
Computing with adèles and idèles
Hertogh, Mathé

Citation
Hertogh, M. (2021). Computing with adèles and idèles.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3249353

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3249353

Computing with adèles and idèles

Mathé Hertogh

August 27, 2021

Master’s thesis

Supervisor: Marco Streng

Mathematical Institute
Leiden University

Acknowledgements

Ik wil mijn begeleider, Marco Streng, heel hartelijk bedanken voor zijn begelei-
ding. Zonder zijn ideeën, suggesties en commentaar was deze scriptie bij lange
na niet wat het nu is. Bovendien was het initiële onderzoeksvoorstel zijn idee.
Hij heeft mij op vele vlakken geholpen, van uitleg over theorie tot het ontwerpen
van algoritmen en van technische (SageMath) hulp tot schrijf-advies. Bovenal
wil ik Marco bedanken voor al onze scriptie-bijeenkomsten. Ik realiseerde me
tijdens die bijeenkomsten meestal weer wat bewuster hoe leuk de wiskunde is
waar we mee bezig waren en ik liep vrijwel altijd weg uit die bijeenkomsten met
extra veel zin in het project.

Contents

1 Introduction 1

2 Preliminaries 2
2.1 Mathematics . 2
2.2 SageMath . 4

3 Representations 5
3.1 Representations of profinite integers 5
3.2 Representations of profinite numbers 8
3.3 Representations of real and complex numbers 11
3.4 Representations of adèles . 13
3.5 Representations of multiplicative p-adics 14
3.6 Representations of idèles . 15
3.7 Recap of the choices made . 18

4 Conversions 18
4.1 Base embeddings . 19
4.2 Quotients of O . 20
4.3 Adèles and idèles . 20
4.4 Profinite rational vectors . 21
4.5 Ray class groups and idèles . 22
4.6 p-adic numbers . 23

5 Implementation in SageMath 23
5.1 Elements, parents and categories 23
5.2 Implementation of representations 24
5.3 Conversions and coercions . 24
5.4 Equivalence of representations . 25
5.5 Case distinction for Q . 26
5.6 Inclusion into SageMath . 27

6 Alternative representations 27
6.1 Real and complex numbers . 27
6.2 p-adic numbers . 28
6.3 Adèles . 29
6.4 Idèles . 32

7 Application 1: profinite Fibonacci graph 33
7.1 Profinite Fibonacci numbers . 33
7.2 Factorial digits . 34
7.3 Visualizing profinite graphs . 35
7.4 Computing the graphs . 39

8 Adèlic matrix factorization 40
8.1 Representations of GLn(Q̂)-elements 41
8.2 Factorization in general linear groups 42
8.3 Factorization in general symplectic groups 45

9 Application 2: Hilbert class field computation 47
9.1 Theoretical background . 48
9.2 Overview of the theoretical computation 50
9.3 The computation in practice . 51

9.3.1 Constructing representations 51
9.3.2 Shimura’s connecting homomorphism 52
9.3.3 Factorizing the adèlic matrices 53
9.3.4 The modular function . 54

9.4 Numerical example . 55
9.5 Comparison to Gee and Stevenhagen 56
9.6 Generalizing to CM-fields . 57

10 References 58

1 Introduction

In computational algebraic number theory, ideals are widely used. This is be-
cause they have good theoretical properties as well as concrete representations,
on which arithmetic can be performed efficiently.

In theoretical algebraic number theory, adèles and idèles are nowadays fre-
quently used instead of ideals. Their ability to bundle information at all primes
of a number field enables them to facilitate cleaner and more coherent theorems.
Think for example of class field theory. Because of their “infinite nature”, it is
however hard to write them down in a concrete and finite manner. Therefore
adèles and idèles are a theoretical tool which are avoided in concrete computa-
tions.

In this thesis we will build the foundations of computing with adèles and
idèles. In analogy to floating point numbers in a computer “representing” real
numbers, we will formally define representations of adèles and idèles. These will
be finite objects that one can explicitly write down and perform arithmetic on,
for example in a computer, and they will “represent” actual adèles and idèles.

We have implemented these representations of adèles and idèles in the open
source mathematical software SageMath [19]. During development we aimed
for our implementation to be included into SageMath. This would for example
enable students who learn for the first time about adèles and idèles to play
around with them in SageMath in an easy to use, accessible manner. It would
also enable other researchers to perform computations with adèles and idèles on
a computer.

Furthermore, we will discuss two applications of our representation of adèles
and idèles, both of which we have implemented as well. The first application
is an interactive version of the profinite Fibonacci graph as discussed in [13].
This application is a bit of a toy example, as it only uses rational integral finite
adèles. We think this is a good application to better understand how our adèles
work for people new to the subject, for example SageMath users trying out our
adèles and idèles for the first time.

The second application can be seen as a proof of concept, showing that our
adèles and idèles can be used in practice for non-trivial computations. It does
however require substantially more background knowledge in number theory.
Our second application is the computation of Hilbert class fields of imaginary
quadratic number fields using the idèlic version of Shimura’s reciprocity law.
Numerous articles, such as [4], [5], [22], [23], have been written on this compu-
tation. In each of them some translation is performed from the idèlic language
in which the reciprocity law is stated to the language of ideals to perform their
computations. We will obtain the same results, while doing the computation
directly with adèles and idèles.

For our second application, we developed an algorithm that factors a matrix
M ∈ GL2(Q̂) as M = BA for B ∈ GL2(Ẑ) and A ∈ GL+

2 (Q). We generalized

this algorithm to perform the factorization GLn(Q̂) = GLn(Ẑ) GL+
n (Q) for any

n ∈ Z>0. Furthermore we exhibited an algorithm to perform the factorization
GSp2g(Q̂) = GSp2g(Ẑ) GSp+

2g(Q), for g ∈ Z>0 in general symplectic groups. Al-
though we developed these adèlic matrix factorization algorithms for our second
application, they can be of independent interest.

The software written for this thesis should be viewed as part of this thesis
and can be found at [6].

1

This thesis is structured as follows. After a preliminary chapter, we intro-
duce our representations of adèles and idèles in Chapter 3. In Chapter 4 we
define conversions from and to our representations, such as how to convert an
idèle representation to an adèle representation. We elaborate on our implemen-
tation of these representations in SageMath in Chapter 5. Chapter 6 is devoted
to alternative representations, which we considered during the design of our
representations, but which we did not pick. Our first application is discussed in
Chapter 7. In Chapter 8 we develop our adèlic matrix factorization algorithms,
which we use for our second application in Chapter 9.

2 Preliminaries

In this chapter we will introduce the basic concepts and notation the reader
should be familiar with. The first section is concerned with mathematical back-
ground knowledge. An elaborate treatment of this material can be found in
many books on algebraic number theory. The second section introduces the
mathematical software package SageMath.

2.1 Mathematics

We will write Z, Q, R, C for respectively the ring of rational integers and the
fields of rational, real and complex numbers. The upper half plane in C is
denoted H.

Let K be a number field. We shall write the ring of integers of K as OK ,
or O if the ambient field K is clear from the context. By a finite prime of K
we shall mean a prime ideal of O, excluding zero. Recall that the set of finite
primes of K corresponds bijectively with the set of equivalence classes of non-
archimedean absolute values on K. By an infinite prime of K we shall mean an
equivalence class of archimedean absolute values on K. If r is the number of real
embeddings of K and s the number of pairs of conjugated complex embeddings
of K, then K has r + s infinite primes. Also (r, s) is called the signature of K
and the degree of K over Q is equal to r+ 2s. By a prime of K will shall mean
either a finite or an infinite prime of K.

Let p be a finite prime of K. By Kp we denote the completion of K at
p, which we also call the field of p-adic numbers. We denote the normalized
valuation on Kp by ordp : Kp → Z ∪ {∞} setting ordp(0) = ∞. We denote
the corresponding valuation ring (consisting of the elements with non-negative
valuation, including zero) by Op and we call it the ring of p-adic integers.
Elements in Op are called integral elements of Kp. Elements of the unit group
O∗p ofOp are called p-adic units or units at p. For n ∈ Z≥0 the n-th multiplicative
subgroup Unp at p is defined by

Unp =

{
O∗p if n = 0;

1 + pnOp if n > 0.

A basis of open neighborhoods of 1 ∈ K∗p is given by {Unp | n ∈ Z≥0}. When
K = Q, we usually write Zp for the ring of p-adic integers and Qp for the field
of p-adic numbers, where p is a prime number.

For p an infinite prime of K, we also write Kp for the completion of K at
p. In this case we have Kp

∼= R or Kp
∼= C and we call p real or complex

2

respectively. For ease of speech, we define Op to be equal to Kp. One could say
that we consider all elements of Kp to be integral.

Let I be an index set and let for every i ∈ I a topological space Xi and
an open subset Ui ⊆ Xi be given. Then the restricted product of (Xi)i∈I with
respect to (Ui)i∈I is the topological space

∏∐
i∈I(Xi;Ui) with set of points{

x ∈
∏
i∈I

Xi

∣∣∣∣∣ xi ∈ Ui for all but finitely many i ∈ I

}

and for which a basis of the topology consists of all sets of the form∏
i∈S

Vi ×
∏
i∈I\S

Ui

with S a finite subset of I and Vi an open subset of Xi for each i ∈ S. In case
the Xi are topological groups/rings and the Ui are open subgroups/rings, the
restricted product is a topological group/ring under component-wise addition
and/or multiplication.

We define the adèle ring AK of K as the restricted product
∏∐

p(Kp;Op),
where p runs over all primes of K. Its elements are called K-adèles, or simply
adèles if the field K is clear from the context. We define a finite K-adèle to be
an element of the ring of finite K-adèles A0

K , which is the restricted product∏∐
p(Kp;Op) with p running over the finite primes of K only. Note that AK and

A0
K are topological rings as well as K-algebras. The idèle group JK of K is

defined to be the topological group
∏∐

p(K∗p ;O∗p), with p running over all primes
of K. Similarly as for adèles, we define the finite idèle group to be

∏∐
p(K∗p ;O∗p),

with p only running over the finite primes of K. The elements of JK and J0
K

are called K-idèles and finite K-idèles respectively. Note that as a group JK is
equal to the unit group A∗K of the adèle ring, but the topology on JK is strictly
finer than the subspace topology of A∗K relative to AK . A similar statement
holds for J0

K with respect to A0
K .

The ring of profinite K-integers, denoted Ô, is the projective limit lim←−I O/I
where I runs over all non-zero ideals ofO. Note that this is a topological ring and
an O-algebra. The Chinese Remainder Theorem induces a natural isomorphism
Ô ∼−→

∏
pOp of both topological rings and O-algebras, where p runs over all

finite primes of K. We define the ring of profinite K-numbers, denoted K̂, to
be the ring of fractions of Ô with respect to O\{0}. So a profinite K-number is

a fraction a/b with a ∈ Ô and b ∈ O\{0}. This makes K̂ into a K-algebra. We

endow K̂ with the unique topology which restricts to the natural topology on
Ô and that makes K̂ a topological ring. The isomorphism Ô ∼−→

∏
pOp above

extends naturally to an isomorphism K̂
∼−→ A0

K of K-algebras and topological
rings, with p again running over the finite primes of K.

For L/K a field extension, we have natural and compatible embeddings

ÔK → ÔL, K̂ → L̂, AK → AL and JK → JL. We naturally have AL ∼= AK⊗KL
and a basis of L over K is also a basis of AL over AK .

For R a ring and n,m ∈ Z>0, we denote the ring of m × n-matrices with
entries in R by Rm×n. We denote the general linear group of degree n over R
by GLn(R), consisting of invertible n×n-matrices. Whenever it makes sense for
elements of R to be positive, the subgroup of matrices with positive determinant

3

is denoted GL+
n (R). The subgroup of matrices with determinant one is denoted

SLn(R), i.e. the special linear group of degree n over R. For a1, ..., an ∈ R we
write diag(a1, ..., an) for the diagonal matrix A with Aii = ai for 1 ≤ i ≤ n.

2.2 SageMath

SageMath is a free to use, open source mathematical software package, built
on top of the programming language Python [19]. It makes use of many other
mathematical software packages such as Pari and Maxima, providing a unified
interface for all of them.

Our adèle and idèle software is written in Python, making heavy use of
the standard SageMath library. We aimed for our adèle and idèle code to be
included into SageMath. We elaborate on this in Chapter 5.

Here is an example of a SageMath prompt in which a user typed commands
(on the lines with the prefix “sage:”), together with the response provided by
SageMath (the lines not starting with “sage:”).

sage: R.<X> = PolynomialRing(ZZ)

sage: K.<a> = NumberField(X^2+5)

sage: b = 3*a-6; b

3*a - 6

sage: I = K.ideal(6, 2*a+2); I

Fractional ideal (6, 2*a + 2)

sage: K.ideal(b) + I # are b and I coprime?

Fractional ideal (3, a + 1)

As you can see, in SageMath users can create mathematical objects, such as
polynomial rings, number fields and (fractional) ideals. In turn these can be
used to perform computations. The code above does the following: (1) create
the polynomial ring Z[X], naming it R, and create the variable X representing X;
(2) create the number field Q[X]/(X2 + 5), naming it K, and create the variable
a representing X mod X2 + 5; (3) create the element b = 3a− 6 of K; (4) create
the fractional OK-ideal I, generated by 6 and 2a + 2; (5) compute the sum of
the fractional ideal generated by b and I. The output of SageMath in the last
line means that this sum is equal to the fractional OK-ideal generated by 3 and
a+ 1. Text after a hash symbol (#) is interpreted as a comment and so ignored
by SageMath.

Knowing only the above about SageMath is sufficient for reading this thesis.
Nevertheless we recommend readers unfamiliar with SageMath to get acquainted
with it quickly using the material provided on the SageMath website [19]. For
example: read the quickstart, follow the tutorial, and/or follow a thematic
tutorial on number fields or p-adic numbers. Number fields are heavily used in
our code and the implementation of p-adic numbers expresses ideas very similar
to the ideas used in our implementation of adèles and idèles.

Throughout this thesis we will show samples of SageMath code as we did
above, both to give concrete examples of the concepts explained in the text and
to illustrate the capabilities of our adèle and idèle software.

4

3 Representations

To be able to do computations with adèles and idèles, we need to be able to write
them down in a finite manner. As writing down a single adèle or idèle requires an
infinite amount of data in general, we will have to work with approximations. In
this chapter we formalize these approximations of adèles and idèles as so-called
representations.

During the design of these representations we usually had multiple options.
We kept the following general design goals in mind when choosing between such
options. We want to perform arithmetic with these representations of adèles and
idèles relatively efficiently. A computation using these representations should
give a result which is guaranteed to be correct. This means in practice that
explicit error bounds are included in every result. These representations should
enable us to perform non-trivial computations in number theory. In particular
we want to be able to compute Hilbert class fields of imaginary quadratic number
fields using Shimura’s reciprocity law, as we discuss in Chapter 9. And lastly, we
want these representations to provide SageMath users with an easy to use and
intuitive way of computing with adèles and idèles. This chapter only describes
our final representations. Chapter 6 is devoted to the alternatives that we came
up with, but did not choose.

We implemented the representations discussed in this chapter in SageMath.
Their validity and usefulness is however not restricted to SageMath: they could
be implemented in other software environments as well, or be used in purely
mathematical contexts. Details on our implementation in SageMath can be
found in Chapter 5.

3.1 Representations of profinite integers

For this whole chapter, let K be a number field with ring of integers O and let
Ω be a Z-basis of O.

Denote the degree of K over Q by d and write Ω = (ω1, ..., ωd). Let I be
a fractional O-ideal in K and let B = (Bij)ij be the Hermite Normal Form
(HNF) of I with respect to Ω (cf. [2], section 4.7.1). Let x ∈ K and write x

uniquely as x =
∑d
i=1 xiωi with xi ∈ Q. We say that x is HNF-reduced modulo

I if 0 ≤ xi < Bii for every i ∈ {1, ..., n}. Note that this notion depends on the
integral basis Ω.

Given x and I as above, there exists a unique y ∈ O such that x−y ∈ I and
y is HNF-reduced modulo I. We call such a y the HNF-reduction of x modulo I.
An efficient algorithm to compute HNF-reductions is given in [3] as Algorithm
1.4.12.

We define a representation of profinite K-integers to be a pair a = (x, I)
with x ∈ O and I an ideal of O such that x is HNF-reduced modulo I. We
define the represented subset of a, denoted R(a), to be the subset x + IÔ of

Ô. Here IÔ denotes the ideal in Ô generated by I. For any α ∈ R(a) we also
say that α is represented by a and a is a representation of α. Note that HNF-
reduction makes sure that a representation of profinite K-integers is uniquely
determined by its represented subset. We call x the value of a and we denote
it by v(a). The ideal I is called the modulus of a and is denoted by m(a). We
usually denote a as x mod I. When I = (m) is principal, we also sometimes

5

write a = x mod m. We write R(Ô) for the set of representations of profinite
K-integers.

Note that R(a) is a coset of the ideal IÔ of Ô. It is a closed subset of Ô
and it is open unless the modulus is zero. If the modulus is zero, then R(a) is
the singleton containing the value of a. This enables us to represent elements
of O exactly using representations of profinite integers.

Above we only defined x mod I for I an O-ideal and x ∈ O HNF-reduced
modulo I. For convenience we extend this notation to arbitrary x ∈ O and I an
O-ideal: we write x mod I for the representation of profinite K-integers with
modulus I and with value the HNF-reduction of x modulo I. For example, we
have 8 mod 6 ∈ R(Ẑ) and its value is 2, not 8 (for Ω = (1)).

Arithmetic. Let a and b be representations of profinite K-integers. We define
the sum, difference and product of a and b, denoted a + b, a − b and ab, to
be the unique representations of K-integers with smallest represented subsets
(with respect to inclusion) satisfying

R(a) +R(b) ⊆ R(a+ b), R(a)−R(b) ⊆ R(a− b), R(a)R(b) ⊆ R(ab).

Note that we do addition, subtraction and multiplication of sets on the left hand
side of these equations, so for example

R(a)R(b) = {αβ | α ∈ R(a), β ∈ R(b)}.

Explicitly a+ b can be given as

a+ b = (v(a) + v(b)) mod gcd(m(a),m(b)),

a− b can be given as

a− b = (v(a)− v(b)) mod gcd(m(a),m(b))

and ab can be given as

ab = v(a)v(b) mod gcd(v(a)m(b), v(b)m(a),m(a)m(b)).

For sums and differences we actually have

R(a) +R(b) = R(a+ b) and R(a)−R(b) = R(a− b).

We sometimes identify elements α ∈ O with their representations α mod 0.
So for a representation a of profinite K-integers, we write a+3 for a+(3 mod 0).

Example. Take K = Q, O = Z and Ω = (1). Suppose we want to use an

element α ∈
∏
p Zp = Ẑ in our computation which has value 7 at 2, value 9 at 5

and value 1 at all other primes. As α 6∈ Z, we cannot represent α exactly using
a representation of profinite integers. Instead we will specify an open subset
around α in Ẑ. Let us pick 300 as our modulus. We have

−41 ≡ 7 mod 4

−41 ≡ 1 mod 3

−41 ≡ 9 mod 25

6

and therefore α ∈ −41 + 300Ẑ. Hence we pick a = −41 mod 300 as our rep-
resentation of α. Suppose we want to compute (α + 2)(α − 10). Then we can
instead compute (a+ 2)(a− 10), for example with a computer. We will obtain
189 mod 900 as the result. The inclusions of represented subsets we require in
our definitions of addition, subtraction and multiplication precisely guarantee
that we now have (α+ 2)(α−10) ∈ R((a+ 2)(a−10)). Hence the upshot of the

computation is that we obtained (α+ 2)(α− 10) ≡ 189 mod 900Ẑ. Above, the
modulus of the result was bigger than the modulus of a. When using different
moduli in your computation, the modulus of the result will usually drop. For
example, if b = 1 mod 290, then we have a+ b = 0 mod 10.

Implementation. We have implemented representations of profinite integers
as the Python class ProfiniteInteger and R(Ô) as ProfiniteIntegers. Be-
low we illustrate their usage. We choose to work with the Z-basis of O that is
computed by the method integral_basis() of number fields in SageMath.

sage: Zhat = ProfiniteIntegers(QQ)

sage: a = Zhat(-41, 300); a

259 mod 300

sage: b = Zhat(1, 290); b

1 mod 290

sage: a.value ()

259

sage: a.modulus ()

300

sage: (a+2)*(a-10)

189 mod 900

sage: a*a+2*a-a*10 -2*10

189 mod 300

sage: a + b

0 mod 10

Note that the user is allowed to specify a value-modulus pair which is not HNF-
reduced: our code reduces the value automatically.

Properties. Addition and multiplication of representations of profinite integers
are associative and commutative. Also an additive identity element (0 mod 0)
exists as well as a multiplicative identity element (1 mod 0). Additive inverses
do not in general exist however; they only exist for representations with modulus
zero. Also the distributive law does not hold in R(Ô), as shown by the exam-

ple above. These statements can be summarized by saying that R(Ô) forms a
commutative monoid under both addition and multiplication.

