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Abstract 

The identification of the dependence between variables is a common task in Psychology. 

The most common approaches to this task are Pearson’s, Spearman’s, and Kendall 

correlation coefficients. A clear limitation of those coefficients is that they can only 

identify linear and monotonic relationships. In recent years, several methods to identify 

nonmonotonic associations have been developed. Nevertheless, there is not a clear answer 

to which method should be used when facing unknown conditions in research as is often 

the case in Psychology. In this study, we aimed to identify which dependence test 

performs the best under conditions that can be found in psychological research. Method: 

A simulation was performed to compare nine dependence tests through hypothesis 

testing. The conditions assessed were sample size, type of relationship, and noise. Three 

approaches were employed to summarize the statistical power and analyse the results: 

complete class, average power, and Maximin. Results: There was not a uniformly most 

powerful test across all conditions. However, several nonmonotonic tests presented a 

good performance in terms of power for most conditions. Moreover, Mutual Information 

(MI) estimated through Kernel Density Estimation with the Epanechnikov kernel and the 

Sheater-Jones plugin bandwidth outperformed all other methods in terms of the analysis 

approaches of this study. Conclusion: For the evaluated conditions we recommend the 

use of MI estimated through the defined settings. Nevertheless, other modern tests should 

not be immediately discarded as their difference in performance with MI is small and 

could be due to the design of this specific simulation.  

Keywords: dependence tests, correlation, nonmonotonic associations, Monte-

Carlo simulation, hypothesis testing. 
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Introduction 

Finding and describing the dependence between two variables is a recurrent task 

in Psychology. The most well-known methods to do this include Pearson’s product-

moment correlation (Galton, 1889; Pearson, 1920), Kendall rank correlation coefficient 

(Kendall, 1938), and Spearman’s rank correlation coefficient (Spearman, 1904). The first 

one can identify linear dependence between variables while the latter two can also identify 

nonlinear monotonic relationships. 

Nevertheless, variable associations in Psychology are not limited only to linear 

monotonic relationships. In general, nonlinear dependences have been described in 

several areas of Psychology, such as Cognitive Science, Social Psychology, 

Organizational Psychology, and Clinical Psychology (Guastello, 2001; Guastello et al., 

2009). More specifically, various nonlinear and nonmonotonic types of associations 

between two variables have been identified. For instance, quadratic dependences, 

resembling an inverted U, have been found when studying the relationship between stress 

and performance (Westman & Eden, 1996). Exponential relationships have been 

suggested in learning research where the learning rate starts improving rapidly and then 

flattens after a certain amount of trials (Leibowitz et al., 2010). Moreover, human 

behaviors over time often present cyclic patterns that can be captured by a sine or cosine 

term in longitudinal psychological data. (Verboon & Leontjevas, 2018). Furthermore, the 

association between two variables can be affected by the presence of a moderator 

variable. This interaction effect can lead to cross associations that resemble simultaneous 

negative and positive linear relationships in the shape of an ‘X’ (Corning, 2002; Frazier 

et al., 2004). Therefore, the Pearson’s, Kendall's, and Spearman’s correlation coefficients 

are often not adequate to be used in psychological research.  

 Nonlinearity has been studied in statistics in different ways. Diagnosing 

nonlinearity and approaching it with nonparametric regression has been one of the first 

ways to address this problem (Andersen, 2009; Fox, 2016). Moreover, James et al. (2013) 

describe some of the methods to account for nonlinearities from the statistical learning 

point of view: polynomial regression, step functions, regression and smoothing splines, 

local regression, and generalized additive models are some of the techniques used to 

approach nonlinearity when aiming to predict or explain the association between two 

variables. However, most of these methods require prior knowledge from the researcher 
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about the relationship between the variables and are used to model specific and desired 

associations in the data.  

 Considering that not all investigation in Psychology desires to confirm or model 

a specific type of relationship, but that in some cases the exploration of the data and 

identification of associations through hypothesis testing are the aims of the research, 

dependence measures similar to Pearson’s or Kendall coefficients gain relevance. In order 

to assess dependences in a broader sense, and not only addressing linear and monotonic 

associations, different methods have been created in the past decades. One of the first 

approaches to solve this problem was Hoeffding’s D (Hoeffding, 1948), but in recent 

years, a large number of alternatives have appeared. Some of the most well documented 

of such alternatives are Distance Correlation (dCor; Szekely et al., 2007), Heller–Heller–

Gorfine measure (HHG; Heller et al., 2012), Mutual Information (MI; Cover & Thomas, 

2006), Hilbert-Schmidt Independence Criterion (HSIC; Gretton et al., 2005), and the 

Maximal Information Coefficient (MIC; Reshef et al., 2011). All the previously 

mentioned measures test the hypothesis of statistical independence between variables, 

that is, whether there is a relationship between them regardless of the type of association 

they have. Formally, there is statistical independence when the distribution of one 

variable is the same regardless of the values and distribution of the second variable (H0). 

In contrast, there is dependence if the change in levels of one of them is followed by 

changes in the other (H1).  

Aiming to find the best hypothesis test for detecting dependence, these new 

methods have been extensively evaluated in several investigations (de Siqueira Santos et 

al., 2014; Ding & Li, 2015; Kinney & Atwal, 2014; Makonnen, 2019; Reshef et al., 2011). 

The most recurring methodology to approach this problem has been the implementation 

of simulations where the different methods are evaluated under several conditions such 

as sample size or type of association. In order to assess the performance of the tests under 

these different conditions, the type I error rate and power level have been the most popular 

approaches and have reported promising results. Dependence tests such as dCor, HHG, 

and MI have not only identified functional and non-functional relationships, but also 

presented high power levels across different sample sizes and noise levels while 

maintaining a satisfactory type I error rate (de Siqueira Santos et al., 2014; Kinney & 

Atwal, 2014; Makonnen, 2019).  
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Nevertheless, no test was the most powerful across all conditions. On the contrary, 

previous investigations indicated mixed results where different tests performed better 

than other tests under specific conditions. On one hand, the MI and MIC tests 

outperformed all other methods in cyclic relationships (de Siqueira Santos et al., 2014; 

Reshef et al, 2011) while Pearson’s correlation coefficient had the best performance in 

linear associations (Clark, 2013; Ding & Li, 2015; Makonnen, 2019). On the other hand, 

some of such methods have performed worse than others depending on the noise levels. 

The HHG and dCor measures have shown dominance over MIC in several simulations 

when the noise levels are high (Gorfine et al., 2012; Simon & Tibshirani, 2014).  

Following these results, some researchers have followed different strategies to 

recommend the use of particular tests in specific conditions. For example, de Siquiera 

Santos et al. (2014) provided a decision tree for which each node was divided considering 

the level of several conditions (e.g., large or small sample size; functional or non-

functional relationship, among others). Moreover, Clark (2013) recommended the use of 

new tests instead of the classic methods due to its ability to assess a broader type of 

relationships, and Makonnen (2019) concluded that dCor should always be used when 

the sample size is large and MI when the underlying association is cyclic. However, 

although these recommendations provide general guidelines for the selection of the 

correct method, it is still unclear which test should be used when the type of relationship 

or noise levels are not known a priori as is most often the case in Psychology. 

Thus, in search of simplifying the selection problem of dependence measures in 

psychological research, this study aims to: 

1.  Establish assessment methods that summarize the performance of each test 

across the different conditions.  

2.  Identify which dependence test performs best according to these methods to 

provide a general recommendation for future investigation in Psychology.  

This will be a step towards the reduction of the selection problem when facing a 

situation where the underlying conditions of the relationship are not known by the 

researcher.  

Following previous investigations, this study will implement a Monte-Carlo 

simulation in which the performance of nine different dependence tests will be compared, 

namely: (1) Pearson’s product-moment correlation coefficient, (2) Spearman’s rank 
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correlation coefficient, (3) Kendall rank correlation coefficient, (4) HHG measure, (5) 

Hoeffding’s D, (6) Distance Correlation, (7) Mutual Information, (8) Hilbert-Schmidt 

Independence Criterion, and (9) a combination between HHG and Pearson’s correlation 

with a Bonferroni correction. Furthermore, as the identification of dependence and 

hypothesis testing are the scope of this research, the comparison will be done through 

power level and type I error rate under several conditions that can be found when doing 

research in Psychology. 

The structure of the remainder of this document entails a methods section, in 

which the nine dependence measures will be described, and the approaches to the 

assessment of the performance of the tests will be explained. Later, a results section will 

present the outcomes of the simulation for each assessment approach. And lastly, a final 

section will discuss the results in light of previous research and will be followed by the 

conclusions and recommendations for future research on this topic. 

Method 

Statistical Independence  

All of the nine methods mentioned above test the dependence between variables, 

which can be described by the following two hypotheses: 

1. H0: independence of variables 

2. H1: dependence between variables 

The null hypothesis of independence of two random variables X and Y can be 

mathematically expressed by the following equality: 

𝐹𝑋,𝑌(𝑥, 𝑦) = 𝐹𝑋(𝑥)𝐹𝑌(𝑦) (1)  

where 𝐹𝑋,𝑌(𝑥, 𝑦)  can either be the joint cumulative distribution function, the joint 

probability density function, or the joint characteristic function of the combined variable 

(𝑥, 𝑦). Likewise, 𝐹𝑋(𝑥) and 𝐹𝑌(𝑦) are the marginal cumulative distribution functions, 

marginal probability density functions, or marginal characteristic functions of the 

variables 𝑥 and 𝑦. To provide context, the characteristic functions can be briefly defined 

as transformations of the probability density functions that can take values in the complex 

numbers (for more details please see DasGupta [2011] and Székely et al. [2007]). 
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Dependence tests 

Pearson’s product-moment correlation coefficient 

Pearson’s correlation (Galton, 1889; Pearson, 1920) is the most commonly used 

method to measure the association between two variables in Psychology. It can only 

identify linear relationships between continuous variables and assumes that both variables 

are normally distributed. Moreover, it can take any value between -1 and 1, for which a 

coefficient of -1 represents a perfect linear negative association, and 1 shows a perfect 

linear positive association. Mathematically, it is the standardized form of the covariance 

between two variables 𝑥 and 𝑦. First, let us define the covariance as a measure of the 

linear joint variability of those two variables. It can be expressed as: 

𝑐𝑜𝑣(𝑥, 𝑦) = 𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌])] (2) 

where 𝐸[ ] stands for the expected value of the variables, which in this case can be 

understood as their means (Rice, 2007). That is, the covariance measures the joint 

variability of two variables in terms of their joint deviation from their respective means. 

Now, let us define Pearson’s correlation for the population as follows: 

𝜌(𝑥, 𝑦) =
𝑐𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦

(3) 

for which 𝜎𝑥 and 𝜎𝑦 are the standard deviations of the variables 𝑥 and 𝑦. Please note that 

in case of perfect linear dependence 𝑐𝑜𝑣(𝑥, 𝑦) = 𝜎𝑥𝜎𝑦  and 𝜌(𝑥, 𝑦) = 1 . Please 

remember that the covariance measures the joint variability in terms of the deviation of 

the variables from their means. 

Furthermore, it is also possible to redefine the covariance as follows: 

𝑐𝑜𝑣(𝑥, 𝑦) = 𝐸[𝑋𝑌] − 𝐸[𝑋]𝐸[𝑌] (4) 

Considering this definition and following the null hypothesis of independence 

where 𝐸[𝑋𝑌] = 𝐸[𝑋]𝐸[𝑌], the right side of Equation (4) would be equal to 0, thus, 

𝑐𝑜𝑣(𝑥, 𝑦) = 0 and 𝜌(𝑥, 𝑦) = 0. Therefore, Pearson’s correlation coefficient value will be 

0 in case the variables are independent. However, it is relevant to mention that this only 

holds for linear dependences as the covariance only measures the linear joint variability.  

