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Abstract 

Clusterwise independent component analysis (C-ICA) is a new and promising unsupervised 

learning method which clusters patients based on differences in spatial functional connectivity 

(sFC) patterns between these a priori unknown clusters of patients. When performing C-ICA, 

the number of clusters and components needs to be specified. However, in many cases there is 

no a priori information about the optimal number of clusters and components to select for. 

Thereby, various (mainly sequential) model order selection methods were proposed during the 

last years. This thesis investigated several simultaneous and sequential methods to tackle the 

model order selection problem for C-ICA and compared them using an extensive simulation 

study. Overall, CHull outperformed other simultaneous model order selection methods. Only 

when the number of underlying components was equal to 25, a combination of CHull with 

AIC, AICc, BIC, KIC or MDL performed slightly better, but this increase in performance was 

minimal. Nevertheless, a sequential method using scree-ratios and the variance accounted for 

(VAF), outperformed all simultaneous methods. In this thesis, the most efficient order in this 

sequential method was first selecting the number of clusters and subsequently the number of 

components. Although it is expected that this method will work well in other studies as well, 

the optimal order may differ depending on the situation. Regarding the effect of the 

underlying number of components and clusters a dataset consists of, there was no univocal 

pattern for the different methods. Conversely, the effect of noise was similar for all methods: 

the lower the amount of noise, the better the estimation error (and vice versa).  

Keywords: C-ICA, model order selection, resting-state fMRI, clusters, components 
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I. Introduction 

 

Unsupervised learning techniques such as clustering and dimension reduction are commonly 

used nowadays (Saxena et al., 2017). Grouping (or clustering) objects (e.g., subjects) is used 

in multiple disciplines, for example in science, humanities and medical science (Saxena et al., 

2017). In psychology, patients with mental diseases are often allocated to a cluster 

(representing a diagnostic label) based on information regarding the severity and type of 

symptoms which are related to these mental diseases (Luteijn & Barelds, 2013). Frequently, 

those allocations are based on questionnaire data and neuropsychological tests instead of on 

neural and/or biological information which can be assumed to be more closely related to the 

etiology of a disease. Indeed, most of the time only indirect measurements are used that are 

‘symptoms’ of the disease but that are not directly related to the underlying source of the 

disease (Hastie et al., 2017). Several studies tried to search for more direct measures of this 

underlying source which affects diseases by, for example, analyzing brain structures and 

functions (Zhang et al., 2021). Some studies used for example functional Magnetic Resonance 

Imaging (fMRI) data for clustering people and looked for differences in (functional) 

connectivity networks between subject clusters (Drysdale et al., 2017). 

Heterogeneity (between subjects) in spatial functional connectivity (sFC) patterns - 

which can be estimated from fMRI - seems to be a relevant indicator for clinical diseases such 

as Alzheimer (Gili et al., 2011; Zhang et al., 2021). sFC refers to the synchrony (i.e., 

correlation) of activity in distinct regions of the brain, which is represented by sFC 

networks/patterns. Here, activity is measured by measuring the blood oxygen level dependent 

(BOLD) signal of fMRI data (Fox & Raichle, 2007). However, these sFC networks/patterns 

cannot be directly observed in data. To uncover these patterns from the data, researchers often 

apply a dimension reduction technique like Independent Component Analysis (ICA). ICA is a 
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dimensionality reduction technique which reduces the data to smaller sets of independent (and 

non-Gaussian) components. Such a component in fMRI data represents a set of (possibly 

distinct) brain regions that show synchronized activity (Beckmann et al., 2005). Moreover, 

ICA estimates a time course for each component or sFC pattern that indicates the strength of 

activity of the corresponding sFC pattern at each time point.  

Research showed that there is a lot of heterogeneity in sFC patterns and associated 

time courses of activation in patients’ resting state fMRI (Zhang et al., 2021). Resting state 

fMRI (rs-FMRI) measures the brain activity patterns of patients with the absence of tasks 

(Biswal et al., 1995; Fox & Raichle, 2007). Those rs-fMRI patterns are consistently found in 

many studies and for many subjects; an example of such a pattern is the default mode network 

(Barkhof et al., 2014). Variations or disruptions in these functional connectivity networks 

seem to be correlated with different mental diseases like, as mentioned before, Alzheimer 

(Gili et al., 2011), but also Major Depression Disorder (Greicius et al., 2007), Parkinson’s 

Disease (Olde Dubbelink et al., 2013) and schizophrenia (Lynall et al., 2010). As such, 

clustering subjects based on sFC patterns may give additional insights into these mental 

diseases (e.g., finding subtypes of these known diseases). To this end, Clusterwise 

Independent Component Analysis (C-ICA) was proposed. C-ICA is a new unsupervised 

learning method which identifies those differences in sFC patterns between a priori unknown 

clusters of patients (Durieux et al., 2021). The method is used to automatically cluster patients 

in such homogeneous groups which are unknown a priori based on (differences in) sFC 

patterns which are derived from ICA.  

An important question for every dimensionality reduction method is the number of 

components one should extract. For example, for Principal Component Analysis (PCA) the 

optimal number of principal components for a data set at hand needs to be identified (Jolliffe, 

2005). For PCA there are several ways to determine the number of components, for example 
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by looking for an “elbow” in a scree plot (James et al., 2017), which is rather subjective, or 

using the eigenvalue greater than 1.0 rule (Kaiser, 1960). There exist also methods which are 

more objective like, the CHull method (Wilderjans et al., 2013) and Parallel analysis 

(Franklin et al., 1995). For the probabilistic version of PCA (pPCA), which is based on a 

Gaussian latent variable model (Tipping & Bishop, 1999), for example, the Akaike 

information criterion (AIC) and Bayesian information criterion (BIC) can be used to address 

the model order selection problem (Bouveyron et al., 2011). It is hard to choose a single 

method that is optimal in all cases as the performance of a method is dependent on the area of 

interest and on the data set (and its characteristics) on which the dimension reduction will be 

performed (James et al., 2017).  

Similar to dimensionality reduction, with clustering methods, the optimal number of 

clusters for a data set needs to be determined. An example of such a clustering method is K-

means clustering. Similar as in PCA, an “elbow method” could be used for determining the 

number of clusters here (Kodinariya & Makwana, 2013). In the context of K-means, more 

methods are proposed in the literature for selecting the optimal number of clusters such as, 

information criteria AIC and BIC (Kodinariya & Makwana, 2013) and the Gap statistic 

(Tibshirani et al., 2001). However, there is not one best method to tackle the model order 

selection problem for each data set.   

This short overview shows that for dimensionality reduction and clustering techniques 

there is relatively much known about (optimal) techniques for the selection of the number of 

components and the number of clusters. Much less is known about techniques for model order 

selection methods for models like C-ICA, where both the number of components and the 

number of clusters needs to be selected. Of course, it is always possible to treat both selection 

problems sequentially, although, it is not clear which of both problems in that case should be 

solved first. This is not a trivial issue as both problems may influence each other. Indeed, first 
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selecting a wrong number of components will have a detrimental effect on the subsequent 

selection of the number of clusters and vice versa. In this regard, the study of De Roover et al. 

(2011) is interesting. In this study, a technique called clusterwise simultaneous component 

analysis (SCA-ECP) is introduced, for which similar to C-ICA, the optimal number of 

underlying components (𝑄) and number of clusters (𝑅) needs to be identified. This study 

tackled this problem by fitting the clusterwise SCA-ECP model with multiple combinations of 

values for 𝑅 and 𝑄 and next applying a sequential model order selection technique (De 

Roover et al., 2011). First, the scree-ratios which are based on the variance accounted for are 

averaged to find the optimal 𝑅. Subsequently, conditional on the optimal 𝑅, the model for 

which adding more components does not result in a significant increase in fit is chosen to be 

the optimal 𝑄. An alternative solution could be to use a model order selection method that 

solves both selection problems (i.e., number of components and clusters) simultaneously (see 

Section 2.3).  

As mentioned before, when performing C-ICA, one always needs to determine the 

optimal number of clusters 𝑅 and components 𝑄 (Durieux et al., 2021). When using fMRI 

data and spatially independent components are sought for, 𝑄 can range from one to the 

number of timepoints of a subject in a dataset (i.e., which easily could be 150 or more). 

Selecting an incorrect number of components can negatively influence the results. Indeed, 

when choosing a too small number of components there is a high probability that very broad 

components are retained that are not easy to link to relevant neural functioning. When 

choosing a too large number of components, it can result in overfitting and the extraction of 

scarce independent components that are not related to brain functioning at all (Särelä & 

Vigário, 2003).  

When using C-ICA, the number of clusters 𝑅 can range from one to the total number 

of subjects. When choosing the maximum number of clusters, every individual will represent 
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one cluster, which boils down to performing ICA on each subject’s dataset separately. But 

when choosing only a single cluster, everyone will be assigned to the same group, which is 

equal to performing a group-ICA (Calhoun et al., 2009). Note that the latter analysis is not 

very informative for our purpose as it will totally ignore the heterogeneity between subjects in 

sFC patterns. Also, the former analysis is not very informative as systematic differences 

between sFC patterns across subjects cannot be identified in a clear way. 

Summarized, selecting the optimal number of clusters and components is not a simple 

task, especially because most of the time there is no a priori information about what the 

optimal number of components or clusters should be. Thereby, many different model 

selection methods were proposed throughout the years, without clear guidelines about which 

method to use in which situation. Also for C-ICA, in which both the number of components 

and clusters need to be determined, no such guidelines exist. 

In this thesis, therefore, the model order selection problem for C-ICA will be tackled. 

The main question that will be central in this thesis is: Which model selection method is the 

most effective in determining the number of clusters and components in a C-ICA analysis of, 

for example, a fMRI dataset. The goal of this thesis is to compare multiple model order 

selection methods and investigate which method works best for C-ICA. Besides determining 

which method works best, in this thesis, sequential and simultaneous model order selection 

methods will also be compared, to see which of the two classes of methods is most efficient. 

In a sequential method, the number of components and clusters will be determined one after 

the other, whereas in a simultaneous method, the number of components and clusters are 

determined both at once. Regarding the comparison of sequential and simultaneous methods, 

it is expected that sequential model selection methods will increase estimation errors 

compared to simultaneous methods, because when first determining a wrong number of 
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components (or clusters), this mistake may negatively influence the determination of the 

number of clusters (or components) in the subsequent analysis. 

The remaining parts of this thesis will investigate and compare multiple model 

selection methods for determining the optimal number of clusters and components for a C-

ICA analysis of a fMRI dataset. In the Methodology Section, all different model selection 

methods will be explained. In the next two sections, all those methods will be compared in an 

extensive simulation study to investigate which method is most effective in selecting the true 

model order in different situations. In Section 3, the design and procedure for the simulation 

study will be sketched and the results will be presented in Section 4. Finally, a conclusion and 

discussion of the results will be provided in Section 5, including limitations and final remarks.   
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II. Methodology 

 

2.1 Data 

 

To investigate the model order selection problem for C-ICA, multiple subjects’ rs-fMRI data 

𝑿𝒊 (𝑇 time courses × 𝑉 voxels) will be analysed (where 𝑖 = 1, … , 𝐼 subjects). For each 

subject’s data, the rows represent timepoints (𝑇) and the columns the voxels (𝑉). An example 

dataset will be used to illustrate some of the methods discussed later in this paper. This small 

example dataset consists of 2 clusters, 5 subjects per cluster, 100 voxels, 50 timepoints and 4 

components (and a low amount of noise of 10%). So each of the ten subjects has a data set 

with 100 rows and 50 columns containing the (rs-)fMRI data. This data set will be used as a 

small example to demonstrate the different techniques for model order selection. To this end, 

C-ICA was fitted with 10 multistarts to the data, varying the number of components 𝑄 from 1 

to 5 and the number of clusters 𝑅 from 1 to 5. Note that the true value for 𝑄 = 4 and for 𝑅 =

2. 

 

2.2 Clusterwise Independent Component Analysis (C-ICA)  

 

The main goal of C-ICA is to cluster subjects in homogeneous groups based on similarities 

and differences in underlying functional networks and their associated time courses (Durieux 

et al., 2021). C-ICA decomposes each 𝑿𝒊 as: 

𝑿𝒊 =  ∑ 𝑝 𝑨𝒊𝑺
𝒓 +  𝑬𝒊     (1) 

This model shows a dataset of a single subject 𝑿𝒊, where 𝑝  is an element of the partition 

matrix (I x R) which equals one if person 𝑖 is allocated to cluster 𝑟, otherwise zero (Durieux et 
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al., 2021). 𝑺𝒓 (Q Components × V voxels) indicates the functional FC patterns matrix, where 

each row is an independent component or sFC pattern, for cluster 𝑅. 𝑨𝒊 (T time course × Q) 

represents a subject specific mixing matrix. Finally, 𝑬𝒊 (𝑇 × 𝑉) contains an error term for each 

matrix.  

 The goal of C-ICA is to minimize the following loss function: 

𝐿 =  ∑ ||𝑿𝒊 − ∑ 𝑝 𝑨𝒊𝑺
𝒓||      (2) 

In order to minimize this loss function an Alternating Least Squares (ALS) algorithm 

is used. This algorithm consists of three steps. It starts by randomly initializing a partition 

matrix 𝑷. In particular, each subject will be assigned to a cluster (with equal probabilities for 

every cluster) and this such that there are no empty clusters (Durieux et al., 2021). Using this 

starting partition with about equally sized clusters, in step 2, C-ICA parameters (i.e., cluster 

specific 𝑺𝒓and subject specific time courses 𝑨𝒊) are estimated. During this second step, for 

every cluster, a spatial (group) ICA will be performed to the concatenated data set (i.e., data 

of all subjects belonging to the cluster are concatenated in the time dimension). This results in 

cluster specific sFC patterns 𝑺𝒓 and subject specific time courses 𝑨𝒊 for the subjects of that 

cluster. The third step includes updating the partition matrix 𝑷 given the updated ICA 

parameters per cluster (in Step 2). This update is performed subject by subject in such a way 

that each subject’s data block is reassigned to its optimal (i.e., best fitting) cluster. Step 2 and 

step 3 are repeated until the convergence criterion is achieved (i.e., decrease in loss smaller 

than .000001). Note that this ALS algorithm is sensitive to local minima. To this end, the ALS 

algorithm is repeated several times with different random start using different random start 

partitions. Finally, the best solution across all starts is chosen as the final solution. For the 

example data, as described in Section 2.1, the resulting fit values for all the fitted 
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combinations of 𝑄 and 𝑅 (both going from 1 to 5) resulting from the C-ICA analyses (using 

10 random starts) are displayed in Table 1.  

