneberger et al.
2015). The method however does not take into account the gen-
eral overall context in its pixel-wise, approach. Moreover, there is
no instance-awareness of different objects of the same type (Garcia-
Garcia et al. 2018, 9). In case of remote sensing imagery specifically,
high levels of pixel accuracy is required, as almost every object con-
tains meaningful information, thus causing problems in delineation of
object boundaries (Yuan et al. 2021).

Instance segmentation is a method which tackles both object detec-
tion and semantic segmentation. It involves the prediction of object
instances, AND producing their pixel-wise segmentation mask. It dif-
fers from semantic segmentation in that it delineates each individual
object instance within a category (Figure 2.5). It is due to this prop-
erty, that instance segmentation was chosen for Celtic Fields. In con-
trast to some common archaeological objects used in automated de-
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tection methodologies, such as barrows, Celtic Field plots are present
adjacent it each other as part of a wider field system in the land-
scape. An object detection method causes incoherence due to this
structure, and a purely pixel-based approach such as semantic seg-
mentation might also not be able to take into account properly the
banked walls that separate the field. A combination of both allows
properly separating the fields through detection, and providing more
detailed information through the segmentation step.

(a) Input Image (b) Semantic Segmentation (c) Instance Segmentation

Figure 2.5: Types of Image Segmentation (https://analyticsindiamag.com)

2.3.4 Mask R-CNN

Mask R-CNN (or Mask Regional Convolutional Neural Network) is
a state-of-the-art deep neural network developed for the purposes of
solving instance segmentation problems. It was first proposed in 2018,
as a framework which extends the Faster R-CNN object detection
neural network, by adding an extra branch which predicts a binary
mask for the object being detected, in addition to a bounding box
and class labels (He et al. 2017). Thus the segmentation process
occurs parallel to classification and detection. The framework consists
of mainly three stages - extracting feature maps, generating ROIs
through a Region Proposal Network and finally using the generated
ROIs to perform instance segmentation and object detection, through
a fully convolution network (FCN) (refer to Figure 2.6).

The following are the main elements that make up Mask R-CNN
architecture:
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Figure 2.6: Mask R-CNN architecture, with ResNet+FPN backbone (Yu et al. 2019, 4

Backbone: ResNet+FPN

The ’backbone architecture’ of a deep neural network refers to the
starting convolutional layers used for initial feature extraction from
the input image. Having depth in backbone network architecture is
crucial for model performance (Simonyan and Zisserman 2014; Szegedy
et al. 2015). However, it was discovered that adding more layers to
the network also led to a degradation in model performance (He et al.
2015, 1). This problem was mitigated with the advent of residual
blocks, used to create Residual Networks or ResNet. Mask R-CNN
uses either ResNet-50 or ResNet-101 (50 and 101 layers respectively)
backbone architecture (He et al. 2017).

In addition to ResNet, another backbone architecture called a Fea-
ture Pyramid Network (FPN) is also used. One of the main challenges
in computer vision is accounting for the difference in scales in object
instances (Adelson et al. 1983). Featurized image pyramids were con-
ceptualised to solve this problem (Lin et al. 2017).

Stage I: Regional Proposal Network (RPN)

The RPN (Figure 2.7) stage of the architecture deals with the actual
”detection” of object instances. It outputs a set of rectangular object
proposals (regressor layer), along with a score evaluating object de-
tection capability with reference to the background class, known as
objectness score (classifier layer) (Ren et al. 2016, 3).
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In Fast & Faster R-CNN, ROIPool operation is used for feature
extraction (Girshick 2015; Ren et al. 2016). This method worked well
for the object detection applications of these networks, however they
were not aligned for pixel-to-pixel alignment. ROIAlign fixes this
misalignment, by preserving exact spatial locations (He et al. 2017,
3). Replacing the ROIPool layer with ROIAlign showed up to a 50%
increase in mask accuracy (He et al. 2017, 2).

Figure 2.7: Regional Proposal Network (Ren et al. 2016)

Stage II: Network heads

The Box Head and the Mask Head are responsible for the actual
formation of bounding boxes, the mask and predicted class labels (He
et al. 2017, 3).

Guyot et al. 2021’s implementation of Mask RCNN showed good
results on a diverse landscape, with a number of heterogeneous archae-
ological structures, similar to the Veluwe. The research also shows
how creating a mask outline outlining the shape predicted of pre-
dicted objects, can be used to go a step further from detecting the
presence of these objects, to extracting further contextual and mor-
phological information with respect to the actual landscape, such as
area, perimeter and hyper-scale topographic signatures (Guyot et al.
2021, 7,11,16). The Mask RCNN method has also shown to provide
good detection of sites in close spatial proximity, as well as in regions
were the landscape has been disturbed by human activities (Bonhage
et al. 2021, 7). In the project by Bonhage et al. (2021) specifically,
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we can see high values of common metrics used for model evaluations,
with very low number of false positives as compared to true positives
(Bonhage et al. 2021, 6).

There were some limitations identified as well with respect to this
methodology. One of these is the level of sensitivity observed to dif-
ferent combinations of images in the training dataset, for the same
number of samples (Verschoof-van der Vaart et al. 2020; Guyot et al.
2021). In addition, all of the implementations of Mask RCNN have
been successfully applied mostly to discrete and uniformly shaped
objects, with clear landscape delineations, such as barrows, charcoal
kilns and bomb craters (Kazimi et al. 2019; Guyot et al. 2021; Bonhage
et al. 2021), as opposed to more complex, connected archaeological
systems, with little spatial separation between instances.

2.4 Summary

This section started with a basic overview of the wider concepts of
Deep Learning and Computer Vision. Thereafter, it was explained
how Convolutional Neural Networks work, and how automated detec-
tion of archaeological objects in the past have benefitted from different
CNN approaches.

The method chosen for this thesis is Mask R-CNN. Like most ML
algorithms, using this technique consists of - collecting the data, feed-
ing it into the architecture and training it for specific iterations. The
output from the model on a test dataset will include a polygon mask
covering an individual Celtic Field plot and mimicing its shape, as well
as a class label. The next chapter covers the different steps that were
required to effectively use the Mask RCNN model for the research
dataset.
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Methodology

3.1 Requirements

This section covers the main hardware and software framework re-
quired for the implementation of this project.

NVIDIA GPU,CUDA & CUDNN : A Graphic Processing Unit (GPU)
is a specialised electronic circuit designed to have a massive parallel
architecture which can handle multiple tasks at the same time. To
implement deep learning algorithms, the GPU runs the more expens-
ive tasks, while the simpler ones are handled by the CPU. Using GPU
implementation for deep learning computer applications has caused a
significant increase in computational efficiency over CPUs (Shi et al.
2016).

CUDA is a parallel computing platform, developed by NVIDIA. It
allows software development of codes that can utilise GPU systems,
and contains debugging, profiling and compiling tools which could
facilitate the same.

cuDNN (CUDA Deep Neural Network) is a GPU accelerated lib-
rary, more specifically used for deep learning implementations. Using
cuDNN alongside CUDA greatly accelerates and optimizes training
and running of deep learning applications.
Python : All of the model training and inference was done using the
Python programming language (www.python.org). The integrated
development environment (IDE) used was PyCharm, of which a free
and open source commercial version is available by the company Jet-
Brains (www.jetbrains.com/pycharm).
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Tensorflow : Tensorflow is an open source framework developed for
deep learning applications in 2011, by Google (Abadi et al. 2016). It
supports a number of programming languages, such as C++, Java,
Javascript, Ruby and Swift, with Python being the most compat-
ible. With Tensorflow, operations are performed on multidimensional
arrays or ’tensors’. The Tensorflow package has many useful fea-
tures, including fast computing speeds, flexibility to solve numerous
complex mathematical problems, easy debugging through the Tensor-
board tool, use of multiple GPUs for computation, proper document-
ation and support and is easy to use (Zaccone and Karim, 32). It is
equipped with basic buildings blocks of deep learning systems such as
different CNN layers and activation functions, as well as common off
the shelf optimizers (Pang et al. 2020, 234-235).
Keras : Keras is a Python based high level API (Application Program-
ming Interface), which works on top of a backend, such as Tensorflow
or Theano. Keras enables fast experimentation, is user friendly and
allows fast prototyping for CNNs. It can be used on both CPU and
GPU systems (Nara et al. 2019). Keras can be used to access a number
of pre-built functions important for constructing a CNN model. These
include convolutional and pooling layers, dense layers (to construct a
deep network), regularisation techniques to prevent overfitting and
activation and loss functions. It can be used to improve the training
process, by setting certain callback functions which stop training in
between, based on certain metric considerations. It is also used to
save the weights generated in the training iterations (Gulli 2017)

Table 3.1 shows the different versions used of these requirements in
the implementation.

