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Abstract

Einstein’s theory of general relativity provides cosmologists with the current best
framework to describe the Universe. Nevertheless, the theory has observational
and theoretical limitations. In turn, scientists have come to develop modified
theories of gravity. The thesis compares the theory of general relativity with a
particular class of modified theories called scalar-tensor theories, which
incorporates a scalar field that couples to matter. Using f (R) theory, a sub-class of
scalar-tensor theories, we develop a theoretical understanding of how certain
observational differences emerge from a given gravitational framework. After
doing so we use EFTCAMB to simulate various gravitational theories and compute
their predicted luminosity distance power spectrum. This tool tracks the variance
of the inferred luminosity distance fluctuations emerging from independent
gravitational waves and supernova events. The fluctuations arise from the
anisotropies present in the Universe, which have their evolution and dynamics
directly dependent on the gravitational framework probed. More explicitly, the
thesis investigates a general class of effective field theory models, k-Mouflage and
Generalised Brans-Dicke models. The interference power spectrum was unique to
modified gravitational theories making its detection a smoking gun result for the
existence of modified theories. Even so, it remains that the signals present are not
substantial enough to be detected in the foreseeable future. More encouragement
comes from constructing the gravitational wave luminosity distance power
spectrum since it exhibits amplitudes of larger values. Nevertheless, most
theories investigated showed small deviations from general relativity, rendering
them difficult to constrain in the foreseeable future using this tool as well. From
this we conclude that although the luminosity distance power spectrum has the
potential to be a revolutionary tool in fundamental physics and cosmology, its use
in upcoming surveys to help constrain theories, let alone delineate them, seems to
be unrealistic for the foreseeable future.



1 Introduction

In 1687, Newton published the Philosophiæ Naturalis Principia Math [1] proposing a
theory for gravity, mathematically described as:

Fg = G
m1m2

r2 (1.1)

Where G is Newton’s gravitational constant and m1, m2 the two interacting masses
separated by some distance r. In Newtonian gravity, a gravitational potential Φ
influences the acceleration of a body by:

a = −∇Φ (1.2)

with Poisson’s equation describing how the density, ρ, influences the potential:

∇2Φ = 4πGρ (1.3)

Although revolutionary, such a law couldn’t explain all observations, namely the
peculiarities of Mercury’s orbit. This phenomenon became the first notable success
of Einstein’s more elegant theory of general relativity (hereafter GR).

Einstein had proposed that gravity was a property of spacetime, emerging through
its intrinsic curvature. His argument took inspiration from Maxwell’s equation,
which implied that regardless of their frame of reference, all observers will agree
on the speed of light but not necessarily on the time it took nor the distance it has
travelled between two events.

The idea of absolute motion contradicted the implications of another theory
present at the time, namely Galilean relativity. Galilean relativity allowed for the
existence of superluminal electromagnetic waves. Starting from this
contradiction, Einstein formulated the theory of GR, showing us that nothing
could travel quicker than light, altering our perception of reality in the process.

Although GR has substantial theoretical and observational success, a few caveats
have emerged over the decades as measurements became more sensitive. Most
notably, the theory doesn’t reconcile with quantum mechanics, nor can it explain
the accelerated expansion of the Universe.

The perceived cosmic accelerated expansion comes from an elusive constituent
permeating the Universe called dark energy. Currently, dark energy is only
detectable through the repulsion force it exerts. In attempts to explain such
phenomena, some cosmologists formulate modified gravitational theories. With
the onset of gravitational wave (hereafter GW) astronomy, a new window has
opened up for cosmologists to test these modified theories and probe
fundamental physics.
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1.1 Convention Used

The thesis alternates between the time and distance coordinate system used. Here
we provide a short description of the different conventions:

Definition 1.1 (Comoving Coordinates): Comoving coordinates take into account
the expansion of the Universe (see figure 1.1). χ is used to denote this.

To get a physical distance, cosmologists multiply the comoving distance with a
scale factor a(t), which represents the size of the Universe at time t with respect to
the size now. Mathematically the scale factor is expressed as a(t)

a0
≡ R(t)

R0
, with a0

representing the current-time scale factor of the Universe, defined as one.

Figure 1.1: In comoving coordinates, the distance between two points incorporates the expansion
of the Universe as seen by the unchanging (x, y) coordinates of the diagram even though the space
expands in time. Image courtesy Baumann (2020) [2].

Definition 1.2 (Conformal Time): A change of variables in which a unit of time
takes the form: dη ≡ dt

a(t) .

Conformal time allows us to simplify the Friedmann-Lemaı̂tre-Robertson-Walker
(hereafter FLRW) metric. This will come especially handy when dissecting the
linearised Einstein equations in section 4. Some notable relations in conformal
time are:

a′ ≡ da
dη

= a
da
dt

= ȧa (1.4)

a′′ ≡ d2a
dη2 =

d
dη

(
a

da
dη

)
= aȧ2 + a2 ä (1.5)

H ≡ a′

a
=

ȧa
a

= ȧ (1.6)

Primes denote derivatives with respect to conformal time. At times, we also
represent conformal time with different styled lettering. As a comparison, below
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is the Hubble parameter in coordinate time:

H(a) ≡ ȧ
a
=

d ln a
dt

where ȧ ≡ da
dt

(1.7)

The Hubble parameter tells us the velocity at which galaxies recede from our
reference frame due to the expansion of the Universe.

Another notable convention used throughout the paper is the (−,+,+,+) form
of the metric. This means that in conformal time the metric is
gµν = diag{−a2, a2, a2, a2}, while in standard notation it is
gµν = diag{−1, a2, a2, a2}.

The thesis assumes prior knowledge regarding the mathematical mechanism of
GR. However, if needed, Appendix A provides an introduction regarding certain
concepts such as vectors, tensors and the Riemann curvature tensor.

1.2 Outline of the Paper

The thesis starts by dissecting the theory of GR in section 2 to provide a solid
foundation of Einstein’s theory and is preceded by a discussion of modified
gravity. Specifically, we keep our theoretical analysis to f (R) gravity, a modified
theory lying under the class of scalar-tensor theories.

f (R) gravity is chosen due to its simplicity and similarities with GR, only
different through the inclusion of higher-order terms dependent on the Ricci
scalar. By mimicking GR, f (R) gravity provides a straightforward way of
extracting profound insights regarding the different theoretical predictions
emerging between either theory. A brief description of Generalised Brans-Dicke
theory and k-Mouflage is also present within the section since these two models
form the basis of some of the results found.

A discussion on cosmological perturbation theory in section 4 follows,
demonstrating how a particular gravitational theory influences the overall
evolution of the Universe as well as the fashion GWs propagate through space. In
section 5 we describe the two cosmological distance measuring tools used to form
our results, namely that of supernovae Ia and GWs. The fundamentals of a power
spectrum are introduced in section 6 as this will allow for clarity and better
understanding of results. With all the essential theory laid out, we describe the
methodology used to extract results in section 7. Section 8 then provides an
overall discussion of the final results using the knowledge gained before. The
thesis wraps up with a conclusion on the findings and future possibilities.
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2 The Theory of General Relativity

Einstein’s theory of GR remains the most widely accepted theory of gravity.
Combined with the Copernican principle, it provides theorists with the
Friedmann equations, which allows for theoretical insights into the evolution and
history of the Universe.

This section starts by developing a theoretical understanding of the theory before
going through its influence on cosmology today and some of its limitations.

2.1 Einstein Field Equations

Einstein’s field equations are extracted through the principle of least action:

S =
∫

d4x L(Φi,∇µΦi) (2.1)

0 =
∂L
∂Φ
−∇µ

( ∂L
∂(∇µΦ)

)
(2.2)

Where S signifies the action, L the Lagrangian density and Φi some field.
Equation 2.2 represents the Euler-Lagrange equation whose minimisation allows
us to derive the equations of motion for some theory. This thesis only looks at
four-dimensional theories signified by d4x, with one dimension corresponding to
time and the others to space. d4x is in units of density, meaning that to obtain a
coordinate invariant expression, the Lagrangian should also be in units of density.
This can be done by decomposing the Lagrangian into the metric density,

√−g,
and a scalar component, L, as follows [3]:

L =
√
−gL̂ (2.3)

The equations of motions are found by perturbing the action relative to the theory’s
dynamical variable and seeing when it vanishes, that is, when δS = 0. Due to the
minimal coupling nature of GR, the metric tensor is the only dynamical variable
present in the framework.

Before proceeding, the question of how to construct the Lagrangian remains. We
have just pointed out that the metric needs to be perturbed for the equations of
motion to arise. As is the case in most physical theories, we assume that the
action is dependent on the second-order of the metric tensor [4]. Constructing the
action purely with the metric would be a poor choice since these are
frame-dependent. Instead, one is inclined to use the Riemann curvature tensor
since this contains second-order derivatives of the metric (equation A.13) and is

4



invariant by construct. Furthermore, recall that we wish L̂ to preserve the
tensorial form of the equation, necessitating it to be a scalar. With this in mind,
constructing the Lagrangian density through the Ricci scalar (equation A.14)
becomes a natural choice.

Later we will see that an infinite power series expanded about the Ricci scalar can
also be used for the Lagrangian. For GR, we focus on the simplest case where
L̂ = R. Equation 2.1 thus becomes:

SH =
∫

d4x
√
−gR (2.4)

SH =
∫

d4x
√
−g gµνRµν (2.5)

Here SH is the Einstein-Hilbert action. Ideally, the equations of motions emerge
through looking at the behaviour of the action relative to the metric, but since the
covariant derivative∇µ is metric compatible by construct, this would provide only
trivial results with the Euler-Lagrange equation vanishing [3].

Instead, we look at how the action differs under infinitesimal deviations of the
metric, δgµν, keeping in mind its functional form [3]:

δS =
∫

∑
( δS

δΦi δΦi
)

d4x = 0 (2.6)

Equation 2.5 and the functional form of the action is all that is needed to extract
Einstein’s field equations. To do so, we decompose the Einstein-Hilbert action as:

δSH = δS1 + δS2 + δS3 = 0 (2.7)

where we have perturbed each term in equation 2.5 as:

δS1 ≡
∫

d4x
√
−gRµνδgµν (2.8)

δS2 ≡
∫

d4x
√
−g gµνδRµν (2.9)

δS3 ≡
∫

d4x gµνRµν δ
√
−g (2.10)

Following the form of equation 2.6 we aim to group δgµν terms since this is our
dynamical field. We recognise that δS1 requires no further manipulation but that
the other two terms require some handling. Starting with δS2, we rewrite equation
A.13 corresponding to the Riemann tensor below for convenience.