 

Table 1 

C-ICA loss function values (badness of fit) for the corresponding number of components (𝑄) and 

clusters (𝑅) for each C-ICA model applied to the example data (the true model used to generate the 

data is indicated in bold) 

Model number  𝑄 𝑅 Badness of Fit-value 

1 1 1 8320.00 

2 1 2 6894.87 

3 1 3 6798.96 

4 1 4 6729.54 

5 1 5 6688.78 

6 2 1 6664.57 

7 2 2 4571.76 

8 2 3 4427.36 

9 2 4 4359.67 

10 2 5 4262.98 

11 3 1 5476.77 

12 3 2 2728.07 

13 3 3 2594.21 

14 3 4 2480.52 

15 3 5 2447.85 

16 4 1 4336.81 

17 4 2 1064.96 

18 4 3 1056.07 

19 4 4 1047.90 

20 4 5 1040.44 

21 5 1 3341.77 

22 5 2 1039.34 

23 5 3 1026.96 

24 5 4 1015.39 

25 5 5 1004.73 
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2.3 Simultaneous model order selection methods  

 

Selecting the optimal number of clusters and number of components simultaneously can be 

done by running a C-ICA analysis multiple times with increasing numbers of components and 

clusters, and at the end selecting the optimal number of 𝑅 and 𝑄 by using a model selection 

heuristic. Most of these heuristics are based on a goodness/badness of fit value and a model 

complexity value for each fitted model (see, for example, Table 1). 

Badness of fit. In this thesis, for every simultaneous model order selection method, one 

of two measures of fit are used, that is (1) either the least squares fit as calculated in Equation 

2 (i.e., the loss function that is minimized by the C-ICA algorithm) or (2) the negative log-

likelihood which is derived from a minimal stochastic extension of the C-ICA method (and is 

linked to the least squares fit). In particular, when assuming that all error terms are 

independent of each other and follow a normal distribution with mean zero and a variance 

(that has to be estimated), the negative log-likelihood is calculated as follows: 

−𝑙(𝑋|𝑀) =   log(2𝜋) + 𝑛 log ( 𝜎 ) +  ∑ ||𝑿𝒊 − ∑ 𝑝 𝑨𝒊𝑺
𝒓||      (3) 

Here, ∑ ||𝑿𝒊 − ∑ 𝑝 𝑨𝒊𝑺
𝒓||  is equal to the badness of fit which results from the C-ICA 

analysis as given in Equation (2). The error variance (𝜎 ) is calculated by dividing this 

badness of fit by the total number of elements 𝑛 (which equals the sum of the number of data 

points - 𝑇 × 𝑉 - across all subjects (𝑖 = 1, … , 𝐼).  

 𝜎 =  
∑ ||𝑿𝒊  ∑ 𝑨𝒊𝑺𝒓||

     (4) 

Model complexity. Considering not only the goodness/badness-of-fit, but also the right 

model complexity is important for model selection (Myung, 2000). Different measures of 
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complexity may lead to different results. For the C-ICA model it is yet unclear what would be 

an optimal measure to quantify its complexity. Taking the number of fitted parameters as the 

complexity for C-ICA is not correct as some parameters are dependent on each other (e.g., 

when for object 𝑖 𝑝 = 1 for cluster 𝑟, it is 0 for all other clusters). The influence of this 

complexity measure will be investigated by using five different complexity measures as 

displayed in Table 2. The first two complexity measures only look at 𝑄 and 𝑅. Complexity 

measures 3, 4 and 5 are extended versions of Complexity measures 1 and 2 and drafted in 

such a way that they also take somehow into account the size of the data (i.e., the number of 

voxels 𝑉, time points 𝑇 and subjects 𝐼). As such, complexity measures are obtained that are 

closer to the number of (independent) parameters fitted by C-ICA (i.e., the effective degrees 

of freedom).  

Because for each component a number of scores equal to the number of timepoints, 

which could be 100 or more, needs to be estimated, complexity measure 2 is extended by 

multiplying the number of components by the number of timepoints (in complexity measure 

3). Thereby, to also take the number of parameters per cluster into account, the number of 

clusters (in complexity measure 3) is multiplied by the total number of subjects in the clusters 

𝐼  (i.e., yielding the total number of 𝑝  values). 

In complexity measure 4, a term is added where the number of components is 

multiplied by the number of clusters (i.e., the total number of components extracted by C-

ICA). Finally, in complexity measure 5, in order to somehow take into account the number of 

loadings for the components, also the number of voxels is included. In this way, both the 

number of voxels and timepoints and the number of subjects are taken into account. 

Nevertheless, the complexity of a model increases more, by increasing the number of 

components than when increasing the number of clusters. 
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Table 2 

Definitions of the Five Complexity Measures that could be used to quantify C-ICA’s 

complexity  

Complexity measure Formula 

Complexity 1 𝑄 +  𝑅 

Complexity 2 𝑄 × 𝑅 

Complexity 3 (𝑇 × 𝑄) + (𝐼 × 𝑅) 

Complexity 4 (𝑇 × 𝑄) + (𝐼 × 𝑅) + (𝑄 × 𝑅) 

Complexity 5 
𝑇 ×

𝑉

𝑇
× 𝑄 + (𝐼 × 𝑅) 

Note. 𝑸 = number of components and 𝑹 = number of clusters. The values for 𝑻, 𝑰𝒓 and 𝑽 

represent the number of timepoints, the number of subjects per cluster in the data and the 

number of voxels, respectively.  

 

2.3.1 Model selection using CHull 

 

The CHull procedure selects the model that balances model goodness of fit/misfit and model 

complexity in some optimal way (Ceulemans & Kiers, 2006; Wilderjans et al., 2013). In 

general, when using a CHull analysis, a convex hull for the goodness of (mis-)fit by 

complexity plot is determined. After determining models that lie on the boundary of the 

convex hull, the optimal model is found by selecting the model that yields the largest scree-

test value. Here, the scree-test value indicates how much better a solution is in comparison to 

a less complex one, relative to how much worse a solution is in comparison with a more 

complex one (Wilderjans et al., 2013). The model with the largest scree ratio is the selected 

model. For this model, which is on the boundary of the convex hull, it applies that when 
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increasing the complexity there will be only a small gain in fit, while when the complexity is 

reduced, the fit will drop substantially.  

The CHull computations consist of several steps. First, starting from a (mis)fit versus 

complexity plot (see, for example, Figure 1), the model with the best fit for each level of 

complexity is obtained. For the CHull method in this project, the goodness of fit will be the 

loss function (Equation 2) which followed from the C-ICA analysis from a certain dataset 

with a certain number of clusters 𝑅 and components 𝑄. For the complexity measure, five 

different options will be explored (see Table 2).  

After retaining the best fitting model for each level of complexity (𝑐 ), the CHull 

method automatically orders the remaining models from the simplest to the most complex one 

regarding the complexity measure used (Wilderjans et al., 2013). Thereafter, for every pair of 

adjacent models, 𝑚  and 𝑚 , model 𝑗 will be excluded when the fit (𝑓  ) is smaller or equal to 

the previous model’s fit  (𝑓  ≥  𝑓 ) with 𝑗 >  𝑖 (Wilderjans et al., 2013). Subsequently, for 

each trio of adjacent models - referred to as 𝑚 , 𝑚  and 𝑚  - the middle model (𝑚  with 

corresponding fit 𝑓   and complexity 𝑐 ) is excluded when 𝑓  ≤  𝑓 + 𝑐 − 𝑐
( )

( )
  

(Wilderjans et al., 2013). This step is repeated until there are no more models to be excluded. 

Now, all models which are left are located on the convex hull boundary. An example of such 

a convex hull, using the data as described in Section 2.1 and complexity measure 1 (𝑄 + 𝑅), 

is illustrated in Figure 1.  
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Figure 1 

Example Convex Hull (lower bound) plot presenting badness-of-fit (loss function value) 

against model complexity (measure 1 in Table 2) resulting from the C-ICA analysis on the 

illustrative data set. 

 
Note. The complexity measure used in this example is complexity 1 (𝑄 +  𝑅), where 𝑄 equals 
the number of components and 𝑅 the number of clusters. Here the optimal model is model 17 
(𝑄 = 4 and 𝑅 = 2). 

 

Subsequently, for the models on the convex hull boundary, the 𝑠𝑡 value is calculated 

using the following equation: 

𝑠𝑡  =  

  

  

   

(  )

 .     (5) 

In this equation, first, the difference in fit of a model 𝑓  compared to the fit of the previous 

model (𝑓 ) is divided by the complexity of the model 𝑐  minus the complexity of the 

previous model 𝑐 . This value is divided by the difference in fit between the current model 

and the next model (𝑓 ) divided by the difference in complexity between the next model 

𝑐  and the current model. Note that both the numerator and denominator are equal to the 
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average gain in fit per unit of complexity (however, computed when comparing different 

models). The final selected model is the model with the largest 𝑠𝑡 value (Wilderjans et al., 

2013). For the example data, using complexity measure 1, the resulting 𝑠𝑡 values can be 

found in Table 3. Note here that for the first (most simple) and last (most complex) model, the 

𝑠𝑡 value is undefined and these models thus cannot be selected.  

 

Table 3 

Results CHull analysis on example dataset, indicating the 𝑠𝑡 values for the models which are 

located on the boundary of the convex hull (the selected model is indicated in bold)  

Model 𝑄 𝑅 Complexity Fit 𝑠𝑡 

1 1 1 2 8320.00 - 

7 2 2 4 4571.76 1.02 

12 3 2 5 2728.07 1.11 

17 4 2 6 1064.96 64.91 

22 5 2 7 1039.34 2.07 

23 5 3 8 1026.96 1.07 

24 5 4 9 1015.39 1.09 

25 5 5 10 1004.73 - 

Note. Complexity measure 1 used (Number of components 𝑄 + number of clusters 𝑅). Here, 

the fit-value indicates a badness-of-fit (C-ICA loss function value). For the first and last 

model, the 𝑠𝑡 value is undefined.  

 

As can be seen in Figure 1 and Table 3, The CHull method would in this example 

choose model 17 with a complexity of six, which here is the true model with 2 clusters and 4 

components.  
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2.3.2 Model selection using Akaike Information Criterion (AIC) 

 

This information criteria, just like CHull, tries to balance between goodness(/badness) of fit 

and model complexity (Akaike, 1974). This is done by using the following equation in which 

the negative log-likelihood (−𝑙 ) – the fit measure – is penalized by the model complexity 𝑐 :  

𝐴𝐼𝐶 = 2(−𝑙 )  + 2 ×  𝑐      (6) 

In this equation 𝑐  represents the complexity of the model 𝑖, which can be defined in various 

ways (see Table 2). The negative log-likelihood (−𝑙 ) is derived from the C-ICA loss value 

(Equation 2) and is calculated as stated in Equation 3. The model with the smallest AIC value 

will be selected as the optimal model. As can be seen in Table 4, for the example data (when 

using complexity measure 1), the model with the lowest AIC value is model 25 which has 5 

components and 5 clusters (which are not the correct number of clusters and components). 

 

2.3.3 Model selection using Akaike information Criterion Corrected (AICc) 

 

AIC is a good and unbiased estimator when the sample size is large and when the complexity 

of the model is relatively small (Cavanaugh, 1997). But in other situations the penalty used 

(2𝑐 ) can be substantially smaller than the adjustment for the bias; this exhibits a potentially 

high degree of negative bias, for which the AICc method tries to correct (Cavanaugh, 1997). 

The AICc equation is similar to the AIC, however, with AICc more complex models (with a 

larger complexity measure), are punished more severely: 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +  
( )

     (7) 
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In this equation, 𝑛 is equal to the number of elements in the data (i.e., the number of elements 

across the 𝑿𝒊 (𝑇 × 𝑉) multiplied by the number of all subjects) and 𝑐  the model complexity. 

The model with the lowest AICc value should be selected. For the example data (see Table 4), 

this is, again, (the not correct) model 25 with corresponding 5 components and 5 clusters. 

 

2.3.4 Model selection using Bayesian Information Criterion (BIC) 

 

 The BIC is a well-known method for model selection and is similar to the AIC (Neath & 

Cavanaugh, 2012). In contrast to the AIC method, the BIC does also take sample size into 

account when penalizing: 

𝐵𝐼𝐶 = 2(−𝑙 )  +  log(𝑛)  ×  𝑐      (8) 

The negative log-likelihood (−𝑙 ) was calculated using Equations 3 and 4, just like 

with the AIC method. Also the complexity 𝑐  and the number of data points 𝑛 are defined as 

before. The model with the lowest BIC value should be selected. In general, BIC’s penalty for 

model complexity is stronger than the one from AIC, resulting in BIC selecting more simple 

models than AIC. For the example data, the BIC selects the same (incorrect) model as the 

AIC and AICc method (see Table 4), which is a model that is too complex for this data. 
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2.3.5 Model selection using Kullback-Leibler Information Criterion (KIC) 

 

The KIC method is an extended version of the AIC method. It uses the symmetric Kullback-

Leibler divergence between fitted and true models (Li et al., 2007). The KIC-values were 

calculated using an equation which has a similar structure as the AIC equation (with symbols 

as defined earlier): 

𝐾𝐼𝐶 = 2(−𝑙 )  + 3 × 𝑐       (9) 

 Similar to the previous methods, the negative log-likelihood -𝑙 was calculated using 

equations 3 and 4 and the model with lowest KIC value should be retained. The KIC method 

would, for the example data, choose the (incorrect) model with 5 components and 5 clusters 

(Table 4). 

 

2.3.6 Model selection using Minimum Description Length (MDL) 

 

This method is based on the minimum code length and also takes sample size into account (Li 

et al., 2007). MDL is based on the following equation (with all symbols as defined before): 

𝑀𝐷𝐿 =  2(−𝑙 )  +  ×  𝑐  ×  log(𝑛)     (10) 

The optimal model is the model with the lowest MDL value. In the case of the sample dataset, 

this is a model with 5 components and 5 clusters (see Table 4). 
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Table 4 

Models applied to the example dataset with corresponding number of components, clusters, complexity measure (measure 1 from Table 2: 𝑄 + 𝑅), fit 
measure (C-ICA loss value) and calculated values of several model order selection methods based on information theory. The selected model by 
each method is indicated in bold 
Model   𝑄 𝑅 Complexity  Badness of 

Fit-value 
AIC AICc BIC KIC MDL 

1 1 1 2 8320.00 52229.82 52229.82 52247.46 52231.82 26123.73 
2 1 2 3 6894.87 42837.59 42837.59 42864.05 42840.59 21432.03 
3 1 3 4 6798.96 42139.15 42139.15 42174.43 42143.15 21087.22 
4 1 4 5 6729.54 41628.04 41628.04 41672.14 41633.04 20836.07 
5 1 5 6 6688.78 41326.32 41326.32 41379.23 41332.32 20689.62 
6 2 1 3 6664.57 41139.00 41139.00 41165.46 41142.00 20582.73 
7 2 2 4 4571.76 22295.59 22295.59 22330.87 22299.59 11165.43 
8 2 3 5 4427.36 20692.82 20692.82 20736.92 20697.82 10368.46 
9 2 4 6 4359.67 19924.52 19924.52 19977.44 19930.52 9988.72 
10 2 5 7 4262.98 18805.07 18805.08 18866.81 18812.07 9433.41 
11 3 1 4 5476.77 31326.46 31326.46 31361.74 31330.46 15680.87 
12 3 2 5 2728.07 -3517.64 -3517.64 -3473.54 -3512.64 -1736.77 
13 3 3 6 2594.21 -6031.28 -6031.27 -5978.36 -6025.28 -2989.18 
14 3 4 7 2480.52 -8269.88 -8269.88 -8208.14 -8262.88 -4104.07 
15 3 5 8 2447.85 -8930.75 -8930.75 -8860.19 -8922.75 -4430.10 
16 4 1 5 4336.81 19659.69 19659.69 19703.79 19664.69 9851.90 
17 4 2 6 1064.96 -50548.33 -50548.33 -50495.41 -50542.33 -25247.71 
18 4 3 7 1056.07 -50965.41 -50965.41 -50903.68 -50958.41 -25451.84 
19 4 4 8 1047.90 -51352.07 -51352.07 -51281.51 -51344.07 -25640.76 
20 4 5 9 1040.44 -51707.24 -51707.23 -51627.86 -51698.24 -25813.93 
21 5 1 6 3341.77 6629.78 6629.78 6682.70 6635.78 3341.35 
22 5 2 7 1039.34 -51763.96 -51763.95 -51702.22 -51756.96 -25851.11 
23 5 3 8 1026.96 -52361.24 -52361.24 -52290.68 -52353.24 -26145.34 
24 5 4 9 1015.39 -52925.85 -52925.85 -52846.48 -52916.85 -26423.24 
25 5 5 10 1004.73 -53451.16 -53451.15 -53362.96 -53441.16 -26681.48 
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2.3.7 Model selection using DIFFIT 

 

DIFFIT is a method that was especially developed for model order selection for the three-

mode principal component analysis (3MPCA) model. In this model, the number of 

components for the first, second and third mode needs to be determined. As such, just like for 

C-ICA, the model order selection requires solving more than one selection problem (i.e., in 

3MPCA the number of components can differ across modes). DIFFIT finds the optimal model 

order using the fit of solutions for the 3MPCA model (i.e., a least squares fit, just like in C-

ICA) in combination with a complexity value 𝑠 that depends on the number of components 

for the three modes (Timmerman & Kiers, 2000). This method, which was developed for 

3MPCA, was tailored towards use for C-ICA by replacing the complexity value 𝑠 by a 

number that is a function of 𝑅 and 𝑄 (see later in Table 5).  