Let α ∈ Ô. A fundamental system of open neighborhoods of α in Ô is given
by

{α+ IÔ; I a non-zero ideal of O}.

This together with the fact that O lies dense in Ô results in the following
representability property : for any neighborhood U ⊆ Ô of α, there exists a
representation a of profinite integers such that α ∈ R(a) ⊆ U . One could say

that we can approximate any α ∈ Ô arbitrarily closely by representations of

7

profinite integers.
Let us order moduli of representations by divisibility: for a, b ∈ R(Ô), we

set m(a) ≤ m(b) if and only if m(a) | m(b). We also refer to the modulus
as the precision and so we can say that 2 mod 12 has higher precision than
5 mod 6, while 3 mod 16 does not have higher nor equal nor lower precision
than 1 mod 17. Note that a having higher precision than b also means that R(a)
is smaller than R(b) in the sense that a translate of R(a) is strictly included
in R(b). In terms of precision, the representability property says that we can

represent any α ∈ Ô by a representation of profinite integers of arbitrarily high
non-zero precision. Note that non-zero here means that we cannot in general
represent α exactly.

By inspecting the explicit formulas for addition, subtraction and multiplica-
tion in R(Ô), one sees that the following holds. For any modulus N (i.e. N an

ideal of O) and for a, b ∈ R(Ô) having precision at least N , we have that a+ b,
a− b and ab all have precision at least N as well. We refer to this result as the
continuity of arithmetic in R(Ô).

From the representability property and the continuity of arithmetic together
one could informally conclude: we can perform arithmetic in Ô with arbitrarily
high, albeit non-exact, precision using representations of profinite integers.

Design choices. Lastly we discuss an alternative design option that we consid-
ered. Instead of HNF-reduction, one could opt for LLL-reduction, cf. [3], 1.4.13.
LLL-reduction usually gives smaller elements than HNF-reduction [3]. This is
beneficial for performance when calculating with the representations later on, as
well as that users usually like smaller elements over larger ones. The advantages
of HNF-reduction over LLL-reduction are that it gives a unique representative
(which LLL does not) and it is usually faster to perform HNF-reduction com-
pared to LLL-reduction [3]. Note that this can have big impact on performance:
we reduce on every arithmetic operation. Based on this, we choose to use HNF-
reduction. It could however be the case that, maybe in certain applications,
LLL-reduction gives much better performance. We choose not to invest too
much time in this investigation. This could be part of future research though.

Our first application, the profinite Fibonacci graph, solely uses representa-
tions of profinite integers. Moreover the application itself gives insight in the
ring Ẑ in a graphical way. Hence the reader could skip ahead to Chapter 7, to see
these representations in action and get more familiar with Ẑ before continuing
in this chapter.

3.2 Representations of profinite numbers

We call a pair (n, d) ∈ R(Ô)× Z>0 reduced if no prime number exists dividing
d, v(n) and m(n). We define a representation of profinite K-numbers to be a

reduced pair a = (n, d) ∈ R(Ô)× Z>0 and we usually denote a as n/d. We call
n and d the numerator and denominator of a respectively, denoted num(a) and
den(a). We define the represented subset R(a) of a to be the subset R(n)/d of

K̂. Representations of profinite K-numbers are uniquely determined by their
represented subsets. The set of all representations of profinite K-numbers is
denoted R(K̂).

8

We define the value of a, denoted v(a), to be v(n)/d and we define the

modulus of a, denoted m(a), to be m(n)/d. Note that R(a) is a coset of m(a)Ô
inside K̂. Moreover R(a) is a closed subset of K̂ and if m(a) 6= 0 then it is
also open. In case m(a) = 0, we have R(a) = {v(a)}. Hence we can represent
any element of K exactly using a representation of profinite K-numbers. Next
to writing a = n/d, we sometimes also write a = v(a) mod m(a). This makes
sense since a is uniquely determined by its value and modulus: a is determined
by R(a) and we have R(a) = v(a) +m(a)Ô.

We order moduli as follows: for a, b ∈ R(K̂), we set m(a) ≤ m(b) if and only
if ordp(m(a)) ≤ ordp(m(b)) for all finite primes p of K. We also refer to m(a)
as the precision of a.

Let n ∈ R(Ô) and let d ∈ O \ {0}. Then there exists a unique a = (ñ, d̃) ∈
R(K̂) such that R(a) = R(n)/d. We call a the reduction of (n, d) and it can
be computed as follows. Let g be the O-ideal dO + v(n)O + m(n). Then d̃ is
the smallest positive integer in the ideal d/g. We have x := d̃v(n)/d ∈ O and
I := d̃m(n)/d is an ideal of O. Now ñ is given by x mod I. Note that this com-
putation ensures that (ñ, d̃) is reduced. We denote the reduction of (n, d) by n/d.

This is consistent with denoting b ∈ R(K̂) as num(b)/ den(b): the reduction of

b ∈ R(K̂) is just b itself. For example, we have c = (20 mod 35)/10 ∈ R(Q̂)
and the denominator of c is 2 (not 10): c = (20 mod 35)/10 = (4 mod 7, 2) =
2 mod 7/2.

Similarly for x ∈ K and I a (possibly zero) fractional O-ideal in K, we write
x mod I for the unique representation of profinite K-numbers with represented
subset x+ IÔ. It may be the case that v(x mod I) 6= x.

We have a canonical map from R(Ô) to R(K̂) sending n to n/1. We also

have a natural map from K to R(K̂) sending x to x mod 0. We will use these

maps to view both R(Ô) and K as subsets of R(K̂). Note that this is consistent

with our embedding of O into R(Ô) in the sense that the diagram

O K

R(Ô) R(K̂)

with natural maps commutes.

Arithmetic. Let a, b ∈ R(K̂). We define the sum, difference and product of a
and b to be the unique representations of profinite K-numbers a+ b, a− b and
ab with the smallest represented subsets satisfying

R(a) +R(b) ⊆ R(a+ b), R(a)−R(b) ⊆ R(a− b), R(a)R(b) ⊆ R(ab).

Explicitly the sum can be given as

a+ b =
den(b) num(a) + den(a) num(b)

den(a) den(b)
,

the difference as

a− b =
den(b) num(a)− den(a) num(b)

den(a) den(b)

9

and the product as

ab =
num(a) num(b)

den(a) den(b)
.

This actually results in the equalities

R(a) +R(b) = R(a+ b), R(a)−R(b) = R(a− b)

holding. We only define the quotient a/b of a by b in case m(b) = 0 and
v(b) 6= 0. In that case, we define a/b to be v(b)−1a. Note that inverting v(b)
happens inside K∗ and we make use of the multiplication defined above via the
embedding of K into R(K̂). Now a/b satisfies R(a)/R(b) = R(a/b).

We emphasize that we do not define a/b if v(b) = 0 or m(b) 6= 0. Let us
explain why. If v(b) = 0, then b represents zero and so division by b does not
make much sense. The best option might be to give back a representation c with
R(c) = K̂, but no such representation exists. If m(b) 6= 0, then there does not

exist any c ∈ R(K̂) such that R(a)/R(b) ⊆ R(c), unless R(a) = {0}. This can

be seen as follows. For every c ∈ R(K̂), the set R(c) has bounded denomina-

tors: there exists N ∈ Z>0 such that R(c) ⊆ Ẑ/N . If m(b) 6= 0, then R(b) has
unbounded size: for every M ∈ Z>0 there exists γ ∈ R(c)∩Z such that γ > M .
Hence if R(a) 6= {0}, the set R(a)/R(b) will not have bounded denominators

and so cannot be contained in the represented subset of any c ∈ R(K̂).

Implementation. We implemented representations of profinite K-numbers as
the Python class ProfiniteNumber and R(K̂) as ProfiniteNumbers. Below
we show examples of their usage.

sage: R.<X> = PolynomialRing(ZZ)

sage: K.<a> = NumberField(X^2 + 5)

sage: Ohat = ProfiniteIntegers(K)

sage: Khat = ProfiniteNumbers(K)

sage: n = Ohat (2*a, K.ideal(4, 2*a+2))

sage: b = Khat(n, 6); b # create n/6 in Khat

1/3*a mod (2, a + 1)

sage: b.numerator (), b.denominator () # are reduced

(a mod (6, 3*a + 3), 3)

sage: # Initializing using a value/modulus pair:

sage: c = Khat(1, K.ideal(2, a+1) /3); c

1/3*a mod (2/3, 1/3*a + 1/3)

sage: b-c

0 mod (2/3, 1/3*a + 1/3)

sage: b*c

1/9*a mod (2/9, 1/9*a + 1/9)

Properties. For R(K̂) similar properties hold as for R(Ô). Namely, R(K̂)
forms a commutative monoid under both addition and multiplication, while
the ring axioms of distributivity and existence of additive inverses do not hold.
Also the representability property holds for R(K̂): for any α ∈ K̂ and any

neighborhood U ⊆ K̂ of α, there exists a ∈ R(K̂) such that α ∈ R(a) ⊆ U .

Lastly we state the following result. Let α, β ∈ K̂ and let Q be any precision
(i.e. a fractional O-ideal in K). Then there exist a, b ∈ R(K̂) representing α

10

and β respectively such that a + b, a − b and ab have precision at least Q. A
similar statement holds for division if β ∈ K∗. We call this result the continuity
of arithmetic in R(K̂).

Design choices. We defined a representation of profinite numbers as a numerator-
denominator pair. We already mentioned that such a representation is also
uniquely determined by its value-modulus pair and we could use this as our
definition instead. The current definition is more similar to our definition of K̂,
as a ring of fractions of Ô. We accept both formats from a SageMath user and
we default to printing the representations as value-modulus pairs in SageMath.
We store the representations as denominator-value pairs in SageMath.

3.3 Representations of real and complex numbers

Let FR be a finite subset of R containing 0 and 1. Let Fs be a finite set of
symbols, including −∞ and∞. Define F to be the disjoint union FRtFs, which
we call our set of machine representable reals. An important example of such
an F is the set of representable floating-point numbers in a computer.

We assume there is a total order on R t Fs extending the usual order on R,
such that for all α ∈ R, the inequalities −∞ < α and α < ∞ hold. Then for
x, y ∈ F, we define the interval with endpoints x and y to be

[x, y] = {α ∈ R | x ≤ α ≤ y}.

Let S be a subset of R. We define the F-lower bound of S to be

S = max{z ∈ F | ∀s ∈ S : z ≤ s}.

When using the notation S the set F will be clear from the context. We also
define the F-upper bound of S to be

S = min{z ∈ F | ∀s ∈ S : s ≤ z}.

Note that the finiteness of F and the existence of −∞ and∞ ensure that S and
S always exist. Lastly, we define the F-enclosure of S to be the pair (S, S) ∈ F2.

For S and T two subsets of R, we define their sum, difference, product and
quotient to be

S ◦ T = {s ◦ t | s ∈ S, t ∈ T}, ◦ ∈ {+,−, ·, /},

except when ◦ is / and 0 ∈ T , in which case we define S/T to be R.
Now we define a representation of real numbers to be a pair a = (x, y) ∈ F×F

such that [x, y] 6= ∅. We define the represented subset of a to be the interval
[x, y], which we also denote by R(a). Note that a representation of real num-
bers may not be uniquely determined by its represented subset: for example
R((0, 0)) = R((0, ε)) if ε ∈ Fs satisfies 0 < ε < α for all α ∈ R>0. We call x
and y the left and right endpoints of a respectively. The set of representations
of real numbers is denoted R(R). For a, b ∈ R(R) and ◦ ∈ {+,−, ·, /}, we define
a◦ b to be the F-enclosure of R(a)◦R(b) and call it the sum, difference, product
or quotient of a and b, depending on ◦.

11

Next up are the complex numbers. A representation of complex numbers is
defined to be a pair of representations c = (a, b) of real numbers. We usually
write c = a+ bi. We define the represented subset of c, denoted R(c), to be the
subset

R(a) +R(b)i = {α+ βi | α ∈ R(a), β ∈ R(b)}
of C. We call a the real part of c and denote it by Re(c). Similarly we call b the
imaginary part of c, denoted Im(c). We denote by R(C) the set of representa-
tions of complex numbers.

For a subset S of C, we let the real part Re(S) and the imaginary part Im(S)
of S be defined by

Im(S) = {Im(s) | s ∈ S}, Re(S) = {Re(s) | s ∈ S}.

respectively. Let c, d ∈ R(C) and let ◦ ∈ {+,−, ·, /}. Then we define c ◦ d
(called the sum, difference, product or quotient of c and d depending on ◦) to
be the representation of complex numbers whose real and imaginary part are
the F-enclosure of the real and imaginary part of R(c) ◦ R(d) respectively.

Implementation. As far as we know, the multiple precision interval arithmetic
library MPFI [16] implements exactly R(R) and R(C) (and more) with Fs =
{−∞,∞} for certain FR. We could however not verify this statement via for
example documentation of MPFI. SageMath provides the functionality of MPFI
via the classes RealIntervalField and ComplexIntervalField. Below we
show an example usage of RealIntervalField.

sage: R = RealIntervalField(prec =40); R

Real Interval Field with 40 bits of precision

sage: a = R(3.1, 3.2)

sage: b = R(1.0, 2.0)

sage: (a * b).str(style='brackets ')

’[3.0999999999985 .. 6.4000000000015] ’

sage: (a - 2*b).str(style='brackets ')

’[-0.90000000000146 .. 1.2000000000008] ’

sage: (b/(a - 2*b)).str(style='brackets ')

’[-infinity .. +infinity]’

Properties. We have a natural map R → R(R) sending an element x to the
enclosure of {x}. Also we have a natural map C→ R(C) sending y to the pair
of enclosures of {Re(x)} and {Im(x)}. Note that 0 and 1 can be represented
exactly in R(R) and R(C), as 0, 1 ∈ FR. Hence there exist additive and mul-
tiplicative identity elements in R(R) and R(C) and we also denote them by 0
and 1. Addition and multiplication are commutative, but no other ring axioms
hold in general in R(R) nor R(C).

In contrast to representations of profinite integers/numbers, no analogue of
the representability property holds in R(R) or R(C). Our choice of the finite
set F of machine representable reals induces a maximum precision one can work
with in R(R) and R(C). See below for an explanation of this choice.

Design choices. As mentioned, our choice to pick a finite set of machine
representable reals induces a maximum precision one can work with in R(R)

12

and R(C). An alternative could for example be to choose FR = Q. In this thesis
we focus on computing with adèles and idèles. Part of that is computing with
real and complex numbers, but this has been an area of research for decades.
Therefore, we chose to use the existing software package MPFI to handle our
real/complex arithmetic, instead of creating our own. Moreover, as we shall see
in Chapters 7 and 9, for our applications we essentially only use finite adèles and
idèles. So for our applications our choice of representations of real and complex
numbers is irrelevant.

3.4 Representations of adèles

For the rest of this chapter, let a total order on the infinite primes of K be
given, such that any real prime is smaller than any complex prime. We also fix
an isomorphism ϕp : Kp

∼−→ C of topological rings for each complex prime p of
K, for the rest of this chapter.

In our adèle SageMath software the choices above are given by K.places(),
where K is a number field. This returns the set of infinite primes of K as an
ordered list of embeddings of K into C (so a choice of embedding is made for the
complex primes). In SageMath a number field K is always given together with
an explicit generator α of K over Q. The embeddings φ : K → C returned by
K.places() are precisely those satisfying Im(φ(α)) ≥ 0. They are sorted based
on the complex numbers φ(α) as described in the SageMath documentation of
sort_complex_numbers_for_display(): “First come the real numbers (with
zero imaginary part), then the complex numbers sorted according to their real
part. If two complex numbers have the same real part, then they are sorted
according to their imaginary part.” Here the natural order on R is used.

Note that for each real prime p of K there exists a unique isomorphism
ϕp : Kp

∼−→ R of topological rings. Let (r, s) be the signature of K and write the
infinite primes of K as v1, ..., vr+s in ascending order. Write ϕ0 for the natural

isomorphism A0
K
∼−→ K̂. Now we define ϕ = (

∏r+s
i=1 ϕvi) × ϕ0. This makes ϕ

into an isomorphism of topological rings as well and its domain is equal to AK .
Using ϕ we identify AK with (

∏r
i=1 R)× (

∏s
j=1 C)× K̂.

We define a representation of K-adèles to be a pair a = (x, y) where x
is a tuple (x1, ..., xr+s) such that xi ∈ R(R) if 1 ≤ i ≤ r and xi ∈ R(C) if
r < i ≤ r + s and y is a representation of profinite K-numbers. We call x the
infinite part of a and denote it by a∞. The representation y is also denoted by
a0 and is called the finite part of a. For v an infinite prime, we also write av for
yi, where i ∈ {1, ..., r + s} satisfies v = vi. We define the represented subset of
a, denoted R(a), to be the subset(

r+s∏
i=1

R(avi)

)
×R(a0)

of AK . We define R(AK) to be the set of representations of K-adèles.

Arithmetic. Sums, differences, products and quotients of representations of
adèles are defined component-wise. So for example for a and b two representa-
tions of K-adèles, we set a + b to be ((avi + bvi)

r+s
i=1 , a0 + b0). We end up, as

before, with a + b having the property that its represented subset is minimal
while containing R(a) +R(b). Similar properties hold for the other operations.

13

Note that division is only defined when the finite part of b has zero modulus
and non-zero value.

Implementation. We implemented these representations in the class Adele

and R(AK) as Adeles. Let us demonstrate their usage.

sage: A = Adeles(QQ); A

Adele Ring of Rational Field

sage: a = A(9.7, Qhat (1/2, 12/5)); a

(9.6999999999999993? , 1/2 mod 12/5)

sage: b = A(5.3, Qhat(4, 12)); b

(5.2999999999999999? , 4 mod 12)

sage: a + b

(14.999999999999999? , 21/10 mod 12/5)

sage: c = A(2.0, 1/2)

sage: a/c

(4.8499999999999997? , 1 mod 24/5)

Properties. The theoretical properties of R(AK) are completely determined by

those of R(R), R(C) and R(K̂). The only properties holding in each of them,
and hence in R(AK), are that addition and multiplication are commutative.
When only considering the infinite or finite parts of representations of adèles,
more can be said of course, see Sections 3.2 and 3.3.

3.5 Representations of multiplicative p-adics

Let p be a finite prime of the number field K. Recall that Op denotes the ring
of p-adic integers and that for n ∈ Z≥0 the n-th multiplicative subgroup at p is
given by

Unp =

{
O∗p if n = 0;

1 + pnOp if n > 0,

which is an open subgroup of K∗p .
We define a representation of multiplicative p-adics to be a pair a = (x, n) ∈

K∗×Z≥0 such that x is HNF-reduced modulo pmax(1,n)+ordp(x) (cf. Section 3.1).
The open and closed subset xUnp of K∗p is called the represented subset of a and
denoted by R(a). We refer to x as the center of a, denoted c(a), and we call n
the precision of a, denoted p(a). All α ∈ R(a) have the same valuation at p and
we call this unique valuation the valuation of a, denoted ordp(a). Note that a is
not uniquely determined by its represented subset: if n = 0, there exist N(p)−1
representations b of multiplicative p-adics such that R(a) = R(b), where N(p)
denotes the norm of p. The set of representations of multiplicative p-adics is
denoted R(K∗p).

For any (x, n) ∈ K∗ × Z≥0 we define the representation of multiplicative p-
adics associated to (x, n) to be the a ∈ R(K∗p) with precision n and with center

the HNF-reduction of x modulo pmax(1,n)+ordp(x).

Arithmetic. Let a, b ∈ R(K∗p). We define the product ab of a and b to be the
representation of multiplicative p-adics associated to

(c(a)c(b),min(p(a), p(b))).

14

We define the inverse a−1 of a to be the representation of multiplicative p-adics
associated to

(c(a)−1, p(a)).

These definitions ensure R(a)R(b) = R(ab) and R(a)−1 = R(a−1) as Ump is a
subgroup of Unp whenever m ≥ n. We define division by setting a/b to be ab−1.

Implementation. These representations of multiplicative p-adics are imple-
mented in the class MultiplicativePAdic and the set R(K∗p) in the class
MultiplicativePAdics. Below we show an example of their usage.

sage: R.<X> = PolynomialRing(ZZ)

sage: K.<a> = NumberField(X^3-2)

sage: p3 = K.prime_above (3)

sage: M = MultiplicativePAdics(K, p3); M

Group of multiplicative (3, a + 1)-adics of Number

Field in a with defining polynomial X^3 - 2

sage: u = M(a^2, 10); u

a^2 * U(10)

sage: v = M(-a^10, 6); v # note the reduction

a * U(6)

sage: u*v

2 * U(6)

sage: v/u

1/2*a^2 * U(6)

Properties. The fact that the groups Unp for n ∈ Z≥0 form a basis of open
neighborhoods of 1 in K∗p together with the fact that K∗ lies dense in K∗p
gives us the following representability property : for any α ∈ K∗p and for any
neighborhood U ⊆ K∗p of α, there exists a ∈ R(K∗p) such that α ∈ R(a) ⊆ U .

