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Abstract

One universal problem in statistics is the occurence of missing data and how to handle them.

In longitudinal randomized controlled trials, missing data are often observed in the form of

dropout. It is important to select an appropriate technique to handle the missing data as it can

lead to biased estimates. The appropriateness of techniques depends on the missingness

mechanism. This thesis proposes a new developed technique called worst-case scenario

imputation (WCSI) that can be used to handle MNAR data. WCSI assumes that dropout in

the intervention condition is more likely for those with small to no progression, while the

chance of dropout in the control condition is higher for those that do show progression.

Performance of this technique was compared to maximum likelihood (ML) estimation on all

available cases and multiple imputation (MI) by means of two simulation studies and one

empirical study. Performance was considered under the assumption of both MNAR and MAR

by investigating the bias, root mean squared error, and coverage probability associated with

the parameter of interest, that is, the estimated interaction effect.

The results showed that ML and MI performed better than WCSI under the

assumption of MAR, especially when only a small percentage of the dataset was missing. If

the probability of dropout increased as the value of the outcome became higher in both

groups (i.e. MNAR), MI and ML again resulted in the least biased estimated interaction

effects. This changed when dropout depended on the true change of Y and reasons for

dropout differed between the two conditions. When the dropout model was representative of

the worst-case scenario, WCSI performed better in terms of bias, root mean squared error,

and coverage probability. In that scenario, MI and ML overestimated the interaction effect,

which could lead to wrongfully concluding that a treatment is effective. WCSI attenuated the

estimated interaction effect. This was also clearly seen in the empirical study, where the

originally found significant interaction effect between time and group, as found by ML and

MI, was no longer present when WCSI was used.

Assuming missing data to be MAR or MNAR changes estimated interaction effects

and altered the conclusions of a study. Most researchers assume MAR, while MNAR can

never be ruled out. This thesis focused on a technique proposed for the situation where

dropout might be responsible for finding a false effect and showed that WCSI can reduce the

likelihood of a Type I error. However, when the dropout mechanism does not follow the

central WCSI assumption, WCSI performs poorly. Overall, the initial results look promising,

but this thesis also had its shortcomings and more research is needed. Research aimed at

performance of WCSI under more complex settings is particularly interesting.
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Section 1. Introduction

Longitudinal randomized controlled trials (RCT) are often used to investigate the

effectiveness of a treatment. A randomized controlled trial (RCT) is a trial in which subjects

are randomly assigned to one of two groups, one that receives the intervention being tested

(intervention condition) and the other receiving an alternative treatment or no treatment at all

(control condition). The two groups are followed over time to see if any differences arise in

the outcome of interest. In statistical analysis of RCT data, therefore, the parameter of interest

is the interaction between group and time. RCTs provide some evidence for causality as

randomization ensures that there are no differences between participants in the intervention or

control condition at the beginning of the study. A major advantage of longitudinal studies,

compared to cross-sectional studies, is that it enables researchers to detect development or

changes in the outcome of interest at both the group level and the individual level. Therefore,

it can result in a better understanding of the most likely cause-and-effect relationship.

Although RCTs are an effective way to analyze change, they have high costs in terms of time

and money needed, and are prone to missing data (Singer & Willett, 2003; Hariton &

Locascio, 2018).

Those that conduct longitudinal research are all familiar with missing data, as it is

impossible to avoid when one is collecting data over time. One form of missing data often

observed in longitudinal studies is dropout. Dropout refers to the situation where information

is collected about a participant at the first occasion, but from a given point there is no longer

information collected about this participant. In longitudinal studies, there are many possible

causes for this type of missing data (Ibrahim, Chen & Lipsits, 2001). The study may take too

long, the participant can move to another location or may refuse to participate due to the

efficacy or even adverse effects of a study. Missing data can never be avoided completely.

Often researchers assume that missing data are so common that it may not need special

attention. However, if one ignores the potential influence of missing data, this may have

serious consequences for the statistical power and validity of conclusions of a study (Schafer,

1997; Ibrahim & Molenbergh, 2009; Jelicic, Phelps & Lerner, 2009; Zhu, 2014).

As there can be many reasons for why data are missing in longitudinal studies, it is

important to distinguish among missing data mechanisms using the appropriate terminology

(Rubin, 1976; Little & Rubin, 2002). The terminology developed by Rubin in the 1970’s is

most widely used and distinguishes three different mechanisms: data missing completely at

random (MCAR), data missing at random (MAR), and data not missing at random (MNAR).

When the reasons for missingness are not related to any underlying values of the missing data
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(i.e. the value that would have been observed) and is unrelated to any other variable

measured, the missing data are considered to be MCAR. In this case, many complexities that

arise due to missing data, with the exception of information loss, can be ignored. Data are

said to be MAR when missingness is again unrelated to the value of the missing data itself,

but the cause of missingness can be explained by other observed variables. One frequently

mentioned example is the occurrence of missing data when analyzing weight. Women are,

compared to men, more likely to refuse when asked how much they weigh, leading to

missing data. In this example, the pattern of missing data will vary systematically based on

gender and represents the MAR mechanism. This second category is broader and much more

common than MCAR. In addition, most modern techniques to handle missing data generally

start by assuming data to be MAR (Van Buuren, 2018). The last category of missing data

mechanisms is the mechanism of data that are MNAR. In this last case, the missingness is

related to the underlying value of the missing data itself. For instance, participants that weigh

too much or too little are more likely to not answer questions about their weight than

participants with average weight.

There are different techniques to handle missing data and appropriateness of each

technique highly depends on the missing data mechanism, therefore, it is important to

identify the missing data mechanism before choosing a technique. In longitudinal trials it is

difficult to test the underlying mechanism. One can check for systematic differences for

participants with and without missing responses using a set of observed variables to see

whether data are MAR or MCAR. However, in real application, data being MCAR are least

likely and often means that the variables that could explain systematic differences have not

been included in the study. More important is to keep in mind that it is not possible to test

whether data are MNAR as one does not know the true values of the missing data. A

particular condition of missing data mechanism can therefore only be stated as an assumption

and not as a truth (Musil, Warner, Yobas & Jones, 2002; Jelicic, Phelps & Lerner, 2009).

Although the missing data mechanism can only be assumed, it is necessary that one

accounts for the missing data in data analysis in order to draw valid conclusions. Most

recently developed techniques assume MAR data and overcome the serious violations of

statistical assumptions observed when missing data was ignored. Some of the techniques used

in the past, such as substituting missing values with the mean or single imputation, have been

shown to be potentially highly misleading (Allison, 2002; Graham et al., 2003; Peugh &

Enders, 2004; Shafer & Graham, 2002).
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Some techniques developed more recently, such as multiple imputation (MI) and

maximum likelihood estimation (ML) are based on both a theoretical framework and

statistical theory concerning missing data and lead to less biased and more accurate

conclusions, especially when the sample size is large (n > 1000) and the amount of missing

data is small (Black, Harel & McCoach, 2010; Cheema, 2014). In the presence of MAR,

these methods can give unbiased results. The assumption of MAR may not always be

plausible, in particular with clinical trials (Sterne et al, 2009), and often sensitivity analyses

are needed to get a better idea of the influence of MNAR data on the estimated effects. By

replacing all missing values with the worst/best outcome, one can get a better idea of the full

range of potential outcomes that must be taken into account before making statements (Little

et al., 2012; Morris, Kahan & White, 2014).

MNAR can be seen as the most complex case as it is non-ignorable. This means that

the missing data mechanism itself has to be modeled when one deals with missing data to

obtain correct inferences. Model-based approaches can be used to deal with MNAR data

(Verbeke & Molenberghs, 2014; Chen et al., 2018; Fiero, Hsu & Bell, 2018). Two main

approaches that have been proposed to handle longitudinal MNAR data are selection models

(Little & Rubin, 2002) and pattern mixture models (Little, 1993). Both approaches rely on

strong assumptions that can never be proven with observed data only, heavily depend on

expert opinions about the possible range of potential influences, and are often advised to be

part of sensitivity analyses as well. Both approaches have been criticised and more research is

needed to develop techniques to handle data that are MNAR, especially techniques that rely

on more plausible assumptions (Michiels, Molenberghs, Bijnens, Vangeneugden &, Thijs,

2002; Kaciroti & Raghunathan, 2014; Van Buuren, 2018).

