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Abstract 

Evidence-based mental health programs have long conceptualized mental disorders as 

interactions between thoughts, feelings, behaviours and external factors. Idiographic network 

models are a relatively novel way of estimating such intra-individual psychological processes. 

These methods are not without limitations, and concerns have been raised about the stability and 

accuracy of estimated networks. The extend to which idiographic networks are stable, or vary 

over time, is unknown. We explored temporal network stability from three angles, exploring 

variation within people, across different stability metrics, and across people. We reanalysed daily 

symptom records of people with personality disorders. We fit graphical Vector Autoregressive 

models separately for the first and second 50 days of consecutive measurements. 

Contemporaneous but not temporal idiographic networks appeared to be relatively stable within 

people. The assessment of stability varied considerably across metrics applied. There was large 

variation in network stability of contemporaneous structures across people, which could not be 

explained by subject-specific variables. We illustrate the temporal changes in contemporaneous 

network structures of two participants with high and low network stability and discuss the most 

pressing questions to be considered by future research. 

 

Keywords: stability, replicability, consistency, idiographic, subject-specific, psychological 

networks, network comparison 
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Temporal stability of idiographic psychological networks 

Introduction 

 Mental disease remains a growing concern for public health, but there has been little 

progress in developing effective prevention and treatment strategies in the past decades. One 

possible explanation lies in the heterogeneity of symptom presentations of common mental 

disorders (Fried, 2017), which is not well addressed by traditional methods. One newly 

developed method to fill this need are idiographic network models. Subject-specific network 

models are a response to two recently voiced calls in clinical psychology. First, there seems to be 

a need for psychological research to re-orient towards idiographic methods that focus on intra-

individual (idiographic) processes as opposed to group-level differences (Molenaar, 2004). 

Second, scholars have been proposing a paradigm shift away from reductionism towards studying 

the complexity of psychological phenomena (Borsboom, 2017; Fried & Robinaugh, 2020; 

Hofmann et al., 2016; Hofmann & Curtiss, 2018). 

Network theories and models in clinical psychology 

The Network theory of mental disorders (Borsboom, 2017; Bringmann et al., 2013) 

attempts to integrate psychology with insights and methods from complexity science, offering a 

novel framework for understanding the underpinnings of psychopathology. It conceptualizes 

psychopathology as an emergent state of dynamically interacting elements, for example, 

psychological states, behaviors, or stressors. These elements are conceptualized as agents, 

meaning that they are mutually related in causal ways. Symptoms are thus thought to contribute, 

not result from, psychopathology. This account seems closely aligned with established clinical 

practices such as functional analysis in cognitive behavioral therapy, where a patient’s 

psychological disorder is visualized as a path diagram. These informal case conceptualizations 

describe the proposed mechanisms of a given disorder. They often feature dynamics which align 
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with complex system behaviors, such as vicious cycles of dysfunctional thoughts and behaviors 

(Burger et al., 2020, 2021; Scholten et al., 2020). The recent attempts to formalize and study such 

symptom dynamics using network science thus fell on fertile ground. 

Psychological network models (Epskamp, Borsboom, et al., 2018; Epskamp, Waldorp, et 

al., 2018) are the methodological workhorse that quantify and visualize such system structures 

and dynamics as nodes connected through pairwise edges. Nodes typically represent 

psychological variables, and edges represent their pairwise relationships. Relationships may be 

directed (granger-causal; see Molenaar, 2019) or undirected (correlational), positive or negative, 

and can differ in strength. Network models thus come in different flavors, pertaining to the 

estimation procedures by which edge parameters are modeled and derived, and lend themselves 

to a multitude of research questions. Besides traditional nomothetic (group-level) approaches, 

they are suited to study intra-individual processes using single-subject time-series data. 

Researchers in clinical psychology hope that such models could resolve what is known as the 

Therapist’s dilemma, by which therapists need to make predictions about their individual patients 

based on research findings on the nomothetic that may not allow such inferences (Bastiaansen et 

al., 2019; Frumkin et al., 2020; Hoffart & Johnson, 2020; Jordan et al., 2020; Piccirillo & 

Rodebaugh, 2019; Rodebaugh et al., 2020). 

Summing up, psychological network models have been described as “window into a 

patient’s daily life” (Epskamp, van Borkulo, et al., 2018). The question remains whether this 

window provides an unobstructed and representative view. Is it merely a doorhole, or panoramic 

window? Are we getting a clear view inside, or are we mostly seeing our own reflections? 

Temporal stability of idiographic networks 

Concepts of stability and change lie at the heart of much clinical research. Why does a 

person change from healthy to depressed? Can therapy facilitate positive change beyond the 
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duration of treatment? And if change occurs, what mechanism does it actually build on? 