Multiplication in R(K∗p) is associative and commutative. No identity ele-
ment exists however, so R(K∗p) is not a group. One should also realize that the
inverse a−1 of a representation a of multiplicative p-adics is not an inverse in
the sense of a group. What we do have is 1 ∈ R(aa−1).

3.6 Representations of idèles

Recall the choices made at the start of Section 3.4. Let (r, s) be the signature
of K and denote the infinite primes of K in ascending order by v1, ...vr+s.
The unique isomorphisms ϕvi : Kp

∼−→ R for real primes vi of K restrict to

isomorphisms ϕ∗vi : K∗p
∼−→ R∗ of topological groups. Similarly the chosen

isomorphisms ϕvj : Kp
∼−→ C for complex primes vj restrict to isomorphisms

ϕ∗vj : K∗p
∼−→ C∗ of topological groups. We define ψ = (

∏r+s
i=1 ϕ

∗
vi)× IdJ0

K
, which

is an isomorphism of topological groups as well. We will use ψ to view JK as
(
∏r
i=1 R∗)× (

∏s
j=1 C∗)× J0

K .
We define R(R∗) and R(C∗) to be the subsets of R(R) and R(C) respectively

consisting of representations whose represented subset is not equal to {0}. Then
R(R∗) and R(C∗) are closed under multiplication and division. Denote the set
of finite primes of K by P. We define

F =

{
f : Q → K × Z≥0

∣∣∣∣ Q is a finite subset of P and
f(p) ∈ R(K∗p) for each p ∈ Q

}
.

15

Now we define a representation of K-idèles to be a pair a = (x, f) such that
x ∈

∏r
i=1 R(R∗) ×

∏s
j=1 R(C∗) and f ∈ F t K∗ (where t denotes disjoint

union). We define the represented subset R(a) of a by

R(a) =



(
r+s∏
i=1

(R(xi) \ {0})

)
×

∏
p∈Q
R(f(p))

×
 ∏

p∈P\Q

O∗p

 if f ∈ F ;

(
r+s∏
i=1

(R(xi) \ {0})

)
×

∏
p∈P
{f}

 if f ∈ K∗,

where Q is the domain of f if f ∈ F . Note that R(a) is a non-empty subset of
JK . We call x = (x1, ..., xr+s) the infinite part of a and denote it by a∞. For
i ∈ {1, ..., r + s} we also write avi for xi. We denote f by a0 and call it the
finite part of a. If a0 ∈ F then we denote the domain of f by P(a) and call its
elements the stored primes of a. For p ∈ P(a) we write ap for the representation
f(p) of multiplicative p-adics. We extend this notation ap to all primes of K: for
p ∈ P \ P(a) we define ap = (1, 0) ∈ R(K∗p). If a0 ∈ K∗ then we say that a has
exact finite part. In this case for every p ∈ P we set ap = a0 and R(ap) = {a0}.
This notation gives the single equation

R(a) =

(
r+s∏
i=1

(R(avi) \ {0})

)
×
∏
p∈P
R(ap)

for the represented subset of a. We write R0(a) for
∏

p∈P R(ap), i.e. the image

of R(a) under the projection JK → J0
K . For p a finite prime of K, we define

the valuation ordp(a) of a at p to be ordp(ap). The set of representations of
K-idèles is denoted R(JK).

Arithmetic. We define a commutative multiplication on R(JK) in the follow-
ing manner. Let a, b ∈ R(JK). We define the product ab of a and b to be the
ab ∈ R(JK) defined as follows. We set (ab)vi = avibvi for i ∈ {1, ..., r + s}. If
a0, b0 ∈ K∗, then we set (ab)0 = a0b0. If a0, b0 ∈ F , then we define (ab)0 ∈ F
to have domain P(a) ∪ P(b) and for p ∈ P(a) ∪ P(b) we set (ab)0(p) = apbp.
And lastly if a0 ∈ K∗ and b0 ∈ F , then we define (ab)0 ∈ F to have domain
{p ∈ P | ordp(a0) 6= 0}∪P(b) and for p ∈ P(ab) we let (ab)0(p) be the represen-
tation of multiplicative p-adics associated to (a0c(bp), p(bp)). The case a0 ∈ F
and b0 ∈ K∗ is handled by commutativity.

In R(JK) we define the inverse a−1 of a by setting a−1 = ((a−1vi)r+si=1 , a
−1
0),

where for a0 ∈ F we define a−10 : P(a) → K∗ × Z≥0 by a−10 (p) = a−1p for
p ∈ P(a).

These definitions ensure that the represented subsets of ab and a−1 are
minimal while satisfying R(a)R(b) ⊆ R(ab) and R(a)−1 ⊆ R(a−1). And we
even have R0(a)R0(b) = R0(ab) and R0(a)−1 = R0(a−1). But ab and a−1 are
not uniquely determined by these properties.

Division in R(JK) is defined by setting a/b = ab−1.

Implementation. We have implemented R(JK) as Ideles and its elements
as Idele in SageMath. The infinite primes v1, ..., vr+s are called infinity_0,
infinity_1, etc. in our code. Let us illustrate our Ideles in an example.

16

sage: R.<X> = PolynomialRing(QQ)

sage: K.<a> = NumberField(X^2+5)

sage: J = Ideles(K); J

Idele Group of Number Field in a with defining

polynomial X^2 + 5

sage: p2 , p3 = K.prime_above (2), K.prime_above (3)

sage: u = J([1+I], {p2: (a, 6), p3: (a/2-7, 1)}); u

Idele with values:

infinity_0: 1 + 1*I

(2, a + 1): a * U(6)

(3, a + 1): 3/2*a * U(1)

other primes: 1 * U(0)

sage: u[p2]

a * U(6)

sage: u[Infinity]

1 + 1*I

sage: u[K.prime_above (97)]

1 * U(0)

sage: u.stored_primes ()

[Fractional ideal (2, a + 1),

Fractional ideal (3, a + 1)]

sage: v = J([-2], 2*a); v

Idele with values:

infinity_0: -2

other primes: 2*a

sage: u.has_exact_finite_part ()

True

sage: v[p3]

2*a

sage: u*v

Idele with values:

infinity_0: -2 - 2*I

(2, a + 1): 6 * U(6)

(3, a + 1): -3*a * U(1)

(5, a): 2*a * U(0)

other primes: 1 * U(0)

sage: u.inverse ()

Idele with values:

infinity_0: 0.50000000000000000? -

0.50000000000000000?*I

(2, a + 1): -1/5*a * U(6)

(3, a + 1): -2/15*a * U(1)

other primes: 1 * U(0)

sage: 1/v

Idele with values:

infinity_0: -0.50000000000000000?

other primes: -1/10*a

Properties. For the finite parts of representations of idèles, multiplication
is associative and commutative. But as multiplication in R(R) and R(C) is

17

not associative in general, all we can say about R(JK) is that multiplication
is commutative. In the same vain a representability result only holds at the
finite idèles: for any α ∈ J0

K and any neighborhood U ⊆ J0
K of α, there exists

a ∈ R(JK) such that α ∈ R0(a) ⊆ U . We call this the finite representability
property of R(JK).

Design choices. Let us explain the choice to include the possibility of a rep-
resentation having exact finite part. It originated from the desire to convert
elements of K∗ to representations of K-idèles. Suppose we only defined repre-
sentations which do not have exact finite part. Take an element α ∈ K∗. What
should the image a of α in R(JK) be? It is unclear what P(a) should be and for
each p ∈ P(a) it is unclear what the precision of ap should be. We want P(a)
and p(ap) as large as possible, but they must be finite. The second problem,
choosing p(ap), could be addressed in two ways. In the definition of representa-
tions of multiplicative p-adics we could allow ∞ as a precision. For a ∈ R(K∗p)
with p(a) = ∞ we would set R(a) = {c(a)}. Another option would be to only
work with a set R(K∗p ;nmax) of representations of multiplicative p-adics with
some maximum precision nmax. Neither of these solve the first problem though:
what should P(a) be? No single prime can be considered to have more priority
to be stored by a than another. Hence no sensible choice of P(a) (which must
be finite) could be made. This lead us to include the option of a having exact
finite part.

3.7 Recap of the choices made

In defining representations, certain choices had to be made. We summarize
these choices here, for clarity.

The definitions of representations of elements of Ô, K̂, AK , K∗p and JK all
depend on a choice of Z-basis Ω of O. The definitions of R(R) and R(C), and
therefore also of R(AK) and R(JK), depend on a choice of a set of machine
representable reals. The definitions of R(AK) and R(JK) furthermore require
a choice of a total ordering of the infinite primes of K, such that any real prime
is smaller than any complex prime, together with a choice of topological ring
isomorphisms Kp

∼−→ C for every complex prime p.
In the rest of this thesis, whenever talking about any of these representations,

we will assume these choices to be made. Moreover, given these choices and
writing (r, s) for the signature of K, we will always view AK and JK as

AK =

(
r∏
i=1

R

)
×

 s∏
j=1

C

× K̂ and JK =

(
r∏
i=1

R∗
)
×

 s∏
j=1

C∗
× J0

K

as described in Section 3.4 and 3.6, unless explicitly stated otherwise.

4 Conversions

In Chapter 3 we defined representations of elements of ÔK , K̂, R, C, AK , K∗p
and JK , for K a number field and p a finite prime of K. The underlying algebraic
structures of these representations are related to each other via natural maps.
Based on these natural maps, we will define so-called conversions in this chapter,

18

which are maps on the corresponding sets of representations. For example, the
natural embedding JK → AK will induce a conversion R(JK)→ R(AK).

We will also define conversions between the sets of representations mentioned
above and some exact algebraic structures, namely K, (quotients of) OK , K∗

and ray class groups of K. For ease of speech we define R(K) = K, call an
element x ∈ R(K) a K-representation and set the represented subset R(x) of x
to be {x}; and we take similar definitions for the other exact algebraic structures.

Let A and B be sets for which representation sets R(A) and R(B) are
defined. We define a conversion from A to B to be a map f : D → R(B)
where D ⊆ R(A). Let ϕ : A → B be a map. We say that f is based on ϕ
if for all a ∈ D we have ϕ(R(a)) ⊆ R(f(a)). If moreover f(a) has minimal
represented subset under this requirement, then we call f sharp. If equality
always holds, i.e. ϕ(R(a)) = R(f(a)) for all a ∈ D, then we call f exact. Now
let ψ : B → A be a map. Then we call f based on ψ if for all a ∈ D we
have ψ−1(R(a)) ⊆ R(f(a)). Similar to before we call f sharp and exact if this
inclusion is always minimal or an equality respectively.

In this chapter we let K be a number field with signature (r, s) and ring of
integers O.

4.1 Base embeddings

We have actually already encountered some conversions. In Sections 3.1 and 3.2
we defined natural maps making the diagram

O K

R(Ô) R(K̂)

commute. Each of these four maps is an exact conversion based on the natural
embeddings

O K

Ô K̂.

Let D ⊆ R(K̂) consist of the representations with denominator equal to 1.

We also have the conversion from K̂ to Ô which is the map D → R(Ô) that
sends a representation to its numerator. This is an exact conversion based on
the embedding Ô → K̂.

Let ε : K → R(K̂) denote the conversion from K to K̂. For i ∈ {1, ..., r}
let πi : AK → R(R) denote the composition of the projection from AK to the

i-th R in the product AK = (
∏r
i=1 R) × (

∏s
j=1 C) × K̂ and the natural map

R → R(R) from Section 3.3. Similarly for j ∈ {1, ..., s} let πr+j : AK → R(C)
denote the composition of the projection from AK to the j-th C and the natural
map C → R(C) from Section 3.3. Let ι : K → AK be the natural embedding.
We define the conversion from K to AK to be the map sending x ∈ K to the

19

representation (((πi ◦ ι)(x))r+si=1 , ε(x)) of K-adèles. We obtain a sharp conversion
based on ι.

We define the conversion from K∗ to JK as the map sending x ∈ K∗ to the
representation (((πi ◦ ι)(x))r+si=1 , x) of K-idèles. This is a sharp conversion based
on the natural embedding K∗ → JK .

4.2 Quotients of O
Let I be an ideal of O. Then we have the natural map π : Ô → O/I. Let

D ⊆ R(Ô) consist of the representations with precision at least I, that is,

having modulus divisible by I. The conversion from Ô to O/I is the map
D → O/I sending a ∈ D to v(a) + I. This is an exact conversion based on π.

The conversion from O/I to Ô sends x + I ∈ O/I to the representation
x mod I of profinite K-integers. This is an exact conversion based on π.

Now we consider the unit group (O/I)∗. We have the natural surjection

ϕ : Ô∗ → (O/I)∗ whose kernel is WI =
∏

p U
ordp(I)
p , where the product ranges

over the finite primes of K and Unp denotes the n-th multiplicative subgroup at
p. Denote the set of finite primes of K by P. For p ∈ P and u ∈ R(JK) define
p(up) to be ∞ if u has exact finite part. Let

E = {u ∈ R(JK) | R0(u) ⊆ Ô∗ and p(up) ≥ ordp(I) for every p ∈ P}.

This ensures that E consists of the u ∈ R(JK) such that ϕ(R0(u)) is a singleton.
We define the conversion from JK to (O/I)∗ to be the map E → (O/I)∗ sending
u ∈ E to the unique element in ϕ(R0(u)).

We define the conversion from (O/I)∗ to JK to be the map sending x+ I ∈
(O/I)∗ to u ∈ R(JK) such that on real/complex primes p we have up =
(−∞,∞) and up = ((−∞,∞), (−∞,∞)) respectively and for p ∈ P(u) =
{finite primes dividing I} we have that up is the representation of multiplicative
p-adics associated to (x, ordp(I)). Note that for this u we have R0(u) = xWI =
ϕ−1{x+ I}.

4.3 Adèles and idèles

Let us call u ∈ R(JK) very integral if either u0 ∈ O or u does not have exact
finite part and for each p ∈ P(u) we have c(up) ∈ O. Note that this is stronger

than u being integral in the sense of R0(u) ⊆ Ô.
The conversion from JK to AK is the map f : R(JK) → R(AK) defined as

follows. Let u ∈ R(JK). For p a real/complex prime of K, let ap ∈ R(R) or ap ∈
R(C) respectively be the enclosure of R(up) \ {0}. Write a∞ = (ap1

, ..., apr+s)
where p1, ..., pr+s denote the infinite primes of K in ascending order. If u has

exact finite part, then we set f(u) = (a∞, ε(u0)), where ε : K → R(K̂) denotes

the conversion from K to K̂. Otherwise, we first assume that u is very integral.
Write P for the set of finite primes of K and for p ∈ P set

np =

{
max(1, p(up)) if N (p) = 2;

p(up) otherwise

and ep = np + ordp(c(up)), where N denotes the absolute ideal norm. Note
that for p ∈ P, if N (p) = 2 then U0

p = U1
p . Hence for p ∈ P with np > 0 we

20

have R(up) = c(up) + pepOp. Define Q = {p ∈ P | ep ≥ 1}. By the Chinese
Remainder Theorem, there exists x ∈ O satisfying

x ≡ c(up) mod pep for all p ∈ Q.

Write I =
∏

p∈Q pep and let y be the HNF-reduction of x modulo I. Then y
is uniquely determined by u. Now we define f(u) = (a∞, y mod I) ∈ R(AK).
Lastly if u is not very integral, then we take some d ∈ Z>0 such that du is very
integral and we set f(u) = (a∞, f(du)0/d). We claim that this yields a sharp
conversion based on the natural embedding JK → AK .

Proof claim. For a very integral u ∈ R(JK) one can check that f(du)0 = d·f(u)0
for any d ∈ Z>0. It follows that f is a well-defined map. We view JK ⊆ AK . Our
definition of enclosure ensures that the conversion is sharp at the infinite primes.
Let u ∈ R(JK). If u has exact finite part we clearly have R(f(u)0) = R0(u).
Now suppose u0 6∈ K∗ and u is very integral. We use the notation from the
definition. Let p ∈ Q. The projection Rp(f(u)0) of R(f(u)0) to Kp satisfies:

Rp(f(u)0) = y + IOp = x+ pepOp = c(up) + pepOp.

So if np > 0, thenRp(f(u)0) = R(up). And if np = 0, then ep = ordp(c(up)) and
so Rp(f(u)0) = c(up)Op. For p ∈ P \ Q, we have Rp(f(u)0) = Op = c(up)Op.
Now let p ∈ P such that np = 0. Above we saw that Rp(f(u)0) = c(up)Op,
while R(up) = c(up)O∗p. As N (p) > 2, the unit group O∗p = Op \ pOp consists
of more than one coset of pOp in Op. Hence any a ∈ R(AK) such that O∗p ⊆
Rp(a) satisfies ordp(m(a)) ≤ 0. This shows that Rp(f(u)0) is minimal while
containing R(up). This shows sharpness in the very integral case. The non-very

integral case follows from the fact that for d ∈ Z>0 and a ∈ R(K̂) we have
R(a)/d = R(a/d).

We will not define a conversion from AK to JK , because of the following
obstruction. Let a ∈ R(AK) whose finite part has non-zero modulus. Then for
all but finitely many primes p of K the projection of R(a) to Kp equals Op. On
the other hand, for any u ∈ R(JK) the projection of R(u) to K∗p is a singleton
or equals O∗p for all but finitely many primes p. Hence there does not exist any
u ∈ R(JK) such that JK ∩R(a) ⊆ R(u).

4.4 Profinite rational vectors

Let α ∈ O be a generator of K over Q, i.e. K = Q(α). Write d for the degree
of K over Q. Then B = (1, α, α2, ..., αd−1) is a Q-basis of K. Therefore B

is also a Q̂-basis of K̂ and so we have the isomorphism of Q̂-vector spaces
ϕ : K̂ → Q̂d sending x ∈ K̂ to the unique y = (y0, y1, ..., yd−1) ∈ Q̂d such that

x =
∑d−1
i=0 yiα

i.

We define the conversion from K̂ to Q̂d to be the map f : R(K̂) → R(Q̂)d

defined as follows. Let a ∈ R(K̂). If m(a) is zero, then set n = 0. Otherwise let
n be the largest rational number such that m(a) ⊆ nO. Let h denote the index

of the order Z[α] in O. Then we define f(a) = (ϕ(v(a))i mod n/h)d−1i=0 ∈ R(Q̂)d.
We claim that this gives us a conversion based on ϕ.

21

Proof claim. We keep the notation introduced above. For i ∈ {0, 1, ..., d−1} we

define ϕi : K̂ → Q̂ to be ϕ composed with the projection to the i-th Q̂. What
we want to show is ϕi(R(a)) ⊆ R(f(a)i) for every i ∈ {0, 1, ..., d− 1}.

Since ϕ is additive we have ϕ(R(a)) = ϕ(v(a)) + ϕ(m(a)Ô). For every

i ∈ {0, 1, ..., d − 1} we have R(f(a)i) = ϕi(v(a)) + n/hẐ. Hence it suffices to

show that ϕi(m(a)Ô) ⊆ n/hẐ for every i ∈ {0, 1, ..., d− 1}.
As groups O/Z[α] and Ô/Ẑ[α] are isomorphic. So since the index of Z[α] in

O is h, the index of Ẑ[α] in Ô is also h and we have Ô ⊆ 1
h Ẑ[α]. It follows that

ϕ(Ô) ⊆ (1
h Ẑ)d.

Hence by definition of n and the fact that ϕ is a Q-linear map, we have

ϕ
(
m(a)Ô

)
⊆ ϕ

(
nÔ
)

= ϕ
(n
h
Ẑ[α]

)
⊆ n

h
ϕ
(
Ẑ[α]

)
=
(n
h
Ẑ
)d
.

This proves our claim.

Viewing AK as a free AQ-algebra with basis (1, α, ...αd−1) we implemented
a similar conversion from AK to AdQ. This uses the conversion above on finite
parts and performs some linear algebra over R and C on infinite parts. For
details, see the method to_rational_vector() of the class Adele at [6].

4.5 Ray class groups and idèles

For p a real prime of K we define U0
p = R = Kp and U1

p = R>0 ⊆ Kp. For a

cycle f of K we write Wf =
∏

p U
ordp(f)
p with p running over all primes of K.

Let f be a cycle of K and write Clf for the ray class group of K modulo f.
We have the canonical homomorphism ϕ : JK → Clf with kernel K∗Wf such
that for every finite prime p that does not divide f and for every π ∈ K∗p with
ordp(π) = 1 the K-idèle x = (1, 1, ..., 1, π, 1, 1, ...) with ordp(x) = 1 is send to
the class of p in Clf.