The model selection was done in several steps, starting with the determination of the 

fit of all possible combinations of models with 1 to 𝑄 components and 1 to 𝑅 clusters (see 

Table 5). The complexity values 𝑠 was taken as the sum of 𝑅 and 𝑄 (which corresponds with 

complexity measure 1 from Table 2), whereas the fit value in this case was the percentage 

sum of squares of the total sum of squares that was explained by the model, also called 

variance accounted for (VAF), calculated using this equation: 

𝑉𝐴𝐹 =  
‖ ‖

‖ ‖
 × 100    (11) 

In this equation, ‖𝑋‖  represents the sum of all squared entries of subjects’ data and 𝐿 is the 

fit-value resulting from the C-ICA analyses (Equation 2). The VAF values for the example 

dataset are displayed in Table 5.  
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Table 5 

The fit of number of C-ICA models applied to the fMRI example data with several 
combinations of numbers of components and clusters. The complexity value is the sum of R 
and Q, whereas the fit is the VAF of the C-ICA solution 

Q R s = Q + R VAF (%) 

1 1 2 96.56 
1 2 3 97.15 
1 3 4 97.19 
1 4 5 97.22 
1 5 6 97.24 
2 1 3 97.25 
2 2 4 98.11 
2 3 5 98.17 
2 4 6 98.20 
2 5 7 98.24 
3 1 4 97.74 
3 2 5 98.87 
3 3 6 98.93 
3 4 7 98.98 
3 5 8 98.99 
4 1 5 98.21 
4 2 6 99.56 
4 3 7 99.56 
4 4 8 99.57 
4 5 9 99.57 
5 1 6 98.62 
5 2 7 99.57 
5 3 8 99.58 
5 4 9 99.58 
5 5 10 99.59 

 

Subsequently, the best model for each value of s, for which 𝑄 + 𝑅 =  𝑠, was 

determined and selected (Timmerman & Kiers, 2000). For each selected model (displayed in 

Table 6), a 𝑑𝑖𝑓 ( )value was calculated, which is the difference in fit (%) between two 

consecutive models (i.e., the difference in fit between a certain model and the model after this 

model). Using 𝑑𝑖𝑓 ( ) , 𝑏 ( ) was calculated as follows: 𝑏 ( ) =  𝑑𝑖𝑓 ( )/𝑑𝑖𝑓 ( ) 

(Timmerman & Kiers, 2000). The model, with corresponding number of clusters and number 
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of components, with the largest 𝑏 ( ) was selected as the optimal solution. For this model 

holds that, when increasing the complexity only a small gain in fit will be accomplished, 

while when the complexity is reduced, the fit will drop substantially. Note that this is very 

similar to the rationale for using 𝑠𝑡 values in CHull.  

In the example, see Table 6, the first model with 1 component and 1 cluster was 

selected as the optimal model as it has the largest 𝑏 ( ) value. But because the first model has 

such a large 𝑏 ( ) value in comparison with the other models and because this first model 

does not imply any clustering (𝑅 = 1), the DIFFIT method is, for this example, also conducted 

excluding the first model. When excluding the first model here, the model with 𝑠 =  6 will be 

selected, which has 4 components and 2 clusters (and which is the true model).  

Table 6 

DIFFIT: selection of best fitting model per model complexity, the accompanying 𝒅𝒊𝒇𝒔 value 
and if defined, the accompanying 𝒃𝒕(𝒎) value. 

Q R s = Q + R VAF (%) 𝑑𝑖𝑓  𝑏 ( ) 

1 1 2 96.56 96.56 111.75 

2 1 3 97.25 0.68 - 

2 2 4 98.11 0.86 1.14 

3 2 5 98.87 0.76 1.11 

4 2 6 99.56 0.69 64.91 

5 2 7 99.57 0.01 2.07 

5 3 8 99.58 0.01 1.07 

5 4 9 99.58 0.00 1.09 

5 5 10 99.59 0.00 0.00 

Note: When the 𝒅𝒊𝒇𝒔 value for a model is lower than the 𝒅𝒊𝒇𝒔 for the next (more complex) 
model, the former (less complex) model will be excluded (i.e., 𝒃𝒕(𝒎) is not calculated for this 
model). The 𝒃𝒕(𝒎) value for the last model is equal to the second-last (included) 𝒅𝒊𝒇𝒔  value. 
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2.3.8 Overview of simultaneous methods 

 

In the simulation study the following simultaneous model order selection techniques will be 

tested: 

 CHull 

 AIC 

 AICc 

 BIC 

 KIC 

 MDL 

 DIFFIT 

 

All these methods (except for DIFFIT) make use of a complexity measure/penalty which 

can be freely chosen. Therefore, these methods will be performed five times, using the five 

different complexity measures as listed in Table 2. For the information theoretic measures 

(AIC, AICc, BIC, KIC and MDL) this includes that for every complexity measure the model 

with the lowest corresponding value will be selected as optimal model. Note that, although 

possible in theory, the definition of 𝑠 as 𝑄 + 𝑅 for DIFFIT will not be varied using the 

complexity measures from Table 2. The reason is that the original DIFFIT model is only 

presented with that particular definition of 𝑠. 

Besides this variation in complexity measure, for selection methods AIC, AICc, BIC, 

KIC and MDL, the optimal number of components and clusters will also be determined by 

using CHull (instead of simply choosing the lowest value). The reason for this is that a small 

pilot study showed that the information theoretic measures often select the most complex 
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model (what is not desirable). To solve this issue the combination of CHull with the 

information theoretic measures is done by performing a CHull analysis, as explained in 

Section 2.3.1, but now using the resulting values (for example AIC values) as goodness of fit 

values and adopting the complexity measures from Table 2. In Figure 2 below, one example is 

illustrated using the CHull on AIC results. Here, the badness of fit, used in CHull, is defined 

by the AIC-values as stated in Table 4 and the complexity is complexity measure 1 as defined 

in Table 2.  

 

Figure 2 

Convex hull (lower bound) resulting from the CHull analysis on the example dataset, using 

the AIC-value as fit-measure 

Note. The complexity measure used in this example is complexity 1 (𝑄 +  𝑅), where 𝑄 equals 

the number of components and 𝑅 the number of clusters. Here the optimal model is model 17 

(𝑄 = 4 and 𝑅 = 2).  
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After retaining the convex hull as illustrated above, the st-values are calculated in the 

same way as for the regular CHull method, explained earlier. In this example, the CHull 

method would, for AIC, choose a model with a complexity of six, which, here is a model with 

2 clusters and 4 components (see model 17 in Table 1). This procedure will be repeated five 

times using the five different complexity measures listed in Table 2. For the remaining 

methods, this procedure is similar, but they use their own corresponding values instead of the 

AIC value (Table 4).  

 

2.4 Sequential methods  

 

In the sequential methods, both selection problems (i.e., identifying the number of 

components 𝑄 and clusters 𝑅) are handled sequentially. For C-ICA there are two possibilities: 

(1) first selecting 𝑄 and next (using the optimal 𝑄) 𝑅 and (2) first selecting 𝑅 and next (using 

the optimal 𝑅) 𝑄. Both possibilities will be used in the simulation study to see whether the 

order of solving the selection problems leads to different models being selected.  

 In the first sequential methods (Section 2.4.1), scree ratios are used to determine 𝑅 and 

𝑄 sequentially. Next, in Section 2.4.2, two methods are discussed that can be used to select 

the number of components 𝑄 irrespective of the number of clusters 𝑅. In Section 2.4.3, two 

methods are discussed to select the number of clusters 𝑅 irrespective of the number of 

components 𝑄. In the final section (2.4.4), the sequential methods that will be evaluated in the 

simulation study are listed.  
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2.4.1 Model selection using scree ratios  

 

Sequential model selection using VAF and scree ratios is done in several steps. Here, we first 

will select 𝑅 and next 𝑄. The first step involves computing the total sum of squares (‖𝑋‖ ) 

across the data of all subjects. With this value, the VAF can be computed for each 

combination of number of clusters and number of components. The computation of the VAF 

value is done in the same way as for DIFFIT (see Equation 11 and Table 5). Secondly, the 

scree ratio for each number of clusters 𝑅 (𝑟 =  2, … , 𝑅 − 1), fixing for a certain number of 

components 𝑄, was computed (and this was computed for each possible value of 𝑄: 𝑞 = 1, …, 

𝑄): 

𝑆𝑐𝑟𝑒𝑒 𝑟𝑎𝑡𝑖𝑜 𝑅 |(𝑄 = 𝑞) =
( , ) ( , )

( , ) ( , )
    (12) 

In this equation, 𝑉𝐴𝐹( , ) represents the VAF for a certain model with 𝑟 clusters and 𝑞 

components, as stated in Table 1. This ratio is large when deleting a cluster implies a serious 

decrease in VAF and adding a cluster only improves VAF a little. After obtaining all the scree 

ratios for each number of clusters 𝑅, the average scree ratio (averaged across 𝑞 = 1, … , 𝑄) is 

computed and the value of 𝑅 associated with the largest average is selected as the optimal 

number of clusters. Note that the lowest and largest value of 𝑅 cannot be selected as no scree 

values can be computed for these values (i.e., there is no smaller or larger 𝑅 value to compare 

with). The computation for the example data set is illustrated in Table 7. Here, the optimal 

number of clusters 𝑅 is equal to 2, with an average scree ratio of 120.78. Sequentially, using 

this optimal number of clusters, the number of components was determined using Equation 

13, fixing for the optimal 𝑅:  

𝑆𝑐𝑟𝑒𝑒 𝑟𝑎𝑡𝑖𝑜 𝑄|𝑅 =  
 

     (13) 
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The largest number resulting from this formula, indicates the optimal 𝑄. Applying this 

procedure to the small data example results in the selection of the correct model with 2 

clusters and 4 components (see Table 7). 

 

Table 7 

Result of the sequential model selection procedure (selecting 𝑅 first) applied to the example 
data  

 𝑅 =  2 𝑅 =  3 𝑅 =  4 Optimal 𝑄 

𝑄 = 1 14.86 1.38 1.70 - 

𝑄 = 2 14.49 2.13 0.70 1.26 

𝑄 = 3 20.53 1.18 3.48 1.10 

𝑄 = 4 368.08 1.09 1.10 64.91 

𝑄 = 5 185.94 1.07 1.09 - 

Average  120.78 1.37 1.61  

Note. Computed scree-ratios sr |  from step 1 of the procedure are displayed in the columns 

𝑅 = 2, 𝑅 = 3 and 𝑅 = 4 for all values of Q (rows) and averaged across Q (bottom row). The 

computed scree ratios sr |  -conditional on the optimal 𝑅- from step 2 of the procedure are 

presented in the last column. Scree-ratios are not defined for 𝑅 = 1 and 𝑅 = 5. 

Similarly, for the second step, the scree ratios are not defined for 𝑄 = 1 and 𝑄 = 5. 

The average value of the optimal 𝑅 and Q are indicated in bold.  

 

 To see whether the order matters, that is first computing 𝑅 or 𝑄, also a technique will 

be tested in which 𝑄 is determined first and next 𝑅. To determine 𝑄, the scree ratios are 

computed as:  

𝑆𝑐𝑟𝑒𝑒 𝑟𝑎𝑡𝑖𝑜 𝑄 |(𝑅 = 𝑟) =
( , ) ( , )

( , ) ( , )
    (14) 
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and averaged across all 𝑅 values. Next, given an optimal 𝑄, the optimal value of 𝑅 is 

determined by calculating  

𝑆𝑐𝑟𝑒𝑒 𝑟𝑎𝑡𝑖𝑜 𝑅|𝑄 =  
( , ) ( , )

( , )  ( , )
    (15) 

and calculating the 𝑅 for which this ratio is maximal. The calculations for this are illustrated 

in Table 8, resulting in a (correct) solution with 2 clusters and 4 components.  

 

Table 8  

Result of the sequential model selection procedure in reversed order (selecting 𝑄 first) 
applied to the example data 

 𝑄 =  2 𝑄 =  3 𝑄 =  4 Optimal 𝑅 

𝑅 = 1 1.39 1.04 1.15 - 

𝑅 = 2 1.26 1.11 64.91 368.08 

𝑅 = 3 1.29 1.19 52.83 1.09 

𝑅 = 4 1.26 1.31 44.07 1.10 

𝑅 = 5 1.34 1.29 39.42 - 

Average  1.31 1.19 40.47  

Note. Computed scree-ratios 𝑠𝑟 |  from step 1 of the procedure are displayed in de columns 

𝑄 = 2, 𝑄 = 3 and 𝑄 = 4 for all values of 𝑅 (rows) and averaged across 𝑅 (bottom row). The 

computed scree ratios 𝑠𝑟 |  -conditional on the optimal Q- from step 2 of the procedure are 

presented in the last column. Scree-ratios are not defined for 𝑄 = 1 and 𝑄 = 5. 

Similarly, for the second step, the scree ratios are not defined for 𝑅 = 1 and 𝑅 = 5. 

