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Abstract 

Recent work has shown that we can achieve a better understanding of learning behavior by 

integrating reinforcement learning models with evidence accumulation models (RL-EAM).  

RL-EAM predict that as people learn they respond faster and more accurately. However, two 

recent experiments showed that when learning under speed pressure, people demonstrated a 

learning-related increase in accuracy, but not in response speed. We hypothesized that this 

might be caused by a proportion of responses resulting from a timing accumulation process 

that keeps track of time in parallel to the evidence accumulation process during a decision. 

We compared RL-EAM with and without the addition of time estimation on data from two 

independent experiments. We found no compelling evidence that the proposed mechanism of 

time estimation aid in decision-making in learning.  

 

 

Introduction 

Everyday life poses us with many small decisions in which we benefit from previous 

experiences. When you play chess for the first time, you will have no idea of what the right 

opening moves are. However, with more playing, you will learn the consequences of your 

moves and become better. This example illustrates that learning processes influence 

decisions, and the outcomes of these decisions in turn drive feedback-driven learning 

(Bogacz & Larsen, 2011; Miletić et al., 2021).  

Although cognitive science has a rich history in studying both feedback-driven learning, and 

decision-making, these fields have so far remained largely separate. Error-driven learning 

behavior is often studied using probabilistic selection tasks, in which participants have to 

choose between multiple options that are each associated with a different probability of 

returning reward. In these tasks the aim is to maximize returns by learning to choose the most 
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rewarding option. Such choice behavior can be well understood using reinforcement learning 

(RL) models that posit that for each choice people maintain value representations that are 

updated based on feedback (Dayan & Daw, 2008; Sutton & Barto, 2018).   

Decision-making processes are often studied using evidence accumulation models (EAMs). 

These models postulate that choices are made by gathering information for each choice 

alternative until sufficient evidence for one alternative has been accumulated to commit to a 

decision (Brown & Heathcote, 2008; Forstmann et al., 2016; Ratcliff & Smith, 2004). 

Although many different EAMs exist, most propose that decision-making is a concurrence of 

at least three latent cognitive mechanisms. First, the drift rate determines the speed of the 

evidence accumulation process. The drift rate depends jointly on the physical properties of 

the stimulus (Bode et al., 2018; Ratcliff & Smith, 2004) and on cognitive processes such as 

attention and information processing ability (Nunez et al., 2017; Smith & Ratcliff, 2009). 

Second, the threshold captures the amount of evidence needed to commit to a decision and 

represents response caution. Third, the non-decision time consists of the duration of sensory 

encoding of the stimulus and the motor processing of the necessary movements to execute the 

response. 

Recent advances have furthered our understanding of the reciprocal influences of learning 

and decision-making, by integrating RL models and EAMs (RL-EAMs; Fontanesi, Gluth, et 

al., 2019; Fontanesi, Palminteri, et al., 2019; Frank et al., 2015; Miletić et al., 2021; Miletić, 

Boag, & Forstmann, 2020; Pedersen et al., 2017; Sewell et al., 2019). RL-EAMs propose that 

people make decisions by gradually integrating information of value representations 

associated with each available choice option. When enough evidence has been accumulated, 

we commit to a choice and the associated feedback is used to update the value 

representations. In turn these value representations adjust the speed of information integration 

the next time the decision-maker is faced with the same choice.  

Most studies that investigated the influence of learning on decision-making have combined 

RL update rules with the most popular EAM, the diffusion decision model (DDM; Ratcliff, 

1978; Ratcliff et al., 2016). The RL-DDM proposes one single accumulation process that is 

driven by the difference in value representations between two choice alternatives. There are 

two boundaries to the accumulation process, one for each choice (Figure 1).  

  



Figure 1 

The evidence accumulation process for the diffusion decision model.  

 

 

One accumulator accrues noisy evidence until either threshold is reached. The first threshold 

reached by the accumulator determines which choice is made. The response time is 

determined jointly by the time taken to reach the threshold and the non-decision time. 

 

An alternative to the DDM is the advantage racing diffusion (ARD) framework that proposes 

a more neurally plausibly race between separate accumulators towards a common threshold 

(Figure 2; Forstmann et al., 2016; Miletić, Boag, Trutti, et al., 2021; Ratcliff et al., 2007; van 

Ravenzwaaij et al., 2019; Zandbelt et al., 2014). The first choice for which a threshold-level 

of evidence is accumulated wins the race and the corresponding response is made. Separate 

drift rates for each accumulator are jointly determined by a constant term, an advantage term 

that constitutes the difference between value representations of the choice alternatives, and a 

magnitude term that constitutes the sum of the value representations (van Ravenzwaaij et al., 

2019). Compared to the RL-DDM, the RL-ARD has been found to better fit response time 

distributions and choice behavior for different instrumental learning tasks (Miletić et al., 

2021). 

  



Figure 2 

The evidence accumulation process for the racing diffusion model.  

 

Two separate noisy accumulators that are driven by separate drift rates race towards a 

common boundary. The first accumulator to reach the threshold determines the choice made. 

The response time is determined jointly by the time taken to reach the threshold and the non-

decision time.  

 

Recent studies have also focused on how timing and learning interact to influence decision-

making. Some situations require more swift action than others and we flexibly balance the 

need for speed and accuracy. If I play a timed chess game, how much time should I spend on 

the next move? Such a problem is an example of a speed – accuracy trade-off (SAT). Two 

recent studies applied RL-EAMs to a learning task with a speed – accuracy manipulation to 

better understand how learning influences the balance between speed and accuracy (Miletić et 

al., 2021; Sewell & Stallman, 2020). 