Table 3.1: Requirements with versions used for project implementation

GPU GeForce GTX 1050 (4 GB)
CUDA 10.1
cuDNN 7.6
Python 3.8.5 (with Anaconda)
Tensorflow 2.3.0
Keras 2.4.3
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3.2 Data

The input data manually fed into the CNN algorithm for training
consisted of two elements: the LiDAR image data of the Veluwe re-
gion, as well as the ’annotations’. The latter consisted of a file, which
outlined the location of the Celtic Fields in the images along with the
label describing it as such. The CNN algorithm ’learned’ the features
of these Celtic Fields, by referring to the annotations, and then the
subsequent model created used this knowledge to make predictions on
new data.

This section covers the properties and metadata of the image data
used, as well as outlining the process of annotating Celtic Fields within
the same.

3.2.1 LiDAR Data

The LiDAR data was obtained from the open source online repositor-
ies PDOK (www.pdok.nl) and Actueel Hoogtebestand Nederland or
AHN (ahn.arcgisonline.nl) by Wouter Verschoof-van der Vaart for his
PhD research at the faculty, and subsequently also used for this pro-
ject (Verschoof-van der Vaart and Lambers 2019; Verschoof-van der
Vaart et al. 2020). The AHN is a digital elevation map, containing
precise height data for the Netherlands. This file has been created
using laser altimetry technology. Currently, two versions of the AHN
exist: AHN1 was created between 1996-2003, with a point density of
1 point per 16 m. Subsequently in 2006, another study was carried
out in order to update the existing data, and the AHN2 was created
(van der Zon 2013, 6). Data from the Veluwe was carried out by the
Dutch Directorate-General for Public Works and Water Management,
and added to the AHN project named ’2010-West’ (van der Zon 2013,
27). Table 3.2 shows the properties and parameters of the LiDAR
data used.

The AHN data downloaded consisted of LiDAR data with ground
and non ground points, which was interpolated into a Digital Ter-
rain Model. The interpolated data, in the form of Geotiff tiles, were
visualised using the Simple Local Relief Model from the Relief Visu-
alisation Toolbox (Zakšek et al. 2011; Kokalj and Somrak 2019) in a
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Table 3.2: Properties of the LiDAR data used as define in (van der Zon 2013)

Meta-information LiDAR data

Purpose Water Management
Time of data acquisition April 2010

Equipment RIEGL LMS-Q680i Full-Waveform
Scan Angle (whole FOV) 45◦

Flying Height above Ground 600 m
Speed of aircraft (TAS) 36 m/s

Laser Pulse Rate 100,000 Hz
Scan Rate 66 Hz

Strip Adjustment yes
Filtering yes

Interpolation Method Moving planes
Point-Density (pt per sq m) 6–10

DTM-resolution 0.5 m
Vertical and Planimetric accuracy 0.05m

GIS platform. This was done in order to enhance local details of the
research region by suppressing large scale terrain relief.

The tiles were then converted to JPG image files and sliced into
smaller sub- images of size 600 by 600 pixels, resulting in a dataset
containing 1024, 88 and 828 subtiles for the training, validation and
test set respectively (Verschoof-van der Vaart et al. 2020). This was
done since the initial size of the images was too big for a CNN al-
gorithm to effectively process. Out of the total dataset, only images
containing Celtic Fields were used for the project. Thus the final
dataset used contained a training set of 147 sub-images, and 18 each
for the validation and test sets. For future work, it would be inter-
esting to add more ’background only’ images i.e. images that do not
contain the archaeological object of interest, and see if this has an
improved effect on the ability of the model to distinguish between the
background and object, and thus the mask delineation.

Table 3.3: Split between training set, test set and valisation set in the original dataset as well
current project

Dataset Total Images Training Set Validation Set Test Set

Originally available 1924 1024 88 828
Mask R-CNN 184 147 18 18

A Deep Learning & Computer Vision Based Approach to Airborne Laser Scanning data 35



CHAPTER 3. METHODOLOGY

3.2.2 Annotations

The dataset for the original PhD project consisted of annotations in
the object detection PASCAL VOC XML format (Everingham et al.
2010). Initial experiments conducted with this format showed that
it did not yield the results required from the instance segmentation
methodology, in terms of outlining the shape of the Celtic Field plots
with accuracy (Appendix D shows a prediction on the input data).

Figure 3.1: Annotations format example for a random image from the training set, containing
three Celtic Field instances

Thus the data was annotated in the JSON format, more commonly
used for Mask R-CNN training, using the VGG Image Annotator
(VIA) (Dutta et al. 2016; Dutta and Zisserman 2019). This was
done by creating a polygon to roughly outline the shape for each of
the object ’instances’, which in this case was individual Celtic Field
plots, and adding a label to them defining them as such. The loc-
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ations of the Celtic Field instances within the image are saved as
pixel co-ordinates of the polygon outline drawn during annotation.
The annotations were then compiled in a single JSON file, consist-
ing of the image properties - filename, size, shape attributes including
name, all points x and all points y (i.e. the pixel co-ordinates of the
outlines), and region attributes defining the type as ’celtic field’. Fig-
ure 3.2 shows the annotation process in the VIA tool, while Figure
3.1 shows an example of the annotations style for an image with id
’33an2 SLRM clip160.jpg118826’, containing three instances of Celtic
Fields.

Figure 3.2: Data annotations done by drawing a polygon for each individual plot, using the VGG
Image Annotator Tool

Figure 3.3 is a sample of the complete input data: four random
input images from the training dataset (in the first column), along
with the corresponding Celtic Fields ground truth mask for each, as
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loaded with the annotations (second column). In case of a multi-
class model, the ground truth masks for more objects would have
been loaded in the rest of the columns. However since in this case we
are only attempting to detect one archaeological object, the last two
columns have been left blank.

Figure 3.3: Sample images and the loaded ’masks’ of the Celtic fields, from the training set

3.3 Training

The Mask RCNN algorithm used for the learning and inference process
was the Matterport implementation script in Python (Abdulla 2017).
This was altered and modified to fit the LiDAR dataset in this project.

Since the images were in greyscale format and the original imple-
mentation of Mask RCNN was for RGB images, two methods were
available within the model implementation to work with greyscale
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images. One was to convert all input images into RGB from grey-
scale, before training. Since the channel count is 3 for RGB and
1 for greyscale images, the information would be computed 3 times
over. The other was to reduce the channel count itself to 1, and
make changes in the code to accommodate the same. The data was
trained and tested with both methods. Although it initially seemed
that the second method would be better, since it would save more
computational power, the first method of converting all input images
into RGB provided better results after training, and was thus used
for all experiments.

3.3.1 Transfer Learning

Deep neural networks as a rule are generally designed to work on
significantly large datasets, for example thousands of images for com-
puter vision tasks. However, in certain cases, a dataset of a sufficient
size may be difficult to acquire. This is almost always the case for
archaeology, as there are more often than not limited samples of a
particular archaeological object or feature that can be used for train-
ing. To combat this limitation, a concept known as transfer learning
is used (Pan and Yang 2010) for smaller datasets. In neural networks,
the first few layers have been shown to extract more general features,
while the last layers are more feature-specific (Yosinski et al. 2014,
1-3). The transfer learning approach involves pre-training a base net-
work on a large generic dataset, to build up its learning abilities and
then ”transferring” the model weights to the first few layers of the
CNN. The later layers are then ’fine-tuned’ on the task dataset, to
perform more specific training of features (Yosinski et al. 2014, 2),
in this case for the Celtic Fields. The algorithm thus has a better
chance of improving its detection capability, as opposed to training
from scratch on a smaller dataset with insufficient training samples.

In certain cases, this fine-tuning process can lead to overfitting, es-
pecially on a small dataset. This is a form of modelling error, which
fits the trained model too closely to a particular set of data. This
reduces the ability of the model to generalise differences on new data
and make future predictions. Therefore some feature layers can also be
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frozen during the training process, to avoid the same (Yosinski et al.
2014, 2). This method has been proven to show improved generalisa-
tion capability of a deep neural network, as opposed to initialising the
starting layers with randomised weights (Bengio et al. 2011; Yosinski
et al. 2014).