Psychological networks offer new possibilities of mapping these questions onto idiographic 

research designs. For example, changes in network structure have been related to therapeutic 

progress (Thonon, Van Aubel, Lafit, Della Libera, & Larøi, 2020) or relapse (Wichers, Groot, & 

Psychosystems, 2016). Even subtle changes in network structure are of interest, as they are 

thought to act as potential early warning signals which may predict future major change, i.e. a 

system’s phase transition from a healthy attractor state to a disordered one. For example, signs of 

critical slowing down, showing as increased auto-correlations and variances of items, may 

foreshadow a patient’s relapse into depression upon stopping antidepressant treatment (Wichers 

et al., 2016); for similar work on resilience, see Kuranova et al., (2020). Such concepts are 

already successfully applied in other disciplines, for example ecology and climatology (Rusoja et 

al., 2018). 

Single-subject research is quasi-experimental by nature (e.g., Beck & Jackson, 2021). The 

counterfactual question of “What would have happened otherwise?” cannot be answered as 

readily as in cross-sectional randomized controlled designs (e.g., Berlim et al., 2020). The 

individual remains their own control group, and it is essential to understand how this control 

group may or may not change when no change is expected. To our knowledge, only one study 

has investigated the temporal stability of idiographic psychological networks in a setting where 

no profound change was expected. Beck & Jackson (2020) investigated the consistency of 

idiographic personality over the course of two years. They found that personality networks of 

contemporaneous (at the same point of assessment), but not temporal (at assessments over time), 

associations were generally stable within individuals. They also found considerable interpersonal 

variability herein. In a quasi-experimental follow-up study investigating personality consistency 

in the context of the COVID-19 pandemic (Beck & Jackson, 2021), they arrived at similar 
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conclusions and investigated potential antecedents that would explain variation of longitudinal 

network instability between subjects. Interpersonal variation appeared weakly linked to 

participants previous life satisfaction, but remained largely unexplained, from which the authors 

suggested that network instability might be considered a trait in itself. An alternative possibility, 

however, is that psychological network structures tend to naturally vary across time, meaning that 

instability may have occurred mainly due to within-person sampling variation. 

Aim of this study 

The present study aims to assess the stability of idiographic networks in the context of 

psychopathology from three different angles. First, we explore the temporal stability of networks 

within people. Second, we explore variation in network stability across commonly used stability 

metrics. Third, we explore potential predictors of temporal stability across people. 

RQ1: How stable are estimated idiographic network structures over time? 

RQ2: Do stability estimates vary across common stability metrics used? 

RQ3: What person-specific or model-specific factors explain interpersonal variation in 

idiographic network stability? 

We re-analyze daily diary data of people diagnosed with a personality disorder (Wright, 

Beltz, et al., 2015; Wright, Hopwood, et al., 2015). In summary, participants (N=112) provided 

once-daily ratings of their mood, behavior, and daily stressors over the course of one hundred 

consecutive days. We fit idiographic network models on participants’ first (T1) and last (T2) fifty 

days of measurements to assess intra-individual stability (RQ1). We compare resulting network 

structures in their global structure on multiple stability metrics, and how these relate to each other 

(RQ2). Finally, we examine whether person-specific and network-specific factors explain 

interindividual variation in network stability using multivariate linear regression (RQ3). We 
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illustrate and interpret the temporal network stability of two participants by example and end with 

a discussion of relevant questions to be addressed by future research. 

Methods 

We used R (v4.0.5) for all our analyses. Raw data, estimated network objects, stability 

estimates and analysis scripts are available at github.com/RicardaP/thesis_repo and 

https://osf.io/gnw4s/. 

Data Set 

Daily diary data was provided from people with a personality disorder (N=112). Over the 

course of 100 days, participants were instructed to keep nightly ratings of their mood, behavior, 

experiences of stress, and symptoms related to psychopathology. The study procedure and 

participant characteristics are described in detail by the original Authors (Wright, Hopwood, et 

al., 2015; Wright & Simms, 2016). We considered this data suited for our research questions for 

three main reasons. First, it is one of only a few data sets including comparably long time-series 

data in a relatively large sample. Second, the daily measurement intervals ensured that data 

would meet the assumption of equal distances between measurements, in contrast to more 

intensive time series data. Third, previous publications concluded that psychological processes in 

this sample were stable over the course of measurement (Wright & Simms, 2016), suggesting that 

network comparisons would less likely be confounded by unreliable measurements or major 

external events. Daily variables included in the current study are shown in Table 1. 

Table 1 

Daily measures included in network models 

Variable Scale information 

Positive Affect 

"Please indicate to what extent you have felt this way over the past 24 hours: … “ 

Active, Alert, Attentive, Determined, Inspired 

[Likert, 0 = very slightly to 4 = extremely] 
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Negative Affect 

"Please indicate to what extent you have felt this way over the past 24 hours: … “ 

Afraid, Nervous, Hostile, Ashamed, Upset 

[Likert, 0 = very slightly to 4 = extremely] 

Stress 

Seven items about stressful experiences, e.g., “Since this time yesterday, did anything happen 

that you could have argued about but you decided to let pass in order to avoid a 

disagreement? If yes, please rate the severity.” 

[Likert, 0 = not at all to 3 = very] 

Task impairment 

Single item: “How much difficulty did you have in taking care of important tasks or 

responsibilities?” 