Rρ
µλν ≡ ∂λΓρ

νµ + Γρ
λσΓσ

νµ − (λ←→ ν) = ∇λΓρ
νµ −∇νΓρ

λµ (2.11)

Γρ
νµ =

1
2

gρβ
(

∂νgαβ + ∂αgβν − ∂βgνα

)
(2.12)
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Using the fact that perturbing the Christoffel symbol amounts to Γρ
νµ −→ Γρ

νµ + δΓρ
νµ

we can find the expression for the perturbed Ricci tensor:

δRρ
µλν = ∇λ(δΓρ

νµ)−∇ν(δΓρ
λµ) (2.13)

δRµν ≡ δRλ
µλν = ∇λ(δΓλ

νµ)−∇ν(δΓλ
λµ) (2.14)

gµνδRµν = gµν
(
∇λ(δΓλ

νµ)−∇ν(δΓλ
λµ)

)
(2.15)

Plugging equation 2.15 into equation 2.9:

δS2 =
∫

d4x
√
−g gµν

[
∇λ(δΓλ

νµ)−∇ν(δΓλ
λµ)

]
(2.16)

Expanding the perturbed Christoffel connection:

δΓλ
νµ = −1

2
gλβ

(
∂ν(δgµβ) + ∂µ(δgβν)− ∂β(δgνµ)

)
(2.17)

Using the more generalised covariant derivatives and plugging into equation 2.15:

gµνδRµν = −1
2

gµνgλβ
[
∇λ

(
∇ν(δgµβ) +∇µ(δgβν)−∇β(δgνµ)

)
−∇ν

(
∇λ(δgµβ) +∇µ(δgβλ)−∇β(δgλµ)

)]
(2.18)

With the first and fourth terms cancelling one another, this reduces to:

gµνδRµν = −1
2

gµνgλβ
[
∇λ

(
∇µ(δgβν)−∇β(δgνµ)

)
−∇ν

(
∇µ(δgβλ)−∇β(δgλµ)

)]
(2.19)

Using metric compatibility, we push the coefficient onto the other side of either
covariant derivatives, raising the indices of the perturbed metric in the process:

gµνδRµν = −1
2

[
∇µ∇λ

(
gµνgλβδgβν

)
− gλβ∇λ∇β

(
gµνδgνµ

)
− gµν∇ν∇µ

(
gλβδgβλ

)
+∇ν∇β

(
gµνgλβδgλµ

)]
(2.20)

gµνδRµν = −1
2

[
∇λ∇µ(δgλµ)−∇β∇β(gµνδgνµ)

−∇µ∇µ(gλβδgβλ) +∇ν∇β(δgνβ)
]

(2.21)

gµνδRµν = −
[
∇λ∇µ(δgλµ)−□(gµνδgνµ)

]
(2.22)
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where □ = ∇µ∇µ and we relabelled indices. Plugging 2.22 into equation 2.9:

δS2 = −
∫

d4x
√
−g

[
∇λ∇µ(δgλµ)−□(gµνδgνµ)

]
(2.23)

Equation 2.23 denotes the covariant divergence of a vector. Following Stoke’s
theorem, this integral transforms into a surface term which we set to zero by
requiring that the metric and its first derivative vanish at the boundary. Simply
put, δS2 = 0.

For δS3, we make use of the property shown below:

δ
√
−g = −1

2
√
−ggµνδgµν (2.24)

Plugging equation 2.24 into equation 2.10:

δS3 =
∫

d4x R
(
− 1

2
√
−g gµνδgµν

)
(2.25)

Combining our results from equations 2.8, 2.22 and 2.25 we get the sought after
form for the Einstein-Hilbert action:

δSH =
∫

d4x
√
−g

(
Rµν −

1
2

gµνR
)

δgµν = 0 (2.26)

Using the functional form for the perturbed action given in equation 2.6 we get the
Einstein equation for a vacuum:

δSH

δgµν δgµν =
√
−g

[
Rµν −

1
2

Rgµν

]
δgµν = 0 (2.27)

1√−g
δSH

δgµν
= Rµν −

1
2

Rgµν = 0 (2.28)

The non-vacuum solution follows by adding a matter term to the original action:

S =
1

16πG
SH + SM (2.29)

S =
1

16πG

∫
d4x

√
−gR +

∫
d4x LM (2.30)

Extending the functional form by applying it to the new expression:

δS
δgµν δgµν =

1
16πG

(√
−gδgµν

[
Rµν −

1
2

Rgµν

])
+

δSM

δgµν δgµν = 0 (2.31)

7



With algebraic manipulation and using equation 2.28 this becomes:

Rµν −
1
2

Rgµν = −16πG
1√−g

δSM

δgµν (2.32)

The energy-momentum tensor is defined as Tµν ≡ − 2√−g
δSM
δgµν (Appendix B) [3],

giving the final Einstein equation:

Rµν −
1
2

Rgµν = 8πGTµν (2.33)

The left-hand side shows how spacetime tells mass-energy to move, while the
right-hand side incorporates the energy-momentum tensor and thus the matter
and energy of the Universe tells spacetime how to curve. Note that the equations
were extracted by perturbing the metric only, illustrating the minimal coupling
nature of the theory as it implies that all forms of energy couples to gravity.

Lovelock’s theorem [5] tells us that the Einstein equations are the only second-
order field equation obtainable for a four-dimensional spacetime constructed from
the metric tensor who satisfies the conditions listed below [6]:

• Condition 1: The action is invariant under coordinate transformations.

• Condition 2: The field equations are second-order to the metric at most.

• Condition 3: Spacetime is constrained to four dimensions.

• Condition 4: Only the metric enters the gravitational action.

Currently, only four dimensions are detectable [6]. For this particular thesis,
condition (4) is most relevant and implies that upon the addition of a new
dynamical field (i.e. a scalar field), the Einstein equivalence principle will no
longer hold (elaborated on in section 3.2). Signatures of this violation should
emerge in gravitational experiments, potentially through a modified gravitational
constant Geff.

2.1.1 Experimental Evidence

As alluded to, numerous observational experiments have substantiated the
successes of GR over the century.

Although Newton’s gravitational theory revolutionised our perception of the
physics occurring here on Earth and in the cosmos, when applied to planetary
motion, Le Verrier found that it could not explain the apparent 38 arcsecond shift

8



that occurs in its perihelion over a century [7]. This discrepancy marked the first
success of Einstein’s theory which predicted such a shift [8]. In the same decade,
Eddington [9] used the 1919 solar eclipse to show that the deflection of light was
in good agreement with the predictions made by GR[1].

Another notable success comes from the confirmation of gravitational redshift by
Rebka and Snider in the 1960s [10]. GR states that photons falling in or climbing
out of a potential well will experience a net energy change. This effect is an
emerging consequence of the Einstein Equivalence principle (EEP). More recently,
the theory has been supported by the existence of GWs which it had predicted
[11].

2.2 Current State of Cosmology

With symmetry arguments, one can build a metric that encompasses the general
geometry of the Universe, allowing us to uncover some of its fundamental
properties when combined with equation 2.33. The FLRW metric is the most
general metric that satisfies the cosmological principle. Friedmann, Lemaı̂tre,
Robertson and Walker all showed independently that there only exist three
possible metrics that satisfy this principle ([12]; [13]; [14]; [15]):

ds2 = −c2dt2 + a2(t)(dr2 + S2
κ(r)dΩ2), Sκ =


R sin

(
r
R

)
if κ = 1

r if κ = 0

R sinh
(

r
R

)
if κ = −1

(2.34)

Figure 2.1: Left: A closed geometry. The three angles of the triangle will correspond to α + β + γ >
180◦ in such a Universe. Center: A flat geometric Universe with angles of triangle summing up to
180◦. Left: A hyperbolic Universe. The angles of the triangle sum to < 180◦. Image courtesy [16].

[1] Their measurements had substantial errors, nevertheless the prediction was later confirmed
with other results [17].
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Here, R is the curvature scale, and r is the radial coordinate. κ denotes the
curvature of the Universe which can be closed (κ = 1), flat (κ = 0), or open
(κ = −1). Figure 2.1 above illustrates their respective geometries.

2.2.1 Friedmann Equations

The Friedmann equations are derived using the Einstein field equations and the
FRLW metric (equation 2.2). They help model the evolutionary history of the
Universe under particular parameters and are as follows (derived in Appendix
C): ( ȧ

a

)2
=

8πGρ

3
+ (1−Ω0)

H2
0

a2 (2.35)

ä
a
= −4πG

3

(
ρ + 3P

)
(2.36)

Where P is the pressure and Ω0 the present-day density parameter, defined as:

Ω ≡ ρ

ρcrit
=

8πGρ

3H2 −→ Ω0 ≡
ρ0

ρcrit
=

8πGρ0

3H2
0

(2.37)

Ω compares the energy-density composition of the Universe with the critical value,
defined as the density needed to keep the Universe flat.

The set of equations 2.35 and 2.36 in combination with the fluid equation derived
in Appendix D and shown below are particularly insightful as they allow us to
extract theoretical predictions, namely an expression for the evolution of the dark
energy equation of state or the expansion history of the Universe.

ρ̇ = −3
ȧ
a

(
ρ(1 + 3w)

)
(2.38)

Here w is the equation of state parameter linking the pressure of a constituent to
its density by P = wρc2. For the expression above, c ≡ 1 as we adopt natural units.

2.2.2 Constituents of the Universe

The energy-momentum tensor emerges from the right-hand side of equation 2.33
and provides us with information on the constituents making up our Universe. In
the rest-frame of a perfect fluid, the energy-momentum tensor is:

Tµν =


ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 (2.39)
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The spatial diagonal elements are all equivalent due to the isotropic nature of the
Universe. Alex Flournoy (2021) [18] provides a nice qualitative description
regarding its properties while Carroll (2004) [3] a more rigorous, mathematical
one.

In general, we can separate the energy components of the Universe into three
constituents; matter, radiation and dark energy. Matter comprises of
non-relativistic particles (|P| ≪ ρc2) and is composed of baryons and the exotic
dark matter. Dark matter is only detectable through gravitational lensing and
when measuring the orbital speeds of galaxies yet makes up to 27% of the energy
budget of the Universe (with baryons accounting for 4.9%) [19]. Observations
suggest that bottom-up structure formation is preferred, implying that dark
matter is cold.

Radiation is a component having equation of state P = 1
3 ρc2. Unlike matter, whose

density scales as a−3, radiation scales as a−4. The extra factor comes from radiation
having a stretched wavelength (and thus reduced energy density) as the Universe
expands. Although this relation made it a dominant feature in the early Universe,
it now forms a negligible fraction of the energy budget. Radiation comes in the
form of photons, neutrinos and the elusive graviton - the GW analogy of photons
for electromagnetic radiation.

The last component dominates the energy budget of the Universe, constituting
68% of the energy-density budget [19]. Dark energy has its nature shrouded in
mystery, only being observed through the accelerated expansion of the Universe.
In the current model of cosmology (ΛCDM), dark energy is described with a
constant equation of state parameter wΛ = −1. Having a constant energy density
doesn’t necessarily violate the conservation of energy even if the Universe is
expanding as long as it satisfies the Bianchi identity and the fluid equation [3].
The ΛCDM models use of a cosmological constant helps explain several
observational data.