The Matterport codebase provides pre-trained model weights for
two widely used image sets: the Microsoft Common Objects in Con-
text (COCO) (Lin et al. 2014) and ImageNet (Deng et al. 2009) data-
sets. MS COCO is a large scale benchmark dataset comprising of
around 80 generic object classes. It is the basis of many computer vis-
ion based challenges, most notably instance segmentation (Lin et al.
2014). Experiments were conducted with both set of weights, however
initialising with MS COCO showed better results.

3.3.2 Image Augmentation

Another common method used to combat potential overfitting in
smaller datasets is image augmentation. This is a method which can
be used to increase the size of training data by generating new slightly
modified images, using various image transformation techniques. Im-
age augmentation techniques have also been shown to increase model
accuracy in deep learning computer vision tasks (Perez and Wang
2017; Miko lajczyk and Grochowski 2018).

Since this project uses a relatively small training set, and thus lesser
samples of Celtic Fields, initial experiments showed a large amount
of overfitting, leading to poor level of generalisation on the validation
set. Therefore, various data augmentation techniques were applied on
the input data, every time before the model was trained. These were
done using the imgaug library (Jung et al. 2020). The different types
of augmentations experimented with were as follows:
1. Fliplr - Flipping the input image horizontally (applied to 50% of
the data).
2. Flipud - Flipping the input image vertically (applied to 50% of
data).
3. Rotate - Images were randomly rotated by either 90, 180 or 270
degrees
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Figure 3.4 shows examples of the different augmentation techniques
applied to an input image of the training set.

(a) Input Image (b) Image flipped horizontally

(c) Image flipped vertically (d) Image rotated by 90 degrees

Figure 3.4: Augmentations applied on input images before training

3.3.3 Experiments

The code implementation allows for training with both ResNet 50
& ResNet 101. The experiments in this project were conducted with
the ResNet 101 backbone architecture as it has shown the best results
with general Mask R-CNN implementations, as well past projects in
archaeology as well (Bonhage et al. 2021; Kazimi et al. 2019).

In order to account for the type and size of the dataset, as well as
the archaeological object, some steps were performed to adjust the hy-
perparameters from their default configurations (shown in Appendix
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C), monitor and reduce overfitting and improve model accuracy.

• A validation step was plotted at the end of every epoch dur-
ing training. At the end of the training process, a graph was
plot showing the training and validation loss. More deviation
between the two, with the validation loss being higher, hinted at
overfitting. Accordingly the number of epochs were adjusted, by
determining at which points the difference between the loss plots
was increasing. This however was also cross checked at regular in-
tervals against the actual predictions, since the discrepancy could
also be explained away by factors other than overfitting, such as a
lack of sufficient validation Celtic Field samples and thus proper
generalisation of the model on the validation set.

• The RPN Anchor Scales were reduced from (32, 64, 128, 256,
512), and varied between (16, 32, 64, 128, 256) and (8, 16, 32,
64, 128). The former was too large relative to the size of the
Celtic Fields.

• Number of training ROIs per image were reduced from 256 to
50, and maximum ground truth and detection instances were re-
duced from 100 to 40 each. This was done due to the relatively
small number of objects present per input sub-image and to re-
duce training time.

• The number of training iterations (STEPS PER EPOCH) was set
at 300. Initial experiments had been done with higher counts of
1000, 700 and 500, but this led to overfitting very early on due to
the small size of the dataset.

• The L2 regularisation weight decay (another method used to re-
duce overfitting by reducing the weights at every iteration) was
increased from 0.001 to 0.01. The model benefited greatly from
this step, instantly improving performance.

Optimisers : While training a deep learning network, it is important
to try and minimise the losses incurred during training, in order to
maximise performance. This process is known as optimization. To do
so, specific algorithms have been designed, which change and update
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parameters, such as the weights and the learning rate, by minimising
the loss functions. In this project, experiments were conducted using
two commonly used optimisers for deep neural networks, namely -
Stochastic Gradient Descent (SGD) with momentum (Robbins and
Monro 1951; Qian 1999) and Adam (Kingma and Ba 2014).

Training Schedule & Learning Rates : Finding the model with an
optimal combination of network configurations is a daunting task.
This is because training the layers of a deep neural network is a time-
consuming process, which can take anywhere from a few hours to a
day/multiple days. Therefore, we can increase model efficiency by
using a training schedule, to freeze some of the layers while training,
and initialising them with the pre-trained transfer learning weights.
The model was already hard-coded to do the same by specifying the
layers to be trained: ’heads’ refers to training only the network heads
(RPN, FPN & Classifier), ’3+’/’4+’/’5+’ refers to training specific
ResNet layers and above, and ’all’ refers to training all layers in the
Mask R-CNN architecture. The training schedules used for the ex-
periment can be seen in Table 3.4 and Table 3.5. A decaying learning
rate was used for the different stages of the training schedule i.e. it
was reduced after every few epochs for better generalisation; the rate
was higher in the first stage when the networks heads were fine tuned
on the specific Celtic Field features, and lower in subsequent stages
when more layers were being trained.

Table 3.4: Training schedule for experiments conducted using SGD optimizer

Training Stage Layers Trained Epochs Learning Rate

1 ’heads’ 10 10− 3

2 ’all’ 20 10− 4

3 ’all’ 30 10− 5

Table 3.5: Training schedule for experiments conducted using Adam optimizer

Training Stage Layers Trained Epochs Learning Rate

1 ’heads’ 10 10− 4

2 ’all’ 20 10− 5

3 ’all’ 30 10− 6
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3.4 Inference

3.4.1 Evaluation Metrics

Evaluation metrics are mathematical formulas, which allow us to
quantitatively assess the performance of the trained model on new
data. There are certain common metrics which have been adapted
for computer vision tasks. These calculations are mainly based on
four classes of predicted values - True Positive, False Positive, False
Negative and True Negative. These values can be plotted through a
’confusion matrix’ on a test dataset (shown in Figure 3.5). As the
names suggest, True Positives and True Negatives are positive and
negative predictions that match the actual ground truth data (i.e. in
this case a Celtic Field being detected or not detected where it is ac-
tually present/absent on the landscape) and False Positives and False
Negatives are positive and negative predictions that do not match the
ground truth reality.

Figure 3.5: Confusion Matrix

For evaluation of deep learning neural network models, two primary
metrics have been defined - Precision and Recall (Juba and Le 2019).
1. Precision: Refers to the ratio of relevant positive predictions (i.e.
True Positives) out of total detected positive predictions. It is math-
ematically represented by Equation 3.1.

Precision =
TP

TP + FP
(3.1)

2. Recall: Refers to the fraction of positive predictions that have been
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correctly identified with the respect to actual ground truth. Recall
is a measure of sensitivity if a trained model. It is mathematically
represented by Equation 3.3.

Recall =
TP

TP + FN
(3.2)

In order to define what constitutes a true positive prediction, a
threshold value is defined, known as Intersection Over Union or IoU.
It is defined as the intersection between the predicted and the ground
truth mask, divided by their union. The commonly used threshold
value is 0.5. Therefore, if the computed IoU > 0.5, the prediction is
categorised as True Positive, else a False Positive.

Figure 3.6: Representation of Intersection Over Union

3. mAP : For Mask RCNN challenges and implementations, the
most widely used metric is the Mean Average Precision or mAP. The
Average Precision (AP) value refers to area under a Precision-Recall
curve, and the mAP is the mean AP over all object classes (in this
case just the Celtic Fileds) at a certain IoU threshold.

mAP@IoUx =
1

n

n∑
i=1

APi (3.3)
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where x is the threshold value (in this case 0.5) and n is number of
images in the given dataset.

4. F1 Score: The F1 score is a metric which represents the balance
between precision and recall on the dataset. It is represented by the
equation 3.4.

F1 = (2 ∗ precision ∗ recall)/(precision + recall) (3.4)

3.4.2 Visualising Predictions

The final inference step consists of visualising the detected objects
on unseen test images. The output image consists of: detections of
the Celtic Fields, characterised by a class label, the predicted masks
of the Celtic Fields which outlines their exact shape and finally a
’confidence score’ i.e. a value between 0 to 1, which highlights the
model’s evaluation of how likely it is that it has detected a Celtic
Field.