[Likert, 0 = not at all to 7 = extremely] 

Behavior (other) 

Single items: “Please judge how accurate each of the following words described your 

behavior over the past 24 hours:…” Dominant, Assertive, Critical, Irritable, Indifferent, 

Introverted, Passive, Submissive, Trusting, Warm, Sympathetic 

[0 = extremely inaccurate : 5 = extremely accurate] 

Personality 

disorder 

symptoms 

Single items from the Daily Expression of Personality Disorders inventory (DPDS-32) 

[0 = not at all : 7 = very much] 

Note. Positive Affect, Negative Affect, and Stress were included as composite scores and in each 

individual network, along with a single item Task impairment. Per network, two individual single 

item measures were included from the pool of behavior variables and personality disorder 

symptoms. Detailed item information is available under https://osf.io/ceaj2/. 

 

Network estimation 

Contemporaneous and temporal idiographic networks of participants first (T1) and last 

(T2) fifty days of measurements were estimated as Gaussian Graphical Models (GGMs) using the 

R package graphicalVAR (v0.2.4, Epskamp, Waldorp, Mõttus, & Borsboom, 2018). Graphical 

VAR models belong to a wider family of partial correlation networks. Edges are estimated using 

vector autoregression (VAR). Graphical VAR estimates two types of networks: First, a temporal 

network of lagged effects is derived. Each variable in the network is modeled as a function of all 

other variables in the network at the previous lag (in our case, the previous day), including itself. 
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Edges are directed, can be positive or negative. Second, a contemporaneous network is derived 

from the residuals of the VAR model by inverting the variance-covariance matrix. This GGM 

captures contemporaneous, undirected associations between variables at the same measurement 

interval, controlling for any temporal associations estimated in through VAR. To prevent 

overfitting and aid interpretability, models are regularized using graphical least absolute 

shrinkage and selection operator (graphical LASSO, Friedman et al., 2008). Graphical LASSO 

regularizes parameter estimates according to a tuning parameter λ that controls the sparsity of the 

network. The higher λ , the more edge estimates will be shrunken to zero in order to optimize 

model fit and generalizability. Model fit is optimized according to the Bayesian Information 

Criterion (BIC) or extended BIC (EBIC, Chen & Chen, 2008), depending on how the 

hyperparameter γ is specified. We estimated models using BIC (γ = 0) and λMin = .025, as done 

by Beck & Jackson (2020) and suggested by previous estimation studies (Epskamp, 2017). As a 

result, model estimation is less conservative in recovering smaller edges weights, which we 

considered appropriate for this exploratory research. 

Pre-processing 

Data were pre-processed in order to meet assumptions of the graphical VAR model. Along 

the usual assumptions pertaining to regression models, it assumes that data are measured at equal 

distances and without measurement error. Missing data points at thus pose a challenge for model 

estimation, as do highly skewed variables with little variance. We excluded participants whose 

responses were missing on more than 30 days in total, or more than 15 days at either T1 or T2. 

Remaining missing data were imputed by the Kalman Filter algorithm (Harvey, 1989) as 

implemented in the R package imputeTS (v3.2). Kalman imputation has been shown to recover 

idiographic network structures at levels up to 50% data missing completely at random (Mansueto 

et al., 2020). Graphical VAR modeling further assumes equal means and variances across time, 
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known as the stationarity assumption. While many researchers note that this assumption may not 

be realistic in psychological data, it is generally recommended to transform data to by detrending 

effects of time 7/24/2021 2:17:00 AM. Imputation and detrending were performed at the level of 

the individual across the full 100 days. Variables were detrended independently of the magnitude 

and statistical sagnificance of the time effect. 

Variable selection for idiographic networks 

The diary data used in this study consists of a broad set of variables assessed in a 

comparably small and heterogeneous sample. Variables, shown in Table 1, were selected based 

on partly theoretical, partly statistical grounds according to three criteria: First, we strived for a 

set of variables that applied equally to all participants in the sample to make networks somewhat 

comparable across participants. Second, variance with more normal distributions were preferred 

to ensure model convergence. Third, we wanted to make the variable selection process 

reproducible and automizable. We included six predictors per network, as recommended by 

simulation work suggesting that graphical VAR performs well at such size for comparably small 

sample sizes (50 assessments per network) (Mansueto et al., 2020). Each network included three 

composite variables (mean scores) which were expected to fluctuate similarly across participants: 

positive affect (PA), negative affect (NA), and daily stress. We further included a single-item 

variable capturing daily functioning. We selected two additional items per subject according to 

the following ranking metric:  

𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝑚𝑒𝑡𝑟𝑖𝑐 = (1 − 𝑆𝑊)𝑇1 ∗ (1 − 𝑆𝑊)𝑇2 ∗ 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑𝑇1 ∗ 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑𝑇2 

The Shapiro-Wilk test statistic (𝑆𝑊) tests the null hypothesis that a variable is sampled 

from a normal distribution and ranging from 0 (close to normality) to 1, (Shapiro & Wilk, 1965). 

Capturing the items mean and variance in this way, we prioritized variables with minimal skew 

and maximal variance for the individual. These criteria were balanced against levels of 
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missingness, because more missing and therefore imputed data would likely confound our 

network comparisons.  