Let D ⊆ R(JK) consist out of those representations u for which R(u) ⊆ yWf

for some y ∈ JK . So for u ∈ R(JK) we have u ∈ D if and only if (1) for each
infinite prime p dividing f, we have R(up) ⊆ R>0 or R(up) ⊆ R<0 and (2)
either u has exact finite part or for each finite prime p dividing f, we have
p(up) ≥ ordp(f).

We let the conversion from JK to Clf to be the map f : D → Clf that
sends u ∈ D to the unique α ∈ Clf such that ϕ(R(u)) = {α}. This is an exact
conversion based on ϕ. For details on how to compute such α, see the method
_from_ray_class() of the class Ideles in idele.py at [6].

Suppose that at each finite prime p of K a uniformizer πp ∈ K at p is
given. Also for each ray class c ∈ Clf let a representative ideal Ic be given.
The conversion from Clf to JK is the map f : Clf → R(JK) sending c ∈ Clf
to the u ∈ R(JK) defined as follows. At each complex prime p of K we put
up = ((−∞,∞), (−∞,∞)). At real primes p dividing f we set up = (0,∞). At
the other real primes p we set up = (−∞,∞). We define the set of stored primes
of u by P(u) = {p | ordp(Ic) 6= 0 or ordp(f) 6= 0}. For p ∈ P(u) we define

up =

{
(1, ordp(f)) if p | f;
(π

ordp(Ic)
p , 0) if p | Ic.

22

This yields a conversion satisfying R(f(c)) ⊆ ϕ−1{c}. Note that this conversion
is not based on ϕ: the inclusion is the wrong way around. It can be seen as an
implementation of a section of ϕ. We will put this conversion to good use in
Chapter 9.

4.6 p-adic numbers

There is an implementation in SageMath of p-adic numbers, for (rational) prime
numbers p. We will not go into the details of this implementation here, but
we did implement conversions between our representations of profinite inte-
gers/numbers and the implementation of p-adic numbers in SageMath. For p

a prime number we implemented exact conversions from Ẑ to Zp and from Q̂
to Qp based on the natural projections Ẑ → Zp and Q̂ → Qp. For p1, p2, ..., pk
distinct prime numbers we also implemented an exact conversion from

∏k
i=1 Zp

to Ẑ based on the projection Ẑ →
∏k
i=1 Zp. We extended that conversion to

a conversion from Q̂ to
∏k
i=1 Qp, although this does not result in a conversion

based on the projection Q̂ →
∏k
i=1 Qp. See files profinite_integer.py and

profinite_number.py at [6] for details.

5 Implementation in SageMath

We have implemented the representations of profinite integers, profinite num-
bers, adèles, multiplicative p-adics and idèles defined in Chapter 3 in SageMath.
We describe our implementation in this chapter. The source code can be found
at [6].

5.1 Elements, parents and categories

SageMath implements many mathematical objects and algorithms. SageMath
is built on top of the programming language Python (and many other open
source packages) and uses the Object Oriented Programming design pattern.
In practice this means that each mathematical object is implemented in Sage-
Math as (an instance of) a Python class. Algorithms are in turn implemented
as methods of these classes. SageMath uses Elements, Parents and Categories
to organize these classes. We capitalize these words to distinguish their meaning
in SageMath from their usual meaning in mathematics. A Category is a Python
object modeling a (mathematical) category, e.g. the category of groups or the
category of Q-algebras. Both Elements and Parents are also Python objects,
modeling (mathematical) elements of sets and sets of elements respectively. A
Parent usually models a set with additional (algebraic) structure. This is en-
coded into SageMath by specifying that the Parent lies in certain Categories.
For example: in SageMath the category of rings is implemented as Rings().
There is a Parent implementing the ring of integers called ZZ and it lies in
Rings(). The Elements of ZZ are instances of the class Integer.

Categories provide an efficient and clearly organized way of using generic
code as well. For example, computing greatest common divisors can be done
in any Euclidean domain. In SageMath, a generic algorithm is implemented
for computing greatest common divisors in Euclidean domains. Whenever a

23

Parent belongs to the category EuclideanDomains(), a method gcd() becomes
available for the corresponding Elements. This does however sometimes require
the implementation of other methods first. In the case of EuclideanDomains(),
a method quo_rem() performing division with remainder must be implemented
before gcd() works correctly. For more details on the Element, Parent and
Category framework of SageMath, see [17].

We used this framework for implementing our representations of adèles and
idèles. For example, we implemented R(ÔK), for K a number field, as a Par-
ent, namely ProfiniteIntegers(K). Its Elements are instances of the class
ProfiniteInteger, which implements representations of profinite K-integers.
We put our parent in the Category CommutativeAlgebras(O), for O the ring of
integers of K. Recall from Section 3.1 that R(ÔK) does not satisfy all ring ax-
ioms and therefore is not an OK-algebra. Although one could view this as an in-
consistency, this is compliant with the intended use of Categories. For example,
floating point arithmetic does not satisfy all ring axioms either, while the Par-
ent RealField implementing floating point arithmetic does belong to Rings()

in SageMath. Similarly we declared the Parents ProfiniteNumbers(K) and
Adeles(K) to be in the Category CommutativeAlgebras(K) and we declared
Ideles(K) to be in CommutativeGroups(). We made sure that all methods
that these Categories expect to be implemented (like the quo_rem() example
above), are implemented for our algebraic structures whenever this makes sense.

5.2 Implementation of representations

The implementations of our representations exactly mimic the definitions in
Chapter 3. Let us give two examples to illustrate this. An instance of the
class ProfiniteInteger has attributes _value and _modulus, which are an
algebraic integer and an integral ideal respectively. An instance of the class
Idele has attributes _infinite and _finite. Here _infinite is a Python list
of Elements of RealIntervalField and ComplexIntervalField. And _finite

is either a number field element or a Python dictionary with prime ideals as keys
and instances of MultiplicativePAdic as values.

All operations defined on representations are implemented precisely as stated
in Chapter 3. The formula m(a + b) = gcd(m(a),m(b)) for a, b ∈ R(ÔK)
and K a number field is for example used to implement addition for the class
ProfiniteInteger.

Also we implemented notions related to representations that were defined
in Chapter 3 as methods of the corresponding classes. For example the class
Idele has the methods has_exact_finite_part() and stored_primes().

5.3 Conversions and coercions

In Chapter 4 we defined conversions between our representations. All of these
conversions are implemented as well. For example we can do the following.

sage: Qhat (7/2) # convert from Q to Qhat

7/2 mod 0

sage: x = Zmod (500) (79) # image of 79 in Z/500Z

sage: a = Zhat(x); a # convert from Z/500Z to Zhat

79 mod 500

24

sage: a[5] # from Zhat to the 5-adic integers

4 + 3*5^2 + O(5^3)

In SageMath, some conversions can be declared to be a coercion. Coercions
are used automatically by SageMath to enable arithmetic between Elements of
different Parents. For example, we declared our conversion from idèles to adèles
to be a coercion and hence we can do the following.

sage: A = Adeles(QQ)

sage: a = A(-1, Qhat (1/2, 50))

sage: J = Ideles(QQ)

sage: u = J(2.5, {2: (1, 1), 5: (-1, 2)})

sage: a + u

(1.5000000000000000? , 99/2 mod 50)

The representation of idèles u is implicitly converted (also called coerced) to a
representation of adèles and the result is added to a inside R(AQ).

Not every conversion may be declared to be a coercion. For example, the
domain of a coercion must always be the whole Parent, hence our conversion
from K̂ to ÔK , with K a number field, cannot be declared to be a coercion. For
the other rules we refer to the SageMath documentation, for example Section
“Coercion – the basics” of [18]. The conversions that we have declared to be

coercions are the conversions from OK to ÔK , from OK/I to ÔK , from K to

K̂, from ÔK to K̂, from K to AK , from K∗ to JK and from JK to AK , where
K denotes a number field and I an OK-ideal.

SageMath can even construct new Parents which are appropriate for per-
forming arithmetic.

sage: R.<X> = PolynomialRing(ZZ)

sage: f = X^2 - 7

sage: a = Zhat(8, 14)

sage: f+a

X^2 + 1 mod 14

sage: (f+a).parent ()

Univariate Polynomial Ring in X over Profinite

Integers of Rational Field

In the example above, the polynomial f has Parent R = Z[X] and a has Par-

ent Zhat = R(Ẑ). Both Parents can be coerced into the Parent S = R(Ẑ)[X].
SageMath detects this, constructs the Parent S, coerces f and a to S and then
performs the addition inside S. SageMath is able to do this because we im-
plemented so-called construction functors for our Parent classes, see Section
“Coercion – the advanced parts” of [18] for details.

5.4 Equivalence of representations

We needed to implement the equality operator == for our classes. Consider the
following example.

sage: Zhat = ProfiniteIntegers(QQ)

sage: Zhat(7, 9) == Zhat(7, 27)

Should the last line return True or False?

25

To determine this we needed to define a notion of equivalence of repre-
sentations. Let K be a number field, let p be a finite prime of K and let
A ∈ {ÔK , K̂,AK ,K∗p , JK}. We considered the following three different notions
of equivalence in R(A). Let a, b ∈ R(A).

� We call a and b strictly equivalent if there exists α ∈ A such that R(a) =
{α} = R(b), i.e. a and b are both exact and represent the same unique
value.

� We call a and b represented subset equivalent if R(a) = R(b), i.e. a and b
represent the same subset of A.

� We call a and b loosely equivalent if R(a) ∩ R(b) 6= ∅, i.e. there exists an
element α ∈ A that a and b both represent.

Strict equivalence implies represented subset equivalence and represented subset
equivalence implies loose equivalence. Strict and represented subset equivalence
define equivalence relations, while loose equivalence fails to be transitive in gen-
eral. The implementations of R(R) and R(C) in SageMath use strict equivalence
for the == operator. On the other hand, the implementation of p-adic numbers
in SageMath, for p a prime number, uses loose equivalence for comparison us-
ing ==. Hence a consistent choice throughout SageMath was not possible. We
did however want a single choice for all our own representations. When working
with these representations during development, the question whether or not two
representations could represent the same element came up more often than the
question whether or not they certainly did represent the same element. Hence
we ended up implementing loose equivalence for == comparison of our own rep-
resentations. The other options could have been implemented as well and they
might be better for certain applications. We implemented != comparison as not
being loosely equivalent, i.e., having disjoint represented subsets.

5.5 Case distinction for Q
From a mathematical point of view, the field Q is a number field. Unfortunately,
in SageMath this is not the case: the implementation QQ of Q does not inherit
from the class NumberField_generic and misses many methods that number
fields have in SageMath. Also, methods with the same name may have different
meanings. For example when K is a number field in SageMath, the command
K.ideal(10/3) gives the fractional OK-ideal in K generated by 10/3, while
QQ.ideal(10/3) gives the ideal of Q generated by 10/3 (i.e. the unit ideal).
Fractional ideals of Q are not implemented in SageMath, while we do want to
use those fractional ideals.

A possible solution would be to use NumberField(X-1) instead of QQ. This
gives the number field Q[X]/(X−1), which is canonically isomorphic to Q. But
QQ and its Elements do not only lack certain number field (element) methods in
SageMath; they also have many methods that number field(s) (elements) do not
have. Elements of QQ (currently) even have more methods than number field
elements in SageMath. Hence we did not want to prohibit users from using QQ

itself as a base field.
Therefore we choose to distinguish two cases in our implementation: the

base field being equal to QQ or the base field being a SageMath number field. In
many places in our code these cases are handled separately.

26

A user of our software will notice this case distinction in the following ways.
The modulus of a ProfiniteInteger over QQ is a non-negative integer, instead
of a Z-ideal. Similarly, the modulus of a ProfiniteNumber over QQ is a non-
negative rational number, as opposed to a fractional Z-ideal in Q. The stored
primes of an Idele over QQ are prime numbers, while they are prime ideals in
the general case.

Note that a user still has the option to use NumberField(x-1) instead of
QQ, if he/she wants the moduli and stored primes to be ideals.

5.6 Inclusion into SageMath

We aim for our implementation of adèles and idèles to be included into Sage-
Math.

As described in 5.1, we incorporated our implementation in the Elements,
Parents and Category framework. Also we implemented various conversions and
coercions between both our own representations and already existing SageMath
objects, as described in 5.3. This ensures that our code fits well into the exist-
ing SageMath code base and makes it easier for the SageMath community to
maintain the code in the future. It also provides the user with an interface very
similar to the rest of SageMath.

We also ensured that our code adheres to the coding guidelines described
in [20]. In particular, every module, class and function is well documented and
doc-tested. We also followed the guidelines mentioned in the thematic tutorials
[18] and [25].

Furthermore, we tried to make our implementation complete. The fact
that we implemented construction functors and many abstract methods such
as ProfiniteIntegers(K).krull_dimension() do not contribute much to the
“foundations of computing with adèles and idèles” that this thesis is about.
They do however improve the SageMath user experience.

We hope that the careful design of our adèle and idèle functionality, together
with the coding efforts mentioned above, will lead to the inclusion of our code
into SageMath in the near future.

6 Alternative representations

During the design of our adèle and idèle representations, we considered multiple
options. In Chapter 3 we described the ones that we chose and implemented.
This chapter is devoted to the alternative options that we did not choose. We
will briefly describe the alternative designs and indicate why we implemented
the representations from Chapter 3 and not these.

6.1 Real and complex numbers

The representations of real and complex numbers from Section 3.3 and their
arithmetic are usually referred to as (real/complex) intervals and interval arith-
metic.

The most standard representations of real/complex numbers are floating
point numbers. Floating point arithmetic is not exact: errors are introduced by
arithmetic operations. These errors are not tracked or stored by floating point

27

numbers. Hence using bare floating point numbers for representing adèles or
idèles did not fit our design aim of providing explicit error margins for compu-
tational results.

Another widely used way of computing with real/complex numbers is called
ball arithmetic. Where interval arithmetic stores pairs (x, y), usually of floating
point numbers, to represent intervals [x, y] ⊆ R, ball arithmetic stores pairs
(m, r), also usually of floating point numbers, to represent balls in R with mid-
point m and radius r. The arithmetic of balls is very similar to that of intervals.
The main advantage of balls over intervals is that for high precision computa-
tions, only the midpoint needs to be stored with high precision, while the radius
can be stored with low precision. In contrast, for high precision interval arith-
metic, both of the endpoints need to be stored with high precision. As a result,
ball arithmetic can be approximately twice as fast and requires approximately
half as much space as interval arithmetic for high precision computations, cf. [7].

We choose to use interval arithmetic for the following reason. We wanted to
implement conversions between idèle groups and ray class groups (cf. Section
4.5) and for this we wanted to be able to represent R>0 and R<0, which is
possible with intervals, but not with balls.

6.2 p-adic numbers

For p a prime number, SageMath implements p-adic numbers. There is how-
ever no implementation of p-adic numbers in SageMath, for p a finite prime of
a number field. As we will describe in Section 6.3, we considered representing
adèles using p-adic numbers. So we needed to be able to represent p-adic num-
bers themselves. Below we will show three different ideas we had on how to do
this. We let K denote a number field and p a finite prime of K.

We define a value-modulus representation of p-adics numbers to be a repre-
sentation of profinite K-numbers whose modulus is zero or has valuation zero
at every finite prime not equal to p. The set of value-modulus representations
of p-adic numbers is denoted Rvm(Kp). For a ∈ Rvm(Kp) we define the repre-
sented subset R(a) of a to be the projection to Kp of the represented subset of a
considered as a representation of profinite K-numbers. Arithmetic in Rvm(Kp)

can be performed as in R(Ô).
We did not explicitly implement Rvm(Kp) as some sort of “pAdics” class.

Our implementation of R(Ô) can however be seen as an implementation of
Rvm(Kp) of course.

Our next idea is to consider Kp as a field extension of Qp, where p is the
(rational) prime number lying below p. Suppose we already have a set R(Qp) of
representations of p-adic numbers at our disposal, within which we can perform
arithmetic and whose elements a ∈ R(Qp) have associated represented subsets
R(a) ⊆ Qp. Our idea was to use the existing p-adic numbers of SageMath, but
for clarity one may also take R(Qp) = Rvm(Q(p)) as defined above. Let K be
given as K = Q[X]/(f) for some irreducible f ∈ Q[X]. Let g be the monic
irreducible factor of f in Qp[X] such that Kp

∼= Qp[X]/(g) with (X mod (f)) ∈
K ⊆ Kp corresponding to (X mod (g)) ∈ Qp[X]/(g). We give X mod (g) a
name, say α, such that Kp = Qp(α). Let c0, c1, ..., cd ∈ R(Qp) represent the

28

coefficients g0, g1, ..., gd ∈ Qp of g. Suppose that we can uniquely derive g from
only f and c0, ..., cd. Then f and c0, ..., cd will enable us to perform arithmetic
on the following representations of p-adic numbers.

Note that a Qp-basis of Kp is given by (1, α, α2, ..., αd−1). We define a
Qp-vector representation of p-adic numbers to be a tuple a = (a0, ..., ad−1) of
representations of p-adic numbers and we define the represented subset of a to
be

R(a) = R(a0) + αR(a1) + α2R(a2) + ...+ αd−1R(ad−1).

This version of representations of p-adic numbers is the most similar to the
already existing p-adic functionality of SageMath. SageMath does not have an
implementation of Kp in general, but only when p is unramified or totally ram-
ified. Both cases are constructed as finite extensions of Qp in SageMath.

Choose a uniformizer π ∈ K at p (i.e. ordp(π) = 1) and choose a set of
representatives D ⊆ O of Op/πOp with 0 ∈ D. We call D our set of digits. Now
we have

Kp =

{ ∞∑
i=k

diπ
i | k ∈ Z, di ∈ D for i ≥ k

}
.

Choose some maximum relative precision n ∈ Z>0. Now we define a power series
representation of p-adic numbers to be a tuple a = (k, dk, dk+1, ..., dk+n−1) ∈
Z×Dn with dk 6= 0. Writing x =

∑k+n−1
i=k diπ

i we define the represented subset
of a to be R(a) = x + pk+nOp. By Rpow(Kp) we denote the set of power
series representations of p-adic numbers. The need for a choice of uniformizer
π and a set of digits D is a disadvantage of these representations: no natural
choice seems to be available in general. Rational p-adic numbers are by default
printed as power series in p in SageMath. Therefore Rpow(Kp) might be the
most intuitive implementation of Kp for many SageMath users.

6.3 Adèles

In this section we describe two alternative representations of adèles. We think
the first one, a prime-wise representation, is a viable alternative to the rep-
resentation described in Section 3.4 and so we compare them in detail. The
second alternative, AQ-vector representations, is one that we did consider, but
ultimately decided to be clearly less viable than the other two. We will briefly
explain why.

Let K be a number field with signature (r, s). Denote the set of finite primes
of K by P. Define

G =

{
f : Q → R(Ô)

∣∣∣∣ Q is a finite subset of P and
f(p) ∈ Rvm(Kp) for each p ∈ Q

}
.

We define a prime-wise representation of K-adèles to be a pair a = (x, f)
with x ∈ (

∏r
i=1 R(R))× (

∏s
j=1 R(C)) and f ∈ K t G.

If f ∈ G, we define the set of stored primes of a to be the domain of f , which
we denote by P(a). Now we define the represented subset of a to be

R(a) =


(∏r+s

i=1 R(xi)
)
×
(∏

p∈P(a)R(f(p))
)
×
(∏

p∈P\P(a)Op

)
if f ∈ G;(∏r+s

i=1 R(xi)
)
×
(∏

p∈P{f}
)

if f ∈ K.

29

Note that we have R(a) ⊆ AK = (
∏r
i=1 R)× (

∏s
j=1 C)× A0

K . We call x and f
the finite and infinite part of a respectively. We denote the set of prime-wise
representations of K-adèles by Rpw(AK).

For a, b ∈ Rpw(AK) the sum a + b can be defined in such a way that a + b
has minimal represented subset satisfying R(a) + R(b) ⊆ R(a + b). Similar
statements hold for a − b, ab and a/b, where in the last case b is assumed to
have finite part lying in K∗.

The same representability in AK is achieved by Rpw(AK) and R(AK), in
the sense that a subset of AK is of the form R(a) for some a ∈ Rpw(AK) if and
only if it is of the form R(b) for some b ∈ R(AK). Hence from a mathematical
point of view, these two representations could be called equivalent. From a
practical point of view there are however advantages of each representation over
the other, which we will discuss below. For this discussion, let us call elements
of R(AK) bundled representations, to clearly distinguish them from prime-wise
representations.

Implementing bundled representations can be done with less code than
prime-wise representations. For prime-wise representations computations must
be performed for each prime individually and quite some case distinctions need
to be made in the code, to handle exact finite parts correctly. No explicit case
distinctions need to be made when implementing bundled representations, as
they can be given a finite part with modulus zero. Formulas such as m(a+ b) =

gcd(m(a),m(b)) for a, b ∈ R(Ô) hold in general (both for zero and non-zero
moduli) and they can be used to perform the computation for all finite primes
at once.

