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Introduction

It has been known for a very long time that there are infinitely many Pythago-

rean triples (a, b, c) with a, b, c rational numbers. All these triples are points

on the affine cone Q ⊂ A3
Q given by the equation x2 + y2 = z2. This gives us

infinitely many so called Q-rational points. Moreover, one can show that these

points are not contained in the union of curves on this cone that are defined by

finitely many equation of the form fi = 0 for some polynomials fi ∈ Q[x, y, z].

This means that these points are in some sense everywhere on this cone, or as

we would say ‘Zariski dense’ in Q.

Now suppose that k is some arbitrary field. Analogously to the Q-points on the

cone Q, we can talk about the Zariski density of k-rational points on surfaces

(or more generally varieties). We will make these statements more precise in

subsection 1.1.4. In this thesis we will look at the Zariski density of the k-

rational points on del Pezzo surfaces. Del Pezzo surfaces are in some sense the

easiest example of algebraic surfaces. More background on these facts will be

given in chapter 2.

It has been conjectured that if a del Pezzo surface has a k-rational point and k

is a number field, that the k-points lie Zariski dense. This conjecture has been

proven for almost all del Pezzo surfaces, but there is a large family of surfaces of

which the question remains wide open, namely those of degree one. There are

some partial results on these surfaces, which will be given in section 2.3, but for

most del Pezzo surfaces of degree one we do not know yet if the above conjecture

holds. Our main result of this thesis, Theorem 3.1, proves the Zariski density

of the k-rational points for a certain family of del Pezzo surfaces of degree one.

The family of surfaces which we will look at can be described in the affine

space A3
k with coordinates x, y, t by an equation of the form

y2 = x3 + a(f)x+ b(f),
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Introduction ↑

where a, b ∈ k[u] are polynomials with deg(a) ≤ 1 and deg(b) ≤ 2 and f ∈ k[t] is

a polynomial with deg(f) = 3. We prove that if k is of characteristic zero, then,

assuming some relatively mild conditions, the k-rational points on a surface of

the described form lie Zariski dense. Moreover, we will also show that in the

case that k is finitely generated over Q, these conditions need to be fulfilled in

order for the k-points to lie Zariski dense.

Our result is a generalization of the result given in [DW21]. In particular,

our research builds on top of theirs and contains their result as a special case,

namely the case that a = 0, deg(b) = 2 and f = t3. Most of their ideas will

come back in our proof of the main theorem, but we had to interpret their work

more geometrically in order to make the arguments work more generally.

The set-up of our proof is a bit more general. We tried to assume as little as

possible, in order to try and figure out how much can be done in characteristic

which is not zero. Only in the last part of the proof, we really need to assume

that we work over a field of characteristic zero. In this way, one can also distil

partial results in the cases outside characteristic zero.

It was our aim to assume as little background as possible. We assume that the

reader has some background in algebraic geometry. In particular, we assume

that the reader is familiar with the definition of schemes and morphisms of

schemes. We will also assume that the reader is familiar with intersection theory

on surfaces on a level that is treated in for example Chapter V.1 of [Har77].

Apart from this, no further background is needed.

In Chapter 1, we will recall some more basic concepts. Topics that are treated

include base change, varieties, rational points, weighted projective spaces, el-

liptic curves and elliptic surfaces. More advanced readers can skip this first

chapter almost entirely, except from maybe the most important definitions,

which are the ones that are numbered.

Chapter 2 is an introduction on del Pezzo surfaces and especially those of degree

one. In this chapter we will try to embed our research in the greater scheme of

del Pezzo surfaces.

Finally, Chapter 3 is about our main result, Theorem 3.1. We will state this

theorem and the rest of the chapter is dedicated to prove this result. This

chapter can be read by itself.
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Chapter 1

Background

In this chapter we give some more background on the concepts which will

be used in this thesis and in particular in the proof of the main theorem.

We start the first section by recalling some more elementary material on base

change, varieties and rational points. We will also define what we mean by the

Zariski density of rational points. In the second section, we will define weighted

projective spaces and show that they are projective. In the final section, we

recall the definition of an elliptic curve and give a short introduction in the

theory of elliptic surfaces.

1.1 Varieties and rational points

This section is mostly based on Chapter 2 of [Poo17]. We will discuss varieties

over any arbitrary field k and define scheme-valued points. We start by recalling

some definitions and common notation for schemes over a base scheme.

1.1.1 Base schemes and base change

Let S be a scheme. A scheme X over S, notation X/S, is a scheme X together

with a morphism X → S. The latter morphism is often called the structure

morphism. If S = SpecR, then alternatively X is called a scheme over R,

notation X/R. An S-morphism between two schemes X and Y over S is a

morphism of schemes X → Y such that the obvious triangle commutes. We

will denote the set of S-morphisms between two schemes by HomS(X,Y ). In

particular, for every scheme S there is a unique morphism S → SpecZ, so every

scheme X can be viewed as a scheme over Z.
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Chapter 1. Background ↑

Let X be a scheme over S and S′ → S be a morphism of schemes. The base

change of X with respect to S′ → S is the scheme X ×S S′, denoted by XS′ .

If S = SpecR and R→ R′ is a ring homomorphism, then the base change of X

with respect to R→ R′ is the scheme X ×SpecR SpecR′, which we also denote

by XR′ . If f : X → Y is a morphism of schemes over X, then the base change

of f with respect to S′ → S is the induced morphism fS′ : XS′ → YS′ from the

pullback diagram

XS′ YS′ S′

X Y S

fS′

f

Analogously, we define the base change of f with respect to R→ R′ and denote

it by fR′ : XR′ → YR′ .

We will use the above notation in particular in the following setting.

Example 1.1. Let k be a field and let l/k be a field extension. Let X

be a scheme over k. Then the base change of X with respect to l/k is the

scheme Xl = X ×Spec k Spec l. Moreover, for every morphism f : X → Y of

schemes over k, we get an induced morphism fl : Xl → Yl via this fiber-product.

Notation 1.2. If k is a field, then we denote by k an algebraic closure of k.

We denote by ks a separable closure of k contained in k. Let X be a k-scheme.

We denote by X the base change Xk and by Xs the base change Xks .

A property P of schemes over a base is said to be preserved under base change if

whenever X/S has P, every base change XS′/S
′ has P. Similarly, a property P

of morphisms of schemes over S is said to be preserved under base change

if whenever f : X → Y has P, every base change fS′ : XS′ → YS′ has P.

A lot of properties of morphisms are preserved under base change, see for

example [Stacks, Tag 02WE].

Let X be a scheme over a field k. A property P holds geometrically if it holds

over the base change to the algebraic closure k, in other words if P holds for X.

Properties that are preserved under base change will always hold geometrically

if they hold over k. The following example shows some properties that are not

stable under base change.
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Chapter 1. Background ↑

Example 1.3.

(i) Let X denote the scheme Spec(R[x]/(x2 + 1)) over R. Note that this is

the scheme SpecC viewed as a scheme over SpecR. Then X is connected,

but it is not geometrically connected, because we have the equality

X = Spec(C[x]/(x+ i)(x− i)) ∼= SpecC t SpecC.

In particular, X is not geometrically irreducible and hence not geometri-

cally integral.

(ii) Let X be denote the scheme Spec(Q[x, y]/(x2− 2y2)) over Q. Then X is

integral, but it is not geometrically irreducible, since

X = Spec(Q[x, y]/(x−
√

2y)(x+
√

2y)).

(iii) Let X denote the scheme Spec(Fp(t)[x, y]/(yp − txp)) over Fp. Then X

is integral, but not geometrically reduced since

X = Spec(Fp(t)[x, y]/(y − t1/px)p).

Let f : X → S be a morphism of schemes. Let s ∈ S be a point and denote

by κ(s) the residue field OS,s/mS,s of the point s. Then there is a canonical

morphism Spec(κ(s))→ S defined on the unique point by Spec(κ(s)) 7→ s and

on sheaves by the quotient map OS,s → κ(s). The scheme theoretic fiber or

fiber of f above s is the scheme Xs = X×SSpec(κ(s)) induced by the canonical

morphism. Note that the fiber Xs is naturally a scheme over the field κ(s).

1.1.2 Varieties and linear systems

In this subsection, we let k be a field. We will use the following definition of a

variety.

Definition 1.4. A k-variety X is a separated scheme of finite type over k.

We say that X is a curve if it is a variety of pure (by which we mean that

every connected component is of) dimension one and a surface if it is of pure

dimension two. A variety X is nice if it is projective, geometrically integral

and smooth over k.

Note that our definition of a variety deviates from [Stacks] and [Har77], because

we do not assume our varieties to be integral. The advantage of this definition
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Chapter 1. Background ↑

is that the category of varieties is now closed under taking pullbacks and so

in particular under base change. Moreover, every closed and open subset of

a k-variety will again be a k-variety.

Example 1.3 shows that if we did assume that our varieties are integral and

not geometrically integral, that the base change of a variety does not need to

be a variety. One of the drawbacks of our definition is that our varieties can

have multiple irreducible components. Moreover, a variety does not have to be

connected. Also reduced varieties come with their own set of problems, but we

leave this discussion for now.

Let D be a divisor on a nice variety X over k. Denote by L(D) the Riemann-

Roch space of D. Recall that L(D) = {f ∈ κ(X)∗ : div(f) + D ≥ 0} ∪ {0},
which is a finite dimensional k-vector space. We denote its dimension by `(D).

The complete linear system |D| associated to D is the set of effective divisors

of X that are linearly equivalent to D. The map f 7→ div(f) + D induces

a bijection (L(D) − {0})/k∗ → |D|. If two divisors D1 and D2 are linearly

equivalent, we get an equality |D1| = |D2|.

A base point of a complete linear system is a point P ∈ X which is in the

support of each divisor in L. We call a complete linear system base point free

if it has no base points.

If `(D) = d > 0, choosing a basis (f1, . . . , fd) of L(D) defines a rational

map X 99K Pd−1
k by P 7→ (f1(P ) : · · · : fd(P )). It may be possible to ex-

tend the domain of this rational map by choosing other representatives, but it

will not be a morphism in all cases. By choosing another bases, we also will get

another rational map. This rational map can be defined independently of the

basis by using linear systems, see for example [Har77], Section II.7. Therefore,

we will call such a rational map, the map determined by the linear system |D|.

The rational map associated to the linear system |D| will be defined at a

point P ∈ X if and only if P is not a base point of‘|D|. In particular, the

associated rational map is a morphism if and only if the complete linear sys-

tem is base point free.

We call a divisor D very ample if the map determined by the complete linear

system |D| induces a closed embedding. A divisor D is called ample if there

exists a positive integer n such that nD is very ample.
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1.1.3 Scheme-valued points

Let X be an S-scheme. If T is an S-scheme, then the set of T -points on X is

defined as X(T ) := HomS(T,X). In the case that T = SpecR, we will denote

this also as X(R) := HomS(SpecR,X). In the special case that S = Spec k

and T = Spec l for some field extension l/k, an element of X(l) is called an l-

rational point or l-point. Note that we forget the S in the notation but the set

of T -points on X really depends on the structure morphism X → S.

One can check that the above definition defines a functor

hX : Schemesopp
S → Sets; T → X(T )

from the opposite category of schemes over S to sets. This functor is called

the functor of points. Given a morphism g : T → T ′ of schemes over S, the

map hX(f) : X(T ′) → X(T ) is given by the composition ϕ 7→ ϕ ◦ g. In a

similar way, one can check that a morphism f : X → Y induces a natural

transformation hf : hX → hY .

Remark 1.5. Much more can be said about this functor of points. As a result

of the Yoneda Lemma it follows that a scheme X over S is defined (up to unique

isomorphism) by its functor hX . In fact, it is already defined by the restriction

of hX to affine schemes. Therefore, it is common to identify a scheme X with

its functor hX . We will not explicitly use this in the remainder of the thesis,

but it is good to keep this in mind.

Lemma 1.6. LetX be a scheme over S. The functor of points has the following

properties:

(i) If U ⊂ X is an open subscheme, then we have U(T ) ⊂ X(T ) for any

S-scheme T .

(ii) Suppose S = Spec k and l/k is some field extension. If {Xi} is an open

covering for X, then we have the equality
⋃
Xi(l) = X(l).

(iii) If S′ → S is a morphism of schemes and T is an S′-scheme, then there is

an equality XS′(T ) = X(T ), where on the right we view T as an S-scheme

via the composition T → S′ → S.

(iv) Suppose X is separated over S. If T ′ → T is a scheme-theoretically domi-

nant S-morphism, meaning that its image is dense and the corresponding

map on sheaves is injective, then the induced map X(T )→ X(T ′) is in-

jective.

11
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Proof. Statement (i) is clear, because the inclusion ι : U → X induces an

injective map U(T )→ X(T ) by composing an element of U(T ) with ι. For (ii),

observe that for any k-morphism Spec l → X, the image is exactly one point,

and hence is in some Xi. For (iii) and (iv) see Proposition 2.3.15 and 2.3.21

of [Poo17].

We give some examples with varieties to make the results of Lemma 1.6 more

concrete.

Example 1.7.

(i) Let X denote the n-dimensional affine plane AnR = Spec(R[x1, . . . , xn]).

Then we have a bijection X(R) ∼= HomR(R[x1, . . . , xn],R) ∼= Rn. More-

over, by part (iii) of Lemma 1.6, we also have that X(C) = X(C) ∼= Cn.

Part (iv) of Lemma 1.6 gives us an inclusion X(R) ↪→ X(C). It this case,

this exactly corresponds to the inclusion Rn ↪→ Cn.

(ii) Every projective space Pnk is covered by the affine patches

Ui = Spec k

[
X0

Xi
, . . . ,

Xi−1

Xi
,
Xi+1

Xi
, . . . ,

Xn

Xi

]
∼= Ank .

Part (ii) of Lemma 1.6 gives us that Pnk (l) =
n⋃
i=0

Ui(l) for each field

extension l/k.

(iii) Let X be a quasi-projective k-variety X, i.e. a k-variety X such that

there is an embedding ι : X ↪→ Pnk that is locally closed. By part (i)

of Lemma 1.6, we get an inclusion X(l) ↪→ Pnk (l) for each field exten-

sion l/k. Moreover, every quasi-projective scheme X is separated and so

by part (iv) we can identify X(l) with a subset of Pnk (l).

(iv) Let l/k be a field extension and let X be a quasi-projective l-variety. By

part (iii) of Lemma 1.6, we have that Pnk (l) = Pnl (l). Then following the

previous example, we can identify X(l) with a subset of Pnk (l).

1.1.4 Zariski density of rational points on varieties

Note that in the section before, we defined rational points as morphisms. At

this point, it is therefore not at all clear, what is meant for these points to lie

dense in the Zariski topology of a variety. To give a hint of what is meant, we

start this section with a (hopefully) motivational example.

12
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Example 1.8. Let X denote the affine line over Q, in other words X is the

Q-scheme A1
Q = Spec(Q[x]). Then the following sets are in bijection:

(i) the set of closed points of X;

(ii) the set of maximal ideals of Q[x];

(iii) the set of monic irreducible polynomials of Q[x];

(iv) the set of Gal(Q/Q)-orbits in X(Q) = Q.

We can check this as follows. A point of X is closed if and only if it is a

maximal ideal. Every maximal ideal of Q[x] is of the form (f) for a unique

monic irreducible polynomial. Every monic irreducible polynomial defines an

algebraic extension Q[x]/(f) ⊂ Q of Q. The set of roots of this extension gives

us a unique Galois-orbit in Q. This shows that all the above sets are indeed

in bijection with each other. Moreover, as a consequence we have that the Q-

rational points X(Q) are points with Galois-orbit of size 1, which correspond

to the points x ∈ X with residue field Q.

The above result generalizes to arbitrary varieties in the following way. In

the remainder of this section we let k be a field. Identify the set of field

automorphisms Autk(k) over k of k with the Galois group Gk := Gal(ks/k).

Each g ∈ Gk, defines an automorphism k → k that fixes the ground field k.

This morphism induces a morphism g∗ : Spec k → Spec k over k.

Now let X be a scheme over k. We get the following action of the group Gk on

the set X(k) of k-points of X. For each g ∈ Gk and each k-point p ∈ X(k), the

composition p◦g∗ ∈ X(k) gives again a k-point of X. This gives a well-defined

right action on X(k).

We get the following result for the orbits of X(k) under Gk in the case that X

is a variety.

Proposition 1.9. Let X be a k-variety. Then the map

{Galois orbits in X(k)} → {closed points in X}

orbit of (f : Spec k → X) 7→ f(Spec k)

is a bijection.

Proof. Proposition 2.4.6 of [Poo17].

13
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Recall from part (iv) of Lemma 1.6 that we have an inclusion X(k) ⊂ X(k)

and so the above proposition gives us the following corollary.

Corollary 1.10. The k-points X(k) ⊂ X(k) are points with Galois orbit 1 and

correspond under this bijection with closed points x ∈ X with residue field k.

This bijection motivates why we often identify a k-rational point of X with a

point in X. This leads to the following definition of what it means for k-rational

points to lie Zariski dense.

Definition 1.11. Let X be a k-variety. We call X(k) Zariski dense in X, or

say that the rational points lie Zariski dense in X, if under the identification

of Proposition 1.9 we have X(k) = X.

Before we continue our discussion, we take a small side step and state some

properties of k-varieties of which the rational points lie Zariski dense. We

will not use this in the remainder of the thesis, but it is nice result about the

geometry of varieties in which the k-rational points lie Zariski dense.

Proposition 1.12. Let X be a k-variety such that X(k) is Zariski dense in X.

1. If X is irreducible, then X is geometrically irreducible.

2. If X is reduced, then X is geometrically reduced.

3. If X is integral, then X is geometrically integral.

Proof. Proposition 2.3.26 of [Poo17].

Proposition 1.12 is often used to show that the k-points lie not Zariski dense.

Another nice result, which we will use in this thesis, is due to Châtelet.

Proposition 1.13 (Châtelet). Let X be a k-variety of dimension n such that

X ∼= Pn
k
. Then the following are equivalent:

(i) X ∼= Pnk .

(ii) X is birational to Pnk .

(iii) X(k) 6= ∅.

Proof. For a complete proof, we refer to Proposition 4.5.10 of [Poo17]

14
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1.2 Weighted projective space

In this thesis we will encounter weighted projective spaces. In this section we

will define these spaces as a scheme and show that they can be embedded in

projective space. We will also give an explicit embedding for the weighted

projective space Pk(2, 1, 1) over a field k. This section is based on [Stacks,

Tag 00JL, Tag 00JM and Tag 01M3].

1.2.1 Graded rings and the homogeneous spectrum

A graded ring S is a commutative ring endowed with a direct sum decomposi-

tion S =
⊕
d≥0

Sd of the underlying abelian group such that Sd · Se ⊂ Sd+e for

all d, e ≥ 0. The irrelevant ideal is the ideal S+ =
⊕
d>0

Sd. An element f ∈ S

is called homogeneous if f ∈ Sd for some d. This d is called the degree of f ,

denoted deg(f).

A graded module is an S-module M endowed with a direct sum decomposi-

tion M =
⊕
d∈Z

Md of the underlying abelian group such that Sd ·Me ⊂ Md+e

for all d ≥ 0 and e ∈ Z. A homogeneous ideal of S is an ideal I ⊂ S which is

also a graded submodule of S.

Example 1.14. Let R be a ring. Then every polynomial ring R[x1, . . . , xn] is a

graded ring with the grading induced by deg(xi) = ai for some integers ai ≥ 0.

Note that the choice of different ai give different, possibly non-isomorphic,

graded rings.

Let S be a graded ring. We define ProjS to be the set of homogeneous ideals p

of S such that S+ 6⊂ p. The set ProjS is a subset of SpecS and we endow it with

the induced topology. The topological space ProjS is called the homogeneous

spectrum of the graded ring S. Moreover, by [Stacks, Tag 01MB] there is a

construction of a sheaf on ProjS making it into a scheme. For the construction

of this sheaf, see [Stacks, Tag 01M3].

For some homogeneous polynomial f ∈ Se, we define the set

D+(f) := {p ∈ ProjS | f 6∈ p}.