It is important to note that the results of this automated detection
methodology is only part of a wider framework. It is important to
further contextualise these results in a format which can aid archae-
ological research. To do so, the mask detection results can be exported
as shapefiles to a GIS platform, and then observed with relation to
the wider framework. Due to time constraints, this step was not con-
ducted within this thesis. However a rough possible methodology for
the same has been outlined below:

• To start with, the pixel coordinates of the generated mask pre-
dictions need to be written to a text file. One possible way to do
so is by using OpenCV (a library developed for Computer Vision
tasks) to create a ’convex hull’ (https://docs.opencv.org/). This
refers to creating an outline which mimics the outer shape of the
object. The pixel values of this convex hull can then be written
into ’.txt’ file, using a few lines of Python code.

• Subsequently the convex hull co-ordinates need to be converted
to real world geographic co-ordinates, in order to read it in a
GIS format. This can be done using Python’s GDAL package
(https://gdal.org/), built for manipulating geospatial raster data.
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This can then be opened as a shapefile in QGIS, and multiple
larger Celtic Fields (made up of the individual small plots detected
in this method) can be visualised on the wider landscape of the
Veluwe region
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Results

The following section comprises of results from the experiments (as
described in the previous section), consisting of quantitative metric
values derived from each experiment, as well as visualised predictions
of some sample images from the test set (not used during training).

In total, almost 30-40 experiments were conducted with different
combinations of hyperparameters, training schedules and optimisers.
Of these, only the most significant results are present, in terms of most
optimal performance. The results of the different experiments were
evaluated using the Mean Average Precision (mAP), precision, recall
and F1 score, for an IoU of 0.5, and minimum detection threshold of
0.7. This value was set in order to prevent the detection of false pos-
itives as much as possible. Of these metrics, the mAP was considered
the most significant, in keeping with most Mask RCNN implement-
ations, while F1 score was used for comparison with other results
achieved in the Faster R-CNN project.
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4.1 SGD Optimiser

Table 4.1 shows the results for the model trained with the SGD op-
timiser, with the configurations and training schedule mentioned in
Sec 4.5.2 and Table 3.4.

Table 4.1: Results of experiments conducted with varying anchor scales; best performing model is
experiment 2 with an mAP of 0.53 and F1 score of 0.60.

Experiment Anchor Scales Weight Decay mAP Precision Recall F1

1 (8, 16, 32, 64, 128) 0.01 0.491 0.75 0.46 0.57
2 (16, 32, 64, 128, 256) 0.01 0.53 0.77 0.50 0.60

Out of the two, we see that the second experiment, with anchor
scales (16, 32, 64, 128, 256), has higher metrics on the test set, with
an mAP of 0.53. We can presume that this difference is due to the
anchor scales size of the first experiment being too small to effect-
ively cover the area of the Celtic Field plots. Visual inference with
the second experiment showed a good coverage of Celtic Field plots,
however there were some overlaps in the masks. This was probably
because some of the LiDAR images had blurred sections within them,
which might prevent a proper distinction between the embankments
and the actual plots.

While these instances of overlapping masks were largely negligible,
another experiment was conducted with the same anchor scales, but
by slightly altering the Mask Loss weights, to try and improve ac-
curacy of the mask delineation. In addition, a fourth experiment
was conducted using a step decay function, wherein the learning rate
dropped by 10 after every 10 epochs. This was done in order to further
gauge the effect of the learning rate on the model.

Experiment Configuration mAP Precision Recall F1

3 Altered loss weight 0.456 0.65 0.35 0.455
4 Step Decay 0.51 0.63 0.267 0.38

Table 4.2: Results of experiments conducted with altered configurations

Experiments 3 and 4 show reduced metric values rather than im-
provement. Thus, Experiment 2 remains the best performing model.
Figure 4.1 and Figure 4.2 show predicted results on two images from
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the test dataset, along with the original image and the ground truth
as generated by annotations. The annotations in this case were only
fed into the algorithm in order to compare the results with the final
results, and do not play a part in the training process. In both cases,
we see that some extra fields, not uploaded in the ground truth have
also been detected. In 4.2c, we can see an example of a false positive
in the centre right part of the image (marked in green).
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(a) Input Image (b) Ground Truth

(c) Predictions

Figure 4.1: Predictions on first example (image from test set). We see that some instances not
marked in the original annotations have also been detected
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(a) Input Image (b) Ground Truth

(c) Predictions

Figure 4.2: Predictions on second example (image from test set)
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4.2 ADAM Optimiser

The next set of experiments was conducted using the Adam Optimiser.
For this the decay rate of the optimiser was varied, along with the
number of RPN Training anchors generated.

Table 4.3: Results of experiments conducted with altered configurations

Experiment Decay Training anchors mAP Precision Recall F1

5 10− 5 128 0.436 0.57 0.48 0.52
6 0 64 0.451 0.62 0.40 0.48

Since the results were significantly lower then that of the SGD
optimiser, further experiments were not conducted. However, the
amount of time taken for training and loss convergence were consid-
erably lower than with the SGD optimiser, for the same number of
iterations and epochs.

With respect to visualised predictions as well, the Adam optimiser
model was able to predict fewer instances of Celtic Fields than the
SGD optimiser. Predictions on the two example images can be seen
in Figure 4.4 and 4.3. These are the same examples as used for the
SGD optimiser. In addition, the contour mask as well was not as
well defined as in the case of the SGD optimiser. This can be seen
particularly in Figure 4.4 in the top right corner, for the fields depicted
in green and pink. Aside from the overlap. there are also fragmented
smaller masks separate from the actual Celtic Field plot. This hows
a lower generalisation of the model in determining the exact shape of
the fields, as compared to experiments in the previous section.
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(a) Ground Truth

(b) Prediction

Figure 4.3: Predictions on first example (image from test set)
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(a) Ground Truth

(b) Prediction

Figure 4.4: Predictions on second example (image from test set)
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4.3 Summary

• The best performing model is Experiment 2, using the SGD op-
timiser, with a weight decay of 0.01 and Anchor Scales (16, 32, 64,
128, 256). The mAP value achieved was 0.53, with a recall and
precision of 0.50 and 0.77 respectively. In terms of predictions,
the model was able to detect a majority of the plots within the
larger Celtic Field systems and generalised the shape quite well.

• Experiments conducted using the SGD optimiser gave better res-
ults as compared to the ADAM optimiser. However, the latter
required a lesser amount of training time.

• A parameter which caused a significant change in model perform-
ance was the weight decay rate for the L2 optimisation. The
default value was 0.0001. This was then increased to first 0.005
and then finally 0.01. The value increased the metrics from as
much as 0.3 to 0.5.

• Since the input images in the dataset are smaller slices of the
larger LiDAR images of the region, integrating the results into
GIS and visualising the predictions on the landscape would give
a clearer idea of the position of larger Celtic Field systems in the
region.

• Additional Comment: The randomised color scheme of the pre-
dictions is built into the original Mask R-CNN implementation,
and does not in this case give any additional information about
the masks created.
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Discussion

5.1 Input Data

The format and quality of input data and the annotations used for
training is very important in this methodology as the relevant features
(for identification) of the celtic Fields are learned by the algorithm
itself, from the annotated images, rather than being fed manually
by the programmer. This is also exemplified when looking at the
predictions generated when using the previous annotations (Appendix
D).

Future research could include assessing the performance of this
model on a different format of the input data. Verschoof-van der
Vaart and Landauer (2021) in their research on using CNNs to de-
tect hollow roads in the Veluwe note that the model performed better
when the input data was in raw DTM format, as opposed to visual-
ised LiDAR data (using hillshade). This was attributed to a loss in
data information when converting from one format to another (DTM
to visualised) (Verschoof-van der Vaart and Landauer 2021). Simil-
arly, the model could also be tested against other forms of LiDAR
visualisations to see what impact they have on performance.

5.2 Model Evaluation

The results of the different experiments and the resulting predictions
were evaluated using the Mean Average Precision Metric (mAP), for
an IoU of 0.5, and minimum detection threshold of 0.7. This value
was set in order to prevent the detection of false positives as much
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as possible. Different variations of the experiments were applied, by
varying the anchor scales and adding a step decay rate as opposed to
a constant learning rate. These changes had little impact on the mAP
value. The Adam optimiser was also applied as it it is touted to have
a better convergence of the learning loss and also greater accuracy.
However it performed less well as compared to the SGD optimiser.
The best model results, in quantitative terms, was Experiment 2,
using the SGD optimiser, with a weight decay of 0.01 and Anchor
Scales (16, 32, 64, 128, 256). The mAP value achieved was 0.53,
with a recall and precision of 0.50 and 0.77 respectively.