When doing arithmetic, both in R(AK) and Rpw(AK), we use integer arith-
metic and in particular integer multiplication. The best known integer multi-
plication algorithm has worse than linear time complexity. Hence performing k
multiplications of n-digit integers is faster than doing a single multiplication of
kn-digit integers for k ∈ Z>1 and large n ∈ Z. Suppose we have a ∈ R(AK)
and b ∈ Rpw(AK) such that R(a) = R(b) and k := #P(b) > 1. Computing
with b requires approximately k times as many operations as computing with
a. But each single such operation is performed on smaller numbers for b: on
average approximately k times smaller in bit size. The total number of bits
needed to store a and b is roughly the same. Hence if this total number of bits
is large, then we expect arithmetic with b to be faster than arithmetic with
a. We summarize this by saying that we expect arithmetic in Rpw(AK) to be
asymptotically faster than arithmetic in R(AK).

On the other hand, in the situation above, if the number of bits needed to
store a and b is very small, then we expect arithmetic in with a to be faster
than arithmetic with b. If for example all integers involved can be stored in a
single machine word on a modern computer (say integers of absolute value less
than 263), then performing k multiplications simply costs k times as much as
performing a single multiplication.

Conversion between the two representations is possible of course. Given
a ∈ R(AK) and a finite prime p of K, it is very cheap to compute the projection
of a to p, i.e. the representation ap of p-adic numbers such that R(ap) equals
the projection of R(a) to Kp. It is however very expensive to find b ∈ Rpw(AK)
with R(a) = R(b): this requires factoring the modulus of a0. For big moduli
this is practically impossible. The other way around is simpler: to compute a

30

from b one needs to solve the Chinese Remainder Problem over K, for which
polynomial time algorithms exist.

Before we can compute with representations of adèles, we need to create
them first. The input data can have many formats. Some logical formats could
be: a list of p-adic numbers, an element of K or an element of a quotient O/I of
O. From these input data both prime-wise and bundled representations can be
created efficiently, except for one combination: converting x ∈ O/I to Rpw(AK).
For this it is necessary to factor I, which can be very expensive for big I. When
using bundled representations, no problem would arise: we simply store I in
our bundled representation and upon doing arithmetic in R(AK) there is never
a need to factor I.

One could try to get the best out of both worlds by letting bundled rep-
resentations cache moduli factorizations. By this we mean that we store the
factorization of the modulus of the finite part of a ∈ R(AK), if we know it, to-
gether with (or in) a. For example, if the user creates representations of adèles
by giving lists of p-adic numbers, then we know the factorization of the mod-
ulus and can store it immediately. And if two representations, whose moduli
factorizations we stored, are added or multiplied then we can efficiently com-
pute the factorization of the modulus of the result as well, and store it. Using
this approach, we could do our computations per prime if we want to. During
computation the implementation could choose whether to perform computations
bundled or prime-wise. When dealing with very small values or if big moduli
are involved whose factorization we do not know we should probably opt for
bundled computation. But in situations with known moduli factorizations and
big values, prime-wise computation could be chosen.

As described in Section 3.4, we have implemented bundled representations.
We did not implement prime-wise implementations, nor did we implement mod-
uli factorization caching. We do think they could be useful, but experimental
future research would have to tell. We anticipate the biggest difficulty of such a
research project to be the determination of applications used for comparing the
performance of these two representations. Our second application, described in
Chapter 9, may provide one such application.

Above we described prime-wise representations for clarity as being based on
value-modulus representations of p-adic numbers. One could of course replace
value-modulus representations by Qp-vector representations or power series rep-
resentations of p-adic numbers. This results in very similar representations of
adèles.

Lastly we present another idea we had for representing adèles, which we did
not implement. Let our number field K be given together with a generator
α over Q and write n = deg(K/Q). View AK as a free AQ-algebra with the
basis (1, α, α2, ..., αn−1). Suppose we already have an implementation of AQ.
This could for example be a prime-wise representation using the (already im-
plemented) rational p-adic numbers in SageMath. Now we define an AQ-vector
representation of K-adèles to be a tuple a = (a0, a1, ..., an−1) of representations
of Q-adèles, whose represented subset R(a) is given by

R(a0) + αR(a1) + ...+ αn−1R(an−1).

A disadvantage of this approach is the following. Let p and q be primes of K
lying over the same rational prime number p. Suppose we want to compute with

31

an adèle x of which we know xp very precisely, while we know nothing about xq.
With an AQ-vector representation, the information about xp must be encoded
in a0, a1, ..., an−1 by specifying their values at p (up to some precision). But we
know nothing about xq and therefore we cannot say anything about the values
of a0, ..., an−1 at p. As a result, we cannot store the information about xp in
an AQ-vector representation. We saw this as a big disadvantage of AQ-vector
representations, compared to both bundled and prime-wise representations.

6.4 Idèles

Let K be a number field. Given that JK ⊆ AK and that we had already defined
representations of K-adèles, a logical option for representing K-idèles would be
to simply use representations of K-adèles. We could define a representation
of K-idèles to be a representation of K-adèles, but with its represented subset
intersected with JK . This unification of representations of adèles and idèles
sounds nice. It would however result in the failing of the finite representability
property as stated in Section 3.6. This is caused by the fact that the topology
on JK is finer than the topology on A∗K (induced from AK). For example, the
set U =

∏
pO∗p, with p running over all primes of K, is open in JK while it is

not open in A∗K . With our final definition of representations of K-idèles U is
representable, while U would not be representable when using representations
of K-adèles. Worse even: no representable subset contained in U would exist
in that case. This motivated our decision to design representations of idèles
separately from representations of adèles, as we did in Chapter 3.

Before choosing our representations of idèles from Chapter 3, we used a more
general notion of representation of idèles. Denote the set of finite primes of K
by P and recall our definition

F =

{
f : Q → K × Z≥0

∣∣∣∣ Q is a finite subset of P and
f(p) ∈ R(K∗p) for each p ∈ Q

}
.

An alternative representation of K-idèles consists of a triple a = (x, f, e) with
x ∈ (

∏r
i=1 R(R∗))× (

∏s
j=1 R(C∗)), f ∈ F and e ∈ K∗ t {∗}. Writing P(a) for

the domain of f , the represented subset of a is be given by

R(a) =

(
r+s∏
i=1

(R(xi) \ {0})

)
×

 ∏
p∈P(a)

R(f(p))

×
 ∏

p∈P\P(a)

{e}


if e ∈ K∗ and by the represented subset of (x, f) ∈ R(JK) if e = ∗. We
did actually fully implement this alternative. An interested reader can request
the corresponding code from the author. The advantage of this approach is
better expressiveness: there are more available representations which give more
representable subsets in JK . It is however questionable how useful the extra
representable subsets are: we could not think of any application where they
would be useful. Our final version of representations of idèles is simpler than
this alternative. This makes them easier to use and understand, in particular by
SageMath users trying them out for the first time. The code of our final version
is also much cleaner compared to the alternative version: fewer case distinctions
need to be made. Keeping in mind our goal of including our code into SageMath,

32

this was an advantage as well as it makes our code better maintainable for the
(future) SageMath community.

7 Application 1: profinite Fibonacci graph

Our first application is inspired by Lenstra’s paper [13] on profinite Fibonacci
numbers: generalizations of the usual Fibonacci numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ...

to Ẑ. The paper also contains a visualization of the graph of the profinite
Fibonacci function. In [13] these subjects are treated in an informal manner.
Proofs of many of the statements that are made in [13] can be found in [8] and
[9]. The graph is however treated by neither.

We will use our representations of profinite numbers to compute profinite
Fibonacci numbers and the corresponding graph. In Section 7.1 we introduce
profinite Fibonacci numbers and we describe how to compute them using rep-
resentations of profinite numbers. Section 7.2 introduces factorial digits, which
are used in Section 7.3 to visualize profinite numbers. Section 7.3 formally in-
troduces the graph of the profinite Fibonacci function. In Section 7.4 we explain
how the graphs are computed in practice.

In this chapter we will view moduli of representations of profinite Q-integers
as integers: for a ∈ R(Ẑ) we identify the ideal m(a) of Z with its unique non-
negative generator in Z. For n ∈ Z>0 we write n! for n factorial.

7.1 Profinite Fibonacci numbers

The Fibonacci function is the map F(−) : Z → Z satisfying F0 = 0, F1 = 1

and Fn+2 = Fn+1 + Fn for all n ∈ Z. View F via the embedding of Z in Ẑ
as a function F : Z → Ẑ. Theorem 5.6 of [8] shows that there exists a unique

continuous extension Ẑ → Ẑ of F . It is constructed using the ring ÔK of
profinite integers of the field K = Q[X]/(X2 −X − 1). This extension is called
the profinite Fibonacci function and we denote it by F as well. Elements in its
image are called profinite Fibonacci numbers.

Based on the profinite Fibonacci function F(−) : Ẑ → Ẑ we define the map

F̃ : R(Ẑ)→ R(Ẑ) by

F̃ (a) = Fv(a) mod gcd(Fm(a), Fm(a)+1 − 1) ∈ R(Ẑ)

for a ∈ R(Ẑ). This definition ensures the following.

Theorem 7.1. For any a ∈ R(Ẑ) the image of R(a) under F is contained in
R(F̃ (a)).

Theorem 7.2. For any k ∈ Z>0 there exists ` ∈ Z>0 such that for every
n ∈ Z≥` and for every a ∈ R(Ẑ) of precision n!, the precision of F̃ (a) is at least
k!.

We prove these theorems after the following lemma.

33

Lemma 7.3. Let c, d ∈ Z and define n = gcd(Fd, Fd+1 − 1). Then we have
Fc ≡ Fc+d mod nZ.

Proof. By definition of n we have the identities

Fd ≡ 0 = F0 mod nZ;

Fd+1 ≡ 1 = F1 mod nZ.

Hence the result follows by induction on c from the relation Fk+2 = Fk+1 + Fk
for k ∈ Z.

Proof of Theorem 7.1. Let a ∈ R(Ẑ). In order to prove that we have

R(a) = v(a) +m(a)Ẑ ⊆ R(F̃ (a)), it suffices to prove v(a) +m(a)Z ⊆ R(F̃ (a)),

because F is continuous and Z lies dense in Ẑ. Let α = v(a) +m(a)k for k ∈ Z.
By applying Lemma 7.3 we find that Fv(a) ≡ Fα mod gcd(Fm(a), Fm(a)+1−1).

Hence Fα ∈ R(F̃ (a)) and this finishes the proof.

Proof of Theorem 7.2. Let k ∈ Z>0. Set ` = max(4, k). Let n ∈
Z≥` and let a ∈ R(Ẑ) with m(a) = n!. Corollary 5.2 of [8] in particular
states that Fn! ≡ F0 mod n!Z and Fn!+1 ≡ F1 mod n!Z. Hence n! divides
gcd(Fn! − F0, Fn!+1 − F1) = m(F̃ (a)). Because k ≤ n it follows that k! divides
m(F̃ (a)).

For a ∈ R(Ẑ), the definition of F̃ (a) is well suited for computation, as it is
given by a direct formula. Theorem 7.2 ensures that the precision of F̃ (a) is high
enough for our purposes. It may however be the case that F̃ (a) is not always the
most precise representation b of profinite Q-integers satisfying F (R(a)) ⊆ R(b).
For example we have F̃ (3 mod 6) = 2 mod 4, but for each n ∈ Z such that
|n| ≤ 10000 we computed that F3+6n ∈ 2 + 32Z, based on which one could
suspect F̃ (3 mod 6) ⊆ R(2 mod 32) to hold. As our definition of F̃ nicely fits
our purposes, we did not further investigate these suspicions.

7.2 Factorial digits

Let α ∈ Ẑ. We define the factorial digit sequence of α to be the unique sequence
(di)

∞
i=1 ∈

∏∞
i=1 Z satisfying 0 ≤ dk ≤ k and α ≡

∑k
i=1 di(i!) mod (k + 1)!Ẑ

for each k ∈ Z≥1. These factorial digits can be obtained recursively as follows.

For any n ∈ Z≥1 the natural isomorphism Ẑ/nẐ ∼−→ Z/nZ induces a map

ρn : Ẑ → {0, 1, ..., n − 1} satisfying β ≡ ρn(β) mod nẐ for all β ∈ Ẑ. For

i ∈ Z≥0 define αi ∈ Ẑ and di ∈ Z recursively by α0 = α, d0 = 0 and

αk = (αk−1 − dk−1)/k for k ∈ Z≥1;

dk = ρk+1(αk) for k ∈ Z≥1.

The division is performed in Q̂ and since αk−1 ≡ dk−1 mod kẐ, the result will

lie in Ẑ. This results in (di)
∞
i=1 being the factorial digit sequence of α. For

i ∈ Z≥1 we call di the i-th factorial digit of α.
For example the identities

970 = 0 · 1! + 2 · 2! + 1 · 3! + 0 · 4! + 2 · 5! + 1 · 6!;

2021 = 1 · 1! + 2 · 2! + 0 · 3! + 4 · 4! + 4 · 5! + 2 · 6!

34

reveal that (0, 2, 1, 0, 2, 1, 0, 0, 0...) are the factorial digits of 970 and that those
of 2021 are (1, 2, 0, 4, 4, 2, 0, 0, 0, ...). Non-negative integers always have only
finitely many non-zero factorial digits. One can check that the factorial digits
of −1 are (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...).

We implemented factorial digits in SageMath as well.

sage: a = Zhat (970, factorial (10))

sage: a.str(style='factorial ')

’2*2! + 1*3! + 2*5! + 1*6! + O(10!)’

sage: a.factorial_digits ()

[0, 2, 1, 0, 2, 1, 0, 0, 0]

sage: Zhat([1, 2, 0, 4, 4, 2, 0, 0])

2021 mod 362880

One can show that the map Ẑ→ {(di)∞i=1 ∈
∏∞
i=1 Z | 0 ≤ di ≤ i} sending a

profinite integer to its factorial digits sequence is a bijection: injectivity follows
form the definition of Ẑ and surjectivity from the completeness of Ẑ.

7.3 Visualizing profinite graphs

We define the visualization function φ : Ẑ→ [0, 1] for α ∈ Ẑ with factorial digit
sequence (di)

∞
i=0 by

φ(α) =

∞∑
i=1

di
(i+ 1)!

,

which is indeed an element of the unit interval. It is instructive to verify the
equations φ(1 + 2Ẑ) = [1/2, 1] and φ(2 + 3Ẑ) = [1/6, 1/3] ∪ [5/6, 1] and to

determine for example φ(8 + 24Ẑ).

Recall that F(−) : Ẑ → Ẑ denotes the profinite Fibonacci function. The

graph of F is the set G = {(α, Fα) | α ∈ Ẑ} ⊆ Ẑ× Ẑ. We want to visualize this
graph using the set

G̃ = {(φ(α), φ(Fα)) | α ∈ Ẑ} ⊆ [0, 1]× [0, 1].

Now F is continuous, but φ is not if we endow [0, 1] with the usual topology. In
particular G̃ is not path-connected in [0, 1] × [0, 1] and it is difficult to draw it
in the Euclidean plane. Informally, one could describe G̃ as a cloud of scattered
points in the unit square.

Instead we will visualize approximations to G. Let k ∈ Z>0. For x ∈ Ẑ/k!Ẑ
we define the set

Yx =
{
y ∈ Ẑ/k!Ẑ | Fx ∩ y 6= ∅

}
.

We call the set Gk = {(x, Yx) | x ∈ Ẑ/k!Ẑ} the approximation of G at precision k.
In Section 7.4 we will describe how to compute Gk using F̃ . For each (x, Yx) ∈ Gk
and for each y ∈ Yx the set φ(x)× φ(y) is a closed square in [0, 1]× [0, 1] which
we can draw in the plane. By drawing Gk we mean drawing each of the squares
φ(x)× φ(y) for x ∈ Ẑ/k!Ẑ and y ∈ Yx in the plane. We did this for G3, G4 and
G5, see Figure 1.

35

Figure 1: A visualization of the approximations G3 (orange), G4 (pink) and G5
(brown) of the graph of the profinite Fibonacci function F . The blue axis labels

indicate coordinates in [0, 1] and the black axis labels indicate subsets of Ẑ.
For example, the interval [1/3, 1/2] corresponds via the visualization function

φ to 4 + 6Ẑ. From the orange squares we can read off that F maps 1 + 6Ẑ to
(1 + 6Ẑ) ∪ (5 + 6Ẑ) and both 1 + 6Ẑ and 5 + 6Ẑ are hit by 1 + 6Ẑ under F .

Similarly there is a pink square indicating that F maps 7 + 24Ẑ to 13 + 24Ẑ,
which is consistent with F7 = 13.

36

The graph in Figure 1 can be created using our SageMath code as follows.

sage: F = ProfiniteFibonacci ()

sage: F(Zhat(6, 20)) # Evaluate F at 6 mod 20

8 mod 55

sage: G = ProfiniteGraph(F)

sage: G.plot()

The command G.plot() will open a window with the graph from Figure 1.
This window is interactive: a user can left-click on rectangles corresponding to
subsets of the form (x + n!Ẑ) × (y + n!Ẑ) for x, y, n ∈ Z, n ≥ 1, to zoom in to
that region. By right-clicking anywhere the user can zoom out. Upon zooming
in/out, approximations of G of more/less precision are computed and drawn.
One can for example perform the “blow-ups” described in [13] in the search for
fixed points of F , as shown in Figure 2.

The colors of the graph in [13] are set as default colors for our graph. Many
options of the graph can be tuned by methods of ProfiniteGraph, such as the
colors, the title, the window sizes and some technical draw options.

Our ProfiniteGraph can also graph other functions f : Ẑ → Ẑ, as long as

there is (an implementation of) a map f̃ : R(Ẑ)→ R(Ẑ) that satisfies Theorems
7.1 and 7.2, with f and f̃ in the place of F and F̃ . This is for example the case
for the map sending an a ∈ R(Ẑ) to a · a with respect to the squaring-map

Ẑ → Ẑ, x 7→ x2. Hence the following code produces a graph of the squaring-
map. See Figure 3 for the result.

sage: square = lambda x, _: x*x

sage: G = ProfiniteGraph(square)

sage: G.plot()

For details, see profinite_graph.py at [6].

37

Figure 2: Searching for fixed points of the Fibonacci graph by zooming in.
From top-left to bottom right we view (x + n!Ẑ) × (x + n!Ẑ) for (x, n) =
(1, 1), (1, 2), (1, 3), (1, 4), (25, 5), (145, 6). The green lines visualizes the line

x = x in Ẑ, set by the method set identity line() of ProfiniteGraph.

38

Figure 3: Approximations to the graph of the squaring-map Ẑ→ Ẑ, x 7→ x2.

7.4 Computing the graphs

Using our representations of profinite numbers and the function F̃ , we can
compute the approximation Gk of the graph of the profinite Fibonacci function
at any precision k ∈ Z>0. Algorithm 7.4 gives an overview of the computation,
which is not yet optimal. Below we will describe some adjustments that we
implemented to achieve good performance. In our computation a coset x ∈
Ẑ/k!Ẑ is represented by the unique representation a ∈ R(Ẑ) with x = R(a).

Algorithm 7.4. Approximating the profinite Fibonacci graph.
INPUT: k ∈ Z>0.
OUTPUT: Gk.
ALGORITHM:

1. Initialize Gk = ∅.
2. For each v0 ∈ {0, 1, ..., k!− 1}, do the following.

2(a). Initialize Y = ∅, ` = k and v = v0.

39

2(b). Construct a = v mod `! ∈ R(Ẑ) and compute F̃ (a).
2(c). If k! does not divide the modulus of F̃ (a), then increase ` by 1 and

go to Step 2(b).
2(d). Add the representation y = v(F̃ (a)) mod k! ∈ R(Ẑ) to Y .
2(e). Increase v by k!. If v < `!, then go to Step 2(b).
2(f). Set x = v0 mod k! ∈ R(Ẑ) and add (x, Y) to Gk.

3. Output Gk.

Theorem 7.2 ensures that Algorithm 7.4 terminates. Correctness of the
output is a consequence of Theorem 7.1.

Based on the proof of Theorem 7.2, one may notice that increasing ` is never
necessary if we simply initialize ` to max(4, k). This simplifies the algorithm
considerably. This only holds for the Fibonacci function in general though. The
algorithm above is valid for computing approximations of graphs of arbitrary
maps f : Ẑ → Ẑ, given an f̃ : R(Ẑ) → R(Ẑ) for which Theorems 7.1 and 7.2
hold.

In our application we only show part of the graph, namely the region which
the user zoomed in to. Let x, y, n, k ∈ Z, k > n ≥ 1 and suppose our application
needs to draw Gk in the region (x+n!Ẑ)× (y+n!Ẑ). Then it suffices to perform
Step 2 of Algorithm 7.4 only for v0 ∈ {x+ i · n! | 0 ≤ i < k!/n!}.