RL-EAMs predict that as people learn, the difference in value representations between the 

correct and incorrect choice increases. This difference in value representations does not only 

yield more accurate, but also faster responses as it drives the speed of evidence accumulation 

(Miletić, Boag, & Forstmann, 2020). However, observations in our own data (Miletić et al., 

2021) and in the data of Sewell and Stallman (2020) suggest that whereas accuracy increases 

with learning under speed pressure, response times are relatively unaffected. Thus, accuracy 

increases with learning independently of response speed. We will refer to this observation as 

the speed – accuracy decoupling.  



This speed – accuracy decoupling is incompatible with standard RL-EAMs since drift rates 

are thought to increase with learning, which simultaneously increases response speed and 

accuracy. This suggests that speed pressure affects decision-making in a way that cannot be 

explained with traditional accounts of decision-making in learning. 

The influence of speed pressure on decision-making has been studied for decades (McElree 

& Dosher, 1989; Reed, 1973; Wickelgren, 1977), and one of the hallmark advantages of 

EAMs is that they provide a mechanistic understanding of the cognitive processes underlying 

the SAT (Bogacz et al., 2010; Kelly et al., 2020; Rae et al., 2014; Ratcliff & Rouder, 1998; 

Usher et al., 2002).  

Earlier studies suggested that people balance speed and accuracy by adjusting the amount of 

evidence needed to commit to a decision (Ratcliff & Rouder, 1998; Usher & McClelland, 

2001). This birthed the selective influence account of the SAT, referring to the idea that 

speed pressure selectively lowers response caution, while the non-decision time and drift rate 

are unaffected. This account has long been used as a benchmark to test a new model’s 

validity (Rae et al., 2014). However, selective influence was later questioned as more and 

more studies indicated that people performing under increased speed-pressure not only lower 

their response thresholds, but also increase drift rates (Bogacz et al., 2010; Rae et al., 2014).  

The effect of SAT manipulations on drift rates could indicate various psychological effects. 

For one, it could suggest that speed pressure increases attention to the task, since people are 

aware they have limited time to inform their decisions. An alternative explanation could lie in 

the presence of urgency. Contrary to the traditional explanation of the SAT in terms of 

overall changes in a static threshold, urgency refers to within-trial adjustments of the 

thresholds (by means of collapse over time) or drift rates (by means of evidence-independent, 

but time-dependent increases; Cisek et al., 2009; Ditterich, 2006; Thura et al., 2012).  

Urgency is thought to reflect the decision-makers urge to respond with passing time. Recent 

work suggests that within race models, such as the ARD, urgency can express itself as 

increases in drift rates, as long as these increases are shared across all accumulators  (Miletić 

& van Maanen, 2019). In some models, such increases in drift rates are even equivalent to 

linearly collapsing bounds (Miletić & van Maanen, 2019). As such, the observed increases in 

drift rate as a result of SAT manipulations may indicate the presence of urgency-like 

strategies to ensure a decision is made before the deadline. 

 



Nevertheless, the evidence for urgency in conventional decision-making tasks has been 

mixed (Boehm et al., 2016; Forstmann et al., 2016; Hawkins et al., 2015), owing partly to 

technical difficulties in estimating models that include urgency mechanisms (Evans et al., 

2019; Voskuilen et al., 2016). Whether participants employ urgency strategies appears to 

depend on the specifics of the experimental design and the amount of training participants 

had (Evans & Hawkins, 2019). 

Additionally, urgency mechanisms such as collapsing bounds and drift rate modulations have 

recently been criticized for their implicit dependence on time estimation ability (Hawkins & 

Heathcote, 2021). Research on time estimation suggests that how participants keep track of 

time is similar to how participants keep track of evidence in a decision-making task, namely 

via an accumulation-to-bounds process (Balci & Simen, 2014, 2016; Simen et al., 2016). 

Based on these considerations, Hawkins and Heathcote (2021) proposed the timed racing 

diffusion model (TRDM) which posits that a timing accumulation process occurs in parallel 

to the evidence accumulation process. If the timing accumulator reaches its threshold before 

the evidence accumulators, it prematurely ends evidence accumulation, leading to a hard time 

limit on the decision making process. Thus, the timing accumulation process speculates that 

people rely on an internal timer to respond adaptively when facing response deadlines.  

We explored to what extent explicit internal time estimation can explain the SAT 

mechanisms of decision-making in learning, by augmenting the learning model as proposed 

in Miletić et al. (2021) with a timing accumulator as proposed by Hawkins and Heathcote 

(2021). The resulting model (RL-tARD) postulates a race between three accumulators: A 

timing accumulator, and two evidence accumulators collecting evidence for each choice 

option. The speed of the evidence accumulation processes is driven by the subjective value 

representations, which are updated on each trial as determined by an RL delta updating rule. 

In their TRDM, Hawkins and Heathcote (2021) postulated that if the timer process ends 

evidence accumulation prematurely, a guess is made between the available response options. 

However, they did not explore the option that timer-generated responses favor the choice that 

has accumulated the most evidence so far, referred to as relying on partial information 

(Ratcliff, 1980, 1988, 2006). Although they show that the quality of fit for the TRDM was 

not affected by different guessing rules, we explored the possibility of reliance on partial 

information, since recent evidence in perceptual decision-making suggests decision-makers 

have access to partial information (McLean et al., 2020). 



In the RL-tARD, the response speed is determined by the timing accumulation process, 

whereas the accuracy is either based on a guess as in the TRDM as proposed by Hawkins and 

Heathcote (2021), or on partial information from the evidence accumulators in our 

implementation. Compared to the standard RL-ARD, the response speed and accuracy in the 

RL-tARDs are to a greater degree decoupled since they can be products of different 

processes. We therefore predict that the RL-tARD can better explain the observed speed – 

accuracy decoupling. Additionally, we tested whether timer-generated responses rely on 

partial information (informed RL-tARD) or as previously proposed on a guess (random RL-

tARD) between the available options.  

