
A comparison of machine learning techniques for combining
heterogeneous neuroimaging data sources in the context of classifying
individual clinical status
Hovius, Luuk

Citation
Hovius, L. (2021). A comparison of machine learning techniques for combining
heterogeneous neuroimaging data sources in the context of classifying individual clinical
status.
 
Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3229002
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3229002


1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Master’s Thesis Methodology and Statistics Master 

Methodology and Statistics Unit, Institute of Psychology, 

Faculty of Social and Behavioral Sciences, Leiden University 

Date: June 2021 

Student number: 1542338 

Supervisor: Dr. Tom F. Wilderjans & Dr. Jenny Ceccarini (KU Leuven) 

 

 

A comparison of machine learning techniques for 

combining heterogeneous neuroimaging data 

sources in the context of classifying individual clinical 

status 

 

Master’s Thesis 

 

 

 

 

Luuk Hovius 

 



2 
 

Abstract 

  

The ability to correctly classify an individual’s clinical status could help pave the way for early 

treatment programs for disorders and illnesses of mental- and physical nature alike. Neuroimaging 

data could serve as a basis in reaching this goal of accurate classification. The use of said data, 

however, does come with challenges. A prominent one of which is the fact that neuroimaging data is 

highly dimensional, meaning that the amount of features largely exceeds the number of subjects 

within the data set. Furthermore, research has indicated that the use of heterogeneous, but 

complimentary, data derived from multiple modalities can be an asset to a model used in a 

classification setting (Zhang et al., 2010; Schouten et al., 2016). The challenge arises in how to 

combine the different modalities within a single model. A solution could be the use of machine 

learning algorithms which search for patterns in the data to draw conclusions. Current literature is, 

however, lacking meaningful comparisons between different machine learning techniques. 

Within this project, three different algorithms (support vector machines, Gaussian process 

classification and multiple kernel learning) have been selected to get insight into (1) whether or not 

machine learning is able to cope with challenges in the use of neuroimaging data, (2) the difference 

in performance between these methods and (3) whether or not the use of multiple modalities leads 

to better results in classification. To this end, 16 alcohol-dependent respondents have been selected 

along with 32 age-matched healthy controls and have been subjected to both MRI and PET. Models 

have been trained on data from both separate modalities and on data combining the two modalities. 

The performances of the models have been assessed by leave-one-subject-out cross-validation and 

expressed in balanced accuracy and area under the curve. Results indicate that the chosen methods 

are effective in overcoming challenges arising in the use of neuroimaging data as a means of 

classification. High balanced accuracies have been found ranging from 76.56% (GPC using PET data) 

to 100% (GPC using MRI data). Different situations are cause for different solutions and the right 

choice of algorithm seems to be dependent on, for instance, the fact if either unimodal- or 

multimodal data is used. Also, settings/optimization of parameters within the model can make a 

large impact on accuracy. It is therefore advised that researchers try different algorithms and settings 

before selecting a technique. Different options need to be weighed in order to receive the best 

possible outcome. 
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1. Introduction 

 

In 2017, a study published in Nature made headlines around the world (Gallaghe, 2017; Sample, 

2017). In this study, infants of varying ages (6 to 24 months) were subjected to MRI scans and tests 

regarding their intelligence. It was hypothesized that, even at such a young age, the brain of a child 

whom would develop an autism spectrum disorder (ASD) would show signs of hyper expansion of the 

cortical surface area. This expansion is said to be temporally linked to the emergence of the defining 

behaviors of ASD. A machine learning algorithm (support vector machine) had been used in the 

classification of 106 infants with a high risk of developing ASD and 42 infants with a low risk of 

developing ASD. In the end, the analysis yielded a positive result with a predictive value of 81% and a 

sensitivity of 88% (Hazlett et al., 2017). Findings such as these and developments in the ability to 

predict individual clinical status could help pave the way for early treatment programs for disorders 

and illnesses of mental- and physical nature alike. 

Even though the use of neuroimaging as a means for the prediction of individual clinical 

status looks to be quite promising, it does come with its challenges. First of which being high 

dimensionality of the data (i.e., the dataset containing many features, more than the number of 

cases used in the classification). When using neuroimaging data, derived from a structural MRI-scan 

for instance, this is going to be the case. The data, for example, gives an indication of the amount of 

gray matter per voxel. Since you receive data from tens of thousands of voxels, high dimensionality 

of the dataset will be something that needs to be taken into account. Datasets containing many 

features in comparison to the amount of observations face what is also known as the ‘curse of 

dimensionality’ (Bellman, 1961). A high amount of features poses two main problems with regard to 

classification. The first one being the risk of massively overfitting the model to the data, which is 

detrimental for the generalizability of the obtained results. The other problem which arises has to do 

with the classification of data points. Many techniques regarding classification are largely based on 

distances between data points, defined in, for example, Euclidian distances. If the amount of features  

become very large, the Euclidian distances between the points will tend to appear (nearly) equal due 

to the large amount of features being incorporated in the hyperspace used to make distinctions. This 

phenomenon makes clustering and classification based on (Euclidian) distance problematic. 

A second challenge which may arise is finding a way to deal with features derived from 

multiple modalities. Using multiple modalities may provide the analysis with heterogeneous, but –

hopefully– complimentary information (features) about the processes or structures under analysis.  
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Using information gathered from multiple modalities (e.g., both MRI- and fMRI data) could help 

improve the performance of classification of clinical status, as for example had been indicated by a 

study by Zhang et al. (2010). Within this study, 51 patients suffering from Alzheimer’s Disease were 

included, as well as 99 patients with mild cognitive impairment (a prodromal stage of Alzheimer’s 

disease, MCI) and 52 healthy controls. All respondents had been subjected to the following three 

different measurements of biomarkers (after inclusion): (1) structural magnetic resonance imaging 

(MRI), in order to get an indication of brain atrophy, (2) functional imaging in the form of FDG-PET for 

hyper metabolism quantification and (3) a cerebrospinal fluid sample to allow for the quantification 

of specific proteins.  Using a multiple kernel support vector machine, the classification that uses the 

multiple modalities of patients who suffer from Alzheimer’s disease, was compared to a support 

vector machine which uses just one modality. The results showed that the classification that uses 

multiple modalities outperforms any of the ones that use the single biomarker measurements. 

In another study, also focusing on the classification of patients suffering from Alzheimer’s 

disease versus healthy controls, similar results were found (Schouten et al., 2016). In this study, 

elastic net classification was used to build a classification model based on six different biomarker 

modalities, all measured by means of magnetic resonance imaging; (1) grey matter density (GMD), 

(2) white matter density (WMD), (3) fractional anisotropy (FA), (4) mean diffusivity (MD), (5) full 

correlations between ICA components (FC) and (6) regularized partial correlations between ICA 

components (PC). Just like in the previously mentioned study, the model using multiple modalities 

scores best across all indicators of the models’ performance. These results indicate that multiple 

modalities provide each other with complementary information, hence increasing the models’ 

classification performance.  However, an appropriate means of combining the different modalities 

must be devised which is where the challenge arises. 

Machine learning techniques could be a way of tackling these previously mentioned 

challenges which (could) arise in the classification of individual clinical status on the basis of 

neuroimaging data. These techniques use patterns (i.e., combinations of voxels) in the data to draw 

eventual conclusions. The goal of supervised learning (in which the class labels of the training data 

are known beforehand), is to build a concise model of the distribution of class labels in terms of 

predictor features (i.e., neuroimaging data). The resulting classifier is then used to assign class labels 

to the testing cases of which the values of the predictor variables are known, but the corresponding 

class label is unknown (Kotsiantis et al., 2007). 
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Machine learning is most suited for situations where no ‘clear rule of classification’ can be 

defined or coded. This usually happens in situations where a high number of features/predictors are 

present within the dataset. In these situations, as is the case when using neuroimaging data, where 

patterns of values in features tend to overlap (especially when multiple data sources are included), 

machine learning can effectively tackle this problem. Also, the performance of machine learning 

algorithms tend to increase as the program is being fed more information (i.e., more features and 

cases). Since neuroimaging data contains a lot of variables (one value per voxel), machine learning is 

a viable option in the current situation. Incorporating multiple modalities within the same model only 

(highly) increases the amount of information used within the analysis. 

A disadvantage of these same techniques is the interpretation of the ‘decision making 

process’ behind the classification. A machine learning model creates a black box of sorts between 

inputs and predictions. The algorithm can assign a case to a certain class that it is most likely to 

belong to (based on the rendered calculations by the algorithm), but it does not explain how it came 

to this conclusion (i.e., based on which specific predictors). This fact will, however, not be a problem 

in the goal of predicting/classifying individual clinical status as the goal is to open up possibilities for 

(early) treatment programs. In light of this goal, The underlying rules and patterns of voxels at which 

these classifications are based on are of lesser importance. 

In recent years, research has been conducted into the predictive power of various machine 

learning techniques. Three different algorithms, of which the effectiveness has been proven within 

said studies (which will be discussed in the methodology section), and which also support the 

inclusion of multiple modalities, are: (1) support vector machines (SVM), (2) Gaussian process 

classification (GPC) and (3) multiple kernel learning (MKL). 