The average value of the optimal 𝑅 and Q are indicated in bold.   
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2.4.2 Selecting the number of components 𝑸 

 

2.4.2.1 Selecting 𝑸 using Principal Component Analysis (PCA) 

 

PCA is a dimensionality reduction technique (James et al., 2017). This method puts correlated 

variables together into a few uncorrelated principal components, to reduce the number of 

variables (Richardson, 2009). In this thesis, for each subject’s dataset, a PCA analysis was 

performed. To select, for each subject, the optimal number of PCA components, a CHull 

analysis is performed. So, for each subject, a CHull analysis was done with the cumulative 

proportion of explained variance as fit measure and the number of retained components as 

complexity measure, resulting in an optimal number of components for each subject. An 

example of a CHull analysis using PCA results to one (of the ten) subject’s data is illustrated 

in Figure 3.  
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Figure 3 

CHull analysis on PCA data of a single subject from the example dataset  

 

Note. Convex hull resulting from the CHull analysis using an upper bound, with cumulative 
proportion of explained variance of the PCA analysis (fit value) and number of components 
(complexity value) conducted on the first subject’s data of the example dataset. Here the 
selected optimal model is model 3 (where 𝑄 = 3). 

 

The corresponding st-values for the models on the convex hull are shown in Table 9. For this 

specific subject, a number of 2 components should be selected, according to the CHull 

analysis.  
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Table 9 

Results CHull analysis using PCA on the data of the first subject of the example dataset, 

indicating the 𝑠𝑡 values for the models which are located on the convex hull 

Model Complexity Fit 𝑠𝑡 

1 1 0.33 - 

2 2 0.62 1.56 

3 3 0.80 1.59 

4 4 0.91 - 

Note. Here, the fit-value indicates the cumulative proportion of explained variance which 
results from the PCA analysis on the subject’s dataset. The complexity refers to the number 
of components. The optimal model is indicated in bold. Note that CHull cannot select the 
simplest and most complex model.  

 

The distribution of the selected number of components 𝑄 across subjects in the 

example dataset is illustrated in the top row of Table 10. To select a single optimal number of 

components for the whole data set, the mode of the distribution of optimal 𝑄 across subjects 

was retained as the final number of components 𝑄. In the example data, this results in 2 

components.  

 

Table 10 

Frequencies of the selected number of components per subject for PCA and pPCA 

 𝑄 = 2 𝑄 = 3 𝑄 = 4 𝑄 = 5 Optimal 𝑄 

PCA 6 4 0 0 2 

pPCA  0 0 10 0 4 

Note. For the example data, the PCA and pPCA is performed on ten subjects’ data. In the case 

of multiple modes, the smallest value of 𝑄 (of the modes), is selected as optimal number of 

components 𝑄. 
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2.4.2.2 Selecting 𝑸 using Probabilistic Principal Component Analysis (pPCA) 

 

This method is a version of PCA based on a Gaussian latent variable model (Tipping & 

Bishop, 1999). A pPCA analysis can be performed on each subject’s dataset to compute the 

optimal number of components per subject (as was done with PCA and CHull in Section 

2.4.2.1). This can be done by calculating the following log-likelihood (L), which is optimized 

by pPCA, for each number of components 𝑄 for each subject (Tipping & Bishop, 1999):  

𝐿 =  − {𝑑 ln(2𝜋) +  ln|𝐂| + tr(𝐂 𝟏𝐒)}    (16) 

where 

𝐒 =   ∑ (𝒕𝒏 − 𝝁)(𝒕𝒏 − 𝝁)     (17) 

and 𝐂 = 𝐖𝐖𝒕 +  𝜎 𝐈, with 𝑾 being the Lambda matrix (with component loadings) and 𝜎  

the noise variance and both parameters resulting from the pPCA analysis. In this formula, 𝑁 

represents the number of rows and 𝑑 the number of columns in a subject’s dataset. So, for the 

example data, the number of rows is 100 (timepoints) and the number of columns 50 (voxels).  

 To select the optimal number of components for this method, for each subject’s 

dataset, the loglikelihood (Equation 16) and its corresponding number of pPCA components 

was used in a CHull analysis. This resulted in an optimal number of components for every 

subject. An example of one subject’s dataset is illustrated in Figure 4.  
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Figure 4 

CHull analysis on probabilistic PCA data of a single subject from the example dataset  

 

Note. Convex hull resulting from the CHull analysis using an upper bound, with the log-
likelihood of the pPCA analysis (fit value) and number of components (complexity value) 
conducted on the first subject’s data of the example dataset. Here the selected optimal model 
is model 4 (where 𝑄 = 4). 

 

The corresponding 𝑠𝑡-values are for the models which lie on the boundary of the convex hull 

are shown in Table 11. According to these results, for this subject, a number of 4 underlying 

components was selected as optimal. 
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Table 11 

Results CHull analysis using pPCA on the data of the first subject of the example dataset, 

indicating the 𝑠𝑡 values for the models which are located on the convex hull 

Model Complexity Fit 𝑠𝑡 

1 1 678.37 - 

4 4 26919.88 8.73 

5 5 27922.04 - 

Note. Here, the fit-value indicates the loglikelihood-value which results from the pPCA 
analysis on the subject’s dataset. The complexity refers to the number of components. The 
optimal model is indicated in bold. Note that CHull cannot select the simplest and most 
complex model.  

 

 Again, the mode of the distribution of optimal 𝑄 values across subjects can be taken as the 

optimal 𝑄 for the full multi-subject data set. For the empirical example, as can be seen in the 

bottom row of Table 10, the optimal 𝑄 equals 4. 

 

2.4.3 Selecting the number of clusters 𝑹 

 

2.4.3.1 Selecting 𝑹 by using CHull results of K-means clustering on vectorized data 

 

K-means is a method which divides a (two-way) dataset (i.e., objects by variables) in K 

distinct and non-overlapping clusters (James et al., 2017). The main idea of this method is to 

cluster the objects in such a way that the within-cluster variation is as small as possible and 

the between-cluster variation as large as possible. In order to apply K-means to a multi-

subject rs-fMRI data set (which has a three-way structure: time by voxel by subject) each 

subjects’ data matrix (𝑇 × 𝑉) was vectorized. This results in 𝑁 vectors of size 𝑇 × 𝑉, which 
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can be stored in a 𝑁 × 𝑇𝑉 matrix, in which each row represents the data of a single subject. 

Next, K-means was applied to this vectorized and concatenated data with the number of 

clusters ranging from 1 to 𝑅. CHull was used to identify the optimal number of clusters, with 

the model (mis)fit (i.e., sum of squared errors for each number of clusters) as fit measure and 

𝑅 as complexity measure.  

An example of a CHull analysis using K-means results and the corresponding st-

values for the models on the convex hull are shown in Table 12. According to these results, a 

solution with 4 clusters should be selected.  

 

Table 12 

Results CHull analysis using K-means data on the example dataset, indicating the 𝑠𝑡 values 

for the models which are located on the convex hull 

Model Complexity Fit 𝑠𝑡 

1 1 220076.60 - 

2 2 191118.90 1.07 

3 3 163929.80 1.04 

4 4 137715.50 1.08 

5 5 113359.10 - 

Note. Here, the fit-value indicates the sum of squared errors which results from the K-means 

analysis on the example dataset. The complexity refers to the number of clusters. The selected 

model is indicated in bold.  
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2.4.3.2 Selecting 𝑹 by using the Gap Statistic results of K-means clustering on vectorized 

data  

 

The Gap statistic is a method for determining the number of clusters present in a data set. This 

method uses the pooled within-cluster sum of squares around the cluster means, 𝑊 : 

𝑊 =  ∑   𝐷      (18) 

 Here, 𝐷  indicates the sum of the pairwise squared Euclidean distances for points 

within a cluster 𝑟, with sample size 𝑛  of a cluster (Tibshirani et al., 2001). The clusters are a 

result of a K-means clustering algorithm, applied to the concatenated 𝑁 × 𝑇𝑉 matrix (as 

explained in Section 2.4.3.1). To select the number of clusters, log(𝑊 ) is compared to an 

expected appropriate null reference distribution of the data with a sample of size 𝑛 (𝐸∗), this 

is defined as (Tibshirani et al., 2001): 

𝐺𝑎𝑝 (𝑘) =  𝐸∗{log(𝑊 )} −  log(𝑊 )    (19) 

 The log of the expected and observed pooled within-cluster sum of squares, for the 

sample data is illustrated in Figure 5a. The difference between those two, also known as the 

Gap, is shown in Figure 5b. The model with the largest Gap statistic is the optimal model. In 

the example, a model with 1 cluster is selected.  
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Figure 5 

Gap statistic analysis on example dataset 

 

Note. (Panel A) The log of the expected and observed pooled within-cluster sum of squares, 

for the sample data. (Panel B) The difference between those two (with confidence bounds), 

also known as the Gap. The model with the largest Gap value should be selected.  
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2.4.4 Overview of sequential model order techniques  

 

For the methods which only estimate one of both outcomes, which are pPCA, PCA, Gap 

statistic and K-means clustering, all possible combinations will be tested. Each combination 

contains one cluster selection method and one component selection method. This implies that 

in the simulation study the following sequential model order selection techniques will be 

tested: 

- Scree ratios for VAF-values with first determining 𝑄 and next 𝑅 

- Scree ratios for VAF-values with first determining 𝑅 and next 𝑄 

- PCA with CHull for determining 𝑄 and Gap statistic for determining 𝑅 

- pPCA with CHull for determining 𝑄 and Gap statistic for determining 𝑅 

- PCA with CHull for determining 𝑄 and K-means with CHull for determining 𝑅 

- pPCA with CHull for determining 𝑄 and K-means with CHull for determining 𝑅 
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III. Simulation Study 

 

3.1. Problem  

 

A difficult task before performing a C-ICA analysis is specifying the number of components 

and clusters which should be estimated. Generally, there is no information about how many 

components and clusters are optimal for a given data set at hand. To address this problem, a 

simulation study will be conducted in which several model order selection methods will be 

tested and compared to each other and it will be determined which method is most efficient. 

Both simultaneous and sequential selection methods will be compared (see Section 2). In 

addition, it will be investigated whether the performance of the model order selection methods 

depends on data characteristics such as the amount of noise in the fMRI data.  

Regarding previous research, the CHull methods seems to work well for model 

selection in the context of applying dimension reduction and a combination of dimension 

reduction and clustering on complex and big datasets (Rossbroich et al., 2022). For, for 

example, mixtures of factor analysers CHull even outperformed AIC and BIC (Bulteel et al., 

2013). It is therefore expected that CHull will work well for fMRI data. For information 

theoretical methods like AIC and BIC it is expected that they will only work well when a 

good measure of model complexity is used. As it is unclear how the model complexity for C-

ICA should be quantified optimally (i.e., effective degrees of freedom), some model 

complexity measures may work better than others. Thereby it is expected that, when 

comparing simultaneous and sequential methods, the sequential methods in comparison to 

simultaneous methods may increase estimation errors. The reason for this is that the selection 

of a wrong number of components (or clusters) in an earlier step may negatively influence the 

determination of the number of clusters (or components) in a later step of the analysis.  
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Finally, characteristics of the data, such as amount of noise in the data and the number 

of components underlying the data, could be influential on the results of model selection 

methods. Earlier research showed that large noise levels in fMRI data could exaggerate 

estimates of the number of components in ICA (Majeed & Avison, 2014). It is therefore 

expected that, for C-ICA, similar effects would be perceived. Larger levels of noise in the 

data would result in worse estimates of number of components and clusters in C-ICA.  

 

3.2 Simulation Study  

 

3.2.1 Design 

 

In this simulation study the number of subjects per cluster was fixed at 20. Thereby, the 

number of voxels (2000) and length of a time course (100) were also fixed to make the design 

not to complex. The remaining three factors which will be systematically varied are:  

1. The true number of components 𝑄, with four levels: 2, 5, 25 and 50; 

2. The true number of clusters 𝑅, with two levels: 2 and 4; 

3. The percentage of noise in the data ε, with three levels: 10%, 40% and 70%. 

 

3.2.2 Procedure  

 

To generate data under the C-ICA model, first, a binary partition matrix 𝑷 (𝐼 × 𝑅) which 

determines the cluster to which each subject belongs (with 𝑅 clusters), is generated in such a 

way that each cluster exactly has 20 subjects. Further, cluster specific sources matrices 𝑺𝒓 
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(with 𝑄 components) were simulated by using the R function icasamp from the ica package 

(Helwig, 2018). This procedure resulted in no overlap between the 𝑺𝒓’s as the average 

pairwise RV coefficient between the 𝑺𝒓’s equals 0. Next, subject specific time courses 𝑨𝒊 

were generated by randomly and independently drawing values from a uniform distribution 

𝑈(−2,2). The 𝑝  (values in 𝑃), 𝑺𝒓 and 𝑨𝒊 were combined into true data 𝑻𝒊 (𝑖 = 1, … , 𝐼) for 

each subject through the C-ICA model formulation 𝑻𝒊 =  ∑ 𝑝 𝑨𝒊𝑺
𝒓. Finally, noise 𝑬𝒊 was 

generated by drawing random numbers form 𝒩(0,1). This Gaussian noise was scaled in order 

to ensure the required amount of noise in the data ε being 10%, 40% and 70%, respectively. In 

particular, 𝑬𝒊 was scaled by equalling the sum of squared entries (SSQ) of the noise matrices 

to the corresponding SSQ of the (noiseless) data blocks 𝑻𝒊 and next a portion of 𝑬𝒊 was added 

to 𝑻𝒊 (i.e., 𝑿𝒊 =  𝑻𝒊 +  𝜔𝑬𝒊) in such a way that the required noise percentage was obtained 

(i.e., by choosing an appropriate value for 𝜔). This resulted in data matrices 𝑿𝒊 for each 

subject (𝑖 = 1, … , 𝐼).  

 For each cell in the design, which contains all factor combinations, 10 replication data 

sets were generated. This results in a total of 4 (number of components) × 2 (number of 

clusters) × 3 (percentage noise) × 10 (replications) = 240 generated datasets. 

 C-ICA (with 10 multistarts) was performed to each generated data set, with the 

number of components ranging from 1 up to 75 (1 to 5, from 5, with steps of 5 to 75: 1, 2, 3, 

4, 5, 10, …, 75) and the number of clusters going from 1 to 6. For each data set separately, the 

different model order selection techniques and the variations on those techniques (i.e., 62 in 

total; see Table 13) were applied to the obtained C-ICA models and the optimal number of 

components and clusters retained by each technique was recorded.  