To the best of this author’s knowledge, there have been no other
projects which have attempted the automated detection of Celtic
Fields specifically from any kind of remote sensing data. The metrics
therefore were compared only to the results of the original object de-
tection methodology used on this data. The comparison was done on
the basis of precision, recall and F1 scores.

Methodology Precision Recall F1 score

WODAN 1.0 (Verschoof-van der Vaart and Lambers 2019) 57.6 82.3 67.8
WODAN 2.0 (Verschoof-van der Vaart et al. 2020) 66.0 74.6 70.0

Heritage Quest:Citizen Science (Verschoof-van der Vaart et al. 2020) 85.0 75.7 80.1
Mask R-CNN 77.0 50.0 60.0

Table 5.1: Comparison of metric performance with previous models

The precision values of the current model are higher than the pre-
vious two implementations of WODAN, using the object detection
methodology, whereas the recall is much lower. The latter is prob-
ably the reason why the mAP and F1 scores across all experiments are
also lower, as these metrics take into account the trade-off between the
precision and recall. Precision gives an idea about the amount of true
positives versus false positives predicted, hence it can be considered
more significant for the purposes of archaeological prospection. The
model does not however reach the level of the results of the citizen
science project i.e. human performance.

One of the research aims defined was assessing the performance of
an instance segmentation based model (Mask R-CNN) versus object
detection (Faster R-CNN) in the detection of Celtic Fields. Results
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from both methodologies can be seen in Figure. In terms of actual
detection capability of the field instances, the results are comparable
as both seem to positively identify most of the field plots in an im-
age. However we see a difference in the representations of the detec-
tion. The object detection method covers the general field plot with
a bounding box. Due to the nature of this particular archaeological
object, wherein the fields are all present adjacent to each other in
the landscape, the bounding boxes have a great amount of overlap,
thus causing some confusion about the actual positioning of the in-
dividual field plots. The Mask R-CNN implementation on the other
hand clearly delineates the instances from each other and gives a re-
latively good real world view at how the Celtic Fields are positioned
on the landscape. Thus, in terms of archaeological prospection, this
method seems to be better for detection of individual elements of a
larger archaeological system, especially which have little to no spatial
separation between them. Another limitation of the bounding boxes
is that they have a very static rectangular shape. This is why they
work well for uniformly shaped objects such as barrows and charcoal
kilns that would fit well within these boxes and be highlighted within
the image. In case of Celtic Fields however, which have non uniform
shapes that do not fit into these boxes, generalising the exact contours
provides a clearer and more coherent picture.

(a) Object Detection Results (b) Instance Segmentation Results

Figure 5.1: Predictions using the two methodologies
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5.3 Archaeological Significance

While the various model metrics provide an efficient quantitative way
to evaluate the model performance, it is important to look at the qual-
itative value of the methodology from an archaeological perspective.
The mAP metric achieved so far i.e. 53% would not be considered
very high in circle of Deep Learning research, but considering it by
itself as a measure of the model’s usefulness for the specific task in
hand would be premature. Since Celtic Fields are a larger system
made up of a combination of smaller ’objects’ (i.e. smaller, individual
field plots), successfully outlining the core of the fields would allow a
reconstruction of a few of the plots that might have been missed out in
the original model detection. In addition, the methodology needs to
be embedded into a wider framework, so that the results can be used
for archaeological research. This could include elements such as manu-
ally checking the predicted results and analysing, ground truthing the
model results through through field survey and finally visualising the
results on the larger landscape and asking interpretations. Another
step that could be incorporating domain knowledge into the results,
such as the use of Location Based Ranking by Verschoof-van der Vaart
et al. 2020 to account for effect of present landscape conditions on the
prediction results.

Currently, the model provides quite a clear delineation and mapping
of individual field plots, within the ’walls’ or demarcations inside the
wider Celtic field. Figure ?? gives a rough look at what multiple field
systems on the landscape imagery might look like. Further analysis
of this can help answer important archaeological questions regarding
land use, agricultural systems and past human-agricultural dynamics
in the research region. Arnoldussen (2018) in his research covers the
different ways in which Celtic Fields need to be studied from an ar-
chaeological point of view. This includes making inferences about the
adaptability of agricultural structures by studying the morphology of
the fields across regions (Arnoldussen 2018, 7). This can easily by
done through the results of this methodology, by extracting charac-
teristics such as morphology, area and perimeter of these embanked
fields, using GIS. A similar approach was followed by Guyot et al.
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(2021). Moreover, further analysis could be made about the size of
settlements with relation to area of agricultural land, thus providing
a non-destructive methodology to study habitation-agriculture rela-
tions in the research area (Arnoldussen 2018, 9). Statistical analysis
techniques can be used to determine spread and size of the wider field
systems with respect to the different municipalities in the Veluwe re-
gion, and make inferences and correlations.

Figure 5.2: Two merged images from the test set, to try and reconstruct a small part of the
landscape.

A point of consideration is that the model, as it stands now, does
not include the ’banks’ or walls around the plots. The banks them-
selves contain important archaeological residue and settlement debris
such as firewood, charcoal, sherds etc (Arnoldussen 2018, 313). Moreover,
studying their formation processes gives important insight into the
land-use and agricultural history. Detecting these could also help
in further quantitative analysis, such as calculation of perimeter and
area of the wider field systems. There could be a number of ways to
achieve this. One method would be adjusting the annotations and
the model parameters, and retraining with the data, in order to in-
corporate the banks of the fields in the predictions. However this
would obviously be a more computational and cost-inefficient method.
Moreover, the current model shows very clear delineations between
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the fields, in the context of the landscape, and that might not be
the case with a new model. Instead, post-processing techniques could
be applied to the current results. One way to do this would be to
import the predictions to GIS, and use some of the tools to try and
outline the field embankments. An example is the buffer analysis tool
(https://docs.qgis.org/2.8/en/docs/training manual/).

When studying the model, another way to recontextualise the res-
ults is in terms of the targeted application. The precision and recall
values of a model has a trade-off, such that maximising one, minim-
ises the other. If the goal is archaeological prospection and analysis,
greater precision would be required of the model. That is, it would
be important to eliminate as many of the false positives as possible.
It would also be important to have as much accuracy as possible in
terms of outlining the shape of the fields, as this would reduce post-
processing steps when for example analysing morphometric character-
istics. If the aim however was along the lines of heritage management
and conservation, it would be more important to maximise the re-
call detect as many possible occurrences of these fields as possible.
The number of false positives in this case would not matter so much,
rather higher number of false negatives would mean missing out on
existence of archaeologically relevant area that might require protec-
tion. In this way, ’improving the model’ might require very different
techniques, based on the end goal. Moreover, since we get a complete
look at the statistics of detected and undetected features, it is possible
to calibrate the results in the necessary way.

5.4 Considerations & Problems of the methodology

Input Data: While an obvious point of consideration, the duration of
this project exemplified the impact the quality and format of input
data could have on the final results. Initially, experiments and model
training and inference were conducted using the original bounding box
annotations as used for detections using Faster R-CNN. While the
actual positive detections were comparable, the masks created were
less accurate, encompassing a much larger area than the actual field
plots, and causing incoherence in the visualisation of the predictions.
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Another limitation is that, in order to make the input data feasible
for the computational capabilities of the neural network, the data
had to be sliced into smaller sets. Thus, individual predictions that
we get from a test set image lack in giving contextual information
with regards to the entire landscape. To mitigate this, an extra step is
required by exporting all of the predicted data into a GIS environment,
and observing the individual ’slices’ as part of the landscape of the
research area.

Computational power : As mentioned in the requirements section as
well, the methodology implemented requires a significant amount of
hardware-based computational power, which is not so easily available
on common PCs. The experiments of this project were conducted
using a GPU system with a capacity of 4GB. On occasion, this did
lead to the program running out of allocation memory, requiring a
restart of the training process, sometimes from the last working point,
but sometimes also from the start. Moreover, running the program on
a device not having the sufficient amount of required memory, would
lead to a longer training process and less accurate results.

Computational expertise: The entire workflow used in this meth-
odology consisted of a number of processes which required different
software platforms. This includes the annotation process, the actual
ML algorithm processing and any post-processing techniques, if ap-
plied. Thus, the workflow as a whole lacks an element of ease-of-use,
in terms of having to use different platforms for the task. Moreover,
there is a strong coding component involved as well. Thus, the current
methodology applied could be made more useful, if all of these stages
i.e. pre-processing, the ML algorithm and post-processing could be
integrated into a single platform. This could possibly be done on
the Python IDE, since there are packages in the Python document-
ation which could allow the creation of annotation tools, as well as
interfacing with GIS.