Finally, Pearson’s correlation coefficient for a sample is computed as follows: 



9 
 

𝑟𝑃𝑒𝑎𝑟𝑠𝑜𝑛(𝑥, 𝑦) =
∑(𝑥 −  𝑥̅)(𝑦 − 𝑦̅)

√∑(𝑥 −  𝑥̅)2 ∑(𝑦 −  𝑦̅)2
(5)  

where 𝑥̅ and 𝑦̅ represent the mean value of those two random variables. Moreover, the 

hypothesis testing for Pearson’s correlation coefficient is calculated assuming a t-

distribution with 𝑛 − 2  degrees of freedom under the null hypothesis of linear 

independence. The t-statistic is calculated as follows: 

𝑡 =
𝑟(𝑥, 𝑦)√𝑛 − 2

√1 − 𝑟(𝑥, 𝑦)2
(6) 

Spearman’s rank correlation coefficient 

 Spearman’s correlation coefficient (Spearman, 1904) uses the same formula as 

Pearson’s correlation coefficient; however, it is not applied to the raw scores, but to the 

rank transformation of the values of each variable. That is, the elements of each variable 

are given a rank in increasing order from 1 to N values in the variable. This transformation 

allows Spearman’s correlation coefficient to identify not only linear relationships but also 

nonlinear monotonic associations. It can also be calculated for ordinal variables, not only 

continuous ones. For the population it is mathematically expressed as: 

𝑟𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛(𝑟𝑔𝑥,  𝑟𝑔𝑦) =  
𝑐𝑜𝑣(𝑟𝑔𝑥,  𝑟𝑔𝑦)

𝜎𝑟𝑔𝑥 𝜎𝑟𝑔𝑦

(7) 

where 𝑟𝑔𝑥 and  𝑟𝑔𝑦 are the rank transformations of variables 𝑥 and 𝑦, and 𝜎𝑟𝑔 represent 

the standard deviation of the corresponding variable. Furthermore, for a sample it is 

defined as: 

𝑟𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛(𝑟𝑔𝑥,  𝑟𝑔𝑦) =  
∑(𝑟𝑔𝑥 − 𝑟𝑔̅̅ ̅

𝑥
)(𝑟𝑔𝑦 −  𝑟𝑔̅̅ ̅𝑦)

√∑(𝑟𝑔𝑥 −  𝑟𝑔̅̅ ̅
𝑥

) ∑(𝑟𝑔𝑦 −  𝑟𝑔̅̅ ̅𝑦)2

 (8)
 

for which 𝑟𝑔̅̅ ̅𝑥 and 𝑟𝑔̅̅ ̅𝑦 represent the mean of the corresponding ranks. Moreover, if there 

are not tied ranks, Spearman’s rank correlation coefficient can also be calculated as 

follows: 

𝑟𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛(𝑟𝑔𝑥,  𝑟𝑔𝑦) = 1 −  
6 ∑ 𝑑2

𝑛(𝑛2 − 1)
(9) 
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for which 𝑑 are the differences between the corresponding ranks of the values from each 

variable. Spearman’s correlation coefficient is similar to Pearson’s correlation in the 

values it can assume. It ranges between -1 and 1, being -1 a perfect negative monotonic 

relationship, and 1 a perfect positive monotonic association. Finally, its hypothesis testing 

assumes a t-distribution under the null hypothesis of independence, and the t-statistic is 

calculated in the same way as in Pearson’s correlation. 

Kendall rank correlation coefficient 

 Similar to Spearman’s correlation, Kendall rank correlation (Kendall, 1938) is a 

measure of dependence between variables that applies a rank transformation to the values 

of two variables and can take values from -1 to 1. However, the calculation of the 

coefficient is different, it can be expressed as follows: 

𝜏(𝑥, 𝑦) =
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠) − (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠)

0.5𝑛(𝑛 − 1)
(10) 

where for observations (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗, 𝑦𝑗) a pair is considered concordant when 𝑥𝑖 > 𝑥𝑗  

and 𝑦𝑖 > 𝑦𝑗  or when 𝑥𝑖 < 𝑥𝑗  and 𝑦𝑖 < 𝑦𝑗 . On the other hand, a pair is considered 

discordant when 𝑥𝑖 > 𝑥𝑗  and 𝑦𝑖 < 𝑦𝑗 or when 𝑥𝑖 < 𝑥𝑗  and 𝑦𝑖 > 𝑦𝑗 . In the same way as 

Spearman’s correlation, Kendall rank correlation offers several advantages compared to 

Pearson’s correlation coefficient. First, it can not only identify linear relationships, but 

also nonlinear monotonic associations. Second, it can be calculated for ordinal variables. 

Third, it does not need to assume that the variables are normally distributed.  

 Finally, the usual way to perform the hypothesis testing for Kendall rank 

correlation coefficient is through an approximation to a normal distribution where 𝜏(𝑥, 𝑦) 

is transformed to Z values as can be seen below: 

𝑍 =
𝜏(𝑥, 𝑦)

𝜎
(11) 

for which 𝜎 is the standard deviation of 𝜏 and can be defined as 𝜎 = √
2(2𝑛+5)

9𝑛(𝑛−1)
. Kendall 

rank correlation coefficient, Pearson’s correlation coefficient, and Spearman’s rank 

correlation coefficient were calculated using the ‘cor.test’ function from the R package 

‘base’ (R Core Team, 2019). 

 



11 
 

Heller-Heller-Gorfine measure  

 HHG measure was proposed by Heller et al. (2012) as an alternative to 

consistently test dependence between variables regardless of their type of association. It 

is based on the Euclidean or norm distances of two variables 𝑥 and 𝑦. Let that distance 

be 𝑑( .  , . )  for either 𝑥  or 𝑦 , so that the distance between points 𝑖  and 𝑗  can be 

represented by 𝑑(𝑥𝑖, 𝑥𝑗) or 𝑑(𝑦𝑖, 𝑦𝑗). Now, let us consider observations 𝑘 = (1, … , 𝑛) 

where 𝑘 ≠ 𝑖  and 𝑘 ≠ 𝑗 . HHG creates a cross-classification table with elements 

𝐴11 𝐴12 𝐴21 𝐴22 where:  

𝐴11(𝑖,𝑗) =  ∑ 𝐼
𝑛

𝑘=1
𝑘 ≠𝑖
𝑘 ≠𝑗

{𝑑(𝑥𝑖, 𝑥𝑘) ≤  𝑑(𝑥𝑖 , 𝑥𝑗)} 𝐼{𝑑(𝑦𝑖, 𝑦𝑘) ≤  𝑑(𝑦𝑖, 𝑦𝑗)} (12)
 

𝐴12(𝑖,𝑗) =  ∑ 𝐼
𝑛

𝑘=1
𝑘 ≠𝑖
𝑘 ≠𝑗

{𝑑(𝑥𝑖, 𝑥𝑘) ≤  𝑑(𝑥𝑖 , 𝑥𝑗)} 𝐼{𝑑(𝑦𝑖, 𝑦𝑘) >  𝑑(𝑦𝑖, 𝑦𝑗)} (13)
 

𝐴21(𝑖,𝑗) =  ∑ 𝐼
𝑛

𝑘=1
𝑘 ≠𝑖
𝑘 ≠𝑗

{𝑑(𝑥𝑖, 𝑥𝑘) >  𝑑(𝑥𝑖 , 𝑥𝑗)} 𝐼{𝑑(𝑦𝑖, 𝑦𝑘) ≤  𝑑(𝑦𝑖, 𝑦𝑗)} (14)
 

𝐴22(𝑖,𝑗) =  ∑ 𝐼
𝑛

𝑘=1
𝑘 ≠𝑖
𝑘 ≠𝑗

{𝑑(𝑥𝑖, 𝑥𝑘) >  𝑑(𝑥𝑖 , 𝑥𝑗)} 𝐼{𝑑(𝑦𝑖, 𝑦𝑘) >  𝑑(𝑦𝑖, 𝑦𝑗)} (15)
 

for which 𝐼( . ) is an indicator function that assigns a 1 if the statement inside is true, and 

a 0 if it is false. These 𝐴 elements are then used to calculate 𝐴1.(𝑖,𝑗), 𝐴2.(𝑖,𝑗), 𝐴.1(𝑖,𝑗), and 

𝐴.2(𝑖,𝑗)  that represent the following: 𝐴𝑚.(𝑖,𝑗) =  𝐴𝑚1(𝑖,𝑗) + 𝐴𝑚2(𝑖,𝑗)  and 𝐴.𝑚(𝑖,𝑗) =

 𝐴1𝑚(𝑖,𝑗) + 𝐴2𝑚(𝑖,𝑗) where 𝑚 = 1, 2. A summary regarding all 𝐴 elements can be seen in 

the cross-classification table in Table 1. Considering the previous information, the authors 

calculate the chi-squared statistic for 2 x 2 contingency tables as follows: 

𝑆(𝑖, 𝑗) =
(𝑁 − 2){𝐴12(𝑖, 𝑗)𝐴21(𝑖, 𝑗)𝐴11(𝑖, 𝑗)𝐴22(𝑖, 𝑗)}2

𝐴1.(𝑖, 𝑗) 𝐴2.(𝑖, 𝑗) 𝐴.1(𝑖, 𝑗) 𝐴.2(𝑖, 𝑗)
(16) 

Finally, to test whether the two variables present an association, the authors 

suggest using a permutation test to obtain a p-value from the statistic 𝑇, which is defined 

as: 

𝑇 = ∑ ∑ 𝑆(𝑖, 𝑗)
𝑛

𝑗=1 𝑗≠𝑖

𝑛

𝑖=1
(17) 
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In summary, the HHG test looks into the number of times the distances of 𝑥 and 

𝑦 values coincide and differ in order to identify if there is a relationship between the two 

variables. Afterward, this information is inserted in a 2 x 2 contingency table (see Table 

1) that is used to compute several chi-square test statistics 𝑆(𝑖, 𝑗). Lastly, these 𝑆(𝑖, 𝑗) are 

summed to obtain a final 𝑇 statistic that can be used to compute a permutation test. The 

HHG was calculated using the ‘hhg.test’ function from the R package ‘HHG’ provided 

by Brill & Kaufman (2019), which is based on the earlier implementation by Heller et al. 

(2012). 

Table 1 

Cross-Classification Table for 𝐴 Elements 

 𝑑(𝑦𝑖, 𝑦𝑘) ≤  𝑑(𝑦𝑖, 𝑦𝑗) 𝑑(𝑦𝑖, 𝑦𝑘) >  𝑑(𝑦𝑖, 𝑦𝑗) Row Totals 

𝑑(𝑥𝑖, 𝑥𝑘) ≤  𝑑(𝑥𝑖 , 𝑥𝑗) 𝐴11(𝑖,𝑗) 𝐴12(𝑖,𝑗) 𝐴1.(𝑖,𝑗) 

𝑑(𝑥𝑖, 𝑥𝑘) >  𝑑(𝑥𝑖 , 𝑥𝑗) 𝐴21(𝑖,𝑗) 𝐴22(𝑖,𝑗) 𝐴2.(𝑖,𝑗) 

Column Totals 𝐴.1(𝑖,𝑗) 𝐴.2(𝑖,𝑗)  

 

Hoeffding’s D 

 Hoeffding’s D is a non-parametric test of independence developed by Hoeffding 

(1948) and was one of the first approaches to test the nonmonotonic associations between 

variables regardless of their type of relationship. It is mathematically defined by Heller et 

al. (2016) as: 

𝐷 = ∬ 𝑁{𝐹̂𝑋𝑌(𝑥, 𝑦) − 𝐹̂𝑋(𝑥)𝐹̂𝑌(𝑦)}2𝑑𝐹̂𝑋𝑌(𝑥, 𝑦) (18) 

where 𝐹̂  represents either the joint or the marginal empirical cumulative distribution 

functions of all 𝑥 and 𝑦 in the population. It is important to mention that 𝐷 = 0 in case 

the null hypothesis of independence 𝐹̂𝑋𝑌(𝑥, 𝑦) = 𝐹̂𝑋(𝑥)𝐹̂𝑌(𝑦) is true, that is, Hoeffding’s 

D will be 0 if and only if 𝑥  and 𝑦  are independent. Furthermore, Hoeffding (1948) 

describes its empirical calculation based on the ranks of the two variables 𝑥 and 𝑦. Let us 

consider those ranks as 𝑎 and 𝑏 respectively for both variables, and 𝑐 as the points where 

both 𝑥 and 𝑦 are smaller than the value of observation 𝑖; 𝑐 is expressed as follows: 

𝑐𝑖 =  ∑ 𝜑(𝑥𝑗 , 𝑥𝑖)𝜑(𝑦𝑗 , 𝑦𝑖)
𝑛

𝑗=1
(19) 
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where 𝜑(𝑥𝑗 , 𝑥𝑖) = 1 when 𝑥𝑗 <  𝑥𝑖  and 𝜑(𝑥𝑗 , 𝑥𝑖) = 0 if 𝑥𝑗 ≥  𝑥𝑖 . And where 𝜑(𝑦𝑗 , 𝑦𝑖) 

is similarly defined. That is, 𝑐𝑖  is the sum of the number of observations when both 

𝑥𝑗 < 𝑥𝑖 and 𝑦𝑗 < 𝑦𝑖. Considering the previous information, the original author defined 

the following statements: 

𝐴 = ∑ (𝑎𝑖 − 1)(𝑎𝑖 − 2)(𝑏𝑖 − 1)(𝑏𝑖 − 2)
𝑛

𝑖=1
(20) 

𝐵 = ∑ (𝑎𝑖 − 2)(𝑏𝑖 − 2)
𝑛

𝑖=1
𝑐𝑖 (21) 

𝐶 = ∑ 𝑐𝑖(𝑐𝑖 − 1)
𝑛

𝑖=1
(22) 

𝐴, 𝐵, and 𝐶 are then used to define Hoeffing’s D in the mathematical expression 

below: 

𝐷(𝑥, 𝑦) =
𝐴 − 2(𝑛 − 2)𝐵 + (𝑛 − 2)(𝑛 − 3)𝐶

𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)(𝑛 − 4)
(23) 

Moreover, the author defines a D-test of independence for a desired 𝛼  in the 

following inequality: 

𝑃{𝐷(𝑥, 𝑦) > 𝜌𝑛} ≤ 𝛼 (24) 

where 𝑃 is the probability distribution under the null hypothesis of independence, and 𝜌𝑛 

is the smallest number that satisfies the inequality. Its value is decided with the following 

formula: 

𝜌𝑛 =
1

30
√

2(𝑛2 + 5𝑛 − 32)

9𝑛(𝑛 − 1)(𝑛 − 3)(𝑛 − 4)𝛼
(25) 

Finally, the H0 null hypothesis of independence between variables  𝑥  and 𝑦  is 

rejected if and only if 𝐷(𝑥, 𝑦) > 𝜌𝑛. Hoeffding’s D was calculated through the ‘hoeffd’ 

function from the ‘Hmisc’ R package developed by Harrell (2020). 