Evaluating F̃ in a ∈ R(Ẑ) requires the computation of Fv(a), Fm(a) and
Fm(a)+1. This is done using the identity(

1 1
1 0

)n
=

(
Fn+1 Fn
Fn Fn−1

)
for n ∈ Z≥0, which can be evaluated using O(log2(n)) matrix multiplications.

Computing F̃ (a) is costly for a ∈ R(Ẑ) with a big modulus: it requires the
computation of Fm(a), which is huge for big m(a). For our application, we do

not need the full output precision of F̃ though: we are only interested in the
image of R(F̃ (a)) in Ẑ/k!Ẑ. For this it suffices to compute the images of Fm(a)

and Fm(a)+1 in Z/k!Z by performing the matrix exponentiation above in the ring
Z/k!Z. This results in good performance: on a modern computer the Fibonacci

graph can at least be zoomed in to (translates of) the region 100!Ẑ × 100!Ẑ
without the user having to wait more than a second per zoom operation.

Lastly drawing the rectangle in [0, 1]× [0, 1] corresponding to a pair (a, b) ∈
R(Ẑ)2 under the visualization function φ is done using the visual() method

of a ProfiniteInteger. For an a ∈ R(Ẑ), this method computes the smallest
closed interval I ⊆ [0, 1] such that v(R(a)) ⊆ I. If m(a) = k! for some k ∈ Z≥1,
then we have v(R(a)) = I.

For details on the implementation of these profinite functions and graphs,
see the files profinite_function.py and profinite_graph.py at [6].

8 Adèlic matrix factorization

Let g be a positive integer. Let the matrix Ω ∈ Z2g×2g be given in g × g-blocks
as

Ω =

(
0 I
−I 0

)

40

with I the g × g-identity matrix.
For a commutative ring R we define the general symplectic group over R by

GSp2g(R) = {A ∈ R2g×2g | ATΩA = µ(A)Ω for some µ(A) ∈ R∗},

with AT denoting the transpose of A. The element µ(A) is called the multiplier
of A and we have a multiplier homomorphism µ : GSp2g(R) → R∗ sending
a matrix to its multiplier. We denote the kernel of µ by Sp2g(R), called the
symplectic group over R. For g = 1 we simply have GSp2(R) = GL2(R),
Sp2(R) = SL2(R) and µ = det. In general we always have that GSp2g(R) is

a subgroup of GL2g(R). For R = Q or R = Z we define GSp+
2g(R) to be the

subgroup of GSp2g(R) consisting of matrices with positive multiplier.
It has been known for a long time that the equalities

GLn(Q̂) = GLn(Ẑ) GL+
n (Q) and GSp2g(Q̂) = GSp2g(Ẑ) GSp+

2g(Q)

hold for n, g ∈ Z≥1. These equalities are a special case of strong approximation
for the algebraic groups GLn and GSp2g, which in our situation can be phrased

as the fact that GLn(Q) and GSp2g(Q) lie dense in GLn(Q̂) and GSp2g(Q̂)
respectively. Important results of Eichler on strong approximation in algebraic
groups date back to 1938. For a proof as well as a historic account of strong
approximation in algebraic groups, see Section 7.4 of Platonov and Rapinchuk
[15].

So for any M ∈ GLn(Q̂), we are assured of the existence of a factorization

M = BA with B ∈ GLn(Ẑ) and A ∈ GL+
n (Q). Moreover if M ∈ GSp2g(Q̂), then

we can get B ∈ GSp2g(Ẑ) and A ∈ GSp+
2g(Q). In this chapter we will describe

algorithms, based on our representations of profinite numbers, that can perform
such factorizations in practice.

8.1 Representations of GLn(Q̂)-elements

Let n be a positive integer. We define a representation of GLn(Q̂)-elements to

be a pair M = (E,∆) with E ∈ R(Q̂)n×n and ∆ ∈ Q>0, such that the set

R(M) =
{
M ∈ GLn(Q̂) | det(M)Ẑ = ∆Ẑ and Mij ∈ R(Eij) for 1 ≤ i, j ≤ n

}
is non-empty. The set R(M) is called the represented subset of M. The entries
of E are also called the entries ofM and we writeMij = Eij for i, j ∈ {1, ..., n}.
We call ∆ the determinant ofM and denote it by det(M). We callM integral if
all of its entries are integral, i.e. have denominator 1. IfM is integral, then also
det(M) is integral and R(M) ⊆ Ẑn×n. The transpose MT of M is defined to

be the representation of GLn(Q̂)-elements (ET,∆). We define the value matrix
v(M) of M to be the matrix (v(Mij))

n
i,j=0 ∈ Qn×n. We denote the set of

representations of GLn(Q̂)-elements by R(GLn(Q̂)).

Recall that for a ∈ R(Q̂), the precision m(a) of a was defined to be its mod-
ulus, which is a (possibly zero) fractional Z-ideal in Q. We define the precision
m(M) of M to be the greatest common divisor of the precisions of the entries
of M, i.e. the fractional Z-ideal having valuation min1≤i,j≤n(ordp(m(Mij)))

at p for each prime number p. We order precisions of elements in R(Q̂) and

41

R(GLn(Q̂)) the same, namely using the following order on the set I of fractional
Z-ideals in Q: for I, J ∈ I, we declare I ≤ J if and only if for each prime number
p we have ordp(I) ≤ ordp(J). We sometimes compare a rational number r to a

precision of an element of R(Q̂) or R(GLn(Q̂)), in which case the reader should
interpret r as rZ ∈ I.

As E ∈ R(Q̂)n×n one can define the determinant of E in the usual way

using the associative and commutative addition and multiplication in R(Q̂),

resulting in a det(E) ∈ R(Q̂). We emphasize that det(M) is not det(E). We
will not use this determinant of E in this chapter and we warm the reader that
it might be the case that det(M) 6∈ R(det(E)). This happens for example for

M =
((

1 mod 3 0 mod 3
0 mod 3 2 mod 3

)
, 1
)
∈ R(GL2(Q̂)).

We define multiplication in R(GLn(Q̂)) as follows: for M1 = (E1,∆1) and
M2 = (E2,∆2) we set M1M2 = (E1E2,∆1∆2), where E1E2 denotes usual
matrix multiplication, using the associative and commutative addition and mul-
tiplication in R(Q̂).

A matrix A ∈ GLn(Q) can be viewed in a canonical way as a representa-

tion of GLn(Q̂)-elements, namely as A = (A, |det(A)|) with the entries of A
viewed as representations of profinite Q-numbers in the canonical way. This
gives R(A) = {A}.

8.2 Factorization in general linear groups

LetM be an integral representation of GLn(Q̂)-elements with precision at least
det(M). Let M ∈ R(M). In this section we will useM to factor M as M = BA

with B ∈ GLn(Ẑ) and A ∈ GL+
n (Q). We start of with a lemma that gives an

explicit set of generators of the lattice Qn ∩ ẐnM in Qn in terms of M.

Lemma 8.1. The equality Qn ∩ ẐnM = Znv(M) + Zn det(M) holds.

Proof. We will first prove the inclusion from right to left by showing that both
Znv(M) and Zn det(M) are subsets of Qn ∩ ẐnM .

Write N for the matrix of cofactors of M , satisfying MN = NM = det(M)I,

for I the n × n identity matrix. As M is integral, we have M ∈ Ẑn×n and
therefore N ∈ Ẑn×n as well. In turn this gives us

Ẑn det(M) = Ẑn det(M) = ẐnNM ⊆ ẐnM.

As det(M) ∈ Z>0 this shows Zn det(M) ⊆ Qn ∩ ẐnM .

By the precision assumption on M, there exists λ ∈ Ẑn×n such that M =
v(M) + λ det(M). Using the inequality above again we obtain

Ẑnv(M) ⊆ ẐnM + Ẑnλ det(M) ⊆ ẐnM + Ẑn det(M) ⊆ ẐnM.

Since v(M) ∈ Zn×n this shows Znv(M) ⊆ Qn ∩ ẐnM .

Next we will prove Qn ∩ ẐnM ⊆ Znv(M) + Zn det(M). Let y ∈ Qn ∩ ẐnM
and write y = xM for x ∈ Ẑn. As Ẑdet(M) is open in Ẑ and Z lies dense in Ẑ,

42

we can find x̃ ∈ Zn and z ∈ Ẑn such that x = x̃+ z det(M). Now we have

y = xM

= (x̃+ z det(M))(v(M) + λ det(M))

= x̃v(M) + (zv(M) + x̃λ+ zλ det(M)) det(M).

From y ∈ Qn, x̃v(M) ∈ Zn and det(M) ∈ Z \ {0} it follows that zv(M) + x̃λ+

zλdet(M) ∈ Qn ∩ Ẑn = Zn. Hence y ∈ Znv(M) + Zn det(M).

Write I for the n× n-identity matrix and let J ∈ Z2n×n by given in n× n-
blocks as

J =

(
v(M)

det(M)I

)
.

Lemma 8.1 shows that the rows of J generate the lattice Qn ∩ ẐnM . We can
compute the row Hermite Normal Form of J (cf. [2], 2.4.2). As I has rank n,

this gives us an n×n-matrix A ∈ Zn×n whose rows form a Z-basis of Qn∩ẐnM .
Hence we actually have that A ∈ GLn(Q)∩Zn×n. After optionally replacing A
by diag(1, 1, ..., 1,−1)A we may assume A ∈ GL+

n (Q)∩Zn×n. Because the rows

of A form a Z-basis of Qn ∩M Ẑn we have ZnA = Qn ∩ ẐnM .
Now define B = MA−1 ∈ GLn(Q̂). This matrix B satisfies

Qn ∩ ẐnB = QnA−1 ∩ ẐnMA−1 = (Qn ∩ ẐnM)A−1 = ZnAA−1 = Zn.

The following two lemmas prove that the property above guarantees that we
have B ∈ GLn(Ẑ).

Lemma 8.2. Let U be an open subset of Q̂n and assume Qn ∩ U ⊆ Zn. Then
U ⊆ Ẑn.

Proof. Suppose towards a contradiction that there exists some x ∈ U \Ẑn. As U

is open there exists m ∈ Z \ {0} such that x+mẐn ⊆ U . Because Qn lies dense

in Q̂n and x+mẐn is open in Q̂n, there exists some y ∈ Qn∩(x+mẐn). Because
x is not integral, there exists a coordinate xi of x and a prime number p such
that ordp(xi) < 0. As m ∈ Z and y ∈ x+mẐn it follows that also ordp(yi) < 0.

Hence y is not integral, which contradicts the fact that y ∈ Qn ∩ (x+mẐn) ⊆
Qn ∩ U ⊆ Zn.

Lemma 8.3. Let B ∈ GLn(Q̂) such that Qn ∩ ẐnB = Zn. Then B ∈ GLn(Ẑ).

Proof. Right-multiplication by B induces a homeomorphism Q̂n → Q̂n, as B ∈
GLn(Q̂). This together with the fact that Ẑn is open in Q̂n, gives that ẐnB is

also open in Q̂n. Now from Qn ∩ ẐnB = Zn and the lemma above it follows
that ẐnB ⊆ Ẑn. We also have Zn = Qn ∩ ẐnB ⊆ ẐnB. Because Zn lies dense
in Ẑn and ẐnB is open in Ẑn, we even have Ẑn ⊆ ẐnB. Hence ẐnB = Ẑn and
therefore B ∈ GLn(Ẑ).

Let us recapitulate what we did up to now. For the given integral repre-
sentation of GLn(Q̂)-elements M having precision at least det(M) and for the
given M ∈ R(M), we described above how to compute an A ∈ GL+

n (Q)∩Zn×n
such that MA−1 ∈ GLn(Ẑ).

43

We can generalize this method to non-integralM as follows. LetM be any
representation of GLn(Q̂)-elements. For each j ∈ {1, ..., n} let dj be the least
common multiple of the denominators of the entries of M in the j-th column.
Define the denominator matrix ofM to be D = diag(d1, ..., dn). Let us say that
M has good precision ifMD has precision at least det(MD). This is equivalent
to the condition that for each prime number p and for all i, j ∈ {1, ..., n} we
have ordp(m(Mij)dj) ≥ ordp(det(M)

∏n
k=1 dk).

Now let M ∈ R(GLn(Q̂)) have good precision and denominator matrix D.
Let M ∈ R(M). Then MD is integral and has precision at least det(MD),

hence we can find A0 ∈ GL+
n (Q) satisfying MDA−10 ∈ GLn(Ẑ). Then A =

A0D
−1 ∈ GL+

n (Q) satisfies MA−1 ∈ GLn(Ẑ).
We summarize the method described above in the following algorithm.

Algorithm 8.4. Matrix factorization in GLn(Q̂)

INPUT: a representation of GLn(Q̂)-elements M having good precision.

OUTPUT: an A ∈ GL+
n (Q) such that R(MA−1) ⊆ GLn(Ẑ).

ALGORITHM:
1. Compute the denominator matrix D of M.
2. Construct the matrix J ∈ Z2n×n with upper n×n-block equal to v(MD)

and lower n× n-block equal to det(MD)I, with I the identity matrix.
3. Compute the row Hermite Normal Form A0 ∈ GLn(Q) of J .
4. If det(A0) < 0, then replace A0 by diag(1, 1, ..., 1,−1)A0.
5. Set A := A0D

−1 and output A.

We implemented Algorithm 1 in SageMath as the function factor_GLQhat()

in the file matrix.py at [6].

Note that we did not use the equality GLn(Q̂) = GLn(Ẑ) GL+
n (Q) in the

exposition above. By the representability property of R(Q̂) any M ∈ GLn(Q̂)

has a representation of GLn(Q̂)-elements of good precision. Therefore Algo-
rithm 1 (together with our discussion showing its correctness) can be seen as a

constructive proof that GLn(Q̂) = GLn(Ẑ) GL+
n (Q) holds.

Now we will prove a result on precision regarding Algorithm 1. For A ∈ Qn×n
define the denominator of A, denoted den(A), to be the smallest positive integer
d such that dA ∈ Zn×n.

Theorem 8.5. Let M ∈ GLn(Q̂). Let Q ∈ Z>0. Let A0 ∈ GL+
n (Q) such

that MA−10 ∈ GLn(Ẑ). Let M ∈ R(GLn(Q̂)) represent M and suppose that
M has good precision and has precision at least Qden(A−10). Then the output
A ∈ GL+

n (Q) of Algorithm 1 upon giving M as input satisfies: MA−1 has
precision at least Q.

Theorem 8.5 follows directly from Lemma 8.6 and Lemma 8.7, which we
prove below.

Lemma 8.6. Let M ∈ GLn(Q̂) and let N1, N2 ∈ GL+
n (Q). Suppose that

MN1,MN2 ∈ GLn(Ẑ). Then den(N1) = den(N2).

Proof. Write B1 = MN1 and B2 = MN2. Then we have

U := N−11 N2 = B−11 MM−1B2 = B−11 B2 ∈ GL+
n (Q) ∩GLn(Ẑ) = SLn(Z).

44

From N2 = N1U and U ∈ Zn×n it follows that den(N1)N2 ∈ Zn×n and hence
den(N2) ≤ den(N1). Similarly N1 = N2U

−1 and U−1 ∈ Zn×n together give
den(N1) ≤ den(N2).

Lemma 8.7. Let M ∈ R(GLn(Q̂)) and let N ∈ GLn(Q). Then MN has
precision at least m(M)/ den(N).

Proof. Note that within R(Q̂) the identity a(b + c) = ab + ac holds for a ∈ Q
and b, c ∈ R(Q̂). Let i, j ∈ {1, ..., n}. We have

(MN)ij =

n∑
k=1

MikNkj =
1

den(N)

n∑
k=1

Mik den(N)Nkj .

For each k ∈ {1, ..., n} we have den(N)Nkj ∈ Z and hence the precision of
Mik den(N)Nkj is at least m(Mik), which in turn is at least m(M). It follows
that the precision of the sum

∑n
k=1Mik den(N)Nkj is at least m(M) as well.

So we have m((MN)ij) ≥ m(M)/ den(N) for all i, j ∈ {1, ..., n}. This proves
the lemma.

Above we treated the problem of factoring M ∈ GLn(Q̂) as M = BA with

B ∈ GLn(Ẑ) and A ∈ GL+
n (Q). If one instead wants to find A ∈ GL+

n (Q)

and B ∈ GLn(Ẑ) such that M = AB, then this can be done using Algorithm

1 as well. Take an M ∈ R(GLn(Q̂)) representing M such that MT has good
precision, apply Algorithm 1 to MT and define A to be the transpose of the
output. Then A−1M ∈ GLn(Ẑ).

Algorithm 8.4 for n = 2 will play a key role in our second application, which
we discuss in Chapter 9.

Recall that a representation of GLn(Q̂)-elements M = (E,∆) consists of
the determinant ∆ ofM as well. Hence before we can apply Algorithm 1 to an
M ∈ GLn(Q̂), we must know det(M)Ẑ. Let us explain why this information is
necessary for performing our factorization. Consider the case that

E =

(
1 mod 2 0

0 1

)
, M1 =

(
3 0
0 1

)
, M2 =

(
5 0
0 1

)
.

Now for i, j, k ∈ {1, 2} we have (Mk)ij ∈ R(Eij). But there does not exist

an A ∈ GL+
n (Q) such that M1A

−1,M2A
−1 ∈ GLn(Ẑ), because this would

imply 3Ẑ = det(M1)Ẑ = det(A)Ẑ = det(M2)Ẑ = 5Ẑ. In general for any

E ∈ R(Q̂)n×n there exist M1,M2 ∈ GLn(Q̂) such that det(M1)Ẑ 6= det(M2)Ẑ
and (M1)ij , (M2)ij ∈ R(Eij) for 1 ≤ i, j ≤ n.

8.3 Factorization in general symplectic groups

Let g ∈ Z≥1 and let M ∈ GSp2g(Q̂). In this section we will use representations

of GL2g(Q̂)-elements to find A ∈ GSp+
2g(Q) such that MA−1 ∈ GSp2g(Ẑ).

To this end, let M ∈ R(GL2g(Q̂)) represent M and have good precision.
First of all we apply Algorithm 1 to M to obtain an A0 ∈ GL+

2g(Q) such that

B0 = MA−10 ∈ GL2g(Ẑ). Define A1 = den(A0)A0 ∈ GL+
2g(Q) ∩ Z2g×2g.

45

Now E = A1 ΩAT
1 ∈ Z2g×2g is an alternating matrix of full rank (with

alternating meaning xTEx = 0 for all x ∈ Zn). In particular E has only
zeros on its diagonal and we have E = −ET. SageMath provides the function
symplectic_basis_over_ZZ(), which is based on (the constructive proof of)
Theorem 18 of [10] and which does the following. Upon giving E as input,
symplectic_basis_over_ZZ() will compute a matrix C ∈ GL2g(Z) such that
CECT is given in terms of g × g-blocks as

CECT =

(
0 R
−R 0

)
where R = diag(r1, ..., rg) for positive integers r1, ..., rg satisfying the divisibility
property ri | ri+1 for each i ∈ {1, ..., g − 1}. The rows of this matrix C are said
to form a symplectic basis for (the bilinear form represented by) the matrix
E, hence the name of the function. See any book on symplectic geometry for
context on symplectic bases, for example [1]. In our particular situation we have
the following.

Lemma 8.8. Let g ∈ Z≥1 and let M ∈ GSp2g(Q̂). Let M ∈ R(GL2g(Q̂))
represent M . Let A0 be the output of Algorithm 1 on the input M. Let A1 =
den(A0)A0 and let E = A1ΩAT

1 . Let C = symplectic_basis_over_ZZ(E) and
write CECT = diag(r1, r2, ..., rg, r1, r2, ..., rg)Ω. Then r1 = r2 = ... = rg
and riẐ = den(A0)2µ(M)Ẑ for 1 ≤ i ≤ g.

Proof. Let x = (1, 0, 0, ..., 0) ∈ Z1×2g and let y = (0, ..., 0, 1, 0, ..., 0)T ∈ Z2g×1

with yg+1,1 = 1. Define B0 = MA−10 . Then by using the explicit form of CECT

and by unrolling the definition of E we see that

r1 = xCECTy

= xden(A0)2CB−10 MΩMT(B−10)TCTy

= den(A0)2µ(M)xCB−10 Ω(B−10)TCTy.

Above we used the fact that MT is also in GSp2g(Q̂), with the same multiplier

as M . Since we have B0, C,Ω ∈ GL2(Ẑ) this shows that r1 ∈ den(A0)2µ(M)Ẑ.

By the divisibility property of the ri we then have r1, ..., rg ∈ den(A0)2µ(M)Ẑ.
Looking at the determinant we see

g∏
i=1

r2i Ẑ = det(CECT)Ẑ

= det(den(A0)2µ(M)CB−10 Ω(B−10)TCT)Ẑ

= den(A0)4gµ(M)2gẐ

as the determinants of B0, C and Ω lie in Ẑ∗. Hence riẐ = den(A0)2µ(M)Ẑ for
1 ≤ i ≤ g. This shows that r1 = r2 = ... = rg as the ri are positive integers.