Important to note is that, due to time constraints, for the selection methods in which a 

selection method for the number of components (pPCA and PCA) was combined with a 
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selection method for the number of clusters (K-means and Gap statistic), only the first 

replication of each cell in the design was performed. As a consequence, these (sequential) 

methods were applied on only 24 datasets.  
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Table 13 

Overview of all model order selection methods and their variations used in this thesis 

Method Variations of method Total number of 
analyses per method 

Simultaneous   

CHull  Using 5 different complexity measures 5 

AIC  Using 5 different complexity measures 
(selecting the solution with the lowest value) 

 Using CHull with 5 different complexity 
measures 

10 

AICc  Using 5 different complexity measures 
(selecting the solution with the lowest value) 

 Using CHull with 5 different complexity 
measures 

10 

BIC  Using 5 different complexity measures 
(selecting the solution with the lowest value) 

 Using CHull with 5 different complexity 
measures 

10 

KIC  Using 5 different complexity measures 
(selecting the solution with the lowest value) 

 Using CHull with 5 different complexity 
measures 

10 

MDL  Using 5 different complexity measures 
(selecting the solution with the lowest value) 

 Using CHull with 5 different complexity 
measures 

10 

DIFFIT  None 1 

Sequential   

Scree ratio’s/VAF  Scree ratios for VAF-values with first 
determining 𝑄 and next 𝑅 

 Scree ratios for VAF-values with first 
determining 𝑅 and next 𝑄 

2 

PCA-Gap  PCA with CHull for determining 𝑄 and Gap 
statistic for determining 𝑅 

1 

pPCA-Gap  pPCA with CHull for determining 𝑄 and 
Gap statistic for determining 𝑅 

1 

PCA-K means  PCA with CHull for determining 𝑄 and K-
means with CHull for determining 𝑅 

1 

pPCA- K means  pPCA with CHull for determining 𝑄 and K-
means with CHull for determining 𝑅 

1 

 Total: 62 
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Several R packages were used in the data analysis. The code for the CHull method was 

derived from Wilderjans, et al. (2013). The PCA and K-means clustering analysis were 

performed using the ‘stats’ R-package by R Core Team (2021). The Gap statistics was 

calculated using the ‘cluster’ R-package by Maechler et al. (2021). C-ICA and the remaining 

model order selection methods were performed using custom made code (Durieux, 2021).  

To evaluate how the different methods perform, an estimation error is calculated by 

comparing the estimated number of components 𝑄  and the estimated number of clusters 

𝑅  to the optimal/true number of components 𝑄  and optimal/true number of clusters 

𝑅 : 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = 0.5 ∗  ⃒
(  )

( )
⃒ +  ⃒

(  )

( )
⃒    (17) 

 Here, the maximum number of components 𝑄  and maximum number of clusters 

𝑅 , which are specified in the simulation study, are equal to 75 and 6, respectively. The 

minimum number of components 𝑄  and minimum number of clusters 𝑅  are both equal 

to one. The estimation error ranges from 0 to 1. The lower the estimation error the better the 

method performs. Besides estimation error, also an accuracy measure was computed which 

equals one when the correct model with the correct number of components AND clusters was 

retained and zero otherwise.  

 

 

 

 



MODEL ORDER SELECTION FOR C-ICA  49 
 

IV Results 

 

In this section, the performance results of the various model selection methods are presented. 

First, the results for the simultaneous model selection methods are presented, followed by the 

results for the sequential methods. Next, the effects of data characteristics (i.e., number of 

clusters, number of components and amount of noise) will be evaluated. Subsequently, the 

influence of the different complexity measures (See Table 2) is discussed. Finally, the best 

simultaneous- and best sequential method will be compared and evaluated in more detail.  

 

4.1 Performance of methods  

 

4.1.1 Simultaneous methods 

 

In Table 14, the mean estimation error overall and for each level of each manipulated data 

characteristic separately is presented for each simultaneous model order selection method. For 

CHull, AIC, AICc, BIC, KIC, MDL and the combinations of CHull and the information 

theoretic measures, the prediction errors of the methods are averaged over all the five 

complexity measures (C1-C5; see Table 2; results per complexity measure are presented in 

Appendix A1-A5, see further).  

The table shows that overall (bottom row), CHull is the best performing simultaneous 

method with a small mean estimation error of 0.12. The methods which are second best in 

overall estimating the model order are the information theoretic measures in combination with 

CHull: AIC, AICc and KIC (all 0.13), with BIC and MDL following closely (0.14). Using the 

information theoretic measures without CHull selection (i.e., taking the solution with the 
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lowest value on AIC, BIC, etc.) yields bad results (mean estimation error of 0.66). DIFFIT 

performs in between the other methods with a mean estimation error of 0.33. Again, note that 

the mean estimation error for CHull, the information theoretic measures and the combination 

of both are an average of these errors over all five complexity measures. Differences in mean 

estimation errors per complexity measure as well as the percentage of totally correct selected 

models (per complexity measure and method), can be found in Appendix A1-A6. The patterns 

regarding best performing methods, stated in these tables, are similar to the pattern found in 

Table 14.  

For almost all levels of each data characteristic, the CHull method (or a combination 

of CHull with an information theoretic measure) was the most effective in terms of 

minimizing estimation error, except for datasets where the number of components was 25. In 

this specific case, CHull in combination with an information criterion performed slightly 

better.  

When looking at specific cases of analyses where (the worst performing) information 

theoretic measures (AIC, BIC, etc.) are used, it is striking that these methods often choose the 

most complex model (which results in a large estimation error). When using those 

information theoretic measures in combination with CHull, those estimation errors decreased 

substantially (as can be seen in Table 14). Interestingly, the information theoretic measures 

without CHull perform better when the true number of components underlying the data 

increases, whereas the reverse is true for these methods in combination with CHull. Finally, 

the information theoretic measures without CHull are insensitive to the amount of noise in the 

data, whereas these methods with CHull, as expected, perform worse with increasing noise 

levels.  
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Table 14 

Mean estimation errors (with SD) for the simultaneous model order selection methods, computed overall and per level of the manipulated factors  

 Level CHull AIC CHull 
AIC 

AICc CHull 
AICc 

BIC CHull 
BIC 

KIC CHull 
KIC 

MDL CHull 
MDL 

DIFFIT Overall 

Number of 
components 

2 0.05* 
(0.03) 

0.79 
(0.10) 

0.05* 
(0.03) 

0.79 
(0.10) 

0.05* 
(0.03) 

0.74 
(0.05) 

0.06 
(0.03) 

0.79 
(0.10) 

0.05* 
(0.03) 

0.74 
(0.05) 

0.06 
(0.03) 

0.19 
(0.12) 

0.37 
(0.35) 

5 0.05*  
(0.03) 

0.77 
(0.1) 

0.05* 
(0.02) 

0.77 
(0.1) 

0.05* 
(0.02) 

0.73 
(0.05) 

0.05* 
(0.02) 

0.77 
(0.10) 

0.05* 
(0.02) 

0.73 
(0.05) 

0.05* 
(0.02) 

0.23 
(0.10) 

0.36 
(0.34) 

25 0.18 
(0.07) 

0.63 
(0.11) 

0.17* 
(0.06) 

0.63 
(0.11) 

0.17* 
(0.06) 

0.59 
(0.09) 

0.17* 
(0.07) 

0.63 
(0.11) 

0.17* 
(0.06) 

0.59 
(0.09) 

0.17* 
(0.07) 

0.36 
(0.10) 

0.37 
(0.23) 

50 0.18* 
(0.11) 

0.46 
(0.10) 

0.26 
(0.13) 

0.46 
(0.10) 

0.26 
(0.13) 

0.44 
(0.08) 

0.27 
(0.14) 

0.46 
(0.10) 

0.26 
(0.13) 

0.44 
(0.08) 

0.27 
(0.14) 

0.53 
(0.10) 

0.36 
(0.16) 

Number of 
clusters 

2 0.14* 
(0.13) 

0.76 
(0.14) 

0.15 
(0.15) 

0.76 
(0.14) 

0.15 
(0.15) 

0.69 
(0.11) 

0.15 
(0.15) 

0.76 
(0.14) 

0.15 
(0.15) 

0.69 
(0.11) 

0.15 
(0.15) 

0.22 
(0.14) 

0.40 
(0.32) 

4 0.10* 
(0.03) 

0.57 
(0.13) 

0.12 
(0.06) 

0.57 
(0.13) 

0.12 
(0.06) 

0.56 
(0.13) 

0.12 
(0.06) 

0.57 
(0.13) 

0.12 
(0.06) 

0.56 
(0.13) 

0.12 
(0.06) 

0.43 
(0.13) 

0.33 
(0.24) 

Amount of noise .1 0.09* 
(0.05) 

0.67 
(0.17) 

0.10 
(0.08) 

0.67 
(0.17) 

0.10 
(0.08) 

0.63 
(0.14) 

0.10 
(0.08) 

0.67 
(0.17) 

0.10 
(0.08) 

0.63 
(0.14) 

0.10 
(0.08) 

0.32 
(0.19) 

0.34 
(0.29) 

.4 0.12* 
(0.10) 

0.67 
(0.16) 

0.12 
(0.10) 

0.67 
(0.16) 

0.12 
(0.10) 

0.63 
(0.14) 

0.13 
(0.11) 

0.67 
(0.16) 

0.12 
(0.10) 

0.63 
(0.14) 

0.13 
(0.11) 

0.33 
(0.16) 

0.36 
(0.28) 

.7 0.14* 
(0.11) 

0.66 
(0.17) 

0.18 
(0.14) 

0.66 
(0.17) 

0.18 
(0.14) 

0.62 
(0.15) 

0.18 
(0.14) 

0.66 
(0.17) 

0.18 
(0.14) 

0.62 
(0.15) 

0.18 
(0.14) 

0.33 
(0.16) 

0.38 
(0.27) 

Overall  0.12 
(0.09) 

0.66 
(0.17) 

0.13 
(0.11) 

0.66 
(0.17) 

0.13 
(0.11) 

0.62 
(0.14) 

0.14 
(0.12) 

0.66 
(0.17) 

0.13 
(0.11) 

0.62 
(0.14) 

0.14 
(0.12) 

0.33 
(0.17) 

0.36 
(0.28) 

Note. The method with the lowest overall mean estimation error is indicated in bold; the best method(s) per data characteristic is indicated with a *. For 
CHull, the information theoretic measures (AIC, AICc, BIC, KIC and MDL) and the combinations of CHull and the information theoretic measures, the 
estimation errors are averaged over the five different complexity measures. For performance results per method per complexity measure, see Appendix A1-
A5.  
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4.1.2 Sequential methods  

 

The mean estimation error for the sequential methods, both overall and per level of each 

manipulated factor separately, are displayed in Table 15. The two methods which both use 

scree ratios on VAF data (but in reversed order) seem to perform very well and this especially 

when first the number of clusters and next the number of components is selected (mean 

estimation error of 0.002 versus 0.040 vice versa). The combined use of component- and 

cluster selection methods did not yield such accurate results. Of those methods, the best 

combination was using PCA with K-means clustering (0.19), whereas PCA with the Gap 

statistic performed a bit worse (0.27). Using probabilistic PCA (pPCA) in combination with 

K-means clustering and Gap statistic gave similar results (mean estimation error of 0.20 and 

0.27, respectively). Note that for these combined methods only 24 datasets were used (instead 

of 240 like the other methods) due to time constraints.  

 The ordering of the sequential methods in terms of performance is quite consistent 

across all levels of all design factors, with the VAF scree method with estimating the number 

of clusters first being the best and pPCA with the Gap statistic the worst performing method. 

Similar results can be found when looking at the percentage correctly estimated models (see 

Appendix A7). The VAF scree method with first selecting the number of clusters and 

subsequently the number of components selects the correct model in 97.50% of the cases.  
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Table 15 

Mean estimation errors (with SD) for the sequential model order selection methods, computed overall and per level of the manipulated design 
factors 

 Level VAF scree 
Components-

clusters 

VAF scree 
Clusters-

components 

PCA-Gap PCA-K means pPCA-Gap pPCA-K means Overall 

Number of 
components 

2 0.00* (0.00) 0.00* (0.00) 0.20 (0.11) 0.14 (0.08) 0.20 (0.11) 0.14 (0.08) 0.03 (0.07) 

5 0.12 (0.12) 0.00* (0.01) 0.20 (0.11) 0.12 (0.10) 0.21 (0.11) 0.13 (0.10) 0.08 (0.11) 

25 0.03 (0.11) 0.01* (0.04) 0.18 (0.11) 0.10 (0.10) 0.26 (0.15) 0.18 (0.15) 0.04 (0.11) 

50 0.01 (0.04) 0.00* (0.00) 0.5 (0.11) 0.42 (0.10) 0.44 (0.22) 0.36 (0.22) 0.07 (0.17) 

Number of 
clusters 

2 0.00 (0.03) 0.00* (0.00) 0.18 (0.14) 0.14 (0.15) 0.17 (0.13) 0.13 (0.16) 0.03 (0.08) 

 4 0.08 (0.12) 0.00* (0.03) 0.37 (0.14) 0.25 (0.15) 0.39 (0.14) 0.27 (0.14) 0.08 (0.14) 

Amount of 
noise 

.1 0.03 (0.08) 0.00* (0.00) 0.23 (0.14) 0.16 (0.13) 0.17 (0.10) 0.10 (0.11) 0.03 (0.09) 

 .4 0.03 (0.08) 0.00* (0.02) 0.29 (0.18) 0.19 (0.20) 0.29 (0.18) 0.19 (0.20) 0.05 (0.12) 

 .7 0.06 (0.12) 0.00* (0.03) 0.28 (0.18) 0.22 (0.15) 0.33 (0.18) 0.27 (0.14) 0.07 (0.14) 

Overall  0.04 (0.10) 0.00 (0.02) 0.27 (0.17) 0.19 (0.16) 0.27 (0.17) 0.20 (0.16) 0.05 (0.12) 

Note. The method with the lowest overall mean estimation error is indicated in bold; the best method(s) per data characteristic is indicated with a *. 
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4.2 Influence of data characteristics on performance  

 

4.2.1 Mean estimation error per data characteristic 

 

Simultaneous methods. According to Table 14, the estimation error for each level of the 

number of components seems to be quite equal (mean estimation error of = .37, .36, .37 and 

.36 for 𝑄= 2, 5, 25 and 50, respectively). The mean estimation error seems to increase when 

the data has a smaller number of clusters (mean estimation error = .33 and .40 for 𝑅 = 4 and 2, 

respectively) and a larger amount of noise (mean estimation error = .34, .36 and .38 for 

amount of noise = .1, .4 and .7, respectively).  

 Sequential methods. As can be seen in the last column in Table 15, where the mean 

estimation error for each level of data characteristic is displayed, the overall estimation error 

is mostly impaired (1) for datasets containing 5 underlying components (mean estimation 

error  = .08) compared to the other levels (est. error = .03, .04, .07 for 𝑄 = 2, 25, 50, 

respectively), (2) for data sets with larger number of clusters (mean estimation error = .08) 

compared to lower number of clusters (mean estimation error = .03), and (3) for data with 

larger amounts of noise (mean estimation error = .03, .05 and .07 for Error = .1, .4 and .7, 

respectively).  
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4.2.2 Mixed Factorial ANOVA  
 

To further investigate the effects of the dataset characteristics on performance, a mixed 

factorial ANOVA with the estimation error as dependent variable and the design factors (true 

number of underlying clusters, true number of underlying components and amount of noise; 

between factor) and method (within factor with 14 levels) as independent variables was 

performed including all possible main and interaction effects. For the selection methods 

which make use of a complexity measure, the averaged mean estimation error (over the five 

complexity measures) is used (similar as in Table 14). Due to the fact that for the 

combinations of the selection methods PCA and pPCA with Gap statistic and K-means 

clustering only 24 datasets were used (instead of 240 datasets for the other methods), these 

methods were excluded from the ANOVA analysis. Lastly, in the ANOVA analysis the 

generalized eta-squared (𝜂 ) is used as an indicator for effect size for all main and interaction 

effects (Bakeman, 2005). 