 

 

 

  



Methods 

We analyzed data from the instrumental learning task of Miletić et al. (2021) (their 

experiment 2) and from a similar instrumental learning task of Sewell and Stallman (2020).  

 

Miletić et al., 2021 

Participants 

23 students from the subject pool of the department of psychology of the University of 

Amsterdam participated for course credits (16 female, 23 right-handed, age: M = 19 years, 

SD = 1.06 years). All participants had normal or corrected-to-normal vision and gave written 

informed consent prior to the experiment. The study was approved by the local ethics 

committee.  

 

Task 

Participants performed a probabilistic instrumental learning task (Frank et al., 2004). On each 

trial participants had to choose between two stimuli that were both associated with a fixed 

probability of returning reward (Figure 3). One choice alternative always had a higher 

probability of returning reward than the other. The goal of the task was to maximize rewards 

by learning through trial and error which choice alternative was most likely to return reward. 

 

  



Figure 3 

Example trial of the Miletić et al. (2021) experiment. 

 

(A) On each trial participants were presented with a cue that indicated how much time they 

had to respond, followed by the presentation of the stimuli, a highlight of the chosen option, 

and the probabilistic feedback. On trials where the participants received the speed cue, they 

would get no reward if they were too slow to respond. They did get feedback in terms of the 

outcome if they had responded in time. (B) Reward contingencies for the different stimulus 

sets. The percentages represent the probability of receiving +100 reward if that option was 

chosen. The symbols used differed between participants. Adapted from Miletić et al., (2021).  

 

Following a practice block, participants completed 324 trials divided over 3 blocks. On each 

trial, one of three different pairs of abstract symbols was presented. Within one block each 

pair was presented 36 times. Within each pair, one stimulus would be presented on the right 

side of a fixation cross just as often as on the left. Stimulus pairs differed in their associated 

reward probabilities: 0.8/0.2, 0.7/0.3, and 0.6/0.4. These reward probabilities were chosen 

such that the difference in reward probability between the two stimuli differed to vary 

difficulty, but the mean reward probability of both options combined was the same. Received 

reward was presented as +100 points or +0 points. Participants were instructed to earn as 

many points as possible. 

 



In order to manipulate the speed – accuracy trade-off, a cue and a deadline manipulation were 

added to the task. Prior to each trial a cue instructed participants to emphasize response speed 

(‘SPD’) or accuracy (‘ACC’). The stimuli were presented for 2000 ms, however, participants 

did not earn a reward in speed trials if they responded slower than 600 ms. Speed and 

accuracy trials were randomly interleaved.  

 

Response feedback consisted of reward and outcome. The outcome corresponded to the 

probabilistic outcome of the choice, whereas the reward corresponded to the actual points 

earned. Thus, the reward would always be +0 if the participant was too late. The outcome 

was included so that participants could still learn from their choices even if they responded 

too late. Fixation crosses with jittered durations were presented between each part of the trial, 

since the experiment also served as a pilot for an fMRI study. Fixation crosses were varied 

with steps of 500 ms. Pre-cue fixations lasted between 500-2000 ms. Post-cue pre-stimulus, 

post-stimulus pre-highlight and post-highlight pre-feedback fixation cues lasted between 500-

1500 ms. Inter-trial fixation cues lasted between 500-2500 ms. Each trial always lasted 7500 

ms in total and the experiment took approximately 45 minutes.  

 

Sewell & Stallman, 2020 

Participants 

Six students from the University of Cleveland participated in eight sessions for $20 per 

session (5 female, age: M = 21.5, SD = 1.05). All participants gave written informed consent 

prior to the experiment and the study was approved by the local ethics committee. We only 

analyzed the first session to keep the experiments as similar in set-up as possible as Miletić et 

al. (2021),  

 

Task 

Participants completed four runs of a probabilistic instrumental learning task each session. 

Each run comprised four stimuli to which the participant could respond by pressing left or 

right (Figure 4). Within one run, responding left was associated with a different reward 

probability for each stimulus (0.2/0.4/0.6/0.8). Responding right was associated with a reward 

probability of 1 – probability of reward for responding left. As in Miletić et al. (2021), the 

difference in reward probability between the two stimuli differed to vary difficulty, but the 



mean reward probability was the same across stimuli. Reward consisted of fictitious gems, 

and participants were instructed to obtain as many gems as possible.  

 

Figure 4 

Example trial of the Sewell and Stallman (2020) experiment.  

 

(A) On each trial participants were presented with a stimulus for which they had to choose 

left or right. They would obtain gems probabilistically based on their choice. Response 

window differed between speed and accuracy runs. (B) Reward contingencies for the 

different stimulus sets. P(A) represents the probability of receiving reward if option A (left) 

was chosen. The stimulus – reward probability mappings differed between runs and 

participants. Stimuli alternated between colored circles and math symbols between runs. 

Adapted from Sewell and Stallman, 2020.  

 

Contrary to the Miletić et al. (2021) study, speed and accuracy trials were not randomly 

interleaved but manipulated block-wise. Half of the participants performed two speed runs 

first, followed by two accuracy runs, and the other half of the participants vice versa.  

Across runs, the four stimuli either consisted of colored circles (red, green, yellow, blue) or 

math symbols (+, −, ÷, and ×). Therefore, participants had to relearn the response associated 

with the highest reward probability on every run. The response-stimulus mappings were 

randomly determined per participant. The two stimulus sets were used once in both the speed 

emphasis and accuracy emphasis runs, however, not with the same stimulus-reward 

probability mappings. 