Distance Correlation 

 Distance correlation was developed by Székely et al. (2007) to measure 

dependence between two variables 𝑥 and 𝑦 based on Euclidean distances between sample 

elements. First, it transforms the joint probability density function 𝐹𝑋,𝑌(𝑥, 𝑦) and the 
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marginal probability density functions 𝐹𝑋(𝑥)  and 𝐹𝑌(𝑦)  into joint and marginal 

characteristic functions that assume values in the complex numbers. Please note that a 

complex number can be described in the form 𝑧 = 𝑥 + 𝑖𝑦 where 𝑖 = √−1, 𝑥 is the real 

part of the complex number, and 𝑦  is the imaginary part of the complex number 

(DasGupta, 2011). Furthermore, Karr (1993) define the characteristic function of a 

random variable 𝑥 as the expected value of 𝑒𝑖𝑡𝑋 in the following expression: 

𝑓𝑋(𝑡) = 𝐸[𝑒𝑖𝑡𝑋] = ∫ 𝑒𝑖𝑡𝑋𝐹𝑋(𝑥)
∞

−∞

𝑑𝑥 (26) 

for which 𝑖 is the imaginary part, and 𝑡 is the real part of the characteristic function. 

Considering these transformations, Székely et al. (2007) proceed to first define the 

distance covariance as: 

𝑑𝐶𝑜𝑣 =
1

𝑐2
∬

|𝑓𝑋,𝑌(𝑡, 𝑠) − 𝑓𝑋(𝑡)𝑓𝑌(𝑠)|2 

|𝑡|2|𝑠|2
𝑑𝑡 𝑑𝑠 (27) 

where 𝑡 and 𝑠 are the real part of the characteristic functions of the variables 𝑥 and 𝑦, and  

𝑐 is a constant. Please note that based on this definition, and under the null hypothesis of 

independence 𝑓𝑋,𝑌(𝑡, 𝑠) = 𝑓𝑋(𝑡)𝑓𝑌(𝑠)  the distance covariance 𝑑𝐶𝑜𝑣 = 0  when the 

product of the marginal characteristic functions is equal to the joint characteristic 

function. Furthermore, these characteristic functions involve several advantages 

compared to the estimation of probability density functions, such as less computational 

burden when making computations with random variables. For further information 

regarding characteristic functions, the readers are referred to the original investigation of 

Székely et al. (2007). 

 After transforming the functions, the authors compute the Distance Correlation in 

several steps. First, let us consider the variables 𝐴𝑘𝑙 = 𝑎𝑘𝑙 − 𝑎̅𝑘. − 𝑎̅.𝑙 + 𝑎̅  and 𝐵𝑘𝑙 =

𝑏𝑘𝑙 − 𝑏̅𝑘. − 𝑏̅.𝑙 + 𝑏̅. For which all elements in 𝐴𝑘𝑙 are described as follows (please note 

that | . | stands for Euclidean distance):  

𝑎𝑘𝑙 = |𝑥𝑘 − 𝑥𝑙| (28) 

𝑎̅𝑘. =
1

𝑛
∑ 𝑎𝑘𝑙

𝑛

𝑙=1

(29) 
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𝑎̅.𝑙 =
1

𝑛
∑ 𝑎𝑘𝑙

𝑛

𝑘=1

(30) 

𝑎̅ =
1

𝑛2
∑ 𝑎𝑘𝑙

𝑛

𝑘,𝑙=1

(31) 

That is, 𝑎𝑘𝑙  is the Euclidean distance between 𝑘 and 𝑙 for variable 𝑥; 𝑎̅𝑘. is the 

mean of 𝑘 row; 𝑎̅.𝑙  is the mean of 𝑙 column; and 𝑎̅ is the mean of the whole distance 

matrix. All elements in 𝐵𝑘𝑙 are similarly defined for variable 𝑦. Second, and considering 

the previous definitions, the empirical distance covariance, and the respective distance 

variance of two random variables 𝑥 and 𝑦 are calculated as can be seen below: 

𝑑𝐶𝑜𝑣(𝑋, 𝑌) = √
1

𝑛2
∑ 𝐴𝑘𝑙𝐵𝑘𝑙

𝑛

𝑘,𝑙=1

(32) 

𝑑𝑉𝑎𝑟(𝑋) = 𝑑𝐶𝑜𝑣(𝑋, 𝑋) = √
1

𝑛2
∑ 𝐴𝑘𝑙

𝑛

𝑘,𝑙=1

(33) 

𝑑𝑉𝑎𝑟(𝑌) = 𝑑𝐶𝑜𝑣(𝑌, 𝑌) = √
1

𝑛2
∑ 𝐵𝑘𝑙

𝑛

𝑘,𝑙=1

(34) 

 

Finally, Distance Correlation is the standardized value of distance covariance and 

is defined as:   

𝑑𝐶𝑜𝑟(𝑥, 𝑦) = {

𝑑𝐶𝑜𝑣(𝑥, 𝑦)

√𝑑𝑉𝑎𝑟(𝑥)𝑑𝑉𝑎𝑟(𝑦)
,

0,

          
𝑑𝑉𝑎𝑟(𝑥)𝑑𝑉𝑎𝑟(𝑦) > 0

𝑑𝑉𝑎𝑟(𝑥)𝑑𝑉𝑎𝑟(𝑦) = 0

(35) 

The values that 𝑑𝐶𝑜𝑟(𝑥, 𝑦) can take will vary between 0 and 1, and will be 0 if and 

only if 𝑥 and 𝑦 are independent. The authors recommend performing hypothesis testing 

for Distance Correlation through a permutation test. In this study, it was calculated 
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through the permutation test from the ‘dcor.test’ function of the R package ‘energy’ 

provided by Rizzo & Szekely (2019). 

Mutual Information 

 Mutual Information is originally a method from the Information Theory that can 

be defined as the reduction in the uncertainty of a variable 𝑥 due to the knowledge of a 

variable 𝑦 (Cover & Thomas, 2006). Let us consider a joint probability mass function 

𝑝(𝑥, 𝑦)  and marginal probability mass functions 𝑝(𝑥)  and 𝑝(𝑦) ; mutual information 

𝐼(𝑥, 𝑦) is then mathematically expressed as: 

𝐼(𝑥, 𝑦) = 𝐸 (𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
) (36) 

 Which for continuous random variables can be redefined considering the joint 

probability density function 𝑓(𝑥, 𝑦) and the marginal probability density functions 𝑓(𝑥) 

and 𝑓(𝑦) as follows: 

𝐼(𝑥, 𝑦) = 𝐸 (𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
) = ∬ 𝑓(𝑥, 𝑦)𝑙𝑜𝑔

𝑓(𝑥, 𝑦)

𝑓(𝑥)𝑓(𝑦)
𝑑𝑥 𝑑𝑦 (37) 

 Please note that 
𝑓(𝑥,𝑦)

𝑓(𝑥)𝑓(𝑦)
= 1 under the previously defined null hypothesis of 

independence 𝑓(𝑥, 𝑦) = 𝑓(𝑥)𝑓(𝑦). And, that 𝑙𝑜𝑔(1) = 0 if we consider a logarithm of 

base 2. Thus, 𝐼(𝑥, 𝑦) = 0 when variables 𝑥 and 𝑦 are independent and the product of their 

respective marginal density functions is equal to its joint density function. 

 After stating the definition of Mutual Information, the only problem left is the 

estimation of the density functions. Several methods have been proposed to solve this 

problem, going from count and histograms for discrete data, to K-Nearest-Neighbors, 

Bayesian approaches, and kernel estimation for continuous data (Gencaga et al., 2014; 

Kraskov et al., 2004; Paninski, 2003; Wand & Jones, 1995). The estimation of Mutual 

Information can greatly vary depending on the selection of the approach used to address 

this problem. And, although methods such as K-Nearest-Neighbors have shown good 

results for Mutual Information (Ding & Li, 2015; Kinney & Atwal, 2014), this study used 

the Kernel Density Estimation (KDE) approach as it is one of the most common choices 

when computing MI (Kinney & Atwal, 2014; Makonnen, 2019; Reshef et al., 2011), and 

has shown a good performance compared to other estimation methods (Khan et al, 2007).  
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 The use of KDE to estimate a density function 𝑓(𝑥)  requires the selection of two 

fundamental parameters: the type of kernel 𝐾, and the bandwidth ℎ which defines the 

kernel smoothing (Wand & Jones, 1995). Both of these parameters are in the definition 

of the estimated density function 𝑓(𝑥) for a random sample 𝑋1, … , 𝑋𝑛 provided by Park 

& Marron (1990) that can be seen below: 

𝑓(𝑥) = 𝑛−1 ∑ ℎ−1𝐾{

𝑛

𝑖=1

ℎ−1(𝑥 − 𝑋𝑖)} (38) 

 There are several kernels (Gaussian, Triangular, Box, among others) and several 

algorithms for bandwidth calculation that have shown different and positive results in 

various situations (Makonnen, 2019; Harpole et al., 2014; Reshef et al., 2011). 

Nevertheless, the selected 𝐾 and ℎ for this study were the Epanechnikov kernel and the 

Sheater-Jones plug-in (SJDP) algorithm respectively. First, Wand & Jones (1995) showed 

that the Epanechnikov kernel is the most efficient compared to other options such as 

Biweight, Triweight, Normal, and Triangular kernels, even when it is only a trivial 

difference. Second, Harpole et al. (2014) compared eight different algorithms commonly 

used to calculate the bandwidth and found that in general SJPD outperforms all other 

methods. Moreover, the Epanechnikov kernel is the default selection in the function ‘cmi’ 

from the ‘mpmi’ R package (Pardy, 2020) which was the one used to compute MI in this 

study, and SJPD is also the default option in the ‘dpik’ function from the ‘KernSmooth’ 

package (Wand, 2019) that was used to estimate the bandwidth for MI. For further 

information regarding the computation of SJPD, the readers are referred to the original 

investigation from Sheater & Jones (1991) and the plug-in section from Wand & Jones 

(1995). Finally, although the R function that will be used reports Z statistics for 

hypothesis testing of mutual information, this study will use a permutation test to assess 

the dependence between variables due to the recommendation of the author of the package 

(Pardy, 2020). 

Hilbert-Schmidt Independence Criterion 

 A brief description of the definition of HSIC will be presented in this section. 

However, for a detailed explanation regarding all its concepts, the readers are referred to 

the original investigation and its extensions (Gretton et al., 2005; Gretton et al., 2007; 

Pfister et al., 2018). The HSIC was originally developed by Gretton et al. (2005) as a new 
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independence test for two random variables based on the cross-covariance operators 

between elements of Reproducing Kernel Hilbert Spaces (RKHS), which can be briefly 

defined as spaces that contain functions.  