Stability metrics 

We used three different metrics to assess temporal network stability across T1 and T2 

(RQ1). Stability metrics were computed for contemporaneous and temporal networks. 

 Global network similarity can be described as the correlation 

of estimated edge weights (Borsboom et al., 2017; Fried et al., 2018). Correlations can range 

from -1 to 1, with 0 indicating no relation between networks. This metric classifies structural 

similarity by the strength and direction of all pairwise relationships in their respective order, but 

is agnostic to the fact that edges may be zero due to regularization. When applied to regularized 

networks, as is the case here, it may therefore overestimate the similarity of sparse (i.e. largely 

unconnected or empty) structures. 

 Jaccard similarity (as used in Borsboom et al., 2017) describes the 

proportion of replicated estimated edges (edges that are non-zero in both networks) out of all 

estimated but not necessarily replicated edges (edge that are non-zero in either network). As such, 

it classifies similarity by whether there is a pairwise relationship and is agnostic to the strength or 

direction of that relationship. 

 To estimate the degree to which edge signs (i.e. 

positive or negative edge weights) replicate across networks, we calculated the proportion 

estimated edges with replicated sign out of all possible edges. This measure thus classifies 

similarity by the sign of the pairwise relationship, but is agnostic to the strength of the 

relationship, and may underestimate the similarity of sparse structures. 

Edge weight correlations. 

Jaccard similarity. 

Proportion of recovered edge signs. 
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Explaining inter-individual variance 

For contemporaneous network models, we explored what factors may explain intra-

individual variance in network stability using multivariate linear regression (RQ2). Linear models 

were fit for each stability metric separately. Per metric, two sets of predictors were fit, leading to 

six linear models estimated. One set of predictors consisted of subject-specific factors measured 

at baseline, the other set captured statistical features of the diary data and network models. 

Predictor variables are listed in Table 2. These analyses were considered highly exploratory. Our 

choice of predictor variables was not based on prior expectations, as little research on this topic 

exists. The variables Happiness and life satisfaction were included to enable comparisons with 

Beck & Jackson (2021). 

 

Table 2 

 Predictor variables included in multivariate regression models 

Variable Description 

Set 1: Baseline variables related to subject-specific factors 

Age 
“What is your current age?” 

[0 = female, 1 = male] 

Gender “What is your sex?” 

Recent Treatment 
“How long ago did the most recent treatment end?” 

[0 = currently in treatment : 4 = 5 years ago, 5 = never been in treatment] 

Happiness 

“In the past 6 months, to what extent would you say you have been 

happy/satisfied/optimistic about yourself and your life?” 

[0= not at all : 7=very much] 

Life Satisfaction Satisfaction With Life Scale (SWLS) 
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Big- 5 Personality traits NEO - Five Factor Inventory (NEO-FFI) 

Set 2: Time-series variables related to network-specific factors 

No. imputed total number imputed item responses (sum T1 and T1) 

Model fit Bayesian Information Criterion (BIC) 

Sparsity proportion of empty edges (average T1 and T2) 

Changes in Positive Affect 𝛥𝑇1−𝑇2(1 − 𝑆𝑊𝑃𝐴) 

Changes in Negative Affect 𝛥𝑇1−𝑇2(1 − 𝑆𝑊𝑁𝐴) 

Changes in Stress 𝛥𝑇1−𝑇2(1 − 𝑆𝑊𝑆𝑡𝑟𝑒𝑠𝑠) 

Changes in Impairment 𝛥𝑇1−𝑇2(1 − 𝑆𝑊𝑇𝑎𝑠𝑘𝑠) 

Note. SW: Shapiro-Wilk test statistic. T1: First 50 days of measurement. T2: Last fifty 

days of measurement. 

Results 

RQ1: Network stability within people 

Of the original sample (Noriginal = 116), four participants had been excluded by the 

original authors. Of the available 112 participants, twenty-seven had missed entries on more than 

15 days in T1 or T2 each, and nine participants exhibited zero variance in daily task impairment. 

These participants were excluded from the analysis (Nexcluded = 33). Of the remaining 

participants (N = 79), fifty-two participants were male. One person did not indicate their gender. 

Networks included an average of 49 imputed data points (missing item responses) across 

T1 and T2 (Mdn = 43, SD =37.5), corresponding to an average of 8 missed days of assessment 

across the study period.  
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The most often included individual variables were DPDS19 (“I lied to someone”, 16 

networks), DPDS8 (“I wanted people to notice my body”, 13 networks), DPDS31 (“I felt like I 

wanted to hurt someone”, 12 networks) and DPDS27 (“I behaved irresponsibly”, 12 networks). 

Network models converged for all participants. Of the 79 estimated graphical VAR 

networks, 46 temporal network structures were empty and one contemporaneous network was 

empty.  

Stability estimates were calculated for contemporaneous and temporal networks. Some 

stability metrics could not be calculated in subjects with empty networks at T1 and / or T2, so the 

number of derived estimates varies per metric and type of network, see Table 3. 