Now putting A = CA0, we have

AΩAT = CA0ΩAT
0C

T = den(A0)−2CECT = den(A0)−2r1Ω

46

and so AT ∈ GSp+
2g(Q) and hence A ∈ GSp+

2g(Q). So we have B = MA−1 ∈
GSp2g(Q̂) as well as B = (MA−10)C−1 ∈ GL2g(Ẑ). We conclude that we have

B ∈ GSp2g(Q̂) ∩GL2g(Ẑ) = GSp2g(Ẑ), as desired.
The discussion above shows the correctness of the following algorithm.

Algorithm 8.9. Factorization for GSp2g(Q̂).

INPUT: M ∈ R(GL2g(Q̂)) satisfying R(M) ∩ GSp2g(Q̂) 6= ∅ and having good
precision (as described in the paragraph above Algorithm 1 in Section 8.2).

OUTPUT: an A ∈ GSp+
2g(Q) such that (MA−1) ∩GSp2g(Q̂) ⊆ GSp2g(Ẑ).

ALGORITHM:
1. Perform Algorithm 1 on M obtaining A0 ∈ GL+

2g(Q).

2. Set A1 := den(A0)A0 and E := A1 ΩAT
1 .

3. Compute C := symplectic_basis_over_ZZ(E).
4. Set A = CA0 and output A.

We implemented Algorithm 8.9 in the SageMath function factor_GSpQhat(),
see matrix.py at [6].

Similar to the case of general linear groups, Algorithm 8.9 together with
the discussion above establishing its correctness can be viewed as a constructive
proof of the fact that GSp2g(Q̂) = GSp2g(Ẑ) GSp+

2g(Q) holds.

Theorem 8.10. Let M ∈ GSp2g(Q̂). Let Q ∈ Z>0. Let A0 ∈ GL+
n (Q) such

that MA−10 ∈ GLn(Ẑ). Let M ∈ R(GLn(Q̂)) represent M and suppose that
M has good precision and has precision at least Qden(A−10). Then the output
A ∈ GSp+

2g(Q) of Algorithm 2 upon giving M as input satisfies: MA−1 has
precision at least Q.

Proof. This follows directly from Theorem 8.5 and the fact that the precision
of a representation of GL2g(Q̂)-elements does not decrease upon multiplication
by an element of GL2g(Z).

Just as for Algorithm 8.4, we can also use Algorithm 8.9 to factor an M ∈
GSp2g(Q̂) as M = AB instead of M = BA with A ∈ GSp+

2g(Q) and B ∈
GSp2g(Ẑ). This is done by taking anM∈ R(GLn(Q̂)) representing M such that

MT has good precision, applying Algorithm 2 toMT and taking the transpose
of the output.

Algorithm 8.9 will be import for generalizations of our second application,
which we will discuss in Section 9.6.

9 Application 2: Hilbert class field computation

In this chapter we will apply our representations of adèles and idèles to com-
pute Hilbert class fields of imaginary quadratic number fields using Shimura’s
reciprocity law. Several articles, such as [4], [5], [22], [23], have already been
written on this computation. All of these articles rephrase the idèlic results
given by Shimura’s reciprocity law in terms of ideals, avoiding idèles in their
calculations. In contrast, we will perform this computation in a direct idèlic
manner, obtaining the same results.

47

The theoretical background for this computation is substantially more than
basic algebraic number theory and knowledge of adèles and idèles. In Section 9.1
we will concisely formulate all the main results that we use in the computation.

Let K be an imaginary quadratic number field. Consider the problem of
computing the Hilbert class field H of K, i.e. computing a polynomial h ∈ K[X]
such that H ∼= K[X]/(h). One can find such an h using the j-invariant (cf. [11],
Chapter 3), as the minimal polynomial of j(θ), for θ a generator of OK (cf. [11],
Chapter 10, Theorem 1). The problem with this approach is that the resulting
polynomial has huge coefficients, even for K with small discriminant. In order
to speed up computations, we want to find an h with small(er) coefficients. A
way to obtain such h is by replacing the j-invariant with a modular function f
of higher level. This way one hopes to obtain values f(θ) which also generate
H but have (much) smaller height then j(θ). Such a value f(θ) is called a class
invariant. The computation of such class invariants can be done using Shimura’s
reciprocity law. This chapter is devoted to performing this computation using
representations of adèles and idèles.

After stating the main theoretical results in Section 9.1, we will give an
overview of the computation in theoretical terms in Section 9.2. Section 9.3
will describe how to perform the computation in practice using representations
of adèles and idèles. A numerical example of such a computation is treated in
Section 9.4. In section 9.5 we compare our method to the more classical method
of [5]. Lastly in Section 9.6 we indicate how this computation can be generalized
to CM-fields.

9.1 Theoretical background

In this section we will concisely state the main theoretical results needed for
our Hilbert class field computation. Readers unfamiliar with these subjects are
encouraged to read more elaborate treatments of the material. For class field
theory, many good books exist. For the other topics, one could follow the ref-
erences we give.

Class field theory. For an imaginary quadratic number field K, class field
theory tells us that the sequence

1→ K∗ → K̂∗
A−→ Gal(Kab/K)→ 1,

with A the Artin map, is exact. For N ∈ Z>0 the ray class field HN of K
modulo N satisfies

A−1 Gal(Kab/HN) = O∗WN ,

where WN =
∏

p U
ordp(N)
p with p ranging over the finite primes of K and Unp

the n-th multiplicative subgroup at p, i.e. U0
p = O∗p and Unp = 1 + pnOp for

n ∈ Z>0. In particular we have

A−1 Gal(Kab/H) = Ô∗

for the Hilbert class field H of K. This also means that we have

Gal(HN/H) ∼= Ô∗/O∗WN
∼= (O/NO)∗/O∗,

48

where the last isomorphism is the natural one.

Complex multiplication. Let K be an imaginary quadratic number field with
ring of integers O generated by θ. Embed K in C such that θ lies in the upper
half plane. Let N be a positive integer and let FN be the field of modular
functions of level N over Q(ζN), for ζN a primitive N -th root of unity. Then
the ray class field HN of K modulo N is given by

HN = K({f(θ) | f ∈ FN such that f(θ) is defined}).

That is, the field generated over K by the values f(θ), where f runs over all
modular functions of level N over Q(ζN) which do not have a pole at θ. This is
for example proven in [11], see the corollary of Theorem 2 in Chapter 10.

The Shimura exact sequence. In [21], Chapter 6, Shimura constructs an

action of GL2(Q̂) on the automorphic function field F = ∪∞N=1FN , where FN
denotes the field of modular functions of level N over Q(ζN). We will describe
this action in an ad hoc manner here. Let N be a positive integer. The modular
group SL2(Z) acts on FN by linear fractional transformations and this induces
an action of SL2(Z/NZ) on FN . Moreover the group (Z/NZ)∗ ∼= Gal(Q(ζN)/Q)
acts on the Fourier coefficients of functions in FN , which induces an action of
(Z/NZ)∗ on FN . Combining these two actions, we let B ∈ GL2(Z/NZ) act

on f ∈ FN by setting d = det(B) ∈ (Z/NZ)∗, U = (1 0
0 d)

−1
B ∈ SL2(Z/NZ)

and fB = (fd)U . Now for each positive integer N , we described an action of
GL2(Z/NZ) on FN . Passing to the projective limit this induces an action of

GL2(Ẑ) on the automorphic function field F . The group GL+
2 (Q) acts on F

by linear fractional transformations. We have GL2(Q̂) = GL2(Ẑ) GL+
2 (Q) as

discussed in Chapter 8. Writing an element M ∈ GL2(Q̂) (non-uniquely) as

M = BA for B ∈ GL2(Ẑ) and A ∈ GL+
2 (Q) and setting fM = (fB)A for f ∈ F

defines an action of GL2(Q̂) on F . Shimura proved that this action is such that
the sequence

1→ Q∗ → GL2(Q̂)→ Aut(F)→ 1

is exact (cf. [21], Theorem 6.23). It is referred to as Shimura’s exact sequence.

The Shimura reciprocity law. Let K be an imaginary quadratic number field
with ring of integers O generated by θ. View K̂ as a Q̂-vector space with basis
(θ, 1). For x ∈ K̂, let gθ(x) be the transpose of the matrix that represents the Q̂-

linear map K̂ → K̂ given by multiplication by x. This defines a homomorphism
gθ : K̂∗ → GL2(Q̂) called Shimura’s connecting homomorphism.

We now have the following diagram with exact rows:

1 K∗ K̂∗ Gal(Kab/K) 1

1 Q∗ GL2(Q̂) Aut(F) 1.

gθ

The Shimura reciprocity law states the following. For any f ∈ F and any x ∈ K̂∗
the equality

f(θ)x = fgθ(x
−1)(θ)

49

holds (cf. [21], Theorem 6.31). Note that on the left hand side x acts on the
element f(θ) ∈ Kab via the Artin map. On the right hand side the matrix
gθ(x

−1) acts on the modular function f ∈ F as explained above.

9.2 Overview of the theoretical computation

In this section we give an overview of the computation that we will perform.
We state the whole computation in theoretical terms: we use (exact) idèles and
adèles, not their representations. In Section 9.3 we explain how to perform the
computation in practice.

Let K be an imaginary quadratic number field with ring of integers O gener-
ated by θ. Embed K in C such that θ lies in the upper half plane. Let N ∈ Z>0

and let f0 ∈ FN such that f0 does not a have a pole at θ. We will compute the
Hilbert class field H of K as follows.

Finding class invariants. By complex multiplication we know f0(θ) ∈ HN ,
the ray class field of K modulo N . In order to find a class invariant α ∈
H, we want to compute the action of Gal(HN/H) on f0(θ) ∈ HN . We start
off by taking generators b1, ..., bk of the finite group (O/NO)∗/O∗. Next we

pick representatives x1, ..., xk ∈ Ô∗ of the images of b1, ..., bk under the natural
isomorphism

(O/NO)∗/O∗ ∼−→ Ô∗/O∗WN .

Since Ô∗/O∗WN
∼= Gal(HN/H) via the Artin map, in order to compute the

action of Gal(HN/H) on f0(θ), it suffices to compute the action of x1, ..., xk on

f0(θ). By Shimura’s reciprocity law we have f0(θ)xi = f
gθ(x

−1
i)

0 (θ) for 1 ≤ i ≤ k.
Below we will explain how to explicitly compute the expression on the right.
Based on the computed action of Gal(HN/H) on f0(θ), we can usually find an
f1 ∈ FN such that α = f1(θ) ∈ H and α has small height. See Section 9.4 for
an example, or Section 5 of [5] for a wide range of examples. In many cases,
one can pick f1 = ζaNf

b
0 for a, b ∈ Z and ζN a primitive N -th root of unity.

Computing minimal polynomials. What is left to check is that α = f1(θ) is
a class invariant and to compute its minimal polynomial hαK ∈ K[X] over K.
From the degree of hαK we can tell whether K(α) is a strict subfield of H or
whether α is a class invariant. We will compute hαK by means of the formula

hαK =
∏
α∈A

(X − α),

for A = {σ(α) | σ ∈ Gal(H/K)} the set of conjugates of α over K. Compute

the class group ClK = {c1, ..., cm} of K. Take representatives y1, ..., ym ∈ K̂∗
of the images of c1, ..., cm under the natural isomorphism

ClK
∼−→ K̂∗/(K∗Ô∗).

As the Artin map induces an isomorphism K̂∗/(K∗Ô∗) ∼= Gal(H/K) we have
A = {αy1 , ..., αym}. For each i ∈ {1, ...,m} we can compute αyi using Shimura’s

reciprocity law: αyi = f
gθ(y

−1
i)

1 (θ).

Computing actions. Wat is left to do is computing fgθ(x
−1)(θ) for f ∈ FN

and x ∈ K̂∗. As gθ(x
−1) ∈ GL2(Q̂), there exist B ∈ GL2(Ẑ) and A ∈ GL+

2 (Q)

50

such that gθ(x
−1) = BA, which we compute using Algorithm 8.4. Let BN

denote the image of B in GL2(Z/NZ). Set d = det(BN) and U = (1 0
0 d)

−1
BN ∈

SL2(Z/NZ). Take a lift V ∈ SL2(Z) whose image in SL2(Z/NZ) equals U . Now

fgθ(x
−1) = (fd)V A and these actions can be computed explicitly: d acts on the

Fourier coefficients of f and V A acts by fractional linear transformations.

9.3 The computation in practice

In this section we explain the details of how to perform the exact theoretical
computation from the previous section in practice. We keep all the notation
introduced in Section 9.2.

9.3.1 Constructing representations

Computing generators {b1, ..., bk} of (O/NO)∗/O∗ and enumerating the ideal
classes {c1, ..., cm} in ClK can be done in practice, see for example [2]. In our
implementation we use the functionality provided by PARI [14] to compute
(generators of) these groups.

In the theoretical computation we find x1, ..., xk ∈ Ô∗ based on b1, .., bk and
y1, ..., ym ∈ K̂∗ based on c1, ..., cm. In practice we replace these by representa-
tions of K-idèles.

For i ∈ {1, ..., k} take a ui ∈ R(JK) such that R0(ui) ⊆ xiO∗WN , for
example by taking a representative b′i ∈ (O/NO)∗ of bi and letting ui to be
the image of b′i under the conversion from (O/NO)∗ to JK . Similarly for j ∈
{1, ...,m} take a vj ∈ R(JK) such that R0(vj) ⊆ yjK

∗Ô∗, for example the
image of cj under the conversion from ClK to JK (note that ClK equals the ray
class group of K modulo 1).

For any x ∈ R0(ui) we now have f(θ)x = f0(θ)xi . So for our purposes it
suffices to compute the action of some x ∈ R0(ui) on f(θ). Therefore in our
computations we may replace ui with any u′i ∈ R(JK) such thatR0(u′i) ⊆ R(ui).
Likewise once we know that f1(θ) is a class invariant, for any y ∈ R0(vj)
we have f1(θ)y = f1(θ)yj and so we may replace vj by a v′j ∈ R(JK) with
R0(v′j) ⊆ R0(vj).

It turns out that the ui’s and vj ’s obtained from our conversions usually
do not have high enough precision for our purposes. To this end we define the
following operation on R(JK). Let w ∈ R(JK) not have exact finite part. Let
p0 be a finite prime of K and let n ∈ Z>0. By saying increase the precision of
w at p0 by n we shall mean replace w with the w′ ∈ R(JK) defined as follows.
The infinite part of w′ is equal to that of w. The finite part of w′ is the map
P(w) ∪ {p0} → K × Z≥0 given by

p 7→


wp if p 6= p0;

(c(wp), p(wp) + n) if p = p0 and p ∈ P(w);

(1, n) if p = p0 and p 6∈ P(w).

For p a prime number we say increase the precision of w at p by n if we mean
to increase the precision of w at p by ep/pn for each finite prime p of K above
p, with ramification index ep/p.

51

9.3.2 Shimura’s connecting homomorphism

For L a number field, let IL denote the group of fractional OL-ideals in L and
let ϕL : L̂∗ → IL be the homomorphism defined by ϕL(x) =

∏
p p

ordp(xp), with
p ranging over the finite primes of L. Now we have a commutative diagram

K̂∗ IK

Q̂∗ IQ

ϕK

N N

ϕQ

where N denotes the restriction of the norm of K̂/Q̂ and N is the ideal norm.

Recall that Shimura’s connecting homomorphism gθ : K̂∗ → GL2(Q̂) sends

x ∈ K̂∗ to the transpose of the multiplication by x map K̂ → K̂, where we view
K̂ as a Q̂-vector space with basis (θ, 1). Hence by definition of the norm, we

have N(x) = det(gθ(x)) for x ∈ K̂∗. Identify IQ in the obvious way with Q>0.

Then for x ∈ K̂∗ the ∆ ∈ Q>0 such that ∆Ẑ = det(gθ(x))Ẑ is given by

∆ = ϕQ(N(x)) = N (ϕK(x)) =
∏
p

N (p)ordp(x)

with p ranging over the finite primes of K. Writing the minimal polynomial of
θ over Q as X2 +BX + C we have the explicit formula

gθ(sθ + t) =

(
t−Bs −Cs
s t

)
for s, t ∈ Q̂.

We define a map g̃θ : R(JK)→ R(GL2(Q̂)) based on gθ as follows. Let u ∈
R(JK). First we will construct (s, t) ∈ R(Q̂)2 such that R0(u) ⊆ R(s)θ+R(t),

where we view J0
K inside K̂ = Q̂θ + Q̂. Denote the image of u under the

conversion from JK to AK by a. Let b = (t, s) be image of the finite part of

a under the conversion from K̂ to Q̂2, where we choose θ as our distinguished
generator of K over Q. Define E ∈ R(Q̂)2×2 by

E =

(
t−Bs −Cs
s t

)
.

Define ∆ =
∏

pN (p)ordp(u) where p ranges over the finite primes of K. Now we

define g̃θ(u) = (E,∆) ∈ R(GL2(Q̂)) and this ensures gθ(R0(u)) ⊆ R(g̃θ(u)).
Note that for the computation of ∆ only finitely many primes need to be

considered: either u has exact finite part or we only need to consider primes in
P(u). We implemented the map g̃θ as shimura_connecting_homomorphism()

in shimura.py [6].

From the continuity of arithmetic in R(K̂) and the definitions of our con-
versions, it follows that the following algorithm will terminate.

Algorithm 9.1. Evaluating Shimura’s connecting homomorphism.
INPUT: u ∈ R(JK) and a precision Q ∈ Z>0.

OUTPUT: a pair (v,M) with v ∈ R(JK) and M ∈ R(GL2(Q̂)) such that
R(v) ⊆ R(u) and m(M) ≥ Q and gθ(R(v)) ⊆ R(M).
ALGORITHM:

52

1. Set v := u.
2. Compute M := g̃θ(v).
3. If M does not have precision at least Q, then increase the precision of v

at p with ordp(Q)− ordp(m(M)) (as described in Section 9.3.1) for each
prime number p such that ordp(m(M)) < ordp(Q) and go to Step 2.

4. Output (v,M).

Algorithm 9.1 is implemented in shimura_connecting_homomorphism() as
well by means of the output_prec parameter (see shimura.py, [6]).

9.3.3 Factorizing the adèlic matrices

In Section 9.2 we needed to factor matrices gθ(x
−1) ∈ GL2(Q̂) for x ∈ K̂∗ as

gθ(x
−1) = BA with B ∈ GL2(Ẑ) and A ∈ GL+

2 (Q). In practice gθ(y) will be

replaced by g̃θ(u) ∈ R(GL2(Q̂)) for some u ∈ R(JK). We will use Algorithm
8.4 to compute a factorization in this case as described in Algorithm 9.2 below.

For M ∈ R(GL2(Q̂)) we define the denominator den(M) of M to be the
smallest positive integer d such that dM is integral. For r ∈ Q we denote the
usual numerator and denominator of r by num(r) en den(r).

Algorithm 9.2. Factoring Shimura’s connecting homomorphism.
INPUT: Q ∈ Z>0 and u ∈ R(JK).

OUTPUT: a pair (B, A) with B ∈ R(GL2(Q̂)) of precision at least Q and A ∈
GL+

2 (Q) such that for some x ∈ R0(u) we have gθ(x) ∈ R(B)A and R(B) ⊆
GL2(Ẑ).
ALGORITHM:

1. Set P0 := 1 and perform Algorithm 9.1 on u with precision P0, obtain-
ing u1 and M1 such that R(u1) ⊆ R(u) and M1 = g̃θ(u1) has integral
precision.

2. Set P1 := num(det(M1)) den(M1) and perform Algorithm 9.1 on u1 with
precision P1, obtaining u2 and M2 such that R(u2) ⊆ R(u1) and M2 =
g̃θ(u2) has precision at least P1.

3. Perform Algorithm 8.4 on M2, obtaining A0 ∈ GL+
2 (Q) which satisfies

R(M2A
−1
0) ⊆ GL2(Ẑ).

4. Set P2 := lcm(Qden(A−10), P1) and perform Algorithm 9.1 on u2 with
precision P2, obtaining u3 and M3 such that R(u3) ⊆ R(u2) and M3 =
g̃θ(u3) has precision at least P2.

5. Perform Algorithm 8.4 on M3, obtaining A ∈ GL+
2 (Q) which satisfies

R(M3A
−1) ⊆ GL2(Ẑ).

6. Set B :=M3A
−1 and output (B, A).

Correctness of Algorithm 9.2. Take an x ∈ R0(u3) and let M = gθ(x). Then
M1, M2 and M3 all represent M . Since P0, P1 and P2 are all integral,
M1, M2 and M3 have integral precision. Together this gives den(Mk) =
den(M) = den(M`) and det(Mk) = det(M`) for k, ` ∈ {1, 2, 3}. It is eas-

ily verified that an M ∈ R(GL2(Q̂)) has good precision (cf. Section 8.2) if
m(M) ≥ det(M) den(M). Hence from the definitions of P1 and P2 it follows
that M2 and M3 have good precision. Therefore we give correct input to Al-
gorithm 8.4 in Steps 3 and 5 and so A0 and A satisfy MA−10 ,MA−1 ∈ GL2(Ẑ).
Now Theorem 8.5 gives m(B) ≥ Q. From the definition of B and the fact

that M ∈ R(M3) it is clear that gθ(x)A−1 = MA−1 ∈ R(B) ⊆ GL2(Ẑ). We
conclude that Algorithm 9.2 is correct.