For a homogeneous ideal I ⊂ S, we also define

V+(I) = {p ∈ ProjS | I ⊂ p}.
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The most important properties of these sets are summarized in the following

lemma.

Lemma 1.15. Let S be graded ring, let I ⊂ S be a homogeneous ideal and

let f ∈ Sd for some d > 0. Then

(i) the set D+(f) is an affine open subset and there is a natural isomor-

phism D+(f) ∼= SpecS(f), where S(f) denotes the degree zero part of the

localization with respect to f ;

(ii) the sets D+(f) form a basis for the topology of ProjS;

(iii) for g, h ∈ S homogeneous, we have D+(gh) = D+(g) ∩D+(h);

(iv) V+(I) is closed;

(v) V+(I) = ∅ if and only if S+ ⊂
√
I;

(vi) any closed subset T ⊂ ProjS is of the form V+(J) for some homoge-

neous J ⊂ S.

Proof. [Stacks, Tag 00JP and Tag 01MB]

Lemma 1.16. Let S be a graded ring. Then ProjS is quasi-compact, meaning

that every open cover of ProjS has a finite subcover, if and only if there

are homogeneous elements f1, . . . , fn ∈ S+ such that S+ ⊂
√

(f1, . . . , fn).

Moreover, for such f1, . . . , fn ∈ S+ we have that ProjS =
n⋃
i=1

D+(fi).

Proof. [Stacks, Tag 01MD]

Definition 1.17. Let R be a ring. A weighted projective space over R is a

scheme of the form Proj(R[X0, . . . , Xn]), where each Xi has degree ai > 0. We

denote it by PR(a0, . . . , an).

Note that if we take ai = 1 for all i, we just get n-dimensional projective

space over R, denoted as usual by PnR. Every weighted projective space over R

comes with a canonical morphism to SpecR which is separated. Every weighted

projective space Pk(a0, . . . , an) is a k-variety. This k-variety is not necessarily

smooth, which we will show in the next example.

Example 1.18. Let k be a field and let S := k[X,Y, Z] be a graded ring

with deg(X) = 2 and deg(Y ) = deg(Z) = 1. Let W be the weighted projective

16

https://stacks.math.columbia.edu/tag/00JP
https://stacks.math.columbia.edu/tag/01MB
https://stacks.math.columbia.edu/tag/01MD


Chapter 1. Background ↑

space W := Pk(2, 1, 1) = ProjS and let x = (1 : 0 : 0) ∈ W . The local ring at

the point x is given by

OW,x :=

{
f

g
: d ≥ 0, f, g ∈ k[X,Y, Z]d, g(1, 0, 0) 6= 0

}
.

The dimension of this ring is 2.

Note that because g(1, 0, 0) 6= 0, it follows that there are no fractions such

that deg(g) is odd as some power of X has to occur in g. We deduce that the

maximal ideal mW,x of this local ring is generated by the elements
Y 2

X
,
Y Z

X
,
Z2

X
.

In particular, the equivalence classes of these elements generate the k-vector

space mW,x/m
2
W,x. We can check that the equivalence classes of

Y 2

X
,
Y Z

X

and
Z2

X
are k-linearly independent and so the dimension dimmW,x/m

2
W,x is 3.

We deduce that this ring is not regular.

From the above result it follows that the point (1 : 0 : 0) on W is a singular

point and from [Stacks, Tag 056S] it follows that W is not a smooth variety.

This result could alternatively, and maybe more easily, be deduced by using

the isomorphism which we will see in Example 1.24.

Similarly as with projective space, weighted projective spaces can be covered

by a standard set of affine opens.

Lemma 1.19. The set (D(Xi))0≤i≤n is an open cover for PR(a0, . . . , an). In

the case that ai = 1, we have

D(Xi) ∼= Spec(R[x0, . . . , xi−1, xi+1, . . . , xn]) = AnR,

where xj = Xj/X
aj
i .

Proof. Because S+ = (X0, . . . , Xn), the first part follows from Lemma 1.16.

The second part follows from the isomorphism of part (i) of Lemma 1.15.

1.2.2 Embedding in projective space

Let S be a graded ring and d ≥ 1 be an integer. We define the d-th Veronese

subring to be the subring S(d) given by S(d) :=
⊕
e≥0

Sde. We give this ring the

grading (S(d))e = Sde. We have the following results for S(d) and ProjS(d).

We will also give the complete proof of the Lemma 1.20, which will hopefully

be motivational in understanding example 1.24.
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Lemma 1.20. Let S be a graded ring. If ProjS is quasi-compact, then

ProjS ∼= ProjS(d) for all d ≥ 1.

Proof. Let d ≥ 1 be given. By Lemma 1.16, we can choose some homogeneous

elements f1, . . . , fn ∈ S+ such that both S+ ⊂
√
f1S + · · ·+ fnS and

ProjS =

n⋃
i=1

D+(fi)

holds. Note that we may assume that all the fi are non-nilpotent elements.

Denote by I the ideal of S given by I = f1S + · · · + fnS and by J the ideal

of S(d) given by J = fd1S
(d) + · · ·+ fdnS

(d). Denote by di the degree deg(fi).

For each homogeneous g ∈ S(d)
+ we have that g ∈

√
I. This means that there

is an equality gm =
∑n
i=1 aifi for some m ≥ 1 and ai ∈ S. Moreover, we may

assume that all the ai are homogeneous with deg(ai) = m · deg(g)− di.

Note that gmnd = (
∑n
i=1 aifi)

nd
. We deduce that each term of gmnd is divisible

by some term fdi . Hence, we get an equality gmnd =
n∑
i=1

bif
d
i for some bi ∈ S.

By the assumption that ai is homogeneous, we have that bi must be homoge-

neous with deg(bi) = mnd · deg(g)− d · di. Hence, d | deg(bi) and so bi ∈ S(d).

It follows that gmnd ∈ J . We deduce that g ∈
√
J and so S

(d)
+ ⊂

√
J holds.

By Lemma 1.16 it now follows that

ProjS(d) =
⋃
i∈I

D+(fdi ),

where D+(fdi ) is viewed as a subset of ProjS(d). By part (i) of Lemma 1.15,

we have that both D+(fi) ∼= SpecS(fi) and D+(fdi ) ∼= SpecS
(d)

(fdi )
. We also

have the equalities

S
(d)

(fdi )
=

{
h

fdei
| e ≥ 0, h ∈ (S(d))di·e

}
and

S(fi) =

{
g

fmi
| m ≥ 0, g ∈ Sdi·m

}
=

{
gf

de−m deg(fi)
i

fdei
| m ≥ 0, e ≥ m · di

d
, g ∈ Sdi·m

}
.

From this description it is clear that these two sets are in bijection. This

bijection gives us an isomorphism of schemes D+(fi) ∼= D+(fdi ) for each fi.

These isomorphisms are compatible with the gluing of the affine opens and we

may conclude that ProjS ∼= ProjS(d).

18
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Lemma 1.21. Let S be a graded ring which is finitely generated as an S0-

algebra. For some sufficiently divisible d, the graded ring S(d) is generated

by Sd as an S0-algebra.

Proof. [Stacks, Tag 0EGH]

With the above lemmas, we can construct an embedding of a weighted projec-

tive space in a projective space, which leads to the following proposition.

Proposition 1.22. Let S be a graded ring. If ProjS is quasi-compact, then

it can be embedded in a projective space PnS0
over S0 for some integer n ≥ 0.

Proof. By Lemma 1.20 and Lemma 1.21 we may assume that ProjS is gen-

erated by S1. Now let {f0, . . . , fn} be a set of generators with fi ∈ S1. Then

the map ϕ : S0[X0, . . . , Xn] → S defined by Xi 7→ fi is a surjective morphism

of graded rings and hence S is isomorphic to S0[X0, . . . , Xn]/ kerϕ. This iso-

morphism induces a isomorphism of ProjS with the corresponding closed sub-

scheme of PnS0
.

Corollary 1.23. Let k be a field. A weighted projective space Pk(a0, . . . , an)

over k can be embedded in projective space over k.

In the following example, we will give an embedding of the weighted projec-

tive space Pk(2, 1, 1) in P3
k. This embedding will come back in the following

chapters.

Example 1.24. Let k be a field. The weighted projective space Pk(2, 1, 1) is

isomorphic to the closed subscheme Q ⊂ P3
k with coordinates p, q, r, s defined

by

Q := Proj (k[p, q, r, s]/(r2 − qs)).

This isomorphism is constructed as follows. Write S = k[X,Z,W ] for the

graded ring with deg(X) = 2 and deg(Z) = deg(W ) = 1. Then we can identify

the weighted projective space as Pk(2, 1, 1) = ProjS. Lemma 1.20 gives us

that ProjS ∼= ProjS(2).

Observe that the elements X,Z2, ZW,W 2 ∈ S(2)
1 generate S(2) as a k-algebra,

because every element of S2d for d ≥ 1 is a k-linear sum of products of d

of these elements. The map k[p, q, r, s] → S(2) defined by p 7→ X, q 7→ Z2,

r 7→ ZW and s 7→W 2 is surjective with kernel (r2− qs). This map induces an
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isomorphism between the schemes ProjS(2) and Q. This shows that Pk(2, 1, 1)

is isomorphic to Q.

We can also make this isomorphism explicit by looking what happens on the

affine pieces of Pk(2, 1, 1). Observe that we will closely follow the proof of

Lemma 1.20. Recall from Lemma 1.19 that Pk(2, 1, 1) is covered by the affine

opens D+(X), D+(Z) and D+(W ). Part (i) of Lemma 1.15 gives us that

D+(X) ∼= Spec(k[y1, y2, y3]/(y2
2 − y1y3)),

where y1 := Z2/X, y2 := ZW/X and y3 := W 2/X. By identifying y1 = q/p,

y2 = r/p and y3 = s/p on the affine open D+(p) ⊂ P3
k we get an injective

morphism D+(X) ↪→ P3
k. One can check that this extends to a well-defined

isomorphism with image Q. This isomorphism is defined locally on the affine

opens D+(Z) = Spec(k[X/Z2,W/Z]) and D+(W ) = Spec(k[X/W 2, Z/W ])

as (a, b) 7→ (a : 1 : b : b2) and (a, b) 7→ (a : b2 : b : 1) respectively.

1.3 Elliptic surfaces

In the proof of the main theorem, we will encounter an elliptic surface. Also,

the blowup of a del Pezzo surface of degree 1 in the base point of the anti-

canonical system will be an elliptic surface. Therefore, we will shortly discuss

some results on elliptic surfaces. Before we talk about elliptic surfaces, we

will first talk about two other algebraic structures, namely elliptic curves and

fibered surfaces.

In this section we let k be an arbitrary field and l/k some field extension.

1.3.1 Elliptic curves and Weierstrass equations

We recall the definition of an elliptic curve and its most important properties.

For details we refer to sections III.1 to III.3 of [Sil09].

An elliptic curve E over k is a pair (E,O) such that E is a nice curve over k of

genus one and O ∈ E(k) is a k-rational point. An important property of elliptic

curves is that the set of l-points E(l) forms an abelian group with O as neutral

element. This group structure comes from the bijection E(l) 7→ Pic0(El) given

by P 7→ [P ]− [O].

Let (E,O) be an elliptic curve. Then this curve can be embedded in P2
k by

the map determined by linear system of |3O|. The image of this embedding is
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given on an affine piece by the zero set of an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 with ai ∈ k. (1.1)

The point O corresponds under this embedding to the unique point at infinity.

Equation (1.1) is called a Weierstrass equation. Every Weierstrass equation has

a discriminant ∆ which is a value in k depending on the coefficients ai. Given a

Weierstrass equation with coefficients ai in a field k, it defines a curve of arith-

metic genus 1 in P2
k, which is a smooth curve if and only if this discriminant ∆

is not equal to zero.

In the case that char(k) 6= 2, by completing the square on the left-hand side,

we can take a1 = a3 = 0. Similarly, in the case that char(k) 6= 3, by completing

the cube on the other side, we can assume a2 = 0. A Weierstrass equation such

that a1 = a2 = a3 = 0 is called a short Weierstrass equation.

A projective curve in P2
k which is on an affine part given by a Weierstrass

equation as in (1.1) is called a Weierstrass curve. There will be one unique

point that is not on this affine. This point is also called the point at infinity.

Note that we did not assume that a Weierstrass curve is smooth.

From now on, let E denote a Weierstrass curve and let O ∈ E(k) denote the

point at infinity. Let Ens denote the smooth part of E. If E is not smooth,

then there is an equality Ens = E−{P} for some unique singular point P ∈ E.

We will define an abelian group structure on the set of l-rational points Ens(l)

of Ens.

This group structure is very geometric and can be described as follows. Given a

line in P2
k(l), by Bézout’s theorem, it will intersect the curve E in three, possibly

non-distinct, points P,Q,R ∈ E(l). If none of these points is a singular point,

then these points will add up to the point O. Moreover, P,Q,R ∈ Ens(l) are

collinear if and only if P +Q+R = O.

In the remainder of this subsection we will give explicit formulas for this group

structure of E. The unique point at infinity O ∈ Ens(l) is the neutral element

of this group structure. Let P1 = (x1, y1) and P2 = (x2, y2) be two points

in (Ens−{O})(l). We define −P1 := (x1,−y1−a1x1−a3) and we define P1 +P2

to be O if P2 = −P1. Otherwise, P1 + P2 is defined as follows. Let y = λx+ ν

be an equation for the unique line through the points P1 and P2, or if P1 = P2,

for the tangent line to E at this point. Then we define

P1 + P2 =
(
λ2 + a1λ− a2 − x1 − x2,−(λ+ a1)x3 − ν − a3

)
,
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where x3 denotes the x-coordinate of this new point P1 + P2.

One can check that this is a well-defined group structure which can be charac-

terized as follows. In the smooth case, this group structure equals the group

law given by the bijection with the degree zero part of the Picard group of E.

In the singular case, if the singular point is a cusp, then Ens(l) is isomorphic

to the additive group l+. Or else, if the singular point is a node, then Ens(l)

is isomorphic to multiplicative group l∗ or some twist of l∗, see Exercise 3.5

of [Sil09].

Remark 1.25. A point P ∈ E(l) on the elliptic curve E has order two if and

only if it is a non-singular point P = (xP , yP ) ∈ (Ens−O)(l) on the affine part

of the curve such that we have the equality yP = −yP − a1xP − a3. Moreover,

if P ∈ (E − O)(l) is a point such that this equality holds then it is either the

singular point or a point of order two.

There is a special automorphism on each Weierstrass curve, which is given as

follows.

Definition 1.26. Recall that E denotes a Weierstrass curve in P2
k given by the

local equation (1.1). We define the automorphism [−1]E : E → E by O 7→ O

and

(x, y) 7→ (x,−y − a1x− a3) for all P = (x, y) ∈ (E −O)(l).

Note that we only defined it on l-points, but one can show that this assignment

really defines an automorphism E → E. In the case that E is smooth, the above

defined morphism sends each point to its inverse. In the case E has a singular

point, the singular point gets mapped to itself, and on the smooth points it

still maps each point to its inverse. Together with Remark 1.25 we get the

following result.

Lemma 1.27. Let P ∈ E(l) be an l-rational point on the Weierstrass curve E.

Then the following are equivalent.

(i) P is a fixed point of the map [−1]E : E → E;

(ii) P is singular or P is a smooth point of order at most two.

(iii) P = O or
df

dy
(P ) = 0, where f ∈ k[x, y] is given by

f = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6.
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Proof. Statement (i) is equivalent to (ii) by the previous discussion. We prove

that (ii) is equivalent to (iii). Note that
df

dy
= 2y + a1x+ a3.

(ii)⇒(iii) For P = O there is nothing to prove. For the points of order two, the

equality holds by the first part of Remark 1.25. And for a singular point the

partial derivative has to vanish.

(iii)⇒(ii) Again for P = O there is nothing to prove, so suppose that
df

dy
(P ) = 0

for P = (xP , yP ). Then we get the equality 2yP + a1xP + a3 = 0. We conclude

by the second part of Remark 1.25 that (ii) holds.

1.3.2 Fibered surfaces

An elliptic surface is an example of a surface with a fibration. In the literature,

there is no clear definition of what a fibration should be. In this thesis, if we

talk about a fibration, we mean the following.

Definition 1.28. A fibration is a surjective morphism f : X → C where X is

a surface over k and C denotes a geometrically integral curve over k. If X → C

is a fibration, we call X a fibered surface.

We can see such a fibered surface X as a family of curves parametrized by

the curve C. Moreover, every fiber of such a morphism will be a curve on X.

Because we assume in the definition of a fibration that C is a geometrically

integral curve, the curve C has a unique generic point. The generic fiber of

a fibration f : X → C is the scheme-theoretic fiber of the generic point of C.

This generic fiber is a curve that is defined over the function field of C.

Let f : Y → Z be a morphism of varieties over k. Recall that a section of f is

a morphism σ : Z → Y such that f ◦ σ = idZ . We denote the set of sections

of Y → Z by Y (Z). Note that this notation agrees with the notation of the

functor of points if we view Y as scheme over Z. An l-section of f is a section

of the base change fl : Yl → Zl. If f : X → C is a fibration and σ : C → X is a

section, with abuse of language, we will also call the image σ(C) a section.

Example 1.29. Set C = Spec k[t]. Define

X := Spec
(
k[t][x, y]/(y2 − x3 − ax)

)
for some element a ∈ k[t].

Then the map k[t]→ k[t][x, y]/(y2−x3−ax) induces a morphism X → C which

makes X a fibered surface. The generic fiber of this morphism is given by the
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curve Spec
(
k(t)[x, y]/(y2 − x3 − ax)

)
. The map k[t][x, y]/(y2−x3−ax)→ k[t]

defined by x 7→ 0, y 7→ 0 and t 7→ t gives a section σ : C → X of f . This map

is given on points by the assignment t′ 7→ (t′, (0, 0)). In other words, on each

fiber t = t′, we get the point (0, 0).

Let f : X → C be a fibration and σ : C → X a section of f . Let κ(C) denote

the function field of the curve C. Let η denote the generic point of C and let Xη

denote the generic fiber of f . Note that κ(η) = κ(C) and let Specκ(C) → C

be the canonical morphism corresponding to the point η.

Each section σ : C → X of the fibration f gives a unique κ(C)-point σ∗ on the

generic fiber Xη of f induced by the following pullback diagram.

Xη X

Specκ(C) C

fσ∗ σ (1.2)

Moreover, if f is proper and C is non-singular, then the following lemma shows

that there is a bijective correspondence between the κ(C)-points on the generic

fiber of f and the sections C → X.

Lemma 1.30. The map X(C) → Xη(κ(C)) defined by σ 7→ σ∗ is injective.

Moreover, if f is proper and C is non-singular, then this map is a bijection.

Proof. Recall that C is a geometrically integral curve, so in particular it is

reduced. Moreover, the morphism f : X → C is locally of finite type. It follows

from [Stacks, Tag 0BX8] that there is a bijection between the set of C-rational

maps C 99K X and the set of tuples (x, φ), where x ∈ X lies over the generic

point η of C and φ : OX,x → κ(C) is a local ring map. This bijection is given

by σ 7→ (σ(η), σ#
η ).

Observe that for each morphism, the tuple (σ(η), σ#
η ) exactly defines a κ(C)-

point Specκ(C) → Xη which defines a map that fits in diagram (1.2). In

other words, this exactly defines the map σ∗ : C 99K X. We deduce that the

map X(C)→ Xη(κ(C)); σ 7→ σ∗ is injective.

To prove surjectivity, assume that f : C → X is proper and C is non-singular.

Because we assumed that f is proper and C is non-singular, the result of

[Stacks, Tag 0BX7] shows that we can extend every rational map to a C-

morphism C → X. We conclude that the set of C-rational maps C 99K X
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equals the set of C-morphisms C → X. Hence, if f is proper and C is non-

singular, the map X(C)→ Xη(κ(C)) is a bijection.