Descriptives of the derived network comparisons are shown in Table 3. Stability metrics 

appear to be very unstable for temporal networks, as indicated by Median values of 0 across 

indices. Contemporaneous networks exhibited higher and more varying levels of stability across 

indices, with Median correlations of rSpearman  = .48, Median Jaccard similarity of .33, and a 

median of 13% of edges with equal signs at T1 and T2.  

Figure 1 shows the distribution of stability indices for each contemporaneous network. 

Eight contemporaneous networks yielded negative edge weight correlations, and positive 

correlations appear to be evenly distributed across the full range of positive values. Jaccard 

similarities of contemporaneous networks span the full range as well, but appear to gravitate 

towards values below .50. Percentages of recovered edge signs of contemporaneous networks 

were mostly located between .00 and .25.   
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Table 3 

Descriptive statistics of derived network stability estimates for temporal and contemporaneous 

networks 

 Temporal networks Contemporaneous networks 

Metric N Mean Median 
Inter-quartile 

range 
N Mean Median 

Inter-quartile 

range 

Edge weight 

correlation 
42 0.12 0.00 -0.05 : 0.31 78 0.47 0.48 0.29 : 0.70 

Jaccard 

similarity 
70 0.08 0.00 0.00 : 0.18 78 0.34 0.33 0.20 : 0.50 

Replicated signs 

(%) 
79 0.01 0.00 0.00 : 0.03 79 0.12 0.13 0.07 : 0.20 

Note. Number of derived estimates vary across metrics and type of network because some 

estimates cannot be calculated when networks are fully empty at T1 and / or T2. 
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Figure 1 

 
Note. Edge weight correlations can range from 1 to -1; Jaccard similarity and proportions of 

recovered edge signs from 0 to 1. 

 

RQ2: Network stability across metrics 

As a high proportion of temporal networks were empty, and stability estimates of temporal 

networks were mostly zero, we focused on contemporaneous networks only for all further 

comparisons. Stability estimates within people displayed distinct distributions, which is not 

surprising given that they evaluate network similarity on different features. To understand how 

−0.5

0.0

0.5

1.0

Edge weight correlation Jaccard similarity Recovered edge signs (%)

Temporal stability contemporaneous idiographic networks
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individual network structures are evaluated across metrics, we visualized metrics together as a 

function of network sparsity in Figure 2.  

Figure 2 maps edge weight correlations as a function of network sparsity. Network 

sparsity described the proportion edge weights that were empty across T1or T2, meaning it is 

agnostic to whether edges are empty in either or both of the networks. Plotted elements represent 

each subject’s location on the three stability metrics using location along the y-axis indicating 

edge weight correlation, color to indicate Jaccard similarity, and size indicating the proportion of 

edge signs replicated across T1 and T2. Higher temporal stability is thus indicated by higher 

position along the y-axis, more yellow shades of color, and bigger size of the element. Several 

things stood out by visual inspection, that can facilitate our understanding of how these metrics 

behave in relation to reach other. All metrics appeared to be related to network sparsity to varying 

degrees. Profile correlations appear positively related with network sparsity. They also appear to 

be spread more widely at higher levels of sparsity, as indicated by stronger positive and negative 

correlations at higher sparsity. A similar pattern could be observed for Jaccard similarity, where 

high values appeared predominantly at high levels of sparsity and high correlations. Proportions 

of edge signs replicated show more spread at high levels of sparsity as well, with the smallest 

values appearing in networks with negative edge weight correlations. This tendency is also 

visible in how the percentage of replicated edge signs behave as a function of sparsity, with the 

smallest estimates being located in sparse networks with negative edge weight correlations. A 

likely explanation for these observed patterns is that with fewer estimated edges in total, any 

change in sign or strength at one edge exerts proportionally more influence on the estimates of 

similarity of the global structure when the network is sparse.  
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Figure 2 

Stability metrics as a function of network sparsity

 

Note.  Network stability estimates as a function of network sparsity. Network sparsity describes 

the proportion edge weights that were empty across T1 or T2. Higher temporal stability is 

indicated by higher position along the y-axis (edge weight correlation), more yellow shades of 

color (Jaccard index), and bigger elements (proportion of edge signs replicated).  

 

RQ3: Network stability across people 

To explore variables that may explain interpersonal variance in temporal stability of 

contemporaneous structures, we fit six linear regression models. First, we estimated models using 
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each stability metric obtained for RQ2 as a dependent variable predicted by the set of baseline 

variables shown in Table 2. Next, each stability metric was predicted by the set of network-

specific variables.  

Of these six models, only the model predicting the proportion of replicated edge signs by 

network-specific variables showed significant (α < .05) model fit, R2 = .22, F(7, 71) = 2.89, p < 

0.01. In this model, sparsity was the only significant predictor of network stability, β = -.47, t = -

4.33, p < .001. This means that lower sparsity was negatively related to proportion of replicated 

edge signs. Note that the proportion of replicated edge signs is a metric directly affected by the 

number of empty edges in a network. 

Two models showed noteworthy (α < .10) model fit when predicted by baseline variables. 