From Table 16, which shows the ANOVA results of the methods which used all 240 

datasets, it appears that all main and interaction effects are significant at .001 level, even after 

a Greenhouse-Geiser correction for violation of sphericity, except for the interaction between 

the number of clusters and amount of noise (p = .240). Only discussing effects with a 

substantial effect size (i.e., larger than 0.50), it seems that the strongest effect on mean 

estimation error is the choice of model selection method (𝜂  = .99), which suggests strong 

differences in performance between the different methods. Overall, CHull or a combination of 

information theoretic measures with CHull clearly outperformed the other simultaneous 

methods (see Table 14). Thereby, the scree-ratios on VAF data (in both orders) performed 

strikingly better than CHull. The number of clusters a dataset has, seems to have a strong 

effect on the mean estimation error (𝜂   = .68) as well. Overall, when the true number of 
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clusters of a dataset equals 2 it seems to result in larger estimation errors (mean estimation 

error = .34) than for data where the true number of clusters is larger (mean estimation error = 

.29). Further, the amount of noise in the data also seems to have some -although not very 

large- influence on performance (𝜂  = .35), with performance deteriorating when the data 

contain more noise (see Tables 14 and 15). Finally, the number of components influences 

performance to a small -negligible- degree (𝜂  = .07).  

 

Table 16 

ANOVA table presenting the effects of data characteristics and method on mean prediction 

errors for the model selection methods according to a mixed factorial ANOVA analysis. 

Substantial effects (generalized eta squared (𝜂 ) larger than .50) are indicated in bold  

Effect DF F-value p-value 𝜂  

Components 3 29.103 < .001 0.07 

Clusters 1 2393.079 < .001 0.68 

Noise 2 297.394 < .001 0.35 

Method 13 48903.327 < .001 0.99 

Components × Clusters 3 652.319 < .001 0.64 

Components × Noise 6 83.989 < .001 0.31 

Clusters × Noise 2 1.435 0.24 0.00 

Components × Method 39 2533.759 < .001 0.97 

Clusters × Method 13 2150.638 < .001 0.89 

Noise × Method 26 103.716 < .001 0.44 

Components × Clusters × Noise 6 17.527 < .001 0.09 

Components × Clusters × Method 39 185.206 < .001 0.68 

Components × Noise × Method 78 39.949 < .001 0.47 

Clusters × Noise × Method 26 11.721 < .001 0.08 

Components × Clusters × Error × Method 78 15.009 < .001 0.25 
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The main effects of method and the number of clusters are qualified by an interaction 

between them (𝜂  = .89), an interaction between the method and the number of components 

(𝜂  = .97) and an interaction between the number of clusters and the number of components 

(𝜂  = .64). To interpret these interactions, the two interactions with the largest effects (i.e., 

interaction of number of clusters with method and number of components with method) are 

visualized in Figure 6. From this figure, one can see that for the good performing methods 

(e.g., CHull, information theoretic measures in combination with CHull and scree ratios on 

VAF data in both orders) estimation error is not influenced much by the number of underlying 

clusters; for the best performing methods (scree ratios on VAF), performance decreases a 

little with increasing number of clusters, with the opposite being true for the other good 

performing methods. For bad performing methods, however, performance increases with 

increasing the numbers of clusters (except for DIFFIT for which the reverse holds).  

Regarding the other interaction, it seems that the estimation error increases a little for 

good performing methods like CHull and the information theoretic methods in combination 

with CHull. For the best performing method (scree ratio on VAF, 𝑅 first), this increase is very 

small, where for the second-best performing methods (scree ratio on VAF, reversed order), 

the pattern is less univocal (i.e., worst performance for an intermediate number of 

components). For the worst performing methods (i.e., information theoretic measures), 

however, the mean estimation error decreases when the underlying data structure becomes 

more complex (i.e., more clusters and components). This could indicate that these methods 

often select the most complex models; this indication corresponds with the findings in our 

pilot study (see Section 2.3.8 and a discussion hereof in Section 5.2). 
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Figure 6 

Two-way interactions between number of clusters and method (left) and number of components and method (right). The 14 model order selection 
methods are divided across two panels (7 methods in the top panels and the other 7 methods in the bottom panels) 

 
Note. Here clus-comp and comp-clus are referring to the method which uses scree ratios on VAF data; selecting the number of clusters first (clus-
comp) and selecting the number of components first (comp-clus). 
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 Lastly, all previously discussed main and interaction effects are qualified by a three-

way interaction between method, the number of clusters and the number of components (𝜂  = 

.68). This complex interaction is presented in Figure 7. From this figure, it appears that for the 

best performing method (scree ratio on VAF) there are no big differences in pattern for the 

two-way interaction between methods and the number of components when comparing data 

with small versus large number of clusters. For the second best performing method (scree 

ratio on VAF, reversed order), there is a little peak in estimation error when the number of 

components is 5 and the number of clusters is high (compared to when the number of clusters 

is low). For the methods which uses CHull (or a combination with CHull) it appears that the 

effect of the number of components (i.e., larger prediction error with increasing 𝑄) is more 

pronounced (i.e., larger increase) for data sets with two underlying clusters than for data sets 

with four clusters. Finally, for the (worst performing) information theoretic measures the 

patterns in both lower- and large number of clusters are comparable. However, for these 

methods in general the lower the number of clusters the higher the estimation errors are, with 

the opposite being true for DIFFIT.  
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Figure 7 

Three-way interaction between number of components, method and number of clusters (left panels: number of clusters is low, right panels: 
number of clusters is high). The 14 model order selection methods are divided across two panels (7 methods in the top panels and the other 7 
methods in the bottom panels).  

 

 

Note. Here clus-comp and comp-clus are referring to the method which uses scree ratios on VAF data; selecting the number of clusters first (clus-
comp) and selecting the number of components first (comp-clus). 
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4.3 Influence of the measure for model complexity  
 

All the simultaneous methods (except DIFFIT) make use of a certain penalty for model 

complexity (complexity measure), of which the computation of this measure can be freely 

chosen. In this thesis, these methods are used with all the five different complexity measures 

as listed in Table 2.  

Figure 8 shows the estimation error (in boxplots) for the different complexity 

measures overall (i.e., across all design factors). From this figure, one can see that complexity 

measure 2 in general results in larger estimation errors and therefore performs the worst of all 

five complexity measures. The best performing measure, on average, seems C4, closely 

followed by C5 and C1. There is, however, quite some spread around the mean, which makes 

it difficult to differentiate between C1 and C3-C5 in terms of performance. C5, for example, 

has quite some outliers with a bad performance and is, similar to C3 and C4, skewed towards 

these worse performing scores, whereas C1 is more skewed towards better performing scores. 

It is a bit unexpected that C1 and C5 performs at the same level as C1 is the smallest 

considered complexity value and C5 the largest one. C2, which has an intermediate 

complexity value, performs clearly worse than C1 and C5, whereas C3 and C4, which are also 

intermediate complexity values, perform at the same level as C1 and C5. One can conclude 

that the effect of complexity measure is not univocal.  
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Figure 8 

Boxplot of estimation errors for each of the five complexity measure (C1-C5) computed 
across all data sets 

 
Note. Here C1-C5 refers to the complexity measures 1 - 5 used (see Table 2). C1 = 𝑄 +  𝑅 , 
C2 = 𝑄 × 𝑅, C3 = (𝑇 × 𝑄) + (𝐼 × 𝑅) , C4 =(𝑇 × 𝑄) + (𝐼 × 𝑅) + (𝑄 × 𝑅) and C5 = 

𝑇 × × 𝑄 + (𝐼 × 𝑅); 𝑄 equals the number of components, 𝑅 number of clusters, 𝑇 

number of timepoints, 𝐼  the total number of subjects per cluster in the data and 𝑉 the number 
of voxels.  

 

  In Figure 9, the same boxplots as in Figure 8 are shown but now distinctions are made 

between datasets where the true number of clusters equals 2 (left panel) or equals 4 (right 

panel). This plot indicates that when using complexity measure 2 (C2 = 𝑄 × 𝑅), the 

estimation errors are larger compared to the other complexity measures, with this effect being 

more pronounced when the number of clusters is larger (in this case 4 clusters). There are no 

striking differences between the other four complexity measures. Complexity measure 1 (C1) 

seems to work slightly better than C3-C5 when the number of clusters is equal to 2; this 

difference in performance is smaller when the true number of clusters equals 4. Remarkably, 

the variance in estimation error decreases with increasing number of clusters and this 

especially for C3-C5.  
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Figure 9 

Boxplot of estimation errors for each of the five complexity measures (C1-C5) for two (left 
panel) and four (right panel) clusters 

 

Note. Here C1-C5 refers to the complexity measures 1 - 5 used (see Table 2). C1 = 𝑄 +  𝑅 , 
C2 = 𝑄 × 𝑅, C3 = (𝑇 × 𝑄) + (𝐼 × 𝑅) , C4 =(𝑇 × 𝑄) + (𝐼 × 𝑅) + (𝑄 × 𝑅) and C5 = 

𝑇 × × 𝑄 + (𝐼 × 𝑅); 𝑄 equals the number of components, 𝑅 number of clusters, 𝑇 

number of timepoints, 𝐼  the total number of subjects per cluster in the data and 𝑉 the number 
of voxels.  

 

Figure 10 illustrates boxplots of the estimation errors for each complexity measure 

where distinctions are made between the true number of components. It is remarkable that, 

again, complexity measure 2 (C2) does not seem to work well compared to the other four. 

However, when the number of components is relatively large (in this case; 50), C2 actually 

performs a bit better than the other four methods (Figure 9; bottom right panel). Measures C3 

and C4 perform very similar in all cases. Compared to C3-C5, measure C1 performs worse 

for 2 components (although C1 has less variability there), at the same level for 5 and 25 

components (with less variability for C1 with 25 components) and a bit better for 50 
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components. Overall, the plots suggests that the safest choice for complexity measure would 

be C1 (𝑄 + 𝑅), except when the true number of expected components is very low. 

Interestingly, the variation in estimation errors for all complexity measures is larger for data 

sets with 50 components than for data sets with a smaller number of components.    

 

Figure 10  

Boxplot of estimation errors for each of the five complexity measure (C1-C5) for 2 (upper 
left), 5 (bottom left), 25 (upper right) and 50 (bottom right) components  

 Note. Here C1-C5 refers to the complexity measures 1 - 5 used (see Table 2). C1 = 𝑄 +  𝑅 , 
C2 = 𝑄 × 𝑅, C3 = (𝑇 × 𝑄) + (𝐼 × 𝑅) , C4 =(𝑇 × 𝑄) + (𝐼 × 𝑅) + (𝑄 × 𝑅) and C5 = 

𝑇 × × 𝑄 + (𝐼 × 𝑅); 𝑄 equals the number of components, 𝑅 number of clusters, 𝑇 

number of timepoints, 𝐼  the total number of subjects per cluster in the data and 𝑉 the number 
of voxels.  

 

Figure 11 shows boxplots of estimation errors for each complexity measure split out 

for each model order selection method. It appears that for the methods that (in some way) 

uses CHull, complexity measure 1 performs best, very closely followed by C3 and C4 and 
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that complexity measure 2 performs the worst. For the method that uses CHull solely very 

good results are obtained with C1 and C4, whereas C3 performs a bit worse. For the 

information theoretic measures, where the model with the lowest (AIC, AICc, etc.) value was 

selected, all complexity measures performed equally bad. Except for BIC and MDL, here 

complexity measure 5 seems to perform a little bit better than the other four complexity 

measures (but still at an unsatisfactory level). Note that the BIC penalizes complexity quite 

strongly. It is remarkably that especially the largest complexity values here yields the best 

results (see discussion Section 5.2).  
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Figure 11 

Boxplot of mean estimation errors for each of the five complexity measures (C1-C5) for each method 
 

 
 

Note. Here C1-C5 refers to the complexity measures 1 - 5 used (see Table 2). C1 = 𝑄 +  𝑅 , C2 = 𝑄 × 𝑅, C3 = (𝑇 × 𝑄) + (𝐼 × 𝑅), C4 =(𝑇 ×

𝑄) + (𝐼 × 𝑅) + (𝑄 × 𝑅) and C5 = 𝑇 × × 𝑄 + (𝐼 × 𝑅); 𝑄 equals the number of components, 𝑅 number of clusters, 𝑇 number of 

timepoints, 𝐼  the total number of subjects per cluster in the data and 𝑉 the number of voxels.  
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4.4 Comparing the best performing methods 

 

Regarding the simultaneous methods, overall, CHull seems to perform best (Table 14), except 

when the number of components was equal to 25. But, in this case, the difference in mean 

estimation error of CHull compared to the best performing method (i.e., information theoretic 

measures combined with CHull) was very small. Because CHull needs a complexity measure, 

the effect of the choice for this measure on performance is investigated further, in order to 

identify the most optimal procedure for CHull. According to the results from Section 4.3, 

complexity measure 1 -closely followed by complexity measure 4- seems to be the best 

option. This is in line with the results in the first five columns of the first row in Table 17, 

which presents the mean estimation error for CHull in combination with each of the five 

complexity measures. However, when looking at the accuracy (i.e., % data sets for which the 

model selection method identifies the true number of clusters AND components), CHull using 

complexity measure 4 seems to perform slightly better than when using complexity measure 1 

(see bottom row of Table 17). In general, the best sequential method which uses scree ratios 

on VAF data, where first the number of clusters are estimated and subsequently the number of 

components, clearly outperforms the CHull procedure (and all other simultaneous and 

sequential methods) both in terms of mean estimation error (0.004) and accuracy (97.5%).  
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Table 17  

Comparing the best performing simultaneous method (CHull using the five different 
complexity measures) with the best sequential model selection method (VAF using scree 
ratios with first estimating the number of clusters) in terms of estimation error and accuracy 
(% correct) 

 CHull C1 CHull C2 CHull C3 CHull C4 CHull C5 Sequential 

Mean est. 
error (SD) 

0.06 (0.13) 0.19 (0.14) 0.12 (0.16) 0.07 (0.15) 0.14 (0.15) 0.00 (0.02) 

% Correct 77.50 23.33 63.75 78.33 45.83 97.50 

Note. Here C1-C5 refers to the complexity measures 1 - 5 used (see Table 2). C1 = 𝑄 +  𝑅 , 
C2 = 𝑄 × 𝑅, C3 = (𝑇 × 𝑄) + (𝐼 × 𝑅) , C4 =(𝑇 × 𝑄) + (𝐼 × 𝑅) + (𝑄 × 𝑅) and C5 = 

𝑇 × × 𝑄 + (𝐼 × 𝑅); 𝑄 equals the number of components, 𝑅 number of clusters, 𝑇 

number of timepoints, 𝐼  the total number of subjects per cluster in the data and 𝑉 the number 
of voxels.  
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V. Discussion  

 

5.1 Summary 

 

The current thesis investigated several methods to address the model order selection problem 

for C-ICA. To find out which method is most accurate in estimating the optimal number of 

underlying clusters and components for C-ICA, a simulation study was performed. A strong 

effect of choice of method on estimation error was found, indicating large differences in 

performance between the methods. Overall, CHull outperformed all the other simultaneous 

methods, a finding which is in line with our expectations and previous research (for example, 

Bulteel et al., 2013). CHull performed better than other methods, except when the number of 

underlying components was equal to twenty-five. In this specific case, a combination of 

CHull with information theoretic measures like AIC or AICc with CHull outperformed CHull, 

although the differences in estimation error was minimal.  