Although we hadn’t derived it earlier, the existence of a cosmological constant
naturally arises in the Einstein field equations. In GR, the gravitational field
emerges from the energy-momentum tensor. Unlike most physics, where only
differences in energy are observable, all forms of energy are detectable in GR -
even a vacuum state. We can make this more explicit by going back to equation
2.30 and adding an arbitrary constant conveying the cosmological constant, Λ, to
our Lagrangian density.

S =
∫

d4x
√
−gL̂ =

∫
d4x

√
−g

[ 1
16πG

(R− 2Λ) + L̂M

]
(2.40)
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Decomposing this into three separate terms:

S =
1

16πG

∫
d4x

√
−gR +

∫
d4x

√
−gL̂M −

1
8πG

∫
d4x

√
−gΛ (2.41)

The first term follows equation 2.33 while the second can be relabelled as TM
µν using

the definition stated earlier, leaving us with manipulating the third term:

δSΛ = − 1
8πG

∫
d4x δ

√
−g Λ (2.42)

δSΛ =
Λ

16πG

∫
d4x

√
−g gµνδgµν (2.43)

Comparing this expression with the functional form of the action:

1√−g
δSΛ

δgµν =
Λ

16πG
gµν (2.44)

and the new Einstein equations become:

1
2

Tµν =
1

16πG

(
Rµν −

1
2

Rgµν

)
+

Λ
16πG

gµν (2.45)

8πGTµν = Rµν −
1
2

Rgµν + Λgµν (2.46)

Einstein originally introduced the cosmological constant to satisfy his
pre-conceived notion that the Universe was static. However, Lemaı̂tre showed
that such a static Universe was unstable. It wasn’t until Slipher’s [20] and
Hubble’s [21] unexpected discovery of cosmic expansion that the term has
reappeared in cosmology in an attempt to explain the nature of dark energy.

2.3 ΛCDM Model

As hinted at, the current cosmological description of the Universe is the ΛCDM
model. It takes into account observations which suggest cold dark matter (hence
the CDM), adopts a flat Universe (κ = 0) and uses a cosmological constant
denoted by Λ with equation-of-state wΛ = −1. In this cosmological model, the
Universe starts with a period of inflationary expansion before cooling to a
radiation dominated epoch. This inflationary period helps resolve the flatness,
cosmological horizon and the magnetic monopole problem.

The model is built from Einstein’s equations and has numerous successes. It
allows for the existence of a Big Bang and accurately predicts observations made
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of the Cosmic Microwave Background (hereafter CMB). Additionally, the ΛCDM
model satisfies observations of the primordial abundance of elements (hereafter
BBN) [22]. This last observation severely constrains the baryonic energy density
while also needing the presence of both a radiation-dominated and
matter-dominated epoch in the Universe.

Even with all its successes, ΛCDM cannot explain the existence of two of its major
constituents, dark energy and cold dark matter, nor can it explain the origin of the
inflaton driving inflation.

2.3.1 Evidence for Cosmic Acceleration

There is insurmountable evidence that our Universe is currently undergoing a
phase of accelerated expansion, the most famous example being the survey
conducted by Riess et al. (1998) [23].

Figure 2.2: Figure from Riess et al. (1998)
[23] in which they measured distances to distant
Supernovae and tracked their redshift. As suggested
from the plot and its legend, the best-fit model
currently resides in one with a non-zero dark-energy
composition.

Using Supernova
Ia measurements to construct
the distance ladder (figure 2.2), the
researchers were able to confidently
show that the Universe was
expanding at an accelerated rate.
Upon plotting the data, they found
that distant supernovae tended
to be fainter than what one would
expect from a decelerating Universe.

The existence of dark energy
has been supported and confirmed
through various independent
observations since then. Other
examples of observational evidence
are the CMB anisotropies through
the location of its acoustic peaks
or the age of the oldest globular
clusters found in the Milky Way ([24]; [25]).

Even with its presence, the nature of dark energy remains a mystery, and although
the WMAP has provided constraints on its equation of state (−1.097 < wDE <
−0.858 at the 5σ confidence level [26]), it remains a topic of heavy research due to
its profound implications on cosmology.
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2.3.2 Shortcomings of General Relativity

As we saw, even with all its successes, the theory of GR remains incomplete namely
through its inability to explain dark matter nor dark energy, two of the Universe’s
major constituents. Its use of a cosmological constant, although consistent with
observations, doesn’t suffice in explaining our Universe even with the inclusion of
a somewhat artificial model to explain inflationary expansion.

Furthermore, being a classical theory, GR uses a dynamical variable (the metric), as
its field. However, unlike other field theories, it does not reconcile with quantum
mechanics. In no finite steps can GR be renormalised, suggesting that it breaks
down after exceeding a particular energy scale, expected to be the Planck scale [4].

There are also some more philosophical issues regarding the theory. For instance,
why do we happen to be living during an epoch where the matter and dark
energy density budget are of order unity with one another? In a Universe
consisting of a constant dark energy density but a matter energy-density scaling
as a−3, it is suspicious we happen to live through the era where both energy
densities are comparable. Although the anthropic principle provides sufficient
reasoning, such an argument doesn’t help us answer the ‘why?’ which scientists
strive to get.

We mentioned earlier that the emergence of a cosmological constant is possible in
GR and that using such a component fits nicely with observations of the
Universe, for instance, with the predictions made of the CMB and BBN
converging well with the data. Nevertheless, a constant dark energy equation of
state cannot be the final answer. Qualitatively, the theory of inflation implies a
dynamical equation of state for dark energy. Dark energy dominates the early
periods of the Universe before it transitions into a radiation-dominant era and
later a matter-dominated one. A cosmological constant cannot explain this
non-trivial evolution of the dark energy density. Additionally, if one assumes that
the cosmological constant originates from the vacuum, there is a staggering
discrepancy up to 112 orders of magnitude between the theoretical predictions of
the vacuum energy density and our observations (see Appendix E).

A possible way to resolve these problems and explain the nature of dark energy
would be to add correction factors to the Einstein-Hilbert action and modify
gravity. Doing so removes the need of introducing dark energy and could
simultaneously explain the inflationary period of the Universe and late-time
accelerated expansion.
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3 Modified Gravity: Scalar-Tensor Theories

Over the decades, various theories have emerged attempting to explain the
peculiarities of dark energy, including modifications of GR. Modifying gravity
can be done in several ways, for example; through the addition of scalar fields,
higher-order terms in the Lagrangian, or via the inclusion of extra dimensions.

As mentioned before, one of the predictions of GR was the existence of GWs.
GWs propagate through gravitons, the gravitational analogy for photons and
electromagnetic radiation. Some theories predict this to be massive. However,
with the event GW170817 emitting in both the gravitational and electromagnetic
regime [27], scientists measured the time delay between the arrival of the
respective signals. They deduced that the relative difference between propagation
speed of GW cT and photons, c, was cT−c

c ≈ 4 × 10−16, severely restricting
massive gravitational theories in the process.

This section starts with a discussion on the broad class of scalar-tensor theories
since all theories tested in this thesis will lie under this particular class. An
analysis of f (R) gravity precedes this. f (R) gravity adds correction terms to the
Ricci scalar in the Einstein-Hilbert action (equation 2.5), and its analysis allows us
to obtain insights regarding how various effects of modified theories emerge
mathematically.

The section concludes by giving a brief description of two other scalar-tensor
theories, namely k-Mouflage and the Generalised Brans-Dicke model since they
correspond to the framework of some of the results obtained.

3.1 Scalar-Tensor Theories

Some of the more popular alternative models of gravity to describe cosmic
accelerated expansion are those classified under the scalar-tensor theories due to
their relatively simple field equations with analytical solutions. With the addition
of a scalar field, their action incorporates another dynamical variable needed to
examine when extracting the field equations and provides scientists with a
possible explanation for the perceived cosmic acceleration.

In 1974, Horndeski [28] formulated the most general description of
(four-dimensional) modified theories whose equations of motions are at most
second order in derivatives and composed purely of a scalar field and space-time
curvature terms. Although mostly neglected within the scientific community, it
has had a recent resurgence thanks to the formulation of different screening
mechanisms such as the chameleon mechanism (briefly discussed in Appendix F).

15



The theories tested in the thesis all lie under Horndeski theories, or equivalently,
under Generalised Galileons, which were discovered later ([29];[30]). In natural
units, the Horndeski action is [31]:

S =
∫

d4x
√
−g

5

∑
i=2
Li +

∫
d4x LM(gµν, ψm) (3.1)

where:

L2 = G2(φ, X) (3.2)
L3 = G3(φ, X)□φ (3.3)

L4 = G4(φ, X)R− 2G4X(φ, X)
[
(□φ)2 − (∇µ∇ν φ)2

]
(3.4)

L5 = G5(φ, X)Gµν∇µ∇ν φ

+
1
3

G5X(φ, X)
[
(□φ)3 − 3□φ(∇µ∇ν φ)2 + 2(∇µ∇ν φ)3

]
(3.5)

Here, we have defined X ≡ ∂µ φ∂µ φ. φ denotes the scalar field, Gi some arbitrary
theory-dependent function of the scalar field, R the Ricci scalar, Gµν the Einstein
tensor in the Jordan frame, and GiX the derivatives of the respective function along
X.

For the different Lagrangian terms, G2 and G3 influence the evolution of the scalar
field while G4 and G5 provide the non-minimal coupling nature of the theory [32].
Although the theory consists of both first and second-order derivatives, its
resulting equations of motion are only up to second order. Given our earlier
remarks, since we focus on theories expecting GW to propagate at the speed of
light, then G4X ≈ 0 and G5 is a constant. Note that by imposing G2 = 0, G3 = 0
and G4 = 1, one retrieves the Einstein-Hilbert action discussed earlier.

Although it encapsulates a wide range of theories, Beyond Horndeski theories
have also been developed ([33]; [34]). Theories such as Degenerate Higher-Order
Scalar Tensor (or DHOST) incorporate higher-order terms in a degenerate
Lagrangian which help bypass the ghost-instabilities otherwise implied by
Ostrogradsky’s theorem [35]. This use of degenerate Lagrangians is paramount to
the theory as Ostrogradsky’s theorem only holds for non-degenerate Lagrangians
and shows the resulting Hamiltonian of some theory will not be bounded from
below, insinuating the existence of negative energies. This will be briefly
expanded upon in the context of f (R) gravity in section 3.2.4.

It is worth mentioning the equivalence between Generalised Galileons and
Horndeski theories. Briefly, Generalised Galileons theories are named as such
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thanks to the symmetry of the scalar field under the transformation
φ −→ φ + bµxµ + c replicating the form of Galilean transformations in classical
mechanics. When introducing curved spacetime, this symmetry breaks due to the
non-minimal coupling nature of the scalar field. Its similarity with Horndeski
theories resides in the fact that their field equations remain second-ordered, and
its corresponding Lagrangians can be mapped straightforwardly to those defined
in Horndeski theory ([33]; [34]).