With edge weight correlations as the dependent variable, Life satisfaction was positively related 

to network stability, β = .36, t = 2.4, p = .019. Conscientiousness was negatively related to edge 

weight correlations, β = -.49, t = -3.16, p = .002. Model fit was not significant R2  = .23, F(10,66) 

= 1.95, p = .054. With Jaccard similarity as the dependent variable, Conscientiousness appeared 

to be negatively related to Jaccard similarity, β = -.39, t =-2.54, p = .014. Agreeableness appeared 

to be positively related to Jaccard similarity, β = .25, t = 2.06, p = .044. Model fit was not 

significant, R2 = .21, F(10, 67) = 1.79, p = .079. Results should be interpreted with caution, but 

we highlight them here because these are variables future investigations may want to focus on. 

Three remaining models explained less than 15% of variance in outcome (all p > .10) 

variables and significant predictors in these were disregarded. The model predicting proportion of 

edge signs replicated by baseline variables explained 9% of variance, R2= 0.09, F(10,67) = 0.72, 

p=.705. The model predicting edge weight correlations by network-specific variables explained 

6% of variance, R2= .06, F(7, 70)=.66, p = .705. The model predicting Jaccard similarity by 

network specific variables explained 11 % of variance, R2 = .11, F(7, 71) = 1.28, p =.272.  
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Examples 

Two participants were selected for illustration. We selected these participants to exemplify 

cases of relatively high and low temporal stability, while ensuring other potentially confounding 

features were similar. Participant 53 (P35) and participant 45 (P45) satisfied these criteria. Their 

networks contained only 2 and 3 imputed data points, respectively. Their contemporaneous 

networks had similar levels of sparsity (𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦𝑃53 = .53; 𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦𝑃45 = .40), and their 

model fit was most similar given the previous criteria (𝑀𝑒𝑎𝑛𝐵𝐼𝐶 𝑃53 = 196.66; 𝑀𝑒𝑎𝑛𝐵𝐼𝐶 𝑃45 =

236.66).  

The networks of participant 53 exhibited relatively low temporal stability. The similarity 

of global network structure as measured by edge weight correlation was low, 𝑟𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 𝑃53 =

.18. Jaccard similarity was low, 𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑃53 = .14. Only one of the six estimated edges had the 

same sign at T1 and T2. In contrast, stability metrics for participant 45 suggest high temporal 

stability, with edge correlation rSpearman P45 = .648 , JaccardP45 = .33 , and replicated edge signs 

(%)P45 = .2 (three edges with equal sign across T1 and T2). 

Figure 3 shows their estimated contemporaneous networks at T1 and T2. Their scaled 

daily item ratings across T1 and T2 are shown in Figure 4. Means, standard deviations, and 

changes in distributions of raw daily measures for participants 53 and 45 are shown in Table 4. 

Individual variables selected for each person’s network according to the rank score explained 

before were DPD25 (“I acted on impulse while feeling upset”) and DPD21 (“I worried about 

being abandoned”) for participant 53, and “Passive behavior” and DPD24 (“I did things others 

may find unusual”) for participant 45.  

 For this participant, 

there was a strong positive contemporaneous association of Worry and Impulse at T1, which was 

not present at T2. The only association that was found at T1 and T2 was the positive association 

Participant 53 with low stability of contemporaneous network. 
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of Negative Affect and Stress, this association was stronger at T2 than at T1. At T1. Worry and 

Negative Affect were weakly positively related. Interestingly, this direct association was not 

present at T2, but an indirect association occurred via Task Impairment. Task impairment was 

positively related to Worry and Negative affect, and showed a negative association with positive 

affect. At T2, there was an additional weak positive relation between Positive affect and Stress. 

Item means and variances over time shown in Figure 4 show that overall, this person appeared to 

experience frequent fluctuations on all variables across T1 and T2, which appear slightly less 

frequent at T2. 

 The contemporaneous 

networks of Participant 45 were generally denser than for Participant 53. At T1, there were strong 

positive associations between Negative affect and Stress, and Negative Affect and Unusual 

behavior. Negative affect as also related to task impairment, although somewhat weaker. At T2, 

the strong positive edge between negative affect and stress disappeared, the edges between 

negative affect and task impairment remained very similar, but the edge between negative affect 

and unusual behavior, was considerably smaller compared to T1.  Positive affect showed a strong 

negative association with task impairment at both T1 and T2. At T1, positive affect was also 

weakly related with Stress. This connection was not present at T1, where positive affect showed 

two previously absent negative relations with negative affect and passive behavior. Interestingly, 

Stress was a highly connected variable in the network at T1, with positive associations to 

Negative affect, positive affect, unusual behavior and task impairment. At T2, stress was not 

related to any other variable in the network. Item means and variances over time shown in Figure 

4 suggest that stress was much higher and more variable at T1 for this participant. They also 

Participant 45 with high stability of contemporaneous network. 
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seemed to experience fewer peaks of negative affect and passive or unusual behavior, while 

positive affect appeared to generally high and stable across T1 and T2, see Table 4.  
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Figure 3  

Contemporaneous network structures of Participant 53 and 45 at T1 and T2. 