As mentioned before, the classification problems at hand pose two main challenges. The first 

of which being the inclusion of complementary, heterogeneous data (multiple modalities) into a 

single analysis. The second challenge stems from the fact that neuroimaging data contains more 

features than cases (high dimensionality). The three different algorithms as mentioned above pose 

possible solutions in tackling these challenges. First of all, the machines allow for the inclusion of 

multiple modalities within a single analysis. The machines use (possible) patterns within the data 

(features) in order to make distinctions. Different modalities can be added to the set of features from 

where the machine draws said patterns. The multiple kernel learning algorithm could especially excel 

in these situations as it allows for the computation of a specific kernel for each of the modalities. 
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As for the challenge of high dimensionality, all three machines are able to perform in these 

situations, which isn’t the case for all forms of machine learning. This is due to the fact that they use 

the complete set of data to find (possible) patterns within the given set of features. Especially the 

support vector machine tends to perform well when using high dimensional data. The combination of 

the fact that these algorithms allow for the use of multiple modalities and the use of high 

dimensional data, is why they are chosen as a basis for comparisons within this project. 

Even though the previously mentioned techniques seem promising in the classification of 

individual clinical status, current literature is lacking comparisons between these different 

approaches. The machine learning techniques have all been used in the classification between 

healthy controls and those suffering from (prodromal) Alzheimer’s disease (Challis et al., 2015; 

Davitzikos et al., 2008; Ferreira et al., 2018; Youssofzadeh et al., 2017; Zhang et al., 2010). The results 

within these studies could give some indication of differences in the performance of the models, but 

due to varying designs, respondents and datasets, meaningful comparisons cannot be comprised in a 

straightforward way. In order to receive such insights, models using the different algorithms need to 

be fit to a single dataset. 

Also, the impact of using heterogeneous, but complementary (multimodal) data needs to be 

studied in a similar manner. In order to do this, the same means of analysis needs to be put to both a 

unimodal dataset and a multimodal one (consisting of scans rendered from the same participants). 

To make this possible, the same set of respondents need to be subjected to varying types of 

neuroimaging data. These will be the main topics within this project. In conclusion, the research 

questions posed within this thesis are as follows: 

- Are the different algorithms able to cope with the challenges of high dimensionality and the 

use of heterogeneous but complimentary data (multiple modalities)? 

- To what degree do the performances of the different classification methods differ from each 

other? 

- Does the use of heterogeneous but complimentary data (multiple modalities) lead to better 

results in classification compared to using a single modality, and if so, to what extent? 
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2. Methodology 

 

In order to get insight into possible answers to the research questions, information has to be 

gathered into the workings of the different algorithms. For example: What are the advantages and 

disadvantages of each of the techniques? Within this section, the different machine learning 

techniques and how they’ve been used within previous research are the first thing that shall be 

expanded upon. Afterwards, details regarding the data and sample shall be given. Finally, the process 

of computing, optimizing and assessing the performance of the models will be discussed. 

 

2.1 Machine learning classifiers 

 

2.1.1 Support vector machines 

 

The support vector machine (SVM) is an example of a supervised machine learning 

technique. In order to make classifications between different groups, the algorithm of the support 

vector machine fits a hyperplane in an N-dimensional space (with N being the number of features) 

that separates the data points (as good as possible). To separate the two classes of data points, there 

are many possible hyperplanes that could be chosen. The objective of the algorithm is to find a plane 

that holds the maximum margin (i.e., the maximum distance between data points of both classes). 

The larger the margin distance, the easier it is to discriminate between the groups. A large margin 

distance provides some reinforcement so that future data points (test data) can be classified with 

more confidence since a slightly higher/lower value on the feature will still not have it overlap with 

the other group. Support vectors are data points that are closest to the hyperplane and influence the 

position and orientation of the hyperplane. Using these support vectors, the method maximizes the 

margin of the classifier. Deleting the support vectors will change the position of the hyperplane. 

These are the points that help build the SVM. In real life situations, however, it is unrealistic that data 

point are perfectly separable by group on each of the features. Some overlap is to be expected. The 

algorithm allows for some error made by overlap named the soft margin parameter. The goal of the 

program is to maximize the margin distance whilst minimizing the soft margin parameter.  
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The main advantage of the use of the support vector machine lies in its effectiveness in high 

dimensional spaces (i.e., when the number of features is higher than the amount of observations). 

Also, due to the fact that it uses only certain points of the training data (the support vectors) in the 

decision making, it is also computationally efficient. A major disadvantage of the SVM is that it 

doesn’t perform as well when the data contains (a lot of) noise. This happens when the classes of the 

data points overlap each other to a large extent (i.e., a high value on the soft margin parameter). 

Also, the support vector machine does not provide estimations of probability of class memberships. 

In order to receive probabilistic explanations, calculations must be rendered using cross-validations 

which can be computationally expensive. 

SVM has already been used in several studies. As mentioned before, mild cognitive 

impairment (MCI) is generally regarded as a transitional period between the cognitive changes of 

normal aging and the earlier changes related to Alzheimer’s disease. In a study by Long et al. (2016), 

multiple variations of magnetic resonance imaging (MRI) were used as a means to discriminate 

between patients suffering from MCI (N = 29) and healthy controls (N = 33). A support vector 

machine approach was chosen as a means of classification between the two groups. After training 

the model, leave-one-out cross-validation had been used to evaluate the performance of the model. 

A classification accuracy of up to 96.77% was found. In another example regarding the classification 

of patients with prodromal Alzheimer’s disease (MCI) versus healthy controls, (multi-modal) 

structural data obtained by magnetic resonance imaging (density of grey-matter, density of white 

matter and cerebrospinal fluid) was used to make a distinction between the two groups (Davatzikos 

et al., 2008). Thirty elderly individuals, fifteen of whom were suffering from MCI, were subjected to a 

scan as part of the Baltimore Longitudinal Study of Aging neuroimaging substudy (Resnick et al., 

2000). Using a support vector machine, a model was trained. Leave one-scan-out cross validation had 

been used to assess the predictive power of the model and a classification accuracy of 90% was 

found. 

Besides classifications regarding Alzheimer’s disease and MCI, the support vector machine 

has also been proven useful in the classification of individual clinical status of other diagnoses. 

Impairments in executive function and language processing are characteristic of both schizophrenia 

and the bipolar disorder. In a study posted by Costafreda et al. (2011), 32 patients with schizophrenia 

in remission, 32 patients with bipolar disorder in an euthymic state and 40 healthy controls 

underwent functional magnetic resonance imaging (fMRI) whilst performing a phonological verbal 

fluency task. During this task, both patient groups (in comparison to the healthy controls) showed 

increased activation in the anterior cingulate, left dorsolateral prefrontal cortex and right putamen. 
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support vector machine classification was used and assessed by leave-one-out cross-validation.          

In conclusion, SVM was able to correctly classify schizophrenic patients with a sensitivity of 91% and 

specificity of 92%. Some of the bipolar patients (12 out of 32) were misclassified as healthy controls, 

resulting in a lower accuracy (79%) with a sensitivity of 56% and a specificity of 89%. 

 

2.1.2 Gaussian process classification 

 

The Gaussian process classifier (GPC) is another example of a supervised machine learning 

technique. The GPC classifies a case to a certain class based on a probability. This probability is 

related to an unconstrained latent function defining the covariance function of the data, and is 

estimated based on the data onto which the algorithm is trained. The relationship of a data point to  

this latent function is quantified using the probit transformation (Kuss et al., 2005). When new data 

(test cases) are introduced, their values on the latent function are again determined and likelihoods 

are quantified using the same transformation and their relationship to the training data. Based on 

these calculations, the new cases are assigned to one of the groups (i.e., modal assignments). Namely 

the group with the largest probability of the case belonging to said group. An advantage of the 

Gaussian process classifier is that since the prediction is probabilistic, empirical estimations of said 

probability can be computed. A disadvantage of this machine is that the model can lose efficiency in 

high dimensional spaces (when the number of features greatly exceeds the number of cases). 

GPC has been applied successfully in previous studies. In the classification of mild cognitive 

impairment and Alzheimer’s disease versus healthy controls, a study by Challis et al. (2015) uses 

Gaussian process logistic regression (classification) on resting-state data of the brain, obtained by 

means of functional magnetic resonance imaging (fMRI) to make distinctions between the different 

(patient) groups. In total, data from 116 participants had been gathered and analyzed, 39 of which 

were healthy controls, 50 with a diagnosis of MCI and 27 patients suffering from Alzheimer’s disease. 

In the end, the implemented model achieved a 75% accuracy in the discrimination of MCI versus 

healthy controls. In the classification of patients suffering from AD versus those with MCI, a 97% level 

of accuracy was found. 
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Gaussian process classification has also been used for other means than the classification of 

patients with AD/MCI. Post-traumatic stress disorder (PTSD) has been found to be associated with 

decreased regulatory activation from the medial prefrontal cortex and increased activation of the 

limbic system. In a study by Andrew et al. (2018), the amplitude of low frequency fluctuation was 

measured by fMRI in order to map the brain’s activation in a resting state of 181 participants. 81 of 

these respondents were diagnosed with PTSD, 49 with PTSD of the dissociative subtype and the 

remainder functioned as the control group (N = 51). A multiclass Gaussian process classifying 

algorithm had been used to make the distinctions between the three groups. An overall accuracy of 

91.63% was found, based on correct classification of healthy controls (87.50%), PTSD (94.81%) and 

PTSD+DS (89.90%). 