1.3.3 Elliptic surfaces and their sections

In this subsection we will define elliptic surfaces and state some results about

their sections following the results in chapter 3 of [Sil94]. An elliptic surface will

roughly speaking be a fibered surface that is a one-parameter family of elliptic

curves. We will use the following definition of an elliptic surface following the

definition of [Sil94].

Definition 1.31. Let C be a nice curve over k. An elliptic surface E over C

consist of a projective surface E over k with a morphism π : E → C and a

section σ0 : C → E such that for all but finitely many fibers of t ∈ C(k) the

fiber Et := π−1(t) is a nice curve of genus 1.

Some authors will also assume that an elliptic surface has to be non-singular,

which we did not assume. Most of the time we will say that π : E → C is an

elliptic surface, by which we mean the triple (E , π, σ0). In other words, the

section is in this case implicitly given.

Let π : E → C be an elliptic surface with section σ0 : C → E . From the def-

inition of an elliptic surface it follows that the map E → C is an example of

a fibration. Moreover, the generic fiber of π will be a nice curve of genus 1

over the function field κ(C) of C. By the fact that the section σ0 corresponds

to a κ(C)-rational point on this curve, we can make this generic fiber into an

elliptic curve by choosing this point.

Let t ∈ C(l) be given and suppose Et is non-singular. The section σ0 : C → E
gives a point Ot = σ(t) ∈ Et(l) on this fiber Et, which gives Et the structure of

an elliptic curve over l. This non-singular fibers are called the good fibers. The

fibers which are singular are called the bad fibers or the singular fibers.

Example 1.32. Recall example 1.29 and let X → C be the fibered surface

given in this example. Assume that char k 6= 2, 3. We can embed the surface X

in P1
k×P2

k via the morphism (t, (x, y)) 7→ ((t : 1), (x : y : 1)). Let Xc denote the

closure of X in P1
k × P2

k. The projection map π1 : Xc → P1
k gives a fibration.

Define the map σ0 : P1
k → Xc by (t : s) 7→ ((t : s), (0 : 1 : 0)). Note that this

map is a section. A fiber above a point (t′ : 1) ∈ P1
k(l) is a smooth curve of

genus 1 if and only if a(t′) 6= 0. In the case that a 6= 0, we have that a(t′) = 0
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for only finitely many t ∈ k. Hence, in the case that a 6= 0, the surface Xc with

the maps π1 and σ0 will be an elliptic surface.

Let E denote the generic fiber of π : E → C. By Lemma 1.30 and part (iii)

of Lemma 1.6, there is a bijection between the set of l-sections El(Cl) and the

set of κ(Cl)-points on E. As we have noted, the curve E(κ(Cl)) has a group

structure, so it makes sense to ask what the group structure on El(Cl) is under

this bijection.

Let two sections σ1, σ2 ∈ El(Cl) be given. For almost all points t ∈ Cl(l),

the fiber Et will be an elliptic curve over l. Hence, we can define rational

maps σ1 + σ2 and −σ1 pointwise on an open subset of Cl by

(σ1 + σ2)(t) = σ1(t) + σ2(t) and (−σ1)(t) = −σ1(t)

respectively. The fact that these indeed define rational maps is proven in

Proposition III.3.10(a) of [Sil94]. Since C is a smooth curve and E is projec-

tive, it follows from Proposition II.2.1 of [Sil09] that these rational maps are

morphisms.

The following proposition gives us that these assignments indeed define the

group structure that corresponds with the group structure of the generic fiber.

Proposition 1.33. Let E → C be an elliptic surface over k. The operations

E(C)× E(C)→ E(C); (σ1, σ2) 7→ σ1 + σ2 and,

E(C)→ E(C); σ 7→ −σ

make E(C) into an abelian group with σ0 as a zero-section. Moreover, the map

of Lemma 1.30 is in this case a group isomorphism.

Proof. Proposition III.3.10(b)+(c) of [Sil09].

Let X → C be a fibration with X a regular surface. We call X minimal over C

if for each fibered surface Y → C with Y a regular surface and birational

map ϕ : Y 99K X commuting with the maps to C, the map ϕ extends to

a morphism. A minimal elliptic surface is a regular elliptic surface which is

minimal as a fibered surface. The next theorem shows that each elliptic surface

is birational to a minimal elliptic surface.
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Theorem 1.34. Let E → C be an elliptic surface. Then there exist a unique

minimal elliptic surface Emin → C and a birational map ϕ : E 99K Emin which

commutes with the maps to C.

Proof. We give a sketch of the proof, because we do not have the tools at our

disposal needed to give a rigorous proof. Observe that if a point is singular

on E , then it will be singular on the fiber. By assumption almost every fiber

of E → C is a smooth genus one curve, so there are only a finite number of

fibers on which we need to resolve the singularities of this surface to obtain

a regular surface. This resolving can be done by blowing up, see for example

the discussion of Remark V.3.8.1 of [Har77]. After resolving the singularities,

this surface will still be an elliptic surface over C. The result then follows from

Theorem III.8.4 of [Sil94].

Let E → C be a elliptic surface, then we call the unique minimal elliptic surface

of Theorem 1.34 a minimal model for E → C. This minimal model is unique up

to a unique isomorphism. Moreover, the generic fibers of the fibrations E → C

and Emin → C are isomorphic.

The (singular) fibers of a minimal elliptic surface over a perfect field are classi-

fied by the work of Kodaira and Néron. The smooth fibers, which are smooth

genus one curves, are denoted I0 by Kodaira. For the singular fibers each ir-

reducible component will be a curve which is birationally equivalent over its

algebraic closure to the projective line. If these fibers are geometrically irre-

ducible, then the fiber is a rational curve with a node or a cusp, denoted I1

and II respectively.

The classification of the reducible fibers is a bit more complex: there are two

infinite families, namely In for n ≥ 1, and I∗n for n ≥ 0 and five other types,

namely III, IV, II∗, III∗ and IV∗. We refer to section 3 and 4 of [SS10] or chap-

ter IV of [Sil94] for more background on this classification. Most importantly

for us, on the smooth locus of these special fibers there still will be an abelian

group structure that is compatible with the group action of the sections.
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Del Pezzo surfaces

In this chapter we again let k denote a field. A Fano variety is a nice k-variety

with ample anti-canonical divisor. A del Pezzo surface is a Fano variety of

dimension two. The degree of a del Pezzo surface is the self intersection number

of the (anti)canonical divisor. By Proposition 9.2.23 of [Poo17] we have that a

surface X over k is a del Pezzo surface if and only if Xl is a del Pezzo surface

for some field extension l/k.

Let X be a del Pezzo surface over k and let KX denote the canonical divisor

of X. Set d := degX = K2
X . By Theorem 24.5 of [Man86], −KX is very

ample when d ≥ 3. Moreover, in this case the complete linear system | −KX |
embeds X as a degree d surface in Pdk. If d = 2, Proposition III.3.5.2 of [Kol99]

gives us that X embeds as a degree four surface in the weighted projective

space Pk(2, 1, 1, 1). If d = 1, Proposition III.3.5.1 of [Kol99] gives us that X

embeds as a degree six surface in the weighted projective space Pk(2, 3, 1, 1).

The latter case will be treated extensively in the second section of this chapter.

First, we will state some more general results on del Pezzo surfaces.

2.1 General results on del Pezzo surfaces

In this section we will state the classification of del Pezzo surfaces over sepa-

rably closed fields and their exceptional curves. We will also give some results

on (uni)rationality of del Pezzo surfaces. For more background, we refer to

section 9.4 of [Poo17]. Because almost all del Pezzo surfaces are geometrically

blowups of projective space, we start this section by shortly discussing the

definition of a blowup.
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2.1.1 Blowup

Let X be a scheme. An effective Cartier divisor on a scheme X is a closed

subscheme D ⊂ X, such that there exist a cover {Ui} of X with Ui ∼= SpecRi

and Ui ∩D ∼= SpecRi/(fi) for some non-zero divisor fi ∈ Ri.

Let Z be a closed subscheme of X and let C be the full subcategory of schemes Y

over X such that the inverse image of Z under Y → X is an effective Cartier

divisor. A blowup of X along Z is a terminal object in C. In other words, a

blowup is a morphism π : X ′ → X with the property that π−1(Z) is an effective

Cartier divisor and that for each morphism f : Y → X with f−1(Z) an effective

Cartier divisor, there exists a unique morphism g : Y → X ′ with f = π ◦ g.

The inverse image of Z under this blowup is called an exceptional divisor.

Blowups are unique up to a unique isomorphism. In [Stacks, Tag 01OF] a

construction of a blowup is given and this shows that a blowup always ex-

ists. We sometimes use the notation BlZ X to denote a scheme that is a

blowup BlZ X → X of the scheme X along Z.

Remark 2.1. [Stacks, Tag 01OF] actually defines this construction as the

blowup. We prefer this categorical definition, because this really defines a

blowup up to isomorphism, and hence, leaves room to give blowups in another,

sometimes easier or more natural way.

The following example is an elementary example of a blowup. Moreover, this

example gives a local construction of a blowup in a closed point on a surface.

Example 2.2. Let A2
k = Spec k[x, y] be the affine plane over some field k. Note

that (0, 0) ∈ A2
k(k) defines a closed point of A2

k. A blowup of X along (0, 0)

is given by the subvariety B of A2
k × P1

k defined by the equation xt = ys,

where s, t denote coordinates of P1
k with the projection map B → A2

k. In

particular, if we write R = k[x, y], then we have B = Proj (R[s, t]/(xt − ys))
where deg(s) = deg(t) = 1, which exactly corresponds with the construction

of [Stacks, Tag 01OF]. This shows that it is indeed a blowup.

Let π : X ′ → X be a blowup along Z ⊂ X. Then it follows from [Stacks,

Tag 02OS] that the restriction X ′ − ϕ−1(X −Z)→ X −Z is an isomorphism.

Moreover, the exceptional divisor E := ϕ−1(Z) is an effective Cartier divisor.

If Z ′ ⊂ X is a closed subscheme such that Z ∩ Z ′ = ∅, then it follows

from [Stacks, Tag 080A] that the blowup X ′′ → X along Z∪Z ′ can be given as a
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blowup π : X ′ → X along Z and then precomposing with the blowup X ′′ → X ′

along π−1(Z ′).

If Y is a closed subscheme of X, then Z ∩ Y will be a closed subscheme of Y .

By Lemma 22.2.6 of [Vak17], the closure of the pullback of Y along π will be a

closed subscheme Y ′ of X ′ such that π|′Y : Y ′ → Y is a blowup of Y along Z∩Y .

We call this closed subscheme Y ′ on X ′ the strict transform of Y .

In the case that X is a surface and Z is a closed point, then [Har77] calls a

blowup in this case a monoidal transformation. Almost all blowups we will

encounter, are blowups in a finite number of points. In particular, they can

be obtained by the compositions of monoidal transformations. Note that Ex-

ample 2.2 is an example of a monoidal transformation. As a result of Propo-

sition 3.1 of [Har77], the monoidal transformation of a nice surface, will again

be a nice surface.

There is a theorem for these monoidal transformation, that gives a construction

the other way around.

Theorem 2.3 (Castelnuevo’s contraction theorem). Let X be a nice surface

over k and let C be a nice curve on X. Suppose that C2 = −1 and C ∼= P1
k.

Then there exists a nice surface Y with a closed point y ∈ Y and a morphism

π : X → Y with π−1(y) = C, such that π is a blowup of Y along y.

Proof. For a proof that works over any field, we refer to Theorem 9.3.3

of [Poo17].

The blowup π : X → Y in the above theorem is also called the blowdown of X

along the curve C. In particular, if a curve C on a nice surface satisfies the

properties that C2 = −1 and C ∼= P1
k, then it is an exceptional divisor, and we

will call it in this case an exceptional curve.

Let π : X ′ → X be a monoidal transformation of X in a point P . The strict

transform of a curve C under this monoidal transformation is given as follows.

If P is not a point on C, then it is given by π−1(C) which is then isomorphic

to C. If P is a point in C, then it is given by the closure of π−1(C −P ) in X ′.

These monoidal transformations can be used to give a normalization of curves.

If we have a singular irreducible curve C on a surface X over an algebraically

closed field, then by Proposition V.3.8 of [Har77] there is a finite sequence of

monoidal transformations Xn → · · · → X1 → X such that the strict transform

of the curve C on Xn is non-singular.
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2.1.2 Del Pezzo surfaces over separably closed fields

Let n ≤ 8 and P1, . . . , Pn ∈ P2
k(k). Then we say that the points Pi are in

general position if they are distinct, no three of them lie on a line, no six of

them lie on a conic and no eight of them lie on a singular cubic, with one of

these eight points at the singularity.

Theorem 2.4 (Classification of del Pezzo surfaces over separably closed fields).

Let X be a surface over k. Then X is a del Pezzo surface if and only if

either Xs ∼= P1
ks×P1

ks , or Xs is a blowup of P2
ks in at most eight points in P2

ks(k
s)

which are in general position. Moreover, if Xs ∼= P1
ks × P1

ks , then degX = 8,

and if Xs is a blowup of P2
ks in d points, then degX = 9− d.

Proof. For the algebraically closed case, see Theorem 24.4 of [Man86]. The

generalization to separably closed fields follows as a corollary of Proposition 5

and Proposition 7 of [Coo88]. For those who would rather have a complete

proof, we refer to Theorem 9.4.4 of [Poo17].

The following result gives us the exceptional curves on del Pezzo surfaces.

Proposition 2.5 (Exceptional curves on a del Pezzo surface). Let n be a non-

negative integer such that n ≤ 8. Let X → P2
k be the blowup of some k-rational

points x1, . . . , xn ∈ P2
k(k) and assume these points are in general position. Then

the exceptional curves of X are exactly the fibers above the points xi, together

with the strict transforms of the following curves in P2
k:

(i) lines through two of the points xi;

(ii) conics through five of the points xi;

(iii) a cubic passing through seven of the xi, such that one of the xi is a double

point on the cubic;

(iv) a quartic passing through eight of the xi, such that three of the xi are

double points on the quartic;

(v) a quintic passing through eight of the xi, such that six of the xi are double

points on the quintic;

(vi) a sextic passing through eight of the xi, such that one of the xi is a triple

point and the other seven points xi are double points on this sextic.

Proof. Theorem 26.2(ii) of [Man86].
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Note that only in the case degX = 1, we need all curves (i)-(vi) of Proposi-

tion 2.5. In the case of degX = 2 we already only need (i)-(iii). In the case

of degX = 3, 4, we need (i) and (ii) and in all higher cases we only need (i).

This already shows that the geometry of del Pezzo surfaces of lower degree

become harder as we will also discover in the next subsection.

As a result of Theorem 2.4 and Proposition 2.5, the exceptional curves on a

del Pezzo surface over k are all defined over the separable closure ksep. We can

count these exceptional curves on a del Pezzo surface X, because each curve

from the proposition is uniquely determined by the given points. The following

table gives us the amount of exceptional curves on a del Pezzo surface X in the

case that it is a blowup in 9− degX points in general position.

degX 9 8 7 6 5 4 3 2 1
# exceptional curves 0 1 3 6 10 16 27 56 240

Figure 2.1: The number of exceptional curves on a del Pezzo surface X

2.1.3 (Uni)rationality of del Pezzo surfaces

In this subsection we will give results on (uni)rationality of del Pezzo surfaces

over an arbitrary field k. A variety over k is called rational if for some integer n,

it is birational to Pnk . By Theorem 2.4 every del Pezzo surface over a separa-

bly closed field is rational. A variety X is called unirational if there exists a

dominant rational map Pnk 99K X for some n ≥ 0. Note that rationality im-

plies unirationality. In the case that k is an infinite field, for any (uni)rational

variety X over k, the set of k-rational points X(k) lies Zariski dense in X.

From now on, we let X denote a del Pezzo surface over k. Suppose degX ≥ 5.

Then it is known that if X contains a k-rational point, it is rational. Moreover,

if degX is 5 or 7, then X always contains a k-rational point and hence is ratio-

nal. By Proposition 1.13 every del Pezzo surface of degree 9 with a k-rational

point is isomorphic to P2
k. In the case that degX = 8 and Xs 6∼= P1

ks × P1
ks ,

then X is isomorphic to the blowup of P2
k in a k-rational point, and hence will

be rational as well. A proof of these results and a more extensive treatment is

given in section 9.4 of [Poo17].

The cases on del Pezzo surface of low degree are getting much harder. In the

case that degX ≤ 4, rationality will no longer be implied by the existence

of a k-rational point and there are examples of del Pezzo surfaces that are

not rational. While rationality may no longer be true for del Pezzo surface

of low degree, unirationality remains true if X has degree three or four and

a k-rational point.
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Theorem 2.6. Let X be a del Pezzo surface over k with degX ≥ 3. If X

contains a k-rational point, then X is unirational.

Proof. Theorem 29.4 of [Man86]. For degree three and four, this proof as-

sumes the existence the existence of a k-rational point which does not lie on

an exceptional curve. Theorem 30.1 shows that this is indeed the case if the

field k consists of at least 23 elements for degree four or at least 35 elements

for degree three.

[Kol02] proved the case for degree three over general fields. Proposition 5.19

of [Pie12] seems to be the first mention of the case of degree four over general

fields.

It is not known if every del Pezzo surface over k with degX = 2 and a k-rational

point is k-unirational, but if this point satisfies an extra condition, then the

del Pezzo surface will be k-unirational.

Theorem 2.7. Let X be a del Pezzo surface over k with degX = 2. If X

contains a k-rational point that is not contained in the ramification locus of the

anticanonical map, nor in the intersection of four exceptional curves, then X

is unirational.

Proof. [STV14].

For del Pezzo surfaces of degree one even less is known. As we will see in the

next section, every del Pezzo surface over k of degree one contains a k-rational

point, so one could conjecture that every such surface is unirational. But until

recently, there were no known results for del Pezzo surfaces of degree one that

cannot be blown down over k to a del Pezzo surface of higher degree.

Kollár and Mella proved it in [KM16] for a very special type of del Pezzo sur-

faces of degree one, namely those that admit a certain conic bundle structure.

Outside of this result, and the del Pezzo surfaces of degree one that can be

blown down over k to a del Pezzo surface of higher degree, we do not have one

single example of a del Pezzo surface of degree one that is unirational. This

leaves us with most del Pezzo surfaces of which we do not know if they are

unirational. Moreover, no such surface has been found that is not unirational.
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2.2 Degree one

The result of the main theorem applies to del Pezzo surfaces of degree one. In

this section we give an explicit construction of an embedding of a del Pezzo

surface of degree one over k in the weighted projective space Pk(2, 3, 1, 1).

Furthermore, we will see that the linear system of the anticanonical divisor has

a unique base point and so every del Pezzo surface of degree one over k has

a k-rational point. Moreover, we will see that the blowup in this point gives us

an elliptic surface over P1
k.

In this entire section, S will denote a del Pezzo surface of degree one over k

and KS denotes a fixed canonical divisor of S.

2.2.1 The anticanonical model

The anticanonical ring of S is the graded ring

R(S,−KS) :=
⊕
n≥0

L(−nKS).

Note that this indeed is a well-defined graded ring. The anticanonical model

of S is the scheme ProjR(S,−KS). Moreover, this anticanonical model is

well-defined, because −KS is ample and in particular, the ring R(S,−KS) is

non-zero. Moreover, by Lemma 3.2.5.2 of [Kol99] we have that

`(−nKS) =
n(n+ 1)

2
+ 1. (2.1)

Proposition 2.8. Let S be a del Pezzo surface of degree one. Then S is iso-

morphic to its anticanonical model. Moreover, the anticanonical model induces

an embedding of S in the weighted projective space Pk(2, 3, 1, 1) as a surface

of degree six. Conversely, every smooth surface of degree six in Pk(2, 3, 1, 1) is

a del Pezzo surface of degree one.

Proof. Proposition III.3.5.1 of [Kol99].

We make the embedding of Proposition 2.8 explicit by following the construc-

tion of [CO99], page 1199-1201. Details that are omitted, can be found there.

By the formula of equation (2.1), we have `(−KS) = 2. So L(−KS) is generated

by two elements. We pick two linearly independent elements z, w ∈ L(−KS).