The aim of this thesis is to propose a new missing data technique called worst-case

scenario imputation (WCSI). WCSI assumes that, in randomized controlled trials, the

likelihood of dropout differs between the two conditions. In the intervention condition

dropout is assumed to be more likely for those that show small or no progression, while it is

assumed that those in the control condition are more likely to show dropout when they do

show progression. This thesis will perform a first investigation into the accuracy of multilevel

estimates under the assumption of MNAR and MAR using WCSI. The idea is that WCSI can

lead to unbiased estimates under the assumption of MNAR, especially when missing data are

assumed to represent the worst-case scenario. This thesis is organized as follows. The next

section, section 2, will provide more information about MI and ML, and introduces the

technique of worst-case scenario imputation and its relevance. In the third section, the
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performance of the three missing data techniques will be assessed by means of two

simulation studies. Section 4 will focus on the performance of these techniques by using one

empirical dataset from a study by Van Luenen, Garnefski, Spinhoven and Kraaij (2018). The

last section includes a summary and discussion of all results, limitations of this thesis and

some suggestions for further research.
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Section 2. Missing data techniques (MDTs)

There are multiple techniques that can be used to handle missing data. Many of these

techniques have been developed within the field of longitudinal clinical trials, but often

researchers still use inappropriate methods (Roth, 1994; Peugh & Enders, 2004). Compared

to older, less appropriate techniques, maximum likelihood estimation and multiple imputation

have been established as good alternatives, especially under the assumption of MAR

(Newman, 2003).

2.1 Maximum likelihood estimation

The MAR-based maximum likelihood estimation method can be used in data analysis, such

as multilevel modelling, on incomplete datasets. It defines a model based on the observed

data and makes inferences using likelihood functions, meaning that the computation process

operates as if missing data are replaced with values most likely given the observed values of

other variables by using linear relationships between the variable with missing data and other

variables in the model (Enders, 2011). These values for the missing data are only implied to

obtain the final estimates and are not imputed within the dataset. It is currently seen as an

appropriate and easy to implement technique to handle MAR data. Multilevel models can be

easily fitted using maximum likelihood methods to take care of missing data, if missingness

occurs in only the dependent continuous variable. Doing so leads to more accurate estimates

compared to traditional methods such as single mean imputation. This method does assume

data to be MAR in order to lead to reliable results and is especially advised when the

analytical model is complicated (e.g. with interactions) to avoid any problems of model

compatibility between the analytical and imputation model (Enders & Bandalos, 2001;

Jakobsen & Gluud, 2017; Van Buuren, 2018; Chen, Li & Liu, 2018).

2.2 Multiple imputation

In contrast to maximum likelihood estimation, multiple imputation solves the problems

associated with incomplete datasets by producing more than one imputed dataset. Rubin

(1976; 1987) proposed multiple imputation as a way to analyze incomplete data under the

missing mechanism of MAR. As multiple imputation replaces the missing values with

estimates, one of the advantages of this technique is that it enables the use of complete-data

methods for analysis. These missing values are replaced more than once and each imputed

dataset contains slightly different values. Rubin (1987) claims that good inferences can be

made when 3 to 5 datasets are imputed. Others suggest that the number of imputed datasets,
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m, should be based on the amount of missing data and the amount of difference in estimations

one is willing to allow between imputed datasets (Van Buuren, 2018; Von Hippel, 2018).

All standard procedures, that are developed and normally used for the analysis of

complete datasets, can be applied to each of the m datasets. These procedures are thus

conducted on multiple datasets, and the results from each of these analyses are combined

using Rubin’s pooling rules. This way a single parameter estimate (i.e. the average of

multiple parameter estimates from the imputed datasets) and its standard error (i.e. function

of both the average of multiple standard errors from each imputed dataset and an added term

that captures variability in the estimates across imputations) are computed. MI is superior to

single imputation methods by introducing variability and taking into consideration the

uncertainty in estimates that occur when imputation is used. One downside of this technique

is that it requires more effort, time and computer storage compared to simpler techniques

such as maximum likelihood estimation. At this point in time, MI methods for missing data

are one of the best performing in terms of giving most valid results and the use of MI

increased over the years (Rubin, 1987; Rezvan, Lee & Simpson, 2015; Van Buuren, 2018).

MI can also be used to impute multilevel data and over the years different ways to

impute this type of data have become available. Selection of the best method depends on the

level of the variable to be imputed. In this thesis, the missing data was always generated to be

or observed in the continuous level-1 dependent variable. One method suggested to impute

missing values in such a continuous variable is the pan method. This multilevel method uses

a linear two-level model with homogeneous variances to draw univariate imputation using a

Gibbs sampling procedure. One major advantage of this method is that it allows for

specification of different roles for the predictor variables included in the imputation model

(e.g. the model can include both random and fixed effects) and is recommended for the

imputation of multilevel data (Schafer & Yucel, 2002; Grund, Ludtke & Robitzsch, 2016).

2.3 Worst-case scenario imputation

In real life situations, it is impossible to exclude the possibility of data being MNAR

completely. Two of the best techniques to handle missing data (ML and MI) assume data to

be at least MAR. This may be a good starting point, however it may not be realistic

considering the data itself. When the data are not MAR, one strategy often used is to make

the data “more MAR” by identifying additional sources that help explain why data are

missing. This additional information can then be used to generate imputations conditional on

that information. Another strategy is to perform sensitivity analysis, where imputations are
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generated according to certain scenarios. One frequently used scenario is the unrealistic

worst-case scenario, this means that one assumes that all participants that show dropout have

scored the highest or lowest possible value. Such extreme scenarios are highly unlikely but

can be used to explore the influence of assuming the worst and best on model estimates

(Little et al., 2012; Morris, Kahan & White, 2014; Van Buuren, 2018).

For this thesis, the aim is to propose a more sophisticated method that can be used to

impute values when one assumes that dropout represents a more likely and specific

worst-case scenario. Instead of assuming MAR, it is assumed that data are MNAR. In the

intervention condition, dropout is assumed to be more likely for participants that show small

to no progression (i.e. there is no to small relief of symptoms or even an increase of

symptoms). This can be the case when dropout occurs due to adverse effects of treatment or

is ineffective. On the other hand, in the control condition dropout is assumed to be more

likely for participants that do show progression (i.e. there is a relief of symptoms) which

could be due to a placebo effect or natural recovery. The aim of WCSI is to account for this

pattern during imputation. In the worst-case scenario data are MNAR and assuming that data

are MAR would lead to biased results. More specifically, the likelihood of dropout depends

on the value of outcome itself and differs based on the condition.

WCSI is highly similar to multiple imputation as the missing values will be imputed

more than once and the function developed to perform WCSI also uses the pan method

discussed before. The difference between WCSI and MI lies in the amount and specific part

of the data used for imputation. For WCSI, only a specific part of the dataset is selected by

calculating the change scores of participants from two time points and selecting only a

percentage of the dataset that has shown the most or least progression over time. Information

from the selected dataset of participants in the intervention condition with most progression is

then used to impute the missing data observed in the control condition m times. This process

is repeated exactly the other way around for participants in the intervention condition.

Imputation of their missing data is based only on information from the participants in the

control condition with the least progression. This way the m imputed values will capture the

worst-case scenario. Values imputed for those in the intervention condition are now more

likely to represent the least progression, while values imputed in the control condition are

more likely to represent a form of progression. As the imputed values are still based on true

data, and not selected to be the worst/best value possible, it is assumed that this technique

will result in realistic estimates under the assumption of MNAR and takes the worst-case

scenario into account.
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As the presence of MNAR can never be truly excluded, research into techniques for

handling MNAR data is still active, and sensitivity analyses only give some information

about the possible range of values one should take into account, it is of great interest to

investigate the accuracy of this new technique. In addition, this technique focuses on the

unfavorable situation in research where the possibility of making Type I errors has increased

due to dropout. In the worst-case scenario, there is an increased chance of incorrectly

concluding that the treatment has the intended effect when in fact there is none. Loss of

participants with intended results in the control condition and dropout in the intervention

group for those without any progression can lead to a distortion of the overall effects. The

treatment will appear to be more favorable than it actually is. When it is incorrectly

concluded that the treatment is effective, a lot of effort, time and money can be lost during

implementation before the absence of intended treatment effects is discovered.

This thesis will show what happens to the estimated interaction effects in a multilevel

model when missing data are handled using worst-case scenario imputation in comparison to

well-established methods such as maximum likelihood estimation and multiple imputation

under both MAR and MNAR. The expectation is that ML and MI will be more accurate when

data are MAR but will perform less than WCSI when data are MNAR and the mechanism

represents the worst-case scenario explained before. In addition, WCSI is less likely to result

in estimates that strongly represent effective treatment in comparison to ML and MI.



11

Section 3. Simulation studies

In this section, the methods used and results found for two simulation studies will be

presented. Both simulation studies assessed the performance of the three aforementioned

techniques to handle missing data using longitudinal multilevel data. The first simulation

study replicates the study of Kenward and Diggle (1994) by generating MAR and MNAR

data. The second study replicates the effects found by Van Luenen et al. (2018) and generates

MNAR data. In the second simulation study, the influence of using different percentages of

the dataset in WCSI will be assessed to a larger extent compared to the first simulation study.

The main difference between the simulation studies lies in the model used to generate MNAR

data. In the second simulation, the worst-case scenario is clearly represented by the dropout

model. Whereas, in the first simulation study the MNAR condition does not follow the WCSI

assumption.

3.1 Simulation study (Kenward and Diggle (1994))

3.1.1 Data generation

In this simulation study, longitudinal data was generated based on the following multilevel

model,

yij = 00 + 01 group + 10 time + 11 group * time + u0j + u1j time + ij, (1)γ γ γ γ ε

where ij ~ N(0, 2
e), andε σ

.