 

2.1.3 Multiple kernel learning 

 

The multiple kernel machine learning technique aims at simultaneously learning a kernel and 

the associated (relevant) predictors in a supervised learning setting (Rakotomamonjy et al., 2008). A 

kernel serves two distinct functions: it defines the similarity between two examples (i.e., regions of 

interest), whilst defining an appropriate regularization term for the learning (classification). 

Combinations of kernels derived from multiple sources are used in the overall goal of increasing the 

models’ accuracy. 

The main advantage of MKL arises in situations where multimodal data (heterogeneous but 

complimentary) is used as input within one model. The algorithm defines a specialized kernel for 

each of the modalities, along with kernels for each of the ROI’s as defined by an atlas (per modality). 

The combination of these specialized kernels could lead to an enhancement of the accuracy when 

compared to only using a single modality. A disadvantage of multiple kernel learning is that the 

technique only works on datasets containing a relatively small set of features (e.g., 50 per modality). 

Since the amount of features used within this project greatly exceeds that amount, an atlas, 

indicating regions of interest (and therefore sets of voxels), is included when using this technique. 

The incorporation of the atlas limits the amount of kernels that need to be specified (per modality) to 

the amount of ROI’s as defined by the atlas. Another disadvantage of multiple kernel learning seems 

to be that results are less interpretable than other techniques and computationally expensive (as to 

evaluate the model output you need to evaluate all of the base kernels). 
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MKL has also been applied in the classification of patients suffering from Alzheimer’s disease 

from those with mild cognitive impairment and healthy controls. In a study by Youssofzadeh et al. 

(2017), multimodal data was used in the classification of 286 participants (AD N=58, MCI N = 108, HC 

N = 120). Data gathered by magnetic resonance imaging (MRI) and by positron emission tomography 

(PET) was combined and analyzed with the multiple kernel learning algorithm. The analysis yielded 

positive results for each of the three classification problems. For AD vs HC, it posed a balanced 

accuracy of 95.7%, 95.1% in the discrimination between MCI vs HC and the balanced accuracy for AD 

vs MCI was set at 95.1%. In order to get insight into the (possible) effect that the combination of the 

modalities had, unimodal analyses were run on the PET data by means of a support vector machine. 

The balanced accuracies were found to be 90.07%, 81.6% and 79.59% for the three classification 

problems respectively, underlining the previously mentioned positive effect found by combining 

heterogeneous but complementary data into a single analysis. 

A great challenge in the early treatment of mood disorders currently is making the 

differential diagnosis between a major depression disorder (MDD) and a bipolar disorder (BD), as 

60% of depressed bipolar patients are initially misdiagnosed with MDD (Goodwin, 2012). In a recent 

study, multiple kernel learning had been used successfully in the classification of individual clinical 

status between three groups of respondents. 74 patients with a current MDD, 74 with bipolar 

disorder (type 1) and 74 healthy controls (all of similar demographics) had been included. Multiple 

modalities of structural neuroimaging data had been gathered and analyzed using the machine 

learning technique, rendering a balanced accuracy of 73.65% (Vai et al., 2020). 

 

2.1.4 Overall expectations for the situation at hand 

 

Even though the techniques have proven effective in the prediction of individual clinical 

status (as in the examples listed above), each come with their own advantages and disadvantages. 

The choice for the right algorithm might therefore vary over different situations. Within this thesis 

project, three different classification problems shall be addressed. First, the classifications based on 

MRI data, secondly discriminations based on PET data and lastly a classification problem using both 

modalities together. With regard to the unimodal analyses, I would expect the support vector 

machine to perform better than the other techniques since its main advantage is the fact that it 

tends to perform well in situations of high dimensionality (as is the case when using neuroimaging 

data).  
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The Gaussian process classifier on the other hand, is said to underperform in this situation. When 

using both modalities of data simultaneously (multimodal analyses), multiple kernel learning might 

be the best course of action since the algorithm specifies different kernels for each of the modalities, 

which might improve the overall classification performance. 

 

2.2 Data and sample 

 

16 subjects with a diagnosis of alcohol dependence (DSM-IV) have been included through the 

recruitment by a board-certified psychiatrist (specializing in substance dependency) at the Psychiatric 

Hospital ‘Alexianen Tienen’ and the Psychiatry department of the University Hospital Leuven. All 

participants have been included within their first two weeks of supervised abstinence. 32 healthy 

controls were recruited through local advertisement and randomly selected based on age. Each 

alcohol-dependent participant had two age-matched controls. Healthy controls consuming more 

than seven units of alcohol per week or drank more than five units in one sitting regularly, were 

excluded from the study. Out of the alcohol-dependent respondents, three out of sixteen are female 

and the mean age within the group is 46 years (SD = 8). In case of the healthy controls, fourteen are 

female (N =32). The age of the healthy controls has a mean of 45 with a standard deviation (SD) of 

13. Each participant of both the alcohol-dependent group, and the healthy controls underwent PET-

imaging and structural MRI (Leurquin-Sterk et al., 2018). 

Magnetic resonance imaging (MRI) is a non-invasive imaging technology that produces three 

dimensional, detailed anatomical images and is often used for disease detection, diagnosis and 

treatment monitoring. It is based on sophisticated technology that excites and detects the change in 

the direction of the rotational axis of protons found in the water that makes up living tissues. Data 

represents the amount of grey matter per voxel. As for PET (positron emission tomography), a 

radioactive tracer is injected, inhaled or swallowed before the scan. The tracer collects in areas in the 

brain where high chemical activity is taking place, and is measured/quantified by the scan. This type 

of scan has both a structural and a functional use. 
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The PET data at hand has already been used in the classification of individual clinical status of 

the two groups. A support vector machine approach had been used to discriminate between the two 

groups and its performance was assessed by leave-one-out cross-validation. In the end, a balanced 

accuracy of 79.7% had been found (Devrome et al., n.d.). It will be interesting to see if optimizing the 

parameters of the model, using a different algorithm, or combining multiple modalities will have 

impact on this value of balanced accuracy (and therefore the performance of the model). 

 

2.3 Implementation of the analyses 

 

2.3.1 PRoNTo 

 

The ‘Pattern Recognition for Neuroimaging Toolbox (PRoNTo)’ (Schrouff et. al., 2013) is a 

toolbox within the MATLAB environment which supports all three of the previously mentioned 

machine learning techniques. In PRoNTo, brain images are treated as spatial patterns and statistical 

learning models (machine learning algorithms) are used to identify statistical properties of the data 

that can be used to discriminate between groups of subjects (supervised classification). The program 

uses NIFTI files as input which are mostly designed to analyze structural magnetic resonance imaging 

(MRI) and positron emission tomography (PET) data. Also, PRoNTo includes the possibility to 

incorporate multiple modalities within a single model, making the program ideal in the current 

situation. The effectiveness of the program has been proven various times over multiple different 

study designs aiming to classify individual clinical status (Ferreira et al., 2018; Fernandes et al, 2020; 

Portugal et al., 2019; Ranlund et al., 2018). In order to reach the best possible outcome of the 

different models, settings on certain options within the toolbox need to be optimized. The three 

most influential ones shall be discussed below. 
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2.3.2 Scaling 

 

The scaling option within PRoNTo allows for the specification of a constant value to scale 

each scan. The range of the data is then adjusted to a maximum of the indicated value. During the 

feature set preparation phase of the analysis, a vector containing constant values can be added 

containing this constant value. The vector must be of the same size as the number of scans within 

the modality. In case of modalities with a (possible) large variation in range across different subjects, 

such as PET, this step (adding a value for scaling the data) is required since it ensures the 

convergence of the machine learning algorithm. As mentioned before, PET data represents the 

concentration of a radioactive tracer in a certain voxel. This value can range from 0 to several 

hundreds and therefore cannot always be compared across voxels and subjects in a straightforward 

way. The scale of the MRI data, however, is more comparable across voxels and subjects since values 

in cells represent the percentage of grey matter per voxel (expressed on a scale from 0 to 1). Due to 

this fact, scaling is not a mandatory step in the use of MRI data as it is for PET data. Within this thesis 

project, multiple (constant) values for scaling of the PET data shall be applied within the analyses in 

order to find the optimal value that renders the best possible classification accuracy. In particular, 

the following four values are used: 0.1, 1, 50 and 100. For the analyses using MRI data, the effect of 

using no scaling shall also be put to the test. This won’t be the case for the PET data since scaling is a 

mandatory step in analyses using said scans. 

