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Abstract 

 

Introduction: In research with respect to non-communicable diseases (NCDs), 

multimorbidity and external variables, unobserved latent classes are often presumed. 

Consequently, latent class analysis (LCA) with predictors is often used to analyze the data. 

However, it has been shown that LCA is not accurate in all instances. If inaccurate, one still 

might want to relate predictors to the NCDs without imposing on latent classes. For that 

purpose, the recently developed MELODIC could be used instead. MELODIC is used to 

simultaneously estimate binary response variables from a (set of) predictor(s), with a 

dimensionality reduction. The aim of this study was to evaluate which method has a higher 

prediction accuracy and whether the accuracy depends on the data generation method. 

Method: Two simulations were performed. In Simulation 1, data were generated with 

MELODIC parameters, on which MELODIC and LCA were performed on various samples. 

In Simulation 2, data were generated with LCA parameters, on which MELODIC and LCA 

were performed on various samples. Predictor-response variable relationships were calculated 

in the populations and in the samples, and the prediction accuracy was assessed in terms of 

RMSE.  

Results: The accuracy of MELODIC and LCA highly depends on the data generation 

method. When data were generated with MELODIC, MELODIC outperformed LCA. When 

data were generated with LCA, LCA outperformed MELODIC. The general RMSE 

difference between MELODIC and LCA was smaller when data were generated with LCA. 

Larger sample sizes are beneficial for the prediction accuracy of MELODIC and LCA. 

Modifying method specific parameters, resulting in more frequent NCDs in the populations, is 

detrimental for the prediction accuracies of the methods.   

Discussion: If there are reasons to believe that there are latent classes underlying the 

data, LCA is the most appropriate method. If unobserved latent classes are not presumed, 

MELODIC is the most accurate method. 
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1 Introduction 

 

The worldwide number one cause of mortality are non-communicable diseases 

(NCDs). The World Health Organization (WHO; 2021) currently estimates that annually 71% 

of the worldwide mortality - equal to 41 million deaths - is caused by NCDs. According to the 

WHO (2018), the proportion of the world its population of 60+ years will increase from 12% 

to 22%, between 2015 and 2050. Due to the population ageing and population growth, the 

relative and absolute mortality-by-NCDs rates, respectively, are increasing (Murray et al., 

2015; Wang et al., 2016). The increasing prevalence of NCDs and especially the increasing 

prevalence of multimorbidity (i.e., the presence of two or more chronic conditions or NCDs in 

patients) have become an international research priority, because of the impact on the global 

health, the high pressure on the health care systems and the enormous global health care costs 

(Wang et al., 2016; Bloom et al., 2011; Bertram et al., 2018). Therapeutic management of 

multimorbidity is often complex due to the ‘single disease focus’ of current clinical 

guidelines, resulting in poor health outcomes (Wallace et al., 2015). Therefore, there has been 

a need to identify common clusters of NCDs for better understanding of multimorbidity, to 

improve the clinical guidelines and treatment of multimorbidity (Islam et al., 2014).  

 Recently, a lot of research with respect to multimorbidity has been conducted to 

identify these common clusters of NCDs (cf. Bayes-Marin et al., 2020; Whitson et al., 2016; 

Olaya et al., 2017). In these studies, it is hypothesized that there are unobserved multimorbid 

subgroups (clusters) within the populations, for each subgroup a more or less unique 

multimorbidity pattern. Latent class models (or finite mixture models) are used to analyze the 

data.  

Latent class analysis (LCA), initially introduced by Lazarsfeld (1950), is a technique 

that is used to analyze relationships between response variables that are measured on a 

nominal or categorical level. Based on subjects’ scores on a set of these observed nominal or 

categorical response variables, latent classes can be identified (McCutcheon, 1987). In the 

measurement part of the LCA, the response variables are related to the latent classes (e.g., 

based on the presence or absence of a set of NCDs in patients, groupings of patients with 

similar NCD patterns (latent classes) are detected. Based on these patterns, subjects will be 

assigned to one of these classes). In the structural part of the LCA, relationships between the 

latent classes and external variables are estimated (e.g., having defined the multimorbid latent 

classes in the measurement model, the relationship between the latent classes and the external 
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variable ‘age’ is estimated). These external variables can function as, e.g., predictors or distal 

outcome variables (Vermunt, 2010). The latent class model will be discussed in more detail in 

the next section. 

In the study of Bayes-Marin et al. (2020), for example, data were used from the 

WHO’s study on Global Ageing and Adult Health (SAGE; Kowal et al., 2012), the English 

Longitudinal Study of Ageing (ELSA; Steptoe et al., 2013) and the Survey of Health, Ageing, 

and Retirement in Europe Study (SHARE; Börsch-Supan et al., 2013). Based on the scores of 

subjects on eight NCDs, three latent classes had been identified. Consequently, predictor 

variables were added in the structural part of the model to determine their influence on class 

membership.  

Another example is the study of Olaya et al. (2017) in which data were used from the 

Collaborative Research on Ageing in Europe (COURAGE in Europa) study (Leonardi et al., 

2014). Here, based on the scores of subjects on eleven NCDs, three latent classes have been 

identified as well. However, in contrast with the study of Bayes-Marin et al. (2020), in this 

study it was checked, after assigning individuals to the latent classes, whether distal outcome 

variables could be predicted from class membership.  

In these studies, latent classes are presumed and the LCA approaches are well-

motivated in light of the need for finding multimorbidity patterns. However, one of the main 

limitations of LCA is that latent classes are unobserved. One cannot know if the latent classes 

are real subgroups in the population. The researcher fits a number of models to the data, with 

an increased number of latent classes for each model. Based on various criteria and 

judgements of the researcher concerning the substantive usefulness of the different models, an 

optimal solution is chosen. However, even the optimal solution does not guarantee the 

existence of real subgroups. It may identify invalid and unreliable latent classes, since the 

LCA will just seek for the best statistically determined partitioning of subjects into classes 

and does not take any substantive usefulness into account (Bauer & Curran, 2004; Petersen et 

al., 2019). Consequently, the usefulness of estimating relationships between potentially ill-

defined classes and external variables is questionable.  

 Bayes-Marin et al. (2020) state, for example, that their three-class solution was forced 

to different samples, since they aimed to compare the samples of different regions and 

different age groups. An optimal LCA solution in one region for one age group was applied to 

all other samples, although there might have been different optimal solutions for these 

samples. Although forcing the solution to all samples is necessary to do comparisons between 

samples, the reliability and validity of the latent classes in these samples are questionable, let 
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alone the usefulness of relating predictor variables to the identified latent classes. Whitson et 

al. (2016) identified six meaningful latent classes in their study. However, they conclude that 

there was a high misclassification error, indicating that assigning individual patients to one of 

the latent classes was problematic. They concluded that simply counting the number of NCDs 

of individuals for creating multimorbid groups is as informative as using the identified latent 

classes of the study. 

 Altogether, identifying latent multimorbid NCD classes with LCA has proven to be 

troublesome. Consequently, relating external variables to latent classes is not substantively 

useful, and there is evidence that creating multimorbid groups based on the number of NCDs 

in patients would be just as meaningful as using ill-defined latent classes. Therefore, 

performing an LCA on NCD data, for detecting subgroups, should be reconsidered in some 

cases. Fit statistics for LCA (which will be discussed in more detail later) can be used to 

indicate whether identified classes are discriminable enough to proceed with LCA. However, 

if these fit indices indicate that the classes are not very discriminable, LCA should be 

reconsidered. 

However, one still might be interested in linking predictors or distal outcome variables 

(e.g., demographic variables and/or potential risk- or protecting factors) to the individual 

NCDs. In the case of predictors, one option would be to predict each individual NCD from 

one or a set of predictors by performing a logistic regression. In logistic regression, discrete 

binary response variables are predicted from a (set of) predictor(s) (Agresti, 2003). Since 

NCDs are discrete binary variables (‘yes’ or ‘no’), fitting many single logistic regressions 

would be a suitable procedure. Often, however, it has been showed that it is more beneficial 

to simultaneously predict response variables from the same set of predictors.  

For example, Breiman and Friedman (1997) developed a regularization procedure that 

simultaneously predicts a set of continuous response variables from the same set of predictors. 

The response variables are correlated, due to their shared dependencies on the predictors, and 

these dependencies are taken into account by applying a multivariate shrinkage on the 

coefficients. This procedure yields a substantial improvement of the prediction accuracy, 

compared to the prediction accuracy when performing many single regressions.  

Taking the advantages of simultaneously predicting multiple response variables into 

account, De Rooij and Groenen (2021) recently developed a distance-based family of logistic 

models: the MultivariatE LOgistic DIstance to Categories family (the MELODIC family). In 

MELODIC, multiple binary response variables are predicted from a set of predictors 

simultaneously. It is a method based on the ideas of multidimensional unfolding, which is a 
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distance-based approach for dimensionality reduction. Subjects and the two outcome 

categories for each binary response variable are placed in a low-dimensional Euclidean space. 

The distances between the subjects and the categories define the probabilities of belonging to 

the categories. Here, the dependencies of the response variables are taken into account by 

reducing the dimensionality, resulting in changes in all response variables when a predictor 

value is changed. The subject’s position in the low-dimensional Euclidean space is 

parametrized as a linear combination of the predictors. 

So far, two methods have been mentioned in particular: MELODIC and LCA. In the 

former, multiple NCDs can be predicted from a set of predictors simultaneously, while 

reducing the dimensionality. In the latter, latent classes can be identified, and we can predict 

multiple NCDs from a set of predictors via these latent classes. More specifically, for both 

methods it is possible to calculate the relationships for each predictor for each response 

variable: the predictor-response variable relationships. 

In this paper, NCD data from SHARE (Börsch-Supan et al., 2013) will be used to 

compare the prediction accuracy of MELODIC and LCA. From this data, predictor and 

response variables scores will be extracted and will be analyzed using MELODIC and LCA. 

The goal is to identify which method more accurately estimates the predictor-response 

variables relationships. That is, which method performs more accurately when there are true 

latent classes in the population. And, which method is more accurate when the dimensionality 

of the Euclidean space is truly reduced in the population. 

For that purpose, two simulations will be performed, both based on the SHARE data 

(Börsch-Supan et al., 2013). In the first simulation, population data will be generated based on 

MELODIC parameters. In the second simulation, population data will be generated based on 

LCA parameters. In both simulations MELODIC and LCA will be fitted on many samples of 

the generated population data. In each of the analyses of samples, the estimated predictor-

response variables relationships will be calculated as well as for the populations. The 

accuracy of the methods will be determined in terms of Root Mean Squared Error (RMSE). 

Finally, it will be concluded if the prediction accuracy of the two methods depend on the data 

generation method. The simulation studies will be discussed in more detail in Section 5. 

MELODIC has been developed recently and although the technique already has been 

used in an application study of De Rooij and Groenen (2021), the prediction accuracy of the 

method has not been compared so far with another statistical method, which can be used for 

the same purpose. Therefore, this study can be interpreted as an exploratory study to 

determine whether MELODIC could potentially serve as an alternative to LCA, when 
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analyzing NCD data. Due to the design of the simulations, it is possible to evaluate how 

accurate MELODIC is when applied to samples from populations based on LCA parameters 

and vice versa. Results of these simulations might provide insights in the appropriateness of 

using MELODIC as alternative to LCA when it concerns NCD data. If the results are 

promising, the limitations of using LCA on NCDs in the studies mentioned earlier, could be 

overcome by performing MELODIC analyses instead. More insights in the appropriateness of 

statistical analyses on data of this kind is necessary to improve the prevention and treatment 

of multimorbidity.  

The rest of this paper is organized as follows. In the next section the MELODIC- and 

LCA model are discussed in more detail (Section 2), followed by Section 3 in which 

MELODIC and LCA are applied on the SHARE data. Subsequently, the simulations are 

discussed more elaborately in Section 4. In Section 5 the results of the simulation studies will 

be provided, and Section 6 is the Discussion section. 

 

 

2 The MELODIC and LCA models 

 

 In subsections 2.1. and 2.2., the MELODIC- and the latent class model, respectively, 

will be outlined. Both subsections conclude with the formulation of the predictor-response 

variable relationships per predictor per response variable that can be derived from both 

models. 

 

2.1 The MELODIC Model 

 

As mentioned in the previous section, in MELODIC, all subjects and binary response 

variable outcome categories are placed in a low-dimensional Euclidean space and the distance 

between a subject and the two outcome categories of a single response variable defines the 

probabilities of belonging to those categories (De Rooij & Groenen, 2021).  

The following notation will be used for displaying the model: 

- 𝑖 ∈ {1, … , 𝑁} for the subjects. 

- 𝑝 ∈ {1, … , 𝑃} for the predictor variables. 

- 𝑟 ∈ {1, … , 𝑅} for the binary response variables. 
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- 𝑚 ∈ {1, … , 𝑀} for the dimensions in the Euclidean space. 

- 𝑐 ∈ {0,1} for the two categories of the response variables. 

- 𝐗 is an N × P matrix, containing the scores of N subjects on P predictor variables. 

- 𝐘 is an N × R matrix, containing the scores of N subjects on R response variables. 

- 𝐔 is an N × M matrix containing the coordinates of N subjects in M dimensions. 

- 𝐕 is a 2R × M matrix containing the coordinates of the two response variable 

categories c of R response variables in M dimensions. 

- 𝐁 is a P × M matrix containing the regression weights of P predictors in M 

dimensions.  