In Equation 1, yij is the outcome of individual i at occasion j, time and group are explanatory

variables. The first part, 00 + 01 group + 10 time + 11 group * time, refers to the fixedγ γ γ γ

effects of the model. The last term, 11 group * time, is a cross-level interaction, whichγ

signals that the slope varies with the group level variable. The coefficients of the fixed effects

represent the average within-group population intercept and slope.

The last part of the equation, u0j + u1j time + ij, represents the random effects of thisε

model. These random effects, u0j and u1j, are assumed to be randomly drawn from a

multivariate normal distribution with mean structure (0, 0) and a variance-covariance matrix.
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For this simulation study, random effects are included for the intercept and time resulting in a

2x2 matrix with the following components:

- 2
0 is the variance of the random intercepts;σ

- 2
1 is the variance of the random slopes;σ

- 01 is the covariance between the within-individual intercepts and slopes.σ

The last term of the equation, ij, refers to the residual errors for each individual. These areε

drawn from a normal distribution ~ N(0, 1).

Following the condition of Kenward and Diggle (1994), a randomized controlled trial was

simulated using 1000 datasets under the following conditions: (i) the number of groups was

set to two, (ii) the number of participants was set to 50 with a probability of being assigned to

either group of .5, and (iii) there were ten equally spaced measurements over time. The value

of the intercept, 00 , was fixed at 10 for both groups, as the effect of group, 01, was set toγ γ

zero. The effect of time, 10, was also set to zero. However, the cross-level interaction effectγ

between time and group, 11, was set to -1. The random components of this model, u0j and u1j,γ

are assumed to drawn from a multivariate normal distribution with mean zero and standard

deviations 0 and 1. For this simulation study, the standard deviation of the intercept, 0, wasσ σ σ

set to .75 and the standard deviation of the slope, 1, was set to .2. The covariance was setσ

equal to .1, so that the correlation between intercept and slope was a moderate to strong

correlation of .67.

3.1.2 Dropout model

After creating the complete datasets, some of the observed values were set to be missing,

based on either the MNAR or MAR missing mechanism. Missing data was generated based

on the following drop-out model,

logit(p missing) = β0 +  β1Yt +  β2Yt-1.

Here the logit of the probability of an observation being assigned a missing value depends on

a constant, β0, β1 multiplied by the value of the outcome of interest at time point t and β2

multiplied by the value of the outcome of interest at a previous time point. Under both

MNAR and MAR mechanisms, β0 was set to a small value.
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In the MAR setting, the probability of being a missing value did not depend on the

observation of Y itself. It did depend on the value of Y at a previous time point. Therefore, β1

was set to zero, while β2 was set to values that would result in approximately 10 or 25 percent

missing data. The reverse is true in the MNAR setting, where the probability of being missing

did depend on the observed value of Y itself and there is no dependence on previous

observations of Y. This time, β2 was set to zero in order to eliminate the relationship with

measurements of Y at previous time points and β1 was set to generate approximately 10 or 25

percent missing data.

To determine the values of β needed to simulate the preferred amount of missing data,

a large dataset of 10.000 observations was generated using the design as specified before.

Under both MNAR and MAR mechanisms, approximately 10 percent missing data was

simulated by setting β0 to -5, and β1 and β2 to .135. To simulate approximately 25 percent

missing data, β0 was again equal to -5, however β1 was set to .26 and β2 equal to .25.

In this simulation study, two factors were varied: (i) missing data mechanism used to

generate missing data (MAR and MNAR), and (ii) the percentage of missing data

(approximately 10 and 25 percent). Missing data always followed a monotone pattern,

meaning that once a missing value was observed for a participant, all subsequent measures

also showed missing values.

3.1.3 Procedures

All multilevel models were fit on all datasets using the lme() function from the Linear and

Nonlinear Mixed Effects Models (nlme) package (Pinheiro, Bates, DebRoy & Sarkar, 2021).

Time and group were included as fixed effects and slopes for time and the intercept as

random effects. The optimizer was set from the default (nlminb) to optim and the number of

iterations was set to 500 to increase the likelihood of convergence. Convergence of a model

occurs when the estimation procedure stabilizes upon a unique solution, problems may arise

when missing data results leads to insufficient information about the parameters or random

effects have small variances (Black, Harel & McCoach, 2011). The estimation method was

set to maximum likelihood estimation. First, the multilevel model was fitted on the

incomplete datasets to represent handling missing values by maximum likelihood estimation

as suggested by Ibrahim and Molenbergh (2009).

Secondly, multiple imputation was performed using the mice() function from the mice

package (Van Buuren & Groothuis-Oudshoorn, 2011). The imputation method selected was

pan (Schafer & Yucel, 2002). Each missing value was imputed 5 times as suggested by Rubin
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(1987). For the imputation model, time as a numerical value was included as a predictor with

both a fixed and random slope effect. The group variable and dummy variables for the

interaction were included as fixed effects. Id was specified as the cluster variable. The

simulated datasets did not include any other variables.

Finally, worst-case scenario imputation was performed using the R function found in

appendix B. All settings, such as number of imputations and specification of predictor

variables, mentioned for MI apply here with the exclusion of the group variable as a

predictor. This technique was used twice with different amounts of the data used for

imputations. The first time 10 percent of the other condition with the most or least

progression was selected (WCSI 10%), while the second time 25 percent of the dataset was

used (WCSI 25%). The change scores used were calculated by taking the difference of the

outcome from the beginning to the end of the study.

3.1.4 Performance measurements

Bias, root mean squared error (RMSE) and coverage probability will be used to assess the

accuracy of each missing data technique. The main focus will lie on the difference between

groups over time captured by the interaction effect. The accuracy of this parameter estimate

can be quantified by the bias. Let stand for the true population parameter, thenθ

where r is the parameter estimated for the rth replication and R is the number of simulatedθ

datasets.

The mean squared error (MSE) is defined as the average squared difference between the

estimated parameter ( r) and the corresponding true parameter ( ). RMSE is the square rootθ θ

of the MSE and can be seen as a measure of overall precision. This can be calculated by

In general, more effective techniques would have smaller bias and lower RMSE values.
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The last performance measurement is the coverage probability (CP), which is defined as the

proportion of simulated datasets, among the total amount of simulated datasets, of which the

constructed 95 percent confidence interval contains the true parameter. The 95 percent

confidence interval is defined as

r tdf, 1 - * SEr,θ ± α/2

where r is the estimated interaction effect, t is the t-statistic, df is the degrees of freedom andθ

SEr is the associated standard error; MI and WCSI use the pooled estimated effects and

pooled standard error. An appropriate method should have a coverage probability of around

95 percent.

3.1.5 Results

This section first discusses the performance of each missing data technique on 1000 datasets

with approximately 10 percent missing data; an overview of the results is given in Table 1.

Table 1

Overview of results with approximately 10 percent missing data (r = 1000)

Missing data technique Missing data mechanism Bias RMSE CP in %

ML MAR 0.0021 0.0675 93.8

MI MAR 0.0016 0.0684 95.8

WCSI (10%) MAR 0.0658 0.1122 98.2

WCSI (25%) MAR 0.1013 0.1368 92.3

ML MNAR 0.0033 0.0657 94.5

MI MNAR 0.0030 0.0675 96.7

WCSI (10%) MNAR 0.0700 0.1144 97.8

WCSI (25%) MNAR 0.1041 0.1374 93.8

For each of the three different missing data techniques, performance was assessed using the

bias, RMSE and coverage probability. The method of worst-case scenario imputation was

used twice. Once 10 percent of the information from the other condition was used for

imputation and a second time 25 percent of the dataset was used.
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Under the MAR mechanism, where missingness depended on the observation of Y at

the previous time point, both the use of maximum likelihood estimation and multiple

imputation resulted in virtually unbiased estimates of the interaction effect between time and

group. The bias that results from using maximum likelihood is equal to .0021, which is only

slightly larger than the bias associated with multiple imputation of .0016. Using worst-case

scenario imputation does not lead to unbiased estimates of the interaction effect as indicated

by the calculated bias.

When 10 percent of the data was selected, the associated bias is .066 and bias is even

as high as .101 when more information is used for imputation (WCSI 25%). Investigation of

the calculated RMSE for each technique shows that the estimated effects are least spread out

when ML or MI was used. ML and MI perform the best with RMSE as small as .07, while

WCSI with 10 percent results in a RMSE value of .11 and using more information (25%)

increases the value to .14. The coverage probability is closest to the preferred value of 95

percent when multiple imputation is used, followed by the coverage probability associated

with maximum likelihood. Using worst-case scenario imputation with 10 percent of the data

gives a coverage probability higher than 95 percent. Although the coverage probability of

WCSI (25%) was lowest of all with a value of 92.3. All techniques resulted in a coverage

probability close to the preferred value of 95 percent.