 

 

2.3.3 Masks 

 

A mask is used to optimize the feature selection of the different datasets. The PRoNTo 

toolbox allows for the specification of both a first-level mask and a second-level mask. The first-level 

mask is used to discard uninteresting features (voxels) within the dataset, such as areas outside of 

the brain. It is compulsory to add a first-level mask to each modality (it can be the same for each of 

the modalities), in order to render a feature set. The inclusion of a second-level mask isn’t mandatory 

but can be helpful regarding certain research questions. The second-level mask can, for example, 

restrict the analysis to certain areas of the brain. Within this project, the effect on performance of 

two different first-level masks and the inclusion of a second-level mask will be put to the test. All 

different masks have been provided by Dr. Ceccarini to be used within this project.  
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The two provided first-level masks are different versions of the same one, discarding the 

extra-cerebral signals (such as the skull). The difference between the two is a variation in appointed 

voxel size. Within this project, they will be named Mask-A and Mask-B in order to avoid confusion. 

Mask-A shall be included in each of the models unless otherwise specified, since the inclusion of a 

first-level mask is mandatory. The second-level mask is defined by the ROI’s where significant 

decreased mGLuR5 binding has been found in alcohol-dependent respondents in comparison to 

healthy controls in a study that uses the same datasets as used within this project (Leurquin-sterk et 

al., 2018). 

 

2.3.4 Atlases 

 

A brain atlas divides an image into certain sections (combinations of features), indicating 

different parts of the brain (representing regions of interest, ROI’s), and allows for a specific kernel to 

be made for each. Also, the computation of a weight map (in order to get insight into the 

contribution of certain voxels/regions of interest to the performance of the model) is based on the 

regions specified in the atlas. The inclusion of an atlas is a necessary step in order to render a model 

based on multiple kernel learning (MKL). The MKL-algorithm specifies a specific kernel for a set of 

features as specified by the atlas. Without predefined sets of features (regions of interest), the 

program tries to calculate a kernel for each separate feature, which isn’t possible when the original 

data is used as it contains too many voxels. This is why the inclusion of an atlas is mandatory when 

using this particular machine. Two different atlases are offered within PRoNTo. Also, two different 

atlases have been provided by Dr. Jenny Ceccarini for this thesis project. The effect of the four atlases 

will be put to the test to get insight into their effect on the performance of models using multiple 

kernel learning. The atlases are named as follows: 

1. The AAL1-atlas (included within PRoNTo) 

2. The Brodmann-atlas (included within PRoNTo) 

3. The AAL2-atlas (provided by Dr. Ceccarini) 

4. The Hammers-atlas (provided by Dr. Ceccarini) 

Note that two different versions of the AAL-atlas shall be used. Even though the two atlases define 

the same (number of) regions of interest, due to a difference in voxel size as defined by the atlases, 

the boundaries of the regions vary between the two.   
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2.3.5 Assessing the models’ performance and interpretation 

 

The performance of the different models will be quantified and compared using two different 

performance measures. The first of which being the balanced accuracy (BA). The balanced accuracy is 

calculated by taking the average of the proportion of correct classifications of each class individually. 

In other words, it is computed by adding the sensitivity and the specificity to each other and dividing 

said number by two, which gives a value between 0% and 100%. An advantage of the use of this 

measure is that it gives a good indication of performance, even when the amount of subjects in each 

class is imbalanced (i.e., the number of cases belonging to one class being –much– larger than the 

other), as is the case within this project. 

As for the second measure, the area under the curve (AUC) is a diagnostic measure for the 

performance of binary classification, scaled on a range between 0 and 1. This measure calculates the 

area under the receiver operating characteristic curve (ROC), a graph where two parameters are 

plotted. The first being the true positive rate (the proportion of correctly identified alcohol-

dependent respondents) and the second being the false positive rate (the proportion of healthy 

controls misclassified as belonging to the alcohol-dependent group). The parameters are plotted 

using several threshold settings. This threshold represents the boundary between the two groups 

given the features in the data as calculated by the algorithm. The higher the area beneath the ROC-

curve (and therefore the higher the value on AUC), the better the performance of the model. Besides 

the balanced accuracy (BA), the value of the AUC shall be given for each of the models when 

displaying results. Since the ROC curve is plotted using different thresholds (i.e., variations on the 

boundary as calculated by the algorithm) and the summary across the different thresholds is 

reported in area under the curve, it is possible that the value of AUC will represent a better 

performance than indicated by the balanced accuracy.  

In order to test the generalization ability of the performance of the different models, leave-

one-subject-out cross-validation (LOSO) is employed when running the different analyses. This step is 

necessary in order to estimate the test error of a model. When running the model, the parameters 

are fit to a partition of the data (the training set), consisting of all scans except for one subject (either 

one scan or two, depending on either a unimodal or multimodal analysis). After the model is put to 

the training data, the performance is assessed by using it to classify the unseen data/scan(s). If the 

data is repartitioned repeatedly (i.e., leaving a different subject out at each split), it is possible to 

approximate the generalization error of the model by calculating the average BA or AUC across the 

different partitions of the data. 



18 
 

Permutation testing is a non-parametric procedure, aimed to obtain meaningful P-values for 

(in this case) class-specific accuracy’s and the balanced accuracy (BA) of the different models. The 

process behind the permutation test is to redo the cross-validation procedure a certain number of 

times (R), herewith randomly shuffling the subjects across the different groups (alcohol-dependent 

and healthy controls). As such, based on the R permutation samples, an empirical sampling 

distribution of plausible values of the balanced accuracy under the null hypothesis is obtained; this 

allows for the computation of a P-value for this statistic indicating the probability that this statistic 

would be at least as extreme as we have observed, if the null hypothesis is true. The null hypothesis 

in this situation being that no distinction between the two groups can be found based on the data at 

hand. The smallest increment in P-value is equal to 1/R. Within this thesis project, the final models 

(after optimizing other parameters such as the proper scaling values) will be rendered a last time. For 

those models, P-values shall be computed using 300 permutations, giving a lowest possible P-value of 

.0033. 

PRoNTo allows for the computation of weight maps which can help with the interpretation of 

the rendered models. An atlas (as mentioned before) is included to indicate regions of interest within 

the brain (ROI’s). Weight maps are images which indicate which of the pre-defined regions of interest 

(by the atlas) contribute (most) to the performance of the model, and to what degree. Also, during 

this computation, tables are provided displaying percentages of the contribution of the different 

regions to the discriminative power of the classification model. For the final (best performing) MKL 

models for each of the classification problems, weight maps shall be computed, and 

presented/discussed in the results section. The decision to use the MKL analyses as a basis for the 

weight maps is due to the fact that each of these analyses incorporates an atlas, whereas the original 

data (with voxels instead of ROI’s) will be used for the support vector machines and Gaussian process 

classifiers. 
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3. Results 

 

 As has been previously mentioned, in order to make meaningful comparisons between the 

performances of the different machine learning algorithms, the value of parameters and settings 

need to be optimized. Three different comparisons shall be made; (1) One between the algorithms 

using the structural MRI data, (2) one using the PET data and (3) one involving multimodal 

comparisons between the machines’ performances. For each of these comparisons, different values 

for scaling the data are explored. After finding the optimal value for scaling (for each of the 

machines), different atlases have been tried out (a necessary step when using multiple kernel 

learning). Using this information, different combinations of masks have been applied to eventually 

find optimal settings and values for the different parameters. Using these optimal combinations, final 

results are rendered and compared on the performance measures and weight maps (to investigate 

the importance of different regions of interest) are inspected. 

 

3.1 Unimodal analyses using MRI data 

 

 The first analyses that will be compared to one another are the unimodal ones using the 

structural MRI data. As discussed above, the first step in the process had been exploring different 

values for scaling. For these computations, Mask-A has been used and no second level mask has been 

included. The impact of using different masks shall be discussed later on. 

 

Table 1 
Unimodal scaling experiments for GPC and SVM using MRI data 

Machine 
 

Modality Atlas Scaling CV-
Scheme 

Balanced 
Accuracy 

AUC 

 
GPC 

 
MRI 

 
- 

 
- 

 
LOSO 

 
100% 

 
1.00 

 
SVM MRI - - LOSO 98.44% 1.00 

SVM MRI - 1 ‘’ 98.44% 1.00 

SVM MRI - 50 ‘’ 98.44% 1.00 

SVM MRI - 100 ‘’ 98.44% 1.00 
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 Table 1 displays the results of the scaling experiments for both the Gaussian process classifier 

and the support vector machine algorithm. In case of the GPC, an optimal outcome (with a 100% 

classification performance) had been found at the first try. As for the support vector machine, the 

value of scaling did not seem to result in a change in performance. A high value of accuracy had been 

found nonetheless, indicating promising results for the classifiers. 