A capital bold character represents a matrix (𝐗), a small bold character represents a vector 

(𝐱𝑖) and a small cursive character represents a single entry (𝑥𝑖𝑝). 

The probability for a subject of belonging in one of the response variable outcome 

categories, given the predictor values of the subject, (𝑃(𝑦𝑖𝑟 = 𝑐|𝐱𝑖)) is defined as 

 

𝑃(𝑦𝑖𝑟 = 𝑐|𝐱𝑖)  =
exp(−𝛿(𝐮𝑖, 𝐯𝑟𝑐))

exp(−𝛿(𝐮𝑖, 𝐯𝑟0)) + exp(−𝛿(𝐮𝑖, 𝐯𝑟1))
, (1) 

 

where 𝛿(𝐮𝑖, 𝐯𝑟𝑐) is defined as half the squared Euclidean distance between subject i and 

category c of response variable r, i.e., 

 

𝛿(𝐮𝑖, 𝐯𝑟𝑐) =
1

2
∑ (𝑢𝑖𝑚 − 𝑣𝑟𝑐𝑚)2 =

1

2
∑ (𝑢𝑖𝑚

2 + 𝑣𝑟𝑐𝑚
2 − 2𝑢𝑖𝑚𝑣𝑟𝑐𝑚).

𝑀

𝑚=1

𝑀

𝑚=1

(2) 

 

The log-odds in favor of category 1 of response variable r for subject i, is defined as 

 

log
𝑃(𝑦𝑖𝑟 = 1|𝐱𝑖)

𝑃(𝑦𝑖𝑟 = 0|𝐱𝑖)
= 𝛿(𝐮𝑖, 𝐯𝑟0) − 𝛿(𝐮𝑖 , 𝐯𝑟1), (3) 

 

which, consequently, can be rewritten as  
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log
𝑃(𝑦𝑖𝑟 = 1|𝐱𝑖)

𝑃(𝑦𝑖𝑟 = 0|𝐱𝑖)
=

1

2
∑ (𝑢𝑖𝑚

2 + 𝑣𝑟0𝑚
2 − 2𝑢𝑖𝑚𝑣𝑟0𝑚) −

𝑀

𝑚=1

1

2
∑ (𝑢𝑖𝑚

2 + 𝑣𝑟1𝑚
2 − 2𝑢𝑖𝑚𝑣𝑟1𝑚)

𝑀

𝑚=1

= ∑ [
1

2
(𝑣𝑟0𝑚

2 −

𝑀

𝑚=1

𝑣𝑟1𝑚
2 ) − 𝑢𝑖𝑚𝑣𝑟0𝑚 + 𝑢𝑖𝑚𝑣𝑟1𝑚]                                             (4)

= ∑ [
1

2
(𝑣𝑟0𝑚

2 −

𝑀

𝑚=1

𝑣𝑟1𝑚
2 ) + 𝑢𝑖𝑚(𝑣𝑟1𝑚 − 𝑣𝑟0𝑚)]. 

 Since the coordinates of the subject are parametrized as a linear combination of predictors, 

𝑢𝑖𝑚 can be substituted by 𝐱𝑖
T𝐛𝑚, i.e., 

 

          log
𝑃(𝑦𝑖𝑟 = 1|𝐱𝑖)

𝑃(𝑦𝑖𝑟 = 0|𝐱𝑖)
= ∑ [

1

2
(𝑣𝑟0𝑚

2 −

𝑀

𝑚=1

𝑣𝑟1𝑚
2 ) + 𝐱𝑖

T𝐛𝑚(𝑣𝑟1𝑚 − 𝑣𝑟0𝑚)].                              (5) 

 

De Rooij and Groenen (2021) rewrite this log-odds as  

 

log
𝑃(𝑦𝑖𝑟 = 1|𝐱𝑖)

𝑃(𝑦𝑖𝑟 = 0|𝐱𝑖)
= 𝑎𝑟

∗ + 𝐱𝑖
T𝐛𝑟

∗ , (6) 

 

in which 𝑎𝑟
∗ =

1

2
∑ (𝑣𝑟0𝑚

2𝑀
𝑚=1 − 𝑣𝑟1𝑚

2 ) and 𝐛𝑟
∗ =  ∑ 𝐛𝑚(𝑣𝑟1𝑚

𝑀
𝑚=1 − 𝑣𝑟0𝑚). From this stage it 

is becoming more apparent that the model has the shape of a logistic regression model. The 

log-odds for subject i of belonging to category 1 for response variable r, given the predictor 

values of subject i, is calculated with 𝑎𝑟
∗  being the intercept and 𝐛𝑟

∗  the standardized slope 

coefficients vector of length P. Matrix 𝐁∗ of size P × R, then, contains all the estimated 

standardized logistic regression slope coefficients of the MELODIC model. which are 

referred to as the implied coefficients (De Rooij & Groenen, 2021). 

Following the definition of (6), the probability for subject i of belonging to category 1 

of response variable r, given the predictor scores of subject i, (i.e., 𝑃(𝑦𝑖𝑟 = 1|𝐱𝑖), can be 

rewritten as 

 

𝑃(𝑦𝑖𝑟 = 1|𝐱𝑖) =
exp(−𝛿(𝐮𝑖, 𝐯𝑟1))

exp(−𝛿(𝐮𝑖, 𝐯𝑟0)) + exp(−𝛿(𝐮𝑖, 𝐯𝑟1))
=

exp(𝑎𝑟
∗ + 𝐱𝑖

T𝐛𝑟
∗  )

1 + exp (𝑎𝑟
∗ + 𝐱𝑖

T𝐛𝑟
∗) 

.       (7)  
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It can be observed from 𝐛𝑟
∗ =  ∑ 𝐛𝑚(𝑣𝑟1𝑚

𝑀
𝑚=1 − 𝑣𝑟0𝑚) that the effect of predictors on 

a response variable is determined by both the regression weights and the distance between the 

response variable categories. To estimate the regression weights and the coordinates of the 

categories of the response variables for the MELODIC model, an iterative majorization 

algorithm was developed by De Rooij and Groenen (2021). The algorithm constantly updates 

the parameters B, K (an R × M matrix containing the discriminatory power for the response 

variables) and L (an R × M matrix containing the response variable midpoint locations of the 

categories), until the global optimum of the deviance function is reached. The initialization 

values of the three parameters are determined by a generalized singular value decomposition. 

K and L together define 𝐕 (from which 𝐯𝑟𝑐 will be derived), and thus the result of the 

optimization procedure provides the optimal regression weights and coordinates of the 

response variable categories for the MELODIC model. 

The model takes the dependencies among the response variables into account, by 

placing the categories and the subjects in a Euclidean space with reduced dimensionality. 

Therefore, changes in a subject’s predictor scores, will alter the response variable 

probabilities of all response variables, instead of only one response variable. Due to the 

dimension reduction, the variance of model is reduced substantially at the cost of a little bias, 

resulting in a higher prediction accuracy, in contrast to fitting many single logistic regressions 

for all the response variables.  

 When fitting a MELODIC analysis to data, three input statements are required: X, Y 

and M, the number of dimensions in the Euclidean space in which the subjects and the 

response variable categories will be placed. The researcher is free to decide how many 

dimensions will be used, as long as the number of dimensions is larger than zero, and not 

larger dan min(P, R). The idea is that the researcher performs multiple MELODIC analyses, 

each analysis with an increasing number of M. Based on fit indices as the Akaike Information 

Criteria (AIC) and the Bayesian Information Criteria (BIC), and based on the interpretation of 

the researcher, the optimal model will be chosen for interpretation and further analysis. 

 

2.1.1. Predictor-response variable relationships in MELODIC 

 

 Since it is desired to calculate RMSEs of each individual predictor-response variable 

relationship for doing comparisons between MELODIC and LCA, the last step of this 

subsection, is to define the predictor-response variable relationships in MELODIC. The 

response variables are all binary with response categories 𝑐 ∈ {0,1}. When it concerns 
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estimating predictor-response variable relationships, predicted response variable probabilities 

always refer to probabilities for category c = 1 (as opposed to c = 0) for the remainder of this 

paper. That is, it is desired to know an individual’s probability of suffering from an NCD. 

Note, however, that response probabilities for category c = 0, are easily computed (i.e., 

𝑃(𝑦𝑖𝑟 = 0|𝐱𝑖) = 1 − 𝑃(𝑦𝑖𝑟 = 1|𝐱𝑖)). 

Recall from (7) that the probability for subject i to score 1 on response variable r, 

given the predictor scores of subject i, is defined as 

 

𝑃(𝑦𝑖𝑟 = 1|𝐱𝑖) =
exp(𝑎𝑟

∗ + 𝐱𝑖
T𝐛𝑟

∗  )

1 + exp(𝑎𝑟
∗ + 𝐱𝑖

T𝐛𝑟
∗) 

, 

 

with both 𝐱𝑖 and 𝐛𝑟
∗  being of length P. However, instead of 𝑃(𝑦𝑖𝑟 = 1|𝐱𝑖) it is desired to 

obtain 𝑃(𝑦𝑖𝑟 = 1|𝑥𝑖𝑝), i.e., the probability for subject i to score 1 on response variable r, 

given the predictor score p of subject i. Estimating the predictor-response variable 

relationships between, for example, 𝑥𝑖,𝑝=1 and probabilities for 𝑦𝑖,𝑟=1 = 1, is done by 

constantly changing 𝑥𝑖,𝑝=1 while holding the 𝐱𝑖,𝑝≠1 fixed, resulting in different probabilities 

for 𝑦𝑖𝑟=1 = 1 for each value of 𝑥𝑖,𝑝=1. Since 𝐗 is standardized, fixing 𝐱𝑖,𝑝≠1 at their means 

implies that 𝐱𝑖,𝑝≠1 contains solely 0’s. Therefore, 𝐱𝑖,𝑝≠1 and the corresponding 𝐛𝑝≠1,𝑟 drop 

out of the equation. Hence, 𝑃(𝑦𝑖𝑟 = 1|𝑥𝑖𝑝) can be denoted as 

 

𝑃(𝑦𝑖𝑟 = 1|𝑥𝑖𝑝) =
exp(𝑎𝑟

∗ + 𝑥𝑖𝑝b𝑝𝑟
∗  )

1 + exp(𝑎𝑟
∗ + 𝑥𝑖𝑝b𝑝𝑟

∗  )
, (8) 

 

for all predictors 𝑝 ∈ {1, … , 𝑃} and response variables 𝑟 ∈ {1, … , 𝑅}. This formula will be 

used to calculate the predictor-response variable relationships for MELODIC. 

 

2.2 The latent class model 

 

As mentioned in the Introduction, LCA refers to partitioning subjects in latent classes 

based on a set of nominal or categorical response variables (McCutcheon, 1987). Earlier, 

subject i’s score on response variable r was defined as 𝑦𝑖𝑟. Then 𝐲𝑖 is a vector of all response 

variables for subject i. When introducing the latent class variable H, with 𝑡 ∈ {1, … , 𝑇} latent 

classes, the latent class model is defined as  
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𝑃(𝐲𝑖) = ∑ 𝑃(𝐻 = 𝑡)𝑃(𝐲𝑖|𝐻 = 𝑡).

𝑇

𝑡=1

(9) 

 

In latent class models, it is assumed that, given latent class membership, the response 

variables are locally independent (i.e., the local independence assumption), hence 

 

𝑃(𝐲𝑖|𝐻 = 𝑡) = ∏ 𝑃(𝑦𝑖𝑟|𝐻 = 𝑡) = ∏ ∏ 𝜋𝑟𝑐𝑡
𝐼(𝑦𝑖𝑟=𝑐)

𝑛𝑐𝑟−1

𝑐=0

𝑅

𝑟=1

,

𝑅

𝑟=1

(10) 

 

where 𝑛𝑐𝑟 indicates the number of response categories of response variable r, 𝜋𝑟𝑐𝑡 = 𝑃(𝑦𝑖𝑟 =

𝑐|𝐻 = 𝑡) indicates the estimated class-conditional response probabilities and where 𝐼(𝑦𝑖𝑟 =

𝑐) is an indicator variable which is equal to 1 if the score of subject i on response variable r is 

equal to c. Another assumption of the latent class model is that 𝑃(𝐲𝑖) is a weighted average of 

the t class-specific 𝑃(𝐲𝑖|𝐻 = 𝑡). This assumption is referred to as the joint distribution 

assumption. Together, they form the definition of 𝑃(𝐲𝑖), the latent class model, as defined in 

(9). 

The model as defined above is the most simple latent class model and it only consists 

of a measurement part in which the response variables are related to the latent classes. The 

model can be extended by adding a structural part to the model, e.g., by adding a (set of) 

predictor(s) to the model (Vermunt, 2010). By doing so, the model can be defined as  

 

𝑃(𝐲𝑖|𝐱𝑖) = ∑ 𝑃(𝐻 = 𝑡|𝐱𝑖)𝑃(𝐲𝑖|𝐻 = 𝑡)

𝑇

𝑡=1

. (11) 

 

The conditional distribution of class membership given the predictors can be defined as a 

multinomial logistic regression model, i.e.,  

 

𝑃(𝐻 = 𝑡|𝐱𝑖) =
exp(𝑎𝑡 + 𝐱𝑖

T𝐛𝑡 )

∑ exp(𝑎𝑡 + 𝐱𝑖
T𝐛𝑡 )𝑇

𝑡=1

 , (12) 

 

in which 𝑎𝑡 is the multinomial logistic regression intercept for class t and 𝐛𝑡 containing the 

multinomial logistic regression slopes for class t. Both 𝐱𝑖 and 𝐛𝑡 are of length P. 
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When estimating the response variable pattern of subject i, given the predictor scores 

of subject i (i.e., 𝑃(𝐲𝑖|𝐱𝑖)), it is clear from the model definition that the predictor scores only 

have an effect on the class membership probabilities, but not on the response variables. This 

is due to another local independence assumption, i.e., the non-differential measurement 

assumption, which states that given an individual’s class, predictors are not associated with 

response variables. Therefore, direct effect of the predictors and the response variables are not 

estimated (although recent work suggests that relaxing this assumption is sometimes 

beneficial for parameter estimation (cf. Janssen et al., 2019; Reboussin et al., 2008)).  