Results are quite similar when data are missing under the mechanism of MNAR,

where the probability of missingness depends on the value of Y itself. Higher values of Y are

more likely to result in dropout for participants in both conditions. Based on bias, RMSE and

CP, multiple imputation and maximum likelihood estimation on all available cases perform

best. With bias around .003, these techniques for handling missing data result in the least

biased estimates for the interaction effect when dropout is simulated to be MNAR. The

calculated values for RMSE of .07 indicate that these techniques have more similar estimated

effects compared to WCSI. Estimated values for the interaction effect become more biased

when worst-case scenario imputation is used and the bias tends to grow larger as more cases

are used to impute the missing data. Maximum likelihood results in a coverage probability

closest to 95 percent, but again all calculated probabilities are close to 95. When

approximately 10 percent of the data are missing either MAR or MNAR, maximum

likelihood estimation and multiple imputation perform better compared to worst-case

scenario imputation.
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Table 2

Overview of results with approximately 25 percent missing data (r = 1000)

Missing data technique Missing data mechanism Bias RMSE CP in %

ML MAR -0.0012 0.0764 95.1

MI MAR -0.0044 0.0813 97.4

WCSI (10%) MAR 0.0890 0.1565 98.0

WCSI (25%) MAR 0.1601 0.2030 92.4

ML MNAR 0.0111 0.0785 92.8

MI MNAR 0.0074 0.0830 97.2

WCSI (10%) MNAR 0.1029 0.1609 97.2

WCSI (25%) MNAR 0.1710 0.2068 91.3

An overview of the performance of each technique on datasets with approximately 25 percent

missing data can be found in Table 2. These results show that even when more data are

missing, using maximum likelihood estimation and multiple imputation still leads to virtually

unbiased estimated effects of the interaction effect in the case of data MAR. As before, the

estimated effects become further from the true parameter when worst-case scenario

imputation was used and this discrepancy grows larger when a higher percentage is used for

imputation. It is interesting to see that ML and MI result in negative bias in the situation

where MAR was manipulated. This means that on average the estimated effects are estimated

to be stronger (i.e. estimated effects lower than -1.15). Worst-case scenario imputation

resulted in underestimates of the true parameter (i.e. estimated effects higher than -1.15).

Coverage probability was close to 95 percent for each missing data technique. Maximum

likelihood estimation seems to be the best fit here based on all measurements.

In the case of data that is MNAR, multiple imputation should be preferred over the

other techniques based on the bias. Maximum likelihood estimation also results in unbiased

estimates of the true interaction effect between time and group. Looking at the associated

RMSE and coverage probabilities, ML and MI have similar values. Worst-case scenario

imputation leads to estimated effects most biased in comparison to the other two techniques

and as before the error grows larger with the inclusion of more information.
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3.2 Simulation study 2 (Van Luenen et al. (2018))

3.2.1 Data generation

Longitudinal data was generated using the same multilevel linear model as in the first

simulation study, see Equation 1. For this simulation study, a fixed covariate X for each unit

was included. This covariate X was randomly drawn from a normal distribution, Xi ~ N(0,   σ
2).

Following the results from the study of Van Luenen et al. (2018), using maximum

likelihood estimation on all available cases, 1000 datasets were simulated with the following

conditions: (i) number of groups was set to two, (ii) sample size was set to 200 with a

probability of .5 to be assigned to one of the conditions, and (iii) three equally spaced

measurements over time for each participant. For this study, the intercept, 00 , was fixed atγ

12.4. Contrary to the estimates from the empirical study, the effect of group, 01, was set toγ

zero to model the ideal situation where the conditions do not differ at baseline. Time, 10, hadγ

an overall effect of -1.57. The estimate of interest was again the cross-level interaction effect

between time and group, 11, which was set to either -1.15 or 0. As before, the random effectsγ

of the model, u0j and u1j, are assumed to drawn from a multivariate normal distribution with

mean zero and standard deviations 0 and 1. The standard deviation of the intercept, 0, wasσ σ σ

set to 2.44. and the standard deviation of the slope, 1, was set to .57. The correlationσ

between intercept and slope was set to .56, resulting in a covariance of .78 The standard

deviation of the error term was set to 3.6 and covariate was drawn from a distribution with

mean 0 and standard deviation of 5.

One of the two factors that varied in this simulation study is the true interaction effect

between time and group. The true parameter was set to -1.15 or to zero (i.e. absence of

interaction effect). The second factor concerns the amount of missing data (approximately 10

or 25 percent), more details are given in the next section.

3.2.2 Dropout model

In this study, the missing values produced represent the worst-case scenario. This means that

the likelihood of being a missing value (indirectly) depends on the value of Y itself, which is

known as MNAR. More precisely, missingness will depend on the true change in Y for each

participant in this simulation study. True change in Y is captured by the random slope effects,

u1j.
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For participants in the intervention condition, dropout is assumed and modelled to be more

likely when there is a lack of progression or even adverse treatment effects (i.e. an increase in

Y) from the first measurement to the last one. This means that the effect of treatment is not as

desired. The dropout model also included a small effect based on the covariate, where higher

values of X increase the likelihood of a missing value. The dropout model is

Logit(Probability of Yij being missing | Group is Intervention) = β0 +  β1u1j + β2X.

Here the logit of the probability of an observation being assigned a missing value depends on

a constant, β0, β1 multiplied by the value of the true change, and β2 multiplied by the value of

the covariate X.

In the control condition, the likelihood of a missing value increases when there is a negative

true change (i.e. progression in Y during the study). This means that dropout in the control

group is more likely for participants that show the effect that is typically observed in the

intervention. Here the covariate X has the same effect on the likelihood of dropout (i.e. higher

values increases the likelihood of a missing value). For the control condition, the dropout

model is specified as

Logit(Probability of Yij is missing | Group is Control) = β0 - β1u1j + β2X.

Here the logit of the probability of an observation being assigned a missing value again

depends on a constant, β0, β1 multiplied by the value of the true change, and β2 multiplied by

the value of the covariate X. For both models, β0 was set to a small value to ensure that the

influence of random factors on drop-out was negligible.

To determine what values are needed to generate approximately 10 and 25 percent missing

data, a large dataset of 3000 observations was generated (N = 1000) following the design as

specified before. β0 was always set to -5, while β2 was equal to .08 in all conditions. To

generate approximately 10 percent missing data, β1 was set to 8, and β1 was set to 20 to

generate approximately 25 percent missing data.
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3.2.3 Procedure

Procedures used to fit the multilevel models on the datasets are similar to the first simulation

study. The multilevel model included time and group as fixed effects and slopes for time and

the intercept as random effects. For MI and WCSI, this simulation study included the same

predictors in the imputation model as in the first simulation, but also covariate X was

included as fixed effect. In this simulation study, worst-case scenario imputation was not used

only twice (i.e. 10 and 25 percent of the data), but used five times. Imputations were

generated using 10 percent (WCSI 10%), 25 percent (WCSI 25%), 50 percent (WCSI 50%),

75 percent (WCSI 75%) and 100 percent (WCSI 100%). In the last situation, this means that

all complete observations from one condition were used to impute the missing values in the

other condition.

3.2.4 Performance measurements

In this simulation study, performance of each missing data technique will again be assessed

by calculating the bias, root mean squared error (RMSE) and the 95 percent coverage

probability rates. See section 3.1.5 for more details. The main focus again lies on the

difference between groups over time captured by the estimated interaction effect between

time and group.

3.2.5 Results

First, the results will be discussed when the true interaction effect used to generate the data is

set to -1.15. The second part of the results will focus on the estimates when data are

generated without a true interaction effect ( 11 = 0).γ

Table 3 gives an overview of results of the 1000 datasets where approximately 10

percent of the data was missing. When data are MNAR, based on the true change and

representative of the worst-case scenario outlined before, fitting a multilevel model using

maximum likelihood on the incomplete dataset results in similar bias, RMSE and CP as

fitting a multilevel model after multiple imputation. Both methods show bias around -.65 and

RMSE of .76, and their coverage probabilities of 65 and 67 percent are close too. Interesting

is that the bias is positive when worst-case scenario imputation was used. This shows that the

average estimated effect is less strong than the true effect, meaning that the interaction effect

between group and time has been toned down by WCSI. As the amount of data used for

imputation increases from 10 percent to 100 percent, the bias and RMSE become smaller,

while the coverage probability increases. When 50 percent of the dataset is used, performance
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of WCSI is similar to that of ML and MI. Although bias is of similar size, ML and MI seem

to result in overestimations of the interaction effect, while WCSI attenuated this effect. In the

situation where approximately 10 percent of the data are MNAR based on the true change,

using all data from the other condition to impute missing values on average leads to estimated

interaction effects closest to the true parameter as indicated by the bias of .043 and RMSE of

.31. The coverage probability of 99.5 percent is quite high and shows that almost all 95

confidence intervals contain the true parameter, this signals wide confidence intervals due to

larger standard errors.