 



Each run comprised four blocks of 40 trials. Stimuli were each presented 10 times per block. 

A 1500 ms fixation cross was presented prior to the presentation of the stimulus. The 

stimulus was presented until response and followed by probabilistic feedback for 1000 ms. In 

speed emphasis runs, additional timing feedback was presented on trials where participants 

responded slower than 800 ms. Timing feedback was presented as “TOO SLOW” for 3000 

ms in order to incentivize participants to meet the response deadlines. Each session lasted 

approximately 50 minutes.  

 

Cognitive modelling 

We compared three variants of the RL-ARD: the standard RL-ARD (Miletić et al., 2021), a 

RL-ARD augmented with a timing accumulator as described in Hawkins & Heathcote 

(random RL-tARD; 2021), and a RL-tARD that relies on partial information (informed RL-

tARD).  

 

As in Miletić et al. (2021), we used a delta updating rule in all models to describe learning: 

𝑄𝑖,𝑡+1 =  𝑄𝑖,𝑡 + 𝛼 (𝑟𝑡 − 𝑄𝑖,𝑡)  [1] 

With 𝑄𝑖,𝑡  the reward representation of choice option 𝑖 on trial 𝑡, learning rate 𝛼 and 𝑟𝑡 the 

reward received on trial 𝑡. With the current learning rule only the reward representation of the 

chosen option is updated. Q-values were initialized at 0.  

 

RL-ARD 

The RL-ARD assumes that two evidence accumulation processes, one for each choice option, 

race towards a common threshold 𝑎. The first accumulator to reach the threshold determines 

which choice is made. The time it takes to reach the threshold together with the non-decision 

time 𝑡0 determine the response time. The RL-ARD assumes that the speed of evidence 

accumulation for each choice option is driven by three components: first, a constant term 𝑉0; 

second, the difference in the reward representation of the available choice alternatives 

weighted by free parameter 𝑤𝑑; third, the sum of the reward representations of both options 

weighted by free parameter 𝑤𝑠 (van Ravenzwaaij et al., 2019). The reward representations 

are modelled using Eq [1]. Additionally, the evidence accumulation process is subject to 

Gaussian noise 𝑊, with standard deviation 𝑠. For the two accumulators that correspond to 

each choice option this leads to:  

𝑑𝑥1 = [𝑉0 + 𝑤𝑑(𝑄1 − 𝑄2) + 𝑤𝑠(𝑄1 + 𝑄2)]𝑑𝑡 + 𝑠𝑊  



𝑑𝑥2 = [𝑉0 + 𝑤𝑑 (𝑄1 − 𝑄2) + 𝑤𝑠(𝑄1 + 𝑄2)]𝑑𝑡 + 𝑠𝑊 [2] 

 

We fixed parameter 𝑠 to 1 to satisfy scaling constraints (Donkin et al., 2009; van Maanen & 

Miletić, 2020). Since 𝑉0 is an evidence-independent, but constant additive to the drift rate, we 

treated it as an urgency signal that varies between the speed and accuracy manipulation 

(Miletić & van Maanen, 2019). Additionally, we varied the evidence response threshold 𝑎 

between the speed and accuracy condition. These parameters were based on the best 

performing model from Miletić et al. (2021). In total the RL-ARD has 8 free parameters 

(𝛼, 𝑉0,𝑠𝑝𝑒𝑒𝑑, 𝑉0,𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 , 𝑤𝑑, 𝑤𝑠, 𝑎𝑠𝑝𝑒𝑒𝑑, 𝑎𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 , 𝑡0). 

 

In the race architecture for two choice options, the probability of response 1, given response 

time 𝑡, can be described as:  

𝑝1(𝑡) = 𝑃𝐷𝐹1(𝑡) · [1 − 𝐶𝐷𝐹2(𝑡)]   [3] 

Where 𝑃𝐷𝐹1(𝑡) is the probability density function of a Wald distribution for the first 

accumulator (Anders et al., 2019; Tillman et al., 2020). The 𝑃𝐷𝐹 describes the likelihood of 

the response time 𝑡 given the current parameters (irrespective of the second accumulator). 

𝐶𝐷𝐹2(𝑡) is the cumulative distribution function of a Wald distribution for the second 

accumulator, [1 − 𝐶𝐷𝐹2(𝑡)] yields the probability that the second accumulator has not 

reached the threshold at 𝑡. The probability of the second accumulator finishing before the first 

accumulator, 𝑝2(𝑡) , can be described analogously.  

 

Random RL-tARD  

The random RL-tARD extends the RL-ARD with a timing accumulator, as proposed by 

Hawkins & Heathcote (2021). Specifically, the random RL-tARD formalizes a race between 

two evidence accumulators and one time accumulator. Subscript E refers to the evidence 

accumulation process and T to the timing accumulation process. The evidence accumulators 

race towards a common threshold 𝑎𝐸  with drift rates given by Eq [2]. The time accumulator 

races towards an independent threshold 𝑎𝑇 with drift rate 𝑣𝑇. For the time accumulator, 

accumulation noise st is fixed to 1 to satisfy scaling constraints. If the timing accumulator 

reaches its threshold before either of the evidence accumulators reach the evidence threshold, 

a random guess is made between the two responses. Following Hawkins and Heathcote 

(2021), we fixed the non-decision time of the time accumulator to 0.05 s.  