The one-step (or Full Information Maximum Likelihood (FIML)) approach estimates 

the latent class model parameters by maximizing the loglikelihood function for 𝑃(𝐲𝑖|𝐱𝑖) 

(Vermunt, 2010), i.e.,  

 

log 𝐿𝐹𝐼𝑀𝐿 = ∑ log

𝑁

𝑖=1

∑ 𝑃(𝐻 = 𝑡|𝐱𝑖)𝑃(𝐲𝑖|𝐻 = 𝑡),

𝑇

𝑡=1

(13) 

 

with the Expectation Maximum algorithm (EM; Dempster et al., 1977). In the algorithm, the 

multinomial logistic regression intercepts a (a vector of length T – 1) and slopes B (a matrix 

of size P × (T – 1)) and the estimated class-conditional response probability  ((nc – 1) × R × 

T unique class-conditional response probabilities) are updated until a maximum is reached. 

EM uses random class-conditional response probabilities  as starting values, and to make 

sure that the algorithm is not optimizing into a local maximum, it is often wise to repeat the 

optimizing procedure multiple times (Linzer & Lewis, 2011).  

 Although there many alternatives to the one-step approach, (e.g., a two-step approach 

(Bakk & Kuha, 2017) and three-step approaches (Vermunt, 2010)), for the remainder of this 

paper, only the one-step approach LCA will be used, and will be referred to as simply LCA. 

 When fitting an LCA to data, X and Y are required, as well as the number of classes T. 

The researcher is free to decide how many latent classes should be identified when fitting the 

LCA to the data, as long as T > 1. Similar to MELODIC, the idea is that the researcher 

performs multiple LCAs, each analysis with an increased number of T. Based on fit indices as 

the AIC and BIC and based on the interpretation of the researcher, the optimal model will be 

chosen for interpretation and further analysis. 
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2.2.1 Predictor-response variable relationships in LCA 

 

 Similar to the procedure in the MELODIC section, predictor-response variable 

relationships need to be identified. Due to the non-differential measurement assumption of 

LCA, no direct relations between predictors and response variables are estimated. However, 

since predictors and response variables are related to latent classes, it is possible to calculate a 

predictor-response variable relationship via the latent classes. Recall from (11) that 

𝑃(𝐲𝑖|𝐱𝑖) = ∑ 𝑃(𝐻 = 𝑡|𝐱𝑖)𝑃(𝐲𝑖|𝐻 = 𝑡)

𝑇

𝑡=1

. 

 

Here, a set of response variables for subject i is predicted, given subject i’s predictor 

scores. To estimate a single response variable for subject i, given i’s score on a single 

predictor, some changes need to be made to the formula. Instead of estimating class 

membership conditional on all R predictor scores of subject i, i.e., 𝑃(𝐻 = 𝑡|𝐱𝑖), it is needed 

to estimate class membership probabilities conditional on a single predictor score of subject i, 

i.e., 𝑃(𝐻 = 𝑡|𝑥𝑖𝑝). For example, when estimating the latent class membership given 𝑥𝑖,𝑝=1, 

and 𝑥𝑖,𝑝=1 is constantly changed, while holding 𝐱𝑖,𝑝≠1 fixed, the conditional class membership 

probability will be different for each different value of 𝑥𝑖,𝑝=1. Following the same 

argumentation as in the MELODIC section, when using a standardized 𝐗 in the LCA, 𝐱𝑖,𝑝≠1 

and the corresponding 𝐛𝑝≠1,𝑡 are removed from the equation, which means that 

 

𝑃(𝐻 = 𝑡|𝑥𝑖𝑝) =
exp(𝑎𝑡 + 𝑥𝑖𝑝𝑏𝑝𝑡 )

∑ exp(𝑎𝑡 + 𝑥𝑖𝑝𝑏𝑝𝑡 )𝑇
𝑡=1

 , (14) 

 

for all predictors 𝑝 ∈ {1, … , 𝑃}. 

Similarly, instead of estimating the complete response variable pattern probability for 

subject i, conditional on class membership, i.e., 𝑃(𝐲𝑖|𝐻 = 𝑡), it is needed to estimate the 

probabilities for 𝑦𝑖𝑟 = 1 for each response variable r, conditional on class membership. These 

probabilities are the estimated class-conditional response probabilities, as described earlier, 

i.e., 𝑃(𝑦𝑖𝑟 = 1|𝐻 = 𝑡).  

Altogether, combining the adapted elements of the latent class model for estimation of 

single predictor-response variable relationships, results in 
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𝑃(𝑦𝑖𝑟 = 1|𝑥𝑖𝑝) = ∑ 𝑃(𝐻 = 𝑡|𝑥𝑖𝑝)𝑃(𝑦𝑖𝑟 = 1|𝐻 = 𝑡),

𝑇

𝑡=1

(15) 

 

for all predictors 𝑝 ∈ {1, … , 𝑃} and response variables 𝑟 ∈ {1, … , 𝑅}. This formula will be 

used to calculate the predictor-response variable relationships for LCA. 

 

 

3 Application study 

 

In this section, the data used for this study will be introduced. Subsequently, 

MELODIC and LCA will be performed on the data, so that the reader has an idea how the 

models (as described in the previous section) are applied on real data.  

 

3.1 SHARE data 

 

In the current study, data are used from the Survey of Health, Ageing, and Retirement 

in Europe study (SHARE; Börsch-Supan et al., 2013). In the SHARE study, the effects of 

social, economic, environmental and health policies over the lifespan of Europeans are 

studied (SHARE, n.d.). SHARE involves participants of 50 years and older from 28 European 

countries and Israel. From 2004 until now, data are collected and bundled in data waves, of 

which Wave 8 has become available recently. In this study, only data from Wave 1 is used. 

Since MELODIC does not allow for missing data on the predictors (yet), cases with missing 

values were listwise deleted, resulting in data for 29207 subjects. 

Bayes-Marin et al. (2020) used SHARE data (among others) to study multimorbidity 

and ageing. Eight NCDs and a set of predictors were selected to perform their analyses. In 

line with their study, the same predictor and response variables are used in this study. For 

computational considerations, however, it was decided to reduce the number predictor 

variables. Eight NCDs are chosen to serve as response variables, i.e.,  

 

- Diabetes (9.97%); 

- Hypertension (31.58%); 

- Asthma (4.55%); 
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- Chronic Lung Disease (4.84%);  

- Joint Disorders (18.57%); 

- Angina (12.1%); 

- Stroke (3.49%);  

- Depression (37.82%)  

 

All NCDs are measured on a binary scale with value 0, indicating that a subject does not 

suffer from the NCD, and 1, indicating that the subject does suffer from the NCD. 

Percentages of subjects suffering from the NCD are provided between parentheses. It can be 

observed already that, especially, Asthma, Chronic Lung Disease and Stroke are very 

infrequent NCDs in this data set. Importantly, there are subjects in the data set that do not 

suffer from an NCD and there are multimorbid subjects, therefore the NCDs are not mutually 

exclusive nor collectively exhaustive.  

Three variables are selected to serve as predictor variables, i.e., Gender, Age and Self-

rated health (SRH). Gender is measured on a binary scale, Age is measured on a continuous 

scale and SRH is measured on an ordered categorical scale. These predictors are standardized 

to have mean 0 and standard deviation (SD) 1. The predictor values of interest are: 

 

- for Gender: the categories 0 (‘Male’) and 1 (‘Female’); 

- for Age: the mean, +/- 1 SD from the mean and +/- 2 SD from the mean; 

- for SRH: the categories 1 (‘Excellent’), 2 (‘Very Good’), 3 (‘Good’), 4 (‘Fair’) and 5 

(‘Poor’). 

 

In the next two subsections MELODIC and LCA will be applied to the SHARE data 

consisting of the variables mentioned above.  

 

3.2 Application MELODIC 

 

In a MELODIC analysis, it is decided first what the optimal number of dimensions is. 

For that purpose many models are fitted, each with an increased number of dimensions. As 

mentioned in the previous section on MELODIC, the researcher is only allowed to choose 1 

to min(P,R) dimensions to fit the model with. In this case that would be one to three 
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dimensions, since P = 3 and R = 8. AIC and BIC are evaluated to find the optimal solution. 

These are provided in Table 1. 

 

Table 1 

AIC and BIC for models with 1 to 3 dimensions 

Dim Deviance #param AIC BIC 

1 162941.3 18 162977.3 163126.4 

2 160697.9 27 160751.9 160975.5 

3 160421.4 35 160491.4 160781.3 

 

From the AICs and BICs presented in Table 1, it is clear that the fitted MELODIC 

model with three dimensions would be the optimal solution. However, the solutions with two 

and three dimensions do only differ very slightly. A model with two dimensions it is a more 

parsimonious solution and a biplot can be provided for a two-dimensional solution. For the 

sake of the example, it is decided to continue with the two-dimensional solution.  

 The subsequent step in a MELODIC analysis is to evaluate the influence of the 

predictor variables. Three two-dimensional models are fitted, each of them excluding one 

predictor. If the AIC and/or BIC is improved when excluding a predictor, it might be decided 

to exclude the predictor for further analysis. When there are a lot of predictors, this is an 

efficient procedure to reduce redundant variables. Since there are only three predictors in the 

model, it is questionable to execute this step. However, again, for the sake of the example, the 

influence of the predictors is checked. Table 2 provides the AICs and BICs of the models. 

 

Table 2 

AIC and BIC for the one-predictor-left-out models 

Left out p Deviance #param AIC BIC 

Gender 162359.7 25 162409.7 162616.8 

Age 162076.3 25 162126.3 162333.4 

SRH 158160.8 25 158210.8 158417.8 

 

The results in Table 2 indicate that removing SRH from the model would lead to a 

substantial better fit. On the contrary, excluding Gender or Age would lead to a worse fit. 

However, due to reasons described above, it is decided to leave SRH in the model.  

In Table 3, 𝐚∗ and 𝐁∗ are presented. Recall that these are the standardized logistic 

regression slope coefficients, one for each predictor-response variable relationship, and an 

intercept for each response variable.  
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Table 3 

Implied coefficients and 𝑄𝑟 for the two-dimensional model 

  Diabetes Hypertension Asthma CLD JD Angina Stroke Depression 

Intercept -2.394 -0.830 -3.155 -3.313 -1.708 -2.380 -3.846 -0.552 

Gender -0.055 -0.004 0.095 -0.114 0.290 -0.377 -0.199 0.421 

Age 0.254 0.186 0.117 0.334 0.144 0.488 0.437 -0.025 

SRH 0.596 0.488 0.442 0.726 0.783 0.769 0.880 0.518 

Quality 0.961 0.966 0.897 0.958 0.980 1.000 0.998 0.991 

 

The coefficients can be interpreted as standardized logistic regression slope 

coefficients in single logistic regressions. Since standardized, they represent the change in 

log-odds when the predictor increases with 1 SD. These coefficients are used to calculate the 

estimated predictor-response variable relationships. When evaluating the coefficients, it 

becomes clear that, although probably not very surprising, getting older results in higher 

probabilities of suffering from an NCD (except for Depression). Also higher scores on SRH 

results in higher probabilities of suffering from an NCD (recall that higher scores represent 

lower rates of healthiness). Lastly, Females have higher probabilities of suffering from 

Asthma, Joint Disorders and Depression, whereas men have higher probabilities to suffer 

from the other NCDs (Female is dummy-coded 1).  

A Quality of Representation (𝑄𝑟; De Rooij & Groenen, 2021) is presented in the last 

row of Table 3. It is a measure of how well the response variables are represented in the low-

dimensional space, defined as 

𝑄𝑟 =
𝐿(0,𝑟) − 𝐿𝑟

𝐿(0,𝑟) − 𝐿𝑙𝑟
, (16) 

 

in which 𝐿(0,𝑟) is the deviance of the logistic regression model with only the intercept, for 

response variable r, 𝐿𝑟 is the deviance part of the deviance function (to be minimized with the 

IM algorithm) for response variable r, and 𝐿𝑙𝑟 is the deviance of the logistic regression with 

all predictors involved, for response variable r. The measure is a proportion of loss in 

deviance for each response variable, by comparing the deviance part for response variable r 

when analyzing with MELODIC, with the deviance of a single logistic regression for 

response variable r.  

 It can be observed that Asthma is represented worst. The other NCDs are very well 

represented. Additionally, a biplot of the results is presented in Figure 1.  
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Figure 1 

Biplot of the two-dimensional model 

 

Note. Dbts = Diabetes, Hyp = Hypertension, Asth = Asthma, CLD = Chronic Lung Disease, JD = Joint 

Disorders, Ang = Angina, Str = Stroke and Dpr = Depression. NCD categories ‘yes’ are denoted with 

an additional 1. NCD categories ‘no’ are denoted with an additional 0. 