Table 3

Overview of results with approximately 10 percent missing data ( 11 = -1.15 / r = 1000)γ

Missing data technique Bias RMSE CP in %

ML -0.6489 0.7640 64.8

MI -0.6477 0.7671 67.2

WCSI (10%) 0.9859 1.0800 60.4

WCSI (25%) 0.9105 0.9820 53.8

WCSI (50%) 0.6436 0.7214 73.0

WCSI (75%) 0.3685 0.4795 92.3

WCSI (100%) 0.0432 0.3100 99.5

The same multilevel models were again fit on 1000 datasets with approximately 25 percent

missing data using different techniques to account for MNAR data (see Table 4).

Table 4
Overview of result with approximately 25 percent missing data ( 11 = -1.15 / r = 1000)γ

Missing data technique Bias RMSE CP in %

ML -1.2631 1.3360 16.0

MI -1.2597 1.3382 24.9

WCSI (10%) 2.0681 2.1623 34.2

WCSI (25%) 1.9468 1.9976 9.5

WCSI (50%) 1.4745 1.5151 11.5

WCSI (75%) 0.9944 1.0383 42.7

WCSI (100%) 0.4499 0.5321 95.3
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The overall pattern observed in datasets with 25 percent missing data is very similar

to the pattern discussed before. Maximum likelihood estimation and multiple imputation lead

to equivalent bias around -1.26 and RMSE of 1.3. Once again the coverage probability of

multiple imputation is a little higher, although both missing data techniques perform poorly in

this scenario where data are MNAR and representative of the worst-case scenario based on

true change. In this simulation study, WCSI performs even worse in terms of bias, RMSE

and coverage probability. This only changes when 75 or 100 percent of the dataset is used for

imputation. With 75 percent of the dataset used for imputation, the bias and RMSE are

around 1 and the CP is above 40 percent. When 100 percent of the other group is used for

imputation, this leads to the least biased estimated effect as indicated by bias of .45, RMSE of

.53 and a coverage probability of 95 percent. One interesting observation that can be made

under this design is that WCSI always resulted in positive bias, while the other techniques

resulted in negative bias. ML and MI on average lead to estimated interactions effects

stronger than the true parameter, while WCSI lead to estimated interactions effects that are

weaker or even in the opposite direction when the true estimated interaction effect is set to

-1.15.

Table 5 gives a summary of the accuracy of each missing data technique in the

situation where the true parameter for the interaction effect between group and time has been

set to zero and approximately 10 percent of the data was manipulated to show missing values.

As before, maximum likelihood estimation and multiple imputation provided similar results

based on bias, root mean squared error and coverage probability. Their associated bias was

again negative, meaning that the estimated effects would signal a decline in symptoms within

these simulated datasets that represent randomized trials. Worst-case scenario imputation

using 10, 25 and even 50 percent of the data from the other condition for imputation of

missing values resulted in positive bias, meaning that the estimated effects on average would

have shown an increase in symptoms. The estimated effects for the interaction between time

and group become negative when 75 percent or more is used for WCSI. In this simulation

study, use of 75 percent of the data with WCSI gives the most accurate results in terms of

bias, RMSE and CP. In the absence of a true interaction effect, WCSI can lead to over- or

underestimations of the effect. The estimates are least biased when 75 percent is used, on

average WCSI results in an estimated interaction effect of -0.073 (RMSE = 0.319, CP =

98.3%). WCSI always results in estimated effects that signal the absence of an interaction

effect more closely than ML and MI.
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Table 5

Overview of results with approximately 10 percent missing data ( 11 = 0 / r = 1000)γ

Missing data technique Bias RMSE CP in %

ML -0.6757 0.7897 61.3

MI -0.6760 0.7936 64.7

WCSI (10%) 0.6036 0.74023 83.4

WCSI (25%) 0.4914 0.6083 85.9

WCSI (50%) 0.2031 0.3767 98.0

WCSI (75%) -0.0734 0.3186 98.3

WCSI (100%) -0.4061 0.5127 91.1

When more data are generated to be missing, the estimated effects of the interaction have

become more biased. This can be seen in Table 6 below, where an overview is given of the

performance of all techniques using 1000 datasets in which the true parameter was set to zero

and approximately 25 percent of the data was omitted.

Table 6

Overview of results with approximately 25 percent missing data ( 11 = 0 / r = 1000)γ

Missing data technique Bias RMSE CP in %

ML -1.2109 1.2882 21.9

MI -1.2009 1.2809 28.2

WCSI (10%) 1.3701 1.4940 62.2

WCSI (25%) 1.1567 1.2276 48.2

WCSI (50%) 0.6741 0.7442 81.9

WCSI (75%) 0.1922 0.3363 98.9

WCSI (100%) -0.3483 0.4465 97.6



24

The estimated effects that result from using maximum likelihood estimation and

multiple imputation are on average as large as -1.2 with RMSE around 1.3 and coverage

probabilities below 30 percent. These estimated effects are even further from the truth when

worst-case scenario imputation with 10 percent of the dataset is used. This is indicated by

bias of 1.4 and RMSE of 1.5, although the coverage probability of 62.2 is higher compared to

the other techniques. WCSI using 10, 25, 50 and even 75 percent of the dataset leads to

estimated effects that are positive (i.e. signal an increase in Y). Using 100 percent did again

result in a negative estimated effect, which is much smaller than the negative effects

estimated using ML and MI to handle missing data. In this scenario, using WCSI with at least

25 percent of the data will always give estimated effects closer to the absence of an effect

compared to ML and MI. This is also indicated by the higher values of the associated

coverage probabilities. Using WCSI with 75 percent resulted in estimated effects that were

most accurate. As before, WCSI performs best when a larger percentage (i.e. minimum of 75

percent) is used.
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Section 4. Empirical study

4.1 Dataset

Data used to assess the influence of different missing data techniques on the direction and

strength of the estimated interaction effects was collected as part of a randomized controlled

trial by Van Luenen et al. (2018). For their study, 188 participants above 18 years old were

recruited from 23 HIV treatment centers. All participants had been diagnosed with HIV at

least six months before the study and had mild to moderate depressive symptoms as assessed

by the Patient Health Questionnaire-9 (PHQ-9). The outcome of interest were the depressive

symptoms as measured by PHQ-9 and will from now on be referred to as the outcome

variable. Participants were randomly assigned to either an internet-based intervention (n =

97) or an attention-only waiting-list control condition (n = 91). Besides the outcome of

interest, the dataset included other potential predictors such as gender and age. A summary of

all variables part of this dataset can be found in appendix A.

In the original study of Van Luenen et al. (2018), the intent was to assess differences

between the groups in changes in depressive symptoms from pretest to post-test by

performing longitudinal multilevel regression analyses using the maximum likelihood

estimation method. This can be seen as an appropriate strategy as multilevel models can

handle missing data in the outcome variable using maximum likelihood estimation. It can be,

however, less accurate than methods such as MI (Ibrahim & Molenbergh, 2009; Van Buuren,

2018). The missing data in this study again followed a monotone pattern and was collected at

three time points. At the end of the study, for 57 of the 188 participants no information was

gathered for at least one time point. Van Luenen et al. (2018) concluded that there were no

differences in baseline characteristics between participants that dropped out and participants

that completed the intervention. They claim that this indicated that none of the characteristics

assessed for their study were associated with dropout and that therefore the results might be

generalizable. This could be interpreted as data being MCAR, although in real life situations

data being MCAR is highly unlikely and it is impossible to claim that missingness did not

depend on the value of the outcome itself (Jelicic, Phelps & Lerner, 2009). They did not

report about the relationship between baseline characteristics and dropout within each

condition separately or at different timepoints. The influence of the outcome values that were

observed was not mentioned either and therefore data being MAR seems more likely.

Maximum likelihood estimation can be seen as an unbiased and efficient technique to

account for missing data under the mechanism of MAR or MCAR.
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4.2 Procedure

For this thesis, the results found by Van Luenen et al. (2018) will be replicated by fitting a

multilevel regression analysis using maximum likelihood estimation on all available cases

using lme() from the nlme package (Bates et al., 2021). As Van Leunen et al. (2018) did, time

and group were included as fixed effects and slopes for time and the intercept as random

effects. Here time was treated as a factor instead of a numerical value as in the simulation

studies.

With the aim of investigating differences that arise in the estimated interaction effects

from the missing data techniques, multiple imputation was used to generate complete

datasets. On each of these complete datasets, the same multilevel regression analysis was

performed and their results were pooled. When multiple imputation is used, the number of

imputations has to be picked. More imputations will lead to more precise and replicable

estimates. Von Hippel (2018) showed that the number of imputations needed depends on the

amount of missing data to be imputed. Following his quadratic rule, 25 imputed datasets were

chosen as optimal. The imputation model included the interaction between time and group,

and all background variables (see appendix A) as predictors, as including as many variables

as possible makes the assumption of MAR more likely (Schafer, 1997). Time was also

included as a random and fixed effect in the imputation model in addition to the interaction

between time and group. Multiple imputation was performed using the mice function from

the package mice (Van Buuren & Groothuis-Oudshoorn, 2011). It is important to keep in

mind that multiple imputation will only lead to unbiased estimates when the missing data

mechanism is MAR.