3.2 f (R) Gravity

3.2.1 Deriving the Field Equations

f (R) gravity modifies the Einstein-Hilbert action by adding higher-order terms
dependent linearly on the Ricci scalar. We can express this as an infinite power
series:

f (R) = ...
α2

R2 +
α1

R
− 2Λ + R +

R2

β2
+

R3

β3
... (3.6)

S =
1

2κ2

∫
d4x

√
−g f (R) (3.7)

Where αi and βi are coefficients of the ith order term and κ2 ≡ 8πG and reflects
the coefficient of the energy-momentum tensor in the Einstein equations (equation
2.33). Notice that we can distinguish the Einstein-Hilbert action through the zeroth
and first order term in the Ricci scalar, once more highlighting the fact that the
theory of GR represents the simplest case.

If we look back at the Horndeski action (equation 3.1), f (R) gravity corresponds
to the following mapping:

G2 ≡ −U(φ) ≡ 1
2κ2 [ f (R)− F(R)R] (3.8)

G4 ≡
φ

2κ2 ≡
F(R)
2κ2 (3.9)

and G3 = 0, G5 = 0. To satisfy constraints placed on the speed of propagation for
GWs we also require that G4X ≈ 0. Note that we have defined F(R) ≡ d f

dR .

f (R) gravity can explain the accelerated expansion from the addition of a scalar
field through the inclusion of terms proportional to the inverse Ricci scalar, while
dependencies on Rn with n > 0 allow one to model inflation (the Starobinsky
model [36] being a prime example).
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For the remainder of this subsection, we replicate the procedure of section 2 and
derive the essential formulas of f (R) gravity under the metric formalism, picking
out important insights along the way.

Metric f (R) gravity entails that the Christoffel connection is dependent on the
metric, allowing us to derive the field equations simply by varying the action
with respect to the metric. Other conventions include the Palatini formalism,
which assumes an independent Christoffel connection and metric, meaning to
extract its field equations, we would have to vary both the metric and the
Christoffel connection. The metric-affine formalism lies somewhere in between
either of them. In this formalism, the Christoffel connection is dependent on the
metric, just like the metric formalism, but to obtain its field equations, one has to
vary the action with respect to both terms. No differences arise between the
formalisms in GR, but this doesn’t hold for f (R) gravity.

We start by deriving the field equations by isolating δgµν terms in the perturbed
action. Looking at the non-vacuum solution of equation 3.7:

S = S f + SM =
1

2κ2

∫
d4x

√
−g f (R) +

∫
d4x

√
−gL̂M(gµν, ψ) (3.10)

Where ψ denotes the matter fields and we have split the two actions for simplicity.
Varying the action with respect to the metric and equating it to zero we have that:

δS = δS f + δSM = 0 (3.11)

δS f =
1

2κ2

∫
d4x

(
δ
√
−g f (R) + F(R)δR

√
−g

)
(3.12)

We will use the fact that δ f (R) = d f (R)
dR

δR
δgµν

= F(R)δR.

Using the chain rule, δR = δ(Rµνgµν) = Rµνδgµν + (δRµν)gµν, we separate S f into
three terms:

δS f =
1

2κ2

∫
d4x

[
F(R)

(√
−gRµνδgµν +

√
−ggµνδRµν

)
+ δ

√
−g f (R)

]
(3.13)

δS f = δS1 + δS2 + δS3 (3.14)

δS1 ≡
1

2κ2

∫
d4x F(R)

√
−gRµνδgµν (3.15)

δS2 ≡
1

2κ2

∫
d4x F(R)

√
−ggµνδRµν (3.16)

δS3 ≡
1

2κ2

∫
d4x δ

√
−g f (R) (3.17)
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Equation 3.15 is already of the form we want. Looking at equation 3.16 we use the
identity expressed in equation 2.22:

δS2 =
1

2κ2

∫
d4x F(R)

√
−g

(
∇σ∇σgµνδgµν −∇σ∇λδgσλ

)
(3.18)

δS2,1 ≡
1

2κ2

∫
d4x F(R)

√
−g

(
∇σ∇σgµνδgµν

)
(3.19)

δS2,2 ≡
1

2κ2

∫
d4x F(R)

√
−g

(
−∇σ∇λδgσλ

)
(3.20)

δS2 is separated for convenience. Here we have to use integration by parts on the
first term. Integration by parts follows the form of:∫

dnx
√
−gAµ(∇µB) = −

∫
dnx

√
−g(∇µ Aµ)B + Boundary Terms (3.21)

Solving δS2,1 first, we have Aµ ≡ ∇σgµνδgµν and B ≡ F(R). Setting the boundary
term to vanish at infinity:

δS2,1 =
1

2κ2

∫
d4x

√
−g

(
∇σgµνδgµν

)(
∇σF(R)

)
(3.22)

To isolate δgµν we apply integration by parts once more where now
Aµ ≡ ∇σgµνδgµν and Bµ ≡ ∇σF(R):

δS2,1 =
1

2κ2

∫
d4x

√
−g

(
gµνδgµν□F(R)

)
(3.23)

Using the same procedure for δS2,2:

δS2,2 = − 1
2κ2

∫
d4x

√
−g

(
∇λ∇σF(R)

)
δgσλ (3.24)

Subbing both of these into our expression δS2 = δS2,1 + δS2,2:

δS2 =
1

2κ2

∫
d4x

(
gµν□F(R)−∇µ∇νF(R)

)√
−gδgµν (3.25)

For equation 3.17, we plug the identity for δ
√−g:

δS3 =
1

2κ2

∫
d4x

(
− 1

2
√
−ggµν f (R)δgµν

)
(3.26)

All in all, the three terms give us:

δS f =
1

2κ2

∫
d4x

(
F(R)Rµν + gµν□F(R)−∇µ∇νF(R)− 1

2
gµν f (R)

)√
−gδgµν

(3.27)
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Replicating our earlier methodology to derive Einstein’s equations, we use the
functional form of the action and plug our results into equation 3.11:

δS
δgµν δgµν =

√−g
2κ2

(
F(R)Rµν + gµν□F(R)−∇µ∇νF(R)− 1

2
gµν f (R)

)
δgµν

+
δSM

δgµν δgµν = 0 (3.28)

2κ2
√−g

δSM

δgµν = −F(R)Rµν − gµν□F(R) +∇µ∇νF(R) +
1
2

gµν f (R) (3.29)

Using the definition of the energy-momentum tensor (equation B.1), the field
equations for f (R) gravity become:

κ2T(M)
µν = F(R)Rµν + gµν□F(R)−∇µ∇νF(R)− 1

2
gµν f (R) (3.30)

Double checking equation 3.30 we see that for f (R) = R and F(R) ≡ d f (R)
dR = 1,

the equation reduces to those of Einstein’s field equation 2.33.

Furthermore, notice that equation 3.30 is third-order. This coincides back to
Lovelock’s theorem which states that Einstein’s equations are the only
second-order field equations for an action constructed in four dimensions
consisting purely of the metric and its derivatives.

To gain further insight, let us rearrange equation 3.30 to mimic the form of
Einstein’s field equation, allowing us to highlight differences in the theory’s field
equations:

κ2T(M)
µν = F(R)Rµν +

(1
2

gµνF(R)R− 1
2

gµνF(R)R
)

+ gµν□F(R)−∇λ∇σF(R)− 1
2

gµν f (R) (3.31)

Here we have simply added and subtracted a term from the original expression.

κ2T(M)
µν = F(R)

(
Rµν −

1
2

gµνR
)
+

1
2

gµν

(
F(R)R− f (R)

)
−∇µ∇νF(R) + gµν□F(R) (3.32)

Rµν −
1
2

gµνR =
1

F(R)

[
κ2T(M)

µν −
1
2

gµν

(
F(R)R− f (R)

)
+∇µ∇νF(R)− gµν□F(R)

]
(3.33)
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∴ Gµν =
κ2

F(R)

(
T(M)

µν + Teff
µν

)
(3.34)

where:

Teff
µν ≡

1
κ2

[
− 1

2
gµν

(
F(R)R− f (R)

)
+∇µ∇νF(R)− gµν□F(R)

]
(3.35)

From this manipulation, we see that if we wish to have an equation akin to
equation 2.33, we would need to define a new gravitational constant Geff ≡ G

F(R) .
This difference in Newton’s gravitational constant appears ubiquitously in
modified gravity and is synonymous with the effective Planck mass, MPl. Note
that its relation is model-dependent and can take on much more complicated
forms in other theories [31].

The manipulation done here helps illustrate how f (R) gravity deviates from GR
and disobeys the Einstein equivalence principle since Newton’s gravitational
constant, G, is no longer independent of space and/or time due to its F−1(R)
dependency.

As a reminder, there are three equivalence principles one can distinguish:

• Weak Equivalence Principle (WEP): Particles in a particular location of
spacetime feel the same acceleration. Their intrinsic properties have no
influence.

• Einstein Equivalence Principle (EEP): For any object and force, when
ignoring internal gravity, a uniform gravitational field is identical to
uniform acceleration. In other words, a laboratory experiment conducted
inside a uniformly accelerated spaceship will provide the same results as
those in a uniform gravitational field, giving rise to the Universality of free
fall.

• Strong Equivalence Principle (SEP): For any object and force, a uniform
external gravitational field is identical to uniform acceleration.

Of all the modified theories, only the theory of GR satisfies SEP due to the Einstein-
Hilbert action being the only minimally coupled action. It follows that a particle
will follow the same geodesic at all scales and time, as highlighted by its non-
varying Newton constant G.

Contrariwise, as we see for f (R) gravity, the Newton constant depends on the
local environment due to the scalar field coupling to the Ricci scalar. By having a
varying Newton constant, geodesics become dependent on their location in space
and time such that deviations from the external gravitational field and a uniform
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acceleration field appear, breaking both SEP and EEP alike. In other words, since
matter couples differently to the scalar field, differences in geodesics and the
evolution of perturbations present in the Universe are amplified. Testing this
principle in the strong regime has not yet been done as it requires a thorough
analysis of black holes and other compact objects [37].