The safest choice of complexity measure for the simultaneous methods seems to be 

𝑄 + 𝑅. This was also the case when specifically looking at the estimation error of CHull, 

which was the best performing simultaneous method. However, when looking at the 

percentage of totally correctly estimated models, using (𝑇 × 𝑄) + (𝐼 × 𝑅) + (𝑄 × 𝑅) as 

complexity measure seemed to work slightly better for CHull. Note that for the other 

simultaneous methods, in most cases, this latter complexity measure did only perform a little 

bit worse than 𝑄 + 𝑅.  

Regarding the comparison of simultaneous and sequential methods, it was expected 

that the sequential methods would increase the estimation error. The reason for this was that 

the selection of a wrong number of components (or clusters) in an earlier step may negatively 
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influence the determination of the number of clusters (or components) in a later step of the 

analysis. Nevertheless, overall, results suggest that a sequential method based on scree ratios 

applied to the Variance Accounted For (VAF) values, actually outperformed (the 

simultaneous method) CHull. Moreover, first determining the number of clusters and 

subsequently the number of components performed better than a scree ratio based method in 

which the optimal number of components was identified before the optimal number of 

clusters. These results are quite consistent across the manipulated data characteristic (i.e., 

amount of noise, true number of components and clusters). The other sequential methods (i.e., 

combinations of PCA and pPCA with the Gap statistic and K-means) did not perform very 

well.  

The manipulated data characteristics also influenced how well the different selection 

methods estimated the number of clusters and components. Focusing on main effects, for the 

simultaneous methods, the number of underlying clusters was influencing the estimation 

errors the most; on average, the higher the number of clusters the more accurate the 

simultaneous methods were. Also for the sequential methods, the number of clusters seemed 

to have the largest effect. However, the influence of the number of underlying clusters was 

different for both types of methods. Indeed, more accurate estimations were obtained when 

the number of clusters was low. Regarding the number of components, for the simultaneous 

methods no striking differences were found, whereas for the sequential methods the best 

performance was encountered when the number of components was very small. Lastly, for all 

methods (i.e., simultaneous and sequential ones), overall, the higher the amount of noise was 

the worse the methods performed; this is similar to the conclusion that Majeed & Avison 

(2014) have drawn in their study. With respect to the interactions between the factors, a 

sizeable three-way interaction between method, the number of components and the number of 

clusters was observed. It appears that the best performing method (Scree ratio on VAF, 𝑅 
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first) is stable and well performing in all conditions. For, the second-best methods- CHull (or 

a combination with CHull)- the performance is stable when the number of clusters is large but 

estimation error increases when the number of components is large and number of clusters 

small.  

 

5.2 Limitations and issues for further research  

 

Results suggests that measures from information theory like AIC, AICc, BIC, KIC and MDL 

but also DIFFIT and combinations of sequential methods (PCA and pPCA combined with K-

means and Gap-statistic) do not perform very well in estimating the true number of clusters 

and components for C-ICA. When looking at these results individually, it is remarkable that 

many of these methods are selecting a model that is extreme in complexity. Note that this 

pattern can also be seen in some of the examples provided in Section 2. In other words, these 

methods do often select a model which contains the minimum or maximum number of 

clusters and components. For example, in Table 6 of section 2.3.7, it can be seen that DIFFIT 

selects the first model (which contains 1 cluster and 1 component). However, when this model 

would not have been included, DIFFIT would have chosen the correct model. Similar results 

were found in a small pilot study. So, when using these methods in further research, it is 

advisable to consider running these algorithms while excluding the most extreme model or 

models. This will result in a “second best” model that possibly may return better performance 

results (i.e., lower estimation errors). Moreover, as most of these methods rely on a particular 

choice of complexity measure, the complexity measures considered in this thesis may not be 

optimal for these methods. Using more extreme complexity measures may increase the 

estimation performance of these methods. Rossbroich et al. (2022), for example, show that in 
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the context of ADPROCLUS, which is also a clustering method like C-ICA, the performance 

of information theoretic measures can be improved by changing the induced penalty, and this 

even above the performance level of CHull. An indication in this regard in this thesis is the 

better performance of the largest complexity measure (C5) for the information theoretic 

measures (without combination with CHull). These results suggest that using an even larger 

complexity measure may increase the performance of the information theoretic measures. For 

future research, it is therefore recommended to study what would be an appropriate measure 

to quantify the complexity of a C-ICA model and to also consider larger complexity values 

than C5.  

 Another important limitation in this study relates to the implementation of the 

sequential methods which only estimate either the number of clusters or the number of 

components. Due to time constraints, not all 240 datasets were analyzed. A decision has been 

made to only apply these methods on the first iteration of each cell of the simulation design. 

This implies that only results are presented for 24 generated datasets, one from each cell of 

the simulation design. As such, variability in the performance results is not considered for 

sequential methods, which makes the results for this type of methods less stable. In future 

research, the stability and generalizability of the performance results for the sequential 

methods should be investigated.   

 Finally, regarding the order of selection for the sequential scree-ratios on VAF data 

method, results show that first selecting the number of clusters and subsequently the number 

of components yields the lowest estimation error. Important to take into account regarding 

these results is the number of possible options for selecting these optimal number of 

components and clusters. The current thesis made use of a maximum of 6 clusters and 75 

components during the analysis. A consequence of this is that the chance of selecting the 

number of clusters correctly is higher -because there are less options to choose from- than 
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selecting the correct number of components. Concluding, when using this method in further 

research, it should still be investigated whether first estimating the number of clusters is 

always performing better than first estimating the number of components. From a substantive 

point of view, however, it can be expected that the number of components almost always will 

be larger than the number of clusters, except maybe for a big data set in which many subjects 

should be clustered and it can be expected that many clusters are needed for this. Therefore, 

for an applied user, it is quite logic to try more different values for the number of components 

than for the number of clusters. For fMRI data, for example, the optimal number of 

components is often located between 20 and 70, whereas 10 clusters is already a large number 

of clusters.  
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Appendix A 

 

 This appendix consists of seven different tables. The first five tables show the mean 

estimation errors for the simultaneous selection methods using the five different complexity 

measures (see Table 2 in the main text). Table A1-A5 display the results for complexity 

measure C1-C5 respectively. Below an overview is given with the computations of the several 

complexity measures: 

- C1: 𝑄 +  𝑅 

- C2: 𝑄 × 𝑅 

- C3: (𝑇 × 𝑄) + (𝐼 × 𝑅) 

- C4: (𝑇 × 𝑄) + (𝐼 × 𝑅) + (𝑄 × 𝑅) 

- C5: 𝑇 × × 𝑄 + (𝐼 × 𝑅) 

𝑄 equals the number of components, 𝑅 number of clusters, 𝑇 number of timepoints, 𝐼  the 

total number of subjects per cluster in the data and 𝑉 the number of voxels. 

Table A6 shows the percentage of totally correct estimated models (i.e., correct 

estimate of the number of components AND the number of clusters) by the different 

simultaneous selection methods, presented for each complexity measure separately. Lastly, 

Table A7 shows the percentage of totally correct estimated models for the sequential methods.  
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Table A1   
Mean estimation error (with SD) for the simultaneous model order selection methods using complexity measure 1, computed overall and per 
level of the manipulated factors 

 Level CHull AIC CHull 
AIC 

AICc CHull 
AICc 

BIC CHull 
BIC 

KIC CHull 
KIC 

MDL CHull 
MDL 

Overall 

Number of 
components 

2 0.11* 
(0.11) 

0.79 
(0.10) 

0.11* 
(0.11) 

0.79 
(0.10) 

0.11* 
(0.11) 

0.79 
(0.10) 

0.11* 
(0.11) 

0.79 
(0.1) 

0.11* 
(0.11) 

0.79 
(0.1) 

0.11* 
(0.11) 

0.42 
(0.36) 

5 0.00* 
(0.00) 

0.77 
(0.10) 

0.00* 
(0.00) 

0.77 
(0.10) 

0.00* 
(0.00) 

0.77 
(0.10) 

0.00* 
(0.00) 

0.77 
(0.10) 

0.00* 
(0.00) 

0.77 
(0.10) 

0.00* 
(0.00) 

0.35 
(0.39) 

25 0.00* 
(0.00) 

0.63 
(0.11) 

0.00* 
(0.00) 

0.63 
(0.11) 

0.00* 
(0.00) 

0.63 
(0.11) 

0.00* 
(0.00) 

0.63 
(0.11) 

0.00* 
(0.00) 

0.63 
(0.11) 

0.00* 
(0.00) 

0.29 
(0.32) 

50 0.15* 
(0.19) 

0.46 
(0.10) 

0.19 
(0.20) 

0.46 
(0.10) 

0.19 
(0.20) 

0.46 
(0.10) 

0.19 
(0.20) 

0.46 
(0.10) 

0.19 
(0.20) 

0.46 
(0.10) 

0.19 
(0.20) 

0.31 
(0.21) 

Number of clusters 2 0.07* 
(0.15) 

0.76 
(0.14) 

0.09 
(0.17) 

0.76 
(0.14) 

0.09 
(0.17) 

0.76 
(0.14) 

0.09 
(0.17) 

0.76 
(0.14) 

0.09 
(0.17) 

0.76 
(0.14) 

0.09 
(0.17) 

0.40 
(0.37) 

4 0.06* 
(0.10) 

0.57 
(0.13) 

0.06* 
(0.09) 

0.57 
(0.13) 

0.06* 
(0.09) 

0.57 
(0.13) 

0.06* 
(0.09) 

0.57 
(0.13) 

0.06* 
(0.09) 

0.57 
(0.13) 

0.06* 
(0.09) 

0.29 
(0.28) 

Amount of noise .1 0.03* 
(0.07) 

0.67 
(0.17) 

0.06 
(0.13) 

0.67 
(0.17) 

0.06 
(0.13) 

0.67 
(0.17) 

0.06 
(0.13) 

0.67 
(0.17) 

0.06 
(0.13) 

0.67 
(0.17) 

0.06 
(0.13) 

0.33 
(0.34) 

.4 0.08* 
(0.14) 

0.67 
(0.16) 

0.08* 
(0.14) 

0.67 
(0.16) 

0.08* 
(0.14) 

0.67 
(0.16) 

0.08* 
(0.14) 

0.67 
(0.16) 

0.08* 
(0.14) 

0.67 
(0.16) 

0.08* 
(0.14) 

0.35 
(0.33) 

.7 0.09* 
(0.15) 

0.66 
(0.17) 

0.09* 
(0.15) 

0.66 
(0.17) 

0.09* 
(0.15) 

0.66 
(0.17) 

0.09* 
(0.15) 

0.66 
(0.17) 

0.09* 
(0.15) 

0.66 
(0.17) 

0.09* 
(0.15) 

0.35 
(0.33) 

Overall  0.06 
(0.13) 

0.66 
(0.17) 

0.07 
(0.14) 

0.66 
(0.17) 

0.07 
(0.14) 

0.66 
(0.17) 

0.07 
(0.14) 

0.66 
(0.17) 

0.07 
(0.14) 

0.66 
(0.17) 

0.07 
(0.14) 

0.34 
(0.33) 

Note. The method with the lowest overall mean estimation error is indicated in bold; the best method(s) per data characteristic is/are indicated 
with a *. 
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Table A2  
Mean estimation error (with SD) for the simultaneous model order selection methods using complexity measure 2, computed overall 
and per level of the manipulated factors 
 Level CHull AIC CHull 

AIC 
AICc CHull 

AICc 
BIC CHull 

BIC 
KIC CHull 

KIC 
MDL CHull 

MDL 
Overall 

Number of 
components 

2 0.16* 
(0.05) 

0.79 
(0.10) 

0.17 
(0.06) 

0.79 
(0.10) 

0.17 
(0.06) 

0.79 
(0.10) 

0.17 
(0.06) 

0.79 
(0.10) 

0.17 
(0.06) 

0.79 
(0.10) 

0.17 
(0.06) 

0.45 
(0.32) 

5 0.27 
(0.13) 

0.77 
(0.10) 

0.24* 
(0.11) 

0.77 
(0.10) 

0.24* 
(0.11) 

0.77 
(0.10) 

0.24* 
(0.11) 

0.77 
(0.10) 

0.24* 
(0.11) 

0.77 
(0.10) 

0.24* 
(0.11) 

0.48 
(0.29) 

25 0.32* 
(0.05) 

0.63 
(0.11) 

0.36 
(0.12) 

0.63 
(0.11) 

0.36 
(0.12) 

0.63 
(0.11) 

0.36 
(0.12) 

0.63 
(0.11) 

0.36 
(0.12) 

0.63 
(0.11) 

0.36 
(0.12) 

0.48 
(0.17) 

50 0.01* 
(0.05) 

0.46 
(0.10) 

0.18 
(0.20) 

0.46 
(0.10) 

0.18 
(0.20) 

0.46 
(0.10) 

0.18 
(0.20) 

0.46 
(0.10) 

0.18 
(0.20) 

0.46 
(0.10) 

0.18 
(0.20) 

0.29 
(0.22) 

Number of clusters 2 0.13* 
(0.09) 

0.76 
(0.14) 

0.15 
(0.10) 

0.76 
(0.14) 

0.15 
(0.10) 

0.76 
(0.14) 

0.15 
(0.10) 

0.76 
(0.14) 

0.15 
(0.10) 

0.76 
(0.14) 

0.15 
(0.10) 

0.43 
(0.33) 

4 0.25* 
(0.16) 

0.56 
(0.13) 

0.32 
(0.14) 

0.56 
(0.13) 

0.32 
(0.14) 

0.56 
(0.13) 

0.32 
(0.14) 

0.56 
(0.13) 

0.32 
(0.14) 

0.56 
(0.13) 

0.32 
(0.14) 

0.42 
(0.19) 

Amount of noise .1 0.18 
(0.15) 

0.66 
(0.17) 

0.17* 
(0.13) 

0.66 
(0.17) 

0.17* 
(0.13) 

0.66 
(0.17) 

0.17* 
(0.13) 

0.66 
(0.17) 

0.17* 
(0.13) 

0.66 
(0.17) 

0.17* 
(0.13) 

0.40 
(0.29) 

.4 0.19* 
(0.14) 

0.67 
(0.17) 

0.26 
(0.18) 

0.67 
(0.17) 

0.26 
(0.18) 

0.67 
(0.17) 

0.26 
(0.18) 

0.67 
(0.17) 

0.26 
(0.18) 

0.67 
(0.17) 

0.26 
(0.18) 

0.44 
(0.27) 

.7 0.20* 
(0.14) 

0.66 
(0.17) 

0.27 
(0.12) 

0.66 
(0.17) 

0.27 
(0.12) 

0.66 
(0.17) 

0.27 
(0.12) 

0.66 
(0.17) 

0.27 
(0.12) 

0.66 
(0.17) 

0.27 
(0.12) 

0.44 
(0.25) 

Overall  0.19 
(0.14) 

0.66 
(0.17) 

0.23 
(0.15) 

0.66 
(0.17) 

0.23 
(0.15) 

0.66 
(0.17) 

0.23 
(0.15) 

0.66 
(0.17) 

0.23 
(0.15) 

0.66 
(0.17) 

0.23 
(0.15) 

0.42 
(0.27) 

Note. The method with the lowest overall mean estimation error is indicated in bold; the best method(s) per data characteristic is/are 
indicated with a *. 