53

We implemented Algorithm 9.2 in shimura.py at [6] in the function called
factored_shimura_connecting_homomorphism().

In practice we will choose Q to be the level N of our modular function
f ∈ FN . If B ∈ R(GL2(Q̂)) has precision at least N and R(B) ⊆ GL2(Ẑ), then
there exists a unique BN ∈ GL2(Z/NZ) such that R(B) maps to {BN} under

the projection GL2(Ẑ) → GL2(Z/NZ). We call BN the reduction of B modulo
N and it can be easily obtained from B. For computing the action of B ∈ R(B)
on f , it suffices to know BN . Hence Algorithm 9.2 enables us to compute the
action of some x ∈ R0(u) on f explicitly in terms of u ∈ R(JK).

9.3.4 The modular function

In practice a modular function f ∈ FN is implemented as a numerical evaluation
function using floating point arithmetic. SageMath already contains such an
implementation for the Dedekind η function, which we used to implement our
example modular functions, such as the Weber functions f, f1, f2 ∈ F48 (cf. [4],
Section 4). See the file modular.py at [6].

sage: weber_f (1+I)

1.08117828783937 - 0.142339821931318*I

sage: weber_f2 (-2+I/3)

1.28245645298445 - 0.740426578354544*I

We take the action of GL2(Z/NZ) on f as input for our computation. This
is done by explicitly specifying the action of (Z/NZ)∗ and the action of the
matrices

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
in SL2(Z) on f . These two matrices generate SL2(Z) and hence (their images)
generate SL2(Z/NZ). Given U ∈ SL2(Z/NZ) we write U in terms of S and T
using the SageMath function sl2z_word_problem().

For example, for any d ∈ (Z/48Z)∗ we have

fd2 =

{
−f2 if d ≡ 3, 5 mod 8;

f2 if d ≡ 1, 7 mod 8,

and the equalities
fS2 = f1 and fT2 = ζ248f2

hold, for ζ48 = exp(2πi/48) ∈ C. This information is hard-coded into our
implementation in the function print_action_on_weber_f2() and enables us
to compute fB2 for any B ∈ GL2(Z/48Z).

sage: B = matrix(Zmod (48), [[7, 10], [1, 39]])

sage: print_action_on_weber_f2(B)

f2]--> zeta48 ^-5*f

The output should be read as: fB2 = ζ−548 f. These kind of expressions enable us
to find class invariants, which we do by hand. See Section 9.4 below or [5] for
examples.

By evaluating f we obtain numerical approximations to the conjugates of our
class invariant α overK, from which in turn we obtain numerical approximations

54

to coefficients of hαK . If the approximations have high enough precision, we can
recognize the exact coefficients in K from them using the LLL-algorithm; see for
example the function recognize_polynomial() in recip/polynomial.sage at
[24], which is based on Section 7 of [12].

The modular functions we implemented facilitate evaluation in arbitrary
precision by means of the prec parameter:

sage: weber_f (1+I, prec =20) # use 20 bits precision

1.0812 - 0.14234*I

sage: weber_f (1+I, prec =75) # use 75 bits precision

1.081178287839374683366 - 0.1423398219313180551240*I

We did not do a careful analysis of the precision we need to use. We simply
increased the precision by hand if no polynomial in K[X] could be recognized
from the numerical approximations of the coefficients.

9.4 Numerical example

Let us demonstrate the computation by a numerical example. The whole com-
putation can be followed on a computer as well: see hilbert.py at [6]. We redo
Example 1 from Section 5 of [5] in our idèlic manner. This example concerns the
field K = Q(

√
−71), whose ring of integers is generated by θ = − 1

2 + 1
2

√
−71.

The minimal polynomial of θ is X2 + X + 18. We embed K in C with θ ∈ H.
We take the cube root γ2 ∈ F3 of the j-invariant satisfying γ2(i) = 12 as our
modular function (cf. [5]).

Using PARI [14] we compute that (the image of) θ − 1 is a generator of
(O/3O)∗/O∗. Let b denote the image of θ − 1 in (O/3O)∗. Then the image
u ∈ R(JK) of b under the conversion from (O/3O)∗ to JK has represented
subset

R(u) = C∗ × (θ − 1)U1
p3
× (θ − 1)U1

q3
×
∏
p-3

O∗p

where p3 and q3 are the primes of K above 3. Applying Algorithm 9.2 on u,
specifying N = 3 as our desired precision, results in the output (B, A) with

B =

((
1 mod 18 36 mod 324
16 mod 18 17 mod 18

)
, 1

)
∈ R(GL2(Q̂)) and A =

(
1 0
0 1

)
.

As A is the identity matrix, its action is trivial. The entries of B are integral
and the determinant is 1, so we see that R(B) ⊆ GL2(Ẑ), as expected. The
reduction B3 of B to GL2(Z/3Z) satisfies

B3 =

(
1 0
1 2

)
=

(
1 0
0 2

)(
1 0
2 1

)
=

(
1 0
0 2

)
S3T−2S,

with S =
(
0 −1
1 0

)
and T = (1 1

0 1) the standard generators of SL2(Z). We know
that (Z/3Z)∗ and S act trivially on γ2 and γT2 = ζ23γ2. It follows that we have
γB3
2 = ζ23γ2. Since det(B3) = 2 ∈ (Z/3Z)∗ we also have ζB3

3 = ζ23 (viewing ζ3 ∈
F3). We conclude that ζ3γ2 is left invariant under B3 and therefore α = ζ3γ2(θ)
is left invariant under Gal(H3/H). So we have α ∈ H as our candidate class
invariant.

55

Using PARI we compute that the class group ClK is cyclic of order 7, gener-
ated by the class [p2] of p2 = 2O+ θO. For i ∈ {1, ..., 7} we compute the image
vi ∈ R(JK) of [p2]i under the conversion from ClK to JK . We have for example

R(v1) = C∗ × θO∗p2
×
∏
p6=p2

O∗p.

We apply Algorithm 9.2 to each vi, specifying output precision 3. For v1 this
gives (B1, A1) given by

B1 =

((
1 mod 18 81 mod 162
9 mod 18 5 mod 9

)
, 1

)
and A1 =

(
1 0
0 2

)
.

Based on the obtained factorizations we can compute approximations to α[p2]
i

in C. For example, denoting the reduction of B1 modulo 3 by B1,3 we have

α[p2] = (ζ3γ2)B1,3(A1θ) = ζ23γ2(θ/2) ≈ −0.036501034995− 82.427712003i.

From the approximations of the α[p2]
i

we obtain an approximation to hαK , in
which we recognize:

hαK = X7 + 6745X6 − 327467X5 + 51857115X4 − 2319299751X3

+ 41264582513X2 − 307873876442X + 903568991567.

This is the same polynomial found in [5] (modulo a ±-typo in that paper which
our computation revealed). For more details on this example and for two bigger
examples involving the Weber functions f, f2 ∈ F48, see hilbert.py at [6].

9.5 Comparison to Gee and Stevenhagen

Our method of computing Hilbert class fields using Shimura’s reciprocity law is
very similar to the method explained by Gee and Stevenhagen [5], but we differ
in the way actions of idèles on modular functions are computed.

Gee and Stevenhagen translate the idèlic result of Shimura’s reciprocity law
in terms of ideals for their specific needs. Namely, for finding class invariants
they construct a reduction gθ,N : (O/NO)∗ → GL2(Z/NZ) of Shimura’s con-
nection homomorphism modulo N . And for computing minimal polynomials of
the class invariants they use the correspondence between ideal classes in ClK
and primitive reduced quadratic forms of discriminant equal to the discriminant
of K. This gives them an explicit formula for an ideal in each ideal class c, from
which they derive explicit formulas for f(θ)c (see Section 9 of [4] for the explicit
formulas and their derivation).

In contrast our computation is based on the direct application of Shimura’s
reciprocity law. Our computation deals with idèles and adèles directly. Our
adèlic matrix factorization algorithm from Chapter 8 enables us to compute the
action of an arbitrary K-idèle (given as a sufficiently precise representation of
K-idèles) on a modular function.

Which approach one likes better is a matter of taste. One may view the
explicit formulas of Gee and Stevenhagen for the specific situation as the easiest.
But one may also view our unified way of computing the action of any idèle on
a modular function as a cleaner approach.

56

Concerning the performance, in terms of run times of the algorithms, we
did not do any experimentation to compare the two methods. At the core, our
computations are very similar: computing generators of (O/NO)∗, enumerat-
ing the class group and evaluating the modular functions is done in the same
manner. So only the computation of the explicit actions is done differently. We
expect Gee and Stevenhagen to be faster in this phase as they use explicit for-
mulas, whereas we perform a general algorithm. Both our implementation of the
Shimura connecting homomorphism as the adèlic matrix factorization algorithm
are not expensive though: we expect them be fast compared to other stages of
our computation. Streng claims in [23] that the performance bottleneck in these
kinds of Hilbert class field computations is the evaluation of the modular func-
tions. Therefore, we expect our method to have very similar performance to the
method of Gee and Stevenhagen.

At any rate, we think our method provides a viable alternative to the method
of Gee and Stevenhagen. Hence this shows the usefulness of our representations
of adèles and idèles: they can indeed be used to perform non-trivial computa-
tions in number theory.

9.6 Generalizing to CM-fields

The method described above can be generalized by replacing the imaginary
quadratic field K with a CM-field : a totally imaginary quadratic extension of
a totally real number field. For a thorough exposition of computing class fields
of CM-fields using Shimura’s reciprocity law we refer to [23]. Below we merely
sketch the situation for CM-fields and indicate how our method could be gen-
eralized to this situation.

A CM-field K has even degree, say 2g. The role of the upper half plane H
will be taken over by the Siegel upper half space Hg of genus g, consisting of
symmetric matrices in Cg×g with positive definite imaginary part. A certain
τ ∈ Hg, called a primitive CM-point, will take the role of θ. The modular
function f will be replaced by a Siegel modular function, which is a certain type
of meromorphic function Hg → C.

The group GSp2g(Q̂) will take the role of the group GL2(Q̂). Their is an

action of GSp2g(Q̂) on the field of Siegel modular functions and this action can

be given explicitly for the subgroups GSp+
2g(Q) and GSp2g(Ẑ) similarly to what

we saw for GL2(Q̂).
The CM-field K has an associated number field Kr called the reflex field of

K and an idèlic type norm N : K̂r → K̂. Also there is a map ε : K̂∗ → GL2g(Q̂)
which is very similar to Shimura’s connecting homomorphism. The composition

ε◦N maps K̂r
∗

to GSp2g(Q̂). Now Shimura’s reciprocity law for Siegel modular
functions gives a relation of the form

f(τ)x = f ε(N(x))−1

(τ)

for x ∈ K̂r
∗
, with x acting via the Artin map on the left hand side.

The values f(τ) will generate abelian extensions of Kr and therefore the ex-

plicit computation of f(τ)x for x ∈ K̂r
∗

will enable one to find class invariants

57

and their minimal polynomials.

The biggest challenge for using the above reciprocity law directly in computa-
tions was the representation of adèles and idèles and the explicit factorization of
a matrix M ∈ GSp2g(Q̂) into M = BA with B ∈ GSp2g(Ẑ) and A ∈ GSp+

2g(Q).
This thesis has provided such representations of adèles and idèles and an ap-
propriate adèlic matrix factorization algorithm. Note that Algorithm 8.9 indeed
handles this more general case of GSp2g(Q̂) and not just GL2(Q̂). Therefore, we
think it should be possible to generalize the method described in this chapter
to CM-fields.

The main ingredient that is still missing, since it played no role in the case
g = 1, is the idèlic type norm N : K̂r → K̂. An implementation of this type
norm will be required for generalizing our method to the case g > 1. We did not
take any efforts to implement such a type norm, nor did we thoroughly check
all details required for actually realizing a generalization sketched above. This
could be a fruitful future project.

10 References

[1] Ana Cannas da Silva. Lectures on symplectic geometry, volume 1764 of
Lecture Notes in Mathematics. Springer Verlag, Berlin, 2001.

[2] Henri Cohen. A Course in Computational Algebraic Number Theory, vol-
ume 138 of Graduate Texts in Mathematics. Springer Verlag, third corrected
edition, 1996.

[3] Henri Cohen. Advanced Topics in Computational Number Theory, volume
193 of Graduate Texts in Mathematics. Springer Verlag, 2000.

[4] Alice Gee. Class invariants by Shimura’s reciprocity law. Journal de théorie
des nombres de Bordeaux, 11(1):45–72, 1999. http://eudml.org/doc/

248345.

[5] Alice Gee and Peter Stevenhagen. Generating class fields using Shimura
reciprocity. Lecture Notes in Computer Science, 1423, 1998. https://doi.
org/10.1007/BFb0054883.

[6] Mathé Hertogh. Computing with adèles and idèles, a SageMath package,
2021. https://github.com/mathehertogh/adeles.

[7] Joris van der Hoeven. Ball arithmetic. https://hal.archives-ouvertes.
fr/hal-00432152, 2009.

[8] David Hokken. Profinite number theory. Bachelor’s thesis, Utrecht Univer-
sity, 2018. https://dspace.library.uu.nl/bitstream/handle/1874/

366790/ProfiniteNumberTheory.pdf?sequence=2&isAllowed=y.

[9] Jolien Kamphuis. Fibonacci-dekpunten en contracties. Bachelor’s
thesis, Leiden University, 2019. https://www.universiteitleiden.

nl/binaries/content/assets/science/mi/scripties/bachelor/

2018-2019/bsc-scriptie-jolien-kamphuis.pdf.

58

http://eudml.org/doc/248345
http://eudml.org/doc/248345
https://doi.org/10.1007/BFb0054883
https://doi.org/10.1007/BFb0054883
https://github.com/mathehertogh/adeles
https://hal.archives-ouvertes.fr/hal-00432152
https://hal.archives-ouvertes.fr/hal-00432152
https://dspace.library.uu.nl/bitstream/handle/1874/366790/Profinite Number Theory.pdf?sequence=2&isAllowed=y
https://dspace.library.uu.nl/bitstream/handle/1874/366790/Profinite Number Theory.pdf?sequence=2&isAllowed=y
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachelor/2018-2019/bsc-scriptie-jolien-kamphuis.pdf
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachelor/2018-2019/bsc-scriptie-jolien-kamphuis.pdf
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/bachelor/2018-2019/bsc-scriptie-jolien-kamphuis.pdf

[10] Greg Kuperberg. Kasteleyn cokernels. Electronic Journal of Combinatorics,
9(1):Research Paper R29, 30 p., 2002. https://arxiv.org/abs/math/

0108150.

[11] Serge Lang. Elliptic Functions, volume 112 of Graduate Texts in Math-
ematics. Springer Verlag, New York, second edition, 1987. https:

//doi.org/10.1007/978-1-4612-4752-4.

[12] Hendrik Lenstra. Lattices. In Algorithmic number theory: lattices, number
fields, curves and cryptography, volume 44 of MSRI Publications, pages
127–181, editors Joe Buhler and Peter Stevenhagen. Camebrigde Uni-
versity Press, 2008. http://library.msri.org/books/Book44/files/

06hwl.pdf.

[13] Hendrik Lenstra. Profinite Fibonacci numbers. Nieuw Archief voor
Wiskunde, 5/6(4):297–300, december 2005. http://www.nieuwarchief.

nl/serie5/pdf/naw5-2005-06-4-297.pdf.

[14] The PARI Group. PARI/GP version 2.11.4. Univ. Bordeaux, 2019. http:
//pari.math.u-bordeaux.fr/.

[15] Vladimir Platonov and Andrei Rapinchuk. Algebraic groups and number
theory, volume 139 of Pure and Applied Mathematics. Academic Press, Inc.,
Boston, MA, 1994. Translated from the 1991 Russian original by Rachel
Rowen.

[16] Nathalie Revol and Fabrice Rouillier. MPFI, a multiple precision interval
arithmetic library, 2001. http://perso.ens-lyon.fr/nathalie.revol/

software.html.

[17] The Sage Developers. Elements, parents and categories in sage: a (draft
of) primer, 2021. https://doc.sagemath.org/html/en/reference/

categories/sage/categories/primer.html.

[18] The Sage Developers. How to implement new algebraic structures in
sage, 2021. https://doc.sagemath.org/html/en/thematic_tutorials/
coercion_and_categories.html.

[19] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 9.3.beta6), 2021. https://www.sagemath.org.

[20] The Sage Developers. Writing code for sage: General conventions, 2021.
https://doc.sagemath.org/html/en/developer/coding_basics.html.

[21] Goro Shimura. Introduction to the Arithmetic Theory of Automorphic
Functions. Princeton University Press, 1971.

[22] Jana Sotáková. Eta quotients and class fields of imaginary quadratic fields.
Master’s thesis, Universities of Leiden and Regensburg, 2017. https:

//www.universiteitleiden.nl/binaries/content/assets/science/

mi/scripties/master/algant/2016-2017/thesis_sotakova.pdf.

[23] Marco Streng. An explicit version of Shimura’s reciprocity law for Siegel
modular functions. https://arxiv.org/abs/1201.0020.

59

https://arxiv.org/abs/math/0108150
https://arxiv.org/abs/math/0108150
https://doi.org/10.1007/978-1-4612-4752-4
https://doi.org/10.1007/978-1-4612-4752-4
http://library.msri.org/books/Book44/files/06hwl.pdf
http://library.msri.org/books/Book44/files/06hwl.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2005-06-4-297.pdf
http://www.nieuwarchief.nl/serie5/pdf/naw5-2005-06-4-297.pdf
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://perso.ens-lyon.fr/nathalie.revol/software.html
http://perso.ens-lyon.fr/nathalie.revol/software.html
https://doc.sagemath.org/html/en/reference/categories/sage/categories/primer.html
https://doc.sagemath.org/html/en/reference/categories/sage/categories/primer.html
https://doc.sagemath.org/html/en/thematic_tutorials/coercion_and_categories.html
https://doc.sagemath.org/html/en/thematic_tutorials/coercion_and_categories.html
https://www.sagemath.org
https://doc.sagemath.org/html/en/developer/coding_basics.html
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/master/algant/2016-2017/thesis_sotakova.pdf
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/master/algant/2016-2017/thesis_sotakova.pdf
https://www.universiteitleiden.nl/binaries/content/assets/science/mi/scripties/master/algant/2016-2017/thesis_sotakova.pdf
https://arxiv.org/abs/1201.0020

[24] Marco Streng. RECIP, repository of complex multiplication SageMath
code, formerly package for using Shimura’s reciprocity law, 2011–2020.
http://www.math.leidenuniv.nl/~streng/recip/.

[25] Nicolas Thiéry and Jason Bandlow. Tutorial: implementing alge-
braic structures, 2021. https://doc.sagemath.org/html/en/thematic_

tutorials/tutorial-implementing-algebraic-structures.html.

60

http://www.math.leidenuniv.nl/~streng/recip/
https://doc.sagemath.org/html/en/thematic_tutorials/tutorial-implementing-algebraic-structures.html
https://doc.sagemath.org/html/en/thematic_tutorials/tutorial-implementing-algebraic-structures.html

	Introduction
	Preliminaries
	Mathematics
	SageMath

	Representations
	Representations of profinite integers
	Representations of profinite numbers
	Representations of real and complex numbers
	Representations of adèles
	Representations of multiplicative p-adics
	Representations of idèles
	Recap of the choices made

	Conversions
	Base embeddings
	Quotients of O
	Adèles and idèles
	Profinite rational vectors
	Ray class groups and idèles
	p-adic numbers

	Implementation in SageMath
	Elements, parents and categories
	Implementation of representations
	Conversions and coercions
	Equivalence of representations
	Case distinction for Q
	Inclusion into SageMath

	Alternative representations
	Real and complex numbers
	p-adic numbers
	Adèles
	Idèles

	Application 1: profinite Fibonacci graph
	Profinite Fibonacci numbers
	Factorial digits
	Visualizing profinite graphs
	Computing the graphs

	Adèlic matrix factorization
	Representations of `39`42`"613A``45`47`"603AGLn(Q"0362Q)-elements
	Factorization in general linear groups
	Factorization in general symplectic groups

	Application 2: Hilbert class field computation
	Theoretical background
	Overview of the theoretical computation
	The computation in practice
	Constructing representations
	Shimura's connecting homomorphism
	Factorizing the adèlic matrices
	The modular function

	Numerical example
	Comparison to Gee and Stevenhagen
	Generalizing to CM-fields

	References

