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Abstract 

 As the availability of data becomes more widespread and computational 

technology develops, the need to model several outcome variables at once 

increases. To do this for multiple dichotomous outcome variables, De Rooij and 

Groenen (2021) proposed the MELODIC family for simultaneous binary logistic 

regression in a reduces space. As an added feature, 4 different forms of 

regularization on the singular values were proposed to let the algorithm itself 

select the true dimensionality of the data set. In this paper a simulation study was 

performed to provide empirical evidence for the functionality of the 

regularization features on data sets with differing numbers of subjects, predictor 

variables, and outcome variables. The results show that the hard-thresholding 

regularization consistently estimates the correct dimensionality with 

regularization on the logarithm of the singular values slightly outperforming the 

regularization on the unaltered singular values. 
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Introduction 

Nowadays, more and more data is available to researchers (Holst, 2021). 

Due to advances in computation technology, it has become possible to analyze 

and gain insights from this data (Dehuri & Sanyal, 2015). Many of the available 

variables, especially in the social- and biological sciences, are dichotomous in 

nature (Mayya et al., 2017; Shreffler & Huecker, 2021). Dichotomous variables 

are categorical variables with 2 categories where each subject belongs to either 

of the two. Examples of these variables are healthy/sick, male/female, high 

risk/low risk, etc.  

In analyses of large data sets, multivariate techniques can give insights into 

dependencies of the variables where separate analyses cannot. Multivariate 

techniques have shown to outperform single variable analyses in predictive 

accuracy (Huberty & Morris, 1992), and are therefore preferred when possible. 

To accommodate the need for multivariate dichotomous analyses, De Rooij and 

Groenen (2021) proposed the MELODIC family for simultaneous binary logistic 

regression in a reduced space. MELODIC stands for Multivariate Logistic 

Distance to Categories and the model uses a combination of mathematical 

concepts to improve predictive accuracy including multivariate shrinkage 

(Fourdrinier et al., 2018), dimensionality reduction (Krishnaiah & Kanal, 1982), 

and multidimensional unfolding (Busing, 2010). 
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 Logistic distance models have been proposed before (Takane et al., 1987; 

Takane, 1987; De Rooij, 2009). These models have been the basis for the 

multivariate logistic distance model developed by Worku and De Rooij (2018) of 

which the MELODIC multivariate distance model is an extension. In the model, 

the categories and subjects are placed in a low dimensional Euclidean space using 

multidimensional unfolding. The Euclidean distance (a straight line through 

space) is then measured between the subject and the 2 possible categories. The 

subject is assigned to the category with the smallest distance. The dimensionality 

of the solution should have a theoretical basis. 

The relationship of the predictor variables to the position of the subject is 

assumed to be linear and is defined as  

 𝐮𝑖 =  𝐱𝑖
𝑇𝐁, (1.1) 

where 𝐮𝑖 is the location of subject i and B is a matrix of regression weights for 

the predictor variables (P) times the number of dimensions (M).  

The coordinates of the categories c (where c = {0, 1}) within the Euclidean 

space is denoted as 𝑣𝑞𝑐𝑚 (with q being the indicator of response variables up to 

the total number of response variables Q) and are stored in vector 𝐯𝑞𝑐 of M 

dimensions. From the distance between the subject to the categories of the 

response variable, the conditional probability of this subject belonging to either 

category 0, or category 1 is calculated by 
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𝜋𝑞𝑐(𝐱𝑖) =  

exp (−𝛿(𝐮𝑖 , 𝐯𝑞𝑐))

exp (−𝛿(𝐮𝑖 , 𝐯𝑞0)) + exp (−𝛿(𝐮𝑖 , 𝐯𝑞1))
, 

(1.2) 

with δ(., .) representing half the squared Euclidean distance 

         𝛿(𝐮𝑖 , 𝐯𝑞𝑐) =  
1

2
∑(𝑢𝑖𝑚 − 𝑣𝑞𝑐𝑚)2

𝑀

𝑚=1

=
1

2
∑ (𝑢𝑖𝑚

2

𝑀

𝑚=1

+ 𝑣𝑞𝑐𝑚
2 − 2𝑢𝑖𝑚𝑣𝑞𝑐𝑚). 