 



To model the speed-accuracy trade-off manipulations, we allowed 𝑣𝑇 to vary between 

conditions. Exploratory analyses showed that this was preferred over allowing 𝑎𝑇 to vary. In 

the evidence accumulators, we followed the RL-ARD model described above, which allowed 

𝑎𝐸  and 𝑉0 to vary between the speed and accuracy condition. However, we inspected 

posteriors of this model for the data of Miletić et al. (2021) and found overlapping 𝑉0,𝑠𝑝𝑒𝑒𝑑 

and 𝑉0,𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 , which indicates that separate 𝑉0 terms were superfluous and suggests that the 

difference in urgency could instead be captured by the timing accumulator. In total the 

random RL-tARD has 10 free parameters (𝛼, 𝑉0, 𝑤𝑑 , 𝑤𝑠, 𝑎𝐸,𝑠𝑝𝑒𝑒𝑑,

𝑎𝐸,𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 , 𝑡0,𝐸 , 𝑣𝑇,𝑠𝑝𝑒𝑒𝑑, 𝑣𝑇,𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑎𝑇).  

 

Given the race between the two evidence accumulators and the timing accumulator , the 

probability of response 1, given response time 𝑡, can be described as (Hawkins & Heathcote, 

2021):   

𝑝1(𝑡) = 𝑃𝐷𝐹𝐸,1(𝑡) · [1 − 𝐶𝐷𝐹𝐸,2(𝑡)] · [1 − 𝐶𝐷𝐹𝑇] + 

𝑝𝑔𝑢𝑒𝑠𝑠 · 𝑃𝐷𝐹𝑇(𝑡) · ∏ [1 − 𝐶𝐷𝐹𝐸,𝑛(𝑡)]𝑁
𝑛=1   [4]  

The rationale of Eq [4] is similar to the logic of Eq [3]. 𝑃𝐷𝐹𝐸,1(𝑡) is the probability of 

responding at time t for evidence accumulator 1, which is made defective by multiplying with 

the probability of both the evidence accumulator 2 and the timing accumulator not having 

finished. To obtain the final probability of response option 1 at time t, the probability of 

guessing 1 at t is added, given by the probability of the time accumulator reaching the 

threshold at t (𝑃𝐷𝐹𝑇(𝑡)), which is made defective by multiplying with the probability that 

neither of the evidence accumulators reached the threshold. The guessing probability 𝑝𝑔𝑢𝑒𝑠𝑠 

was set to 0.5, meaning equiprobable outcomes for both choices. For timer-generated 

responses, N represents the number of evidence accumulators.  

 

Informed RL-tARD  

The informed RL-tARD proposes that if the timing accumulator wins the race, a probabilistic 

choice will be made weighted by the difference in accrued evidence at time 𝑡 between the 

two evidence accumulators. If the timing accumulator reaches the threshold first, the choice 

relies on partial information (Ratcliff, 1980, 1988, 2006). The probability of an unfinished 

evidence accumulator having accrued 𝑥 evidence can be described with the probability 

density function of an unfinished diffusion process with one absorbing boundary, which is 

derived in Cox and Miller (1965): 



 

𝑃𝐷𝐹(𝑥, 𝑡) =  
1

s√2𝜋𝑡
[exp (−

(𝑥−𝑣∗𝑡) 2

2𝑠2𝑡
) − exp (

2𝑏

𝑠2  −
(𝑥−2𝑏−𝑣𝑡)2

2𝑠2𝑡
)]      [5] 

 

In order to find the probability that evidence accumulator 1 has accrued more evidence than 

accumulator 2 at time 𝑡, we sampled from both probability density functions (Eq [5]) using 

rejection sampling with a sample of 5000 from a uniform distribution. We then computed the 

probability of choosing 1 by calculating the proportion of samples from 𝑃𝐷𝐹 1 that are larger 

in 𝑥 than 𝑃𝐷𝐹2 (Figure 5). To model the speed-accuracy trade-off, we used the same set of 

parameters as in the random RL-tARD.  

 

Figure 5 

Partial information in the racing diffusion model. 

 

Partial information is computed by sampling from the distribution of unfinished responses at 

time point t for both accumulators. The probability of choosing option 1 over option 2 is then 

calculated by comparing samples from both distributions.  

 

 

Model estimation and comparison 

We estimated group-level and subject-level posterior distributions of model parameters with 

differential evolution Markov-chain Monte Carlo with Metropolis-Hastings (Ter Braak, 

2006), using the R package dynamic models of choice (DMC; Heathcote et al., 2019). We set 

the number of chains 𝐷 to three times the number of estimated parameters. Cross-over 

probability was set at the optimal 2.38/√𝐷 at the subject-level (Ter Braak, 2006) and at 



𝑈[0,1] at the group-level. We used migration only during burn-in and we used a migration 

probability of 0.05. We considered chains converged when the Gelman-Rubin diagnostic < 

1.03, a measure of the relation between the between-chain and within-chain variances 

(Gelman & Rubin, 1992).  

 

We fit the parameters for the hierarchical models assuming independent truncated Gaussian 

hyper distributions. Normal prior distributions for all hyper-mean parameters were broad 

(Table 1). Prior and posterior plots confirmed that these prior settings were not influential. 

Parameters that varied between conditions were estimated such that the parameter for the 

speed condition was proportional to the accuracy condition: 𝜃𝑠𝑝𝑑 = (1 + 𝑚) ∗ 𝜃𝑎𝑐𝑐  

 

Table 1 

Priors settings for all parameters 

 𝛼 𝑡0,𝐸 𝑎𝐸  𝑉0   𝑤𝐷 𝑤𝑠 𝑣𝑇   𝑎𝑇 𝑚 

Mean -1.6 0.3 3 0 3 0 2 3 0 

SD 5 0.5 5 3 5 3 5 5 5 

Limits (-∞,∞) [0.025,1] [0, ∞) (-∞,∞) (-∞,∞) (-∞,∞) (-∞,∞) [0, ∞) [-1, ∞) 

For the learning rate parameter 𝛼 we transformed the normal prior to a probit scale to enforce 

limits [0,1].  