 

In Figure 1, the green dots represent the response categories for the NCDs. The small 

black dots represent the locations of the subjects. Each NCD has a green line running 

orthogonally between its two response categories, the so-called decision lines. If a subject’s 

position is on one of the green lines, it has an equal probability of suffering from that NCD. 

The blue lines are the predictor lines. The labels of the lines are indicative for the direction of 

the predictors, e.g., SRH is labeled at the right-side of the plot, indicating that higher scores of 

SRH suggests that subjects are placed more at the right-hand in the plot. Since 𝐗 is 

standardized and the subject’s position is defined as a linear combination of the predictors, 

subjects with mean scores on all predictors are placed at the position where the predictor lines 

cross each other. 

From the figure, it is clear that all 1 categories are at the right of the 0 categories. 

Therefore, it can be concluded that, for Dimension 1, subjects suffering from NCDs will be 

more on the right-side of the figure. Furthermore, the labels of the predictor lines (which are 

at the right-side of the plot) suggest that higher scores of Age and SRH indicate higher 

probabilities of suffering from NCDs, whereas Gender behaves differently. The predictor line 

of Gender is practically orthogonal to the first dimension, indicating that the different values 

for Gender hardly affect the subject’s position on the first dimension.  
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The interpretation of Dimension 2 is less clear. Since the response categories of the 

NCDs do not discriminate well in this dimension, it is difficult to determine what the 

dimension represents. Only the categories for Depression and Angina are relatively well 

discriminated, and the different values for Gender have a large effect on the subject’s position 

on dimension 2, indicating that females are more likely of suffering from Depression, whereas 

males are more likely to suffer from Angina (recall that ‘Female’ is dummy-coded 1). Lastly, 

both categories for Asthma are placed at the very extreme to right of the mean. It might be 

due to the very infrequently scored category 1, and due to the relatively poor 𝑄𝑟. 

The predictor-response variable relationships are calculated using (8). 

 

3.3 Application LCA 

 

The first step in LCA is to decide how many latent classes is most optimal. Therefore, 

six models are fitted, from a model with one latent class to a model with six latent classes. 

Models with more than six classes could have been chosen, which makes this choice 

somewhat arbitrary. However, due to computational considerations, it was decided to estimate 

maximally six latent classes. Choosing the model with the optimal number of latent classes is 

solely based on the measurement part of the model. After deciding on how many latent 

classes will be used, the structural part will be included to re-estimate the model. The AICs 

and BICs for the models are presented in Table 4.  

 

Table 4 

AICs, BICs, classification accuracy and entropies for the LCA models  

  LL AIC BIC Chisq npar cl. acc. entropy 

1cl model -87344.5 174705.0 174771.2 14293.45 8 1 1 

2cl model -85815.0 171663.9 171804.7 1505.6 17 0.852 0.361 

3cl model -85555.9 171163.8 171379.2 729.5232 26 0.834 0.373 

4cl model -85432.9 170935.8 171225.7 461.073 35 0.683 0.362 

5cl model -85370.2 170828.4 171192.8 318.2145 44 0.645 0.396 

6cl model -85332.2 170770.3 171209.3 242.8878 53 0.625 0.383 
Note. cl. acc. = classification accuracy 

 

According to AIC and BIC, a model with five or six latent classes would be most 

optimal. However, when evaluating the class sizes or class proportions of the fitted models, 

presented in Table 5, the six class solution might be reconsidered. 
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Table 5 

Latent class proportions of the LCA models 

  Class 1 Class 2 Class 3 Class 4  Class 5 Class 6 

1cl model 1.000      
2cl model 0.763 0.237     
3cl model 0.059 0.192 0.748    
4cl model 0.350 0.041 0.420 0.189   
5cl model 0.337 0.077 0.174 0.370 0.043  
6cl model 0.050 0.312 0.078 0.325 0.027 0.208 

 

 It is clear from Table 5 that the six class solution contains estimated latent classes with 

a very low proportion of the subjects, indicating that only some of the subjects are assigned to 

these classes. Although the best fit based on AIC and BIC, it is probably not the most useful 

model. The five class solution has the same problem. Also in Table 4, the classification 

accuracy and entropy for each model are provided. The entropy is an index indicating how 

good the latent classes in the model are discriminating. It is considered a pseudo R-squared 

for separation of classes (Magidson & Vermunt, 2004). An index of 0.8 is suggested to 

indicate highly discriminating classes (Tein et al., 2013). 

In Table 4, it can be observed that the four-, five- and six-class solution have a 

relatively low classification accuracy rate. Suggested classification accuracy cut-off values for 

acceptable classification are 0.8 and 0.9 (resp., Weden & Zabin, 2005; Muthén & Muthén, 

2000). Therefore, the four-, five- and six-class solutions are excluded from consideration. In 

addition, it can be concluded that the entropies of all models indicate that the classes in all 

models are not highly discriminating. At this point, the conclusion might be drawn that LCA 

is not a suitable method for analyzing the SHARE data. However, for the sake of the example, 

it is decided to proceed. The one-class solution was taken into consideration, because if AIC 

and BIC would indicate that this is the best solution, again, LCA would not be the best 

suitable method of analysis. AIC and BIC indicate that the one-class solution has the worst fit, 

and therefore it is excluded from consideration. 

 The two-class solution has higher AIC and BIC values, compared to the three-class 

solution, the entropies and classification accuracies do not differ substantially. Therefore it is 

decided to select the three class solution as optimal model.  

This example demonstrates that choosing the optimal model is based on fit measures, 

but also on personal preferences of the researcher. Note that it could be well-motivated to 

select the two-class solution, for example, as the best solution. 
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Having decided on the most optimal solution, the model with three classes is re-

estimated, by including the structural part of the model. The re-estimated model has a 

classification accuracy of 0.813 (somewhat lower than when only estimating the measurement 

part of the three-class model) and an entropy of 0.566, which is a substantial increase, when 

compared to the model with only the measurement part (although still not satisfying). 

The estimated class-conditional response probabilities for each NCD are presented in 

Figure 2 where each line represents one of three classes. 

 

Figure 2 

Estimated class-conditional probabilities per NCD for the three class model 

 

Note. Dbts = Diabetes, Hyp = Hypertension, Asth = Asthma, CLD = Chronic Lung Disease, JD = Joint 

Disorders, Ang = Angina, Str = Stroke and Dpr = Depression. 

 

The first latent class is the group with the lowest probability of suffering from NCDs, 

which will be named the Low Risk class. This class is presented in red in Figure 2 and has the 

highest class size proportion (0.490). The second class, presented as the green line in Figure 

2, is the class with relatively high probabilities of suffering from NCDs (compared to the 

other two classes). This class will be referred to as the High risk class, and has a class size 

proportion of 0.277. The third class, presented in blue, is more or less in-between the Low 

Risk and High Risk classes, with respect to the class-conditional response probabilities. This 

class will be referred to as the Medium Risk class, and has a class proportion size of 0.233.  
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As can observed, the NCDs are not well discriminated between the classes. Especially 

for Asthma, Chronic Lung Disease and Stroke, the probabilities of suffering from them, 

hardly differ between the three classes. It represents the low entropy found in this model. In 

the SHARE data, these three NCDs were the least frequent NCDs, which could explain the 

low discriminability between the classes. As can be observed from Figure 2, the probabilities 

of suffering from NCDs given class membership are not high. Only the probability of 

suffering from Depression for the High Risk class is higher than 50%.  

The multionomial logistic regression coefficients are presented in Table 6. 

 

Table 6 

Multionomial logistic regression coefficients (and standard errors (SEs)) for the three class 

model 

  High Risk (SE) Medium Risk (SE) 

Intercept -1.276 (0.074) -0.684 (0.075) 

Gender 0.438 (0.055) -0.801 (0.049) 

Age 1.046 (0.051) 1.272 (0.054) 

SRH 3.106 (0.090) 1.354 (0.067) 

 

The Low Risk class is the reference class, and therefore the coefficients in Table 6 are 

relative to the Low Risk class. It can be observed that the multinomial log-odds for High Risk 

and Medium Risk, relative to Low Risk, increase if values of Age and SRH increase. Increase 

in Gender (i.e., being Female instead of Male), results in an increase of the log-odds for High 

Risk, but in a decrease of the log-odds for Medium Risk.  

On a global level, these findings are in accordance with the findings of the MELODIC 

analysis. That is, higher levels of Age and SRH correspond with higher probabilities of 

suffering from an NCD, whereas belonging to either one of the two categories for Gender 

does not seem to affect the NCD probabilities.  

The predictor-response variable relationships are calculated using (15).  

In Table 7, predictor-response variable relationships for both MELODIC and LCA are 

presented for Gender, by means of an example of the output. 
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Table 7 

MELODIC- and LCA estimated predictor-response variable relationships for Gender.  

  Diabetes Hypertension Asthma CLD JD Angina Stroke Depression 

MELODIC         
Male 0.088 0.305 0.037 0.040 0.116 0.124 0.026 0.264 

Female 0.080 0.303 0.044 0.032 0.190 0.062 0.018 0.456 

LCA         
Male 0.104 0.323 0.037 0.042 0.130 0.148 0.033 0.261 

Female 0.084 0.284 0.042 0.041 0.170 0.094 0.028 0.379 

 

The similarity of the estimated probabilities of the two methods is probably more 

remarkable than the differences between them. It can be observed that the direction of the 

predictor is the same between the two methods, e.g., if Female instead of Male, the 

probability of suffering from Diabetes decreases, for both methods. This is the case for all 

NCDs. Furthermore, it was concluded in the MELODIC analysis that Gender hardly 

influences the probabilities of suffering from NCDs, except for Angina and Depression. More 

or less the same effect of Gender is found in the LCA. Both methods estimate low 

probabilities of suffering from Asthma, Chronic Lung Disease and Angina, the infrequent 

NCDs. 

 

 

4 Simulation studies 

 

To compare the prediction accuracy of MELODIC and LCA, two Monte Carlo 

simulations are designed and conducted. In both simulations, variables are used as described 

in the previous section, i.e., eight response variables (the NCDs) and three predictor variables 

(Gender, Age, SRH). The simulations will be discussed in more detail in the next subsections.  

 

4.1 Simulation 1 

 

In the first simulation, the SHARE data and the model parameters from the two-

dimensional MELODIC model (as defined in the application study section) are used to 

generate a large population data set (N = 500,000). Consequently, predictor-response variable 

relationships are estimated in the population, for each NCD for each predictor value, as 
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described in Section 3.1. From the population data, 100 random samples are drawn on which 

a MELODIC analysis with two dimensions and LCA with three classes are performed. Model 

estimates of MELODIC are used to calculate the MELODIC predictor-response variable 

relationships and model estimates of LCA are used to calculate the LCA predictor-response 

variable relationships, for each NCD for each predictor value as described in Section 3.1.  

From this point it is possible to calculate the difference between the probabilities of 

suffering from one of each NCD given a predictor value in the population and the 

probabilities of suffering from one of each NCD given a predictor value in the sample 

analyzed with MELODIC or with LCA. This is done for all randomly drawn samples from the 

population. Consequently, all difference values are squared and averaged over the samples. 

Lastly, the square root is taken over these values, resulting in RMSEs for each predictor-

response variable relationship. This RMSE measure is defined as 

 

𝑅𝑀𝑆𝐸 =
√∑ (𝑃(𝑦𝑖𝑟 = 1|𝑥𝑖𝑝)

𝑝𝑜𝑝
− 𝑃(𝑦𝑖𝑟 = 1|𝑥𝑖𝑝)

𝑠𝑎𝑚
)

2
𝑆𝐴𝑀
𝑠𝑎𝑚=1

𝑆𝐴𝑀
, (17)

 

 

in which the 𝑃(𝑦𝑖𝑟 = 1|𝑥𝑖𝑝)
𝑝𝑜𝑝

 denotes the probability for subject i to suffer from NCD r, 

given subject i’s score on predictor p in the population. 𝑃(𝑦𝑖𝑟 = 1|𝑥𝑖𝑝)
𝑠𝑎𝑚

 denotes the 

probability for subject i to suffer from NCD r, given subject i’s score on predictor p in one of 

the randomly drawn samples from the population. These population and sample probabilities 

are compared with each other for each randomly drawn sample 𝑠𝑎𝑚 ∈ {1, … , 𝑆𝐴𝑀}. Using 

(17), RMSEs can be calculated for each response variable r, given each value (as described in 

Section 3.1) of each predictor p.   

 The simulation concerns a 2x2x2 design. That is, the procedure described above, was 

repeated eight times, one for each unique combination of varying parameters. The following 

parameters are varied: 

 

- The discriminatory power of the response variables (K):  

o K from the real data.   

o K from the real data, Dimension 2 multiplied by 2. 

- The response variable midpoint locations of the response categories (L): 

o L from the real data. 

o L from the real data divided by 3. 
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- The sample size (n): 

o n = 300. 

o n = 1000. 

 

To be more precise, four times a large population data set (N = 500,000) is generated, 

one for each unique combination of conditions for K and L. From each of these four data sets, 

100 random samples of size n = 300 are drawn, and 100 random samples of size n = 1000 are 

drawn. Hence, there are eight unique combinations of conditions. 