(1.3) 

To interpret the influence of the variables on the prediction, the log odds in favor 

of category 1 over category 0 for each independent variable can be found using 

 
𝑙𝑜𝑔

𝜋𝑞1(x𝑖)

1 − 𝜋𝑞1(x𝑖)
= 𝛿(𝐮𝑖 , 𝐯𝑞0) − 𝛿(𝐮𝑖 , 𝐯𝑞1). 

(1.4) 

The log odds are then defined as  

        𝑙𝑜𝑔
𝜋𝑞1(𝑥𝑖)

1 − 𝜋𝑞1(𝑥𝑖)
= ∑ [

1

2
(𝑣𝑞0𝑚

2 −  𝑣𝑞1𝑚
2 ) + 𝐱𝑖

𝑇𝐛𝑚(𝑣𝑞1𝑚 − 𝑣𝑞0𝑚)]

𝑀

𝑚=1

. 
(1.5) 

So, the effect of predictor variable x on response variable q is determined by the 

distance between the categories, and by the regression coefficients 𝐛𝑚. The 

model can be interpreted as a regular univariate logistic model by writing the log 

odds as  

 
𝑙𝑜𝑔

𝜋𝑞𝑐(𝐱𝑖)

1 − 𝜋𝑞𝑐(𝐱𝑖)
=  𝑎𝑞

∗ + 𝐱𝑖
𝑇𝐛𝑞

∗ , 
(1.6) 

where 𝑎𝑞
∗  and  𝐛𝑞

∗  (𝐛𝑞
∗  being the implied coefficients) are defined as  

 
𝑎𝑞

∗ =  
1

2
 Σ𝑚=1

𝑀 (𝑣𝑞0𝑚
2 −  𝑣𝑞1𝑚

2 ) 
(1.7) 

and  
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 𝐛𝑞
∗ =  Σ𝑚=1

𝑀  𝐛𝑚(𝑣𝑞1𝑚 −  𝑣𝑞0𝑚). (1.8) 

The ability for the predictor variables to predict the outcome variable can 

be derived from the distance between the 2 categories of the outcome variable. 

The larger the distance, the better the predictor variables are able to distinguish 

between the categories. So, if the categories fall on the same location in the 

Euclidean space, the predictor variables have no predictive value for the outcome 

variable (Anderson, 1984). 

To improve the predictive accuracy of the MELODIC model, multivariate 

shrinkage is used by modelling several logistic regressions in a reduced space (De 

Rooij & Groenen, 2021). Shrunken averages in terms of mean squared error have 

been shown to outperform simple averages of a multivariate distribution  by Stein 

et al. (1956). Also, shrinkage of coefficients (towards zero) has been shown to 

improve predictive accuracy in a number of multivariate models (Breiman & 

Friedman, 1997). 

Dimensionality reduction has several advantages, for example removing 

redundant or noisy features from a data set, discovering hidden correlations and 

easier visualization. Dimension reduction can be done by finding patterns in 

subspaces within a larger multidimensional space and projecting these subspaces 

onto a smaller number of dimensions (Carreira-Perpinán, 1997). Two dominant 

ways of dimensionality reduction are feature selection (Pudil & Novovičová, 

1998; Jain & Zongker, 1997) and feature extraction (Guyon et al., 2008; Nevatia 
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& Babu, 1980). Feature selection selects a subset of the relevant data to make a 

model more parsimonious and/or remove noisy features which in turn can lower 

its prediction error. Examples of feature selection methods are Lasso (which 

select features through regularization), Best Subset Selection and Forward and 

Backward Stepwise Selection (James et al, 2013). Feature extraction uses the 

inner product of a matrix (a scalar resulting from the summation of the resulting 

numbers when 2 matrices are multiplied) to select a low-dimensional set of 

features out of a higher dimensional data set. The most commonly used form of 

feature extraction is Principal component analysis (Pearson, 1901; Jolliffe, 2002; 