 

To select the best model penalized for model complexity, we compared the three models on 

both data sets using the simplified Bayesian predictive inference criterion (BPIC; Ando, 

2011). Lower BPIC values indicate better model fit.  

 

To visually inspect the quality of fit, we simulated data using 100 samples from the posterior 

parameter distributions. We used these samples to create 2.5%-97.5% credible intervals of 

the model data that could be compared to the participant’s data. For this comparison we 

summarized RT distributions using the 10th, 50th and 90th percentiles split on both the error 

and correct trials and the speed and accuracy emphasis trials. The 50th percentile shows the 

central tendency in the data, the difference between the 10 th and 90th shows the variability, 

and the increased difference between the 90th and the 50th compared to the 50th and 10th 

percentile shows the positive skew common in RT distributions (Miletić et al., 2021). We 

visualized learning-related effects by splitting the data into 10 bins, and calculated the 

accuracy and RT percentiles per bin. Lastly for the RL-tARDs that included a timing 



accumulator we calculated the proportion of timer-generated responses in the model-

generated credible-intervals per bin.  

 

Results 

We compared the three models on both data sets using both the BPIC values and visual 

inspection of the posterior predictive distribution. We found that the RL-tARDs outperformed 

the standard RL-ARD for the data of Miletić and colleagues (2021; Table 2). Additionally, 

the random RL-tARD performed slightly better than the informed RL-tARD. We also 

examined deviance values to get a measure of absolute quality of fit and found the same order 

of preference for the three models.  

 

Figure 6 shows that the RL-ARD provides the best fit to the accuracy data. The random RL-

tARD underpredicts the learning-related increase in accuracy, and the informed RL-tARD 

over-estimates the increase in accuracy. Nevertheless, both RL-tARDs better fit the learning 

related decrease in error response times under accuracy emphasis especially in the early bins. 

Additionally, although all models capture the response time distributions under speed 

emphasis well, the RL-ARD over-estimates the decrease in response times towards the later 

bins, which is better captured by the RL-tARDs. 

 

Table 2 

Across-subject mean and SD of the median posterior parameter estimates, and BPIC scores 

for both data sets 

 

Miletić et al. 2021  
𝛼 𝑡0,𝐸 𝑎𝐸 (ACC/

SPD) 
𝑉0  (ACC/ 

SPD) 

𝑤𝐷 𝑤𝑠 𝑣𝑇  (ACC/ 

SPD) 

𝑎𝑇 BPIC 

RL-ARD 0.12(0
.05) 

0.14(0.06) 1.83(0.32)/
1.59(0.40) 

2.52(0.50)/
2.92(0.65) 

2.21(0.50) 0.43(0.33) - - -1071 

Random 

RL-tARD 

0.10(0
.03) 

0.23(0.01) 1.66(0.14)/
1.48(0.05) 

1.34(0.26) 3.62(0.49) 0.57(0.26) 2.59(0.30)/
4.11(0.26) 

2.13(0.12) -1163 

Informed 
RL-tARD 

0.10(0
.04) 

0.32(0.02) 0.93(0.14)/
0.88(0.10) 

-0.30(0.38) 3.14(.39) 1.00(0.51) 3.55(0.26)/
5.07(0.28) 

2.37(0.11) -1160 

Sewell and Stallman 2020 

 𝛼 𝑡0,𝐸 𝑎𝐸 (ACC/
SPD) 

𝑉0  (ACC/ 

SPD) 

𝑤𝐷 𝑤𝑠 𝑣𝑇  (ACC/ 

SPD) 

𝑎𝑇 BPIC 

RL-ARD 0.10(0

.03) 

0.12(0.02) 1.66(0.08)/

1.44(0.05) 

1.29(0.11)/

2.79(0.20) 

2.69(0.52) 0.80(0.31) - - 1330 



Random 
RL-tARD 

0.09(0
.02) 

0.24(0.02) 1.14(0.07)/
0.74(0.05) 

0.23(0.09) 3.86(0.68) 0.71(0.35) 1.42(0.15)/
3.76(0.23) 

1.89(0.09) 1550 

Informed 

RL-tARD 

0.10(0

.03) 

0.13(0.01) 1.51(0.09)/

1.80(0.22) 

0.26(0.15) 2.38(0.29) 1.17(0.32) 1.77(0.17)/

4.85/(0.28) 

2.01(0.07) 1389 

 

 

Figure 6 

Posterior predictive distributions of the three RL-EAMs on the data of Miletić et al. 2021 

 

Data (black) and 95% credible interval of the posterior predictive distribution (purple) of the 

RL-ARD, random RL-tARD, and informed RL-tARD for the speed (left) and accuracy (right) 

manipulation. Accuracy (top row), correct response times (middle row), and error response 

times (bottom row) are depicted. The different lines in the response time distributions 

represent the 10th, 50th and 90th percentile.  

 

The data from Sewell and Stallman (2020), was best described by the RL-ARD without a 

timing accumulator (Table 2). The informed guess RL-tARD provided a slightly inferior 

account of the data and the random guess RL-tARD was a poorer fit. Again, deviance values 

suggested the same order in model preference.  

 

Figure 7 

 

Posterior predictive distributions of the three RL-EAMs on the data of Sewell and Stallman 

2020 



 

Data (black) and 95% credible interval of the posterior predictive distribution (purple) of the 

RL-ARD, random RL-tARD, and informed RL-tARD for the speed (left) and accuracy (right) 

manipulation. Accuracy (top row), correct response times (middle row), and error response 

times (bottom row) are depicted. The different lines in the response time distributions 

represent the 10th, 50th and 90th percentile. Note that the y-axes for the response time plots 

differ between the speed and accuracy columns to better visualize both distributions.  