One can check that for all n ≥ 1, we have that zn, zn−1w, . . . , wn ∈ L(−nKS)

are linearly independent.

34



Chapter 2. Del Pezzo surfaces ↑

Again, by equation (2.1), we have `(−2KS) = 4. So choosing one more el-

ement x ∈ L(−2KS) that is linearly independent of the elements z2, zw,w2,

gives us a basis (x, z2, zw,w2) of L(−2KS). This already gives us six elements

xz, xw, z3, z2w, zw2 and w3 of L(−3KS), which again can be showed to be

linearly independent. Furthermore, we have that `(−3KS) = 7. Picking an

element y ∈ L(−3KS) that is linearly independent of those elements gives us

a basis (y, xz, xw, z3, z2w, zw2, w3) of L(−3KS).

Now we note that `(−6KS) = 22 and that we have 23 elements in L(−6KS),

namely

y2, yxz, yxw, yz3, yz2w, yzw2, yw3, x3, x2z2, x2zw, xw2,

z6, z5w, z4w2, z3w3, z2w4, zw5, w6

It follows that there must be a relation between those elements. By scaling the

elements x and y, this relation can be given by the zero set of a polynomial

f := y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6

with ai ∈ k[z, w] homogeneous polynomials of degree deg(ai) = i.

The relation f = 0 defines something that looks like a Weierstrass equation.

Similarly as in the case of Weierstrass curves, we have that if the characteristic

of k is not equal to two or three, the surface S can be given by an equation

such that a1, a2 and a3 are all zero.

One can check that x, y, z, w generate the anticanonical ring of X and that

there are no other relations then f = 0. It follows that

X ∼= ProjS = Proj k[x, y, z, w]/(f) ↪→ Pk(2, 3, 1, 1).

This gives an embedding of the del Pezzo surface S of degree one in the weighted

projective space Pk(2, 3, 1, 1).

From the equation of S it is immediately clear that S contains a k-rational

point, namely the point (1 : 1 : 0 : 0). As we will see, this point is also the

unique base point of the linear system |−KS |. We will denote this point by O.

There is a special family of curves on the del Pezzo surface S, that will play an

important role in the remaining part of this thesis.

Remark 2.9. Let S be a del Pezzo surface of degree one embedded in the

weighted projective space Pk(2, 3, 1, 1) with coordinates X, Y , Z and W .
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Let (z0 : w0) ∈ P1
k(k) be given and let F be the curve on S given by w0Z = z0W .

Note that every point on F is either the point O or can be described as a point

with coordinates (xP : yP : z0 : w0). There is an embedding F → P2
k to a

Weierstrass curve given by the equation G(x, y, z0, w0) = 0 such that O corre-

sponds to the point at infinity. This embedding can be given on F −O by the

assignment (xP : yP : z0 : w0) 7→ (xP , yP ). This gives us that F can be identi-

fied with the Weierstrass curve in P2
k given by the equation G(x, y, z0, w0) = 0.

Hence, the curve F has an induced group structure on the smooth points.

Lemma 2.10. Let F be the curve on S given by w0Z = z0W . Then F is

linearly equivalent to the anticanonical divisor −KS .

Proof. Give Pk(2, 3, 1, 1) coordinates X,Y, Z,W and let S be a del Pezzo

surface of degree one in Pk(2, 3, 1, 1). Recall the equality L(−KS) = 〈z, w〉.
Without loss of generality, we may assume that w0 6= 0 and that under the

embedding z is given by the rational function
w0Z − z0W

W
and w is given by

the constant function 1. Hence, it follows that div(z) = F − {W = 0} ∩ S
and div(w) = 0. We deduce that F is linearly equivalent to −KS .

2.2.2 Some linear systems

Recall that S denotes a del Pezzo surface of degree one. In this section we

identify S as a subset of Pk(2, 3, 1, 1) with coordinates X, Y , Z and W , defined

by the polynomial G given by

G := Y 2 + a1XY + a3Y −X3 − a2X
2 − a4X − a6, (2.2)

with ai ∈ k[Z,W ] homogeneous of degree deg(ai) = i.

The divisor −3KS is very ample and so the linear system | − 3KS | determines

a closed embedding of S in the projective space P6
k, given explicitly by

(X : Y : Z : W ) 7→ (Y : XZ : XW : Z3 : Z2W : ZW 2 : W 3).

This embedding of S in P6
k factors through the anticanonical embedding of S

in Pk(2, 3, 1, 1).

The linear system |− 2KS | determines a morphism S → P3
k which is defined as

(X : Y : Z : W ) 7→ (X : Z2 : ZW : W 2).

The image of this morphism is the cone Q := Proj (k[p, q, r, s]/(r2− qs)) ⊂ P3
k.
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Moreover, this morphism is flat and finite of degree two. Outside the ramified

points the morphism is étale. In particular, it is a double cover of this cone Q.

We will discuss the ramification points of this morphism in the next subsection.

The morphism determined by | − 2KS | factors via the rational projection

map Pk(2, 3, 1, 1) 99K Pk(2, 1, 1) defined by (X : Y : Z : W ) 7→ (X : Z : W )

and the isomorphism Pk(2, 1, 1) → Q which we have encountered in exam-

ple 1.24. This rational map Pk(2, 3, 1, 1) 99K Pk(2, 1, 1) is a morphism outside

the point (0 : 1 : 0 : 0) and restricts to a morphism τ : S → Pk(2, 1, 1). In

particular, this morphism τ is flat and finite of degree two as well and it gives

a double cover of Pk(2, 1, 1).

The linear system | − KS | determines a rational map S 99K P1
k which is ex-

plicitly given by projecting onto the last two coordinates. This map is defined

everywhere except in the point O = (1 : 1 : 0 : 0), which is a base point for this

linear system. Blowing up S in this base point gives a surface E := BlO S with

a morphism π : E → S. In the next proposition we will show that the rational

map S 99K P1
k extends to a morphism E → P1

k which gives E the structure of

an elliptic surface.

Proposition 2.11. Let S be a del Pezzo surface of degree one and O the base

point of the linear system | − KS |. The surface E := BlO S can be given the

structure of an elliptic surface such that

(i) the fibration E → P1
k is a morphism such that this morphism extends the

rational map determined by the linear system | −KS |; and

(ii) the image of the zero section is the exceptional divisor of the blow-

up E → S.

Proof. We will use without proof that the surface E can be identified as

the following surface in Pk(2, 3, 1, 1) × P1
k. Using the coordinates X,Y, Z,W

for Pk(2, 3, 1, 1) and u, v for P1
k, we can define the surface E as the zero set

of the Weierstrass equation (2.2) and the equation uW = vZ. The projection

map to Pk(2, 3, 1, 1) gives the blowup π : E → S. The projection map E → P1
k

gives a fibration.

A direct verification shows that this fibration E → P1
k extends the rational map

given by the composition of E → S and the rational map S 99K P1
k determined

by | −KX |. Moreover, the section P1
k → E defined by (u : v) 7→ (O, (u : v)),

gives exactly a section with as image the exceptional divisor of the blowup.

For every point t = (u0 : v0) ∈ P1
k(k), we get a fiber Et of E → P1

k, that is
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defined by the equation v0u = u0v. Similarly as in Remark 2.9, this curve Et
will be isomorphic to a Weierstrass curve in P2

k
which is defined on an affine

piece by the Weierstrass equation G(x, y, u0, v0) = 0. If the determinant will be

zero for every fiber, then S will be singular, which contradicts our assumption.

Hence, almost every fiber of E → P1
k will be a smooth curve of genus one. We

deduce that E → P1
k will be an elliptic surface.

Remark 2.12. Let (z0 : w0) ∈ P1
k(k) be given and let F be the curve on S

given by w0Z − z0W . Note that the strict transform of F on E is exactly the

fiber E(z0:w0) of the morphism E → P1
k above the point (z0 : w0). Moreover,

these curves are isomorphic and this isomorphism induces a group isomorphism

on the sets of non-singular rational points.

The above discussion can be summarized in the following commutative diagram.

F E S Pk(2, 3, 1, 1) Pk(2, 1, 1)

Spec k P1
k Q P3

k

π

|−KS |

τ

|−2KS |
∼=

(2.3)

2.2.3 Ramification of the map determined by | − 2KS|

In this section, we again let the del Pezzo surface S of degree one be given by

a Weierstrass equation of the form (2.2). Recall from the last section that the

linear system |− 2KS | determines a morphism S → P3
k with image the cone Q.

Moreover, recall that this morphism splits via the maps

S
τ−→ Pk(2, 1, 1)

∼−→ Q ↪→ P3
k.

We will show that the inverse image of a point is exactly the orbit of an auto-

morphism of S of order two, which is defined as follows.

Definition 2.13. The automorphism [−1] : S → S is defined by

[−1] : (X : Y : Z : W ) 7→ (X : −Y − a1(Z,W )X − a3(Z,W ) : Z : W ). (2.4)

Let l/k be a field extension. Given an l-rational point P ∈ S(l), we will denote

the image [−1](P ) by −P .
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Note that the map [−1] : S → S is indeed a well-defined automorphism, which

is its own inverse.

Remark 2.14. Let (z0 : w0) ∈ P1
k(k) be given and let F be the curve on S

given by w0Z − z0W . Then by Remark 2.9 this curve can be identified with

a Weierstrass curve. Note that the restriction of the map [−1] : S → S to F
exactly gives the map [−1]F : F → F of Definition 1.26.

Lemma 2.15. Let l/k be a field extension. The inverse image of an l-rational

point Q ∈ Q(l) under the morphism determined by the linear system | − 2KS |
is exactly the set {P,−P} in S(l) for some point P in the inverse image of Q.

Proof. The inverse image of a point Q ∈ Q(l) is exactly the same as the

inverse image under τ of the corresponding point in Pk(2, 1, 1) under the above

isomorphism. This means that we can restrict ourselves to proving this for the

morphism τ .

Given a point Q = (XQ : ZQ : WQ) ∈ Pk(2, 1, 1)(k) its inverse image under τ

is given by P1 = (XQ : Y1 : ZQ : WQ) and P2 = (XQ : Y2 : ZQ : WQ) where Y1

and Y2 denote the, possibly same, two zeroes of the quadratic polynomial in l[Y ]

given by G(XQ, Y, ZQ,WQ). In the case that ZQ = WQ = 0, we just get the

point P1 = P2 = O.

If ZQ and WQ are not both zero, these points Pi lie on the curve F in S

given by WQZ − ZQW . Note that the map [−1] : S → S only changes the Y

coordinate. Moreover, on the affine curve F−O we only have at most two points

with X = XQ, which are exactly the points P1 and P2. The morphism [−1]

exactly sends these points to each other, which gives us the desired result.

The above observation gives us a nice characterization of the ramification points

of the morphism determined by the linear system | − 2KS |.

Lemma 2.16. Let l/k be a field extension. Let P ∈ S(l) be an l-rational

point. Let F be the curve defined by WPZ − ZPW . Then the following are

equivalent:

(i) the map determined by the linear system | − 2KS | is ramified at the

point P ;

(ii) the map τ : S → Pk(2, 1, 1) is ramified at the point P ;

(iii) the point P is a fixed point of the automorphism [−1] : S → S;
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(iv) on F the point P is either a singular point or a smooth point of order at

most two in the group Fns(l);

(v) we have either have that P = O or that
∂G

∂Y
(P ) = 0, where G denotes

the defining equation of S given by (2.2).

Proof. First note that statements (i) and (ii) are equivalent. Statements (i)

and (iii) are equivalent by Lemma 2.15. Statements (iii) and (iv) are equiv-

alent by combining Remark 2.14 and Lemma 1.27. Statement (iv) implies

statement (v) by Lemma 1.27. So it is enough to prove that statement (v)

implies statement (ii).

(v)⇒(ii) Clearly τ is ramified at O. Else if
dG

dY
(P ) = 0, then the inverse image

of τ(P ) = (XP : ZP : WP ) is given by the points (XP : Y ′ : ZP : WP ) such

that Y ′ denotes a zero point of the polynomial in Y given by G(XP , Y, ZP ,WP ).

But the latter is a polynomial in Y of degree two which has YP as a double

zero point. Hence, τ is ramified at P .

Proposition 2.17. Let (z0 : w0) ∈ P1
k(k) be given and let F be the curve on S

defined by w0Z − z0W . If char(k) = 2 and F contains a singular point that

is a cusp, then the map determined by the linear system | − 2KS | is ramified

on all of F . In all other cases, the set of ramified points of this map contained

in F is at most four.

Proof. Note that O is a ramified point of the map determined by the linear

system | − 2KS |. Every other point on F lies on the affine A3
k and hence is a

point that is singular on F or is smooth of order two by Lemma 2.16.

First suppose that F is smooth. In this case, we can identify it as an el-

liptic curve with O as the neutral element. If char(k) 6= 2, Corollary 6.4(b)

of [Sil09] gives that there are four points in the kernel of the multiplication-

by-two map [2] : F → F , defined by P 7→ 2P . The kernel of this map are

exactly the point O and three points of order two. So in this case by the above

characterization, there are exactly four points that are ramified. In the case

that char(k) = 2, part (c) of the same corollary gives that there are at most

two points in the kernel of this map F , which means that there are at most two

points, on which the map determined by the linear system |−2KS | is ramified.

Now suppose F is not smooth. Then it still is a geometrically irreducible

Weierstrass curve, and so the unique singular point Q ∈ F will either be a cusp

or a node. If Q is a node, then Fns(k) is isomorphic to k
∗
. Now if char(k) 6= 2,

40



Chapter 2. Del Pezzo surfaces ↑

the map k
∗ → k

∗
; x 7→ x2 has kernel {±1}. It follows that we have only one

unique point of order two. Hence, there are in this case three points which

are ramified, namely the points O, Q and this point of order two. In the case

that char(k) = 2, the map k
∗ → k

∗
; x 7→ x2 is the Frobenius automorphism

and so there are no points of order two. In this case, there are only two points,

namely O and Q, on which the map determined by the linear system | − 2KS |
is ramified.

If the singular point Q is a cusp then the group structure of Fns(k) is isomorphic

to k
+

. In the case that char(k) 6= 2, then this contains no points of order

two, because the morphism k
+ → k

+
; x 7→ 2x is an isomorphism. So in

this case there are also only two ramification points, namely O and Q. Finally,

if char(k) = 2, then every non-trivial point of Fns(k) will be a point of order two.

In this case, every point of F will be a ramified point of the map determined

by the linear system | − 2KS |.

2.3 Zariski density

If k is an infinite field, then unirationality of a variety implies the Zariski

density of the k-rational points. It follows from Theorem 2.6 that for any del

Pezzo surface X of degree three or higher over an infinite field, the k-rational

points X(k) lie Zariski dense in X if and only if X(k) 6= ∅. In degree two, we

have found a partial solution due to Theorem 2.7.

As we have noted in section 2.1.3, the question of unirationality of del Pezzo

surfaces of degree one is still open. While unirationality for degree one does

not seem in reach at the moment, there are some partial results on the Zariski

density of the k-rational points of a del Pezzo surface. We will discuss them

below. In particular, we will discuss the work of Desjardins and Winter.

2.3.1 Partial results in degree one

In the last fifteen years, some partial results on the Zariski density of the k-

rational points on del Pezzo surfaces of degree one have been proven. All

these results are proven for del Pezzo surfaces given by an equation of the

form Y 2 = X3 + a4X + a6 with a4, a6 ∈ k[Z,W ] homogeneous of degree four

and six respectively.

First of all, there are some results of Ulas. In [Ula07], he has proven the Zariski

density of Q-rational points in the following cases:

(i) a4(Z, 1) has degree at most 3 and a6 = 0 (Theorem 2.2);
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(ii) a4(Z, 1) has degree 4 and is not even and a6 = 0 (Theorem 2.1(1));

(iii) a4 = 0 and a6(Z, 1) is monic of degree 6 and not even (Theorem 3.1).

Moreover, he has proven that the result still holds in the even cases of (ii)

and (iii) under the extra condition that there exists a fiber of E → P1
k with

infinitely many Q-rational points (Theorems 2.1(2) and 3.2). In [Ula09] he

proved the Zariski density for the rational points for the surfaces with a4 = 0

and a6(Z, 1) = Z5 + aZ3 + bZ2 + cZ + d for some a, b, c, d ∈ Z under the

condition that the set of Q-rational points on the elliptic curve defined by the

Weierstrass equation y2 = x3 + 135(2a− 15)x− 1350(5a+ 2b− 26) is infinite.

Another result of Ulas is a joint work with Togbé. In [UT10] they proved the

Zariski density for the surfaces where a4(Z, 1) and a6(Z, 1) have degree 4 and

are even, again under the condition that there exists a fiber of E → P1
k with

infinitely many Q-rational points. Some of these results are generalized by

Salgado and van Luijk to arbitrary fields in [SL14].

Another result is that of Várilly-Alvarado. In [Vár11] he has proven the density

of the set of Q-rational points for surfaces with a4 = 0 and a6 = aZ6 + bW 6

for some a, b ∈ Z with 3 · a
b

not a square or gcd(a, b) = 1 and 9 - ab under some

extra technical condition.

2.3.2 Desjardins and Winter

The most recent result and in some sense the strongest result about the Zariski

density of a family of del Pezzo surfaces of degree one is that of [DW21]. Their

result not only gives a sufficient condition for the k-rational points to lie Zariski

dense, but one which is also necessary in the case that k is a number field, or

more general, of finite type over Q. The statement of the theorem is as follows.

Theorem 2.18 (Desjardins and Winter). Let k be a field of characteristic 0,

and let a, b, c ∈ k with a, c non-zero. Let S be the del Pezzo surface given by

Y 2 = X3 + aZ6 + bZ3W 3 + cW 6

in the weighted projective space Pk(2, 3, 1, 1) with coordinates X, Y , Z and W .

Let E be the elliptic surface obtained by blowing up the base point of the linear

system | −KS |. If S contains a rational point with non-zero Z,W -coordinates,

such that the corresponding point on E is non-torsion on its fiber, then S(k) is

dense in S with respect to the Zariski topology. If k is of finite type over Q,

the converse holds as well.
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The proof of this theorem makes use of a family of ‘multisections’, by which

we mean a family of curves on E that intersect each fiber of E → P1
k the

same number of times, counted with multiplicity. This family of curves is

parametrized by the fiber which is mentioned in the theorem. With the help

of these curves, the Zariski density of the k-rational points is proven.

The proof distinguishes three cases. In two cases the density is proven by

showing that there is a k-section of infinite order on (a base change of) E . In

the more difficult case, they construct a new elliptic surface which parametrizes

a family of smooth curves which are the normalizations of the multisections

mentioned earlier. They then show that this constructed elliptic surface maps

dominantly to S and finish the proof by showing that the k-rational points of

this new elliptic surface lie Zariski dense.

In the next chapter we will generalize the result of Theorem 2.18 to a bigger

family of del Pezzo surfaces of degree one which contains the family of this

theorem as a subset. Theorem 2.18 assumes the existence of another k-rational

point that is non-torsion on its fiber on E . This implies that this fiber contains

infinitely many k-rational points. In our proof, only this latter assumption is

needed. Moreover, we can avoid using the elliptic fibration E → P1
k almost

completely.

Except from these points, we will still use a lot of ideas of [DW21]. Especially,

we will create a fibered surface, consisting of a family of curves, defined similarly

as in [DW21]. In order to make the arguments work more generally, we had to

reinterpret some computations more geometrically, as some of the computations

would have been too large to do in more generality.
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Zariski density on a family

of surfaces

The goal of this chapter will be to prove the following main theorem of this

thesis and give some examples of del Pezzo surfaces to which we can apply it.

Theorem 3.1. Let k be a field of characteristic 0. Let f := f3t
3+f2t

2+f1t+f0

with fi ∈ k and f3 6= 0 be a polynomial in k[t]. Let a1, a2, a3, a4, a6 ∈ k[u]

be polynomials such that 3 deg(ai) ≤ i. Suppose the surface S in Pk(2, 3, 1, 1)

given by the equation

Y 2 + a1XYW + a3(f(Z/W ))YW 3 = X3 + a2X
2W 2 + a4(f(Z/W ))XW 4 + a6(f(Z/W ))W 6

(3.1)

is smooth. Let t0 ∈ k be an element. Define the curve F on S by Z− t0W = 0.