Abdi & Williams, 2010) which extracts features through a Singular Value 

Decomposition. However, unlike the usual feature extraction, which is applied to 

the predictor variables, the MELODIC methods extracts the dimensionality of its 

solution from the outcome variables instead. To find the solution, the algorithm 

uses a singular value decomposition in an iterative majorization algorithm (see 

De Rooij & Groenen, 2021, p. 14-21) to estimate the regression weights of the 

discrimination parameters.  

 Singular value decomposition represents any matrix by the product of 3 

matrices usually denoted as U, Σ, and 𝐕𝑇 (Van Loan, 1976; Klema & Laub, 

1980). These separate matrices are the left singular vectors (U), a diagonal matrix 

Σ of the singular values (which has its values sorted in decreasing), and the right 

singular vectors V. From these matrices, the underlying structure or “concepts” 
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can be distilled. For example, if a data set with viewer scores of a group of movies 

were to be decomposed, one could expect movies to be clustered into genre 

(science fiction or comedies getting higher or lower scores due to viewer 

preference) and the viewers into their preference (viewers who love science 

fiction or comedies). Each of these groups would be represented by one column 

in the singular vectors matrix and the number of columns in the matrix would be 

the total number of discernible concepts. However, as the vectors are orthogonal, 

later columns might just represent noise and no clear concept will discernable. 

The  singular values associated with these columns will be small. 

One of the characteristics of the MELODIC algorithm is that a pre-

determined dimensionality is required. This pre-determined dimensionality 

reflects the researchers’ idea of how many concepts the data is expected to map 

onto based on the research hypothesis. However, the dimensionality of the 

solution might not always be what the researcher expects and post-hoc 

confirmation might be desirable. Also, exploratory investigations might want to 

find the dimensionality of data set and not apply a pre-determined expectation. 

Therefore, an added feature is proposed to the MELODIC algorithm which lets 

the algorithm find the dimensionality of the data set by itself. The determination 

of the dimensionality of the data set for the MELODIC algorithm is done by 

regularization of the Singular Values (Groenen, & Josse, 2016; Gavish & 

Donoho, 2017; Candes et al., 2013; Josse & Sardy, 2016).  



10 
 

Penalty terms are used to constrain or shrink estimates towards zero. This 

shrinking can significantly reduce the variance of the estimates and can also be 

used for feature selection. Ridge regression and Lasso are well-known techniques 

that make use of penalties (James et al, 2013). In the MELODIC algorithm, 

regularization will be used to find the optimal number of dimensions or 

“concepts” hidden within the data set. The optimal number of dimensions will be 

found by applying a penalty term to the singular values, slowly reducing them to 

zero and, by extension, reducing the size of the matrices U, Σ and 𝐕𝑇. The 4 

proposed methods are split into soft-thresholding or hard-thresholding and are 

defined as follow:  

1) Soft-threshold:  

 Σ𝑠 = (Σ𝑠  −  𝜆)+, (1.9) 

where Σ𝑠 are the singular values, 𝜆 the penalty parameter, and taking only the 

results that are positive, setting the rest to zero: 

 
(Σ𝑠  −  𝜆)+ =  {

Σ −  𝜆   𝑖𝑓  Σ >  𝜆
0           𝑖𝑓  Σ ≤  𝜆

. 
(1.10) 

2) Soft-threshold of the logarithm of the singular values: 

 Σ𝑠 = exp ((log(Σ𝑠 + 1) −  𝜆)+ − 1). (1.11) 

3) Hard-threshold: 

 Σ𝑠 = Σ𝑠𝟙(Σ𝑠 > 𝜆), (1.12) 

where 𝟙 is the indicator function. 
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4) Hard-threshold of the logarithm of the singular values: 

 Σ𝑠 = exp (Σ𝑠𝟙(log(Σ𝑠 + 1) >  𝜆)  − 1). (1.13) 

In this Thesis, a simulation study will be performed to test the efficacy of 

the 4 proposed methods of regularization under different data characteristics. The 

study will try to answer the following research questions: 

1) Does the MELODIC algorithm with the regularization of the singular 

values select the correct dimensionality of the data? 