 To define HSIC, let us start by considering an RKHS ℱ that contains all real-

valued functions of a variable 𝑥, and an RKHS 𝒢 that contains all real-valued functions 

of a variable 𝑦. HSIC is based on the cross-covariance between the elements of ℱ and 𝒢, 

that can be defined as: 

𝑐𝑜𝑣(𝑓(𝑥), 𝑔(𝑦)) = 𝐄𝑥,𝑦[𝑓(𝑥)𝑔(𝑦)] − 𝐄𝑥[𝑓(𝑥)]𝐄𝑦[𝑔(𝑦)] (39) 

for which 𝑓 and 𝑔 are all possible functions that are part of ℱ and 𝒢. Please note that 

under the null hypothesis of independence 𝐄𝑥,𝑦[𝑓(𝑥)𝑔(𝑦)] = 𝐄x[𝑓(𝑥)]𝐄𝑦[𝑔(𝑦)], the 

right side of the Equation (39) would be equal to 0, thus, 𝑐𝑜𝑣(𝑓(𝑥), 𝑔(𝑦)) = 0. As HSIC 

is based on this cross-covariance, then 𝐻𝑆𝐼𝐶 = 0 if and only if variables 𝑥 and 𝑦 are 

independent. For more information regarding the theoretical definition of HSIC for the 

population, the readers are referred to Gretton et al. (2005) and Pfister et al. (2018). 

 Now, let us define the empirical calculation of HSIC. Its estimator can be 

described as 𝐻𝑆𝐼𝐶(𝑍, ℱ, 𝒢) where 𝑍 = {(𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚)}, that is, 𝑍 is a series of 𝑚 

observations drawn from the joint distribution 𝐹𝑥𝑦(𝑥, 𝑦) of a sample of the variables 𝑥 

and 𝑦. Considering this, 𝐻𝑆𝐼𝐶(𝑍, ℱ, 𝒢) is defined as follows: 

𝐻𝑆𝐼𝐶(𝑍, ℱ, 𝒢) = (𝑚 − 1)−2𝐭𝐫(𝐾𝐻𝐿𝐻) (40) 

where 𝐻, 𝐾  and 𝐿  are matrices of dimensions 𝑚 × m; 𝐻  is a centering matrix, 𝐾𝑖𝑗 =

𝑘(𝑥𝑖, 𝑥𝑗) , and 𝐿𝑖𝑗 = 𝑙(𝑦𝑖, 𝑦𝑗) . That is, 𝐾  and 𝐿  are matrices containing the kernel 

functions 𝑘 and 𝑙 of the variables 𝑥 and 𝑦. Please note that if either 𝐾 or 𝐿 are already 

centered then it is no longer necessary to add the matrix 𝐻 and it is possible to rewrite 

𝐭𝐫(𝐾𝐻𝐿𝐻) simply as 𝐭𝐫(𝐾𝐿). 

Furthermore, as HSIC involves the use of kernels, similar to Mutual Information 

it also requires the selection of the type of kernel. For this study, we chose the Gaussian 

kernel following what is recommended by Pfister et al. (2018) who obtained satisfactory 

results after testing HSIC under several conditions using it. Moreover, it is also the default 

option in the ‘dhsic.test’ function from the ‘dHSIC' R package provided by Pfister & 



19 
 

Peters (2019) which was used to calculate HSIC in this research. It is important to note 

that this function specifically calculates the d-variable Hilbert-Schmidt Independence 

Criterion (dHSIC) developed by Pfister et al. (2018) as an extension of the original HSIC 

to test independence for more than two variables. Nevertheless, as we are only interested 

in studying independence between two variables, the extension is not relevant for this 

study.  

Finally, after calculating the HSIC value, a hypothesis test should be performed. 

Based on Pfister et al. (2018) this can be carried out in three different ways: a permutation 

test, a bootstrap test, or a gamma approximation. The same authors evaluated these three 

procedures in several simulations and concluded that the permutation test was the most 

consistent method. Therefore, HSIC hypothesis testing was performed using a 

permutation test.  

Pearson and HHG with a Bonferroni correction 

 Previous simulation studies have found that HHG outperforms most of the other 

methods in several conditions such as non-functional relationships or high noise levels, 

and it is at least as good as most of the modern tests at low noise levels and functional 

associations. However, when the underlying dependence between the two variables was 

linear it was considerably less powerful compared to other methods in general, and almost 

always when compared to Pearson’s correlation coefficient specifically (de Siqueira 

Santos et al., 2014; Ding & Li, 2015; Gorfine et al., 2012).  

 Considering those previous results, this study added a new alternative that takes 

into account both HHG and Pearson’s coefficient when performing the hypothesis testing 

of dependence between variables. The procedure was simple and involved the 

computation of both methods. First, the two measures were carried out and only the one 

with the minimum p-value was selected. Second, as we were doing multiple hypothesis 

testing for this new alternative, it was possible to incur the multiple comparison problem. 

This problem can be defined as the increase of the probability of finding at least one 

statistically significant result when the number of simultaneous tests being carried out 

increases. In other words, the more statistical tests are performed, the more likely is to 

incur wrong inferences (Goldman, 2008). To address this issue, a Bonferroni correction 

was applied by multiplying the selected p-value by the number of simultaneous tests, 
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which in this case was 2. This alternative will be referred to as HHG-Pearson for the 

remainder of this document. 

Permutation Test 

 For four out of the nine methods, namely Pearson, Kendall, Spearman, and 

Hoeffding’s D, the hypothesis testing was performed using the traditional approach 

assuming a parametric null distribution that was already implemented in its corresponding 

R packages. On the other hand, HHG, HSIC, dCor, and MI required the use of a 

permutation test as a non-parametric approach. The remaining method is the HHG-

Pearson application with a Bonferroni correction; thus, the Pearson’s test used the 

traditional approach, and HHG a permutation test. Before describing the details of the 

simulation, it is necessary to define what is a permutation test.  

A permutation test is a non-parametric approach to hypothesis testing usually used 

when there is no way of knowing the null distribution under the null hypothesis of a test 

statistic (Rice & Lumley, 2008). In these cases, the permutation test will allow us to 

perform hypothesis testing by estimating the sample distribution under the null 

hypothesis. For dependence methods like the ones in this study, the null distribution is 

the one of independence between two variables. Therefore, let us consider two variables 

𝑥  and 𝑦 that share some kind of association, and a paired data (𝑥𝑖, 𝑦𝑖) for which the 

variable 𝑦𝑖 will be randomly shuffled to simulate a situation of no relationship. Thus, 

creating a new paired data (𝑥𝑖 , 𝑦𝑖
∗) where 𝑦𝑖

∗ is the randomly shuffled 𝑦𝑖 that simulates a 

situation of no dependence. This procedure is done for every observation 𝑖 and will be 

repeated a certain number of times. These repetitions are the permutations that give its 

name to the permutation test, and for every permutation, the test statistic is calculated. 

After estimating the sample null distribution, the original test statistic from the paired data 

(𝑥𝑖, 𝑦𝑖) is compared to all the test statistics calculated for every permutation of the paired 

data (𝑥𝑖, 𝑦𝑖
∗) to observe the probability of occurrence of our original test statistic under 

the null hypothesis.  

 The number of repetitions can vary, but usually, the minimum is 1000. In this 

study, we used 10000 permutations for the tests that require this procedure, namely, HHG, 

HSIC, dCor, and MI. However, as HHG's computational burden increases exponentially 

with the sample size, and due to limitations in computational power, the number of 

permutations for HHG was 1000 when the sample size was greater than 100. 
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Simulation study 

In order to compare the methods described in previous sections, a Monte-Carlo 

simulation was carried out. The simulation assessed the performance of the nine tests in 

several conditions that can be found while doing research in Psychology. For the current 

study, the factors considered and evaluated were sample size, type of relationship, and 

noise level. The design of the simulation can be summarized as follows: 

1. Sample size (8 levels): 10, 20, 35, 50, 75, 100, 150 and 500 

2. Type of relationship (5 levels): linear, exponential, quadratic, sine wave, and 

non-functional cross. 

3. Noise (3 levels): low, medium, high. 

For a total of 8*5*3 = 120 design cells that were repeated 1000 times. All of the 

nine tests were evaluated through all design cells. The details for each factor and its 

selected levels are described below. 

Sample Size 

The levels for this factor were selected based on the most commonly present 

sample sizes in Psychology published papers. Marszalhk et al. (2011) described the 

sample sizes used in Psychology research in four journals for the past three decades. The 

sample sizes varied from 1 to 45000, however, the most common values ranged from 10 

to 140. Furthermore, Kuhberger et al. (2014) randomly selected 1000 published papers in 

different areas of psychological research and found that the most frequent values for the 

sample size varied between 1 and 100. Thus, eight levels were selected: 10, 20, 35, 50, 

75, 100, 150 and 500. The chosen levels focused on sample sizes below 100 as these 

values were the most common in psychological research. 

Type of Relationship 

Four functional and one non-functional relationships between variables were 

considered for the simulation: linear, exponential, quadratic, sine wave, and non-

functional cross. On the one hand, the exponential relationship was defined as a negative 

function considering that it can be easily found in the literature (Cajueiro, 2006; 

Leibowitz et al., 2010). Moreover, the quadratic relationship was established as an 

Inverted-U as it has been used to define different dependences between variables in 

Psychology such as the virtue-satisfaction or stress-performance relationships (Grant & 
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Schwartz, 2011; Westman & Eden, 1996). On the other hand, although sine-wave and 

cross relationships can be found in Psychology (Corning, 2002; Verboon & Leontjevas, 

2018), they were mainly included as they are common relationships used to assess the 

performance of dependence tests (de Siquiera Santos et al., 2014; Ding & Li, 2015; 

Kinney & Atwal, 2014; Reshef et al., 2011). An example for all associations can be seen 

in Figure 1 and its respective functions can be seen in Equations (41) − (45). Please note 

they include an error term 𝜀 that will be explained in the following section. 

 

 

Figure 1. Five types of association evaluated in the simulation 
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Linear: 

Quadratic: 

Exponential: 

Sine: 

Cross: 

𝑦 = (2𝑥) + 𝜖      (41) 

𝑦 = (−𝑥2) + 𝜖   (42) 

𝑦 = (−𝑒−𝑥) + 𝜖 (43) 

𝑦 = sin(3𝑥) + 𝜖 (44) 

𝑦 = (± 𝑥) + 𝜖   (45)

 

Noise Level 

As a perfect relationship between variables in actual research is not plausible, an 

error term 𝜖 was added to the created Y variable. The error term 𝜖 was generated with a 

normal distribution 𝜖~𝒩(0, σ𝜖) where σ𝜖 stands for the standard deviation of 𝜖. This σ𝜖 

was defined by the noise level. Moreover, the noise levels were selected based on the 

proportion of variance of Y that was explained by X. That is, we decided to use the R2 

statistic to define the noise of the associations. It is important to note that although R2 is 

often understood in Psychology as the proportion of variance of Y explained by X in a 

linear model, for this study it was considered as the proportion of variance explained by 

the true model regardless of whether it was linear or nonlinear. A formal definition of 

how R2 was understood in this study can be seen below: 

𝑅2 = 1 −
σ𝜖

2

σ𝑌
2

(46) 

for which σ𝜖
2 is the error variance of the error term 𝜖 (unexplained variance), and σ𝑌

2  is 

the total variance of the Y variable. For more information regarding the definition of the 

R2 statistic for nonlinear associations please see Doksum & Samarov (1995).  

The R2 values were specified following the literature in social research, and three 

levels were defined (Cohen, 1988; Hair et al, 2015). A low noise level was represented 

by an R2 of 0.75, a medium level by an R2 of 0.45, and a high level of noise by an R2 of 

0.1. An optimization procedure was performed to find the best σ𝜖 that led to the desired 

R2 value. The final selected values for σ𝜖 varied for each type of relationship, but all of 

them led to the same three levels of R2 for four out of the five associations. The remaining 

association was the cross non-functional dependence for which this procedure was not 

carried out as the expected R2 for a perfect relationship of this type is zero. For this 

specific case, σ𝜖 was selected considering the typically used values in similar simulations 
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(Makonnen, 2019; Simon & Tibshirani, 2011). For details on the values of the noise levels 

please see Appendix A. 

Assessment of the Methods 

The evaluation of the performance of the methods was approached in two steps. 

First, by hypothesis testing via type I error rate and empirical power. Second, by 

summarizing the results of empirical power through three different approaches: complete 

class analysis, average power, and Maximin. Please note that as no difference between 

the tests was expected in type I error rate, the main comparison in the simulation was 

performed in terms of the empirical power and the summary approaches employed in this 

study. 