Interpreting results : The article by Roccetti et al. (2020) on the
use of CNN in the Mesopotamian Floodplain sheds some light into
how it would be imprudent to simply rely on the results of a CNN
algorithm, without proper post interpretive analysis. The research
shows that model accuracy and detection capability were improved
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by - a) modification of the original model by adding background con-
textual information as input and b) using prediction heat-maps to
interpret & improve the results (Roccetti et al. 2020). It was the
second method, involving a combination of domain-based knowledge
with initial model results, that improved accuracy more significantly,
over simply adding tweaks to the original model (Roccetti et al. 2020,
4-5). Similar results were also seen in the use of Location Based Rank-
ing, incorporating geomorphological and topographical data to the
original detection workflow for data from the Veluwe, by Verschoof-
van der Vaart et al. (2020). Therefore the use of Deep learning can-
not be categorised as a ”one fits all” solution, rather it requires an
in depth interpretive analysis of the results and uncertainties from an
archaeological point of view.
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Conclusions

Automated detection of archaeological objects from remote sensing
data has gained much prominence in the recent decade. This occur-
rence is due to the constraints of time and cost inefficiency relating to
the manual interpretation of large amounts of varied remote sensing
data available in the present. Past implementations generally relate
to handcrafted and rule-based methodologies, which are limited in
their usability and transferability. A recent solution to this limita-
tion is the use of Deep Learning-based CNN techniques. The aim of
this thesis was to use such an approach to create a model that can
perform instance segmentation of Celtic Fields, from LIDAR data
collected from the Veluwe, Netherlands. The expected results were
two-fold: a) the detection, localisation and labelling of Celtic Fields
and b) delineating between individual plots in the wider field system,
by generalising the exact shapes of individual plots. This was done
using the widely used state-of-the-art instance segmentation architec-
ture known as Mask RCNN. In order to account for the problem of
the small size of the dataset, the methodology made use of transfer
learning using the large scale dataset MS COCO.

A number of different experiments were conducted in order to find
the model with optimum performance. This was done by fine-tuning
the model using different combinations of hyper-parameters, such as
learning rate, training schedules and so on. The model performance
was subsequently validated through model metrics, specifically the
mean average precision value, and the visualised predictions of the
detection, with respect to the ground truth. The best model metric
obtained was an mAP value of 53%. The methodology covered in this
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project can be considered a part of a wider framework required to do
a complete archaeological interpretation of the positioning of Celtic
Field systems in the wider landscape, and subsequently assess the role
they played in the region.

6.1 Research Questions

At the start of the thesis, a research question was defined - How does a
Deep Learning based Mask R-CNN algorithm perform with respect to
the instance segmentation of pre-historic Celtic Fields, from remotely
sensed LIDAR data of the Netherlands and subsequently contribute to
archaeological prospection?.

To answer this question, a number of sub-questions were defined.
These questions have been answered in below.

1. To what extent can the model identify instances of individual
Celtic Field plots and delineate between them?

The model has a high precision rate of 0.77. This combined with
the visualised predictions indicates the model does a decent job at
eliminating false positives within the predicted results. However the
recall rate is low, which means that the total number of predictions in
comparison to the ground truth is still possibly on a slightly lower side.
However, with reference to Celtic Fields, it is not absolutely necessary
to detect every single field plot. This is because Celtic Fields are a
wider network of individual plots making up a bigger field system
As a result, detecting most of the core of the fields can lead to a
reconstruction of some of the instances which may have been missed
out, depending on the necessity of doing so. The visualised predictions
from the model show a clear delineation of the predicted fields, and
covers of the wider field system, allowing a further reconstruction if
necessary.

2. In what way do the results compare to a comparative object
detection approach, previously applied on the data of the region?

In terms of the quantitative metrics used to evaluate the model,
the results are comparable to the previous versions of object detection
implementations. The Mask R-CNN model shows a higher precision
rate, but a lower recall and subsequently F1 score. They however

66 A Deep Learning & Computer Vision Based Approach to Airborne Laser Scanning data



CHAPTER 6. CONCLUSIONS

do not match to the level of human performance as seen in the cit-
izen science experiment which was conducted as part of the original
project.

In terms of visualised predictions however, a difference can be seen
with respect to the Mask R-CNN and object detection methodologies.
The former shows more coherence and clarity in terms of the visual-
ised predictions, delineating each individual field plot very clearly. In
addition, it also outlines the contours of the fields quite significantly,
which leaves open the option of applying further morphometric ana-
lysis with fewer post-processing steps.

3. How can the results obtained from the methodology contribute to
archaeological interpretations of Celtic Fields in the Veluwe region?

This methodology can help in finding and detecting new Celtic
Fields in a quick and efficient manner. Subsequently, when these pre-
dictions made on smaller input images are exported to GIS, they can
be mapped on the larger landscape of the Veluwe. By combining
these results with other sources, such as written, geographical and
topographical data, we can better understand the role of Celtic Field
systems in the region, in terms of human activity. We could also assess
the relationship between these field systems, and other archaeological
objects in the region. In addition, we can calculate quantitative meas-
ures of these fields, such as area and perimeter. The method can also
be tweaked further for purposes of both archaeological prospection
and heritage management by reducing false positives/true positives.

6.2 Future Work

An important aspect which can be tested in the future is the abil-
ity of the methodology to generalise on Celtic fields in the landscape
from other parts of north-western Europe. This can give an idea
of how transferable the current methodology is to other comparable
situations, and to what extent this can reduce the invariable compu-
tation costs of re-training Deep Learning algorithms for detection of
the same type of object from different data.

An important factor observed in the duration of this project is the
lack of resources and examples from which to draw reference from,
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with respect to the technical and methodological aspects. This is due
to a vast underutilisation of platforms such as GitHub, which would
allow the sharing of programming codes and workflows, large scale
general datasets more appropriate for archaeological remote sensing
applications and hypertuning and optimisation methods. This is spe-
cially important in arhcaeology due to the specific problems faced in
the domain with respect to use of AI methods, such as lack of large
training datasets and samples and uncertainty within the data. A
strong community on such platforms would facilitate the process of
research into this domain for future digital archaeologists.
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Abstract

The flood of archaeological remote sensing data in present times calls
for digital solutions which can reduce the time and cost required to
manually analyse these vast amounts of data. In recent times, Deep
Learning techniques based on Covolutional Neural Networks for auto-
mated detection of archaeological objects, are fast gaining traction due
to the potential they hold. However, much of these studies remain re-
stricted to detection of discrete objects with uniform morphologies.
Thus, there lies a gap in the use of these methodologies for mapping
of larger archaeological systems, which can contribute immensely to
landscape archaeology, and our knowledge of human cultural activity
in the past.

This thesis attempts to make this shift by using a CNN-based in-
stance segmentation methodology to detect individual plots of large
Celtic Field systems. It was implemented on LiDAR data from the
Veluwe region in the Netherlands, using the Mask R-CNN model.
The results show that the methodology has the ability to not only de-
tect field plots present in the landscape, but also outline their exact
shape. These results when embedded in a wider framework can con-
tribute greatly to archaeological prospection and our understanding
of the archaeological landscape in the Veluwe.
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Appendix A

Glossary and Abbreviations used

LiDAR - Light Detection and Ranging: A remote sensing method
which uses light in the form of a pulsed laser to measure ranges (vari-
able distances) to the Earth
AI - Artificial Intelligence: a computer science discipline devoted
training machines to perform tasks usually associated with human
intelligence, without human intervention
ML - Machine Learning: a branch of AI, that can be defined as ’train-
ing’ computational algorithms to detect patterns in past data, and
subsequently make decisions and predictions regarding new data
DL - Deep Learning: a subset of Machine Learning, which utilises
deep architecture
Computer Vision: a field of computer science which centers around
the ability of computers to see and interpret digital images and videos.
Object detection: computer vision method which localises position of
an object within the image through a bounding box and assigns a
class label
Instance Segmentation: identifying the object in an image at the pixel
level, and creating a binary mask which helps identify the exact shape
of the object
CNN - Convolutional Neural Networks: the deep learning algorithms
most commonly used for Computer Vision applications
Mask R-CNN - Mask Regional Convolutional Neural Networks: a
state-of-the-art deep neural network developed for the purposes of
solving instance segmentation problems
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Appendix B

CNN Theory and Architectures

B.1 Convolutional Neural Networks

Deep Learning is a subset of Machine Learning, which utilises deep
architecture of Artificial Neural Networks(ANNs). These are compu-
tational systems, built to mimic the learning process of the human
brain. It consists of a number of processors called neurons, which are
interconnected to one another and produce a sequence of real-valued
activations, to collectively collect an input and optimise the output
(Schmidhuber 2015, 86). A basic structure of ANN architecture can
be seen in Figure B.1.