It is also profound to take the trace of equation 3.30. Doing so gives:

κ2T = 3□F(R) + F(R)R− 2 f (R) (3.36)

If we apply f (R) = R to replicate GR, we are simply left with the equation
R = −κ2T. For generic f (R) gravity, a non-vanishing d’Alambertian entails an
extra propagating scalar degree of freedom coined the scalaron, which mediates a
fifth force. These differences in the field equations imprint themselves in the
background solution of the Friedmann equations. For a flat Universe using the
FLRW metric, the solutions of the 00 and ii equations are [38]:

3F(R)H2 = κ2ρ− 1
2

f (R)− 3HḞ(R) +
1
2

F(R)R (3.37)

2ḢF(R) = HḞ(R)− F̈(R)− κ2(ρ + P) (3.38)

3.2.2 Equivalence with Brans-Dicke Theory

In a historical sense, it is interesting to note the relation between f (R) gravity and
Brans-Dicke theory [39]. In their paper, Brans and Dicke formulated a gravitational
theory attempting to explain Mach’s principle, something not achieved by GR. In
particular, Brans-Dicke theory looks at a gravitational theory coupled to the scalar
field with an extra propagating scalar degree of freedom emerging as the effective
gravitational constant.

Here we illustrate how f (R) gravity forms a subgroup of Brans-Dicke theory. The
corresponding action is [39]:

SBD =
∫

d4x
√
−g

( 1
2κ2 φR− ωBD

2φ
(∇φ)2 −U(φ)

)
+ SM (3.39)

Where ωBD is the Brans-Dicke parameter defining the theory, U(φ) the potential
and φ the scalar field, defined here as F(R) ≡ φ. If we go back to our f (R)
defining action in equation 3.10 and follow the methodology laid out by de Felice
and Tsujikawa (2010) [38], we relabel our field as χ where F(χ) ≡ d f (χ)

dχ . The new
action becomes:

S =
1

2κ2

∫
d4x

√
−g

(
f (χ) + F(χ)(R− χ)

)
+ SM (3.40)
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Setting the perturbed action to vanish and varying it with respect to this new field
χ:

δS = 0 = F(χ)− F(χ) + ∂χF(χ)(R− χ) (3.41)

From here we see that as long as F′(χ) ≡ ∂χF(χ) ̸= 0 then R = χ and our action
given in expression 3.40 goes back to our original f (R) action. To make equation
3.40 replicate the form given by Brans-Dicke theory, we define a potential:

U(φ) =
1

2κ2

(
χ(φ)φ− f (χ(φ))

)
−→ f (χ(φ)) = −2κ2U(φ) + χ(φ)φ (3.42)

Using our earlier definition for the scalar field where φ ≡ F(χ), we plug our results
into equation 3.40:

S =
1

2κ2

∫
d4x

√
−g

(
− 2κ2U(φ) + χφ + φ(R− χ)

)
+ SM (3.43)

S =
∫

d4x
√
−g

( 1
2κ2 φR−U(φ)

)
+

∫
d4x

√
−gL̂M(gµν, ψ) (3.44)

Equation 3.44 mimics that of the Brans-Dicke action (equation 3.39) with ωBD =
0, illustrating the equivalence between the metric formalism of f (R) gravity and
Brans-Dicke theory.

Current constraints have ωBD > 3800 [40], suggesting that if a scalar field does
exist, it only weakly couples to the Ricci scalar (the Einstein equation corresponds
to ωBD −→ ∞). Although this constraint once ruled out f (R) theories, development
within the field suggests that in regions of large curvature (high density), the non-
minimally coupled scalar degree of freedom can acquire additional mass resulting
in a suppressed potential, thereby allowing f (R) theories to persevere [41].

3.2.3 Conformal Transformations

Equation 3.10 can appear more like conventional GR through a conformal
transformation. Doing so allows one to explicitly extract the kinetic term of the
scalar field, unmasking its additional scalar propagating degree of freedom and
non-minimal coupling nature of the matter field with the scalar field in the
process. To show this, we first list a set of transformations and variables following
the notation provided in De Felice and Tsujikawa (2010) [38]:

g̃µν = Ω2gµν −→
√
−g̃ = Ω4√−g (3.45)

ω ≡ ln Ω, ∂µω ≡ ∂ω

∂x̃µ , □ω̃ ≡ 1√
−g̃

∂µ(
√
−g̃g̃µν∂νω) (3.46)

R = Ω2
(

R̃ + 6□̃ω− 6g̃µν∂µω∂νω
)

(3.47)
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As seen here, in a conformal transformation, the metric gµν scales with some
function dependent on spacetime Ω2, implying that it isn’t a mere change of
coordinates.

Here, we rewrite equation 3.10 for convenience and define a potential U analogous
to that of equation 3.42 as follows:

S =
1

2κ2

∫
d4x

√
−g f (R) + SM(gµν, ψM) (3.48)

U =
F(R)R− f (R)

2κ2 (3.49)

Doing so gives us the new action:

S =
1

2κ2

∫
d4x

√
−g

(
F(R)R− 2κ2U

)
+ SM(gµν, ψM) (3.50)

Using our transformations in equation 3.45 and equation 3.47:

S =
1

2κ2

∫
d4Ω−4√−g̃

[
F(R)

(
Ω2R̃ + 6Ω2□̃ω− 6Ω2 g̃µν∂µω∂νω

)
− 2κ2U

]
+ SM

(
F−1(φ)g̃µν, ψM

)
(3.51)

Since our goal is to imitate the Einstein-Hilbert action, we want a function linear
in R̃. This forces us to define F(R) ≡ Ω2. We note that already we have uncovered
the non-minimal coupling nature of the theory since we see that the matter action,
SM, is now dependent on the scalar field.

One of the factors corresponding to
∫

d4x □̃ω takes the divergence over a surface
area which vanishes [38], leaving us with the action:

S =
1

2κ2

∫
d4x

√
−g̃

(
R̃− 6Ω−2F(r)g̃µν∂µω∂νω− 2κ2Ω−4U

)
+ SM

(
F−1(φ)g̃µν, ψM

)
(3.52)

Using our definition F(R) ≡ Ω2, we simplify this expression. Furthermore, we set

κφ ≡
√

3
2 ln F following [38]. Doing so results in ω = 1√

6
κφ and ∂µω = 1√

6
κ∂µ φ.

Continuing our algebraic manipulations:

S =
1

2κ2

∫
d4x

√
−g̃

(
R̃− g̃µνκ2∂µ φ∂ν φ− 2κ2Ω−4U

)
+ SM

(
F−1(φ)g̃µν, ψM

)
(3.53)

S =
∫

d4x
√
−g̃

( R̃
2κ2 −

1
2

g̃µν∂µ φ∂ν −Ω−4U
)
+ SM

(
F−1(φ)g̃µν, ψM

)
(3.54)

24



Setting the potential as V(φ) ≡ U
F2 = Ω−4U, our action becomes:

S =
∫

d4x
√
−g̃

( R̃
2κ2 −

1
2

g̃µν∂µ φ∂ν φ−V(φ)
)
+ SM

(
F−1(φ)g̃µν, ψM

)
(3.55)

Here we see the merit of the conformal transformation. Through mathematical
manipulation, we found a theory replicating the form of the Einstein-Hilbert
action with additional potential and kinetic terms. Doing so unmasks the scalar
propagating degree of freedom otherwise hidden in equation 3.10. Furthermore,
it becomes apparent once more when comparing the similarities of the equation
above with that of equation 3.54 how f (R) gravity lies in the same family of
theories as Brans-Dicke theory.

In following such a transformation, although we force the gravitational theory to
minimally couple with the Ricci curvature term, the scalar field now becomes non-
minimally coupled to the matter field as shown explicitly with the equation of
motion expressed below (and derived in Appendix G) along with the dependence
of the scalar field within the matter action as denoted in equation 3.55:

□̃φ− ∂φV(φ) + κT̃Q = 0 (3.56)

where Q ≡ − ∂φF
2κF = − 1√

6
[38].

Although a conformal transformation taking us from the Jordan frame to the
Einstein frame is handy to explicitly show the extra scalar degree of freedom
emerging within the theory, the physical meaning of a conformal transformation
remains unclear ([42]; [43]; [44]). Any physical interpretation of results needs to
done be through the Jordan frame.

3.2.4 Model Restrictions

Equation 3.6 shows how the higher-order correction terms in the Ricci scalar can
be expressed in an infinite power series for f (R) gravity and although this implies
the existence of an infinite amount of models, numerous restrictions constraint
those which are feasible. This subsection introduces a non-exhaustive list of the
restrictions for f (R) theories. The reader is encouraged to go through Pogosian
and Silvestri (2008) [41] and Amendola and Tsujikawa (2010) [45] if they wish to
get a more thorough discussion.

For starters, one may naively develop other forms of modified theories of gravity
similar to that of f (R) theories, through the inclusion of higher-order curvature
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invariant terms such as RµνRµν. However, models adopting this methodology are
prone to Ostrogradsky instability [35], which was alluded to back in section 3.1.

In its most simplistic form, Ostrogradsky’s theorem states that a theory defined
with a Lagrangian higher than first order in derivatives will encounter linear
instability since its Hamiltonian becomes unbounded from below, resulting in
negative energies. Woodward (2007) [35] provides a thorough description of this
theorem and its application to modified theories of scalar gravity. In context to
this report, although f (R) gravity includes higher-order terms, it bypasses the
instability thanks to its use of the Ricci scalar rather than the Ricci tensor whose
indices in second-order derivatives contract onto one another, thus violating the
assumption of non-degeneracy proposed by the theorem [35].

Focusing on the metric formalism once more, below is a list of a few theoretical
constraints that restrict the possible f (R) models attempting to explain late-time
cosmic acceleration following ref. [41] and [45]:

• Theoretical Constraint 1: F(R) > 0 for R ≥ R0.
Here R0 denotes the present day (local) Ricci scalar. Intuitively, the
condition helps avoid a negative sign in the effective Newtonian constant
defined earlier since Geff ∝ G

F , this helps avoid anti-gravity.

• Theoretical Constraint 2: F′(R) > 0 for R ≥ R0
Satisfying this condition enables the theory to coincide with observational
tests conducted in local gravitational tests ([46], [47]), to generate the correct
cosmological perturbations constrained by GWs, satisfy CMB and large scale
structure observations ([48], [49]) and finally, ensure the presence of a matter-
dominated epoch [50]. Additionally, if this condition doesn’t hold then the
scalaron mass will be negative, breaking causality [41].

• Theoretical Constraint 3: At high density (R≫ R0), f (R) −→ R− 2Λ
This condition states that the theory should reduce to GR in environments
with large densities and comes from the severe restrictions placed by
observations in the early Universe, such as the primordial abundances of
elements and the CMB.

• Theoretical Constraint 4: F(R) adopts small values at the local scale.
This condition ensures that the model exhibits only minute deviations of the
effective dark energy equation-of-state estimated with respect to the
cosmological constant.

In addition to the ever-growing list of restrictions theoretical work has placed on
f (R) models, the theory must incorporate smooth transitions between different
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era’s of the Universe to comply with observations. Other restrictions for models
based on observational data are:

• The theory must predict the dynamics observed in clusters and superclusters.

• The description of gravitational lensing replicates that of GR.

• The theory should correctly predict the perihelion precession of planets and
the time delay between radar signals.

Even with the numerous restrictions, countless models exist. However, when
applying Occam’s razor, a theory with excessive fine-tuning becomes
unappealing.