If f − f(t0) is separable, 3t0 6=
−f2

f3
and |F(k)| = ∞, then S(k) is dense in S

with respect to the Zariski topology. Moreover, if k is of finite type over Q
and S(k) lies Zariski dense in S, then there exists a t0 ∈ k satisfying these

properties.

Note that by Proposition 2.8, the surface S of Theorem 3.1 is a del Pezzo

surface of degree 1, because S is a smooth surface of degree six in the weighted

projective space Pk(2, 3, 1, 1). In particular, Theorem 3.1 is a result on the

Zariski density of the k-rational points of del Pezzo surfaces of degree one. To

give the reader a general idea of what is going to happen in this chapter, we

start by giving a sketch of the proof.
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Sketch of the proof of Theorem 3.1:

In order to prove the theorem, we will construct a surface C which maps dom-

inantly to S. Because dense sets map to dense sets under dominant maps, it

follows that in order to prove the Zariski density of the k-rational points on S

it is enough to prove the Zariski density of the k-points on C.

This surface C parametrizes a family of curves, which are all curves on S. To be

more specific, there will be a fibration C → F0 where F0 denotes an open part

of the curve F such that each fiber is a curve on S. We will define these curves

in section 3.1. In the remainder of this section we will prove some properties

of these curves. The surface C will be defined afterward in subsection 3.2.1.

In order to prove the Zariski density of the k-points on C, we will first show

that there are infinitely many sections of the fibration C → F0. The generic

fiber of the fibration C → F0 will be of geometric genus 0 or 1, so this gives

us two cases which we should distinguish. The genus 0 case will be relatively

easy.

In the genus 1 case, we need to do a bit more work. Therefore we will construct

another fibered surface D → P1
k, that is related to this surface C. This work

is done in the remainder of section 3.2. In the case that the generic fiber has

geometric genus 1, we will show in subsection 3.3.1 that D is an elliptic surface.

On this elliptic surface there will be a section of infinite order and from this

section we can construct infinitely many sections of C → F0.

In both cases, the existence of these sections will imply the existence of infinitely

many distinct curves on C, which have infinitely many k-rational points. This

will imply the Zariski density of the k-rational points on C from which we will

conclude the first part of the statement.

For the second part of the statement of the theorem, we will use a generalization

of Merel’s Theorem, [Mer96]. This theorem states that the torsion points on

elliptic curves over some finitely generated field extension of Q are bounded,

and this bound only depends on the field of definition.

Assumptions in this chapter:

We suppose that k is a field. We define the polynomials ai ∈ k[u] and f ∈ k[t]

as in Theorem 3.1 and assume S is a smooth surface in the weighted projective

space Pk(2, 3, 1, 1) given by equation 3.1. Recall that by Proposition 2.8, the

surface S is a del Pezzo surface of degree 1. We denote by O = (1 : 1 : 0 : 0)

the base point of the canonical system | −KS |.
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In some sections we will make further assumptions, for example on the charac-

teristic of k, but for now we will try to prove things in more generality.

3.1 A family of curves

The goal of this section is to introduce a family of curves and give some prop-

erties which hold for them. We start by introducing some notation which we

will use in this section.

Identify the affine piece W 6= 0 of Pk(2, 3, 1, 1) with the affine space A3
k. Give A3

k

coordinates x = X
W 2 , y = Y

W 3 and t = Z
W . Define the polynomial g ∈ k[x, y, u]

by

g := y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6. (3.2)

Note that the variety S ∩ A3
k is given in A3

k by the zero set of the polyno-

mial g(x, y, f(t)). Furthermore, define the affine surface S′ in A3
k as the zero

set of the polynomial g(x, y, t).

The polynomial f induces an endomorphism of A3
k given by

ϕ : A3
k → A3

k; (xR, yR, tR) 7→ (xR, yR, f(tR)). (3.3)

This morphism ϕ is a finite morphism of degree three which is ramified at

the points R = (xR, yR, tR) with f − f(tR) inseparable. Moreover, ϕ is a flat

morphism and so outside these ramified points the morphism ϕ is étale. The

image of the surface S ∩ A3
k under ϕ is the surface S′.

Definition 3.2. Let l/k be a field extension and let R ∈ (S ∩ A3
k)(l) be

an l-rational point on the affine piece with coordinates R = (xR, yR, tR) such

that ϕ(R) is smooth over l on (S′)l. We define the surface HR in A3
l to

be the pullback of the tangent plane at the point ϕ(R) to (S′)l under the

map ϕl. Moreover, we define the curve CR on Sl to be the closure of Sl ∩HR

in Pl(2, 3, 1, 1). Or equivalently, CR is given by the intersection Sl ∩ Hc
R

in Pl(2, 3, 1, 1), where Hc
R denotes the closure of HR in Pl(2, 3, 1, 1).

Remark 3.3. Note that the plane HR in A3
l of Definition 3.2 is explicitly given

by the zero set of the polynomial

∂g

∂x
(ϕ(R))(x− xR) +

∂g

∂y
(ϕ(R))(y − yR) +

∂g

∂u
(ϕ(R))(f(t)− f(tR)). (3.4)

46



Chapter 3. Zariski density on a family of surfaces ↑

Therefore, the closure Hc
R of HR in Pl(2, 3, 1, 1) is given by the equation

∂g

∂x
(ϕ(R))(XW − xRW 3) +

∂g

∂y
(ϕ(R))(Y − yRW 3) +

∂g

∂u
(ϕ(R))(f(Z,W )− f(tR))W 3.

(3.5)

At least if the characteristic is not three, the surface S′ will be smooth almost

everywhere, because the map ϕ will be étale almost everywhere and we assumed

that S is a smooth surface. Hence, the curve CR of Definition 3.2 is defined

for almost every point R ∈ S ∩ A3
k(l). In particular, CR will be defined for all

points R = (xR, yR, tR) with f − f(tR) separable.

Additional assumptions in the remainder of this section:

Recall that on the affine piece A3
k of Pk(2, 3, 1, 1) where W 6= 0, the surface S

is given by the equation g(x, y, f(t)) where g is defined as in (3.2). Moreover,

recall that we have a morphism ϕ : A3
k → A3

k, defined as in (3.3), which maps

the surface S to the surface S′ given by g(x, y, t) = 0.

We assume that l/k is a field extension and let R ∈ (S ∩ A3
k)(l) be an l-point

with affine coordinates R = (xR, yR, tR) such that ϕ(R) is smooth on (S′)l.

Moreover, we define the surface HR on A3
l and the curve CR on Sl as in Defi-

nition 3.2. We will often identify the point R with the corresponding point on

the surface S or the corresponding point on the curve CR.

3.1.1 An isomorphic curve in Pk(2, 1, 1)

Recall from section 2.2.2 that the rational map prY : Pk(2, 3, 1, 1) 99K Pk(2, 1, 1)

defined by (X : Y : Z : W ) 7→ (X : Z : W ), restricts to a morphism on S.

We will again denote this morphism by τ : S → Pk(2, 1, 1). Recall that this

morphism τ is a double cover of Pk(2, 1, 1). We will show that in the case

that τ is unramified at R, that the curve CR is isomorphic with its image in

the weighted projective space Pl(2, 1, 1).

Lemma 3.4. If τ is unramified at R, then the restriction of τl : Sl → Pl(2, 1, 1)

to CR is an isomorphism onto its image. Moreover, this image is defined by the

polynomial h ∈ k[X,Z,W ] with h := W 6g(X/W 2,YR(X,Z,W )/W 3, f(Z/W ))

and

YR(X,Z,W ) = yRW
3 −

∂g

∂x
(ϕ(R))(XW − xRW 3) +

∂g

∂t
(ϕ(R))(f(Z/W )− f(t0))W 3

∂g

∂y
(ϕ(R))

. (3.6)
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Proof. By the assumption that τ is unramified at the point R, it follows from

Lemma 2.16 that
∂g

∂y
(ϕ(R)) 6= 0. Therefore, we can define the morphism

Pl(2, 1, 1)→ Hc
R; (X : Z : W ) 7→ (X : YR(X,Z,W ) : Z : W ).

Because the defining equation (3.5) of Hc
R is linear in Y , this gives us that the

restriction of the map prY to Hc
R is an inverse of this map. Hence, the latter

map is an isomorphism and so the restriction τl|CR will also be an isomorphism

onto its image. The equation of this image is given by evaluating at YR in the

defining equation of S, which is exactly the given polynomial h.

Recall that R is an l-rational point on S. The automorphism [−1] : S → S of

Definition 2.13 gives us another l-rational point

−R := [−1](R) = (xR,−yR − a1xR − a3(f(tR)), tR), (3.7)

which also lies on S ∩ A3
k(l). One can check that the point ϕ(−R) will be

a smooth point on (S′)l as well. Therefore, the curve C−R of Definition 3.2

is well-defined. We will show that this curve C−R maps to the same curve

in Pk(2, 1, 1) as CR.

Lemma 3.5. The images of the curves CR and C−R under the morphism

τl : Sl → Pl(2, 1, 1) are the same.

Proof. Give Pk(2, 1, 1) coordinates X, Z and W . Identify the affine plane A2
k

as the subset of Pk(2, 1, 1) where W 6= 0. Define pry : A3
k → A2

k by

(x, y, t) 7→ (x, t).

Note that pry is a local description of the rational map prY . Restricting pry to

the surface S∩A3
k gives a local description of the morphism τ : S → Pk(2, 1, 1).

Define two automorphisms χ, χ′ : A3
k → A3

k by

χ : (x, y, t) 7→ (x,−y − a1x− a3(f(t)), t),

χ′ : (x, y, t) 7→ (x,−y − a1x− a3(t), t).

Note that both χ2 = id and χ′
2

= id. Moreover, these automorphisms restrict

to automorphisms χ|S∩A3
k

: S ∩ A3
k → S ∩ A3

k and χ′|S′ : S′ → S′. Also note

that χ|S∩A3
k

corresponds with the map [−1] : S → S.
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Recall the morphism ϕ : A3
k → A3

k from (3.3) and note that χ′ ◦ ϕ = ϕ ◦ χ.

Also define a morphism ϕ′ : A2
k → A2

k by (x, t) 7→ (x, f(t)). The above defined

morphisms give us the following commutative diagram.

A3
k A3

k A2
k

A3
k A3

k A2
k

χ

ϕ

pry

pry

ϕ ϕ′

χ′

pry

pry

(3.8)

Now recall from Definition 3.2 that the curve CR is defined by the closure of the

pullback of the tangent plane T to (S′)l at ϕ(R) intersected with S. Similarly,

the curve C−R is defined by the tangent plane T ′ to (S′)l at ϕ(−R).

The morphism χ′ is a linear transformation with

χ′(ϕ(R)) = ϕ(χ(R)) = ϕ(−R).

This means that the tangent plane T of ϕ(R) gets mapped isomorphically to

the tangent plane T ′ under χ′. It follows that the pullbacks HR = ϕ−1(T )

and H−R = ϕ−1(T ′) are isomorphic under χ. Hence, we get the equality

χ(CR ∩ A3
k) = χ(HR ∩ (S ∩ A3

k)) = χ(HR) ∩ χ(S ∩ A3
k) = H−R ∩ (S ∩ A3

k) = C−R.

Moreover, we have the equality pry = pry ◦ χ and it follows that HR and H−R

have the same image under pry. Because the map pry is a local representation

of τ , we deduce that the curves CR and C−R have the same image under the

morphism τ : S → Pk(2, 1, 1).

Combining the above results, we get the following corollary, which is the main

result to take away of this section.

Corollary 3.6. Suppose that the point R is not a ramified point of the map

determined by the linear system | − 2KS |. Then the curves CR and C−R are

isomorphic and they map isomorphically to the same curve in Pl(2, 1, 1) as

given in Lemma 3.4.

Proof. Combine Lemma 3.4 and 3.5 with Lemma 2.16.
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3.1.2 General properties

In this subsection we prove some general properties of the curve CR.

Lemma 3.7. The scheme-theoretical fiber (S ∩ A3
k)ϕ(R) above ϕ(R) of the

morphism ϕ|S : S → A3
k is contained in the curve CR. Moreover, this fiber

contains at most three l-points, with equality if and only if f(t) − f(tR) is

separable. In the latter case, these are either three l-points or it consists of

a unique l-point and the other two points are defined over some quadratic

extension of l and correspond with the same scheme-theoretic point.

Proof. Recall that R ∈ (S ∩ A3
k)(l) is an l-rational point. The scheme-

theoretical fiber (S ∩A3
k)ϕ(R) of the morphism ϕ is an l-variety that is defined

by the equations x = xR, y = yR and f(t) = f(tR). These equations define a

variety of dimension zero, and it follows that (S ∩ A3
k)ϕ(R) is in bijection with

the Galois orbits of the set

{(xR, yR, t) ∈ (S ∩ A3
k)(l) : f(t) = f(tR)}.

All points of this set are l-rational points on CR and this gives an inclusion

of (S∩A3
k)ϕ(R) in CR. Moreover, it holds that |(S∩A3

k)ϕ(R)(l)| = |f−1(f(tR))|.
Because f is a polynomial of degree 3, we have that |f−1(f(tR))| ≤ 3 with

equality if and only if f − f(tR) is separable.

In the latter case, there are two options. Either the polynomial f − f(tR)

splits into linear factors and then the set (S ∩A3
k)ϕ(R) has three points defined

over l. Or the polynomial f has a linear factor given by t− tR and a irreducible

quadratic factor. These correspond with the point R which is defined over l

and one other point with a residue field which is some quadratic extension l′

of l.

Lemma 3.8. If f−f(tR) is separable, then all points (S∩A3
k)ϕ(R) are singular

points of CR.

Proof. By assumption, the morphism ϕ : S ∩ A3
k → S′ is unramified at R.

Restricting ϕ to the curve CR ∩A3
k still gives a finite morphism unto its image,

which is étale at R. The image ϕ(CR ∩ A3
k) of this map is the tangent plane

to S′ at ϕ(R) intersected with S′. Therefore, the point ϕ(R) is a singular

point on ϕ(CR ∩A3
k). Because ϕ|CR∩A3

k
is étale at R, we deduce that all points

in (S ∩ A3
k)ϕ(R) are singular points of the curve CR.
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Lemma 3.9. The curve CR is linearly equivalent to −3KSl .

Proof. The defining equation of CR on Sl is given by the zero set of (3.5),

which is a homogeneous polynomial of degree 3. The rational function with

numerator the defining polynomial of CR and denominator W 3, is a rational

function in L(−3KS). We deduce that CR = div(f) + 3F where F denotes the

curve on S defined by W = 0. By Lemma 2.10, we have that F ∼ −KSl and

hence CR is linearly equivalent to −3KSl .

Lemma 3.10. Suppose that the map determined by the linear system |−2KS |
is unramified at the point R. Let (z0 : w0) ∈ P1

l (l) be given and define the

curve F on S by w0Z = z0W . The curve CR does not contain the curve F and

intersects F in three points, counted with multiplicity.

Proof. If (z0 : w0) = (1 : 0) the curve F is defined by the equation W = 0.

By equation (3.5), we can deduce that the curve F is not contained in CR.

In all other cases, the curve F can be given by t = t′ on the affine piece W 6= 0

where t′ =
z0

w0
. We can use the isomorphism of Corollary 3.6. The defining

equation of the image on the affine piece is given by g(x,YR(x, t, 1), f(t)) = 0.

This is polynomial in x and t which has a constant coefficient at x3. Substitut-

ing t = t′, this still gives a non-zero polynomial, and hence this gives finitely

many solutions. We deduce that CR does not contain F .

Now we calculate the intersection number. Recall that CR ∼ −3KSl by

Lemma 3.9. Similarly, we can deduce that F ∼ −KSl . It follows that

CR · F = (−3KSl) · (−KSl) = 3 ·KSl
2 = 3.

Because CR does not contain any fiber, it intersects every fiber in three points,

counted with multiplicity.

Lemma 3.11. Suppose that the map determined by the linear system |−2KS |
is unramified at the point R. Let F be the curve on Sl given by Z = tRW .

Then the intersection CR∩F equals the set {R,−2R}, where the point −2R is

given by the group operation in the group Fns(l), where Fns denotes the locus

of the non-singular points.

Proof. Recall that by Remark 2.9 the curve F can be identified with a Weier-

strass curve. This identification can be done on the hyperplane defined by t−tR
in A3

k. Note that the equality Hc
R ∩ F = CR ∩ F holds, where HR denotes the
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surface from the Definition 3.2 of CR. This line goes through the point R. Be-

cause R is a singular point of CR, this implies that the intersection multiplicity

of this line with F is at least 2.

Let Q denote the third point of intersection on this line. By the assumption

that the point R is an unramified point of the map determined by | − 2KS |,
it is not a singular point on F . If Q is not equal to R then it has intersection

multiplicity one, and so cannot be a singular point on F either. Hence, by the

group structure of the Weierstrass equation we have that 2R + Q = O. We

deduce that Q equals the point −2R.

Corollary 3.12. The point R is the only point in the intersection CR ∩ F if

and only if it has order three in the group Fns(l).

In the following lemmas, we give results on the genus of CR. In the proof the

adjunction formula will be used.

Lemma 3.13. Let C be an integral curve on a nice surface X. Denote by pa(C)

the arithmetic genus of C and by KX the canonical divisor of X. Then we have

the equality

2pa(C)− 2 = C · (C +KX). (3.9)

Proof. A proof of this fact for nice curves can be found in Proposition V.1.5

of [Har77], which can be generalized to integral curves, e.g. Exercise V.1.3

of [Har77].

Lemma 3.14. If CR is geometrically integral, then its arithmetic genus pa(CR)

is 4.

Proof. Assume that CR is geometrically integral. From the adjunction for-

mula (3.9) it follows that

pa(CR) =
1

2
CR · (CR +KS) + 1 = −3

2
KS · (−2KS) + 1 = 3KS

2 + 1 = 4.

Lemma 3.15. Suppose that the map determined by the linear system |−2KS |
is unramified at the point R. Suppose that the curve CR is geometrically

integral and that f−f(tR) is separable. Then the geometric genus is at most 1.

52



Chapter 3. Zariski density on a family of surfaces ↑

Proof. If f − f(tR) is separable, it follows from Remark 3.7 that there are

exactly three points in (S ∩ A3
k)ϕ(R) defined over l or one point defined over l

and one point defined over some quadratic extension l′ of l. According to

Lemma 3.8 these points must be singular on the curve CR. Lemma 3.14 gives

that the arithmetic genus is four, so we deduce from Corollary V.3.7 of [Har77]

that the geometric genus of CR is at most 1.

3.1.3 The curve obtained from the generic point of a fiber

Let t0 ∈ k and let F ⊂ S be the curve on S given by the equation Z = t0W .

Let η be the generic point of F . We can identify this point with the κ(η)-

point (x̃, ỹ, t0) ∈ S(κ(η)), where

κ(η) = k(x̃, ỹ) = Frac(k[x, y]/g(x, y, f(t0)))

denotes the residue field of η. Define the curve Cη as in Definition 3.2. Note that

this curve is defined over κ(η) and that it is a curve on the base change Sκ(η).

We have the following result on this curve Cη.

Proposition 3.16. Suppose that the map determined by the linear system

| − 2KS | is unramified at η. If f − f(t0) is separable, then the curve Cη is

geometrically integral of geometric genus 0 or 1.

Proof. To derive a contradiction, suppose that the curve Cη is not geometri-

cally integral. The curve Cη has degree 3 over P1
κ(η) and so if it is not geomet-

rically integral, it would contain a geometrically integral curve, say C ′, which

has degree 1 over P1
κ(η). In this case, C ′ intersects every curve on Sκ(η) of the

form w0Z − z0W , where we take (w0 : z0) ∈ P1
κ(η)(κ(η)), in exactly one point.

By Lemma 3.11 either η or −2η would be a point on this curve.