Finally, missing data will also be imputed 25 times using the new technique of

worst-case scenario imputation (R-function can be found in the appendix). Unlike the two

techniques described above, the missing data mechanism is not assumed to be MCAR or

MAR. worst-case scenario imputation is proposed to be an efficient technique to account for

data that is missing under the mechanism of MNAR. More specifically, the missing data are

assumed to represent the worst-case scenario. In this randomized controlled trial of Van

Luenen et al. (2018) this means that dropout in the control condition is more likely for

participants with the most progression, while dropout in the intervention condition is more

likely for participants with a lack of progression concerning their depressive symptoms.

WCSI will impute the missing values and capture this scenario. If data are MNAR and one

does not account for this worst-case scenario, there is an increased chance that a Type I error

will be made. WCSI uses the same imputation method as before with the exclusion of the
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interaction as a predictor. All multilevel regression models have been fitted using the lme

function from the nlme package (Pinheiro, Bates, DebRoy, Sarkar, 2021).

As the second simulation study showed that using higher percentages for WCSI

resulted in the least biased estimates, worst-case scenario imputation will be used with only

high percentages of the dataset (e.g. 75% and 100%). The performance of each missing data

technique will be assessed by investigating differences in estimated effects that arise while

keeping their underlying assumptions about the missing data mechanism in mind. The goal is

not to find the best technique for this dataset but rather to discover the influence of making

assumptions on model estimates.

4.3 Results

In this section, the results are discussed for each multilevel analysis using a different

technique to handle missing data in the study of Van Luenen et al. (2018). All results are

summarized in Table 7 - 10 and can be found on page 29 and 30.

Table 7 gives the results replicated from the study of Van Luenen et al. (2018) by

fitting a multilevel regression analysis using maximum likelihood estimation on all available

cases. When the original study is replicated, a significant negative interaction effect between

time and group is observed, meaning that there are significant decreases of depressive

symptoms in the intervention condition compared to control condition. This is observed from

pretest to post-test 1 (β = -2.50, SE = .79, p = .002) and from pretest to post-test 2 (β = -2.07,

SE = .86, p = .016). These replicated results are similar to the results found when multiple

imputation was used, these can be seen in Table 8. Using multiple imputation replicates the

significant differences between the intervention condition and control condition as seen by

the negative interaction effects from pretest to post-test 1 (β = -2.37, SE = .79, p = .003) and

pretest to post-test 2 (β = -1.96, SE = .87, p = .026). Although of less interest, these two

techniques also result in similar estimated time effects. Both the results from ML and MI

signal that the internet-based intervention is effective in reducing depressive symptoms in

comparison to the attention-only waiting-list control condition.

Using worst-case scenario imputation, a technique that does assume that the missing

data mechanism is MNAR, seems to alter the conclusions as the interaction effect becomes

less strong. This can be seen from the pooled results in Table 9. When 75 percent of the

information from the other condition is used for the imputation of missing values, the

estimated interaction effects are still negative of sign but no longer found to be significant.

This is observed both from pretest to post-test 1 (β = -1.38, SE = .79, p = .082) and pretest to
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post-test 2 (β = -0.10, SE = .82, p = .901). This indicates that there are no longer any

significant differences found between the control condition and intervention condition based

on depressive symptoms over time when data are assumed to be MNAR. Using all

information from the other condition for imputations, see Table 10, results is a weak but

significant interaction effect between group and time observed from pretest to post-test 1 (β =

-1.66 SE = .83, p = .046). The interaction effect between group and time from pretest to

post-test 2 is not found to be significant (β = -1.18, SE = .89, p = .187), which contrasts with

the significant results from ML (Table 5) and MI (Table 6).

Overall, it seems that assuming that missingness does not depend on the outcome

itself (i.e. MAR or MCAR) in this specific dataset would lead to the conclusion that the

internet-based intervention is effective in reducing depressive symptoms compared to the

waiting-list control condition. This is true when both ML and MI were used. This conclusion

would have been altered if data was assumed to be MNAR and missing data was imputed

while taking the worst-case scenario into account. In this last case, the interaction effect from

pretest to post-test 2 is no longer found to be significant and the interaction effect from

pretest to post-test 1 is estimated to be weaker.
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Table 7

Results from multilevel analysis using maximum likelihood estimation on all available cases

Value Standard error DF t-value p-value

Intercept 11.110 0.472 279 23.548 <.001

Time (post 1) effect -2.510 0.563 279 -4.460 <.001

Time (post 2) effect -3.058 0.603 279 -5.070 <.001

Group effect 0.632 0.657 186 0.963 0.337

Time post 1 x Group effect -2.495 0.789 279 -3.125 0.002

Time post 2 x Group effect -2.074 0.859 279 -2.415 0.016

Table 8

Pooled results from multilevel analysis using maximum likelihood estimation on 25 datasets

imputed using multiple imputation

Value Standard error DF t-value p-value

Intercept 11.110 0.471 370 23.574 <.001

Time (post 1) effect -2.605 0.580 212 -4.496 <.001

Time (post 2) effect -2.946 0.581 225 -5.072 <.001

Group effect 0.632 0.656 370 0.964 0.336

Time post 1 x Group effect -2.374 0.790 243 -3.004 0.003

Time post 2 x Group effect -1.964 0.874 137 -2.246 0.026
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Table 9

Pooled results from multilevel analysis using maximum likelihood estimation on 25 datasets

imputed using worst-case scenario imputation using 75 percent of data

Value Standard error DF t-value p-value

Intercept 11.110 0.471 370 23.574 <.001

Time (post 1) effect -2.900 0.554 307 -5.234 <.001

Time (post 2) effect -3.888 0.589 244 -6.604 <.001

Group effect 0.632 0.656 370 0.964 0.336

Time post 1 x Group effect -1.381 0.792 261 -1.743 0.082

Time post 2 x Group effect -0.103 0.824 235 -0.125 0.901

Table 10

Pooled results from multilevel analysis using maximum likelihood estimation on 25 datasets

imputed using worst-case scenario imputation with 100 of data

Value Standard error DF t-value p-value

Intercept 11.110 0.471 370 23.574 <.001

Time (post 1) effect -2.825 0.585 241 -4.832 <.001

Time (post 2) effect -3.348 0.617 195 -5.429 <.001

Group effect 0.632 0.656 370 0.964 0.336

Time post 1 x Group effect -1.660 0.827 217 -2.008 0.046

Time post 2 x Group effect -1.178 0.889 156 -1.325 0.187
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Section 5. Discussion

This thesis introduced a new technique and performed the first investigation into its potential

ability to handle missing not at random data in longitudinal randomized controlled trials. The

performance of this technique is compared to maximum likelihood estimation on all available

cases and multiple imputation using a Gibbs sampler for handling missing multilevel data by

means of two simulations and one empirical study (Van Luenen et al., 2018).

The first simulation study showed that under the assumption of MAR, where

missingness depended on the value of Y at the previous time point, maximum likelihood

estimation performs best and results in only a small overestimation of the interaction effect.

Multiple imputation showed very similar performance in this case and performed slightly

better than maximum likelihood estimation under the assumption of MNAR, where

missingness depended on the value of Y itself. In the first simulation, worst-case scenario

imputation always performed worse than the other techniques. This was the case when data

was manipulated to be both MAR and MNAR. This result was not surprising as WCSI

assumes that the two groups have different reasons for dropout and that the missing values

are representative of the worst-case scenario. Dropout in the first simulation study was

generated to be similar for both groups and did not represent the worst-case scenario. As the

amount of missing data increased from approximately 10 to 25 percent, all techniques

showed less accurate performance, however maximum likelihood estimation and multiple

imputation would still lead to unbiased estimates, especially when data was MAR. The first

simulation study was important to include as it gave insight into the robustness of the WCSI

procedure. It showed how strong the estimated effects were influenced by assuming the

worst-case scenario when the missing data mechanism was in fact MAR or another form of

MNAR.

The second simulation study focused on the situation where dropout indirectly

depended on the outcome itself (i.e. true change in outcome) and did represent the worst-case

scenario. This means that dropout in the control condition was simulated to be more likely for

those that did show progression (e.g. placebo effect or natural recovery), while dropout was

more likely in the intervention for those that did not show any progress or even adverse

treatment effects. This simulation study first focused on datasets where an interaction effect

was included. As the results have shown, maximum likelihood and multiple imputation on

average result in overestimations of the interaction effect as indicated by the negative signs of

their bias. ML and MI result in too strong estimated interaction effects, this might indicate

that there is too much power as the probability that an effect will be detected is high. On the
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other hand, WCSI resulted in underestimations of the interaction effect and could even result

in estimated effects in the opposite direction. Although this means that conclusions are drawn

with more caution, it can also be a sign that the estimated effects are too conservative. The

results did indicate that the performance of WCSI increased as the amount of data used for

imputation increased. Use of 100 percent of the data from the other condition for imputation

resulted in unbiased estimates and high coverage probability for the datasets with

approximately 10 percent missing data. Although the pattern described before was again

observed in the datasets with approximately 25 percent missing data and worst-case scenario

imputation with 100 percent was again the best performing technique, the estimated effects

would still be biased to some degree. On the other hand, the coverage probability was very

close to the preferred amount of 95 percent.