3.3 k-Mouflage

Although f (R) theories helped us gather intuition on the effects of modified
theory, the remaining two subsections introduce two other classes of modified
theories since these form the basis of the results extracted in section 8. It remains
that each theory we will simulate lies under the scalar-tensor class.

As we alluded to at the beginning of section 3.1, due to the success of GR,
modified theories should incorporate screening mechanisms to satisfy constraints
and observations within the solar system. Although we have mentioned the
chameleon mechanism, k-Mouflage composes a framework with a different
screening mechanism, one dependent on the strength of the local gravitational
fields. More explicitly, when passed a certain threshold, the scalar field
camouflages with its surroundings through self-interaction. References ([51]; [52];
[53]) all provide a detailed explanation of the gravitational theory. Here we only
wish to outline a few of its parameters. k-Mouflage theories have the following
action in the Einstein frame:

Sk =
∫

d4x
√
−g̃

(M2
Pl

2
R̃ +M4K(χ̃)

)
+ SM(g̃µν, ψi) (3.57)

Where g̃µν is the metric in conformal frame related by the Jordan metric through
a coupling factor A(φ) as g̃µν = A2(φ)gµν,M4 the energy scale of the scalar field
set by the cosmological constant and χ̃ ≡ − g̃µν

2M4 ∂µ φ∂µ φ denoting the kinetic factor
for the scalar field influencing the kinetic function K(χ̃).

k-Mouflage predicts a Universal coupling to the scalar field to matter through the
variable Ā(a). Doing so results in a heavily modified background evolution. For
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this thesis, it is worth writing its expression [54]:

Ā(a) = 1 + αa

[
1−

( a(γA + 1)
a + γA

)νA
]

(3.58)

where:

νA =
3(m− 1)
2m− 1

(3.59)

αA = − ε2.0(1 + γA)

γAνA
(3.60)

ε2.0 ≡
d ln Ā
d ln a

(3.61)

In this sense, we note that the parameters ε2.0, m, γA all influence the coupling
parameter Ā(a) and thus influence the background expansion of the Universe. A
larger |ε2.0| parameter results in a stronger coupling to matter from the scalar field,
and thus we recover GR when ε2.0 −→ 0. This follows since imposing Ā = 1, ε2.0 =
0, the Hubble parameter for k-Mouflage (given below) will mimic that of GR [54]:

H2(a) =
Ā2

(1− ε2.0)2

(
Ωm0a−3 + Ωr0a−4 + Ωφ0

ρφ

ρφ0

)
(3.62)

γA represents the transition epoch of the Universe to be dark energy dominated
while m denotes the behaviour of the kinetic function. For large χ̃ we have that
K(χ̃) ∝ χ̃m [54].

A degeneracy between γA and ε2.0 exists since taking its limit to infinity results
in equation 3.58 becoming Ā(a) = 1− (1−aνA )ε2.0

νA
. Taking this limit also forces the

model to converge to GR due to the bounds placed on ε2.0 forcing Ā ≈ 1.

In the code used for this paper, we also have the freedom to choose different
parameters influencing the kinetic behaviour of the scalar field through αU and
γU. These define the epoch dark energy becomes the dominant constituent of the
Universe. However, from the preliminary results taken (and agreed by Benevento
et al. (2019) [54]), changing these parameters resulted in minimal deviations with
GR. Therefore, we leave their values fixed when simulating.

3.4 Generalised Brans-Dicke

Finally, the thesis will also analyse the luminosity distance power spectrum of
Generalised Brans-Dicke theories (hereafter GBD). Here, we are not interested in
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providing a rigorous mathematical description (see ref. [32]; [55]; [56]; [57]).
Instead, we take Canevarolo (2020) [32] as inspiration since the paper provides a
thorough description of the theory translated into the effective field theory
language, which is the framework implemented by the code used when
extracting results. The GBD action is [55]:

S =
∫

d4x
√
−g

[ 1
2κ2 F(φ)R− 1

2
B(φ)(∂µ φ∂µ φ) + ξ(φ)□φ∂µ φ∂µ φ

]
+ SM (3.63)

where F(φ) B(φ) and ξ(φ) are all arbitrary functions of the scalar field φ, each
playing a different role. More explicitly, we have that [32]:

F(φ) ≡ M2
Pl

( φ

MPl

)3−n
(3.64)

which influences the behaviour of the dark energy equation of state and denotes
the non-minimal coupling term,

B(φ) ≡ ω
( φ

MPl

)1−n
(3.65)

which is the non-canonical kinetic energy term of the scalar field, and finally:

ξ(φ) ≡
( λ

µ3

)( φ

MPl

)−n
(3.66)

ξ(φ) describes the non-linear self-interaction term of the scalar field and it acts as
the screening mechanism for GBD theories [58]. In each of these three functions,
the parameters ω and n are freely chosen and will form the independent variables
analysed in the thesis.

We note that the action corresponding to equation 3.63 is more general than those
of classical GBD models. This is reflected in the all the components being
dependent on arbitrary function F(φ), B(φ) and ξ(φ). The more specific GBD
models, as exemplified by the action of equation 3.39, will have the last term with
the d’Alambertian absorbed in the non-canonical term and have in its stead a
potential dependence.

Note that the Chameleon mechanism provides screening usually through the
potential term appearing in the gravitational theory. Here, instead, the
appearance of a self-interaction term necessitates the use of the Vainshtein
screening mechanism [59].

29



4 Cosmological Perturbations

As seen in the previous two sections, it is clear that depending on the
gravitational theory used, the field equations will differ. This is due to their
differences in the field equations and the gravitational constant. The field
equations tell us the behaviour and distribution of the energy-momentum in a
given environment, and thus, depending on the theory, different observations on
the large scale structure of our Universe will arise.

For our research, it is sufficient to analyse the perturbation equations
corresponding to GR, keeping in mind that since the field equations for f (R)
gravity differ with the addition of a modified gravitational constant Geff, so do its
perturbation equations. To simplify our task, we use conformal time η.

4.1 Scalar-Vector-Tensor Decomposition

At linear order, we can separate the perturbed metric and perturbed
energy-momentum tensor in the following fashion:

gµν = ḡµν(η) + δgµν(η, x) (4.1)
Tµν = T̄µν(η) + δTµν(η, x) (4.2)

Where ḡµν and T̄µν denote the average background metric and
energy-momentum tensor respectively, hence their independence on location, x.
In turn, we can rewrite our FLRW metric (equation 2.2) as:

ds2 = −a2(η)[(1 + 2A)dη2 − 2Bidxidη − (δij + ĥij)dxidxj] (4.3)

Where A, Bi and hij represent the scalar, vector and tensor perturbation of the
metric respectively and are a function of both space and (conformal) time.

Throughout the paper, we have been working in 4 dimensions, meaning the field
equations correspond to solutions of a symmetric 4× 4 matrix, with ten degrees
of freedom. We can reduce the number of degrees of freedom by performing a
scalar-vector-tensor decomposition (hereafter SVT decomposition) on the vector
and tensorial term.

Conducting SVT decomposition is allowed since both the 00-Ricci tensor and
Ricci scalar have no tensorial contribution in their expressions at linear order. In
doing so, scalar, vector and tensor components all evolve independently. After
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SVT decomposition, our vector and tensorial terms are:

Bi = ∂iB + B̂i (4.4)

ĥij = 2Cδij + 2∂⟨i∂j⟩E + 2∂(iÊj) + Eij (4.5)

where:

∂⟨i∂j⟩E ≡ (∂i∂j −
1
3
∇2)E and ∂(iÊj) ≡

1
2

(
∂iÊj + ∂jÊi

)
(4.6)

Here we have separated the vector Bi into a gradient of a scalar and a
divergenceless vector (∂iB̂i = 0). The tensor term ĥij is split into the scalars C, E,
the divergenceless vector Êj, and a trace-free divergenceless tensor Eij. By being
trace free, we have that Êi

i = 0.

By doing a SVT decomposition we have split the original ten degrees of freedom
into four scalar degrees of freedom, four vector degrees of freedom and two
tensorial ones.

4.2 Choosing the Gauge

It is important to note that our perturbed metric, equation 4.3, represents
perturbations at a specific time slice and thus, our results depend on our choice of
time. One option in the hopes of achieving a physical interpretation of the
perturbed equations can stem from using the Bardeen variables [60] as these sets
of variables are gauge invariant. They are:

Ψ ≡ A +H(B− E′) + (B− E′)′ Φ̂i ≡ B̂i − Ê′i (4.7)

ĥij ≡ 2Cδij + 2∂⟨i∂j⟩E + 2∂(iÊj) + Eij Φ ≡ −C +
1
3
∇2E−H(B− E′) (4.8)

Notice that the tensorial term, ĥij remains unchanged from before, meaning it is a
true tensorial degree of freedom and hints at the presence of GWs.

Another tool often applied to help analyse the cosmological perturbation
equations is to fix the gauge transformation. For this report, it is most convenient
to use the Newtonian gauge which sets two scalar perturbations B and E to zero.
Applying this, we relabel the aforementioned Bardeen variables as:

Ψ ≡ A Φ̂i ≡ 0 (4.9)

ĥij ≡ 2Cδij Φ ≡ −C = −1
2

hij (4.10)
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For GR, in the absence of anisotropic stress we can write Ψ = −Φ. Plugging the
Newtonian-gauged Bardeen variables into equation 4.3:

ds2 = −a2(η)[(1 + 2Ψ)dη2 − (1− 2Φ)dx2] (4.11)

4.3 Scalar Perturbations

By describing the evolution of potentials, the scalar perturbation equations
provide us with information regarding how the distribution of energy and
momentum influence the surrounding environments density contrast, and how
these same potential wells distribute the energy.