By our assumption and from Lemma 2.16, it follows that
∂g

∂y
(η) 6= 0. BecauseO

is not on the curve Cη, it follows that O is not a point on the curve C ′.

Because C ′ intersects every fiber of the morphism Sκ(η)−O → P1
κ(η) in exactly

one point, it defines a section P1
κ(η) → Sκ(η)−O. This gives us that C ′ ∼= P1

κ(η).

Because the closure of every fiber of this morphism is in | − KS | and C ′ in-

tersects every fiber once, it follows that C ′ ·KSκ(η)
= −1. By the adjunction

formula (3.9), we find that

C ′
2

= 2(pa(C ′)− 1)− C ′ ·KSκ(η)
= −2 + 1 = −1.
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This means that C ′ is an exceptional curve.

Note that κ(η) is transcendental over k and that the exceptional curves of S are

already defined over ksep. Moreover, there are only finitely many exceptional

curves on S and any exceptional curve does not contain the curve F . We

deduce that both points η and −2η are not on a exceptional curve on the

surface Sκ(η). Hence, we derived a contradiction and we conclude that Cη is

geometrically integral.

By Proposition 2.17, the point η will in almost all cases be an unramified

point of the map determined by the linear system | − 2KS |. If follows that

Proposition 3.16 is almost always true. In particular, it is true if char(k) 6= 2.

3.2 Some fibered surfaces

In this section we define some fibered surfaces. These surfaces will be related to

the curves CR which we have encountered in section 3.1. The first surface C will

be the family of curves CR parametrized over an open subset of the curve F ⊂ S
given by Z = t0W for some t0 ∈ k. As mentioned before, this surface will play

an important role in the proof of Theorem 3.1.

After defining the surface C, the remaining goal of this section is constructing

a fibration D → P1
k, of which a model can be given in P1

k × P2
k. The fibered

surface D will be closely related to C and will be needed to define an infinite

family of sections F0 → C later on.

We define this surface in the following way. We first construct a fibered sur-

face D → A over some curve A, with the property that C is a fiber product of D
with F0 over A. From this surface we obtain a surface D̃ by blowing up D along

a closed subscheme. We show that the resulting surface can be identified as a

surface in P1
k × P2

k. The closure of this surface will exactly be the surface D .

The reason why we have to go through all this trouble, is the fact that obtaining

equations for a minimal regular model for C → F is rather difficult, if not

impossible. It involves too many equations with too many transcendentals.

The construction of this section gives a way to work around this.

Assumptions of this section:

Recall the assumptions sketched at the beginning of this chapter. In particular,

recall that S ⊂ Pk(2, 3, 1, 1) is a del Pezzo surface defined by equation (3.1), in

which we used a polynomial f ∈ k[t] with deg(f) = 3.
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Let t0 ∈ k be an element such that f − f(t0) is separable. Let F ⊂ S be the

curve on S given by the equation Z = t0W . Let η be the generic point of F .

Let

κ(η) = k(x̃, ỹ) = Frac(k[x, y]/g(x, y, f(t0)))

denote the residue field of η. Note that this is also the function field of the

fiber F .

Denote by F0 the open subvariety of F where the map determined by the

linear system | − 2KS | is unramified. We assume this set to be non-empty.

By Proposition 2.17 in almost all cases, and in particular if char k 6= 2, this

subvariety F0 will indeed be non-empty.

Observe that F0 is a smooth curve, because the singular points of F are ram-

ification points of the map determined by | − 2KS |. Moreover, it is contained

in the affine S ∩ A3
k. This means that for every field extension l/k and l-

rational point R ∈ F0(l), the point ϕ(R) is smooth in (S′)l by the fact that

the map ϕ : A3
k → A3

k is étale at R. It follows that we can define the curve CR

of Definition 3.2 for every point R ∈ F0(l).

3.2.1 Construction of the surface C

Let A3
k×Pk(2, 3, 1, 1) be given with coordinates x, y, t and X,Y, Z,W . Observe

that we can identify F0 × S as a subvariety of A3
k × Pk(2, 3, 1, 1).

Definition 3.17. Define the surface C as the variety over k given by the

intersection of F0 × S with the zero set of the equation

∂g

∂x
(x, y, f(t0))(XW − x̃W 3) +

∂g

∂y
(x, y, f(t0))(Y − ỹW 3) +

∂g

∂t
(x, y, f(t0))(f(Z/W )− f(t0))W 3.

(3.10)

Note that equation (3.10) is almost the same as equation (3.5). Moreover, there

is a projection morphism C → F0 onto the first coordinate, which makes this

surface C a fibered surface over F0. The fibers of this morphism are exactly the

curves CR, which we encountered in section 3.1. The fiber above the generic

point η ∈ F0 under C → F0 is the curve Cη of section 3.1.3.

For each field extension l/k, we get the following description of the l-points

of C, namely

C(l) := {(R,P ) : R ∈ F0(l), P ∈ CR(l)} ⊂ (F0 × S)(l). (3.11)
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Let us motivate why we defined this surface C. There is a projection mor-

phism C → S onto the second coordinate. We will show in Lemma 3.18 that

this morphism is dominant. Hence, this morphism will map dense sets to dense

sets. It follows that if we want to prove the Zariski density of the rational points

of S, it is enough to prove the Zariski density of rational points in C.

Lemma 3.18. The surface C maps dominantly to S under the projection

morphism C → S.

Proof. For each R ∈ F0(k) the curve {R} × CR ⊂ C gets mapped to CR

on S. Each CR intersects F in only three points counted with multiplicity by

Lemma 3.10. Because R is the only double point of CR on CR ∩ F , every CR

will be mapped to a different curve. We deduce that the image of C → S must

contain infinitely many different curves CR and therefore the image of C → S

must be dense in S.

Corollary 3.19. If C(k) lies Zariski dense in C, then S(k) lies Zariski dense

in S.

3.2.2 Construction of the surface D

Let px : F0 → A1
k be the morphism defined by (x, y, t0) 7→ x. Let A denote the

image of F0 in A1
k. Recall that the set F0 is the subset of F , that is unramified

for the map determined by the linear system | − 2KS |.

Given an element x0 ∈ A(l) for some field extension l/k, the fiber above x0

under px contains two points, which are given by a set {R,−R}, where the

point R denotes some l-rational point R = (x0, y0, t0) in F0(l). The points R

and −R in the inverse image of x0 are not necessarily l-rational points. If they

are not, they will be l′-rational points, for some field extension l′/l of degree 2.

Let l/k be a field extension and let x0 ∈ A(l). Set R = (x0, y0, t0) ∈ F0(l) for

some point R in the inverse image of the point x0 under the map F0 → A.

Recall from Lemma 3.5 that the image of the curves CR and C−R under the

rational map Pl(2, 3, 1, 1) 99K Pl(2, 1, 1) agree. Hence, the image of this curve

is independent of the choice of R and only depends on the x-coordinate of R.

It follows that we get a well-defined curve that is defined over l.

Definition 3.20. Let x0 ∈ A(l). Then we define the curve Dx0
⊂ Pl(2, 1, 1)

to be the image of the curve CR for some R ∈ F(l) with x(R) = x0.
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We have the following result for these curves.

Lemma 3.21. Let x0 ∈ A(l) and Dx0 be the curve as defined in Definition 3.20.

Let CR denote a fiber of the morphism C → F0 above R ∈ F0(l) of C → F0

such that px(R) = x0. Then the following statements hold:

(i) there is an isomorphism CR ∼= Dx0
given by Lemma 3.4;

(ii) the curve Dx0 has the same arithmetic genus and geometric genus as CR;

(iii) under the above isomorphism, the scheme-theoretic fiber (S ∩A3
k)ϕ(R) of

ϕ(R) under φ, containing three singular l-points of CR, descends to a set

consisting of three singular l-points of Dx0
. Moreover, this set is defined

over l by the equations X = x0W
2 and f(Z/W )W 3 = f(t0)W 3.

Proof. Statement (i) is just a rephrasing of Lemma 3.4.

By Proposition III.9.3 of [Har77] we have the equality pa(CR) = pa(Dx0) for the

arithmetic genus. Recall that the morphism F0 → A is étale, and in particular

unramified. This means that R is already defined over ls and so CR as well.

Theorem 2.5.1 of [Poo17] gives us an equality g(CR) = g(Dx0) for the geometric

genus as well. This proves statement (ii).

For statement (iii), note that non-singular points map to non-singular points

under the base change Dx0
→ Dx0

. Because both the arithmetic genus as the

geometric genus stays the same, it follows that the subscheme (S ∩ A3
k)ϕ(R)

maps to a set of singular points of Dx0
.

Now write R = (x0, y0, t0) ∈ (S ∩ A3
k)(l). Then (S ∩ A3

k)ϕ(R) can be identified

as a subscheme of Pl(2, 3, 1, 1) given by the equations X = x0W
2, Y = y0W

3

and f(Z/W )W 3 = f(t0)W 3. The image of (S ∩ A3
k)ϕ(R) under the map τ of

Lemma 3.4 is given by the equations X = x0W
2 and f(Z/W )W 3 = f(t0)W 3.

Because by assumption x0 ∈ l and t0 ∈ k ⊂ l, this set is defined over l.

Recall the surface C that we defined in section 3.2.1. Also recall that this

surface comes with morphisms C → F0 and C → S, which we can compose

with the morphisms px : F0 → A and τ : S → Pk(2, 1, 1) respectively. These

compositions induce a morphism C → A × P(2, 1, 1) which gives rise to the

following surface.
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Definition 3.22. The surface D is defined as the image of C in A× P(2, 1, 1)

under the morphism that is induced by the diagram

F0 C S

A A× Pk(2, 1, 1) Pk(2, 1, 1)

px τ (3.12)

By Lemma 3.4, we deduce that this surface D is exactly the family of curves Dx

over A. Let x̃ denote the generic point of A, then the curve Dx̃ will be the

generic fiber of the surface D. For each field extension l/k the l-points of D are

D(l) = {(x, P ) : x ∈ A(l), P ∈ Dx(l)} ⊂ (A× P(2, 1, 1))(l). (3.13)

The relation between the surfaces C and D is given in the following lemma.

Lemma 3.23. The following diagram

C D

F0 A

(3.14)

is a pullback diagram, i.e. C ∼= F0 ×A D

Proof. Diagram (3.14) is commutative, so it induces a map C → F0 ×A D.

Moreover, by our construction this map is explicitly given by the assignment

(R,P ) 7→ (R, (x(R),prY (P ))). An inverse is given by the assignment

(R, (x, P )) 7→ (R, (X(P ) : (YR(X,Z,W ))(P ) : Z(P ) : W (P ))) ,

where YR is defined as in Lemma 3.4. The fact that this assignment indeed

gives a well-defined morphism with image C follows from the following two

facts. For each point (R, (x, P )) ∈ F0×AD, we must have that x(R) = x. And

secondly, for each point R ∈ F0(l), we have by Lemma 2.16 that
∂g

∂y
(ϕ(R)) 6= 0,

so indeed YR is well-defined.

3.2.3 Construction of the surface D̃

By Lemma 3.21 each fiber of the surface D of Definition 3.22 is a singular

curve of which we know some of the singularities. Our next objective is to

define a fibered surface of which the fibers are exactly blowups of the curves
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of Definition 3.20 which resolves these singularities. In this section, we will

denote the coordinates of Pk(2, 1, 1) by X,W,Z respectively.

Definition 3.24. Let x ∈ A(l) be given. Recall that Dx is the curve of

Definition 3.20 and is a curve in Pl(2, 1, 1). We define Bx to be the closed

subscheme of the curve Dx given by X = xW 2 and f(Z/W )W 3 = f(t0)W 3.

We define the curve D̃x to be the curve obtained from blowing up Dx in this

closed subscheme Bx.

Recall that we defined a blowup in section 2.1.1 via a universal property. This

means that the curve in Definition 3.24 is uniquely defined up to a unique

isomorphism. So actually speaking we should talk about ‘a’ curve Dx, but the

latter makes it reasonable to talk about ‘the’ curve D̃x instead.

The following lemma gives us results on these family of curves Dx.

Lemma 3.25. Let x ∈ A(l) be given. The arithmetic genus of the curve D̃x

is one and exactly resolves the singularities of Dx that are contained in Bx.

Moreover, the multiplicity of each singular point is exactly 2.

Proof. By Proposition III.9.3 of [Har77], the equality pa(D̃x) = pa(D̃x) holds.

So without loss of generality we may assume that l = l. Recall from Lemma 3.21

that for each fiber Dx of D → A, the subscheme Bx is a singular subscheme

of Dx. Moreover, there are exactly three points in Bx which are all singular

on Dx.

One can show that the blowup of Dx can be obtained as the strict transform

of Dx under a composition of monoidal transformations of the weighted pro-

jective space Pl(2, 1, 1). By Corollary V.3.7 of [Har77], we deduce that the

arithmetic genus of D̃x will be

pa(D̃x) = pa(Dx)− r0(r0 − 1) + r1(r1 − 1) + r2(r2 − 1)

2
,

where ri denote the multiplicities of the points. Because each of the three points

is singular, we have ri > 1. Moreover, this sum has to be non-negative and this

is the case if and only if ri = 2 for all i. We deduce the equality pa(D̃x) = 1

and that D̃x resolves the singularities contained in Bx.

We will now define a fibered surface that parametrizes this family of curves of

Definition 3.24.
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Definition 3.26. Recall that D is the surface of Definition 3.22 and that it

is a subvariety of A × Pk(2, 1, 1). Let B denote the subscheme defined by the

equations X = xW 2 and f(Z/W )W 3 = f(t0)W 3. The surface D̃ is the surface

obtained by blowing up D in the subscheme B.

As with the case of the curves D̃x, we have defined the surface D̃ uniquely up

to a unique isomorphism. The goal in the remainder of this subsection is to

show that this blowup D̃ can be obtained as a fibered surface in A× P2
k. This

discussion will be quite technical and readers who are willing to accept this

statement, can skip this discussion and continue reading in section 3.2.4.

Recall the cone Q = Proj
(
k[p, q, r, s]/(r2 − qs)

)
⊂ P3

k of Example 1.24. To

obtain the desired construction of D̃ as a surface in A × P2
k, we first give a

construction of how to obtain the projective plane P2
k from the cone Q by

blowing up some points and blowing down some −1-curves.

Let t1, t2 ∈ k be the other zeroes of the polynomial f − f(t0). Because we

assumed that f −f(t0) is separable that t0, t1, t2 are all different elements of k.

Set K = k(t1) = k(t2) and note that K/k is a field extension of at most two.

For i = 0, 1, 2, define the K-points Qi = (0 : ti
2 : ti : 1) on the surface Q.

The point Q0 is already defined over k and the points Q1 and Q2 are defined

over K and if K 6= k holds, then the points are Galois conjugates.

Note that Q has a unique singular point O := (1 : 0 : 0 : 0). We have

three distinct lines through this singular point and the points Q0, Q1 and Q2

respectively. We will denote these distinct lines by L0, L1 and L2 respectively.

The line L0 is defined over k so it is isomorphic to P1
k. Furthermore, the lines L1

and L2 are isomorphic to P1
K and in the case that k 6= K then they are each

other’s Galois conjugates.

Define the curve C on Q to be the intersection of the hyperplane x = 0 with

the cone Q. This hyperplane contains the points Q0, Q1 and Q2. Because the

curve C is a conic and contains the k-rational point Q0, it will be isomorphic

to P1
k.

The next step is to blow up Q in the singular point O. This blowup gives a nice

surface Q̃ := BlOQ with a morphism π1 : Q̃ → Q. Let E denote the exceptional

curve of this blowup. The lines Li have different slopes at the singular point O.

Therefore, their strict transforms, which we will denote by L′i, will not intersect

each other in any point. Because L′i ∼ L′j , we have that L′i
2

= 0 on Q̃.

The curve C does not contain the point O, so the strict transform C ′ will just

be π−1
1 (C). We get that C ′ ·L′i = 1, because C ′ and L′i are meeting transversely.
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We also have that the strict transform C ′ has self intersection number C ′
2

= 2,

because C is a conic.

Let Q′i denote the points on Q̃ that are the strict transforms of the points Qi.

We will now blowup in the points Q′i simultaneously. The points Q1 and Q2

are defined over k or they are each other’s Galois conjugates and so this blowup

will be defined over k. From this blowup, we obtain a surface S̃ := BlQ′0,Q′1,Q′2 Q̃
with a morphism π2 : S̃ → Q̃. Note that, as a result of [Stacks, Tag 080A], we

have that S̃ ∼= BlO,Q0,Q1,Q2
Q.

We denote the exceptional curves above Qi by Fi for i = 0, 1, 2. Further-

more, we denote the strict transforms of L′i on S̃ by Ei for i = 0, 1, 2. By

Proposition V.3.2 and V.3.6 of [Har77], it follows that E2
i = L′2i − 1 = −1 and

that Ei · Ej = 0 for i 6= j. Denote the strict transform of C ′ by E3. By the

same propositions, the curve E3 has self intersection E2
3 = C ′

2 − 3 = −1 as

well. Moreover, for i 6= 3 we get that

Ei ·E3 = (π∗2(L′i)− Fi) · (π∗2(C ′)− (F0 + F1 + F2)) = L′i ·C ′ − F 2
i = 1− 1 = 0.

Hence, we have found four disjoint −1-curves on the surface S̃. By blowing

down these curves Ei simultaneously, we obtain a surface S with a blowup

morphism π3 : S̃ → S. Note that the latter morphism is indeed defined over k.

We will show in Lemma 3.27 that S ∼= P2
k.

The above construction can be summarized in the following diagram.

S̃

Q̃

Q S

π2

π3

π1

(3.15)

In the following lemma, the notion of a weak del Pezzo surface is used. A weak

del Pezzo surface is a nice surface X such that KX is big and nef, meaning

that K2
X ≥ 1 and KX · C ≥ 0 for each curve C ⊂ X. For more background on

these surfaces, we refer to [Dol12], p395.

Lemma 3.27. The surface S constructed as above is isomorphic to P2
k.

Proof. First we show that Q̃ is a weak del Pezzo surface. Write Ẽ for the

exceptional curve of the blowup π1 : Q̃ → Q. By Theorem III.7.11 of [Har77]
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and following Example II.8.20.3 of [Har77], we find that the dualizing sheaf ω◦Q
on Q is isomorphic to the invertible sheaf OQ(−2).

We can define a canonical divisor KQ on the coneQ to be a divisor with support

inQ−{O} corresponding to ω◦Q. Then we have thatKQ ∼ −2H, whereH is the

intersection of Q with a hyperplane in P3
k which does not contain the point O.

Using the fact that the singularity of the cone is an ordinary double point,

it follows from Proposition 8.1.10 of [Dol12] that the equality KQ̃ = π∗1(KQ)

holds.

We have that K2
Q̃ = π∗1(−2H)2 = 4 deg(Q) = 8, which shows that KQ̃ is big.

We also get that −KQ̃ · Ẽ = 2π∗1(H) · Ẽ = 0. Furthermore, for every other

curve F on Q̃ that is not this exceptional curve, we have −KQ̃ ·F ≥ 0, because

the intersection number is given by the sum of the intersection multiplicities

under the image of π1 on the cone Q. Hence, −KQ̃ is also nef and so we deduce

that Q̃ is a weak del Pezzo surface.

Because KQ̃ is big and nef with intersection number 8, it follows from Propo-

sition 8.2.25 of [Dol12], that there is only one −2-curve on the surface Q̃. This

is exactly the curve denoted by Ẽ. This means that the points Qi do not

lie on a −2-curve. Because this holds, it follows from Proposition 8.1.23(b)

of [Dol12], that the blowup S̃ is a weak del Pezzo surface as well. Moreover,

by Proposition V.3.3 of [Har77] the equality K2
S̃ = K2

Q̃ − 3 = 5 holds.

The surface S is obtained by blowing down the surface S̃ in four disjoint excep-

tional curves. From Proposition 8.1.23(a) of [Dol12] it follows that S is a weak

del Pezzo surface. Again by Proposition V.3.3 of [Har77], we get for the canon-

ical divisor that K2
S = K2

S̃ + 4 = 9. It follows from Theorem 8.1.15 of [Dol12]

that S ∼= P2
k
. Moreover, S contains a k-rational point P0, coming from blowing

down the curve E0. By Proposition 1.13, we conclude that S ∼= P2
k.