 

Table 2  

Atlas- and scaling experiments for MKL using MRI data 

Machine 
 

Modality Atlas Scaling CV-Scheme Balanced 
Accuracy 

AUC 

       

MKL MRI AAL - LOSO 48.44% 0.62 

MKL MRI AAL 0.1 ‘’ 48.44% 0.61 

MKL MRI AAL 1 ‘’ Error Error 

MKL MRI AAL 50 ‘’ 92.19% 0.96 

MKL MRI AAL 100 ‘’ 92.19% 0.96 
 

MKL MRI Brodmann - LOSO 46.88% 0.32 

MKL MRI Brodmann 0.1 ‘’ 53.13% 0.68 

MKL MRI Brodmann 1 ‘’ Error Error 

MKL MRI Brodmann 50 ‘’ 96.88% 1.00 

MKL MRI Brodmann 100 ‘’ 96.88% 1.00 
 

MKL MRI Hammers - LOSO 71.88% 0.77 

MKL MRI Hammers 0.1 ‘’ 42.19% 0.51 

MKL MRI Hammers 1 ‘’ 71.88% 0.77 

MKL MRI Hammers 50 ‘’ 98.44% 0.97 

MKL MRI Hammers 100 ‘’ 98.44% 0.97 
 

MKL MRI AAL2 - LOSO 48.44% 0.70 

MKL MRI AAL2 0.1 ‘’ 48.44% 0.59 

MKL MRI AAL2 1 ‘’ 48.44% 0.70 

MKL MRI AAL2 50 ‘’ 98.44% 0.97 

MKL MRI AAL2 100 ‘’ 98.44% 0.97 
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Table 2 shows both the results for the scaling experiments and the impact of the different 

atlases for the multiple kernel learning algorithm using the MRI data. Note that for two of the 

rendered analyses, the value of balanced accuracy and area under the curve has not been included as 

PRoNTo indicated that the computation of these statistics is not possible due to improper scaling. 

Out of the different atlas options, the value of scaling seems to have the least impact on the 

performance when using the Hammers-atlas. The largest impact of scaling is found when using the 

Brodmann-atlas. In general, using a too low scaling value (no scaling or 1) leads to a worse 

classification that using a larger scaling value (50 or 100). When a large enough scaling value is 

chosen, recovery is very good (more than 90%) for all atlases. 

After optimizing the value for scaling the data, a perfect value (of 1) on area under the curve 

has been found when including the Brodmann-atlas. The same values on BA and AUC, and overall 

best (combination of) results have been found when using either the Hammers- or the AAL2-atlas. 

For further analyses, it has been chosen to use the AAL2-atlas since this atlas has also been found to 

be the best option when using the PET- or multimodal datasets (Table 7 and Table 13). 

 

Table 3 

Mask experiments for unimodal analyses using MRI data 

Machine 
 

Modality Atlas Scaling 1-st 
Level 
Mask 

2-nd 
Level 
Mask 

CV-
Scheme 

Balanced 
Accuracy 

AUC 

         
GPC MRI - - Mask-A - LOSO 100% 1.00 

GPC MRI - - Mask-B - ‘’ 100% 1.00 
 

SVM MRI - - Mask-A - LOSO 98.44% 1.00 
SVM MRI - - Mask-B - ‘’ 98.44% 0.98 

SVM MRI - - Mask-B YES ‘’ 98.44% 0.97 

SVM MRI - - Mask-A YES ‘’ 98.44% 0.97 
 

MKL MRI AAL2 50 Mask-A - LOSO 98.44% 0.97 

MKL MRI AAL2 50 Mask-B - ‘’ 98.44% 0.97 

MKL MRI AAL2 50 Mask-B YES ‘’ 92.19% 0.97 

MKL MRI AAL2 50 Mask-A YES ‘’ 89.06% 0.97 
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 After finding the optimal settings with regard to scaling and the atlas (for MKL), these values 

were used as a basis in order to find what mask(s) would result in the best possible outcome. The 

results corresponding to the models using different options for mask-selection are displayed in Table 

3. First of all, the inclusion of the second-level mask seems to lower the computed performances of 

the different models using MKL. Across most models, the incorporation of either Mask-A or Mask-B  

does not seem to make a difference. Only in the use of the support vector machine does the 

incorporation of the Mask-B result in a slightly lower value for AUC. For this reason, Mask-A has been 

included into the final models for the unimodal analyses based on MRI data. 

 

Table 4 
Final outcomes of unimodal analyses of models using MRI data 

Machine 
 

Modality Atlas Scaling 1-st 
Level 
Mask 

2-nd 
Level 
Mask 

CV-
Scheme 

Balanced 
Accuracy 

Class 
AC 
HC 

Class 
AC 
ALC 

AUC 

           
GPC MRI - - Mask 

A 
- LOSO 100% 

 P = 
.0033 

100% 
 P = 

.3056 

100% 
 P = 

.0033 
 

1.00 

SVM MRI - - Mask 
A 

- LOSO 98.44% 
P = 

.0033 

96.88% 
P =  

.0033 

100% 
P = 

.0033 
 

1.00 

MKL MRI AAL2 50 Mask 
A 

- LOSO 98.44% 
P = 

.0033 

96.88% 
P =  

.0033 

100% 
P = 

.0033 
 

0.97 

 

 

 Table 4 displays the final outcomes of the unimodal analyses of models trained on MRI data. 

Overall, the different methods have all performed really well in discriminating between healthy 

controls and alcohol-dependent respondents. During these final analyses, permutations (consisting 

of 300 repetitions) have been rendered. Due to these permutations, P-values are added to the table. 

The classifications and the corresponding statistics seem to be quite stable except for the class 

specific accuracy of the healthy controls in the GPC analysis. The accuracy of the classification to this 

class had been set at 100% but apparently this value wasn’t extreme in the distribution of plausible 

values of this statistic (as calculated during the permutation process) under the null-hypothesis. 
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In the other two models, one classification error had been made. In both cases, one of the healthy 

controls has been misclassified as belonging to the alcohol-dependent group (which can be seen by 

the class accuracies in Table 4).  

After the final renditions of the models based on unimodal MRI data, weight maps have been 

computed (images of which can be found in Appendix I). Since the multiple kernel learning method 

makes a specific kernel for each of the ROI’s specified by the included atlas, this is the ideal model to 

get insight into the contribution of areas of the brain to the discriminative power of the model. Table 

5 shows these contributions expressed in percentages (rounded to two decimals). The results posted 

in the table indicate that especially the angular gyri and hippocampus (in both hemispheres), play a 

large role in making the distinction between the two groups as they account for almost all of the 

contribution (i.e., about 98.6%) to the predictive power of the model. 

Table 5  

Weights of ROI’s in finalized MKL-model using MRI data 

Region of interest Contribution to performance 

Angular Gyrus Left 43.62% 
Hippocampus Right 25.42% 
Hippocampus Left 15.18% 

Angular Gyrus Right 14.40% 
Frontal Inferior Operculum Right 1.39% 

Note. Percentages are rounded to two decimals. 

 

3.2 Unimodal analyses using PET data 

 

After finalizing the unimodal analyses based on MRI data, the same steps were taken with 

regard to the unimodal analyses based on PET data. The first step is the search for optimal values for 

scaling. Note that analyses based on PET data require the inclusion of a scaling value, so a scaling 

vector has been added to each of the rendered models. The results of scaling experiments for the 

support vector machine and Gaussian process classifier are summarized in Table 6. 
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Table 6 
Unimodal scaling experiments for GPC and SVM using MRI data 

Machine 
 

Modality Atlas Scaling CV-
Scheme 

Balanced 
Accuracy 

AUC 

       

GPC PET - 0.1 LOSO 67.19% 0.79 

GPC PET - 1 ‘’ 48.44% 0.00 

GPC PET - 50 ‘’ 73.44% 0.76 

GPC PET - 100 ‘’ 73.44% 0.77 
 

SVM PET - 0.1 LOSO 73.44% 0.78 

SVM PET - 1 ‘’ 73.44% 0.78 

SVM PET - 50 ‘’ 73.44% 0.78 

SVM PET 
 

- 100 ‘’ 73.44% 0.78 

 

 

When looking at the results in Table 6, the first thing to notice is that the overall 

performances across the different models have been set at lower values than the models trained on 

MRI data (Table 1). Just as with the unimodal MRI-analyses, the value for scaling does not impact the 

performance of the support vector machines. The same cannot be said for GPC, where a higher value 

of scaling seems to improve its accuracy and setting it at the same value as for the SVM. Note that a 

value of 0.00 on area under the curve has been found when using a scaling value of 1 in the GPC 

model. When using this value, all of the cases (from both groups) are classified as healthy controls, 

resulting in a value of 0 on AUC. The next step in the process of optimizing the models is finding the 

optimal value for scaling in MKL and choosing an appropriate atlas. The results of this search are 

summarized in Table 7. 
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Table 7 
Atlas- and scaling experiments for MKL using PET data 

Machine 
 

Modality Atlas Scaling CV-
Scheme 

Balanced 
Accuracy 

AUC 

       

MKL PET AAL 0.1 LOSO 71.88% 0.63 

MKL PET AAL 1 ‘’ 78.13% 0.77 

MKL PET AAL 50 ‘’ 60.94% 0.68 

MKL PET AAL 100 ‘’ 67.19% 0.75 
 

MKL PET Brodmann 0.1 LOSO Error Error 

MKL PET Brodmann 1 ‘’ 59.38% 0.63 

MKL PET Brodmann 50 ‘’ 64.06% 0.70 

MKL PET Brodmann 100 ‘’ 70.31% 0.74 
 

MKL PET Hammers 0.1 LOSO 71.88% 0.79 

MKL PET Hammers 1 ‘’ 71.88% 0.79 

MKL PET Hammers 50 ‘’ 59.38% 0.70 

MKL PET Hammers 100 ‘’ 57.81% 0.69 
 

MKL PET AAL2 0.1 LOSO 78.13% 0.83 

MKL PET AAL2 1 ‘’ 78.13% 0.83 

MKL PET AAL2 50 ‘’ 78.13% 0.83 

MKL 
 

PET AAL2 100 ‘’ 75.00% 0.81 

       
 