2) Which of the proposed regularization methods works best to select the 

correct dimensionality under differing numbers of predictor variables 

and outcome variables? 

3) If the algorithm does not select the correct dimensionality, does it select 

a dimension that is too high, or too low? 

Methods 

A Monte-Carlo simulation will be used to compare the new regularization 

features of the MELODIC method algorithm to each other. The answer to the 

question of which of the four proposed regularizations works best may depend on 

the data characteristics. These characteristics include the number of participants, 

the number of response variables, their correlational structure, signal-to-noise 

ratio (meaningful output to background noise (data with no predictive power)) 

and collinearity of the predictor variables (Breiman & Friedman 1997). This 

study, however, will focus only on varying the sample size, number of predictor 
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variables and outcome variables. As the 1997 study of Breiman and Friedman 

compared multivariate data analysis techniques to each other, just as this study 

will do, 9 populations will be generated through the method described in the 

Breiman and Friedman (1997) paper. However, as the method described is for 

continuous outcome variables and this study investigates dichotomous variables, 

an adjustment was made to turn the outcome variables into dichotomous outcome 

variables.  

The data was generated through the formula  

 

𝑦𝑖𝑞 = ∑(𝛽𝑝𝑞𝑥𝑖𝑝)

𝑃

𝑝=1

 +  𝜖𝑖𝑞, 
(2.1) 

where 𝑦𝑖𝑞 is the response variable for subject i, 𝛽𝑝𝑞 the coefficient for predictor 

variable 𝑥𝑖𝑝 and 𝜖𝑖𝑞 the error term.  

Each of the predictors was independently drawn from a normal distribution 

with mean zero  

 𝐱𝑖  ~ 𝑁(𝟎, 𝚯), (2.2) 

with  𝚯 being the P by P covariance matrix and was randomized once (and kept 

the same for all populations) through 

 𝛳𝑜ℎ = 𝑟|𝑜−ℎ|, (2.3) 

where 𝑜 is the row number and ℎ is the column number and the absolute result 

was taken from their subtraction. 𝑟 represents the actual correlation and was 
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randomly drawn once (and used for all the generated data sets) from a uniform 

distribution between -1 and 1.  

 𝑟 ~ 𝑈[−1, 1]. (2.4) 

In this specific study 𝑟 was randomly chosen to be 0.3581868. 

To determine the coefficients , the following formula was used 

 

𝛽𝑝𝑞 =  ∑ 𝑑𝑜𝑘

10

𝑘=1

𝑔(𝑗, 𝑘), 
(2.5) 

with 𝑑𝑜𝑘 being randomly sampled coefficients from a normal distribution with Q 

dimensions 

 {𝑑𝑜𝑘}𝑞=1
𝑄  ~ 𝑁(𝟎, 𝚪). (2.6) 

So, a normal distribution with mean 0 and Q by Q covariance matrix 𝚪 that 

determines the degree of correlation through parameter ρ in formula 

 𝛾𝑜ℎ =  𝜌|𝑜−ℎ|. (2.7) 

For this study, ρ was set to 0.1, to a low value, so a high correlation would not 

interfere with the effect of the number of predictor variable on the algorithm to 

find the correct dimensionality. 𝑔(𝑗, 𝑘) was used to randomize “peaks” in the 

coefficient matrix and is defined as   

 𝑔(𝑗, 𝑘) =  ℎ𝑘(𝑙𝑘 − |𝑗 − 𝑗𝑘|)+
2 . (2.8) 

𝑗𝑘 and 𝑙𝑘 are randomly sampled integers from a uniform distributions of ranges 

[1, 50] and [1, 6], respectively these “peaks” are centered around point 𝑗𝑘 (the 
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highest point) and have a slope distance of 𝑙𝑘 in which the peak is reduced to 0 

again. The peaks, from 𝑙𝑘 − 𝑗𝑘 to  𝑗𝑘 + 𝑙𝑘  were normalized so that it’s sum was 

equal to 1, that is,  

 

∑ 𝑔(𝑗, 𝑘)

50

𝑗=1

= 1. 
(2.9) 

𝑔(𝑗, 𝑘) was selected only once and kept equal over all data sets. 