Now we show how the above construction gives us a model of D̃ in A × P2
k.

Recall that the isomorphism Pk(2, 1, 1)→ Q from Example 1.24, which we will

denote by ψ1, is explicitly given by

ψ1 : (X : Z : W ) 7→ (X : Z2 : ZW : W 2).

Let x ∈ A(l) be given and define the automorphism

ψ2 : Pl(2, 1, 1)→ Pl(2, 1, 1);

(X : Z : W ) 7→ (X − xW 2 : Z : W ).
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Under the isomorphism (ψ1)l ◦ ψ2, the curve Dx embeds in Ql such that the

image of Bx is given in Ql by the equations p = 0 and f(r/s)s3 = f(t0)s3.

This set corresponds under the map of Proposition 1.9 with the Galois orbits

of the points Q′i.

We will show in the next proposition that the construction of blowing up and

down the cone Q, gives a model for the curve D̃x in P2
l .

Proposition 3.28. Let x ∈ A(l) be given. From the above blowup and blow-

down construction of Q, we obtain a blowup D̃x → Dx. In particular, D̃x can

be identified as a curve in P2
l .

Proof. The point O does not lie on Dx. Therefore, we deduce that the strict

transform of ((ψ1)l ◦ ψ2)(Dx) in Ql under the blowup (π1)l will be isomorphic

to Dx. Denote this strict transform by D′x. The blowup (π2)l : S̃l → Q̃l
resolves the singularities corresponding to Bx of the curve D′x. Moreover, the

strict transform of D′x on S̃l is exactly a curve which satisfies Definition 3.24

and so we denote this curve by D̃x.

To make notation more easy in this proof, we drop the subscript l for the curves

on the surfaces in the remainder of the proof. E.g. with abuse of notation, we

will just write L′i instead of (L′i)l, but one should really use the base change!

Because the curve Dx intersects Li in three points counted with multiplicity,

it follows that D′x · L′i = 3 for the strict transforms of these curves under π1.

Recall that the points Qi have multiplicity two by Lemma 3.14. We use Propo-

sition V.3.2 and V.3.6 of [Har77] to deduce the equality

D̃x · Ei = (π∗2(D′x)− 2Ei) · (π∗2(L′i)− Ei) = D′x · L′i + 2E2
i = 3− 2 = 1

for 0 ≤ i ≤ 2. In particular, the curve D̃x intersects Ei for 0 ≤ i ≤ 2 in only

one point.

Observe that the curve C ∼ 2 · Li on Q, so C ′ ∼ 2 · (L′i + E). From Proposi-

tion V.3.2 and V.3.6 of [Har77] we again deduce that the intersection number

of the strict transforms of these curves under π1, is given by

D′x · C ′ = 2D′x · (L′i + E) = 2 · (3 + 0) = 6.

Furthermore, the points of intersection are exactly the strict transforms Q′i of

the points Qi, which are singular on Dx. We deduce that these curves meet

transversally.
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Again we use Proposition V.3.2 and V.3.6 of [Har77], to deduce that

D̃x · E3 = (π∗2(D′x)− 2(E0 + E1 + E2)) · (π∗2(C ′)− (E0 + E1 + E2))

= D′x · C ′ + 2(E2
0 + E2

1 + E2
2) = 6 + 2 · (−3) = 0.

Hence, the curves D̃x and E3 do not meet.

The morphism π3 blows down these four exceptional curves Ei. Denote the

restriction of (π3)l to D̃x by π′3. Then, because D̃x intersects each exceptional

curve Ei at most once, this map π′3 will be an isomorphism which gives an

isomorphic curve D̃x on Sl ∼= P2
l . The maps in the other direction will now

give the blowup

(
ψ−1

2 ◦ ψ−1
1 ◦ π1 ◦ π2

)
l
◦ (π′3)−1 : D̃x → Dx.

The above discussion extends to the surface D̃ in the following way.

Proposition 3.29. The surface D̃ can be identified as a surface in A×P2
k such

that the induced morphism D̃ → A is a fibration. Moreover, for each x ∈ A(l),

the fiber of this morphism is the curve of Definition 3.24.

Proof. The universal property of the product gives us an isomorphism

idA×ψ1 : A× Pk(2, 1, 1)→ A×Q.

Moreover, we can precompose this with the automorphism

Ψ2 : A× Pk(2, 1, 1)→ A× Pk(2, 1, 1);

(x, (X : Z : W )) 7→ (x, (X − xW 2 : Z : W )).

Restricting this morphism to D gives us an embedding of D in A×Q such that

on each fiber the points in the set Bx are mapped to the points Qi. Let D′

denote the image of D in A×Q under the isomorphism

(idA×ψ1) ◦Ψ2 : A× Pk(2, 1, 1)→ A×Q.

This isomorphism maps the closed subscheme B to the subscheme B′ ⊂ A×Q
defined by p = 0 and f(r/s)s3 = f(t0)s3. The points of this scheme correspond
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exactly to the Galois orbits of the set

{
(x,Qi) : x ∈ A(k) and i = 0, 1, 2

}
.

Recall the blowup and down construction given in diagram (3.15). By [Stacks,

Tag 0805] blowups commute with flat base change. This gives us that the

morphism A × S̃ → A × Q is exactly the blowup of Q along B′ ∪ (A × {O}).
Composing with the isomorphism (idA×ψ1)◦Ψ2, we get a blowup construction

A× S̃

A× Q̃

A×Q A× Pk(2, 1, 1) A× Pk(2, 1, 1)

idA×π2

idA×π1

∼
idA×ψ−1

1

∼
Ψ−1

2

(3.16)

of A× Pk(2, 1, 1) along some closed subscheme.

The surface D′ does not meet the subscheme A × {O}. Therefore, the strict

transform of D′ under this blowup, gives a blowup

Ψ−1
2 ◦ idA×(ψ−1

1 ◦ π1 ◦ π2)|D̃ : D̃ → D

of D along B.

Again by the univerisal property of the product, we have a map

idA×π3 : A× S̃ → A× S.

The restriction of this map to D̃′ is an isomorphism on each fiber above A by

Proposition 3.28, and hence is itself an isomorphism. Moreover, from the result

of Lemma 3.27 it follows that A × S ∼= A × P2
k. Hence, this gives us a model

of D̃ in A× P2
k.

For each x ∈ A(l), the fiber of the projection morphism D̃ → A gives us by

construction the curve D̃x of Definition 3.24.

3.2.4 Construction of the surface D

Embed A into P1
k by x 7→ (x : 1). This induces an embedding of A × P2

k

in P1
k × P2

k. The proof of Proposition 3.29 gives us an explicit description of D̃
in A× P2

k. Hence, this gives us an embedding of D̃ in P1
k × P2

k.
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Definition 3.30. The surface D is defined as the closure of the image of D̃
in P1

k × P2
k as described above.

Note that D → P1
k is a fibration. Moreover, for each x ∈ A(l) ⊂ P1

k(l), we get

a fiber of D̃ which is given by the curve of Definition 3.24. In particular, if x̃

denotes the generic point of P1
k, then the generic fiber of this fibration is the

curve D̃x̃. This curve can be identified as the generic fiber of D̃ as well.

Diagram 3.17 gives us an overview of all the surfaces and morphisms we have

encountered.

C D̃ D P1
k × P2

k

F0 × S F0 ×A D D A× Pk(2, 1, 1)

S F0 A P1
k

∼

(3.17)

Additional assumption: From now on, we assume that char k 6= 2, 3!

In the remainder of this subsection we will give an explicit model for this sur-

face D in the case that characteristic of k is not two or three. The construction

of this model will follow from the embedding of the proof of Proposition 3.29

and uses the isomorphism Pk(2, 1, 1) ∼= Q. Explicit calculations will be done

with magma. The code can be find in the Appendix.

Recall that the del Pezzo surface S is given by equation (3.1). Because we

assumed that char k 6= 2, 3, by completing the square and competing the cube,

we may assume that a1, a2, a3 = 0, as noted in section 2.2.1. Moreover, we

can choose these transformations such that t0 and the polynomial f will not

change.

We can also apply the linear transformation Pk(2, 3, 1, 1)→ Pk(2, 3, 1, 1) given

by

(X : Y : Z : W ) 7→ (X : Y : Z − t0W : W ).

This gives another embedding of our del Pezzo surface S in the weighted pro-

jective space which sends the curve F , which we have defined at the beginning

of this section, to the curve defined by the equation Z = 0.

We recall some notation from section 3.1. Identify A3
k with the standard affine

of the weighted projective space Pk(2, 3, 1, 1) where W 6= 0 and denote its

coordinates by x =
X

W 2
, y =

Y

W 3
and t =

Z

W
. The equation of the surface S
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under the above isomorphism can then be given on this affine A3
k by the solution

set of

y2 = x3 + (b1f
′(t) + b0)x+ (c2f

′(t)2 + c1f
′(t) + c0), (3.18)

where f ′ = f ′3t
3 + f ′2t

2 + f ′1t + f ′0 and b1, b0, c2, c1, c0, f
′
3, f
′
2, f
′
1, f
′
0 ∈ k. The

relation of the f we started with and f ′ is given by f ′(t) = f(t + t0). The

curve F is under this above isomorphism given on A3
k by the equation t = 0.

Write f ′ − f ′0 = f ′3t(t − t′1)(t − t′2), where t′1, t
′
2 ∈ k denote the other zeroes of

the polynomial f ′ − f ′0.

Recall that η denotes the generic point of F and that Cη denotes the curve

defined as in Definition 3.2. Also recall that x̃ denotes the generic point of A

and that Dx̃ denotes the curve of Definition 3.20. By Lemma 3.4 the curve Cη

gets mapped isomorphically to its image under τκ(η) : Sκ(η) → Pκ(η)(2, 1, 1).

Moreover, by definition of Dx̃ we get an equality τκ(η)(Cη) = (Dx̃)κ(η).

Recall that the generic point η can be identified with a κ(η)-rational point on F .

This point is explicitly given by (x̃, ỹ, 0) ∈ (S∩A3
k)(κ(η)). The curve Cη is then

defined in Pκ(η)(2, 3, 1, 1) by equation (3.18) and the zero set of the polynomial

given in equation (3.5), where we substitute xR = x̃, yR = ỹ and tR = 0. The

projection onto Pκ(η)(2, 1, 1) now gives us an explicit equation of Dx̃, which is

given explicitly by the equation of Lemma 3.4.

If we now restrict the automorphism of Pk(x̃)(2, 1, 1) given by

(X : Z : W ) 7→ (X − x̃W 2 : Z : W )

to the curve Dx̃, the three singular points of Dx̃ get mapped to the points

(0 : 0 : 1), (0 : t′1 : 1) and (0 : t′2 : 1). Let us denote by D′ the image

of Dx̃ under the above isomorphism intersected with the affine where the last

coordinate is not zero. Giving this affine A2
k(x̃) coordinates x and t, we can

find with magma that D′ is given by the solution set of the polynomial given

in (3.19), which can be found on the next page.

On this affine, we can give an explicit construction of the blowup of D′ in the

points corresponding to (0 : 0 : 1), (0 : t1 : 1) and (0 : t2 : 1). It is given by the

strict transform D̃′ under the blowup

{((x, t), (u : v)) ∈ A2
k(x̃) × P1

k(x) : xu = (f ′(t)− f ′0)v} → A2
k(x̃).

Observe that there is an embedding

D̃′|v 6=0 → A2
k(x̃); ((x, t), (u : v)) 7→

(u
v
, t
)
.
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Defining polynomial of D′: (
x̃3 +

(
b0 + b1f

′
0

)
x̃+

(
c0 + c1f

′
0 + c2f

′
0
2
))

x3

+

(
3

4
x̃4 +

(
3/2b0 + 3/2b1f

′
0

)
x̃2+(

3c0 + 3c1f
′
0 + 3c2f

′
0
2
)
x̃− 1

4
b20 −

1

2
b0b1f

′
0 −

1

4
b21f

′
0
2
)
x2

+

(
−1

2
b1f

′
3x̃

3 +
(
−3/2c1f

′
3 − 3c2f

′
3f

′
0

)
x̃2 +

(
1

2
b0b1f

′
3 +

1

2
b21f

′
3f

′
0

)
x̃

+

(
c0b1f

′
3 −

1

2
c1b0f

′
3 +

1

2
c1b1f

′
3f

′
0 − c2b0f

′
3f

′
0

))
xt3

+

(
−1

2
b1f

′
2x̃

3 +
(
−3/2c1f

′
2 − 3c2f

′
2f

′
0

)
x̃2 +

(
1

2
b0b1f

′
2 +

1

2
b21f

′
2f

′
0

)
x̃

+

(
c0b1f

′
2 −

1

2
c1b0f

′
2 +

1

2
c1b1f

′
2f

′
0 − c2b0f

′
2f

′
0

))
xt2

+

(
−1

2
b1f

′
1x̃

3 +
(
−3/2c1f

′
1 − 3c2f

′
1f

′
0

)
x̃2 +

(
1

2
b0b1f

′
1 +

1

2
b21f

′
1f

′
0

)
x̃

+

(
c0b1f

′
1 −

1

2
c1b0f

′
1 +

1

2
c1b1f

′
1f

′
0 − c2b0f

′
1f

′
0

))
xt

+

(
c2f

′
3
2
x̃3 − 1

4
b21f

′
3
2
x̃2 +

(
−1

2
c1b1f

′
3
2
+ c2b0f

′
3
2
)
x̃+ c0c2f

′
3
2 − 1

4
c21f

′
3
2
)
t6

+

(
2c2f

′
3f

′
2x̃

3 − 1

2
b21f

′
3f

′
2x̃

2 +
(
−c1b1f

′
3f

′
2 + 2c2b0f

′
3f

′
2

)
x̃+ 2c0c2f

′
3f

′
2 −

1

2
c21f

′
3f

′
2

)
t5

+

((
2c2f

′
3f

′
1 + c2f

′
2
2
)
x̃3 +

(
−1

2
b21f

′
3f

′
1 −

1

4
b21f

′
2
2
)
x̃2

+

(
−c1b1f

′
3f

′
1 −

1

2
c1b1f

′
2
2
+ 2c2b0f

′
3f

′
1 + c2b0f

′
2
2
)
x̃

+

(
2c0c2f

′
3f

′
1 + c0c2f

′
2
2 − 1

2
c21f

′
3f

′
1 −

1

4
c21f

′
2
2
))

t4

+

(
2c2f

′
2f

′
1x̃

3 − 1

2
b21f

′
2f

′
1x̃

2 +
(
−c1b1f

′
2f

′
1 + 2c2b0f

′
2f

′
1

)
x̃+ 2c0c2f

′
2f

′
1 −

1

2
c21f

′
2f

′
1

)
t3

+

(
c2f

′
1
2
x̃3 − 1

4
b21f

′
1
2
x̃2 +

(
−1

2
c1b1f

′
1
2
+ c2b0f

′
1
2
)
x̃+ c0c2f

′
1
2 − 1

4
c21f

′
1
2
)
t2

(3.19)
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Let us give this affine plane A2
k(x̃) coordinates v′, t′. Again with magma, we

deduce that the image in A2
k(x̃) is given by the zero set of the polynomial given

in (3.20).(
x̃3 + (b0 + b1f

′
0)x̃+ c0 + c1f

′
0 + c2f

′
0
2
)(

f ′3t
′3 + f ′2t

′2 + f ′1t
′
)

+

(
c2x̃

3 − 1

4
b21x̃

2 +

(
−1

2
c1b1 + c2b0

)
x̃+ c0c2 −

1

4
c21

)
v′

3

+

(
−1

2
b1x̃

3 −
(

3

2
c1 + 3c2f

′
0

)
x̃2 +

1

2
b1(b0 + b1f

′
0)x̃

+c0b1 −
1

2
c1b0 +

1

2
c1b1f

′
0 − c2b0f ′0

)
v′

2

+

(
3

4
x̃4 +

3

2
(b0 + b1f

′
0)x̃2 + 3(c0 + c1f

′
0 + c2f

′
0
2
)x̃

−1

4
b20 −

1

2
b0b1f

′
0 −

1

4
b21f
′
0
2
)
v′.

(3.20)

An explicit equation for the surface D in P1
k × P2

k can now be constructed

as follows. It is given by viewing the polynomial in (3.20) as a polynomial

in k[x̃][v′, t′] and homogenizing it both with respect to x̃ as with respect to v′, t′.

Let us give P1
k×P2

k coordinates S0, S1 and T0, T1, T2. Identify x̃ =
S0

S1
, v′ =

T0

T2

and t′ =
T1

T2
. The surface D is given by the solution set of (3.21).

(
S3

0S1 + (b0 + b1f
′
0)S0S

3
1 + (c0 + c1f

′
0 + c2f

′
0
2
)S4

1

)
(f(T1/T2)− f0)T2

3

+

(
c2S

3
0S1 −

1

4
b21S

2
0S

2
1 +

(
−1

2
c1b1 + c2b0

)
S0S

3
1 +

(
c0c2 −

1

4
c21

)
S4

1

)
T0

3

+

(
−1

2
b1S

3
0S1 −

(
3

2
c1 + 3c2f

′
0

)
S2

0S
2
1 +

1

2
b1(b0 + b1f

′
0)S0S

3
1

+

(
c0b1 −

1

2
c1b0 +

1

2
c1b1f

′
0 − c2b0f ′0

)
S4

1
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2
2 .

(3.21)

We deduce that the surface D is a family of cubic curves in P2
k.
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3.3 Zariski density

In this section we will give a proof of Theorem 3.1, showing that under mild

conditions the k-rational points of the surface S lie Zariski dense in S. To prove

the Zariski density of the k-rational points in S, it is enough by Corollary 3.19

to prove that C(k) is Zariski dense in C, where C is the fibered surface defined

as in Definition 3.17. By Proposition 3.16 the generic fiber of C → F0, has

geometric genus zero or one. Before we go to the proof of Theorem 3.1, we first

take a closer look at the case that the geometric genus of Cη equals one.

Assumptions of this section:

We assume that we are in the same setting as sketched in the beginning of

section 3.2. Moreover, we assume that the characteristic of k is zero. In this

case F0 is certainly non-empty. We define the surfaces C, D, D̃ and D as in

section 3.2. Recall that these surfaces are all fibered surfaces. Note that D̃ can

be identified as a subset of D . Again denote by x̃ the generic point of A ⊂ P1
k

and recall that η denotes the generic point of F0. Also recall that the generic

fibers of the morphisms C → F0, D → A and D → P1
k are given by Cη, Dx̃

and D̃x̃ respectively.

3.3.1 A section of infinite order

In this subsection we suppose that Cη has geometric genus one. We will show

that in this case the surface D can be given the structure of an elliptic surface

which has under a mild condition a section of infinite order. Before we can

show this, we first need to construct the zero section and this section of infinite

order. Therefore, we take a closer look at some points of Cη.

Observe that the only singular points of Cη are in the genus one case given

by the subscheme (S ∩ A3
k)ϕ(η), because the arithmetic genus is four and this

set consists of three points. Recall that this subscheme consists of three κ(η)-

points.

First of all η is a κ(η)-point of this subscheme. In the remainder of this section

we will denote this point η by η0. The other two points, which we will denote

by η1 and η2, are either defined over κ(η) or over some quadratic extension

of κ(η). In the latter case, the points η1 and η2 are in the same Galois orbit

of Cη(κ(η)) of Gal(κ(η)s/κ(η)).

The points η0, η1 and η2 will all define the same curve Cη over the alge-

braic closure. Therefore, Lemma 3.11 gives us three other points −2η0, −2η1
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and −2η2 in the group Fns(κ(η)), which can all be identified as κ(η)-points on

the curve Cη. Note that the point −2η0 is a κ(η)-point, and the points −2η1

and −2η2 are defined over the same field as the points η1 and η2.

Recall that we assumed that the characteristic is zero, so it is unequal to three.