Out of the models posted in the table above, the best combination of both balanced accuracy 

and area under the curve has been found when setting the value of scaling at either 0.1, 1 or 50 and 

including the AAL2-atlas. For the next step, a scaling value of 50 has been chosen. This decision has 

been made in order to keep the value the same across the thee machines (the optimal value for 

scaling in SVM and GPC was also found at 50). In the first model using the Brodmann-atlas, no 

performance measures have been calculated due to bad scaling. Just like the results reported in 

Table 6, the performance of multiple kernel learning models based on PET data are lower than the 

same models based on MRI data (Table 2). 
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Table 8 
Mask experiments for unimodal analyses using PET data 

Machine 
 

Modality Atlas Scaling 1-st 
Level 
Mask 

2-nd 
Level 
Mask 

CV-
Scheme 

Balanced 
Accuracy 

AUC 

         
GPC PET - 50 Mask-A - LOSO 73.44% 0.77 

GPC PET - 50 Mask-B - ‘’ 64.06% 0.79 

GPC PET - 50 Mask-B YES ‘’ 73.44% 0.79 

GPC PET - 50 Mask-A YES ‘’ 76.56% 0.79 
 

SVM PET - 50 Mask-A - LOSO 73.44% 0.78 

SVM PET - 50 Mask-B - ‘’ 73.44% 0.80 

SVM PET - 50 Mask-B YES ‘’ 79.69% 0.83 

SVM PET - 50 Mask-A YES ‘’ 79.69% 0.84 
 

MKL PET AAL2 50 Mask-A - LOSO 78.13% 0.83 

MKL PET AAL2 50 Mask-B - ‘’ 78.13% 0.84 

MKL PET AAL2 50 Mask-B YES ‘’ 75.00% 0.75 

MKL PET AAL2 50 Mask-A YES ‘’ 75.00% 0.78 

         

 

 

 Table 8 shows the results of different renditions using all possible combinations of first- and 

second-level masks. In these same experiments using (unimodal) MRI data, the best option for all 

models had been set at the use of Mask-A and no inclusion of a second-level mask (Table 3). The 

same cannot be said for the analyses displayed in Table 8 for the PET data. For the GPC, the optimal 

combination seems the inclusion of both the Mask-A and the second-level mask. The same 

combination of masks came out as the best scoring one when using the SVM algorithm. Note that the 

value of BA is the same as when using first-level Mask-B, but the AUC value scores (slightly) better 

when using Mask-A. A slight change in AUC is also what makes the final distinction between 

combinations of masks in the analyses based on multiple kernel learning. For this algorithm, the best 

combination seems to be the use of Mask-B without a second-level mask. Out of all renditions, MKL 

performs best in these analyses based on PET data. Final renditions for these unimodal analyses 

(including P-values for balanced- and class specific accuracies) are displayed in Table 9. 
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Table 9 
Final outcomes of unimodal analyses of models using PET data 

Machine 
 

Modality Atlas Scaling 1-st 
Level 
Mask 

2-nd 
Level 
Mask 

CV-
Scheme 

Balanced 
Accuracy 

Class 
AC 
HC 

Class 
AC 
ALC 

AUC 

           
GPC PET - 50 Mask-A YES LOSO 76.56% 

 P = 
.0066 

90.63% 
 P = 

.9336 

62.50% 
 P = 

.0033 
 

0.79 

SVM PET - 50 Mask-A YES LOSO 79.69% 
P = 

.0033 
 

90.63% 
P =  

.0399 

68.75% 
P = 

.0033 

0.84 

MKL PET AAL2 50 Mask-B 
 

- LOSO 78.13% 
P = 

.0033 

93.75% 
P =  

.0166 

62.50% 
P = 

.0266 

0.84 

           

 

 

When looking at the results in Table 9, the first thing to notice is that the discriminative 

power of models trained on the PET data are set at a lower value than the models trained on the 

MRI-data (Table 4). Overall, the values of balanced accuracy seem to be quite stable. The same can 

be said for the class specific accuracy’s, except for the classification accuracy of the healthy controls 

of the GPC-model (P = .9336). This rather high P-value indicates that the value found in the original 

analysis isn’t extreme in the distribution of plausible values (of this statistic) under the null-

hypothesis as created by the permutation samples. The null-hypothesis in this case being that no 

accurate classification of healthy controls can be made based on the PET data. Across all three 

models, the class specific accuracies of the alcohol-dependent group are set at a (much) lower value 

than the class specific accuracies of the healthy controls. It seems that, when using the PET data, a lot 

of the alcohol-dependent participants are misclassified as healthy controls. 

Table 10 displays the contributing regions of interest for the final MKL-rendition on the PET 

data. The regions that are defined as contributing to the discriminative power of the model vary 

greatly from those selected when using the MRI data, even though the included atlas has been the 

same for both models (AAL2). When using the PET data, only both angular gyri are selected as 

contributing to the model.  
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Even though both areas are also selected by the model using the MRI data, other regions are left out 

(Table 5). In an interesting manner, when using the PET data (unimodally), the angular gyrus on the 

right-side hemisphere is said to have the most impact on the performance of the model. However, 

when the MRI data is used, the angular gyrus on the left hemisphere is selected as having the most 

impact on the classifications. Images of the weight maps can be found in Appendix I. 

 
Table 10 
Weights of ROI’s in finalized MKL-model using PET data 

Region of interest Contribution to performance 

Angular Gyrus Right 87.03% 
Angular Gyrus Left 12.97% 

 
Note. Percentages are rounded to two decimals. 

 

3.3 Analyses using multimodal data 

 

In order to get insight into the (possible) impact of using heterogeneous but complimentary 

data (multimodal) within a single analysis, a final set of renditions had been made using both the 

MRI- and PET data together. Another reason for doing so is to receive insight into which of the 

algorithms is best used in a situation of using multimodal data. Just as with the unimodal analyses, 

the same parameters need to be optimized, starting with a proper value for scaling (if any). The 

process of finding this value is, however, slightly different compared to the unimodal analyses since 

different values for scaling each modality can interact with one another. Since the use of PET data 

requires the inclusion of a value for scaling the data, the different values have first tried out on this 

data whilst keeping the MRI data as is (no scaling value is applied). After finding the optimal value for 

the scaling of the PET data, different values of scaling for the MRI data are put to the test while 

keeping the scaling for PET data at the same (optimal) value. The results of the scaling experiments 

for the Gaussian process classifier and the support vector machine are summarized in Table 11. 

 

 

 

 

 



29 
 

Table 11  
Scaling experiments for GPC and SVM using multimodal data 

Machine 
 

Modality Atlas Scaling 
MRI 

Scaling 
PET 

CV-
Scheme 

Balanced 
Accuracy 

AUC 

        

GPC Multimodal - - 0.1 LOSO 85.94% 0.90 

GPC Multimodal - - 1 ‘’ 85.16% 0.91 

GPC Multimodal - - 50 ‘’ 81.16% 0.92 

GPC Multimodal - - 100 ‘’ 85.16% 0.92 

GPC Multimodal - 0.1 0.1 ‘’ 85.16% 0.92 

GPC Multimodal - 1 0.1 ‘’ 85.94% 0.90 

GPC Multimodal - 50 0.1 ‘’ 83.59% 0.89 

GPC Multimodal - 100 0.1 ‘’ 83.59% 0.89 
 

SVM Multimodal - - 0.1 LOSO 68.75% 0.73 

SVM Multimodal - - 1 ‘’ 77.34% 0.86 

SVM Multimodal - - 50 ‘’ 83.59% 0.91 

SVM Multimodal - - 100 ‘’ 83.59% 0.91 

SVM Multimodal - 0.1 50 ‘’ 83.59% 0.91 

SVM Multimodal - 1 50 ‘’ 83.59% 0.91 

SVM Multimodal - 50 50 ‘’ 77.34% 0.86 

SVM Multimodal - 100 50 ‘’ 75.00% 0.81 

        

 

 

When looking at the results of the scaling experiments, a first thing to notice is that the 

different values of scaling pose little change in performance when using the GPC, which wasn’t the 

case when analyzing the unimodal PET data based on Gaussian process classification (Table 6). 

Regardless, the best performing model out of these renditions sets the scaling of the PET data at 0.1 

and no value for scaling the MRI data. The same balanced accuracy was found when using a scaling 

value of 1 for the MRI data, but since there is no difference, it is chosen to keep the MRI data as is. As 

for the support vector machines, the optimal combination of balanced accuracy and area under the 

curve had been found when scaling the PET data to a value of 50 and no scaling for the MRI data. 