 To determine the signal to noise ratio of the data set, the covariance matrix 

𝐅 was set created  

 
𝑓𝑜ℎ = √𝜎𝑝𝑞

2 , 
(2.10) 

with 𝜎𝑝𝑞
2  being the variance for each predictor variable for each value of q. 𝐅 was 

then used to sample the errors from a normal distribution  

 {𝜖𝑖}1
𝑄 ~ 𝑁(𝟎, 𝐅). (2.11) 

The signal-to-noise ratio was set to 1. 

 To turn the outcome variables into dichotomous variables, the outcome 

variables were split into quintiles and  a number was randomly selected from a 

uniform distribution between .2 and .8. for each of the outcome variables. The 

values of the outcome variables that fell into the quintile equal to or higher than 

the randomly selected number were then converted to 1 and the values falling in 

the lower quintiles were converted to 0.  
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Nine populations of 100.000 subjects were simulated with a signal-to-noise 

ratio of 1, and a correlation among the predictor variables of 0.35. The 

populations had differing number of predictor variables (10, 20 and 30) and 

outcome variables (7, 15 and 30), giving 9 different populations in total.  

To pre-set the dimensionality of the populations, the MELODIC algorithm 

was run on each of the 9 populations, using dimensionality 2. Through these runs, 

probabilities of a subject belonging to either group 1 or 0 were estimated. The 

estimated probabilities were then used to generate new outcome variables for 

each population. These new outcome variables would set the solution for the 

regularization algorithm for each of the 9 populations equal to the pre-selected 

dimensionality of 2. In the study the original predictor variables were used in 

combination with the new outcome variables. 

Finally, the MELODIC algorithm with the regularization features was run 

on subject samples of 3 differing sizes (500, 100, 1500). They were run 100 times 

for each of the 27 situations starting from a dimensionality of 7 as that was the 

maximum number of possible dimensions for the population with the lowest 

number of outcome variables. Each iteration included a 5-fold cross validation, 

dividing the sample in 5 equal parts and leaving one of those parts as a validation 

set. This was repeated 10 times for each run and the final dimensionality selected 

by the algorithm is the dimensionality with which the algorithm found the lowest 
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total deviance. These final dimensionalities were registered to check how often 

the algorithm selects the correct dimensionality out of the 100 runs.  

Results 

To compare the results, tables were made for each of the situations and 

each situation was then split into the final result of the algorithm (R) and a 1 

standard error more parsimonious solution (1SE). The results are shown in tables 

1 to 3. Each table shows the result of a different sample size. As is clear in all 3 

tables, the hard-threshold outperforms the soft-threshold over all situations.  

Within the soft-thresholding, in all three tables, the thresholding on the 

singular values outperforms the soft-threshold on the logarithm of the singular 

values. And for the soft-threshold on the singular values, taking the 1 standard 

error seems to perform slightly better. In some of the situations the 1SE was able 

to get the correct dimensionality, but more often than not, a higher dimensionality 

was selected by the algorithm. Neither of the 2 forms of soft-thresholding is able 

to consistently reduce the dimensionality all the way to the correct dimensionality 

2 and they seem to get stuck in higher dimensionalities. The soft-thresholding on 

the logarithm is not able to get lower than the starting value of dimensionality 7. 