This means that Fns(k) does not have exponent three. Because η0 is a point

defined over some transcendental extension of k, this means that η0 does not

have order three. The same argument holds for η1 and η2 and so in particular

we deduce that ηi 6= −2ηi.

By Lemma 3.21, the curve Dx̃ has geometric genus one as well. So in this

case, the blowup D̃x̃ is a non-singular curve of genus one. The duplication

formula given in III.2.3(d) of [Sil09], gives that the x-coordinate of −2η0 only

depends on x̃ and not on ỹ. It follows that the point −2η0 maps under the

map Cη → Dx̃ to a κ(x̃)-point of Dx̃.

The strict transform of this κ(x̃)-point under D̃x̃ → Dx̃ gives a κ(x̃)-point Q0

on D̃x̃. This means that we can give D̃x̃ the structure of an elliptic curve.

Moreover, we will show in the next lemma that the surface D is an elliptic

surface with a zero section coming from the point Q0.

Lemma 3.31. Suppose Cη has geometric genus one. Then D → P1
k is an

elliptic surface with zero section σ0 : P1
k → D corresponding under the bijection

of Lemma 1.30 to the κ(x̃)-point Q0.

Proof. The surface D is projective, so in particular it is proper over k. It

follows from [Stacks, Tag 01W6] that the fibration D → P1
k is a proper mor-

phism. By Lemma 1.30, we get that the point Q0 gives a section σ0 : P1
k → D

of this fibration. Moreover, almost all fibers of this fibration will be smooth.

These fibers are cubic curves by equation (3.21). It follows that almost all

fibers of D → P1
k will be non-singular curves of genus one. Hence, D → P1

k will

be an elliptic surface with section σ0 : P1
k → D .

Recall that we have the two other κ(η)-points −2η1 and −2η2 on Cη. These

points give two κ(x̃)-rational points on Dx̃. Again by the duplication formula,

we can deduce that these points will be either two κ(x̃)-rational points or

they are defined over some quadratic extension and are each others Galois

conjugates.

The strict transforms of these κ(x̃)-points under D̃x̃ → Dx̃ give two points Q1

and Q2. Moreover, because (D̃x̃, Q0) is an elliptic curve, we get a new κ(x̃)-

point Q given by the addition Q := Q1 +Q2. This point is stable under Galois,
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and hence is a κ(x̃)-point on D̃x̃. By Lemma 1.30, this point Q will correspond

to a section σ : P1
k → D of D → P1

k.

Now let K denote the residue field of Q1. Then the points Q1 and Q2 will

define two sections σ1, σ2 : P1
K → DK of the base change DK → P1

K . Moreover,

the base change σK : P1
K → DK is then given by the sum σK = σ1 + σ2.

Our next goal is to show that under mild conditions, this section σ will be

of infinite order. To show this, we will use the model of D described in sec-

tion 3.2.4. Recall that for this model we assumed that a1 = a2 = a3 = 0.

Following the construction of 3.2.4, we can find explicit descriptions for the

sections σi for i = 0, 1, 2.

Lemma 3.32. Recall that the surface D → P1
k can be given by the zero set

of (3.21). The section σ0 : P1
k → D and the sections σ1, σ2 : P1

K → DK are

given by the description

(S0 : S1) 7→ ((S0 : S1), (0 : ti : 1)).

Moreover, for each smooth fiber we have that

σ(S0 : S1) = σ1(S0 : S1) + σ2(S0 : S1) = ((S0 : S1), (0 : t′1 : 1) + (0 : t′2 : 1)),

where the + denotes the pointwise addition on this fiber.

Proof. We shortly recall the setting of 3.2.4. Because the characteristic is

not two or three, we assumed that a1 = a2 = a3 = 0. Moreover, we have

applied the linear transformation (X : Y : Z : W ) 7→ (X : Y : Z − t0W : W )

on Pk(2, 3, 1, 1). This embeds S in Pk(2, 3, 1, 1) such that the curve defined

by Z = t0W is mapped to the curve Z = 0. Recall that we defined the

polynomial f ′ which is given by f ′(t) = f(t+ t0). We denote the three zeroes

of f ′(t) by t′i, where t′0 = 0.

Now the map S → Pk(x̃)(2, 1, 1) given by (X : Y : Z : W ) 7→ (X : Z : W )

sends the point −2ηi to the point given by (h(x̃) : t′i : 1) where h denotes

the duplication formula give in III.2.3(d) of [Sil09]. Recall from section 3.2.4

that the blowup on the affine part of Pk(x̃)(2, 1, 1) where the last coordinate is

non-zero is given by

{((x, t), (u : v)) ∈ A2
k(x̃) × P1

k(x) : xu = (f ′(t)− f ′0)v} → A2
k(x̃).

The strict transform of the point (h(x̃) : t′i : 1) ∈ Pk(x̃)(2, 1, 1) is given
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by ((h(x̃), t′i), (0 : 1)). We have embedded the strict transform of the curve Dx̃

in P2
k by the map ((x, t), (u : v)) 7→ (u : tv : v). The point ((h(x̃), t′i), (0 : 1))

gets mapped under this embedding to the point (0 : t′i : 1).

From the above construction, we deduce that the sections σi for i = 0, 1, 2 are

on each point defined by

σi(S0 : S1) = ((S0 : S1), (0 : t′i : 1)).

The result for σ follows by definition.

With these explicit descriptions, we can show that σ is a section of infinite order.

We will show this on a singular fiber. Observe that the result of Lemma 3.32

only says something on the smooth fibers. Recall from section 1.3 that in the

case of a minimal regular model this extends to the singular fibers. We will use

this result in the next lemma.

Lemma 3.33. Suppose that −f2 6= 3f3t0 and that Cη has geometric genus

one. Then the section σ : P1
k → D has infinite order in D(P1

k).

Proof. Again we use that D can be given in P1
k ×P2

k by the zero set of (3.21).

Write f ′ = f ′3t
3 + f ′2t

2 + f ′1t+ f ′0. Observe that f ′2 = f2 + 3f3t0. This gives us

that the assumption −f2 6= 3f3t0 implies that f ′2 6= 0.

We will check that σ has infinite order, by checking it on the fiber above (1 : 0)

of D → P1
k. Setting S0 = 1 and S1 = 0 in equation (3.21) gives us that this

fiber is given by the equation 3
4T0T

2
2 = 0. Hence, we get a double line given

by T2 = 0 and another line given by T0 = 0. We will denote the latter line

by L.

By Theorem 1.34 the surface D has a minimal regular model. A calculation

with magma gives us that on this double line T2 = 0, there will be three

singular points of the surface. Blowing up these points will give us locally a

regular model for the elliptic surface D such that this fiber is of type I∗0.

The above observation implies that this fiber has additive reduction. Moreover,

the line L will correspond to the zero component on this model, because the

point σ0(1 : 0) = ((1 : 0), (0 : 0 : 1)) denotes the zero of the additive group on

the smooth part of this fiber. In particular, the group structure on this line is

already given on this singular surface D .

This line L contains one singular point of the fiber above (1 : 0) of the mor-

phism D → P1
k, namely P := ((1 : 0), (0 : 1 : 0)). We deduce that there is a
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group isomorphism (L − {P})(K)
∼−→ K given by ((1 : 0), (0 : t′ : 1)) 7→ t′. It

follows that we can identify the addition on L−{P} with the normal addition

in the second component of the second coordinate.

Now observe that the other points σ1(1 : 0) and σ2(1 : 0) are also on the line L.

It follows that

σ(1 : 0) = (σ1 + σ2)(1 : 0) = ((1 : 0), (0 : t1 + t2 : 1)) = ((1 : 0), (0 : −f ′2 : 1)).

Recall that by assumption we have f ′2 6= 0. It follows that for each integer m

we have m · σ(1 : 0) = ((1 : 0), (0 : −mf ′2 : 1)). Because k has characteristic

zero, we find that −mf ′2 6= 0. We conclude that this section σ has infinite order

on D if −f2 6= 3f3t0.

3.3.2 Proof of Theorem 3.1

Recall that C is the fibered surface defined as in section 3.2.1 and that Cη is

the generic fiber of the fibration of C → F0. We will first give two last partial

results on the surface C. These two results show that C → F0 has infinitely

many sections. These sections will be used to show the Zariski density of

the k-rational points of C.

Lemma 3.34. Suppose that Cη has geometric genus zero. Then there are

infinitely many distinct sections of C → F0.

Proof. Suppose that Cη has geometric genus zero. In this case, we have that

the normalization C̃η is isomorphic to P1
κ(η) over the algebraic closure of κ(η).

The point −2η of Lemma 3.11 is a κ(η)-rational point of Cη. Recall that this

point is not equal to η by our assumption that char(k) = 0 6= 3.

Moreover, this point −2η has intersection multiplicity 1 on F∩Cη, which means

that −2η is a smooth point of Cη. Hence, its strict transform on the normal-

ization C̃η gives a κ(η)-rational point. It now follows from Proposition 1.13

that C̃η is isomorphic to P1
κ(η). We deduce that |Cη(κ(η))| =∞.

The surface C can be identified as a closed subvariety in P6
F0

in the following

way. We have an inclusion of S ↪→ P6
k which is the map determined by the

linear system | − 3KS |. This induces an embedding

C ⊂ F0 × S ↪→ F0 × P6
k
∼= P6

F0
.

Hence, C → F0 is a projective morphism.
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From the above observation, it follows that the morphism C → F0 is proper.

Recall that F0 is a smooth curve. By Lemma 1.30, every point in Cη(κ(η)) gives

a section F0 → C. Hence, we have found infinitely many sections F0 → C.

Proposition 3.35. Suppose that −f2 6= 3f3t0 and that Cη has geometric

genus one. Then there are infinitely many distinct sections of C → F0.

Proof. Suppose that Cη has geometric genus one. We can apply Lemma 3.33.

This tells us that each multiple of the section σ : P1
k → D will give us a different

section on D which is defined over k. If we restrict these sections to A then the

image is in D̃. Now composing them with the map D̃ → D, we get infinitely

many different sections A→ D. Under the universal property, all these sections

pull back to sections F0 → C via the pullback diagram

C D

F0 A

These are all different sections of C → F0, because F0 → A is surjective.

Now we are ready to tie everything together and give a proof of the main

theorem.

Proof of Theorem 3.1. Suppose that we are in the setting of the theorem.

Define the surface C as in section 3.2.1. By Lemma 3.15 we have two cases

which we should distinguish, namely when the generic fiber Cη of C → F0 has

genus 0 and when Cη has genus 1. By Lemma 3.34 and Proposition 3.35 we

have in both cases that there are infinitely many sections F0 → C.

Because we assumed that |F(k)| =∞, and F0 is an open subset of F , it follows

that |F0(k)| = ∞. Hence, every section will contain infinitely many k-points

on C. Because the image of a section is defined by some curve over k on C, we

conclude that in both cases C(k) lies Zariski dense in C. By Corollary 3.19 we

deduce that S(k) lies Zariski dense in S.

Conversely, suppose that every curve F on S of the form of the theorem does

not contain infinitely many k-rational points. Recall from Proposition 2.11

that we can obtain an elliptic surface E → P1
k by blowing up the base point of

the linear system | −KS |. By our assumption E(k) would be contained in the

union of the following set:

(i) the fiber above (1 : 0) of E → P1
k;
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(ii) the fibers above (t1 : 1) with t1 = − f2
3f3

or where f − f(t1) is inseparable;

(iii) a finite set of points for each fiber (t1 : 1) with t1 ∈ k.

There are at most three curves where f − f(t1) is inseparable. So we deduce

that this set consists of at most five fibers on E . Moreover, all the fibers of (iii)

must be smooth fibers of E → P1
k, because else they would contain infinitely

many points.

Now suppose that k is finitely generated over Q. Then by a generalization

of the theorem of Merel, [Mer96], see for example the appendix of [DW21]

or footnote 1 of [CT12], the order of the torsion points of an elliptic curve

over k are bounded and this bound only depends on k. It follows that the

torsion points can be given by some division polynomials which are defined as

in Exercise 3.7 of [Sil09]. These polynomials define a finite set of curves on E .

We deduce that the set E(k) of k-points of E is contained in a finite union of

curves defined by the division polynomials and the fibers of (i) and (ii). It

follows that E(k) does not lie Zariski dense in E . Because S is birational to E ,

this implies that S(k) does not lie Zariski dense in S.

3.3.3 Application of Theorem 3.1: some examples

We conclude this thesis by giving some concrete examples where we apply this

theorem. First of all, we want to mention that all three examples that are

discussed in section 5 of [DW21], Theorem 3.1 can be applied to. These are the

special cases where f = t3 and ai = 0 for all i ≤ 4. Here we give some other

examples, which cannot be proved by the theorem of [DW21].

In the first example we give a del Pezzo surface of the form of equation (3.1),

with f = t3 and a4 6= 0.

Example 3.36. Let S be the surface in PQ(2, 3, 1, 1) given by the equation

Y 2 = X3 + (Z3W −W 4)X + Z6 +W 6.

We can check that this surface is non-singular, which means that it is a del Pezzo

surface of degree one. This surface can be given on the affine where W 6= 0 by

the equation y2 = x3 + (f − 1)x+ f2 − 1 where f = t3.

Let F be the curve defined by t = 1. We have −f2 = 0 6= 3 = 3f3t0 and t3 − 1

is separable. Moreover, F is isomorphic to the singular curve with Weierstrass

equation y2 = x3, hence |F(Q)| = ∞. We conclude that the curve F satisfies
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the properties of Theorem 3.1, and it follows from the theorem that S(Q) is

dense in S.

In the next example, we give a family of del Pezzo surfaces for which the

assumption of the theorem is satisfied.

Example 3.37. Let S be the surface in PQ(2, 3, 1, 1) given on the affine A3
Q by

the equation y2 = x3 + afx+ bf2 + cf + 2 with f = t3 − 2t+ 1 and a, b, c ∈ Q
such that S is non-singular. Define the curve F on S by t = 1. This curve is

isomorphic to the curve given by the Weierstrass equation y2 = x3 + 2. This is

an elliptic curve, because the determinant is non-zero.

We can check for example with Magma that the point (−1, 1) is a point on

this curve with infinite order in F(Q), hence |F(Q)| =∞. Observe that t3−2t

is separable and that −f2 = 0 6= 3 = 3f3t0 holds. We deduce that the curve F
satisfies the properties of the theorem. Again we conclude that S(Q) is dense

in S.
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Appendix: Magma code

1 # Ca l cu la t ing a model o f the e l l i p t i c s u r f a c e C,

2 # where C i s the s u r f a c e obtained from the curves CR

3 # with R po in t s on the f i b e r t =0.

4

5 # Def in ing f i e l d o f d e f i n i t i o n

6 Q:= Rat iona l s ( ) ;

7 k<c0 , c1 , c2 , b0 , b1 , f3 , f2 , f1 , f0>:=Funct ionFie ld (Q, 9 ) ;

8 kx<x0>:=Funct ionFie ld ( k ) ;

9

10 # Def in ing f and f u n c t i o n f i e l d o f eta

11 R<z>:=PolynomialRing ( kx ) ;

12 f := f3 ∗zˆ3+f2 ∗zˆ2+f1 ∗z+f0 ;

13 K<y0>:=quo<R|−zˆ2+x0ˆ3+

14 ( b0+b1∗ f 0 )∗ x0+c0+f0 ∗ c1+f0 ˆ2∗ c2>;

15

16 # Def in ing polynomia ls f o r dP−s u r f a c e S and s u r f a c e

17 # S accent

18 Rs<x , y , t>:=PolynomialRing (K, 3 ) ;

19 A3t:= Af f ineSpace (Rs ) ;

20 A3u<xp , yp , u>:=Af f ineSpace (K, 3 ) ;

21 G:=−ypˆ2+xpˆ3+(b0+b1∗u)∗xp+c0+c1∗u+c2∗u ˆ2 ;

22 f t := Evaluate ( f , t ) ;

23 F:= Evaluate (G, [ x , y , f t ] ) ;

24

25 # Sur face S accent

26 T:=Scheme (A3u ,G) ;

27 # Sur face S

28 S:=Scheme (A3t ,F ) ;

29
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30 # Def in ing CR as pu l lback o f tangent space

31 P:=S ! [ x0 , y0 , 0 ] ;

32 p i :=map<S−>A3u | [ x , y , Evaluate ( f t , [ x , y , t ] ) ] >;

33 U:=TangentSpace (T, p i (P ) ) ;

34 CR:=Curve ( Pul lback ( pi ,U) ) ;

35

36 # Def in ing D

37 Ceq1:= Def in ingEquat ions (CR) [ 1 ] ;

38 yy:=y−Ceq1/ Monomia lCoe f f i c i ent ( Ceq1 , y ) ;

39 pD:= Evaluate (F , [ x , yy , t ] ) ;

40 Rx<xx , tx>:=PolynomialRing ( kx , 2 ) ;

41 D:= ClearDenominators ( Evaluate (pD , [ xx , 0 , tx ] ) ) ;

42

43 # Trans la t ing s i n g u l a r po in t s to plane x=0

44 DD:= Evaluate (D, [ xx+x0 , tx ] ) ;

45

46 # Equation f o r D accent

47 DD;

48

49 # Blowup D accent

50 RR<tt , vv>:=PolynomialRing ( kx , 2 ) ;

51 f t t := Evaluate ( f , t t ) ;

52 BD:= ClearDenominators (RR! ( vvˆ3∗ Evaluate (DD,

53 [ ( f t t −f 0 )/ vv , t t ] ) / ( f t t −f 0 ) ˆ 2 ) ) ;

54

55 # Equation f o r the blowup D accent

56 BD;

57

58 # Def in ing the s u r f a c e D on three a f f i n e patches to

59 # c a l c u l a t e what happens at the f i b e r above s :=1/x0=0

60 # Here we make s (=1/x0 ) in to v a r i a b l e to obta in s u r f a c e

61 # D, where D1 i s the standard a f f i n e patch , D2 and

62 # D3 are the a f f i n e patches obta ined by tak ing

63 # coo rd ina t e s t /v ,1/ v and 1/ t , v/ t r e s p e c t i v e l y .

64

65 RRR<s s s , t t t , vvv>:=PolynomialRing (k , 3 ) ;

66 D1:=RRR! ( s s s ˆ4∗(&+[

67 Evaluate ( Monomia lCoe f f i c i ent (BD,m) ,

68 1/ s s s )∗ Evaluate (m, [ t t t , vvv ] ) :
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69 m in Monomials (BD) ] ) ) ;

70 D2:=RRR! ( s s s ˆ4∗vvvˆ3∗(&+[

71 Evaluate ( Monomia lCoe f f i c i ent (BD,m) ,

72 1/ s s s )∗ Evaluate (m, [ t t t /vvv ,1/ vvv ] ) :

73 m in Monomials (BD) ] ) ) ;

74 D3:=RRR! ( s s s ˆ4∗ t t t ˆ3∗(&+[

75 Evaluate ( Monomia lCoe f f i c i ent (BD,m) ,

76 1/ s s s )∗ Evaluate (m, [ 1 / t t t , vvv/ t t t ] ) :

77 m in Monomials (BD) ] ) ) ;

78

79 # Ca l cu la t ing s i n g u l a r po in t s on the s p e c i a l f i b e r

80 # at s=1/x0=0.

81 A3R:= Af f ineSpace (RRR) ;

82 SD1:=Scheme (A3R, D1 ) ;

83 SD2:=Scheme (A3R, D2 ) ;

84 SD3:=Scheme (A3R, D3 ) ;

85 D1S:= SingularSubscheme (SD1 ) ;

86 D2S:= SingularSubscheme (SD2 ) ;

87 D3S:= SingularSubscheme (SD3 ) ;

88 S0:=Scheme (A3R, s s s ) ;

89 Dimension (D1S meet S0 ) ;

90 Dimension (D2S meet S0 ) ;

91 Dimension (D3S meet S0 ) ;

92 Degree (D2S meet S0 ) ;

93 Irreducib leComponents (D2S meet S0 ) ;

94 Degree (D3S meet S0 ) ;

95 Irreducib leComponents (D3S meet S0 ) ;
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