As can be observed in Figure 1, Dimension 1 discriminates relatively well between the 

response variable categories. However, Dimension 2 hardly discriminates between the 

categories. Therefore, it was decided to add the condition in which the discriminatory power 

of the response variables (i.e., K) with respect to Dimension 2 is multiplied by two. It is 

interesting to see what the effect would be the effect of multiplying the second dimension of 

K by two on the prediction accuracy of MELODIC and LCA, in terms of RMSE, since this 

dimension hardly discriminates between the response variable categories.  

As can be observed from Figure 1 as well, is that the locations of the midpoints of the 

response categories are all mildly to substantially to the right of the mean subject location. 

Recall that the mean is the location where the blue predictor lines cross each other, since X is 

standardized. Since all ‘yes’ categories are more to the right, compared to the ‘no’ categories, 

it is more likely in general that subjects do not suffer from NCDs than that they do suffer from 

them, especially with respect to Asthma. This is not very surprising since it was illustrated in 

Section 3.1 that subjects in general score ‘yes’ quite infrequently. Therefore it was decided to 

add a condition in which the midpoint location coordinates (i.e., L) are divided by three, so 

that the proportions of subjects scoring ‘yes’ and ‘no’ on the NCDs will be more equal to 

some extent. It is interesting to see what the effect of dividing L by three would have on the 

prediction accuracy of MELODIC and LCA in terms of RMSE, since the midpoints will be 

closer to the subject mean. 

With respect to sample size, it is expected that a larger sample size will lead to better 

results in terms of RMSE compared to a smaller sample size, irrespective of which K and L 

condition is used. A sample size of n = 300 is chosen as being a minimal sample size. 

Therefore, the goal of adding this condition is to evaluate to what extent the prediction 

accuracy in terms of RMSE when using samples of size n = 1000 will outperform the 

prediction accuracy when using samples of size n = 300.  
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Important note on the conditions where the second dimension of the discriminatory 

power of the response variables (K) is multiplied by two; changing only one dimension 

results in a tilted decision line (whereas changing all dimensions with the same magnitude 

would not change the decision line). The midpoint locations of the response variable 

categories (L) need to be corrected for this, when generating population data. Each midpoint 

coordinate of each response variable is updated by 

 

𝑙𝑟𝑚
+ =

(∑ 𝑘𝑟𝑚𝑙𝑟𝑚) ∗ 𝑘𝑟𝑚
𝑀
𝑚=1

∑ 𝑘𝑟𝑚
2𝑀

𝑚=1

. (17) 

 

This update gives the correct midpoint locations of the response variable categories when the 

second dimension of the discriminatory power of the response variables is multiplied by two. 

Therefore, when changing K by multiplying its second dimension, L is also adapted to some 

extent. 

 

4.2 Simulation 2 

 

 In the second simulation, the same procedure is followed as in the first simulation, 

with respect to calculating the predictor-response variable relationships and the RMSEs, i.e., 

generate population data, calculate the predictor-response variable relationships in the 

population, draw samples, perform MELODIC with two dimensions and LCA with three 

classes on the samples, calculate the predictor-response variable relationships in the samples, 

and lastly, calculate the RMSEs (using (17)). The only aspect that differs, is that the 

population data are generated with parameters from the three-class LCA solution, as 

described in the application study section.  

 This simulation also concerns a 2x2x2 design, in which some of the latent class model 

parameters vary. The following parameters are varied: 

 

- The class conditional probabilities (): 

o  from the real data. 

o Modified  (i.e., Probabilities of 0.2 to score 1 (‘yes’) on all NCDs for the Low 

Risk class, probabilities of 0.8 to score 1 (‘yes’) on all NCDs for the High Risk 

class, probabilities of 0.8 to score 1 (‘yes’) on the first four NCDs and 
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probabilities of 0.2 to score 1 (‘yes’) on the last four NCDs for the Medium 

Risk class). 

- The latent class sizes: 

o Latent class sizes from the real data.  

o Equal latent class sizes, each class containing 1/3 of the subjects. 

- The sample size (n): 

o n = 300. 

o n = 1000. 

 

Also in this simulation, four large population data sets are generated (N = 500,000), 

one for each unique combination of conditions of  and the latent class sizes. From each of 

the population data sets, 100 random samples are drawn of size n = 300 and 100 random 

samples are drawn of size n = 1000. Hence, there are eight unique combinations of 

conditions. 

As was clear from Figure 2, most of the items are not well discriminated between the 

classes, resulting in a low entropy. Therefore it was decided add a condition to pull the lines 

further away from each other. By using modified conditional class probabilities as described 

above (modified ), the classes become highly discriminating, resulting in a substantially 

higher entropy. It will be evaluated what the effect will be of modifying  on the prediction 

accuracy of MELODIC and LCA, in terms of RMSE. 

In general, latent class models with equal class proportions also have a higher entropy, 

in contrast to latent class models with unequal class proportions (Nylund et al., 2007; 

Gudicha, 2015). Therefore it was chosen to add the condition in which there are equal class 

sizes. It will be evaluated what the effect of this condition is on the prediction accuracy of 

LCA and MELODIC, in terms of RMSE.  

Similar to the first simulation, it was chosen to draw samples with sample size n = 300 

and n = 1000. It has been suggested that the minimal sample size for performing LCA is n = 

500 (cf. Finch & Bronk, 2011), for obtaining accurate estimates. However, since sample sizes 

n = 300 and n = 1000 were used in Simulation 1, and due to the exploratory nature of the 

study, it was decided to use these sample sizes. It is expected that the prediction accuracy in 

terms of RMSE is higher when using a sample size of n = 1000, compared to using a sample 

of size n = 300. 
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4.3 Hypotheses  

 

Two simulation studies were illustrated. One in which population data are generated 

with MELODIC parameters and one in which population data are generated with LCA 

parameters.  

In both the simulations, two sets of model parameters are varied to create four 

population data sets. The predictor-response variable relationships are estimated in the 

population, and consequently, 100 random samples of size n = 300 and 100 random samples 

of size n = 1000 are drawn from the populations, resulting in data for eight conditions. 

MELODIC and LCA are performed on these samples and the predictor-response variable 

relationships are calculated in the samples. Consequently, the prediction accuracy of both 

methods is determined in terms of RMSE, by comparing the predictor-response variable 

relationships in the populations with the predictor-response variable relationships in the 

samples.  

 It is hypothesized that the prediction accuracy of the method is dependent on the data 

generation method. For example Simulation 1, where population data are generated with 

MELODIC parameters, performing MELODIC on the samples is hypothesized to result in a 

higher prediction accuracy than when LCA is performed on the samples, irrespective of the 

condition. The prediction accuracies of MELODIC and LCA are hypothesized to be higher, in 

terms of RMSE, when analyzing samples of size n = 1000, compared to analyzing samples of 

size n = 300. 

 With respect to the method specific parameters (i.e., K and L), modifications of these 

parameters from the real SHARE data have been chosen to evaluate what their effects will be 

on the prediction accuracy of both MELODIC and LCA. It might be interesting to get a grasp 

of how these changes affect the RMSEs for both methods. Due to the exploratory nature of 

the study, no hypothesis is specified, concerning their effect.   

 For the second simulation in which population data sets are generated with LCA 

parameters, the hypotheses are the exact opposite of the hypotheses described above, since in 

this simulation, LCA is expected to outperform MELODIC in terms of RMSE. Recall, in 

Simulation 2, the method specific parameters are  and the latent class sizes, instead of K and 

L. 
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4.4 Statistical analysis 

 

To test the hypotheses, for both simulations a Mixed model Analysis of Variance 

(ANOVA) will be conducted to evaluate the influence of the method (i.e., MELODIC or 

LCA), the parameters and predictor and response variables on the RMSEs that are collected 

after doing the simulation studies. The mixed ANOVA concerns a 2x2x2x2x3x8 design. For 

Simulation 1, the factors are (respectively): 

 

- Method: MELODIC and LCA, 

- n: 1) 300, 2) 1000, 

- K: 1) K from the real data, 2) K from the real data, Dimension 2 multiplied by 2, 

- L: 1) L from the real data, 2) L from the real data divided by 3, 

- X: 1) Gender, 2) Age, 3) SRH, 

- Y: 1) Diabetes, 2) Hypertension, 3) Asthma, 4) Chronic Lung Disease, 5) Joint 

Disorders, 6) Angina, 7) Stroke, 8) Depression. 

 

For Simulation 2, the same factors are used, except for K and L. Instead,  ( from the 

real data and modified ) and Latent class sizes (unequal and equal), respectively, are used.  

Importantly, the levels of all these factors denote the involvement of a condition, rather than 

the actual values of that condition (e.g., the RMSEs for which X = 2 are all the RMSEs in 

which Age was involved as predictor variable to estimate the predictor-response variable 

relationships. It is solely a level of the factor X). Therefore, to avoid confusion, when 

referring to output of the simulations and factors in the Mixed ANOVA, the no-bold cursive 

notation K, L, X, Y and  will be used.  

The design is a mixed design, since it consists of one within-subjects factor variable 

(i.e., Method), and between-subjects factors (i.e., the other factors). Method is a within-

subjects factor, since both MELODIC and LCA were performed on each sample that was 

drawn from a population. The main interest of these analyses is to evaluate the effects of the 

between-subjects factors, as specified above, and their interaction with the within-subjects 

factor Method on the RMSEs. The effects will be evaluated using the p-values and the 

generalized eta squared (𝜂𝐺
2 ; Olejnik & Algina, 2003). Generalized eta squared is a measure of 

effect size that is commonly used for Repeated Measures and Mixed ANOVAs. These effect 

sizes of factors can be compared more easily between different research designs, irrespective 
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of the factor being a within-subjects or a between-subjects factor (Bakeman, 2005). The 

magnitude of an effect for eta squared (𝜂2), as suggested by Cohen (1988) are assumed to 

represent the same magnitude as the generalized eta squared, i.e., small effect: 𝜂2 =  𝜂𝐺
2  = 

0.010, medium effect: 𝜂2 =  𝜂𝐺
2  = 0.060, and large effect: 𝜂2 =  𝜂𝐺

2  = 0.140 (Olejnik, Algina, 

2003). 

Since it is aimed to compare the prediction accuracy of MELODIC and LCA, it is 

interesting to evaluate whether the performance of both methods depend on the different 

levels of the factors.  

 

The simulations and mixed model ANOVAs were performed using R version 4.1.0 (R 

Core Team, 2021). Code developed by De Rooij and Groenen (2021) was obtained and used 

to perform the MELODIC analyses in R. The poLCA package (Linzer & Lewis, 2011) in R 

was used to perform the LCAs and the stats package in R was used to perform the Mixed 

model ANOVAs (R Core Team, 2021). 

 

 

5 Results 

 

 In the next subsections, the results of the simulations and the Mixed ANOVAs will be 

discussed. 

 

5.1 Results Simulation 1  

 

 In the first simulation, RMSEs for predictor-response variable relationships, in varying 

conditions are calculated, after performing MELODIC with two dimensions and LCA with 

three classes on samples from populations that were created with MELODIC parameters.  

First, it can be concluded that, averaged over all conditions, MELODIC has a lower 

mean RMSE (M = 0.027, SD = 0.011), compared to LCA (M = 0.057, SD = 0.032), indicating 

that irrespective of condition, MELODIC has a higher prediction accuracy. In Table 8 the 

RMSEs per method per unique combination of parameters are presented, averaged over the 

predictors and the response variables. A more detailed overview of the RMSEs per method 



 33 

per unique combination of parameters per predictor per response variable is provided in 

Appendix A. 

 

Table 8 

Averaged RMSEs per method for each combination of varying parameters 

      MELODIC LCA 

n=300, K=K, L=L. 0.032 0.047 

n=1000, K=K, L=L. 0.017 0.030 

n=300, K=Kdim2*2, L=L. 0.029 0.059 

n=1000, K=Kdim2*2, L=L. 0.015 0.034 

n=300, K=K, L=L/3. 0.039 0.078 

n=1000, K=K, L=L/3. 0.022 0.049 

n=300, K=Kdim2*2, L=L/3. 0.040 0.099 

n=1000, K=Kdim2*2, L=L/3. 0.022 0.059 

 

In accordance with the first conclusion, MELODIC has a higher prediction accuracy 

when compared with LCA, for all combinations of parameters. When using a sample size of n 

= 300, both MELODIC and LCA scored substantially higher average RMSEs, when 

compared to using n = 1000. In the conditions where the second dimension of K is multiplied 

by two, the difference between the RMSEs of MELODIC and LCA is larger than when K 

from the real data were used. The same can be observed with respect to L. This indicates that 

changing MELODIC parameters in the population makes the contrast between prediction 

accuracy of MELODIC and LCA larger, in favor of the MELODIC analysis. 

 From these first observations, it becomes clear that the different conditions of factors 

have a different effect on the RMSEs for MELODIC than for LCA, suggesting an interaction 

effect of the factor and method on the RMSEs.  

 The results of the Mixed ANOVA indicate that there is a large significant main effect 

of Method on RMSE. The RMSEs of the MELODIC analyses are significantly lower (M = 

0.027, SD = 0.011) than the RMSEs of the LCA (M = 0.057, SD = 0.032; F(1,179) = 1299.66, 

p < 0.001, 𝜂𝐺
2  = 0.700).  