The soft-thresholding also seems to perform worse as the value of Q goes up 

whereas the value of P appears to have little impact on the performance of the 

soft-thresholding algorithm. 
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Table 1 

Selected dimensions with n = 500. The first letter represents either the regularization on the singular 

values (S) or on the logarithm of the singular values (L). The second letter represents either soft-

thresholding (S) of hard-thresholding (H). Finally either the selected dimensionality (R) was taken or 

a model selecting 1 standard error more parsimonious (1SE). 

P = 10 

 Q = 7 Q = 15 Q = 30 
 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

SS  R    2 3 2 93     1 2 97       100 
SS1SE  2 3 2 93      3 6 91      2 4 94 
LS  R       100       100       100 
LS1SE       100      2 98       100 
SH  R  100      1 98 1      100      
SH1SE  100      1 98 1      100      
LH  R  99 1      99  1     100      
LH1SE  100       100       100      

P = 20 

 Q = 7 Q = 15 Q = 30 
 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

SS  R     3 95 2       100       100 
SS1SE   1 4 94 1     1 2 96 1      2 98 
LS  R       100       100       100 
LS1SE       100       100       100 
SH  R  100       100       100      
SH1SE  100       100       100      
LH  R  100       100       100      
LH1SE  100       100       100      

P = 30 

 Q = 7 Q = 15 Q = 30 
 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

SS  R     5 5 90       100       100 
SS1SE   1 5 94      1 3 96      1  99 
LS  R       100       100       100 
LS1SE       100       100       100 
SH  R  100       100       100      
SH1SE  100       100       100      
LH  R  100       100       100      
LH1SE  100       100       100      
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Table 2 

Selected dimensions with n = 1000. The first letter represents either the regularization on the singular 

values (S) or on the logarithm of the singular values (L). The second letter represents either soft-

thresholding (S) of hard-thresholding (H). Finally either the selected dimensionality (R) was taken or 

a model selecting 1 standard error more parsimonious (1SE). 

P = 10 

 Q = 7 Q = 15 Q = 30 
 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

SS  R   2 1  4 93   1    99       100 
SS1SE  6 2 90 2   1 1   1 5 92      3 97 
LS  R       100       100       100 
LS1SE       100       100       100 
SH  R  100       99  1     100      
SH1SE  100      1 99       100      
LH  R  100       99  1     100      
LH1SE  100       100       100      

P = 20 

 Q = 7 Q = 15 Q = 30 
 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

SS  R      2 98       100       100 
SS1SE   1 92 4 3      3 93 4      1 99 
LS  R       100       100       100 
LS1SE       100       100       100 
SH  R  100       100       100      
SH1SE  100       100       100      
LH  R  100       100       100      
LH1SE  100       100       100      

P = 30 

 Q = 7 Q = 15 Q = 30 
 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

SS  R     1 94 5       100       100 
SS1SE   1 93 6     1 1 92 4 2      93 7 
LS  R       100       100       100 
LS1SE       100       100       100 
SH  R  100       100       100      
SH1SE  100       100       100      
LH  R  100       100       100      
LH1SE  100       100       100      
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Table 3 

Selected dimensions with n = 1500. The first letter represents either the regularization on the singular 

values (S) or on the logarithm of the singular values (L). The second letter represents either soft-

thresholding (S) of hard-thresholding (H). Finally either the selected dimensionality (R) was taken or 

a model selecting 1 standard error more parsimonious (1SE). 

P = 10 

 Q = 7 Q = 15 Q = 30 
 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

SS  R   1  1 2 96       100       100 
SS1SE  1 91 1 4 3      1 92 7    1 2 94 3 
LS  R       100       100       100 
LS1SE       100       100       100 
SH  R  100      2  98       100      
SH1SE  100      2 98       100      
LH  R  100      1 99       100      
LH1SE  100      1 99       100      

P = 20 

 Q = 7 Q = 15 Q = 30 
 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

SS  R     1 5 94       100       100 
SS1SE  2 2 3 90 2 1    2 2 91 5       100 
LS  R       100       100       100 
LS1SE       100       100       100 
SH  R  100       100       100      
SH1SE  100       100       100      
LH  R  100       100       100      
LH1SE  100       100       100      