We start our analysis by looking at the general relativistic form of the continuity
equation. The Christoffel symbols to linear order for the metric in equation 4.11
are:

Γ0
00 = H+ Ψ′ Γ0

i0 = ∂iΨ = ikiΨ (4.12)

Γi
00 = δij∂jΨ = ikiΨ Γ0

ij = Hδij −
(

Φ′ +H(Φ + Ψ)
)

δij (4.13)

Γi
j0 = (H−Φ′)δi

j Γi
jk = −2δi

(j∂k)Φ + δjkδjl∂lΦ (4.14)

For the readers convenience, we derive Γ0
00 and Γ0

i0 in Appendix H as examples.
The perturbed components of our energy-momentum tensor are:

T0
0 = ρ̄ + δρ Ti

0 = (ρ̄ + P̄)vi Ti
j = −(P̄ + δP)δi

j −Πi
j (4.15)

where Πi
j denotes the anisotropic stress. In GR, the conservation law is represented

by the twice-contracted Bianchi identity [3];

∇µGµν = 0 −→ ∇µTµν = 0 (4.16)

This expression forms the starting point of deriving the continuity equation. Using
this equation and expanding the covariant derivative with respect to at least one
time-indices:

∇µTµ0 = ∂0T0
0 + ∂iTi

0 + Γµ
µ0T0

0 + Γµ
µiT

i
0 − Γ0

00T0
0 − Γi

00T0
i − Γi

j0T j
i = 0 (4.17)

Substituting our Christoffel connections:

0 = ∂0(ρ̄ + δρ) + ∂i

(
(ρ̄ + P̄)vi

)
+ (H+ Ψ′ + 3[H−Φ′])(ρ̄ + δρ)

+ (∂iΨ + δjkδjl∂lΦ)((ρ̄ + P̄)vi)− (H+ Ψ′)(ρ̄ + δρ)− (∂jΨ)[(ρ̄ + P̄)vi]

− (δij∂jΨ)[(ρ̄ + P̄)vi]− [(H−Φ′)δi
j][−(P̄ + δP)δi

j] (4.18)
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A few terms in the expression above cancel each other, allowing us to get:

0 = ∂0(ρ̄ + δρ) + ∂i[(ρ̄ + P̄)vi] + 3(H−Φ′)(ρ̄ + δρ) + (H−Φ′)δi
j[(P̄ + δP)δi

j]

(4.19)

Expanding this and grouping the zeroth and first-order term, we have that:

∂0ρ̄ = −3H(ρ̄ + P̄) (4.20)

∂0δρ = −∂i(ρ̄ + P̄)vi − 3H(δρ + δP) + 3Φ′(ρ̄ + P̄) (4.21)

Equation 4.21 shows the perturbed continuity equation and tells us the time
evolution of density perturbations. Note that we have just seen how the
procedure used to construct the continuity equation is dependent on the field
equations explicitly, and as a consequence, they are dependent on the
gravitational theory.

A modified theory of gravity, namely f (R), would exhibit deviations with the
above expression due to the extra Teff

µν term. Tracking the evolution of potential
wells across a range of redshifts could allow us to distinguish a gravitational
theory through the different evolutionary behaviour they predict for the
perturbations.

This section would remain incomplete without mention of the Poisson equation,
which describes how the energy-momentum components of a local environment
influence the geometry of spacetime surrounding this body. To extract the Poisson
equation we need both the 00 and 0i Einstein field equations.

Here we only derive the 00th component, but the 0i derivation follows the same
procedure. We start by perturbing the Einstein equations to linear order as it is an
expression we will use throughout.

Gµν = Rµν −
1
2

gµνR = 8πGTµν (4.22)

Ḡµ
ν + δGµ

ν = 8πG(T̄µ
ν + δTµ

ν) (4.23)

δGµ
ν = δRµ

ν −
1
2

δ
µ
νR = 8πGδTµ

ν (4.24)

Using results from Appendix I, which shows the derivations of the perturbed Ricci
scalar and Ricci tensors, the 00 equation is:

G0
0 = g0µGµ0 = g00G00 = g00(R00 −

1
2

g00R) (4.25)

G0
0 = −a−2(1− 2Ψ)R00 −

1
2

R (4.26)
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Plugging in equations I.6 and I.12:

G0
0 = −a−2(1− 2Ψ)[∇2Ψ− 3H′ + 3H(Φ′ + Ψ′) + 3Φ′′]

+
1

2a2 (2∇
2Ψ− 6(H′ +H2)− 4∇2Φ + 6Φ′′

+ 6H(Ψ′ + 3Φ′) + 12(H′ +H2)Ψ) (4.27)

Here we combined the negative pre-factor with the Ricci scalar expression to get
the (+) sign. Expanding and simplifying the expression, we get to linear order:

G0
0 =

1
a2 [3H

2 + 2∇2Φ− 6H(HΨ + Φ′)] (4.28)

If we extract only the perturbed terms (terms dependent on Φ and Ψ), the
perturbed first-order time-time field equation becomes:

1
2

δG0
0a2 = ∇2Φ− 3H(HΨ + Φ′) (4.29)

4πGa2δρ = ∇2Φ− 3H(HΨ + Φ′) (4.30)

Note that for Fourier modes well inside the Hubble radius (k ≫ H), we are
reduced to the conventional Poisson equation describing Newtonian gravity
∇2Φ ≈ 4πGa2δρ since in this regime we can assume the information to propagate
instantaneously. In Fourier space, the equation is:

4πGa2δρ = −k2Φ− 3H(HΨ + Φ′) (4.31)

Following the same procedure for the 0i field equation, one obtains:

4πGa2δT0
i = k2(Φ′ +HΨ) (4.32)

4πGa2(ρ̄ + P̄)vi = k2(Φ′ +HΨ) (4.33)

Combining the two expressions and multiplying the 0i component with a factor
3H
k2 , we can finally extract the Poisson equation:

G0
0 −

3H
k2 G0

i = −k2Φ− 3H(Φ′ +HΨ) + 3H(Φ′ +HΨ) (4.34)

k2Φ = −4πGa2
(

δρ + 3
H
k2 (ρ + P)vi

)
≡ −4πGa2∆ (4.35)

with ∆ being the comoving density contrast, named as such since in the comoving
gauge with v = B = 0, the expression reduces to ∆ = δρ

ρ̄ [2].
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Since we utilised the linearised Einstein equations for the derivation, we now see
the extent to which predictions on the evolutionary history of the perturbed
potentials Φ and Ψ depend on the gravitational theory.

For scalar-tensor theories, several complementary effects modify the equations;
the fact that the scalar field mediates a fifth force, the running of the Planck mass
MPl (analogously, the change in the gravitational constant with Geff), a different
Hubble parameter H(z) and growth factor D1, and finally, the use of an altered
field equation with the inclusion of a theory-dependent Teff

µν term influencing the
final perturbation equations.

This insight provides us with some understanding of how different gravitational
theories exhibit different luminosity distance power spectra. These differences in
the perturbation equations eventually immerse themselves in various
observational effects, some of which will get elaborated upon in section 6.3.

4.4 Tensor Perturbations

One of Einstein’s predictions was the existence of GWs. GWs correspond to
radiation emitted from highly energetic events, which end up stretching and
squeezing spacetime itself. Here we glance over their properties, with Carroll
(2006) [48] and Hughes (2020) [61] each providing a comprehensive discussion.

4.4.1 Linearised Gravity

The mathematical description of GWs arises from a freely-propagating tensorial
degree of freedom. To introduce them, we analyse the influence tensorial
perturbations on the FLRW metric have on the linear order field equations. To do
so, we impose two conditions:

• Condition 1: Our field is dynamic.

• Condition 2: Our metric tensor, gµν, can be decomposed into a flat
Minkowski part, ηµν, and a variable denoting minute perturbations, hµν.
Mathematically: gµν = ηµν + hµν , where |hµν| ≪ 1.

The first condition is necessary for the existence of radiation. The second allows
us to analyse only to linear order and follows from Birkhoff’s theorem [62].

From this, let us consider an infinitesimal shift in our coordinates
xα −→ xα + ζα(xβ). If we define the coordinate transformation matrix as Tα′

β ≡
∂xα′

∂xβ ,
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we get the following relation:

Tα′
β ≡

∂xα′

∂xβ
= δα

β + ∂βζα (4.36)

To satisfy the Kronecker delta relation, Tα′
β Tβ

γ′ = δα′
γ′ , our inverse transformation

matrix should be:

Tβ
γ′ = δα

γ − ∂γζα +O(∂αζα) (4.37)

Furthermore, note that the metric shown under Condition 2 transforms as
gµ′ν′ = Tα

µ′T
β
ν′ gαβ. Substituting all the information we have gathered into this

transformation:

gµ′ν′ = (δα
µ − ∂µζα)(δ

β
ν − ∂νζβ)(ηαβ + hαβ) (4.38)

Expanding the expressions out:

ηµ′ν′ + hµ′ν′ = ηµν + hµν − ∂µζαδ
β
ν ηαβ − ∂νδα

µηαβζβ +O(hζβ) (4.39)

hµ′ν′ = hµν − ∂µζν − ∂νζµ +O(hζβ) (4.40)

Using this expression for the perturbed metric, the Riemann curvature tensor, Ricci
tensor and Ricci scalar to first-order become [3]:

Rµανβ =
1
2
(∂α∂νhαβ + ∂µ∂βhαν − ∂α∂βhµν − ∂µ∂νhαβ) (4.41)

Rαβ =
1
2
(∂α∂µhµβ + ∂β∂µhµα − ∂α∂βh−□hαβ) (4.42)

R = ∂α∂µhαµ −□h (4.43)

Where □ = ηµν∂µ∂ν and h = ηµνhµν = hµ
µ. Applying these equations into the field

equation Gαβ = Rαβ − 1
2 gαβR, we get:

Gαβ =
1
2
(∂α∂µhµβ + ∂β∂µhµα − ∂α∂βh−□hαβ + ηαβ□h− ηαβ∂µ∂νhµν) (4.44)

With this, we choose to work with the trace-reversed metric perturbation. The
trace-reversed metric holds the same information as our original perturbed metric
while simultaneously simplifying the maths. It is denoted with a bar and
corresponds to:

h̄αβ ≡ hαβ −
1
2

ηαβh (4.45)

36



Its trace-reverse nature becomes apparent when contracting the indices since:

h̄ = ηαβhαβ −
1
2
(h)ηαβηαβ = −h (4.46)

Going back and relabeling the metric perturbation in this fashion allows us to
simplify our Einstein equation into:

Gαβ =
1
2
(∂α∂µh̄µβ + ∂β∂µh̄µα − ηαβ∂µ∂νh̄µν −□h̄αβ) (4.47)

Notice that the the Lorenz gauge ∂µh̄µν = 0 would simplify the equation as it will
cause all divergent terms present to vanish. To apply such a gauge requires that
∂µh̄old

µν = □ζν. By applying the same transformation used earlier, it follows that
our trace-reversed perturbation transforms as ([3]; [63]):

h̄new
µν = h̄old

µν − ∂µζν − ∂νζµ + ηµν∂αζα +O(ζ2) (4.48)

∂µh̄new
µν = ∂µh̄old

µν − ∂µ∂µζν − ∂µ∂νζµ + ∂µηµν∂αζα (4.49)

∂µh̄new
µν = ∂µh̄old

µν − ∂µ∂µζν (4.50)

Using this gauge, the linear order tensorial perturbation solution to our Einstein
tensor is:

Gαβ = −1
2
□h̄αβ = 8πGTαβ (4.51)

This expression denotes the wave equation and guarantees the existence of a
tensorial freely-propagating degree of freedom. This class of freely-propagating
degrees of freedom are GWs. Although equation 4.51 suggests that every
component of the trace-reversed metric can radiate, this is an artefact of the
Lorenz gauge chosen [63] which will become more apparent when we see that
only two of the six spatial indices of the metric have radiative elements.