Evaluating Hypothesis Test 

Type I Error Rate. The type I error rate evaluated how often each method 

rejected the null hypothesis of independence between variables when there was truly no 

association between X and Y. This was done in two steps. First, by performing 1000 

simulations for all sample sizes for which each method calculated the p-value with a set 

of independent data. Second, calculating the average number of p-values below the 

significance level. The defined significance level was 0.05 as it is one of the standard 

values used in psychological research.  

Empirical Power. The empirical power can be defined as the probability of the 

test to reject the null hypothesis of independence when there was truly an association 

between X and Y. For this study, it was assessed for all conditions in the simulation and 

was calculated by estimating the average number of p-values that were lower than the 

defined significance level of 0.05. That is, we calculated how often the methods rejected 

the null hypothesis when the alternative hypothesis was true. 

Summarizing Power 

Considering that it is essentially impossible for a test to have the best performance 

(e.g., highest power) in all possible situations (Lehman & Romano, 2005), the 

performance of the tests over all conditions in the simulation was summarized to ease the 

comparison of the nine dependence measures. First, a complete class analysis was 

performed to reduce the number of viable methods based on their power. Second, the 
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average power was calculated to obtain a unique value to compare the tests. Third, a 

Maximin analysis was carried out. 

Complete Class. A complete class procedure was carried out. It aims to reduce a 

decision problem (e.g., selecting the best dependence measure) without loss of relevant 

information. In other words, this procedure will decrease the number of viable tests to use 

in the future by selecting only the ones that perform the best out of all methods. To 

understand this procedure, let us consider the empirical power of each dependence test as 

a decision rule denominated as 𝑝𝑜𝑤𝑒𝑟. One of these methods can be eliminated from the 

decision problem if it is dominated by another 𝑝𝑜𝑤𝑒𝑟′ from a different method, so that: 

𝑝𝑜𝑤𝑒𝑟′ ≥ 𝑝𝑜𝑤𝑒𝑟  for all conditions 

𝑝𝑜𝑤𝑒𝑟′ > 𝑝𝑜𝑤𝑒𝑟  for some conditions 

In this case, 𝑝𝑜𝑤𝑒𝑟 is dominated by the decision rule 𝑝𝑜𝑤𝑒𝑟′, and the method 

corresponding to 𝑝𝑜𝑤𝑒𝑟  is now considered inadmissible in a complete class of 

dependence measures. Let us name this complete class as C. A method can only be 

admissible in C if such dominating 𝑝𝑜𝑤𝑒𝑟′ does not exist. A class is complete when for 

every decision rule 𝑝𝑜𝑤𝑒𝑟 not in class C, there is a 𝑝𝑜𝑤𝑒𝑟′ dominating it in C (Lehman 

& Romano, 2005). All methods outside C should not be considered anymore as there is 

another method inside C that is at least as good as the ones outside of it. As this research 

will not consider all existent dependence tests, the resulting C would only be a complete 

subclass. On the other hand, this procedure will reduce the number of possible 

dependence measures that can be considered for future research in Psychology. Finally, 

taking into account that it is exceedingly difficult to dominate a test across all simulated 

conditions, a small level of tolerance was considered for this analysis. Tolerance in this 

context can be defined as adding a small value close to 0 to the power of one of the tests 

such that a small margin of what is accepted as dominance is added to the comparison. 

To understand this better let us consider the tolerance level as 𝑡𝑜𝑙, and let us redefine the 

previous conditions of dominance as: 

𝑝𝑜𝑤𝑒𝑟′ + 𝑡𝑜𝑙 ≥ 𝑝𝑜𝑤𝑒𝑟  for all conditions 

𝑝𝑜𝑤𝑒𝑟′ > 𝑝𝑜𝑤𝑒𝑟  for some conditions 

Average Power. The second step of the summary was performed by taking the 

average power of each method across all conditions. Thus, it was decided to take the 
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average power across the more likely unknown conditions (noise level, and type of 

association) for every certainly known condition (sample size) in actual research. In this 

way, a decision can be made based on a known factor when facing a research problem. 

  Maximin. The Maximin approach is another way to address the problem of 

deciding which test to use when there is not a unique measure with the best performance. 

It mainly consists of choosing the test with the maximum power in the worst-case 

scenario. In other words, the Maximin approach can be defined as considering the 

minimum power of each test and then finding the maximum among those minimums. It 

is important to note that the test with this maximum power must also maintain a low type 

I error rate (Lehman & Romano, 2005). In the same way as the average power, the 

Maximin was applied for the conditions that will be certainly known in actual 

psychological research. Thus, this study will report the Maximin results for every sample 

size considered in the simulation. 

Results 

 The results of the simulation study will be presented in this section. First, a general 

overview of the hypothesis testing outcomes will be introduced through a table of the type 

I error rate. This overview shows how each dependence test behaved under the null 

hypothesis of independence. Second, a description of the results from each analysis 

approach to summarizing power will be presented in its corresponding subsections. Due 

to space constrains not all the power results of all conditions from the simulation will be 

described in this document. For the complete results the reader is referred to Appendix B. 

Hypothesis Testing 

Type I Error Rate 

 The results from the simulation for which both X and Y variables were generated 

at random for each evaluated sample size can be seen in Table 2. As the table shows, all 

the methods maintained the expected type I error rate under the specified significance 

level for most of the evaluated sample sizes. Only Hoeffding’s D presented high type I 

error rates for small sample sizes (N < 75) and for the largest sample size (N=500). 
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Table 2 

Type I Error Rate of the Dependence Measures for Each Sample Size   

Note. N = Sample size, Pearson = Pearson’s correlation coefficient, Spear = Spearman’s 

correlation coefficient, Kend = Kendall correlation coefficient, Hoeffding = Hoeffding’s D, HHG 

= Heller-Heller-Gorfine Measure, dCor = Distance Correlation, MI = Mutual Information, HSIC 

= Hilbert-Schmidt Independence Criterion, HHG-Pearson = Combined HHG and Pearson with 

Bonferroni correction. 

Summarizing Power 

Complete Class 

In order to reduce the number of viable tests that should be included in the 

complete subclass of dependence measures, the dominance relationships between the nine 

methods were analysed. As expected, there was not any test that dominated all other tests 

in terms of empirical power across all the simulated conditions. Nevertheless, Figure 2 

shows the few dominance relationships that were found between the tests considering a 

small level of tolerance of 0.01. First, Distance Correlation presented dominance over 

two of the classical methods: Spearman’s and Kendall correlation coefficients. Second, 

Mutual Information showed dominance over HSIC across all the simulated conditions. 

Considering these results, the dominated tests, namely, Spearman’s coefficient, Kendall 

coefficient, and HSIC must not be included in the complete subclass of dependence tests. 

Thus, these three methods were not taken into account for the following analyses. 

N Pearson Spear Kend Hoeffding HHG dCor MI HSIC 
HHG-

Pearson 

10 .045 .054 .045 .115 .054 .049 .049 .054 .042 

20 .046 .036 .038 .071 .043 .037 .043 .047 .035 

35 .050 .045 .045 .063 .055 .044 .049 .048 .053 

50 .057 .058 .053 .064 .050 .059 .055 .047 .048 

75 .047 .049 .046 .054 .052 .041 .047 .050 .047 

100 .040 .049 .049 .049 .041 .040 .052 .041 .030 

150 .045 .041 .041 .047 .050 .046 .046 .056 .043 

500 .047 .058 .058 .063 .059 .059 .043 .062 .042 
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Figure 2. Dominance relationships between the tests. The black cells indicate 

that the test in the corresponding row dominates the test in the corresponding 

column across all the simulated conditions. 

Average Power 

 Considering only the remaining six methods included in the complete subclass 

from the previous section, the average power across noise and type of association was 

calculated for all the simulated sample sizes. The outcomes can be seen in Table 3. The 

main result of this analysis was that Mutual Information had the highest average power 

for all sample sizes, except for the smallest one (N = 10), for which HHG-Pearson showed 

the maximum average power. It is important to note that Hoeffding’s D average power 

for small sample sizes (N < 75) was not considered for this analysis due to its high type I 

error rate.  
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Table 3 

Average Empirical Power for Each Sample Size, and Test with the Maximum Mean Power. 

Note. * indicates the results were not considered for this analysis due to the high type I error 

rate of the method. N = Sample size, Pearson = Pearson’s correlation coefficient, Hoeffding = 

Hoeffding’s D, HHG = Heller-Heller-Gorfine Measure, dCor = Distance Correlation, MI = 

Mutual Information, HHG-Pearson = Combined HHG and Pearson with Bonferroni 

correction, Max Test = Test with the maximum average power for each sample size. 

Moreover, the average power of all methods for each sample size can be seen in 

Figure 3. Three main outcomes are clearly visible in the figure. First, it is possible to see 

that the differences between HHG, MI, dCor, and HHG-Pearson were small. Second, 

there was a clear order in terms of performance for the six methods. It is as follows: MI, 

HHG-Pearson, HHG, dCor, Hoeffding’s D, and Pearson’s correlation. Lastly, it is clear 

that the higher the sample size, the higher the power for all nonmonotonic dependence 

tests. All of them seem to continuously approach a power of 1 when the sample size 

increase. 

N Pearson Hoeffding HHG dCor MI 
HHG-

Pearson 
Max Test 

10 .277 .288* .232 .280 .272 .283 HHG-Pearson 

20 .374 .384* .446 .429 .503 .479 MI 

35 .425 .503* .629 .561 .666 .656 MI 

50 .455 .593* .728 .668 .764 .753 MI 

75 .481 .702 .812 .774 .832 .831 MI 

100 .489 .756 .860 .824 .876 .874 MI 

150 .496 .810 .914 .876 .925 .913 MI 

500 .508 .965* .994 .987 .996 .987 MI 
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Figure 3. Average power across type of relationship and noise level for each one of the sample 

sizes in the simulation. Each line corresponds to one of the six dependence tests considered in 

the analysis. dCor = Distance Correlation, HHG-Pearson = Combined HHG and Pearson with 

Bonferroni correction, HHG = Heller-Heller-Gorfine, Hoeff = Hoeffding’s D, MI = Mutual 

Information, Pearson = Pearson’s correlation. 

Maximin 

 Initially, and similar to the average power, the Maximin analysis was going to be 

performed for the six remaining methods. However, it was decided to also remove 

Hoeffding’s D from the analysis due to its high type I error rates for the sample sizes 

where N<75. Thus, Maximin was carried out only for the five remaining dependence tests. 

Table 4 shows the minimum power across noise level and the type of association of the 

five remaining methods for each one of the sample sizes. The most important result from 

this analysis was that Mutual Information presented the best performance compared to 

the other methods in the worst-case scenario of minimum power. This was the case for 

all the simulated sample sizes.  
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Table 4 

Minimum Power for Each Sample Size, and Test with the Maximum over those Minimums.  

Note. N = Sample size, Pearson = Pearson’s correlation coefficient, HHG = Heller-Heller-

Gorfine Measure, dCor = Distance Correlation, MI = Mutual Information, HHG-Pearson = 

Combined HHG and Pearson with Bonferroni correction, Max Test = Test with the 

maximum minimum power (Maximin) for each sample size. 

Moreover, and similar to the average power analysis, two different outcomes can 

be seen in Figure 4 which shows the minimum power for each one of the samples sizes. 

First, the difference of performance between some of the methods was small. More 

specifically, the differences between MI and HHG, and the difference between HHG-

Pearson and dCor were small. Second, in terms of performance a clear order can be 

identified from the figure: MI, HHG, HHG-Pearson, dCor, and Pearson’s correlation. 

This order is similar to the one from the average power analysis.  

N Pearson HHG dCor MI 
HHG-

Pearson 
Max Test 

10 .036 .051 .047 .054 .040 MI 

20 .051 .070 .057 .076 .049 MI 

35 .049 .080 .073 .095 .061 MI 

50 .054 .121 .101 .144 .098 MI 

75 .059 .132 .098 .171 .090 MI 

100 .063 .176 .117 .231 .124 MI 

150 .046 .297 .179 .412 .206 MI 

500 .062 .924 .819 .961 .811 MI 
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Figure 4. Minimum power across type of relationship and noise level for each one of the 

sample sizes in the simulation. Each line corresponds to one of the six dependence tests 

considered in the analysis. dCor = Distance Correlation, HHG-Pearson = Combined HHG and 

Pearson with Bonferroni correction, HHG = Heller-Heller-Gorfine, MI = Mutual Information, 

Pearson = Pearson’s correlation. 