 

From Figure 7 we note that the speed-accuracy decoupling under speed emphasis was greater 

in the data from Sewell and Stallman (2020) than in the data from Miletić et al. (2021). Both 

the RL-ARD and the random RL-tARD cannot account for this decoupling under speed 

emphasis and over-estimate the learning-related decrease in response times. The informed 

RL-tARD better accounts for the constant response times under speed emphasis as the 

participant’s data. Additionally, the random RL-tARD underestimates the learning-related 

increases in accuracy under speed pressure compared to the other two models. Both RL-

tARDs slightly over-estimate the skew in the response time data of correct responses in the 

accuracy manipulation. We also note that compared to the data from Miletić et al. (2021), 

participants were slower to respond under accuracy emphasis, yet faster to respond under 

speed emphasis (note the different y-axes limits in Figure 6 and 7). 

 

We also compared the proportion of timer-generated responses from the posterior predictive 

distributions of the two different RL-tARDs for both data-sets. From Figure 8 we note that 

each RL-tARD predicts a similar learning-related decrease in timing accumulator responses 

for both data sets. However, unsurprisingly the informed RL-tARD predicts a larger 



proportion of timer-generated responses. Furthermore, both models predict a higher 

proportion of timer-generated responses for the data of Miletić et al. (2021). The differences 

in predicted timer responses between both data sets is especially large for the informed RL-

tARD on the accuracy manipulation. 

 

Figure 8 

Posterior predictive distributions of the proportion of timer responses. 

 

Proportion of timer responses based on the posterior predictive distribution of the random 

RL-tARD and informed RL-tARD for the speed (left) and accuracy (right) manipulation. Top 

row depicts the model for the data of Miletić et al. (2021), bottom row the model for the data 

of Sewell and Stallman (2020). Shaded areas correspond to the 95% credible interval of the 

posterior predictive distribution.  

 

Lastly we performed a parameter recovery experiment for each model based on the data of 

Miletić et al., 2021 (Figure 9). We found that the RL-ARD and the random RL-tARD 

recovered their parameters well. The informed RL-tARD recovered some of its parameters 

more poorly. We observe a trade-off between the evidence threshold parameters and the non-

decision time of the evidence accumulators, with higher recovered threshold values and lower 



recovered non-decision time values. Poorer recovery has been a common problem for 

likelihood functions that are not analytically tractable (Evans et al., 2019; Voskuilen et al., 

2016). Additionally, urgency models that rely on partial information are effectively 

underconstrained resulting in a trade-off between the non-decision time and the evidence 

threshold parameters. Even though not all responses are based on partial information in the 

informed RL-tARD, the high proportion of predicted timer responses, which do rely on 

partial information, has likely led to the same underconstraint.  

 

 

  



Figure 9 

Parameter recovery of the RL-ARD, random RL-tARD and the informed RL-tARD. 

 



Parameter recovery for the three models. We fit each model to the data of Miletić et al. 

(2021), and then simulated the same design using the median parameter estimates of the 

posterior. Then we fit the model on the simulated data. Median posterior estimates of the 

simulated data (y-axis) are plotted against the data-generating values (x-axis). Each panel 

also shows Pearson’s correlation coefficient r and the root mean square error (RMSE) . Lines 

represent the diagonal x = y.  



 

 

Discussion 

In the current study we tested whether internal time estimation underlies the speed – accuracy 

trade-off (SAT) mechanisms of decision-making in learning. The SAT entails that people can 

flexibly balance response speed and response accuracy (Bogacz et al., 2010; Wickelgren, 

1977). In previous work (Miletić et al., 2021; Sewell & Stallman, 2020), we observed that 

decision speed remains constant while learning under speed stress, while accuracy increases, 

which is at odds with current explanations of the SAT (Rae et al., 2014; Ratcliff & Rouder, 

1998, Usher et al., 2002). We hypothesized that an internal timing mechanism could explain 

this decoupling between speed and accuracy. 

 

To test this hypothesis we integrated the recently proposed reinforcement learning – 

advantage racing diffusion model (RL-ARD; Miletić et al., 2021), with a timing accumulator 

that is accumulating timing information in parallel to the evidence accumulators (Hawkins & 

Heathcote, 2021). The evidence accumulation process will stop prematurely if the timing 

accumulator reaches its threshold, resulting in a timer-generated response. The response 

speed of timer-generated responses is driven by the timing accumulation process.  

 

We explored two options for the response made when the timing accumulator wins the race. 

In the first model we based the response made on a guess between the available options 

(random RL-tARD). In the second model we based the response made on partial information 

from the evidence accumulators (informed RL-tARD). The informed RL-tARD is similar to a 

collapsing bounds model, since both propose that time pressure forces responses to be made 

based on lesser amounts of evidence (Ditterich, 2006).  

 

For both RL-tARDs, response speed and accuracy are not necessarily byproducts of the 

evidence accumulation process such as in the standard RL-ARD. We therefore hypothesized 

that the RL-tARDs could better explain the speed-accuracy decoupling observed in the two 

previous studies (Miletić et al., 2021; Sewell & Stallman, 2020).  

 

We found that the RL-tARDs better explained the data of Miletić et al. (2021), compared to 

the RL-ARD. In contrasts, the RL-ARD provided the best account of the data of Sewell and 



Stallman (2020). All models captured the accuracy, skew, variability and central tendency of 

the response time data well, which are considered essential aspects of evaluating decision-

making models (Forstmann et al., 2016; Voss et al., 2013).  