MODEL ORDER SELECTION FOR C-ICA  82 
 

Table A3 
Mean estimation error (with SD) for the simultaneous model order selection methods using complexity measure 3, computed overall and per 
level of the manipulated factors 

 Level CHull AIC CHull 
AIC 

AICc CHull 
AICc 

BIC CHull 
BIC 

KIC CHull 
KIC 

MDL CHull 
MDL 

Overall 

Number of 
components 

2 0.00* 
(0.00) 

0.79 
(0.10) 

0.00* 
(0.00) 

0.79   
(0.10) 

0.00* 
(0.00) 

0.79 
(0.10) 

0.00* 
(0.00) 

0.79 
(0.10) 

0.00* 
(0.00) 

0.79 
(0.10) 

0.00* 
(0.00) 

0.36 
(0.40) 

5 0.00* 
(0.00) 

0.77 
(0.10) 

0.00* 
(0.00) 

0.77 
(0.10) 

0.00* 
(0.00) 

0.77 
(0.10) 

0.00* 
(0.00) 

0.77 
(0.10) 

0.00* 
(0.00) 

0.77 
(0.10) 

0.00* 
(0.00) 

0.35 
(0.39) 

25 0.18 
(0.18) 

0.63 
(0.11) 

0.10* 
(0.15) 

0.63 
(0.11) 

0.10* 
(0.15) 

0.63 
(0.11) 

0.10* 
(0.16) 

0.63 
(0.11) 

0.10* 
(0.16) 

0.63 
(0.11) 

0.10* 
(0.16) 

0.35 
(0.29) 

50 0.28* 
(0.14) 

0.46 
(0.10) 

0.28* 
(0.15) 

0.46 
(0.10) 

0.28* 
(0.15) 

0.46 
(0.10) 

0.28* 
(0.15) 

0.46 
(0.10) 

0.28* 
(0.15) 

0.46 
(0.10) 

0.28* 
(0.15) 

0.36 
(0.16) 

Number of clusters 2 0.17  
(0.20) 

0.76 
(0.14) 

0.14* 
(0.19) 

0.76 
(0.14) 

0.14* 
(0.19) 

0.76 
(0.14) 

0.14* 
(0.19) 

0.76 
(0.14) 

0.14* 
(0.19) 

0.76 
(0.14) 

0.14* 
(0.19) 

0.42 
(0.35) 

4 0.06 
(0.09) 

0.57 
(0.13) 

0.05* 
(0.09) 

0.57 
(0.13) 

0.05* 
(0.09) 

0.57 
(0.13) 

0.05* 
(0.09) 

0.57 
(0.13) 

0.05* 
(0.09) 

0.57 
(0.13) 

0.05* 
(0.09) 

0.29 
(0.28) 

Amount of noise .1 0.08 
(0.15) 

0.67 
(0.17) 

0.05* 
(0.13) 

0.67 
(0.17) 

0.05* 
(0.13) 

0.67 
(0.17) 

0.05* 
(0.13) 

0.67 
(0.17) 

0.05* 
(0.13) 

0.67 
(0.17) 

0.05* 
(0.13) 

0.33 
(0.34) 

.4 0.11 
(0.16) 

0.67 
(0.16) 

0.08* 
(0.14) 

0.67 
(0.16) 

0.08* 
(0.14) 

0.67 
(0.16) 

0.08* 
(0.14) 

0.67 
(0.16) 

0.08* 
(0.14) 

0.67 
(0.16) 

0.08* 
(0.14) 

0.35 
(0.33) 

.7 0.15* 
(0.17) 

0.66 
(0.17) 

0.16 
(0.18) 

0.66 
(0.17) 

0.16 
(0.18) 

0.66 
(0.17) 

0.16 
(0.18) 

0.66 
(0.17) 

0.16 
(0.18) 

0.66 
(0.17) 

0.16 
(0.18) 

0.39 
(0.30) 

Overall  0.12 
(0.16) 

0.66 
(0.17) 

0.09 
(0.16) 

0.66 
(0.17) 

0.09 
(0.16) 

0.66 
(0.17) 

0.09 
(0.16) 

0.66 
(0.17) 

0.09 
(0.16) 

0.66 
(0.17) 

0.09 
(0.16) 

0.36 
(0.33) 

Note. The method with the lowest overall mean estimation error is indicated in bold; the best method(s) per data characteristic is/are indicated 
with a *. 
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Table A4 
Mean estimation error (with SD) for the simultaneous model order selection methods using complexity measure 4, computed overall and per 
level of the manipulated factors 

 Level CHull AIC CHull 
AIC 

AICc CHull 
AICc 

BIC CHull 
BIC 

KIC CHull 
KIC 

MDL CHull 
MDL 

Overall 

Number of 
components 

2 0.00* 
(0.00) 

0.79 
(0.10) 

0.00* 
(0.00) 

0.79 
(0.10) 

0.00* 
(0.00) 

0.79 
(0.10) 

0.00* 
(0.00) 

0.79 
(0.10) 

0.00* 
(0.00) 

0.79 
(0.10) 

0.00* 
(0.00) 

0.36 
(0.40) 

5 0.00* 
(0.00) 

0.77 
(0.10) 

0.00* 
(0.00) 

0.77 
(0.10) 

0.00* 
(0.00) 

0.77 
(0.10) 

0.00* 
(0.00) 

0.77 
(0.10) 

0.00* 
(0.00) 

0.77 
(0.10) 

0.00* 
(0.00) 

0.35 
(0.39) 

25 0.12 
(0.18) 

0.63 
(0.11) 

0.08* 
(0.15) 

0.63 
(0.11) 

0.08* 
(0.15) 

0.63 
(0.11) 

0.08* 
(0.15) 

0.63 
(0.11) 

0.08* 
(0.15) 

0.63 
(0.11) 

0.08* 
(0.15) 

0.33 
(0.30) 

50 0.18* 
(0.18) 

0.46 
(0.10) 

0.24 
(0.19) 

0.46 
(0.10) 

0.24 
(0.19) 

0.46 
(0.10) 

0.24 
(0.19) 

0.46 
(0.10) 

0.24 
(0.19) 

0.46 
(0.10) 

0.24 
(0.19) 

0.33 
(0.19) 

Number of clusters 2 0.13* 
(0.19) 

0.76 
(0.14) 

0.13* 
(0.19) 

0.76 
(0.14) 

0.13* 
(0.19) 

0.76 
(0.14) 

0.13* 
(0.19) 

0.76 
(0.14) 

0.13* 
(0.19) 

0.76 
(0.14) 

0.13* 
(0.19) 

0.42 
(0.36) 

4 0.02* 
(0.06) 

0.57 
(0.13) 

0.03 
(0.07) 

0.57 
(0.13) 

0.03 
(0.07) 

0.57 
(0.13) 

0.03 
(0.07) 

0.57 
(0.13) 

0.03 
(0.07) 

0.57 
(0.13) 

0.03 
(0.07) 

0.27 
(0.29) 

Amount of noise .1 0.00* 
(0.00) 

0.67 
(0.17) 

0.05 
(0.13) 

0.67 
(0.17) 

0.05 
(0.13) 

0.67 
(0.17) 

0.05 
(0.13) 

0.67 
(0.17) 

0.05 
(0.13) 

0.67 
(0.17) 

0.05 
(0.13) 

0.32 
(0.34) 

.4 0.10 
(0.16) 

0.67 
(0.16) 

0.05* 
(0.13) 

0.67 
(0.16) 

0.05* 
(0.13) 

0.67 
(0.16) 

0.05* 
(0.13) 

0.67 
(0.16) 

0.05* 
(0.13) 

0.67 
(0.16) 

0.05* 
(0.13) 

0.34 
(0.34) 

.7 0.13* 
(0.18) 

0.66 
(0.17) 

0.14 
(0.18) 

0.66 
(0.17) 

0.14 
(0.18) 

0.66 
(0.17) 

0.14 
(0.18) 

0.66 
(0.17) 

0.14 
(0.18) 

0.66 
(0.17) 

0.14 
(0.18) 

0.38 
(0.31) 

Overall  0.07 
(0.15) 

0.66 
(0.17) 

0.08 
(0.15) 

0.66 
(0.17) 

0.08 
(0.15) 

0.66 
(0.17) 

0.08 
(0.15) 

0.66 
(0.17) 

0.08 
(0.15) 

0.66 
(0.17) 

0.08 
(0.15) 

0.35 
(0.33) 

Note. The method with the lowest overall mean estimation error is indicated in bold; the best method(s) per data characteristic is/are indicated 
with a *. 
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Table A5  
Mean estimation error (with SD) for the simultaneous model order selection methods using complexity measure 5, computed overall and per 
level of the manipulated factors 

 Level CHull AIC CHull 
AIC 

AICc CHull 
AICc 

BIC CHull 
BIC 

KIC CHull 
KIC 

MDL CHull 
MDL 

Overall 

Number of 
components 

2 0.00* 
(0.00) 

0.79 
(0.10) 

0.00* 
(0.00) 

0.79 
(0.10) 

0.00* 
(0.00) 

0.55 
(0.15) 

0.01 
(0.00) 

0.79 
(0.10) 

0.00* 
(0.00) 

0.55 
(0.15) 

0.01 
(0.00) 

0.32 
(0.36) 

5 0.00* 
(0.01) 

0.77 
(0.10) 

0.00* 
(0.01) 

0.77 
(0.10) 

0.00* 
(0.01) 

0.54 
(0.14) 

0.03 
(0.03) 

0.77 
(0.10) 

0.00* 
(0.01) 

0.54 
(0.14) 

0.03 
(0.03) 

0.32 
(0.35) 

25 0.26* 
(0.10) 

0.63 
(0.11) 

0.32 
(0.09) 

0.63 
(0.11) 

0.32 
(0.09) 

0.40 
(0.05) 

0.34 
(0.12) 

0.63 
(0.11) 

0.32 
(0.09) 

0.40 
(0.05) 

0.34 
(0.12) 

0.42 
(0.17) 

50 0.29* 
(0.10) 

0.45 
(0.09) 

0.40 
(0.18) 

0.45 
(0.09) 

0.40 
(0.18) 

0.38 
(0.03) 

0.44 
(0.20) 

0.45 
(0.09) 

0.40 
(0.18) 

0.38 
(0.03) 

0.44 
(0.2) 

0.41 
(0.15) 

Number of clusters 2 0.18* 
(0.19) 

0.76 
(0.15) 

0.23 
(0.24) 

0.76 
(0.15) 

0.23 
(0.24) 

0.40 
(0.00) 

0.27 
(0.27) 

0.76 
(0.15) 

0.23 
(0.24) 

0.40 
(0.00) 

0.27 
(0.27) 

0.41 
(0.30) 

4 0.10* 
(0.10) 

0.56 
(0.13) 

0.13 
(0.15) 

0.56 
(0.13) 

0.13 
(0.15) 

0.53 
(0.16) 

0.14 
(0.14) 

0.56 
(0.13) 

0.13 
(0.15) 

0.53 
(0.16) 

0.14 
(0.14) 

0.32 
(0.25) 

Amount of noise .1 0.14* 
(0.15) 

0.67 
(0.17) 

0.15 
(0.17) 

0.67 
(0.17) 

0.15 
(0.17) 

0.47 
(0.12) 

0.16 
(0.16) 

0.67 
(0.17) 

0.15 
(0.17) 

0.47 
(0.12) 

0.16 
(0.16) 

0.35 
(0.28) 

.4 0.12* 
(0.14) 

0.67 
(0.16) 

0.17 
(0.21) 

0.67 
(0.16) 

0.17 
(0.21) 

0.47 
(0.13) 

0.20 
(0.23) 

0.67 
(0.16) 

0.17 
(0.21) 

0.47 
(0.13) 

0.20 
(0.23) 

0.36 
(0.29) 

.7 0.16* 
(0.17) 

0.65 
(0.18) 

0.22 
(0.24) 

0.65 
(0.18) 

0.22 
(0.24) 

0.45 
(0.14) 

0.26 
(0.26) 

0.65 
(0.18) 

0.23 
(0.24) 

0.45 
(0.14) 

0.26 
(0.26) 

0.38 
(0.28) 

Overall  0.14 
(0.15) 

0.66 
(0.17) 

0.18 
(0.21) 

0.66 
(0.17) 

0.18 
(0.21) 

0.46 
(0.13) 

0.20 
(0.22) 

0.66 
(0.17) 

0.18 
(0.21) 

0.46 
(0.13) 

0.20 
(0.22) 

0.36 
(0.28) 

Note. The method with the lowest overall mean estimation error is indicated in bold; the best method(s) per data characteristic is/are indicated 
with a *. 
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Table A6 

Percentage of totally correct selected models per (simultaneous) selection method, computed per complexity measure 

Complexity 
measure 

CHull AIC CHull 
AIC 

AICc CHull 

AICc 

BIC CHull 
BIC 

KIC CHull 
KIC 

MDL CHull 
MDL 

Overall 

1 77.50 0.00 72.08 0.00 72.08 0.00 72.08 0.00 72.08 0.00 72.08 39.81 

2 23.83 0.00 14.04 0.00 14.04 0.00 14.04 0.00 14.04 0.00 14.04 8.55 

3 63.75 0.00 70.83 0.00 70.83 0.00 70.83 0.00 70.83 0.00 70.83 37.99 

4 78.33 0.00 76.25 0.00 76.25 0.00 75.83 0.00 75.83 0.00 75.83 41.67 

5 45.83 0.00 45.83 0.00 45.83 0.00 2.92 0.00 45.83 0.00 2.92 17.20 

Note. The best performing (simultaneous) method with its best complexity measure is indicated in bold. 
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Table A7        

Percentage of totally correct selected models per (sequential) selection method, computed overall and per level of the manipulated factors 

 Level VAF scree 
Components-

clusters 

VAF scree 
Clusters-

components 

PCA-Gap PCA-K means pPCA-Gap pPCA-K means 

Number of 
components 

2 98.33* 96.67 0.00 0.00 0.00 16.67 

5 50.00 96.67* 0.00 0.00 0.00 33.33 

25 91.67 96.67* 0.00 0.00 0.00 20.00 

50 93.33 100.00* 0.00 0.00 0.00 20.00 

Number of clusters 2 95.83 98.33* 0.00 0.00 0.00 41.67 

 4 70.83 96.67* 0.00 0.00 0.00 0.00 

Amount of noise .1 87.50 100.00* 0.00 0.00 0.00 50.00 

 .4 87.50 98.75* 0.00 0.00 0.00 25.00 

 .7 75.00 93.75* 0.00 0.00 0.00 0.00 

Overall  83.33 97.50 0.00 0.00 0.00 22.73 

Note. The method with the largest percentage correct estimated models is indicated in bold; the best method(s) per data characteristic is/are 
indicated with a *.  

 