 Before discussing the interaction statistics, the RMSE means and SDs for each 

combination of the two Method levels and the levels from the between-subjects factors are 

presented in Table 9. 
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Table 9 

Means and SDs of RMSEs for the interaction groups 

Factor Factor level MELODIC LCA 

  M SD M SD 

n 300 0.035 0.009 0.071 0.034 

 1000 0.019 0.005 0.043 0.022 

K K  0.028 0.010 0.051 0.026 

 Kdim2*2 0.026 0.011 0.063 0.036 

L L 0.023 0.010 0.043 0.028 

 L/3 0.031 0.009 0.071 0.028 

X Gender 0.026 0.010 0.050 0.026 

 Age 0.027 0.011 0.059 0.034 

 SRH 0.028 0.010 0.063 0.034 

Y Diabetes 0.026 0.010 0.044 0.020 

 Hypertension 0.030 0.009 0.058 0.017 

 Asthma 0.022 0.009 0.033 0.021 

 CLD 0.023 0.011 0.041 0.026 

 JD 0.029 0.009 0.074 0.028 

 Angina 0.029 0.009 0.072 0.029 

 Stroke 0.022 0.010 0.043 0.030 

  Depression 0.035 0.012 0.091 0.031 

 

A first look at Table 9 (being a reformulated extension of Table 8), indicates that, 

again, MELODIC outperforms LCA, in terms of RMSE, in each condition. Using n = 1000 

leads to lower RMSEs than n = 300 in both MELODIC and LCA conditions. The second K 

condition in which the second dimension of K is multiplied by 2, yield more or less the same 

RMSEs for MELODIC and higher RMSEs for LCA, compared to using K from the real data. 

When the condition of L divided by 3 is used, an increase of RMSE is observed for both 

MELODIC and LCA, compared to using L from the real data.  
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There was a significant interaction effect, with a medium to large effect size, of factor 

n and Method on RMSE (F(1,179) = 52.53, p < 0.001, 𝜂𝐺
2  = 0.086). The interaction is 

displayed in Figure 3. 

 

Figure 3 

Mean RMSEs per group in the Method and n interaction 

  

 

From the figure it is clear that MELODIC outperforms LCA, in terms of RMSE, in 

each level of n. Also, it can be observed that the magnitude of the RMSE differences between 

MELODIC and LCA is larger for sample size n = 300 than for n = 1000. A sample size of n = 

1000 is an improvement for both MELODIC and LCA over a sample size of n = 300. 
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Also, there was a significant interaction effect, with a medium to large effect size, of 

factor K and Method on RMSE (F(1,179) = 61.45, p < 0.001, 𝜂𝐺
2  = 0.100). The interaction is 

displayed in Figure 4. 

 

Figure 4 

Mean RMSEs per group in the Method and K interaction 

 

 

From this Figure it is clear that, also here, MELODIC outperforms LCA in terms of 

RMSE. The difference between the RMSEs of MELODIC and LCA are larger in the 

condition where the second dimension of K is multiplied by 2, compared to the real data K 

condition. Whereas MELODIC RMSEs seem to be stable over the two K conditions, the 

prediction accuracy of LCA deteriorates in the second K condition. 
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A significant interaction effect, with a large effect size, of factor L and Method on 

RMSE was observed (F(1,179) = 160.76, p < 0.001, 𝜂𝐺
2  = 0.224). The interaction effect is 

displayed in Figure 5.  

 

Figure 5 

Mean RMSEs per group in the Method and L interaction 

 

 

What can be observed from this Figure, is that it is clear that MELODIC outperforms 

LCA in terms of RMSE. The difference between the RMSEs of MELODIC and LCA are 

larger in the condition where L is divided by 3, and the RMSEs of both MELODIC and LCA 

are higher in the second L condition in contrast to the L = L condition, although the increase is 

larger for LCA than for MELODIC 
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For the factor X and Method, a significant interaction effect, with a medium effect 

size, was observed (F(2,179) = 15.86, p < 0.001, 𝜂𝐺
2  = 0.054). Figure 6 provides a graphical 

display of the interaction. 

 

Figure 6 

Mean RMSEs per group in the Method and X interaction 

 

 

It can be observed that the differences between mean RMSEs for MELODIC and LCA 

are relatively stable when comparing them for each of the three predictors. Also here, in 

general, MELODIC has a higher prediction accuracy than LCA. The difference seems to be 

smallest between MELODIC and LCA when it concerns Gender. Using one of the three 

levels of X, i.e., Gender, Age and SRH, being respectively, a binary, continuous and ordered 

categorical variable, does not seem to yield differences in RMSE, when analyzing with 

MELODIC. When analyzing with LCA, Gender has a slight advantage over Age and SRH in 

terms of RMSE. 
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Lastly, a significant interaction effect of factor Y and Method on RMSE, with a high 

effect size, was found (F(7,179) = 46.44, p < 0.001, 𝜂𝐺
2  = 0.369), for which the visualization is 

provided in Figure 7. 

 

Figure 7 

Mean RMSEs per group in the Method and Y interaction 

 

 

Also for Y, MELODIC outperforms LCA in terms of RMSE, irrespective of the 

response variable that was involved in calculating the predictor-response variable 

relationships. The magnitude of the RMSE differences between MELODIC and LCA differ 

between the levels of Y, e.g., there is a large RMSE difference for Depression, whereas there 

is a relatively small difference for Asthma. Although the RMSEs are more or less stable over 

the levels of Y for MELODIC, they a more different for LCA. Interestingly, the highest LCA 

RMSEs are for the levels Hypertension, Joint Disorders, Angina and Depression, which are 

the most frequent NCDs in the real data.  

 

To summarize, there was a large main effect of Method (𝜂𝐺
2  = 0.700), a medium to 

large interaction effect of factor n and Method (𝜂𝐺
2  = 0.086), a medium to large interaction 

effect of factor K and Method (𝜂𝐺
2  = 0.100), a large interaction effect of factor L and Method 

(𝜂𝐺
2  = 0.224), a medium interaction effect of factor X and Method (𝜂𝐺

2  = 0.054) and a high 

interaction effect of factor Y and Method (𝜂𝐺
2  = 0.369) on RMSE. For all these effects, 

RMSEs resulting from MELODIC analyses are lower than RMSEs resulting from LCA 
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analyses, indicating that has MELODIC has a higher prediction accuracy than LCA in this 

simulation.  

A larger sample size is beneficial for both MELODIC and LCA and the RMSE 

differences between MELODIC and LCA are smaller in larger sample size conditions. With 

respect to the MELODIC specific factors, i.e., K and L, the RMSEs resulting from the 

MELODIC analyses remain stable over the different levels of these factors, whereas the 

RMSEs resulting from the LCA analyses become larger in the modified levels of these 

factors.  

No substantial differences in MELODIC RMSEs were found for the different levels of 

X and Y, whereas the binary Gender variable was outperforming Age and SRH, for LCA, and 

infrequent NCDs outperformed the frequent NCDs in terms of RMSE, for LCA.  

 

5.2 Results Simulation 2 

 

 As for the second simulation study, RMSEs for predictor-response variable 

relationships in varying conditions were calculated, after performing MELODIC with two 

dimensions and LCA with three classes on samples from populations that are created with 

LCA parameters.  

First, averaging over all conditions, it is observed that the RMSEs of LCA are 

substantially lower (M = 0.037, SD = 0.022) than the RMSEs of MELODIC (M = 0.060, SD = 

0.033), indicating that, in general, LCA outperforms MELODIC in terms of RMSE, and 

therefore has a higher prediction accuracy. In Table 10 the RMSEs per method per unique 

combination of varying parameters are presented, averaged over the predictors and the 

response variables. A more detailed overview of the RMSEs per method per unique 

combination of parameters per predictor per response variable is provided in Appendix B. 
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Table 10 

Averaged RMSEs per method for each combination of varying parameters 

      MELODIC LCA 

n=300, π=π, uneq.class. 0.032 0.034 

n=1000, π=π, uneq.class. 0.020 0.016 

n=300, π=πmod, uneq.class. 0.056 0.043 

n=1000, π=πmod, uneq.class. 0.045 0.024 

n=300, π=π, eq.class. 0.043 0.042 

n=1000, π=π, eq.class. 0.035 0.028 

n=300, π=πmod, eq.class. 0.111 0.076 

n=1000, π=πmod, eq.class. 0.106 0.067 

 

From Table 10 it becomes clear that in Simulation 2, in contrast to Simulation 1, LCA 

has lower RMSEs than MELODIC in all unique combinations of varying parameters, except 

for the first row of the table, where the mean RMSE for MELODIC is slightly smaller than 

the mean RMSE for LCA. Also, it can be noted that in the first row of Table 10, the RMSEs 

do not differ that extensively. Conditions in which a sample size of n = 1000 is used, resulted 

in lower RMSEs for both MELODIC and LCA, compared with conditions in which a sample 

size of n = 300 is used. The magnitude of the difference between MELODIC and LCA is 

larger when using n = 1000. When using modified π, the magnitude of the difference between 

MELODIC and LCA becomes larger in favor of LCA. Finally, with respect to class sizes, in 

all conditions in which unequal and equal class sizes are used, LCA scores better than 

MELODIC in terms of RMSE, and the difference in RMSE becomes larger when class sizes 

are equal.  

Also in Simulation 2, a Mixed ANOVA is performed on the RMSEs. From the results 

it becomes clear that, when averaging over all other conditions, LCA (M = 0.037, SD = 0.022) 

outperforms MELODIC (M = 0.060, SD = 0.033) in terms of RMSE (F(1,197) = 1119.40, p < 

0.001, 𝜂𝐺
2  = 0.328), indicating that LCA in general has a higher prediction accuracy in 

contrast to MELODIC, in this second simulation.  

Before evaluating the interaction effect results, the RMSE means and SDs for each 

combination of the two Method levels and the levels from the between-subjects factors are 

presented in Table 11. 
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Table 11 

Means and SDs of RMSEs for the interaction groups 

Factor Factor level MELODIC LCA 

  M SD M SD 

n 300 0.064 0.032 0.046 0.020 

 1000 0.055 0.034 0.029 0.020 

π π 0.037 0.019 0.030 0.018 

 modified π 0.082 0.029 0.045 0.022 

class size unequal 0.045 0.020 0.029 0.014 

 equal 0.074 0.038 0.045 0.025 

X Gender 0.056 0.035 0.041 0.027 

 Age 0.067 0.036 0.037 0.020 

 SRH 0.056 0.027 0.034 0.017 

Y Diabetes 0.060 0.040 0.041 0.025 

 Hypertension 0.070 0.033 0.051 0.022 

 Asthma 0.055 0.044 0.035 0.028 

 CLD 0.056 0.044 0.036 0.029 

 JD 0.060 0.023 0.036 0.012 

 Angina 0.058 0.023 0.035 0.012 

 Stroke 0.048 0.031 0.024 0.013 

  Depression 0.071 0.014 0.041 0.016 

 

 Also from Table 11, it can be noted that in all conditions, LCA has a better 

performance than MELODIC. As in Simulation 1, using the n = 1000 condition yield lower 

RMSEs for both MELODIC and LCA in contrast to using the n = 300 condition. In the 

modified π condition, RMSEs are higher for both MELODIC and LCA, in contrast to the π 

from the real data condition. The MELODIC and LCA RMSEs for equal class sizes are higher 

than for unequal class sizes. 
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There was a significant interaction effect, with small effect size, of factor n and 

Method on RMSE (F(1,179) = 35.52, p < 0.001, 𝜂𝐺
2  = 0.015). The interaction is presented in 

Figure 8. 

 

Figure 8 

Mean RMSEs per group in the Method and n interaction 

  

 

From Figure 8, it can be observed that LCA outperforms MELODIC for each 

condition of n. The difference between RMSEs is larger for the n = 1000 condition, and for 

both MELODIC and LCA, using n = 1000 is an improvement over using n = 300.  
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There also was a significant interaction effect of factor π and Method, with a large 

effect size, on RMSE (F(1,179) = 502.54, p < 0.001, 𝜂𝐺
2  = 0.180). The interaction effect is 

visualized in Figure 9. 

 

Figure 9 

Mean RMSEs per group in the Method and π interaction 

 

 

It seems that when using π from the population, the difference in RMSE between 

MELODIC and LCA is not large, whereas it is larger when using the modified π condition. 

The π from the real data condition results in lower RMSE, compared to the modified π 

condition, for both MELODIC and LCA In general, also here, LCA outperforms MELODIC 

in both conditions. 
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There was a significant interaction effect, with small to medium effect size, of the 

class size factor and Method on RMSE (F(1,179) = 87.46, p < 0.001, 𝜂𝐺
2  = 0.037). This is in 

line with what was observed from Table 10 and 11. This is illustrated in Figure 10. 

 

Figure 10 

Mean RMSEs per group in the Method and class size interaction 

 

 

As can be observed from Figure 10, the MELODIC and LCA RMSE differences are 

larger when there were equal class sizes in the populations. RMSEs in the equal class sizes 

condition are higher for both MELODIC and LCA, compared to the RMSEs in the unequal 

class condition from the real data. Overall, it can be observed that also for the class size 

factor, LCA outperforms MELODIC in terms of RMSE. 
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A significant interaction effect of factor X and Method, with small to medium effect 

size, on RMSE, was found (F(2,179) = 39.83, p < 0.001, 𝜂𝐺
2  = 0.034), which is visualized in 

Figure 11. 