 

Additionally, we found that for timer-generated responses, reliance on partial information 

provided a better account than guessing for the data of Sewell and Stallman (2020). However, 

the opposite was true for the data of Miletić et al. (2021). Older studies suggested that 

decision-makers do not have access to partial information and guess when they are forced to 

end evidence accumulation prematurely (De Jong, 1991; Ratcliff, 1988, 2006). Nevertheless, 

a more recent study found that second guesses in perceptual decision-making do rely on 

partial information (McLean et al., 2020). Still the accuracy of non-terminated diffusion 

processes increases only marginally as a function of time (Cox & Miller, 1965; Ratcliff, 

1988). Therefore, it is difficult to dissociate between relying on partial information and 

guessing, which is again highlighted in the current study.  

 

In general, the timing models better explained the speed – accuracy decoupling under speed 

emphasis compared to the RL-ARD. Nevertheless, the RL-tARDs provided a poorer account 

of the learning-related increases in accuracy. The fact that the timing models did not capture 

all aspects of the data suggests that these models do not provide a full account of the different 

cognitive processes underlying decision-making in learning. 

 

Still, Hawkins and Heathcote (2021) suggested that a timing accumulator better explains SAT 

mechanisms in decision-making. In their study they varied both the timing drift rate and 

mean evidence drift rates between the speed and accuracy manipulation. Their mean drift 

rates are similar to the urgency term we used, since urgency in our models also drives the 

mean rate of evidence accumulation, but not the difference in evidence accumulation between 

the response options.  

 

Even though Hawkins and Heathcote (2021) varied mean drift rates between the speed and 

accuracy manipulation, we did not include separate urgency terms for the speed and accuracy 

manipulation in the RL-tARDs. We aimed to provide a more parsimonious account and 

reasoned that if an explicit time estimation process is indeed at the foundation of the SAT, the 

RL-tARDs should capture urgency differences between the speed and accuracy manipulation 

through means of the timing accumulator. Exploratory analysis of the data of Miletić et al. 



(2021) confirmed that there was indeed no support for varying evidence urgency between the 

speed and accuracy conditions in the random RL-tARD. We therefore did not include 

separate urgency terms in the RL-tARDs in subsequent analyses.  

 

However, our analysis of the data of Sewell and Stallman (2020) indicated that the omission 

of separate urgency terms in the RL-tARDs may not have been warranted, since we found 

that the RL-ARD outperformed the RL-tARDs in terms of absolute fit (disregarding model 

complexity). The RL-ARD did include separate urgency terms to account for the speed – 

accuracy manipulation. The RL-tARD with separate urgency terms is a generalization of the 

RL-ARD if we prevent timer-generated responses by setting the timing threshold to infinity 

or the timing drift rate to minus infinity. Therefore, the RL-tARD with separate urgency 

terms would fit the data at least equally well compared to the RL-ARD in terms of absolute 

fit.  

 

The fact that the RL-ARD with separate urgency terms outperformed the RL-tARDs without 

separate urgency terms, suggests the timing accumulation process did not capture all aspects 

of within-trial urgency. This again highlights that our proposed method of time estimation is 

unlikely to provide the full account of the SAT mechanisms of decision making in learning 

tasks. 

 

Still, the observed speed – accuracy decoupling is incompatible with other evidence 

accumulation theories of decision-making in learning, since drift rates are thought to increase 

with learning, which simultaneously increases response speed and accuracy (Miletić, Boag, & 

Forstmann, 2020; Pedersen et al., 2017). Furthermore, even though our implementation of 

time estimation could not fully account for all aspects of the data, a recent study did find that 

time estimation ability aids in speeded decision-making (Van Maanen et al., 2019). This 

raises the question whether different forms of time estimation can capture the SAT 

mechanisms of decision-making in learning. An alternative model that could also explain the 

speed – accuracy decupling, is a threshold learning model in which the evidence threshold is 

updated adaptively throughout the experiment based on an estimate of time available.  

 

To elaborate, RL-ARDs assume that the rate of evidence accumulation is low when people 

have not yet learned the reward probabilities associated with each choice. Therefore, a 

decision-maker should set their evidence threshold quite low in the beginning to still meet 



time demands. However, with learning, the drift rate for the correct choice increases and 

therefore the decision-maker could also increase their response threshold and still meet time 

demands, thereby increasing the probability of making the right choice. Simply put, the 

evidence threshold is updated based on an estimation of time available. Such a process would 

allow people to adjust response accuracy based on the expected amount of time available, 

which could potentially explain the observed decoupling. 

 

Although our RL-tARDs are fundamentally different then the above described process, they 

do share some similarities. Both the above proposed threshold learning model and the RL-

tARDs rely on time estimation to meet time demands in the decision-process. Furthermore, 

the RL-tARDs and the threshold learning model both propose that with learning, choices are 

based on increasing amounts of evidence. However, they differ in that the RL-tARDs pose 

that within-trial time estimation can prematurely end evidence accumulation. Consequently, 

when time runs out a decision is made regardless of how much evidence has accumulated. In 

contrast, a threshold learning model poses that within trial time estimation updates evidence 

thresholds between trials. Although the thresholds are likely low in the beginning of the 

learning process, there is still a minimal amount of evidence needed to commit to a decision.   

 

In summary, we studied the cognitive mechanisms of the SAT underlying decision-making 

and learning. We proposed that time estimation occurs in parallel to the evidence 

accumulation process, and poses a deadline after which a response must be made. We found 

no compelling evidence for such mechanisms of time estimation. Still, we observed a speed – 

accuracy decoupling that cannot be explained with traditional explanations of the SAT in 

learning. We suggest an alternative model of time estimation in decision-making and learning 

that future studies could explore.  
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