 

Furthermore, Table 5 shows the details of the conditions involved in the minimum 

power scenario of each method by sample size. It is clear that the most challenging 

situations involved the presence of a sine wave relationship and a high noise level 

regardless of the sample size. The sine wave association was present in all the worst-case 

scenarios for all methods in the Maximin analysis, and the high noise level was present 

in all scenarios for HHG, dCor, MI, and HHG-Pearson. The only different conditions for 

this analysis were found in the minimum power of Pearson’s correlation coefficient. More 

specifically, low and medium noise levels were present in the worst-case scenario of this 

test for the sample sizes of 35, 50, 75, and 100. 
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Table 5 

Conditions Involved in the Scenario of Minimum Power of All Dependence Tests by 

Sample Size. 

Note. SW = Sine wave association, HN = High noise, MN = Medium noise, LN = Low 

noise, N = Sample size, Pearson = Pearson’s correlation coefficient, HHG = Heller-

Heller-Gorfine Measure, dCor = Distance Correlation, MI = Mutual Information, HHG-

Pearson = Combined HHG and Pearson with Bonferroni correction. 

Discussion 

 This study aimed to identify the best performing dependence measure in a 

simulation under several conditions. More specifically, nine dependence measures were 

assessed through hypothesis testing under 120 possible scenarios that combined three 

different conditions that can be found while doing psychological research: sample size, 

type of relationship, and noise level. The empirical power results were summarized and 

analyzed by three different approaches, namely, complete class, average power, and 

Maximin analyses. 

Regarding our first analysis, the complete class results showed two main 

outcomes. First, Distance Correlation dominated two of the conventional dependence 

tests, namely, Spearman’s correlation coefficient and Kendall correlation coefficient. 

These results are in line with previous research. For instance, Makonnen (2019) found 

that Distance Correlation consistently presented a higher empirical power than 

Spearman’s and Kendall correlation coefficients. Moreover, other investigations 

concluded that Distance Correlation should be used in most situations while Spearman’s 

and Kendall coefficients should not be used or should only be applied in specific 

conditions (Clark, 2013; de Siquiera Santos et al., 2014). Second, Mutual Information 

N Pearson HHG dCor MI 
HHG-

Pearson 

10 SW - HN SW - HN SW - HN SW - HN SW - HN 

20 SW - HN SW - HN SW - HN SW - HN SW - HN 

35 SW - MN SW - HN SW - HN SW - HN SW - HN 

50 SW - LN SW - HN SW - HN SW - HN SW - HN 

75 SW - MN SW - HN SW - HN SW - HN SW - HN 

100 SW - LN SW - HN SW - HN SW - HN SW - HN 

150 SW - HN SW - HN SW - HN SW - HN SW - HN 

500 SW - HN SW - HN SW - HN SW - HN SW - HN 



34 
 

dominated HSIC across all conditions. In summary, these results suggest that Spearman’s 

coefficient, Kendall coefficient, and HSIC should not be used when testing for 

independence between two variables in psychological research. Although is important to 

note that these dominance relationships between tests involved a small tolerance level 

that increased the margin of what was accepted as dominance in this research.  

Furthermore, the mean power analysis showed that on average Mutual 

Information outperformed all other methods in most conditions, except for the smallest 

sample size, for which HHG-Pearson showed the best average power. Moreover, Mutual 

Information also outperformed the other measures in the comparison based on the 

Maximin analysis, that is, Mutual Information had the best performance in the worst-case 

scenario of every method in the simulation. For the Maximin results is relevant to mention 

that the worst-case scenario by sample size in this simulation was almost the same for all 

the methods in this analysis. Therefore, these outcomes are only providing information 

regarding a few specific situations from the whole 120 possible scenarios. These specific 

situations almost always involved a sine wave association and a high noise level 

regardless of the sample size.  

In short, even though there was not a single method that had the highest power in 

all conditions, Mutual Information outperformed all other methods considering the 

average power and the worst-case scenario. These results, alongside the dominance of MI 

over HSIC, are not consistent with results in previous research. For instance, de Siquiera 

Santos et al. (2014) compared eight dependence tests in a simulation and their results 

placed Mutual Information as one of the less powerful tests regardless of the type of 

association of the variables. Moreover, Makonnen (2019) performed a simulation with 

320 possible scenarios and found that Hoeffding’s D and dCor showed a better 

performance compared to Mutual Information in most cases. The only condition in which 

Mutual Information outperformed other methods was in the sine wave association. Other 

investigations have also shown that Mutual Information does not usually present the best 

performance in simulations under different conditions (Ding & Li, 2015; Reshef et al., 

2011).  

The unexpected and surprising results from this study can be explained by the 

variability of Mutual Information calculation depending on the approach used to estimate 

the probability density function of the variables (Khan et al., 2007). All investigations 

mentioned before employed different estimators when computing Mutual Information. 
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On one hand, investigations from Ding & Li (2015), and Reshef et al. (2011) employed a 

K-Nearest-Neighbor estimator while de Siquiera Santos et al. (2014) used a histogram 

approach to estimate the probability functions. On the other hand, Makonnen (2019) not 

only used the same method as this investigation (KDE) but also the same kernel 

(Epanechnikov). However, the author employed Silverman’s rule of thumb algorithm to 

calculate the bandwidth of the kernel while this research used the SJDP approach. 

In order to further investigate the difference between previous investigations and 

this research, a second simulation was performed to compare the Mutual Information 

estimators from de Siquiera Santos et al. (2014), Makonnen (2019), and this study. The 

conditions of the simulation were similar to the main simulation of this research, however, 

as this second simulation is out of the scope of this study its details will not be described 

in this document (for further information please see Appendix C). However, according to 

a complete class, average power, and Maximin analyses, its results placed this study’s 

Mutual Information estimation as the method with the best performance compared to the 

approaches from the previously mentioned authors, followed by Makonnen (2019) 

estimation method, and de Siquiera Santos et al. (2014) approach. These results are 

consistent with Khan et al. (2007) who found that KDE outperforms other methods used 

to estimate Mutual Information in small sample sizes. Moreover, the results are also in 

line with the research from Harpole et al. (2014), in which SJDP outperformed all other 

bandwidth algorithms used when performing KDE. In summary, it seems clear that the 

selection of the estimation method can greatly affect the results of Mutual Information 

calculation. Moreover, these results suggest that Mutual Information estimated according 

to the settings of this study outperforms other estimation methods such as histogram count 

or KDE with a different bandwidth algorithm. However, this simulation did not include 

other estimation methods such as KNN or the Bayesian approach that should be 

considered when deciding how to address this problem. 

Aside from the unexpected performance of the Mutual Information test, the results 

also showed that in general HHG, dCor, and HHG-Pearson are also presenting a 

satisfactory power level for almost all sample sizes. These results are in line with most of 

the outcomes of previous research. For instance, Ding & Li (2015) compared several 

dependence tests and found that dCor and HHG presented good performance for almost 

all conditions. Furthermore, several investigations have placed dCor and HHG between 

the best-performing methods regardless of the specific conditions used to assess them 
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(Clark, 2013; de Siquiera Santos et al., 2014; Gorfine et al., 2012; Makonnen, 2019; 

Simon & Tibshirani, 2014). Finally, it is relevant to take into account that all results from 

this study must be carefully considered keeping in mind the limitations that are discussed 

in the next section. 

Limitations and Recommendations 

 Several limitations were present in the process of this research. First, the main 

problem was the deficiency of computational power while performing the simulation, this 

led to different issues. For instance, initially, a permutation test was considered for 

hypothesis testing in all methods to compare them in the same conditions. Nevertheless, 

due to this computational limitation, it was not feasible to perform a permutation test for 

all methods. However, it is also important to note that we took into account that a 

permutation test is not usually used when calculating the p-value of the classic correlation 

coefficients. A second issue related to the computational power was the reduction in the 

number of permutations for HHG from 10000 permutations to 1000 for sample sizes 

greater than 100. Moreover, only 1000 simulations were computed in this study due to its 

computational burden, a more accurate result could have been obtained with a greater 

number of simulations. 

 Second, taking into account that not all conditions in the simulation occur with the 

same frequency in actual research, we aimed to perform a weighted average of the power 

for which the weight of each type of relationship was going to be decided considering 

how often these dependencies appear in psychological research. Nevertheless, it resulted 

impossible to set a weight for each type of association based on real data as no information 

was found regarding the probability of occurrence of an underlying relationship in 

psychological research. 

 Third, a common limitation of simulation studies is that the results cannot be 

generalizable beyond the conditions that were simulated. In this case, only 120 scenarios 

from an almost infinite combination of possible conditions were simulated. However, is 

relevant to mention that the selected three conditions and their corresponding levels were 

chosen considering real possible scenarios in actual psychological research. Thus, the 

results are at least relevant to these possible situations that can be found while doing a 

psychological investigation.  



37 
 

 For future research related to this topic, we recommend to further investigate the 

different possible estimation methods of Mutual Information as the choice of different 

settings can lead to greatly different results. Furthermore, this study only assessed the 

performance of the dependence measures through hypothesis testing, that is, we evaluated 

if the different measures could identify an association. However, for future investigation, 

it would be interesting to also assess the quantity of the relationship. In other words, we 

recommend evaluating if the methods can not only identify but also correctly measure 

how strong is the association. Finally, another recommendation for future research is the 

assessment of more methods created to measure associations between variables such as 

the Copula Correlation (Ding & Lin, 2015), the Copula-based Kernel Dependency 

Measure (Poczos et al., 2012), or the Randomized Correlation Coefficient (Lopez-Paz et 

al., 2013). 

Conclusion 

 In conclusion, this study suggests that there is not a single method to test 

dependence between variables that has the highest power in all conditions. Nevertheless, 

we recommend the use of Mutual Information estimated through KDE with the 

Epanechnikov kernel and the SJDP bandwidth algorithm. This method outperformed all 

other dependence measures assessed in this study in the Maximin and the average power 

analyses regardless of the sample size. Moreover, it also outperformed two different types 

of Mutual Information. On the other hand, methods such as HHG, dCor, and the new 

alternative HHG-Pearson should not be immediately discarded. These three methods 

presented a good performance in almost all conditions and their difference in power 

compared to Mutual Information is small. These differences can be due to the specific 

design of the simulation of this study. 

Code Accessibility 

 All the R code used to perform the simulation in this study can be found in 

https://github.com/AndresFPA/DependSim  

  

https://github.com/AndresFPA/DependSim
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Appendix A 

Noise level selection 

 The noise level for each type of relationship was decided in a process of several 

steps that can be seen below: 

1. The desired R2 values were defined taking into account literature in social 

research (Cohen, 1988; Hair et al, 2015).  

a. Low noise level: R2 of 0.75. 

b. Medium noise level: R2 of 0.45. 

c. High noise level: R2 of 0.1. 

2. Using the ‘optimize’ function from the ‘stats’ R package (R Core Team, 2019) 

an optimization procedure was performed. This procedure consisted of finding 

the optimal σ𝜖 that led to the desired R2 in an iterative process. This was done 

in the following way: 

a. Generate random data for an X variable (sample size 5000). 

b. Generate a Y variable following a specific type of relationship with X 

(linear, quadratic, exponential, sine wave, or cross). 

c. Select a σ𝜖 value in a small range from 0 to 6. 

d. Add noise to the Y variable with the selected σ𝜖 value as the standard 

deviation of the noise. 

e. Calculate the R2 value of this noisy relationship. 

f. Compute the square difference between the calculated and the desired 

R2 values. That is, calculating (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑅2 − 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑅2)2. 

g. If the computed difference is smaller than a previously defined 

tolerance level (0.001 in this study) then the process is stopped and the 

σ𝜖 value is selected as the final noise level. 

h. If the computed difference is not smaller than the tolerance level, then 

the procedure is performed again from the top. The selection of a new 

σ𝜖  value (step c) is carried out following a golden section search 

optimization method as this is the default method in the ‘optimize’ 

function.  

This procedure was done for each type of relationship and each noise level. The 

R2 values were calculated using the ‘npregbw’ function from the ‘np’ package (Hayfield 
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& Racine, 2008) which is based on the definition from Doksum & Samarov (1995). The 

final noise levels in σ𝜖 values can be seen in Table A1 below. Please note that the noise 

level of the cross-relationship was selected only using the typically employed values in 

similar simulations. 