 

Note. Maximum edge width set to .47 across networks, so that they can be compared across subjects. 

Edges reflect contemporaneous partial correlations as estimated by graphical VAR using BIC (γ = 0) and 

λMin = .025. PA: Positive Affect. NA: Negative effect. Task: Impairment on daily tasks. Worry: Worrying 

about being abandoned. Impulse: Acted impulsive while upset. Passive: Passive behavior. Unusual: Doing 

things others may find unusual. 
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Figure 4 

Scaled daily rating of variables in cluded in each participants network

 

 

Note. Daily Ratings of variables included in participant’s networks. Ratings are scaled to reflect 

the individual’s maximum range on each item separately. Positive Affect, Negative Affect, and 

Stress are composite variables, all other variables are single item ratings. 
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Table 4 

Means, standard deviations, and changes in distributions of raw daily measures.  

Participant Variable 𝑀𝑒𝑎𝑛(𝑆𝐷)𝑇1 𝑀𝑒𝑎𝑛(𝑆𝐷)𝑇2 (1 − 𝑆𝑊)𝛥𝑇1−𝑇2
 

P53 Positive Affect 1.27 (0.67) 1.41 (0.51) 0.01 

 Negative Affect 0.66 (0.71) 0.49 (0.40) 0.03 

 Stress 0.12 (0.21) 0.09 (0.19) -0.10 

 Task Impairment 1.00 (0.83) 1.22 (0.86) 0.03 

 
Impulsive while 

upset (DPDS25) 
0.08 (0.56) 0.04 (0.28) 0.00 

 

Worry about 

abandonment 

(DPDS21) 

0.18 (1.02) 0.04 ( 0.28) -0.05 

P45 Positive Affect 2.18 (0.55) 2.16 (0.50) -0.09 

 Negative Affect 0.69 (0.49) 0.32 (0.35) -0.07 

 Stress 0.16 (0.24) 0.05 (0.12) -0.25 

 Task Impairment 0.72 (0.85) 0.39 (0.67) -0.15 

 Passive behavior 0.08 (0.27) 0.06 (0.31) -0.11 

 
Unusual behavior 

(DPDS24) 
0.26 (0.72) 0.18 (0.95) -0.22 

𝑁𝑜𝑡𝑒. (1 − 𝑆𝑊)𝛥 𝑇1−𝑇2
: Changes in distributions of raw variables, calculated as 

(1-Shapiro Wilk test statistic )T1 - (1-Shapiro Wilk test statistic)T2 . 

 

Discussion 

This study was the first to systematically explore the temporal stability of idiographic 

psychopathology networks, and differences herein, in a setting where temporal stability could be 

expected. Stability was assessed using three metrics of network similarity, and their findings were 

compared. Estimated temporal networks structures appeared to be highly unstable over time. 

Estimated contemporaneous networks appeared to be moderately stable within subjects over 

time. For contemporaneous networks, the assessment of stability varied across metrics applied. 

There was also large variation in network stability across people, which could not be explained 

well by subject-specific or network-specific variables as regression model fit was poor. Life 
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satisfaction and agreeableness appeared to be positively related to network stability, and 

conscientiousness appeared to be negatively related to network stability. However, overall model 

fit was not significant, and these results should therefore be interpreted with caution. Further, 

these patterns were not consistent across outcome measures and should be regarded purely 

exploratory findings.  

Our results echo findings of two previous studies on the temporal stability of idiographic 

personality networks (Beck & Jackson, 2020, 2021). Similar to both of these studies, temporal 

network structures were dramatically less stable compared to contemporaneous network 

structures. Beck & Jackson speculate that the lack of stability in temporal associations may be 

owed to a mismatch of the modeled time interval, and the timing at which variables can be 

expected to affect each other (Epskamp, van Borkulo, et al., 2018). In our study, temporal 

associations were estimated one day apart, and it seems plausible that any temporal association 

may be due to more situational aspects causing covariance across lags, such as, acute stressors 

lasting multiple days. Stability estimates for contemporaneous networks found in our study were 

on average lower than those reported by Beck & Jackson (2020), but span a similar range of 

values including negative correlations, where some people’s networks remained highly stable, 

some people’s structures were very unstable, and a few people’s structures showed opposite 

patterns in form of systematically different signs in estimated edges.  

The source of interpersonal differences in network stability is unclear. Our exploratory 

analyses suggested three candidate variables to be investigated in future research: life 

satisfaction, agreeableness, and conscientiousness. Life satisfaction showed a weak positive 

relation with edge weight correlations, bearing in mind non-significant model fit. This finding is 

in contrast with Beck & Jackson, 2021, who reported weak positive associations of satisfaction 

with network stability during COVID-19. Beck & Jackson interpret their findings in terms of 
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adaption and adjustment, offering two competing explanations. High life satisfaction may be a 

sign of people’s ability to adapt to new circumstances and adjust their behavioral patterns in 

response to a pandemic. Alternatively, people who were satisfied prior to the pandemic may have 

experienced the situational changes as more disruptive. Our preliminary finding of a positive 

association of life satisfaction at consecutive times put these speculations in a different light. 