Figure B.1: Basic structure of an Artificial Neural Network(ANN) (O’Shea and Nash 2015, 2)

The input layer receives a combination of input values, in the form
of information about the samples, and weights, which indicate the
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APPENDIX B. CNN THEORY AND ARCHITECTURES

importance of the inputs being fed into the neurons (refer to Figure
B.2 for structure of a neuron) (Kaymak and Uçar 2019, 167). The
transfer function then calculates the net input of the weights and
input values (Kaymak and Uçar 2019, 167). Finally, the activation
function processes the net input value calculated by the transfer func-
tion and generates an output, which in this case is distributed within
the hidden layers of the ANN. The activation function is generally a
non-linear function, and it transfers this non-linearity to the output
as represented by the mathematical Equation B.1.

y = f(
n∑

i=1

Wixi + b) (B.1)

Figure B.2: Structure of an artificial neuron (Kaymak and Uçar 2019, 166)

The most commonly used activation function in deep learning and
convolutional neural network algorithms is the Rectified Linear Unit
or ReLU function. This activation function outputs the input value
directly if it is positive, else it outputs a zero value (Kaymak and Uçar
2019, 168). It is represented by Equation B.2

f(x) = max(0, x) (B.2)

Convolutional Neural Networks or CNNs are the deep learning al-
gorithms most commonly used for Computer Vision applications. In
simplistic terms, they can be described as a type of ANN system.
There are, however, certain differences from traditional ANNs to take
into account the main task of CNNs - pattern analysis and recogni-
tion within images. (O’Shea and Nash 2015). Traditional ANNs can-
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not handle the computational complexity of computing image data.
Through CNNs, we can reduce the model of parameters, and thus the
complexity of the model, reducing a chance of overfitting (O’Shea and
Nash 2015).

A CNN network is trained in two stages. The first stage, or the
forward stage comprises of representing the input image with the as-
sociated weights for each layer(Guo 2017, 10). A loss cost is then
calculated by comparing the predicted output with the ground truth
labels (Guo 2017, 10). In the second stage, or the backward stage,
the loss costs are used to re-update the parameters, which is followed
by a another stage of forward transmission. This process continues
for a defined number of iterations (Guo 2017, 10). When the entire
dataset completes one cycle of forward and backward transmission, it
is known as an epoch.

A CNN comprises of three main layers - convolutional layers, pool-
ing layers and fully connected layers. The first two layers perform
the task of feature learning and are generally placed in alternating
layers. The last fully connected layers perform the task of assigning
class labels to the input image (Voulodimos et al. 2018, 2). The basic
structure of a CNN network can be seen in Figure B.3.

Figure B.3: Basic structure of a CNN architecture

1. Convolutional layer: The first layer comprises of extracting rel-
evant features from the input image. This is done through a mathem-
atical function called convolution(Voulodimos et al. 2018. It is used
to learn image features by performing the function on small squares of
input data. This function is defined as per Equation B.3(Goodfellow
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et al. 2016, 327).

s(t) = (x ∗ w)(t) =

∫
x(a)w(t− a) da (B.3)

The first argument i.e. x is referred to an input, while the second
one i.e. w is referred to as as filter matrix, which reduces the input
image by extracting the necessary features. It is also known as a kernel
or a feature map (Goodfellow et al. 2016; Voulodimos et al. 2018). As
opposed to ANNs which have all fully connected layers, the CNN
architecture substitutes the first few layers with a convolutional, in
order to cut down learning time and accommodate the computational
power of handling image inputs, by reducing parameters (Voulodimos
et al. 2018, 3). The ReLU activation function is used to add non-
linearity to the CNN, after the convolution function is applied.

Figure B.4: Convolutional Layer (Guo 2017, 11)

2. Pooling Layer: These layers reduce spatial size of input volume
i.e. width and height, by replacing output of a feature map with a
net statistical summary (Goodfellow et al. 2016, 335). For example,
the max pooling function performs a dimensional reduction by ex-
tracting the maximum value within a feature map (Goodfellow et al.
2016, 335). Other common types of pooling functions include average
pooling and sum pooling. Along with reduction in size, there is also
a loss in information in this process. However, this decrease leads to
a reduction in computational power (Voulodimos et al. 2018, 3).

3. Fully Connected Layer: These layers contain 90% of the CNN
parameters, and involve converting the 2D feature maps into a 1D
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Figure B.5: Pooling Layer (Max pooling) (Guo 2017, 12)

feature vector(Guo 2017, 14). These vectors are then used for either
a classification process or further processing.

Figure B.6: Fully Connected Layer (Guo 2017, 14)

B.1.1 Object Detection

CNNs showed significant results with respect to image classification
in 2012 (Krizhevsky et al. 2012), on the ImageNet Large Scale Visual
Recognition Challenge (Deng et al. 2009; Russakovsky et al. 2015).
However, object detection differs from classification as it also re-
quires localisation of objects within an image. To solve this issue,
R-CNN or Regions with CNN features was developed (Girshick et al.
2014). In this method, a number of category-independant region pro-
posals are generated through a search algorithm known as selective
search(Uijlings et al. 2013). Consequently, A CNN network extracts
relevant features from each region proposal, and these are then fed
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into a Support Vector Machine(SVM) for classification (Girshick et al.
2014). This method however is computationally expensive. Therefore
Fast R-CNN was developed to reduce the computational time, and
also improve detection. In Fast RCNN, as opposed to passing each
generated interest through the CNN, the whole image is passed as
input to produce a convolutinal feature map, thus sharing the com-
putation. A Region of Interest (ROI) pooling layers extracts feature
vectors from the feature map, based on the object proposals (Girshick
2015).

Faster R-CNN further brings down computation time by replacing
the Selective Search algorithm CNN with a Region Proposal Network
(RPN). In this case, the feature maps generated by the CNN are
fed as inputs to the RPN, to generate proposals, thus making the
process relatively cost free. RPNs can predict region proposals of
multiple aspect ratios and scales by using anchor boxes as reference.
The region proposals are then passed through ROI pooling and then
classified (Ren et al. 2017).

The Faster RCNN architecture is used for the object detection part
of the Mask RCNN algorithm used in this thesis.

Figure B.7: Architectures of R-CNN, Fast R-CNN & Faster R-CNN

B.1.2 Semantic Segmentation

Image segmentation has been one of the more complex and deeper
forms of computer vision. This is due to the fact that in this ap-
proach, it is not always necessary to know the exact identity of the
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objects being detected. A semantic segmentation algorithm clusters
pixels within an image that belong together semantically, and embeds
the spatial information of objects. Therefore, each pixel within the
image is assigned a class label, rather than detecting complete ob-
jects. These algorithms can be roughly divided into three categories
- region-based, FCN-based and weakly supervised (Guo et al. 2017).
The most successful technique out of these is the FCN or Fully Con-
nected Network technique. Another common deep learning semantic
segmentation architectures is UNet (Ronneberger et al. 2015).

Image segmentation provides some benefits over object detection.
It improves efficiency, as only specific segments of the image are taken
into account. It also enhances accuracy, as it eliminates problems rela-
tion to background noise, which is the case with window based object
detection (Guo et al. 2017, 90).However there are also some limita-
tions to the method. It does not take into account the general overall
context in its pixel-wise, approach. Moreover, there is no instance-
awareness of different objects of the same type (Garcia-Garcia et al.
2018, 9). In case of remote sensing imagery specifically, high levels of
pixel accuracy is required, as almost every object contains meaningful
information, thus causing problems in delineation of object boundar-
ies (Yuan et al. 2021). Semantic segmentation has in the past been
used for various remote sensing applications, such as environmental
monitoring, crop analysis and land use in urban spaces.

B.1.3 Instance Segmentation

Instance segmentation is a method which tackles both object detec-
tion and semantic segmentation. It involves the prediction of object
instances, AND producing their pixel-wise segmentation mask. It dif-
fers from semantic segmentation in that it delineates each individual
object instance within a category. An example can be seen in Figure
B.8.