 

Figure 11 

Mean RMSEs per group in the Method and X interaction 

 

 

The MELODIC and LCA RMSE differences are larger for Age, than for Gender and 

SRH. Whereas the mean MELODIC RMSE is the largest for the Age level, the LCA RMSE is 

largest for Gender. In general, also for X, it can be concluded that using LCA results in lower 

RMSEs than using MELODIC analyses, in this simulation. 
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Finally, there was a significant interaction effect, with a small effect size, of factor Y 

and Method on RMSE (F(7,179) = 3.61, p = 0.001, 𝜂𝐺
2  = 0.011), indicating that the 

differences in RMSE between MELODIC and LCA differed for the various levels of Y. A 

visualization is provided in Figure 12. 

 

Figure 12 

Mean RMSEs per group in the Method and Y non-interaction 

 

 

From Figure 11, it is clear that the lines nearly have the same shape and the 

differences between RMSEs for MELODIC and LCA are more or less the same for each level 

of factor Y. However, the mean MELODIC and LCA RMSE differences are slightly larger for 

the last four NCDs than for the first four NCDs. LCA outperformed MELODIC in terms of 

RMSE for all conditions of Y. 

 

To summarize, there was a large main effect of Method (𝜂𝐺
2  = 0.328), a small 

interaction effect of factor n and Method (𝜂𝐺
2  = 0.015), a large interaction effect of factor π 

and Method (𝜂𝐺
2  = 0.180), a small to medium interaction effect of the class size factor and 

Method (𝜂𝐺
2  = 0.037), a small to medium interaction effect of factor X and Method (𝜂𝐺

2  = 

0.036) and a small significant interaction effect of factor Y and Method (𝜂𝐺
2  = 0.011) on 

RMSE. For all these interaction effects, RMSEs resulting from LCA analyses are lower than 

RMSEs resulting from MELODIC analyses, indicating that LCA has a higher prediction 

accuracy than MELODIC in this simulation.  
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A larger sample size is beneficial for both MELODIC and LCA and the RMSE 

differences between MELODIC and LCA are larger in larger sample sizes conditions. When 

evaluating the effect of the LCA specific factors, i.e., π and class size, the prediction accuracy 

of both MELODIC and LCA, in terms of RMSE, deteriorated when modified levels of the 

factors (i.e., modified π and equal class size) were used. In the modified π condition, the 

differences in MELODIC and LCA RMSEs were larger than in the π from the real data 

condition, indicating that the prediction accuracy of MELODIC deteriorated to a higher extent 

than the prediction accuracy of LCA, when using the modified π condition. For the class sizes 

factor, the same effect was observed; mean MELODIC and LCA RMSE differences were 

larger when equal classes were used. 

For factor X, the largest mean MELODIC and LCA RMSE difference was found when 

Age was involved in estimating the predictor-response variable relationships. The mean 

MELODIC and LCA RMSEs for the levels of factor Y, all follow more or less the same 

pattern. The RMSE differences between MELODIC and LCA are more or less the same for 

each level of Y. Here, the mean MELODIC and LCA RMSE differences seem to be slightly 

larger for the last four NCDs. 

 

Since it was observed in both Simulation 1 and Simulation 2 that higher RMSEs seem 

to correspond with more frequent NCDs, the proportions “no” and “yes” on the NCDs for 

each generated population data set for each simulation are provided in Table 12. 

 

Table 12 

Frequency of NCDs per simulation, per generated population data set  

    proportion “no” proportion “yes” 

MELODIC    

K=K, L=L. 0.847 0.153 

K=Kdim2*2, L=L. 0.857 0.143 

K=K, L=L/3. 0.655 0.345 

K=Kdim2*2, L=L/3. 0.661 0.339 

LCA    

π=π, uneq.class. 0.846 0.154 

π=πmod, uneq.class. 0.575 0.425 

π=π, eq.class. 0.826 0.174 

π=πmod, eq.class. 0.500 0.500 
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As can be observed from Table 12, the frequency of NCDs is (more or less) the same for 

MELODIC and LCA when population is generated with the parameters from the SHARE data 

(i.e., K=K, L=L for MELODIC and π=π, uneq.class. for LCA). It is clear from Table 12 that 

the proportions “yes” all become larger when population data are generated with modified 

sets of parameters, except for the conditions in which the second dimension of K is multiplied 

by 2 in Simulation 1.  

 

 

6 Discussion 

 

 In this study, two simulation studies were performed to evaluate the prediction 

accuracy of MELODIC and LCA. The first and main conclusion to draw, is that the results 

indicate that the accuracy of both methods is highly dependent on the data generation method. 

That is, MELODIC has a higher prediction accuracy when data are generated with MELODIC 

parameters whereas LCA has a higher prediction accuracy when data are generated with LCA 

parameters. In addition, the prediction accuracy difference of MELODIC and LCA in 

Simulation 1 was larger than in Simulation 2, indicating that MELODIC has a better 

performance in populations generated with LCA parameters, than LCA has in populations 

generated with MELODIC data. 

The results indicate for MELODIC and confirm for LCA, that larger sample sizes (n = 

1000) improve the prediction accuracy when compared to smaller sample sizes (n = 300). It 

was not surprising for LCA that the n = 1000 condition resulted in more accurate estimates, 

since it is suggested that a minimal sample of n = 500 is required for accurate LCA estimates. 

However, from Table 8 and 10 it became clear that the mean MELODIC and LCA RMSE 

differences, in all n = 300 conditions, were substantially larger in Simulation 1 than in 

Simulation 2. MELODIC even outperformed LCA in one of the n = 300 conditions, when 

data were generated with LCA parameters. This indicates that when data were generated with 

MELODIC parameters, the prediction accuracy of MELODIC was less affected by the small 

sample sizes than the prediction accuracy of LCA, when data generated with LCA 

parameters. It can be observed from Figure 3 and 8 that irrespective of data generation 

method, the difference in LCA RMSEs between the two n conditions is larger than the 

difference in MELODIC RMSEs between the two n conditions. MELODIC has shown to be 

relatively effective in analyzing n = 300 sample sizes. 
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 As is clear from the results, changing MELODIC specific parameters (i.e., the 

discriminatory power of the response variables and the midpoint locations of the response 

variable categories) for data generation, resulted in a stronger difference in prediction 

accuracy between MELODIC and LCA. When not changing these parameters, the prediction 

accuracies of both methods were relatively more similar (although still significantly 

different). The prediction accuracy of MELODIC remained more or less unchanged between 

the K conditions, whereas the prediction accuracy of MELODIC deteriorated when using the 

modified L condition. Per definition the prediction accuracy of LCA deteriorated for both the 

modified method specific parameters. 

In Simulation 2, using the modified method specific parameters for LCA (i.e., class 

conditional response probabilities and class sizes) also resulted in a stronger difference in 

prediction accuracy between MELODIC and LCA. Also here, when not changing these 

parameters, the prediction accuracies of both methods were relatively more similar (although 

still significantly different). Here, using the modified method specific parameters, both 

deteriorated the prediction accuracy of LCA. 

With respect to the predictors involved in estimating the predictor-response variable 

relationships, three variables were used, all three from another class. Gender is a binary, Age 

is continuous and SRH is categorically ordered. The results indicate that when Gender was 

involved, the MELODIC and LCA RMSE differences were smallest in both simulations. It 

appears that a binary variable is least dependent on the data generation method, when 

evaluating prediction accuracy. However, this also might be due to the behavior of this 

variable in this specific data set.  

For the individual NCDs, the largest MELODIC and LCA RMSE differences were 

found for Hypertension, Joint Disorders, Angina and Depression, in Simulation 1. In general, 

these NCDs happen to be the most prevalent NCDs in the populations, in Simulation 1. Also, 

for Simulation 2, the largest differences were found for the Joint Disorders, Angina, Stroke 

and Depression. Also here, these NCDs happen to be, in general, the most frequent NCDs in 

the populations of Simulation 2. In the real data, Hypertension, Joint Disorders, Angina and 

Depression are the most prevalent NCDs. When calculating RMSEs for MELODIC and LCA 

in conditions where method specific parameters are not modified, RMSEs were highest for 

these NCDs, for both methods, in both Simulation 1 and 2. The infrequent NCDs all had 

lower RMSEs. It appears that predictor-response variable relationships in the samples for 

frequent NCDs are estimated less accurate than predictor-response variable relationships in 

for the infrequent NCDs, hence higher RMSEs for the frequent NCDs.  
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This is an interesting finding that can be extrapolated to the rest of the results. As 

described earlier, it was clear that the MELODIC and LCA RMSE differences were larger 

when population data were generated with modified method specific parameters, in both 

Simulation 1 and Simulation 2. However, not only do these RMSE differences become larger, 

the absolute RMSE values also become larger when data are generated with modified method 

specific parameters. Implications of modifying method specific parameters for data 

generation, is that the NCDs will become more frequent, which was shown in Table 12. 

For example in Simulation 2, when modifying the class conditional response 

probabilities, the NCDs are more prevalent in the populations that were generated with these 

modified class conditional response probabilities. Class conditional probabilities in the real 

data were relatively low in general, as can be recalled from Figure 2, where there was only 

one NCD in one class that had a probability higher than 0.5 of suffering from it. In the 

modified class conditional response probabilities condition, probabilities of 0.8 were 

introduced, resulting in a population with more frequent NCDs than in the real SHARE data.  

The same was observed for the equal latent class sizes condition. In the real SHARE 

data, there was one large latent class, consisting of subjects with relatively low probabilities 

of suffering from each NCD. Generating equally sized latent classes implies that the 

proportion of subjects from the other classes (in which NCDs are more frequent) is larger, at 

the cost of the proportion of subjects from the class in which the NCDs are relatively 

infrequent. Therefore, when modifying latent class to sizes to be equal, higher probabilities of 

suffering from them are introduced.  

Also, in Simulation 1, the midpoint locations of the response variable categories in the 

real SHARE data were all located to the right-side of the subject mean (Figure 1), with all the 

‘yes’ categories being at the right-hand of the midpoints and the ‘no’ categories being at the 

left-hand of the midpoints. In general, the probabilities of suffering from an NCD were 

relatively low. By modifying the midpoint locations by dividing them by three, the 

probabilities of suffering from the NCDs become larger, and all NCDs were more frequent in 

these populations.  

In contrast to these findings, in Simulation 1, when the discriminatory power of the 

response variables was multiplied by two for the second dimension, analyzing samples with 

MELODIC did not result in higher MELODIC RMSEs (Figure 4). This is the only 

modification of method specific parameters in which the frequency of NCDs did not become 

larger, in comparison with the real SHARE data.  
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These findings provide an explanation why the prediction accuracy of MELODIC 

hardly differed between the two K conditions, whereas it differed between the two L 

conditions, in Simulation 1. It also explains why the prediction accuracy of LCA differed 

between the two conditions of both the method specific parameters of LCA. More frequent 

NCDs lead to higher RMSEs for the method with which population data were generated (i.e., 

MELODIC in Simulation 1 and LCA in Simulation 2). The prediction accuracy of LCA was 

lower than the prediction accuracy of MELODIC in Simulation 1, and the prediction accuracy 

of  MELODIC was lower than the prediction accuracy of LCA in Simulation 2. When using 

the modified method specific parameters, the magnitude of the MELODIC and LCA RMSE 

difference became larger.  

In conclusion, the prediction accuracy of MELODIC is higher when data are generated 

with MELODIC parameters, whereas the prediction accuracy of LCA is higher when data are 

generated with LCA parameters. The prediction accuracy of the method is therefore highly 

dependent on the data generation method. MELODIC is more accurate in populations 

generated with LCA parameters, than LCA is in populations generated with MELODIC 

parameters. For both MELODIC and LCA, analyzing samples with a higher sample size is 

beneficial for the prediction accuracy, although it has shown that MELODIC is more accurate 

when analyzing samples of size n = 300 than LCA. When NCDs are more frequent, it will 

lead to lower prediction accuracy. In the modified method specific parameter conditions 

(except for the discriminatory power of the response variables, Dimension 2 multiplied by 2), 

more frequent NCDs are introduced in the population, resulting in higher RMSEs. This is the 

case for the method with which the populations were generated, and even more for the 

method with which the data were not generated. Hence, higher MELODIC and LCA RMSE 

differences are found in data with frequent NCDs than in data with infrequent NCDs. 

With respect to NCD and multimorbidity analysis, it can be concluded that LCA is the 

most appropriate analysis to analyze the data, when there is reason to believe that there are 

underlying subgroups. If there are underlying subgroups, MELODIC will fail to be as 

accurate as LCA, as was shown by the results of the simulation studies. If no underlying 

subgroups are presumed, it is suggested that MELODIC is a more accurate method to analyze 

the data.  

This study is an exploratory study to assess the prediction accuracy of MELODIC and 

LCA, when applied to NCD data. Since MELODIC has been developed recently, the 

prediction accuracy has not been assessed a lot in the past. Therefore this study gives more 

insight in the performance of MELODIC.  
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There were some limitations of this study. For LCA, the one-step approach was used. 

Although this method is very effective, one of its limitations is that, when changing, adding or 

excluding predictor variables from the model, the model needs to be re-estimated in total, 

which may change the latent classes and the interpretation of the latent classes (Bolck et al., 

2004). In this study, three predictors were chosen from a large set of available predictors. 

Choosing other predictors, might would have led to other latent classes. There are alternatives 

in which changes on the predictor side do not change the latent classes and the entire model 

does not have to be re-estimated (e.g., the two-step approach (Bakk & Kuha, 2017) and three-

step approaches (Vermunt, 2010)). However, due to the availability of performing the one-

step approach LCA in RStudio, it was decided to proceed with the one-step approach. In the 

future, LATENT GOLD computer software (Vermunt & Magidson, 2005) could be used to 

do a similar study as this study. Instead of using the one-step approach LCA, alternatives 

could be used that are available for Latent GOLD.  