Possibly, in absence of major external disruptions, well-adapted people with high life-satisfaction 

fare well in sticking to their adaptive patterns (high network stability), whereas people with less 

life satisfaction may continuously experiment with their ways of behaving in order to arrive at an 

adaptive set of behaviors. While offering an intuitive argumentation for why life satisfaction may 

be positively and negatively related to network stability, the argument hinges on conceptualizing 

people with low life satisfaction as maladapted and rigid in a pandemic scenario, and as 

maladapted and erratic in a business-as-usual scenario, for which no intuitive explanation comes 

to mind. 

Despite these open questions, we believe that one conclusion can be drawn to summarize 

the above findings: The question is not whether psychological networks are stable within people, 

but when, for who and to what degree. However, we see some major roadblocks ahead of this 

scientific quest. Therefore, we outline the most pressing questions to be tackled next. 

Sampling variability 

One important assumption made in this work, and by research using graphical VAR, is 

that data is measured without error. Given that psychological measurement has plagued 

researchers for decades, this may be a strong assumption to make (Hallquist et al., 2021; 

Schuurman & Hamaker, 2019). We tried to mitigate this in our study by using three composite 

alongside three single-item measures. However, measurement error is not the only source of 

noise that may affect the conclusions drawn from network analysis. Investigations on idiographic 
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network stability are particularly challenged by noise in parameter estimates, as there are 

currently no readily available methods to assess whether a given edge weight is an unbiased 

estimate of the true relationship in a larger sample (Epskamp, Borsboom, et al., 2018; Forbes et 

al., 2021a; Fried et al., 2021). Similar to coefficient estimates in linear regression, the coefficient 

estimates inform us about the strength of a relationship in the data at hand, but they tell us little 

about how dependent that estimate is on the particular sample. Methods to assess the stability of 

network parameters are readily implemented for networks using group-based estimation 

procedures, but they have yet to be developed for single-subject data.  

Stability assessment. 

Returning to the counterfactual question of “How stable are networks when stability can 

be assumed?”, we need to ask whether a degree of stability indicated signals a meaningful 

difference, or merely sampling variability from the ups and downs of daily life. There have been 

debates about what network features should be considered relevant in comparison of networks 

(Borsboom et al., 2017; Forbes et al., 2021b). In the current study, we saw that different metrics 

favor different features of a network, and they may disagree at their extreme ends. For example, 

the sparser the network, the easier it was classified as highly stable or highly unstable by the 

similarity metrics edge correlations, Jaccard index, and proportion of replicated edge signs. This 

is not surprising, as simplification is somewhat the point of applying regularization. However, an 

empty edge in a regularized network is no evidence of conditional independence (Epskamp et al., 

2017), and commonly used stability metrics such as edge correlations and Jaccard similarity are 

agnostic to regularization. Furthermore, some metrics are sensitive to changes in estimated edge 

signs (e.g., edge weight correlations) whereas others, like Jaccard index, are not. We believe that 

the simulation and reanalysis work currently done on this topic would strongly benefit from 

empirical work to provide meaningful anchor points that map similarity metrics to actual 
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outcomes. Ultimately, the question whether an edge weight correlation of .5 should be considered 

stable or instable can barely be answered by numbers alone, as the answer depends on how these 

values behave in relation to substantive outcomes. 

 

The effects data imputation and linear detrending have on estimated network structures are 

not well known, and some authors report vastly different resulting network structures depending 

on what transformation was applied (Bastiaansen et al., 2019; Vos et al., 2017). Detrending a 

variable changes variance and distribution, because detrended scores reflect deviations from a 

variable’s trend over time (the residuals of linear regression model predicting variable scores by 

time). Because graphical VAR modeling performs variance-covariance decomposition, changes 

in variance may result in changes in power and potentially biased path estimates if the 

assumption of stationarity does not hold. Part of our motivation for this research was studying 

whether the assumption of stationarity is or is not realistic for idiographic data. As examining 

differences in network structures both within and between people was the main goal of our study, 

we tried to equalize pre-processing decisions across variables and participants while working in 

an idiographic framework. However, it remains unclear whether linear detrending merely enables 

model estimation, or may also distort it (Bastiaansen et al., 2019).  

One concern we see for applying linear detrending procedures is that trends in typical 

psychological data cannot be linear over extended periods of time. By definition, items are 

usually bounded within limits, and any trend estimated at a given window would exceed those 

limits when extrapolated. It seems more plausible that non-stationary trends follow a wave-like 

pattern over time, oscillating between item bounds at different amplitudes and phases. Note that 

the assumption of stationarity itself cannot be avoided for this type of model, but time-varying 

VAR models are being developed (Bringmann et al., 2018; Haslbeck et al., 2021). In these 

Stationarity 
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models, non-stationarity is estimated as part of the network itself, and linear as well as non-linear 

trends can be taken into account. 

Conclusion 

Are psychological networks a window into the patient’s life? Yes. Is it a doorhole or a 

panoramic window? It depends. But for the near future, we may be well advised to further 

sharpen our vision before trusting our eyes blindly. 
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