This second simulation study also investigated what would happen when the true

interaction effect used to generate the data was set to zero (i.e. in the absence of an interaction

effect). For the datasets with approximately 10 percent of missing data, using worst-case

scenario imputation with any percentage always performed better than maximum likelihood

estimation and multiple imputation based on all performance measurements (i.e. bias, root

mean squared error and coverage probability). As before, ML and MI led to negative and

stronger estimated interaction effects. Using WCSI with 10, 25 or 50 percent of the data

resulted in smaller and positive estimated interaction effects. Using at least 75 percent of this

for this technique would again give negative estimated interaction effects. In these

simulations, using 75 percent of the data from the other condition for imputation of missing

value can be seen as the best performing technique based on bias, RMSE and CP. The last

part of the second simulation focused on results in the absence of a true effect and

approximately 25 percent missing data. ML and MI again perform similarly and worse than

WCSI as long as 25 percent of the data or more was used for imputation. Using all

information from the other group (i.e. WCSI with 100 percent) resulted in negative bias as

did ML and MI. Although all techniques used showed biased estimates, the effects were least

biased when WCSI was used with 75 percent of the dataset.

The fourth section of this thesis includes a replication of the effects found using

maximum likelihood estimation in the study of Van Luenen et al. (2018) and in addition the

same effects were estimated using multiple imputation and worst-case scenario imputation.

Maximum likelihood estimation and multiple imputation resulted in very similar estimated

interaction effects. The conclusions made by Van Luenen et al. (2018) concerning

effectiveness of the treatment would not have been altered. Those conclusions would have
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been altered if WCSI was used. WCSI resulted in less strong estimated interaction effects and

not all significant interaction effects were replicated. Results became more similar to the

results found by Van Luenen et al. (2018) when a higher percentage of the data was used for

imputation. The originally found significant interaction effect between group and time from

pretest to post-test 2 did not appear with WCSI, even when 100 percent of the data was used

for imputation.

In line with previous research (Enders & Bandalos, 2001; Schafer & Yucel, 2002;

Black, Harel & McCoach, 2010; Cheema, 2014), maximum likelihood estimation and

multiple imputation led to unbiased estimated effects when the data are missing at random,

especially when only a small percentage of the data was missing. In the first simulation study,

these techniques seemed to be applicable even to the simulation where missingness did

depend on the outcome of Y itself. However, this will not always be the case and MI and ML

can both lead to inaccurate estimates when data are MNAR as indicated by the second

simulation study and previous research (Galimard et al. (2016). When data was manipulated

to be MNAR and missingness depended on the true change, both MI and ML resulted in

biased interaction effects when multilevel data was used to assess effectiveness of an

intervention proposed to decrease symptoms.

As worst-case scenario imputation was developed as part of this thesis, there is no

previous research available that can be used to (dis)confirm the results found. As expected,

the new technique of WCSI performs better than MI and ML in the study where data are

MNAR, representative of the worst-case scenario based on the true change of participants.

Critics could argue that WCSI as a technique is only appropriate for this specific case of

MNAR data and that its presence can never be proven with real data (Jelecic, Phelps &

Lerner, 2009). This technique does however give more realistic estimated effects compared to

sensitivity analysis and focuses on a situation where dropout inflates the probability of

making a Type I error, therefore it stimulates more precaution when one makes claims about

the effectiveness of a treatment. This was observed from the results using the dataset of Van

Luenen et al. (2018), where both MI and ML resulted in similar effects that would lead to the

conclusion that the intervention was effective for the reduction of depressive symptoms over

time in comparison to the control condition. This was no longer the case when missing data

was handled using worst-case scenario imputation, the interaction effect was no longer found

to be significant from pretest to post-test 2 or even from pretest to post-test 1. These results,

where there is a lack of treatment effectiveness, could be more accurate when the missing
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data from the study by Van Luenen et al. (2018) turned out to be representative of the

worst-case scenario.

Others could argue that the assumption of at least MAR in the dataset of Van Luenen

et al. (2018) is plausible due to the inclusion of many predictors (Schafer, 1997). This does

not mean that the presence of MNAR can be ruled out (Jelicic et al., 2009). To prove the

presence of the worst-case scenario based on real data with missing values is impossible, but

it does not seem to be a unique situation based on logical reasoning. It seems plausible that

participants in a control condition (e.g. waiting-list) no longer want to wait for treatment

when they already experience relief from their symptoms. On the other hand, it is not strange

to think that participants in an intervention who do not experience any progression or even

adverse effects decide to no longer participate in a study. When the worst-case scenario is

assumed and WCSI is used for imputation, still finding a significant interaction effect can be

interpreted as a stronger claim of a true effect. As mentioned before, maximum likelihood

estimation and multiple imputation always resulted in estimated interaction effects that are

stronger than the true effect in the second simulation study. These discrepancies between the

estimated effects and the true effect grew larger as the amount of missing data increased and

in the absence of a true interaction effect (Black, Harel & McCoach, 2010; Cheema, 2014).

WCSI on the other hand always led to an underestimation of the true interaction effect or

even caused an increase in Y (e.g. adverse effects). One could state that making assumptions

based on logical reasoning is not enough and that it is best to focus on the observed data as it

is all we have. However, the missing data can contain important information too and it is

therefore of importance to emphasize that the worst-case scenario is also a situation that can

easily result in finding a false positive effect. If dropout happens as proposed in this thesis but

is handled as if it were MAR, this could have major consequences. It could lead to the

implementation of an ineffective treatment in which time, money and effort are lost at the

expense of the participants.

Although this was the first study into worst-case scenario imputation and more

research is certainly needed, it seems that WCSI could be advised when MCAR nor MAR

cannot be determined based on the data collected and the design of a randomized controlled

trial makes the presence of a worst-case scenario plausible. For example, a placebo or

waiting-list condition in comparison to a new developed intervention whose (potentially

adverse) effects are unclear and not documented by previous research. The results of this

thesis do encourage the use of maximum likelihood estimation and multiple imputation when

data are assumed to be MAR (Enders & Bandalos, 2001; Schafer & Yucel, 2002; Newman,
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2003; Grund, Ludtke & Robitzsch, 2016; Jakobsen & Gluud, 2017). Handling data that seems

to be MAR using only worst-case scenario imputation is not advised. As can be seen from the

first simulation study, the performance is worst for WCSI in this case. It is advised to include

WCSI in addition to MI or ML to get an idea about what assuming MAR or MNAR (i.e.

worst-case scenario) does to the results.

This thesis tried to emphasize that although it seems intuitive to make claims about

missingness based on observed data as it is all we have, it can lead to results that are not

representative of the truth. Missing data occurs in all longitudinal research and potentially

contains information as interesting as the data observed. One should not disregard its

influence easily or forget that data being MNAR can never be ruled out. Taking into account

the potential influence of MNAR data might take more effort, it also provides more

knowledge and certainty about the results found. This thesis has done a first investigation into

the influence of data being MNAR and representative of the worst-case scenario on estimated

effects and showed proof that WCSI can result in less biased estimated interaction effects in

this scenario in comparison to ML and MI.

One of the strengths of the first simulation study is that it investigated the

performance of different techniques under both MAR and MNAR with different percentages

of missing data. The parameter estimates and dropout model were based on earlier research

(Kenward & Diggle). For the second study, realistic parameter settings were selected based

on the study by Van Luenen et al. (2018). This simulation study looked at performance with

different amounts of missing data but also provided insight into what happened in the

presence and absence of an interaction effect. Furthermore, using a real dataset has shown

that making assumptions about the missing data can influence the conclusions about

effectiveness of a treatment.

There were differences between the two simulation studies based on the (i) number of

participants, (ii) number of time points, (iii) true parameters used for all effects, (iv) presence

of a covariate, and most importantly, (v) dropout models. These factors were not varied

within each simulation study to assess how it affects performance of each technique. In

addition, the new technique was only compared in light of two well-established missing data

techniques and was not compared to older techniques such as list-wise deletion or single

mean imputation (Newman, 2003; Peugh & Enders, 2004) or more complex model-based

approaches (Little, 1993; Little & Rubin, 2002). Both simulation studies and the real dataset

had a monotone missing data pattern and missing data only occured in the dependent

variable. Furthermore, only relatively small (N < 200) samples were considered. The
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simulation studies can be best seen as “simplified versions of reality”, this makes the results

less generalizable.