Mask RCNN - It adopts the detect-then-segment approach, first
perform object detection to extract bounding boxes around each ob-
ject instances, and then perform binary segmentation inside each
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(a) Input Image (b) Semantic Segmentation (c) Instance Segmentation

Figure B.8: Types of Image Segmentation (https://analyticsindiamag.com)

B.2 Mask R-CNN

Mask R-CNN (or Mask Regional Convolutional Neural Network) is
a state-of-the-art deep neural network developed for the purposes of
solving instance segmentation problems. It was first proposed in 2018,
as a framework which extends the Faster R-CNN object detection
neural network, by adding an extra branch which predicts a binary
mask for the object being detected, in addition to a bounding box
and class labels (He et al. 2017). Thus the segmentation process
occurs parallel to classification and detection. The framework consists
of mainly three stages - extracting feature maps, generating ROIs
through a Region Proposal Network and finally using the generated
ROIs to perform instance segmentation and object detection, through
a fully convolution network (FCN). The difference from Faster R-
CNN lies in the use of Feature Pyramis Networks (FPNs), replacing
the ROIPool layer with ROIAlign, and the introduction of the mask
branch.

B.2.1 Backbone: ResNet+FPN

The ’backbone architecture’ of a deep neural network refers to the
starting convolutional layers used for initial feature extraction from
the input image. Previous challenges and research has shown that the
depth of backbone network architecture is crucial for model perform-
ance (Simonyan and Zisserman 2014; Szegedy et al. 2015). However,
it was discovered that adding more layers to the network also led to a
degradation in model performance (He et al. 2015, 1). This problem
was mitigated with the advent of residual blocks, used to create Re-
sidual Networks or ResNet. An image of a residual block can be seen
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Figure B.9: Mask R-CNN architecture, with ResNet+FPN backbone (Yu et al. 2019, 4) (Guo
2017, 11)

in Figure B.10.

Figure B.10: Structure of a residual block) (He et al. 2015, 2)

The theory applied is that the additional layers added to make a
shallow network ”deep” are simply identity mapping i.e. returning
the same arguments as the other ’original’ layers. Thus a ”shortcut-
connection” is applied, wherein the additional layers are skipped, their
identity mapping is simply done through an applied function and the
outputs added to the original, stacked layer outputs (He et al. 2015,
2). Networks with these residual blocks were seen to have improved
model accuracy over those without (He et al. 2015). Mask R-CNN
uses either ResNet-50 or ResNet-101 (50 and 101 layers respectively)
backbone architecture (He et al. 2017).

In addition to ResNet, another backbone architecture called a Fea-
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ture Pyramid Network (FPN) was also used. One of the main chal-
lenges in computer vision is accounting for the difference in scales
in object instances(Adelson et al. 1983). Featurized image pyramids
were conceptualised to solve this problem. A pyramid of features is
constructed, and a change in object scale is accounted for by shifting
its level in the pyramid. In a normal featurized pyramid, the feature
maps in the initial levels of the pyramid are made up of low-level
structures. Therefore an FPN architecture has been used for R-CNN,
which applies higl-level semantics throughout the pyramid. This done
by constructing these pyramids with a bottom-up and top-down path-
way. The former constitutes the general forward computation of the
backbone CNN, whilst the latter constructs a higher resolution layers.
There are also lateral connections in between, which improve detec-
tion and efficiency by acting as shortcut connections (similar to the
residual blocks in ResNet) (Lin et al. 2017).

Figure B.11: Feature Pyramid Network) (Lin et al. 2017); the arrows represent the bottom-up,
top-down and lateral connections

B.2.2 Stage I: Regional Proposal Network (RPN)

The RPN stage of the architecture deals with the actual ”detection”
of object instances. It outputs a set of rectangular object proposals
(regressor layer), along with a score evaluating object detection cap-
ability with reference to the background class, known as objectness
score (classifier layer) (Ren et al. 2016, 3).

The generation of region proposals is done by using a ’sliding win-
dow’ over the feature map of the last shared convolutional layer. At
each location in a sliding window, multiple region proposal are gen-
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erated. An anchor forms the central point of the window, and has an
association to an aspect ratio (width of image/height of image) and
scale (size of image) (Ren et al. 2016, 4). The novelty of this system is
that it is translation-invariant & scale-invariant, thus reducing model
size and cost. The former means that the network can accommodate
for a translation in the object within the image (for example, if it is
rotated or flipped upside down and so on). The later account for mul-
tiple scales and aspect ratios of anchor boxes, by creating a pyramid
of anchors (Ren et al. 2016, 4).

In Fast & Faster R-CNN, the next stage of extracting a features
from a region of interest, and converting it into a fixed-length fea-
ture vector was done using the ROIPool operation (Girshick 2015;
Ren et al. 2016). This method worked well for the object detec-
tion applications of these networks, however they were not aligned for
pixel-to-pixel alignment. As a result, it performs a more coarse spa-
tial quantization for feature extraction, causing misalignment between
the ROI & (extracted) features. This in turn has an adverse effect on
attaining pixel-level accuracy (He et al. 2017, [1,3]. ROIAlign in turn
fixes this misalignment, by having a less harsh quantization proces
& preserves exact spatial locations(He et al. 2017, 3). Replacing the
ROIPool layer with ROIAlign showed upto a 50% increase in mask
accuracy (He et al. 2017, 2).

Figure B.12: Regional Proposal Network) (Ren et al. 2016)
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B.2.3 Stage II: Network heads

Box Head : The output from the ROIAlign stage is reshaped, and then
passed through a predictor stage with two branches, each comprising
of a fully connected layer. The first branch is the classifier branch,
which outputs the class label, and the second is the regressor layer,
which outputs bounding box co-ordinates.

Mask Head : Parallel to the box head, the outputs from the ROI-
Align stage are also sent to the mask branch. An (mxm) mask is
predicted from each ROI through a fully connected network (FCN).
This process preserves the spatial layout of the image object (He et al.
2017, 3).

Figure B.13: Head Architecture for Mask R-CNN (ResNet & FPN) (He et al. 2017, 4)
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Default configurations of
Matterport’s Mask R-CNN

GPU COUNT = 1 IMAGES PER GPU = 2 STEPS PER EPOCH
= 1000 # Number of training steps per epoch
VALIDATION STEPS = 50 BACKBONE = ”resnet101” BACKBONE STRIDES
= [4, 8, 16, 32, 64] FPN CLASSIF FC LAYERS SIZE = 1024 TOPDOWNPY RAMIDSIZE =
256
NUM CLASSES = 1
RPN ANCHOR SCALES = (32, 64, 128, 256, 512)
RPN ANCHOR RATIOS = [0.5, 1, 2]
RPN ANCHOR STRIDE = 1
RPN TRAIN ANCHORS PER IMAGE = 256
PRE NMS LIMIT = 6000
POST NMS ROIS TRAINING = 2000
POST NMS ROIS INFERENCE = 1000
USE MINI MASK = True

IMAGE RESIZE MODE = ”square”
IMAGE MIN DIM = 800
IMAGE MAX DIM = 1024
IMAGE CHANNE COUNT = 3
MEAN PIXEL = np.array([123.7, 116.8, 103.9])
TRAIN ROIS PER IMAGE = 200
ROI POSITIV E RATIO = 0.33
POOL SIZE = 7
MASK POO SIZE = 14
MASK SHAPE = [28, 28]
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MAX GT INSTANCES = 100
RPN BBOX STD DEV = np.array([0.1, 0.1, 0.2, 0.2])
BBOX STD DEV = np.array([0.1, 0.1, 0.2, 0.2])
DETECTION MAX INSTANCES = 100
DETECTION MIN CONFIDENCE = 0.7
DETECTION NMS THRESHOLD = 0.3
LEARNING RATE = 0.001
LEARNING MOMENTUM = 0.9
WEIGHT DECAY = 0.0001
LOSS WEIGHTS =
”rpn class loss” : 1.,
”rpn bbox loss” : 1.,
”mrcnn class loss” : 1.,
”mrcnn bbox loss” : 1.,
”mrcnn mask loss” : 1.
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Prediction using Object Detection
Annotations

We see that the masks created do not properly outline the shape
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of the Celtic Fields. This probably because in the PASCAL VOC
format used for object detection, the annotations are in the form
of bounding boxes that cover the entirety of the object. Therefore,
during the training process the algorithm probably ’learned’ the extra
areas within the bounding boxes but outside of the Celtic Field, and
thus detected accordinglu during inference.
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