Table A1 

Noise levels in σ𝜖 values for all types of relationships. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relationship Low noise Medium noise High noise 

Linear 1.163181 2.310038 4.58325 

Quadratic 0.856069 1.539105 3.99750 

Exponential 1.212181 2.332178 4.58359 

Sine wave 0.410357 0.767012 2.29179 

Cross 0.3 0.6 1 



45 
 

Appendix B 

Table B1 

Complete results of the simulation for all 120 simulated scenarios 

Relationship N Noise Pear Kend Spear HHG HSIC Hoeff dCor MI 
HHG-

Pear 

linear 10 Low 0.953 0.876 0.881 0.741 0.824 0.857 0.939 0.816 0.924 

linear 10 Medium 0.607 0.485 0.510 0.291 0.359 0.552 0.572 0.363 0.508 

linear 10 High 0.208 0.174 0.185 0.093 0.113 0.261 0.189 0.123 0.139 

linear 20 Low 1.000 0.999 0.998 0.988 0.989 0.998 0.998 0.993 1.000 

linear 20 Medium 0.902 0.847 0.859 0.606 0.628 0.819 0.880 0.677 0.861 

linear 20 High 0.434 0.376 0.394 0.191 0.208 0.398 0.396 0.230 0.340 

linear 35 Low 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

linear 35 Medium 0.993 0.989 0.988 0.879 0.877 0.976 0.988 0.911 0.987 

linear 35 High 0.676 0.618 0.627 0.312 0.310 0.586 0.619 0.344 0.592 

linear 50 Low 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

linear 50 Medium 1.000 1.000 1.000 0.972 0.964 0.999 1.000 0.987 1.000 

linear 50 High 0.839 0.790 0.793 0.462 0.445 0.749 0.792 0.512 0.775 

linear 75 Low 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

linear 75 Medium 1.000 1.000 1.000 0.999 0.999 1.000 1.000 1.000 1.000 

linear 75 High 0.965 0.948 0.951 0.679 0.657 0.913 0.941 0.678 0.933 

linear 100 Low 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

linear 100 Medium 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

linear 100 High 0.979 0.973 0.974 0.813 0.786 0.962 0.971 0.832 0.969 

linear 150 Low 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

linear 150 Medium 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

linear 150 High 0.999 0.998 0.998 0.933 0.921 0.993 0.997 0.913 0.998 

linear 500 Low 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

linear 500 Medium 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

linear 500 High 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

quadratic 10 Low 0.249 0.120 0.105 0.313 0.330 0.249 0.318 0.362 0.326 

quadratic 10 Medium 0.163 0.093 0.093 0.180 0.170 0.193 0.180 0.211 0.188 

quadratic 10 High 0.075 0.044 0.038 0.067 0.066 0.099 0.080 0.077 0.072 

quadratic 20 Low 0.302 0.131 0.110 0.718 0.645 0.393 0.696 0.830 0.672 

quadratic 20 Medium 0.191 0.088 0.081 0.356 0.341 0.194 0.348 0.503 0.353 

quadratic 20 High 0.104 0.063 0.062 0.112 0.098 0.121 0.116 0.151 0.098 

quadratic 35 Low 0.296 0.138 0.108 0.955 0.907 0.716 0.918 0.982 0.937 

quadratic 35 Medium 0.215 0.099 0.091 0.676 0.576 0.344 0.601 0.773 0.616 

quadratic 35 High 0.091 0.069 0.069 0.179 0.152 0.110 0.134 0.195 0.138 

quadratic 50 Low 0.305 0.133 0.108 0.994 0.983 0.914 0.995 0.999 0.994 

quadratic 50 Medium 0.233 0.106 0.089 0.857 0.754 0.505 0.813 0.923 0.809 

quadratic 50 High 0.097 0.070 0.062 0.231 0.189 0.130 0.188 0.295 0.199 

quadratic 75 Low 0.340 0.153 0.123 0.999 0.999 0.990 0.999 1.000 0.999 
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Relationship N Noise Pear Kend Spear HHG HSIC Hoeff dCor MI 
HHG-

Pear 

quadratic 75 Medium 0.232 0.113 0.090 0.971 0.913 0.772 0.950 0.988 0.949 

quadratic 75 High 0.085 0.064 0.060 0.349 0.257 0.162 0.268 0.397 0.280 

quadratic 100 Low 0.303 0.142 0.112 1.000 1.000 1.000 1.000 1.000 1.000 

quadratic 100 Medium 0.213 0.102 0.086 0.998 0.980 0.914 0.992 0.999 0.991 

quadratic 100 High 0.114 0.066 0.064 0.473 0.346 0.182 0.342 0.497 0.380 

quadratic 150 Low 0.312 0.162 0.129 1.000 1.000 1.000 1.000 1.000 1.000 

quadratic 150 Medium 0.229 0.091 0.081 1.000 0.998 0.998 1.000 1.000 1.000 

quadratic 150 High 0.116 0.063 0.063 0.706 0.525 0.325 0.569 0.722 0.596 

quadratic 500 Low 0.344 0.135 0.105 1.000 1.000 1.000 1.000 1.000 1.000 

quadratic 500 Medium 0.247 0.105 0.089 1.000 1.000 1.000 1.000 1.000 1.000 

quadratic 500 High 0.110 0.080 0.078 1.000 0.988 0.947 0.996 0.994 0.996 

exponential 10 Low 0.642 0.487 0.481 0.346 0.411 0.538 0.631 0.413 0.577 

exponential 10 Medium 0.377 0.257 0.254 0.173 0.196 0.328 0.337 0.208 0.295 

exponential 10 High 0.151 0.109 0.108 0.088 0.109 0.175 0.147 0.111 0.125 

exponential 20 Low 0.929 0.868 0.859 0.747 0.722 0.866 0.915 0.789 0.899 

exponential 20 Medium 0.645 0.500 0.511 0.336 0.340 0.503 0.605 0.445 0.572 

exponential 20 High 0.320 0.207 0.207 0.136 0.133 0.240 0.271 0.164 0.253 

exponential 35 Low 0.997 0.980 0.983 0.946 0.923 0.976 0.990 0.971 0.988 

exponential 35 Medium 0.868 0.786 0.778 0.615 0.557 0.759 0.854 0.711 0.836 

exponential 35 High 0.488 0.370 0.357 0.219 0.192 0.356 0.421 0.305 0.405 

exponential 50 Low 0.999 0.998 0.999 0.994 0.984 0.996 0.998 0.995 0.999 

exponential 50 Medium 0.964 0.921 0.921 0.798 0.753 0.912 0.959 0.870 0.947 

exponential 50 High 0.612 0.487 0.480 0.336 0.277 0.459 0.548 0.409 0.542 

exponential 75 Low 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 

exponential 75 Medium 0.990 0.974 0.973 0.928 0.871 0.974 0.985 0.945 0.984 

exponential 75 High 0.792 0.700 0.694 0.475 0.397 0.643 0.738 0.544 0.734 

exponential 100 Low 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

exponential 100 Medium 0.999 0.997 0.997 0.980 0.947 0.993 1.000 0.990 1.000 

exponential 100 High 0.895 0.807 0.802 0.607 0.504 0.777 0.845 0.690 0.858 

exponential 150 Low 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

exponential 150 Medium 1.000 1.000 1.000 1.000 0.995 1.000 1.000 0.998 1.000 

exponential 150 High 0.962 0.914 0.916 0.814 0.715 0.902 0.950 0.862 0.949 

exponential 500 Low 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

exponential 500 Medium 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

exponential 500 High 1.000 1.000 1.000 1.000 0.998 1.000 1.000 0.999 1.000 

sine wave 10 Low 0.068 0.076 0.082 0.190 0.235 0.232 0.110 0.251 0.142 

sine wave 10 Medium 0.067 0.058 0.068 0.099 0.146 0.188 0.091 0.138 0.073 

sine wave 10 High 0.036 0.040 0.049 0.051 0.057 0.113 0.047 0.054 0.040 

sine wave 20 Low 0.053 0.090 0.085 0.567 0.482 0.407 0.230 0.513 0.406 

sine wave 20 Medium 0.052 0.074 0.084 0.230 0.233 0.217 0.139 0.249 0.171 

sine wave 20 High 0.051 0.050 0.048 0.070 0.085 0.086 0.057 0.076 0.049 
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Relationship N Noise Pear Kend Spear HHG HSIC Hoeff dCor MI 
HHG-

Pear 

sine wave 35 Low 0.056 0.137 0.121 0.924 0.755 0.720 0.491 0.779 0.853 

sine wave 35 Medium 0.049 0.095 0.087 0.467 0.460 0.308 0.233 0.513 0.350 

sine wave 35 High 0.049 0.054 0.056 0.080 0.088 0.097 0.073 0.095 0.061 

sine wave 50 Low 0.054 0.141 0.129 0.997 0.923 0.924 0.780 0.949 0.989 

sine wave 50 Medium 0.065 0.113 0.106 0.706 0.652 0.484 0.402 0.732 0.580 

sine wave 50 High 0.065 0.082 0.084 0.121 0.127 0.127 0.101 0.144 0.098 

sine wave 75 Low 0.084 0.187 0.172 1.000 0.996 0.998 0.993 0.997 1.000 

sine wave 75 Medium 0.059 0.135 0.140 0.930 0.862 0.765 0.703 0.940 0.864 

sine wave 75 High 0.061 0.065 0.068 0.132 0.153 0.115 0.098 0.171 0.090 

sine wave 100 Low 0.063 0.226 0.217 1.000 1.000 1.000 1.000 1.000 1.000 

sine wave 100 Medium 0.067 0.152 0.150 0.987 0.959 0.931 0.928 0.990 0.975 

sine wave 100 High 0.065 0.072 0.073 0.176 0.179 0.145 0.117 0.231 0.124 

sine wave 150 Low 0.096 0.308 0.289 1.000 1.000 1.000 1.000 1.000 1.000 

sine wave 150 Medium 0.070 0.202 0.206 1.000 1.000 0.999 0.997 1.000 1.000 

sine wave 150 High 0.046 0.062 0.067 0.297 0.296 0.203 0.179 0.412 0.206 

sine wave 500 Low 0.145 0.719 0.681 1.000 1.000 1.000 1.000 1.000 1.000 

sine wave 500 Medium 0.116 0.512 0.493 1.000 1.000 1.000 1.000 1.000 1.000 

sine wave 500 High 0.062 0.117 0.115 0.924 0.914 0.792 0.819 0.961 0.811 

cross 10 Low 0.246 0.165 0.134 0.484 0.449 0.230 0.258 0.512 0.443 

cross 10 Medium 0.198 0.108 0.099 0.243 0.239 0.172 0.187 0.291 0.262 

cross 10 High 0.129 0.096 0.088 0.128 0.126 0.147 0.117 0.152 0.132 

cross 20 Low 0.263 0.195 0.146 0.898 0.824 0.232 0.402 0.960 0.844 

cross 20 Medium 0.214 0.142 0.116 0.529 0.464 0.178 0.248 0.659 0.467 

cross 20 High 0.158 0.105 0.090 0.215 0.181 0.117 0.143 0.314 0.207 

cross 35 Low 0.243 0.193 0.125 0.999 0.992 0.317 0.597 1.000 0.998 

cross 35 Medium 0.210 0.150 0.114 0.837 0.742 0.184 0.347 0.932 0.771 

cross 35 High 0.147 0.093 0.070 0.359 0.270 0.106 0.163 0.493 0.311 

cross 50 Low 0.243 0.179 0.132 1.000 1.000 0.414 0.810 1.000 1.000 

cross 50 Medium 0.201 0.137 0.097 0.956 0.909 0.174 0.444 0.991 0.921 

cross 50 High 0.160 0.099 0.084 0.510 0.380 0.113 0.199 0.660 0.443 

cross 75 Low 0.254 0.204 0.139 1.000 1.000 0.770 0.984 1.000 1.000 

cross 75 Medium 0.210 0.164 0.114 0.998 0.989 0.284 0.684 1.000 0.995 

cross 75 High 0.149 0.121 0.099 0.729 0.567 0.149 0.267 0.829 0.648 

cross 100 Low 0.263 0.206 0.145 1.000 1.000 0.974 0.998 1.000 1.000 

cross 100 Medium 0.209 0.167 0.122 1.000 0.999 0.339 0.851 1.000 1.000 

cross 100 High 0.172 0.115 0.097 0.866 0.737 0.132 0.319 0.920 0.817 

cross 150 Low 0.230 0.195 0.130 1.000 1.000 1.000 1.000 1.000 1.000 

cross 150 Medium 0.220 0.152 0.110 1.000 1.000 0.576 0.988 1.000 1.000 

cross 150 High 0.163 0.114 0.096 0.974 0.918 0.156 0.471 0.978 0.959 

cross 500 Low 0.234 0.184 0.127 1.000 1.000 1.000 1.000 1.000 1.000 

cross 500 Medium 0.210 0.154 0.114 1.000 1.000 1.000 1.000 1.000 1.000 
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Relationship N Noise Pear Kend Spear HHG HSIC Hoeff dCor MI 
HHG-

Pear 

cross 500 High 0.165 0.102 0.083 1.000 1.000 0.739 0.998 1.000 1.000 
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Appendix C 

Mutual Information Simulation 

To further investigate the differences of three different ways to estimate Mutual 

Information, a Monte-Carlo simulation was carried out. The differences between the 

approaches to estimate Mutual Information are summarized as follows: 

1. Mutual Information from this study: KDE to estimate the density functions. 

o Epanechnikov kernel. 

o SJPD algorithm to calculate the bandwidth. 