This thesis did also focus on performance of each technique using a real dataset where

again the interaction effect between group and time was the point of interest, but it is hard to

put the results from all studies together. One reason for this is that the empirical study

included a decent amount of background variables and that the true missingness mechanism

can never be known. Another reason is that the multilevel model on the true dataset was fitted

by treating time as a factor variable, while time was treated as a numerical value in the

simulation studies. This was done because it facilitated the specification of the data

generation model. Normally, interactions between time and group used to assess group

differences over time are estimated as in the empirical study (Van Luenen et al., 2018). Future

research could focus more on simulation studies that more closely resemble true data by

including more covariates or could even generate missing data in real datasets.

Overall, this thesis has shown that choosing a technique to handle missing data while

assuming either MAR or MNAR can alter results to an extent where one would draw

different conclusions. MI and ML are most appropriate when data are assumed to be MAR

and datasets contain enough information to make that assumption more likely. If data being

MNAR seems as, or even more, likely than MAR, for instance if there is not enough

information available, it might be more appropriate to use WCSI. The use of WCSI can also

be advised with caution when there are large amounts of missing data and one would like to

have more certainty about the effectiveness of the study. For example, when logical reasoning

could lead one to believe that the worst-case scenario is not unlikely or it is possible that the

treatment has adverse effects. At this point in time, all well documented and available

techniques assume MAR. Although these techniques, in particular maximum likelihood

estimation, are easier to apply and require less additional effort than WCSI, convenience

should never be a reason to assume MAR. Even when MAR seems most likely, results should

always be interpreted with care and the possibility of MNAR must be kept in mind.

Hopefully, with more research, WCSI can be used to handle MNAR data while accounting

for the worst-case scenario in a more realistic way than, the often advised to use, sensitivity

analyses. It is important to keep in mind that no matter what technique is used, missing data

will always be a limitation when interpreting results. Missing data will always result in a loss

of information, even if the data are MCAR.
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Appendix A. Descriptive statistics from Van Luenen et al. (2018)

Table A1

Descriptive statistics of the variables included in the empirical study (N = 188)

M (SD) or % Range

Gender

Female 88%

Male 12%

Nationality

Dutch 84%

Other 10%

Dutch and other 6%

Age 46.3 (10.6) 21 - 75

Relationship

Yes 54%

No 46%

Education

Low 22%

Medium 41%

High 37%

Employment

Yes 49%

No 51%

Y (PHQ) 9 (5) 0 - 25
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Appendix B. R-code worst-case scenario imputation

WCSI <- function(dataset, ntime = 3, m, perc, high = "3", low = "1", seed = 2021){
#' @title: worst case scenario imputation for longitudinal data
#' @description: uses Gibbs sampling procedure "2l.pan" from package "mice" to impute
#' missing values in Y and returns m datasets
#' This dataset needs to contain a variable to be imputed named Y.
#' An id variable called "id" as a grouping variable.
#' An sorted indicator of different timepoints called "time"(example 0,1,2,0,1,2,etc) .
#' A grouping variable for condition called "group", where 0 signals control condition
#' and 1 is indicative of intervention condition.
#'
#'
#' @param: dataset is a dataset in long format to be used for imputations
#' @param: ntime is the number of timepoints
#' @param: m is the number of imputated data sets needed
#' @param: perc is the percentage data from other conditions to use for imputations
#' @param: high is the highest score to calculate change score
#' @param: low is the lowest score to calculate change score
#' @param: seed is the seed used for the multiple imputations
#'
#' @return: this function returns a list with three elements:
#' datasets are the m imputed datasets
#' originalimp_con is the result of imputations for the control condition
#' originalimp_int is the result of imputations for the intervention condition
#'
#'
#'
# Load in the libraries needed for this function to work
#library(dplyr)
library(mice)
library(pan)
library(miceadds)
# Split data based on condition
intervention_data <- subset(dataset, group == "1")
control_data <- subset(dataset, group == "0")
# get the change scores for intervention data
# subset the scores at highest and lowest timepoints
end_i <- subset(intervention_data, time == high)
start_i <- subset(intervention_data, time == low)
# calculate the change between timepoints
changescore_i <- end_i$Y - start_i$Y
# replicate change scores to be in line with length of data
changes_i <- rep(changescore_i, each = ntime)
# append the change scores to the data
intervention_data$changescores <- changes_i

# get the change scores for control data
# subset the scores at highest and lowest timepoints
end_c <- subset(control_data, time == high)
start_c <- subset(control_data, time == low)
# calculate the change between timepoints
changescore_c <- end_c$Y - start_c$Y
# replicate change scores to be in line with length of data
changes_c <- rep(changescore_c, each = ntime)
# append the change scores to the data
control_data$changescores <- changes_c
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# Index variable for complete cases of intervention data
ind.i <- complete.cases(intervention_data)
# Split into complete and missing
intervention_missing <- intervention_data[!ind.i, ]
intervention_missing <- intervention_data[intervention_data$id %in% intervention_missing$id, ]
intervention_complete <- intervention_data[!intervention_data$id %in% intervention_missing$id, ]

# Index variable for complete cases of control data
ind.c <- complete.cases(control_data)
# Split into complete and missing
control_missing <- control_data[!ind.c, ]
control_missing  <- control_data[control_data$id %in% control_missing$id, ]
control_complete <- control_data[!control_data$id %in% control_missing$id, ]

# For the complete intervention data
# Sort data based on change score and id
sorted_int <- intervention_complete[with(intervention_complete, order(changescores, id)), ]
# Calculate the number of row needed for highest percentage of changescores
top_perc <- ((nrow(intervention_complete)/100) * perc)
# Round number of rows needed to be a multiple of number of timepoints
top_perc <- round(top_perc / ntime) * ntime
# Select 1:top_perc rows to get participants with biggest change scores of intervention
best_int <- sorted_int[1:top_perc, ]
# Bind the missing of control with ... percentage best scoring of intervention
control_bestint <- rbind(best_int, control_missing)
# Sort data based on change score and id
sorted_cont <- control_complete[with(control_complete, order(-changescores, id)), ]
# Calculate the number of row needed for lowest percentage of change score
low_perc <- ((nrow(control_complete)/ 100 ) * perc)
# Round number of rows needed to be a multiple of number of timepoints
low_perc <- round(low_perc / ntime) * ntime
# Select 1:low_perc rows to get participants with smallest change scores of control
worst_cont <- sorted_cont[1:low_perc, ]

# Bind the missing of intervention with percentage of worst scoring control
intervention_worstcont <- rbind(worst_cont, intervention_missing)
# remove NA rows
library(dplyr)
NA.idx <- intervention_worstcont %>%
is.na() %>%
apply(MARGIN = 1, FUN = all)

intervention_worstcont <- intervention_worstcont[!NA.idx,]
# Bind with missing control and best intervention
control_bestint <- rbind(best_int, control_missing)
NA.idx <- control_bestint %>%
is.na() %>%
apply(MARGIN = 1, FUN = all)

control_bestint <- control_bestint[!NA.idx,]
# Remove best and worst from complete version
int_c <- intervention_complete[!row.names(intervention_complete) %in% row.names(best_int), ]
cont_c <- control_complete[!row.names(control_complete) %in% row.names(worst_cont), ]
# All complete data without missing values nor duplicated observations
observed_data <- rbind(int_c, cont_c)

# Delete changescores from dataframe by column number
change_num <- which(colnames(observed_data) == "changescores")
#delete <- match(removevar, names(observed_data))
observed_data <- observed_data[, -change_num]
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# Set up imputations for intervention
intervention_worstcont <- intervention_worstcont[, -change_num]
# Make predictor matrix
pred_int <- make.predictorMatrix(intervention_worstcont)
pred_int["Y", "id"] <- (-2)
pred_int["Y", "time"] <- 2
pred_int["Y", "group"] <- 0
pred_int[, "group"] <- 0
# Specify methods
meth_int <- make.method(intervention_worstcont)
meth_int[1:length(meth_int)] <- ""
meth_int["Y"] <- "2l.pan"
# Create imputations
imp_int <- mice(intervention_worstcont, meth = meth_int, pred = pred_int, m = m,

maxit = 1, print = FALSE)
# Get the datasets from "mids" object
datasets_int <- mids2datlist(imp_int)

# Set up imputations for control
control_bestint <- control_bestint[, -change_num]
# Make predictor matrix
pred_con <- make.predictorMatrix(control_bestint)
pred_con["Y", "id"] <- (-2)
pred_con["Y", "time"] <- 2
pred_con["Y", "group"] <- 0
pred_con[, "group"] <- 0
# Specify method
meth_con <- make.method(control_bestint)
meth_con[1:length(meth_con)] <- ""
meth_con["Y"] <- "2l.pan"
# Generate imputations
imp_con <- mice(control_bestint, meth = meth_con, pred = pred_con, m = m, maxit = 1,

print = FALSE)
# Get the datasets from "mids" object
datasets_cont <- mids2datlist(imp_con)

# Combine imputed datasets with observed
new_list <- list()
for( i in 1:m){
new_list[[i]] <- rbind(data.frame(datasets_int[i]), data.frame(datasets_cont[i]),

observed_data)
}
output <- list()
output$datasets <- new_list
output$originalimp_con <- imp_con
output$originalimp_int <- imp_int
return(output)
}

###########