P = 30 

 Q = 7 Q = 15 Q = 30 
 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 

SS  R      96 4       100       100 
SS1SE   2 91 6 1   1  92 5 1 1     2 1 97 
LS  R       100       100       100 
LS1SE       100       100       100 
SH  R  100       100       100      
SH1SE  100       100       100      
LH  R  100       100       100      
LH1SE  100       100       100      

 

For the hard-thresholding, all variants managed to consistently select the 

correct dimensionality. Only a few times did the algorithm fail to do so. The best 

performer overall is the hard-thresholding on the logarithm of the singular values 

and selecting the 1SE result. This variant had only 1 instance that it did not select 

the correct dimensionality but instead selected a dimensionality lower 
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(dimensionality 1). Because of the low number of wrongly selected 

dimensionalities it is hard to discern a direction to which mistakes would be made 

by the algorithm. Also, the few mistakes that were made are split in both 

directions and are never more than 1 dimension away from the correct one. All 

the mistakes made by the hard-thresholding algorithm however, seem to have 

been made in the situations with lower values of P and none of the mistakes have 

been made with the largest number of Q.  

Discussion 

 In this paper four different methods for regularization within the 

MELODIC family of models were tested. From the results we can conclude that 

the two soft-thresholding variants do not consistently select the correct 

dimensionality of the data set under the tested conditions. The hard-thresholding, 

on the other hand, performed well and was able to select the correct 

dimensionality in over 99% of the runs. The hard-thresholding on the logarithm 

of the singular values performed best overall, which was only marginally better 

than the thresholding directly on the singular value, and based on these results is 

recommended for future use. However, the algorithm was not able to give a clear 

distinction between regularization on the singular values or regularization on the 

logarithm of the singular values, as was the case in the soft-thresholding. 

The soft-thresholding was in many cases not able to lower the 

dimensionality from the starting point (dimensionality of 7) and was only rarely 
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able to reduce it as far as the correct dimensionality of 2. In the hard-thresholding 

no specific direction in which it consistently selects the wrong dimensionality 

was observed. Although one dimension higher (3) is slightly more common in the 

results than one dimension lower (1). However due to the small number of 

wrongly chosen dimensionalities, concluding that the hard-thresholding 

overestimates the dimensionality seems unwarranted. 

 The differing sample sizes, numbers of predictors, and number of outcome 

variables seem to have a larger effect on the results of the soft-thresholding. The 

algorithm seems to perform better on data sets with low numbers of outcome 

variables. As the number of outcome variables in the data set increased, the less 

likely it was for the algorithm to select a dimensionality lower than the starting 

point of 7. For the hard-thresholding, however, the number of outcome variables 

seemed to have less of an impact. Here, the number of predictor variables seems 

to slightly influence the ability to select the correct dimension as all mistakes 

were made in the samples with the lowest number of predictor variables. 

 The method used to generate the data was advantageous for the study as it 

allowed for specific adjustments within the characteristics of the data, keeping 

many characteristics of the data the same. This allowed us to observe only the 

effect of the tested data characteristics of sample size, number of predictor 

variables and number of outcome variables. To further investigate the 

regularization features, other aspects of a data set could be investigated. Some 
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examples of possible data aspects are the formerly mentioned signal-to-noise 

ratio, the collinearity, correlational structure and the true dimensionality. A higher 

collinearity could for example cause less accurate model estimations and a higher 

model variance, making it harder for the model to accurately select the correct 

dimensionality.  Varying these data features could potentially create a distinction 

between the regularization of the singular values or their logarithm. The way the 

data was generated, however, might not represent real data that could be 

encountered in the field and testing on real data could further show the 

effectiveness of the tested regularization methods. For now, however, the hard-

thresholding on the logarithm of the singular values and taking a 1 standard error 

more parsimonious solution appears to be the most effective method,  a result that 

could potentially be generalizable to other situations as the hard-thresholding 

consistently outperformed the soft-thresholding over all tested situations. 
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