Overall, the performances of these multimodal analyses are set at higher values than unimodal ones 

using the PET data, but lower than those using only the MRI data. These values are, however, not 

definitive since other parameters still need to be optimized. The next step in the process had been to 

determine the right combination of scaling values and atlases for the multiple kernel learning 

algorithm. Results of these experiments are posted in Table 12.  
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Table 12  
Atlas- and scaling experiments for MKL using multimodal data 

Machine 
 

Modality Atlas Scaling 
MRI 

Scaling 
PET 

CV-
Scheme 

Balanced 
Accuracy 

AUC 

        

MKL Multimodal AAL - 0.1 LOSO 46.88% 0.47 

MKL Multimodal AAL - 1 ‘’ 37.50% 0.40 

MKL Multimodal AAL - 50 ‘’ 89.06% 0.96 

MKL Multimodal AAL - 100 ‘’ 89.06% 0.96 

MKL Multimodal AAL 0.1 50 ‘’ 89.06% 0.96 

MKL Multimodal AAL 1 50 ‘’ 89.06% 0.96 

MKL Multimodal AAL 50 50 ‘’ 89.06% 0.96 

MKL Multimodal AAL 100 50 ‘’ 89.06% 0.96 
 

MKL Multimodal Brodmann - 0.1 LOSO 96.88% 1.00 

MKL Multimodal Brodmann - 1 ‘’ 96.88% 1.00 

MKL Multimodal Brodmann - 50 ‘’ 96.88% 1.00 

MKL Multimodal Brodmann - 100 ‘’ 96.88% 1.00 

MKL Multimodal Brodmann 0.1 1 ‘’ 96.88% 1.00 

MKL Multimodal Brodmann 1 1 ‘’ 96.88% 1.00 

MKL Multimodal Brodmann 50 1 ‘’ 96.88% 1.00 

MKL Multimodal Brodmann 100 1 ‘’ 96.88% 1.00 
 

MKL Multimodal Hammers - 0.1 LOSO 43.75% 0.43 

MKL Multimodal Hammers - 1 ‘’ 32.81% 0.34 

MKL Multimodal Hammers - 50 ‘’ 98.44% 0.97 

MKL Multimodal Hammers - 100 ‘’ 98.44% 0.97 

MKL Multimodal Hammers 0.1 50 ‘’ 98.44% 0.97 

MKL Multimodal Hammers 1 50 ‘’ 98.44% 0.97 

MKL Multimodal Hammers 50 50 ‘’ 98.44% 0.97 

MKL Multimodal Hammers 100 50 ‘’ 98.44% 0.97 
 

MKL Multimodal AAL2 - 0.1 LOSO 51.56% 0.69 

MKL Multimodal AAL2 - 1 ‘’ 51.56% 0.69 

MKL Multimodal AAL2 - 50 ‘’ 98.44% 0.97 

MKL Multimodal AAL2 - 100 ‘’ 98.44% 0.97 

MKL Multimodal AAL2 0.1 50 ‘’ 98.44% 0.97 

MKL Multimodal AAL2 1 50 ‘’ 98.44% 0.97 

MKL Multimodal AAL2 50 50 ‘’ 98.44% 0.97 

MKL Multimodal AAL2 100 50 ‘’ 98.44% 0.97 
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As can be seen in Table 12, the highest value of balanced accuracy that has been found is set 

at the value of 98.44%, which is higher than the values found when using a support vector machine 

or Gaussian process classifier (Table 11) and is a very good score overall. This value has been found 

when using either the Hammers-atlas or the AAL2-atlas. It is chosen to use the AAL2-atlas for further 

analyses to keep the chosen atlas consistent (the best performing unimodal analyses also 

incorporated this atlas, see Table 2 and Table 7). Interestingly, different values for scaling do not 

seem to impact the performance of the model when using the Brodmann-atlas which wasn’t the case 

for the unimodal analyses (Table 2 and Table 7). After finding optimal values for scaling, different 

combinations of first- and second-level masks are investigated. Results of these different renditions 

are summarized in Table 13. 

 

Table 13  
Mask experiments for analyses using multimodal data 

Machine 
 

Modality Atlas Scaling 
MRI 

Scaling 
PET 

1-st 
Level 
Mask 

2-nd 
Level 
Mask 

CV-
Scheme 

Balanced 
Accuracy 

AUC 

          
GPC Multimodal - - 0.1 Mask 

A 
- LOSO 85.94% 0.90 

GPC Multimodal - - 0.1 Mask 
B 

- ‘’ 84.38% 0.92 

GPC Multimodal - - 0.1 Mask 
B 

YES ‘’ 82.03% 0.90 

GPC Multimodal - - 0.1 Mask 
A 

YES ‘’ 85.16% 0.89 
 
 

SVM Multimodal - - 50 Mask 
A 

- LOSO 83.59% 0.91 

SVM Multimodal - - 50 Mask 
B 

- ‘’ 83.59% 0.91 

SVM Multimodal - - 50 Mask 
B 

YES ‘’ 82.13% 0.87 

SVM Multimodal - - 50 Mask 
A 

YES ‘’ 83.59% 0.88 
 
 

MKL Multimodal AAL2 - 50 Mask 
A 

- LOSO 98.44% 0.97 

MKL Multimodal AAL2 - 50 Mask 
B 

- ‘’ 98.44% 0.97 

MKL Multimodal AAL2 - 50 Mask 
B 

YES ‘’ 95.31% 0.97 

MKL Multimodal AAL2 - 50 Mask 
A 

YES ‘’ 92.19% 0.97 
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Table 13 displays the results of the mask-optimization process of the multimodal analyses. In 

all three cases, Mask-A has been chosen for the final analyses. Also, across all renditions, the 

inclusion of a second-level mask seems to decrease the value of balanced accuracy. Interestingly, the 

variation of the different mask-combinations doesn’t impact the performance of the different models 

as much as it does in the unimodal analyses. Especially in the unimodal analyses for the PET data, the 

mask seems to have a large impact (Table 8). The final multimodal analyses (including P-values for 

accuracies) are displayed in Table 14. 

 

Table 14 
Final outcomes of analyses of models using multimodal data 

Machine 
 

Modality Atlas Scaling 
MRI 

Scaling 
PET 

1-st 
Level 
Mask 

2-nd 
Level 
Mask 

CV-
Scheme 

Balanced 
Accuracy 

Class 
AC 
HC 

Class 
AC 
ALC 

AUC 

            
GPC Multimodal - - 0.1 Mask 

A 
- LOSO 85.94% 

P = 
.0033 

96.88% 
P =  

.7176 

75.00% 
P = 

.0033 

0.90 

            
SVM Multimodal - - 50 Mask 

A 
- LOSO 83.59% 

P = 
.0033 

85.94% 
P =  

.0066 

81.25% 
P = 

.0033 

0.91 

            
MKL Multimodal AAL2 - 50 Mask 

A 
- LOSO 98.44% 

P = 
.0033 

96.88% 
P =  

.0033 

100% 
P = 

.0033 

0.97 

            

 

 

As mentioned before, the best performing algorithm (model) out of the three is the multiple 

kernel learning method. For the measures regarding accuracy of this model, the results seem to be 

very stable. P-values are set at the lowest possible point when using the predefined number of 

permutations (300). This P-value indicates that the values of accuracies set by the model are clearly 

more extreme (i.e., larger) than the distribution of plausible values found during the permutation 

process under the null-hypothesis. The P-values of the accuracies in the other models are also set at 

low values, except for the class accuracy of the healthy controls in the model using Gaussian process 

classification. Interestingly, the class accuracy of healthy controls has also been the most unstable of 

the accuracies in the unimodal analyses as well (Table 4 and Table 9). 
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In Table 15, the percentage of contribution of different regions of interest (ROI’s) to the 

discriminative power of the MKL-model as listed in Table 14 are posted. The different areas within 

the brain that are selected as contributing to the power of the model are the same as have been 

found in the MKL-analysis using the MRI data. The corresponding percentages (rounded to two 

decimals) differ only slightly between the two models (Table 5). The weights as presented in this 

table do however, vary greatly from those found when using the PET data (Table 10). Images of the 

corresponding weight maps are found in Appendix I. 

 

Table 15 
Weights of ROI’s in finalized MKL-models using multimodal data 

Region of interest Contribution to performance 

Angular Gyrus Left 45.19% 
Hippocampus Right 25.48% 
Hippocampus Left 15.55% 

Angular Gyrus Right 12.36% 
Frontal Inferior Operculum Right 1.42% 

 
Note. Percentages are rounded to two decimals. 

 

3.4 Concluding remarks  

 

Three main research questions had been set within this project. Those three questions are as 

follows: 

- Are the different algorithms able to cope with the challenges of high dimensionality and the 

use of heterogeneous but complimentary data (multiple modalities)? 

- To what degree do the performances of the different classification methods differ from each 

other? 

- Does the use of heterogeneous but complimentary data (multiple modalities) lead to better 

results in classification compared to using a single modality, and if so, to what extent? 