Also, on every sample that was drawn from the populations, always MELODIC with 

two dimensions and LCA with three classes was performed. It could have been the case that 

in some of the samples it did not make sense to perform, for example, an LCA with three 

classes. In some of the drawn samples, it could have been so that a two- or four-class solution 

was more optimal. 

Another limitation is the number of chosen predictors in the study. The SHARE data 

has a very wide range of variables to be used for analysis. However, for computational 

considerations, it was decided to use only three predictors, each being of a different type (i.e., 

binary, continuous and categorically ordered). Including more variables in the analyses would 

have resulted in more estimated predictor-response variable relationships, and conclusions 

could be drawn about the accuracy of the different predictor types. In this study there was 

only one predictor per type, and therefore, it is difficult to make generalizations of the 

behavior of the different class types. 

All subjects with missing data in Wave 1 from the SHARE data were excluded from 

analysis. The data that was used is therefore not completely representative for all data that 

was collected in Wave 1.  

Lastly, and importantly, to evaluate the accuracy of the methods, conditional NCD 

probabilities in the populations were compared with conditional NCD probabilities in the 

samples. Using (17) the RMSEs were calculated. However, as stated earlier, modifying the 

parameters lead in the most instances to data sets with more frequent NCDs. In addition, it 

was concluded that higher RMSEs were estimated for the more frequent NCDs. It is 
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obviously desired to evaluate the accuracy of a method irrespective of the frequencies of the 

response variables. Therefore, the use of RMSE as an prediction accuracy measure should be 

reconsidered for the conditional probabilities as calculated in this study. One possibility could 

be to use the cross-entropy loss function, which is the RMSE alternative for classification. 

However, to use such a function, actual values are presumed to be classification values (e.g., 0 

or 1), whereas predicted values are (conditional probabilities). However, in this study, the 

actual values and the predicted values are both conditional probabilities and therefore the 

cross-entropy function would not be a suitable option eventually. It might be more insightful 

to calculate RMSEs on the log-odds scale. That is, there is a linear relationship between log-

odds ratio in favor of suffering from an NCD, and the predictor variables. Comparing the log-

odds ratio in the populations with the log-odds ratio in the samples would, consequently, be 

less influenced by frequency of the NCDs. In further research, it should be demonstrated 

whether comparing log-odds, instead of probabilities, would be more suitable evaluation 

procedure, in terms of RMSE, with respect to the NCD frequency issue.  
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Appendix A 

Simulation 1 RMSEs 

 

Table A1 

Simulation 1 RMSEs for each simulation condition for each predictor for each response 

variable, when analyzed with MELODIC 

    Dbts Hyp Asth CLD JD Ang Str Dpr 

n=300, Gender 0.028 0.037 0.025 0.024 0.033 0.031 0.023 0.041 

K=K, Age 0.027 0.037 0.025 0.024 0.034 0.033 0.023 0.050 

L=L. SRH 0.032 0.040 0.029 0.029 0.036 0.037 0.028 0.042 

n=1000, Gender 0.015 0.021 0.013 0.013 0.018 0.016 0.013 0.021 

K=K, Age 0.015 0.020 0.013 0.013 0.019 0.018 0.013 0.024 

L=L. SRH 0.018 0.024 0.015 0.016 0.019 0.020 0.015 0.024 

n=300, Gender 0.023 0.041 0.018 0.015 0.031 0.030 0.012 0.043 

K=Kdim2*2, Age 0.023 0.039 0.017 0.014 0.034 0.031 0.012 0.052 

L=L. SRH 0.027 0.041 0.023 0.020 0.035 0.036 0.019 0.050 

n=1000, Gender 0.012 0.020 0.009 0.009 0.017 0.016 0.007 0.021 

K=Kdim2*2, Age 0.011 0.020 0.009 0.009 0.020 0.016 0.007 0.025 

L=L. SRH 0.014 0.023 0.011 0.011 0.021 0.018 0.009 0.025 

n=300, Gender 0.039 0.038 0.033 0.040 0.041 0.041 0.038 0.041 

K=K, Age 0.037 0.034 0.032 0.038 0.045 0.043 0.036 0.047 

L=L/3. SRH 0.045 0.037 0.035 0.041 0.039 0.043 0.035 0.046 

n=1000, Gender 0.023 0.021 0.021 0.023 0.024 0.025 0.020 0.023 

K=K, Age 0.021 0.020 0.018 0.021 0.025 0.025 0.020 0.027 

L=L/3. SRH 0.023 0.023 0.020 0.023 0.020 0.024 0.023 0.024 

n=300, Gender 0.039 0.038 0.038 0.040 0.038 0.039 0.037 0.044 

K=Kdim2*2, Age 0.038 0.036 0.035 0.039 0.043 0.039 0.037 0.052 

L=L/3. SRH 0.041 0.039 0.038 0.039 0.038 0.040 0.041 0.047 

n=1000, Gender 0.023 0.023 0.018 0.019 0.024 0.024 0.022 0.021 

K=Kdim2*2, Age 0.022 0.020 0.018 0.018 0.027 0.024 0.021 0.027 

L=L/3. SRH 0.024 0.023 0.023 0.021 0.024 0.024 0.022 0.024 
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Table A2 

Simulation 1 RMSEs for each simulation condition for each predictor for each response 

variable, when analyzed with LCA 

    Dbts Hyp Asth CLD JD Ang Str Dpr 

n=300, Gender 0.036 0.062 0.019 0.019 0.051 0.046 0.017 0.074 

K=K, Age 0.041 0.075 0.020 0.022 0.065 0.059 0.019 0.092 

L=L. SRH 0.043 0.069 0.025 0.030 0.072 0.063 0.025 0.091 

n=1000, Gender 0.020 0.042 0.009 0.012 0.029 0.032 0.009 0.053 

K=K, Age 0.022 0.045 0.012 0.014 0.047 0.034 0.015 0.067 

L=L. SRH 0.025 0.045 0.013 0.016 0.046 0.038 0.016 0.062 

n=300, Gender 0.030 0.062 0.022 0.022 0.057 0.056 0.018 0.081 

K=Kdim2*2, Age 0.039 0.079 0.023 0.027 0.096 0.075 0.023 0.145 

L=L. SRH 0.045 0.079 0.028 0.033 0.109 0.090 0.032 0.153 

n=1000, Gender 0.021 0.042 0.011 0.015 0.037 0.040 0.013 0.045 

K=Kdim2*2, Age 0.021 0.044 0.011 0.015 0.046 0.043 0.014 0.064 

L=L. SRH 0.027 0.051 0.015 0.019 0.060 0.058 0.017 0.078 

n=300, Gender 0.055 0.062 0.054 0.062 0.085 0.101 0.069 0.107 

K=K, Age 0.069 0.069 0.061 0.073 0.094 0.099 0.080 0.102 

L=L/3. SRH 0.073 0.069 0.060 0.073 0.091 0.087 0.073 0.097 

n=1000, Gender 0.033 0.034 0.031 0.037 0.073 0.084 0.044 0.100 

K=K, Age 0.038 0.036 0.031 0.043 0.059 0.065 0.046 0.070 

L=L/3. SRH 0.039 0.041 0.034 0.039 0.058 0.048 0.041 0.062 

n=300, Gender 0.071 0.063 0.055 0.071 0.089 0.105 0.080 0.095 

K=Kdim2*2, Age 0.088 0.086 0.074 0.098 0.134 0.135 0.104 0.143 

L=L/3. SRH 0.087 0.090 0.079 0.097 0.142 0.134 0.103 0.150 

n=1000, Gender 0.039 0.043 0.032 0.046 0.061 0.072 0.053 0.065 

K=Kdim2*2, Age 0.042 0.044 0.037 0.043 0.080 0.060 0.049 0.086 

L=L/3. SRH 0.056 0.052 0.046 0.059 0.087 0.096 0.070 0.106 
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Appendix B 

Simulation 2 RMSEs  

 

Table B1 

Simulation 2 RMSEs for each simulation condition for each predictor for each response 

variable, when analyzed with MELODIC 

    Dbts Hyp Asth CLD JD Ang Str Dpr 

n=300, Gender 0.027 0.041 0.023 0.021 0.034 0.034 0.020 0.059 

π=π, Age 0.034 0.050 0.024 0.024 0.044 0.045 0.022 0.070 

uneq.class. SRH 0.036 0.049 0.028 0.028 0.046 0.041 0.025 0.075 

n=1000, Gender 0.014 0.026 0.011 0.009 0.020 0.022 0.008 0.053 

π=π, Age 0.021 0.040 0.012 0.012 0.029 0.033 0.011 0.063 

uneq.class. SRH 0.022 0.035 0.014 0.014 0.032 0.030 0.013 0.062 

n=300, Gender 0.055 0.049 0.051 0.054 0.058 0.056 0.063 0.059 

π=πmod, Age 0.073 0.067 0.067 0.070 0.073 0.071 0.077 0.075 

uneq.class. SRH 0.059 0.057 0.057 0.061 0.072 0.076 0.072 0.073 

n=1000, Gender 0.034 0.040 0.037 0.037 0.053 0.051 0.057 0.054 

π=πmod, Age 0.057 0.060 0.059 0.058 0.068 0.065 0.072 0.068 

uneq.class. SRH 0.045 0.046 0.047 0.044 0.065 0.065 0.063 0.065 

n=300, Gender 0.035 0.070 0.025 0.024 0.055 0.040 0.023 0.072 

π=π, Age 0.045 0.082 0.027 0.028 0.066 0.056 0.026 0.084 

eq.class. SRH 0.045 0.071 0.028 0.028 0.051 0.058 0.028 0.067 

n=1000, Gender 0.028 0.057 0.020 0.021 0.047 0.032 0.019 0.059 

π=π, Age 0.036 0.067 0.021 0.024 0.057 0.044 0.022 0.070 

eq.class. SRH 0.035 0.055 0.021 0.023 0.037 0.050 0.022 0.057 

n=300, Gender 0.128 0.127 0.129 0.134 0.097 0.091 0.089 0.094 

π=πmod, Age 0.134 0.134 0.136 0.140 0.112 0.106 0.104 0.110 

eq.class. SRH 0.111 0.111 0.111 0.117 0.070 0.070 0.073 0.070 

n=1000, Gender 0.130 0.123 0.127 0.125 0.086 0.088 0.085 0.082 

π=πmod, Age 0.134 0.128 0.132 0.131 0.101 0.103 0.099 0.098 

eq.class. SRH 0.108 0.102 0.106 0.105 0.059 0.058 0.059 0.059 
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Table B2 

Simulation 2 RMSEs for each simulation condition for each predictor for each response 

variable, when analyzed with LCA 

    Dbts Hyp Asth CLD JD Ang Str Dpr 

n=300, Gender 0.029 0.052 0.016 0.018 0.044 0.040 0.016 0.058 

π=π, Age 0.033 0.057 0.020 0.019 0.055 0.046 0.017 0.065 

uneq.class. SRH 0.032 0.052 0.021 0.021 0.050 0.036 0.017 0.069 

n=1000, Gender 0.014 0.024 0.008 0.009 0.019 0.018 0.007 0.025 

π=π, Age 0.013 0.027 0.009 0.009 0.020 0.018 0.007 0.033 

uneq.class. SRH 0.015 0.028 0.010 0.011 0.022 0.016 0.009 0.029 

n=300, Gender 0.047 0.045 0.048 0.050 0.038 0.037 0.040 0.038 

π=πmod, Age 0.041 0.041 0.041 0.043 0.042 0.042 0.043 0.043 

uneq.class. SRH 0.038 0.037 0.039 0.042 0.037 0.040 0.039 0.039 

n=1000, Gender 0.025 0.029 0.026 0.026 0.022 0.019 0.022 0.022 

π=πmod, Age 0.023 0.025 0.023 0.023 0.025 0.022 0.024 0.024 

uneq.class. SRH 0.021 0.023 0.022 0.020 0.022 0.021 0.022 0.022 

n=300, Gender 0.039 0.071 0.020 0.021 0.052 0.052 0.019 0.060 

π=π, Age 0.037 0.067 0.023 0.021 0.052 0.054 0.019 0.070 

eq.class. SRH 0.036 0.064 0.024 0.023 0.053 0.048 0.020 0.067 

n=1000, Gender 0.027 0.051 0.010 0.015 0.032 0.041 0.013 0.032 

π=π, Age 0.021 0.038 0.009 0.011 0.026 0.031 0.010 0.032 

eq.class. SRH 0.020 0.034 0.011 0.012 0.025 0.026 0.010 0.029 

n=300, Gender 0.103 0.103 0.104 0.107 0.050 0.049 0.046 0.050 

π=πmod, Age 0.075 0.076 0.077 0.079 0.048 0.046 0.047 0.048 

eq.class. SRH 0.066 0.065 0.064 0.067 0.042 0.043 0.043 0.043 

n=1000, Gender 0.100 0.093 0.097 0.097 0.038 0.038 0.036 0.035 

π=πmod, Age 0.070 0.064 0.068 0.067 0.032 0.032 0.030 0.030 

eq.class. SRH 0.057 0.051 0.054 0.053 0.025 0.024 0.024 0.024 

 

 

 

 

 