2. Mutual Information (Makonnen, 2019): KDE to estimate the density 

functions. 

o Epanechnikov kernel. 

o Silverman’s rule of thumb algorithm to calculate the bandwidth. 

3. Mutual Information (de Siquiera Santos et al., 2014): histogram count 

approach to estimate the density functions. 

For simplicity, Mutual Information from this study will be referred to as MI, 

Makonnen (2019) Mutual Information will be referred to as Makonnen’s MI, and de 

Siquiera Santos et al. (2014) Mutual Information as Siquiera’s MI. The simulation 

assessed the performance of the three methods in several conditions that can be found 

while doing research in Psychology. These conditions are the same as the ones described 

in the main document. The design of the simulation can be summarized as follows: 

4. Sample size (8 levels): 10, 20, 35, 50, 75, 100, 150 and 500 

5. Type of relationship (5 levels): linear, exponential, quadratic, sine wave, and 

non-functional cross. 

6. Noise (3 levels): low, medium, high. 

For a total of 8*5*3 = 120 design cells that were repeated 1000 times. The three tests 

were evaluated through all design cells.  

Results 

Complete Class 

First, the dominance relationships between the three tests were analysed. The only 

dominance found was MI over Siquiera’s MI (this can be seen in Figure 1C). It is 
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important to mention that in this case no tolerance level was added in the analysis. In 

other words, MI maintained a higher power than Siquiera’s MI across all conditions. For 

the sake of the comparison, Siquiera’s MI was not removed from the following analyses. 
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Figure 1C. Dominance relationships between the tests. The black cells indicate 

that the test in the corresponding row dominates the test in the corresponding 

column across all the simulated conditions. 

Average Power 

 The average power across the type of relationship and noise level for each 

sample size can be seen in Table 1C. As expected, MI had the highest average power 

for all sample sizes. Aside from this, on one hand, Makonnen’s MI had, on average, 

outperformed Siquiera’s MI for small sample sizes (N < 75). On the other hand, 

Siquiera’s MI had a better performance than Makonnen’s MI when N ≥ 75. 

Table 1C 

Average empirical power of three MI for each sample size, 

and the test with the maximum mean power. 

N MI Makonnen Siquiera Max Test 

10 .270 .170 .109 MI 

20 .503 .328 .264 MI 

35 .665 .483 .439 MI 

50 .761 .583 .579 MI 

75 .832 .683 .690 MI 

100 .876 .743 .761 MI 
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Note. N = Sample size, MI = Mutual Information, 

Makonnen = Makonnen (2019) Mutual Information, 

Siquiera = de Siquiera Santos et al. (2014) Mutual 

Information. Max Test = Test with the maximum average 

power for each sample size. 

Maximin 

 Table 2C shows the minimum power of the three Mutual Information estimates 

across the type of relationship and noise level for each sample size. Similar to the 

average power results, MI presented the best performance for all of the sample sizes. 

However, in this case, Makonnen’s MI tied with MI in the smallest sample size (N=10). 

Moreover, Makonnen’s MI also had the best performance than Siquiera’s MI for five 

out of the eight simulated sample sizes.  

Table 2C 

The minimum power of five methods for each sample size, and test 

with the maximum over those minimums.  

 

 

Note. N = Sample size, MI = Mutual Information, Makonnen = 

Makonnen (2019) Mutual Information, Siquiera = de Siquiera Santos 

et al. (2014) Mutual Information. Max Test = Test with the maximum 

average power for each sample size. 

 Furthermore, Table 3C shows the scenario for which each method presented its 

minimum power. The combination of a sine wave association and high noise conditions 

150 .925 .806 .831 MI 

500 .997 .957 .982 MI 

N MI Makonnen Siquiera Max Test 

10 .053 .053 .042 MI and Makonnen 

20 .078 .068 .056 MI 

35 .095 .088 .076 MI 

50 .135 .096 .094 MI 

75 .167 .107 .117 MI 

100 .229 .168 .147 MI 

150 .418 .210 .233 MI 

500 .965 .654 .776 MI 
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appeared in almost all sample sizes for the three methods. The only exception was N = 

20 for Makonnen’s MI, for which the involved conditions were the quadratic relationship 

and high noise. 

Table 3C 

Conditions involved in the situation of minimum power of all 

dependence tests by sample size. 

 

 

Note. SW = Sine wave association, Q = Quadratic 

association, HN = High noise, N = Sample size, MI = 

Mutual Information, Makonnen = Makonnen (2019) 

Mutual Information, Siquiera = de Siquiera Santos et al. 

(2014) Mutual Information. 

Finally, Table 4C shows the complete results of the simulation for each one of the 

120 possible scenarios that were simulated. The results are organized by type of 

relationship, sample size, and noise level. 

Table 4C 

Complete results of the simulation for all 120 simulated scenarios. 

Relationship N Noise MI Makonnen Siquiera 

linear 10 Low 0.816 0.444 0.308 

linear 10 Medium 0.364 0.154 0.116 

linear 10 High 0.123 0.081 0.047 

linear 20 Low 0.995 0.814 0.721 

linear 20 Medium 0.679 0.265 0.233 

linear 20 High 0.231 0.090 0.077 

linear 35 Low 1.000 0.985 0.964 

linear 35 Medium 0.916 0.475 0.425 

linear 35 High 0.349 0.140 0.123 

N MI Makonnen Siquiera 

10 SW-HN SW-HN SW-HN 

20 SW-HN Q-HN SW-HN 

35 SW-HN SW-HN SW-HN 

50 SW-HN SW-HN SW-HN 

75 SW-HN SW-HN SW-HN 

100 SW-HN SW-HN SW-HN 

150 SW-HN SW-HN SW-HN 

500 SW-HN SW-HN SW-HN 
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Relationship N Noise MI Makonnen Siquiera 

linear 50 Low 1.000 0.999 0.999 

linear 50 Medium 0.981 0.692 0.691 

linear 50 High 0.506 0.155 0.173 

linear 75 Low 1.000 1.000 1.000 

linear 75 Medium 1.000 0.879 0.895 

linear 75 High 0.674 0.255 0.307 

linear 100 Low 1.000 1.000 1.000 

linear 100 Medium 1.000 0.963 0.983 

linear 100 High 0.833 0.384 0.411 

linear 150 Low 1.000 1.000 1.000 

linear 150 Medium 1.000 0.998 1.000 

linear 150 High 0.906 0.465 0.581 

linear 500 Low 1.000 1.000 1.000 

linear 500 Medium 1.000 1.000 1.000 

linear 500 High 1.000 0.983 1.000 

quadratic 10 Low 0.365 0.201 0.134 

quadratic 10 Medium 0.202 0.124 0.092 

quadratic 10 High 0.076 0.063 0.049 

quadratic 20 Low 0.834 0.433 0.401 

quadratic 20 Medium 0.515 0.192 0.194 

quadratic 20 High 0.154 0.068 0.066 

quadratic 35 Low 0.982 0.750 0.729 

quadratic 35 Medium 0.767 0.331 0.374 

quadratic 35 High 0.190 0.090 0.080 

quadratic 50 Low 0.999 0.916 0.939 

quadratic 50 Medium 0.924 0.508 0.594 

quadratic 50 High 0.294 0.107 0.107 

quadratic 75 Low 1.000 0.994 0.997 

quadratic 75 Medium 0.988 0.764 0.803 

quadratic 75 High 0.396 0.130 0.161 

quadratic 100 Low 1.000 0.998 1.000 

quadratic 100 Medium 0.999 0.887 0.946 

quadratic 100 High 0.493 0.171 0.209 

quadratic 150 Low 1.000 1.000 1.000 

quadratic 150 Medium 1.000 0.985 0.997 

quadratic 150 High 0.714 0.265 0.357 

quadratic 500 Low 1.000 1.000 1.000 

quadratic 500 Medium 1.000 1.000 1.000 

quadratic 500 High 0.994 0.795 0.960 

exponential 10 Low 0.407 0.177 0.151 

exponential 10 Medium 0.208 0.099 0.065 
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Relationship N Noise MI Makonnen Siquiera 

exponential 10 High 0.109 0.071 0.055 

exponential 20 Low 0.790 0.419 0.388 

exponential 20 Medium 0.441 0.165 0.167 

exponential 20 High 0.162 0.079 0.090 

exponential 35 Low 0.968 0.668 0.704 

exponential 35 Medium 0.705 0.286 0.287 

exponential 35 High 0.308 0.107 0.103 

exponential 50 Low 0.996 0.842 0.907 

exponential 50 Medium 0.867 0.425 0.520 

exponential 50 High 0.412 0.148 0.168 

exponential 75 Low 1.000 0.964 0.987 

exponential 75 Medium 0.955 0.589 0.687 

exponential 75 High 0.545 0.216 0.226 

exponential 100 Low 1.000 0.996 0.999 

exponential 100 Medium 0.992 0.730 0.858 

exponential 100 High 0.688 0.250 0.352 

exponential 150 Low 1.000 1.000 1.000 

exponential 150 Medium 0.999 0.914 0.967 

exponential 150 High 0.859 0.413 0.522 

exponential 500 Low 1.000 1.000 1.000 

exponential 500 Medium 1.000 1.000 1.000 

exponential 500 High 0.999 0.927 0.996 

Sine wave 10 Low 0.245 0.283 0.162 

Sine wave 10 Medium 0.135 0.141 0.094 

Sine wave 10 High 0.053 0.053 0.042 

Sine wave 20 Low 0.510 0.690 0.409 

Sine wave 20 Medium 0.245 0.250 0.197 

Sine wave 20 High 0.078 0.068 0.056 

Sine wave 35 Low 0.774 0.956 0.759 

Sine wave 35 Medium 0.507 0.493 0.353 

Sine wave 35 High 0.095 0.088 0.076 

Sine wave 50 Low 0.946 0.999 0.921 

Sine wave 50 Medium 0.725 0.697 0.564 

Sine wave 50 High 0.135 0.096 0.094 

Sine wave 75 Low 0.998 1.000 0.998 

Sine wave 75 Medium 0.942 0.909 0.806 

Sine wave 75 High 0.167 0.107 0.117 

Sine wave 100 Low 1.000 1.000 0.999 

Sine wave 100 Medium 0.991 0.982 0.929 

Sine wave 100 High 0.229 0.168 0.147 

Sine wave 150 Low 1.000 1.000 1.000 
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Relationship N Noise MI Makonnen Siquiera 

Sine wave 150 Medium 1.000 0.999 0.996 

Sine wave 150 High 0.418 0.210 0.233 

Sine wave 500 Low 1.000 1.000 1.000 

Sine wave 500 Medium 1.000 1.000 1.000 

Sine wave 500 High 0.965 0.654 0.776 

cross 10 Low 0.522 0.398 0.187 

cross 10 Medium 0.286 0.172 0.092 

cross 10 High 0.151 0.094 0.049 

cross 20 Low 0.955 0.854 0.605 

cross 20 Medium 0.656 0.372 0.259 

cross 20 High 0.314 0.163 0.104 

cross 35 Low 1.000 0.991 0.932 

cross 35 Medium 0.928 0.646 0.486 

cross 35 High 0.487 0.246 0.193 

cross 50 Low 1.000 1.000 0.997 

cross 50 Medium 0.992 0.830 0.739 

cross 50 High 0.650 0.332 0.286 

cross 75 Low 1.000 1.000 1.000 

cross 75 Medium 1.000 0.967 0.935 

cross 75 High 0.826 0.479 0.440 

cross 100 Low 1.000 1.000 1.000 

cross 100 Medium 1.000 0.994 0.981 

cross 100 High 0.916 0.636 0.608 

cross 150 Low 1.000 1.000 1.000 

cross 150 Medium 1.000 1.000 1.000 

cross 150 High 0.979 0.853 0.816 

cross 500 Low 1.000 1.000 1.000 

cross 500 Medium 1.000 1.000 1.000 

cross 500 High 1.000 0.999 1.000 
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