A table displaying the finalized results for each of the three classification problems and the 

three algorithms, is presented below and will serve as a basis for shedding light onto these questions. 
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Table 16 
Final results for all classification problems 

Machine 
 

Modality Atlas Scaling 
MRI 

Scaling 
PET 

1-st 
Level 
Mask 

2-nd 
Level 
Mask 

CV-
Scheme 

Balanced 
Accuracy 

Class 
AC 
HC 

Class 
AC 
ALC 

AUC 

            
GPC MRI - - - Mask 

A 
- LOSO 100% 

P =  
.0033 

100% 
P = 

.3056 

100% 
P = 

.0033 
 

1.00 

GPC PET - - 50 Mask 
A 

YES ‘’ 76.56% 
P = 

.0066 

90.63% 
P = 

.9336 

62.50% 
P = 

.0033 
 

0.79 

GPC Multimodal - - 0.1 Mask 
A 

- ‘’ 85.94% 
P = 

.0033 

96.88% 
P = 

.7176 

75.00% 
P = 

.0033 

0.90 

            
SVM MRI - - - Mask 

A 
- LOSO 98.44% 

P = 
.0033 

96.88% 
P =  

.0033 

100% 
P = 

.0033 
 

1.00 

SVM PET - - 50 Mask 
A 

YES ‘’ 79.69% 
P = 

.0033 

90.63% 
P =  

.0399 

68.75% 
P = 

.0033 
 

0.84 

SVM Multimodal -  50 Mask 
A 

- ‘’ 83.59% 
P = 

.0033 

85.94% 
P =  

.0066 

81.25% 
P = 

.0033 

0.91 

            
MKL MRI AAL2 50 - Mask 

A 
- LOSO 98.44% 

P = 
.0033 

96.88% 
P =  

.0033 

100% 
P = 

.0033 
 

0.97 

MKL PET AAL2 - 50 Mask 
A 

YES ‘’ 78.13% 
P = 

.0033 

93.75% 
P =  

.0166 

62.50% 
P = 

.0266 
 

0.84 

MKL Multimodal AAL2  50 Mask 
A 

- ‘’ 98.44% 
P = 

.0033 

96.88% 
P =  

.0033 

100% 
P = 

.0033 

0.97 
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With regard to the first research question, the chosen methods are well equipped in dealing 

with the challenges of high dimensional data and the inclusion of multiple modalities within a single 

model as high BA and AUC values are encountered for all three machines for both unimodal- and 

multimodal datasets. As for the second question, the choice of machine learning technique does 

impact the accuracy of a model. In the unimodal analyses, the performance of the three algorithms 

differs only slightly (when using the same dataset). There is, however, a measurable difference. In 

terms of the multimodal analyses, the difference in accuracy is far greater. The best performing 

model out of the three is the one based on multiple kernel learning (BA = 98.44%). The difference 

between the models based on GPC and SVM is much smaller with balanced accuracies of 85.94% and 

83.59%, respectively. It was already hypothesized for the multiple kernel learning method to 

outperform the other algorithms in a situation of multimodality due to the fact it computes 

specialized kernels for each of those modalities. Based on these results, this seems to be the case. 

Concerning the last research question, the use of multiple modalities (both MRI- and PET 

data) within a single analysis does not seem to increase the performance of the rendered models. It 

is, however, to be noted that (almost) perfect classifications has been found with a single modality 

only, leaving (almost) no room for the multimodal analysis to improve. Perhaps in a situation where 

the classification would prove to be ‘more difficult’, a larger effect of combining heterogeneous, but 

complimentary, data could be seen. Regardless, the best result of all has still been found in one of 

the unimodal analyses. Namely the classification using Gaussian process classification based on MRI 

data only. 

With regard to the regions of interest contributing to the discriminative power of the models, 

the results/regions as selected by the model based on PET data vary quite heavily from results found 

in analyses using the other datasets (unimodal MRI or multimodal data). The regions as selected in 

the latter two classification problems are very similar. It could be that these regions and 

corresponding measures regarding contribution are the most accurate since the overall predictive 

power of the models are set at higher values than the one based on PET data. Regardless, it seems 

that the angular gyri plays a significant role in the discrimination between alcohol-dependent 

respondents and healthy controls. 
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4. Discussion 

 

The aim of this project has been to make comparisons in the performance of three different 

machine learning algorithms (support vector machines, Gaussian process classification and multiple 

kernel learning) in their ability to make classifications between alcohol-dependent respondents and 

healthy controls (N=48) based on either unimodal- or multimodal neuroimaging data (magnetic 

resonance imaging and positron emission tomography). Also, the ability of the techniques to cope 

with the challenge of high dimensional data (as is the case when using neuroimaging data) has been 

assessed.   

The three different algorithms have been used in three different classification problems. All 

models and corresponding statistics have been rendered in the ‘Pattern Recognition for 

Neuroimaging Toolbox (PRoNTo)’ (Schrouff et al., 2013). The first classification problem has been the 

discrimination between the two groups based on MRI data. The analyses based on this data pose 

very good performance measures and when Gaussian process classification had been used, a perfect 

balanced accuracy had been found. The support vector machine and multiple kernel learning 

algorithms had also shown an almost perfect performance in classification. It is interesting to see 

that the best performing algorithm out of the three has been the GPC as it was hypothesized that this 

algorithm would not perform as well as the others due to its tendency to underperform in situations 

of high dimensionality. In the second classification problem, the PET data has been used. Overall, 

models using the unimodal PET data where found being less powerful than ones using the MRI data 

(balanced accuracies between 75% and 80%). Out of the three machine learning techniques, the best 

performing one had been the support vector machine. The difference between the three final 

models was, however, not large. Lastly, the methods have been applied to a multimodal dataset 

combining both MRI and PET data. As had been hypothesized, the best performing algorithm when 

using multimodal data has been the multiple kernel learning technique (BA, after optimizing the 

different parameters, of 98.44%), followed, by some distance, by the support vector machine and the 

Gaussian process classifier (BA’s around 85%). 

In the end, the best classification performances have been found when using the unimodal 

MRI data. Performance measures when using multimodal data where, however, set at higher values 

in comparison to unimodal PET data. It is to be noted that this might be dependent on the type of 

research question and data at hand. It cannot be said that it will always be best to use unimodal MRI 

data in the classification of individual clinical status.  
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For each of the classification problems, weight maps have been computed on the basis of the 

best performing multiple kernel learning model. This has been done in order to get insight into the 

contribution of different regions of interest to the power of the model. Even though variation had 

occurred between the different models in the results of these computations, it seems that the 

angular gyri play a significant role in the discrimination between alcohol-dependent respondents and 

healthy controls. 

These results indicate that the use of machine learning algorithms can be very useful and 

accurate in classifying individual clinical status, which is a very promising conclusion on its own. Also, 

machine learning is able to overcome challenges in classification such as the use of high-dimensional 

data. Different situations, however, are cause for different solutions. This project shows that the 

right choice of technique is dependent on, for instance, the fact if unimodal- or multimodal data is 

used. Also, the settings/optimization of parameters within the model can make a grand impact on 

the accuracy of an analysis. 

This is, for instance, indicated by a previous analysis that had used the same PET data as has 

been used within this project. In this study, a support vector machine was used to make 

discriminations between the two groups (alcohol-dependent respondents and healthy controls). In 

this analysis, a balanced accuracy of 79.7% had been found (Devrome et al., n.d.). This is also the 

highest BA that has been rendered within this project as well, when using the PET data in a unimodal 

manner. The different variations of the models trained on this data, however, show that this 

accuracy could differ when parameter settings are changed or when another algorithm is chosen. 

Also, the inclusion of MRI data to this model has made a large improvement to the classification 

performance of the algorithm (SVM).  

Even though the project at hand is a step in the right direction of filling in the gap of 

knowledge in the comparison of different techniques in the classification of individual clinical status, 

further research into the topic is still needed. First of all, the current study uses neuroimaging data to 

classify alcohol-dependent respondents from healthy controls. As has been said before, different 

situations cause for different solutions. It could very well be that with a different classification 

problem (e.g., discriminating between depressed respondents and healthy controls), a different 

algorithm would be the best fit. The same goes for the parameters and settings such as the choice for 

a mask and atlas. In order to get insight into these possibilities, the three techniques (and perhaps 

others) need to be compared using different datasets and hence, different classification problems. 

Also, the impact on performance of the algorithms of using different (combinations of) neuroimaging 

modalities should be assessed in future research. 
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The project at hand has used neuroimaging data from 16 alcohol-dependent respondents and 32 

healthy controls (N=48). Ideally, future research would use data from a larger pool of respondents in 

order to draw conclusions with more confidence. 

In the end, the results as found within this project are very promising. Even though research 

on the topic is still incomplete and further analyses need to be rendered, evidence has been 

gathered that the three different techniques are well equipped in the classification of individual 

clinical status based on neuroimaging data and overcoming challenges within this process. The choice 

for the best fitting technique seems to be dependent on the situation at hand which is why I would 

recommend researchers to try different options before selecting an algorithm for making 

classifications. This also holds true for values on parameters within the model and the selection of, 

for instance, a mask. Different options need to be weighed and assessed in order to receive the 

highest possible accuracy. 
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4. Appendix I  

 

 

 

 

 

Note. Images represent T-values of the different regions 

 

 

 

 

 

 

 

 

 

Figure 1.  
Weight map of the finalized MKL-model using MRI data 
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Note. Images represent T-values of the different regions 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  
Weight map of the finalized MKL-model using PET data 
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Note. Images represent T-values of the different regions 

 

 

 

 

 

 

 

Figure 3.  
Weight map of the finalized MKL-model using multimodal data 