4.4.2 Evolution of Gravitational Waves

With solutions to the wave equation guaranteed to exist, we now look at how
they propagate. For the remainder of the section, we work with the ansatz that
all perturbations vanish but the tensorial one [48]. Intuitively, we are solving the
perturbation equations in a vacuum. Using this ansatz, equation 4.3 becomes:

ds2 = −a2(η)[dη2 − (δij + 2ĥij)dxidxj] (4.52)
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Naturally, the Christoffel connections will change with the new metric. To first-
order, they are:

Γ0
00 = H Γ0

ij = H(δij + 2ĥij) + ĥij (4.53)

Γi
j0 = Hδi

j + 2ĥi
jH+ ĥi′

j Γi
jk = ∂kĥi

j + ∂jĥi
k − δil∂l ĥkj (4.54)

It is important to note a few properties of this perturbed metric tensor. Looking
back at our SVT decomposition, we had that:

ĥij = 2Cδij + 2∂⟨i∂j⟩h + 2∂(iĥj) + hTT
ij (4.55)

Where for convenience we relabel E −→ h. The TT subscript represents the fact that
our tensor ĥij is traceless (ĥi

i = 0) and transversal (or divergenceless).

Counting the number of degrees of freedom, the two scalar terms C and h provide
each one degree of freedom. The vector, being divergence-free, provides us with
two. Finally, our transverse-traceless tensor is a symmetric 3× 3 matrix giving us
a total of four degrees of freedom. However, due to its transverse-traceless nature,
this is reduced to two.

In the previous subsection, we saw that our scalar degrees of freedom are static
since no time derivatives are present in their solutions (see equation 4.30 and
equation 4.33). We have also seen that tensorial perturbations are guaranteed a
wave solution. It follows that the two remaining degrees of freedom represent the
mathematical description of GWs ([63]; [64]). In general, our original perturbed
tensor is ([48]; [65]):

hµν =


0 0 0 0
0 hTT

xx hTT
xy 0

0 hTT
yx hTT

yy 0
0 0 0 0

 =


0 0 0 0
0 hTT

xx hTT
xy 0

0 hTT
xy −hTT

xx 0
0 0 0 0

 (4.56)

The reshuffling of indices and swapping of the signs for elements in (µ, ν) = (3, 3)
of equation 4.56 comes from the transverse and traceless properties. The diagonal
terms represent the xx and yy polarisation of GWs and convey a stretching and
squeezing of spacetime along the axis. Meanwhile, the off-diagonal polarisation’s
induce a crossed pattern, both of which are represented in figure 4.1 below.
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Figure 4.1: A diagram representing the stretching and squeezing of spacetime as a GW goes
through it. The red dots represent individual particles with adjacent forms denoting their position
over time. Left: The hxx = hyy polarisation induce a stretch and squeezing tidal force along the axis
on freely-falling particles distributed about a concentric circle. Right: The hyx = hxy polarisation of
GWs induce a distortion along ×. Seen here through the diagonal stretching and squeezing of the
same concentric circle of particles.

Once more, exploiting the transverse-traceless properties means that upon
contracting the various Ricci tensors with their corresponding metric element, all
perturbation terms drop, reducing the Ricci scalar to:

R =
6
a2 (H

′ +H2) (4.57)

Here we focus purely on the ij component of the field equations as solving the
time-time Einstein equation provides no perturbation (see Appendix J). Plugging
the expression for the Rij (see Appendix K for the derivation) into the ij-Einstein
equation:

Rij = (H′ + 2H2)δij + ĥ′′ij −∇2ĥij + 2Hĥ′ij + 2ĥijH′ + 4ĥijH2 (4.58)

Gij = Rij −
1
2

gijR (4.59)

Gij = (H′ + 2H2)δij + ĥ′′ij −∇2ĥij + 2Hĥ′ij + 2ĥijH′

+ 4ĥijH2 − 1
2

[ 6
a2 (H

′ +H2)
]
[a2(δij + 2ĥij)] (4.60)

With some tedious but straightforward algebraic manipulation, we obtain:

Gij = 8πGTij = ĥ′′ij −∇2ĥij −H2δij + 2Hh′ij − 2H′δij − 2(2H′ĥij +H2ĥij) (4.61)

δGij = 8πGδTij = ĥ′′ij −∇2ĥij + 2Hh′ij − 2(2H′ĥij +H2ĥij) (4.62)
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Recalling our expression for the energy-momentum tensor (equation B.1), the
perturbed tensorial energy-momentum component for our metric is:

Tµν = (ρ + P)UµUν + Pgµν −→ δTij = 2a2ĥijP̄ (4.63)

Plugging this back into expression 4.62:

16πGa2P̄ĥij = ĥ′′ij −∇2ĥij + 2Hĥ′ij − 2(2H′ĥij +H2ĥij) (4.64)

2ĥij(8πGa2P̄ + 2H′ +H2) = ĥ′′ij −∇2ĥij + 2Hĥ′ij (4.65)

Here we rewrite our time-derivative Hubble constant and Friedmann equations in
conformal time given in the introduction for convenience as we require them to
solve the equations given above:

H′ =
( a′

a

)′
=

a′′

a
− a′2

a2 (4.66)

a′2 =
8πG

3
ρa4 (4.67)

a′′ =
4πG

3
(ρ− 3P)a3 (4.68)

Using these, we can simplify the current form of our equation as:

ĥ′′ij −∇2ĥij + 2Hĥ′ij = 2ĥij

(
8πGa2P̄ + 2

a′′

a
− 2

a′2

a2 +H2
)

(4.69)

ĥ′′ij −∇2ĥij + 2Hĥ′ij = 2ĥij

(
8πGa2P̄ +

8πG
3

(ρ− 3P̄)a2 − 8πG
3

ρa2
)

(4.70)

ĥ′′ij −∇2ĥij + 2Hĥ′ij = 0
Fourier Space−−−−−−−→ ĥ′′ij + k2ĥij + 2Hĥ′ij = 0 (4.71)

The expression above tells us how GWs, sourced by tensor perturbations of the
metric, evolve in GR and adopts the form of a damped harmonic oscillator
equation with a damping factor 2H.

For modified theories the evolution equation for GW differ slightly. For f (R)
gravity, the expression is ([31]; [38]; [66]) :

0 = ĥ′′ij + k2hij +H
(

2 +
F′(R)
F(R)

)
h′ij (4.72)

Intuitively, the extra term in equation 4.72 relative to equation 4.71 emerges due
to the non-minimal coupling nature of the theory naturally providing a damping
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factor dependent on the time scale evolution of the theory since. We can define the
damping factor for f (R) gravity as [31]:

δ ≡ F′(R)
2F(R)

= −d ln MPl

d ln a
(4.73)

Where ln MPl is the running of the Planck mass. Due to the differences in their
nature, GWs provide an ideal candidate when probing fundamental theories of
gravity.

As we saw with scalar perturbations, varying the field equations causes the density
perturbations to take on different forms. In turn, one can delineate the correct
theory of gravity describing the Universe through the distribution and evolution
of large scale structures, as well as the altered geodesics of particles.

Furthermore, it has become clear that the field equations corresponding to
different gravitational theories predict varying behaviours of propagating GWs.
Scalar-tensor theories exhibit a different damping behaviour - dependent on the
local environment.

These two concepts make GW astronomy enticing for theoretical physicists as any
deviations in the theory of GR (and subsequently ΛCDM cosmology) should be
measurable through observations of GW events. The section provides us with the
theoretical needed for our results (section 8). This paper bases its results on the
predicted signals of the luminosity distance power spectrum for various theories.

The information provided in this section suffices for understanding our results.
Numerous papers provide a thorough analysis regarding the mechanisms
influencing the deviations present in the luminosity distance power spectrum
between gravitational theories. If the reader wishes to understand more, they are
encouraged to go through ref. ([31]; [67]; [68]; [69]; [70]; [71]) as a starting point.
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5 Distances

Cosmologists use many different tools to estimate distances to particular regions
of the Universe. From trigonometric methods such as the parallax method,
enabling us to measure the neighbourhood, to using the CMB acoustic peaks to
set a distance to the moment of last scattering, these methods are constantly
refined and improved. For this paper, a basic understanding of supernova Ia
(hereafter SNIa) and standard sirens are all that is required.

5.1 Supernova Ia

SNIa events mark one of the most prominent tools used in cosmology to measure
distances and lie under the class of standard candles due to the measured distance
being dependent on the measured flux received.

A SNIa explosion occurs when a white dwarf in a binary system accretes enough
matter to reach the Chandrasekhar limit from its companion star. Due to being
mass limited by the Chandrasekhar limit, the energy of the explosion is
predetermined and thus has a known maximum energy of around 2 × 1051 erg
[72]. With a known maximum energy, we can calculate the peak luminosity of the
event and extract its distance when comparing it to the measured flux observed.

Although these events allow us to measure distances on cosmological scales (the
furthest event being 10 billion lightyears away [73]), there remain many errors
attributed to it when inferring distances. Interstellar reddening and a possible
non-trivial SNIa evolutionary history at different epochs of the Universe all
provide calibrating obstacles polluted with systematic errors and uncertainties.
Even after calibrating these systematics away, a 15% scatter in the maximum
luminosity exists [69]. Thankfully, due to the sheer amount of observations, this
scattering uncertainty is compensated for to an extent and is one of the most
reliable methods used to measure cosmological distances.

This thesis bases its results partly on the luminosity distance inferred through
SNIa events. By doing so, we allow ourselves to probe far out in the Universe
allowing any modifications to gravity more time to imprint themselves on the
measurements. We note that no matter the gravitational framework used,
photons couple minimally to matter and exhibit identical propagation behaviour.

Using both SNIa events and standard sirens, which we know have
theory-dependent propagation, we provide ourselves with a possible tool to
identify any deviations with GR through a interference power spectrum which
will highlight differences in the behaviour of GWs.
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5.2 Standard Sirens

As we saw earlier, different gravitational theories predict differences in the
propagation of GWs - namely, f (R) theories exhibit a damping behaviour, which,
thanks to the vast distances covered (possibly exceeding those probed by SNIa
[74]) could allow for some compelling evidence for the existence or non-existence
of modified theories.

GW astronomy is a new development, recently opened through observations of
a black hole - black hole merging event ([11]; [75]; [76]) and that of neutron star
binary systems [77]. It is bound to revolutionise the field with various upcoming
projects expected to provide regular observations of these events (advanced LIGO
[78], LIGO-India [79], LISA [80] and the Einstein Telescope [81] to name a few).

Due to its stretching and squeezing spacetime, inferring distances through GW
forms a new class of distance measurement tools - those of standard sirens.
Standard sirens come in various forms. For instance, GWs emanating from
supermassive black hole binaries, which can be detected anywhere between a
redshift of 1 ≤ z ≤ 10 [82] while the family of GW originating from extreme
mass-ratio inspirals between 0.1 ≤ z ≤ 2 ∼ 3 [83]. This particular classification
doesn’t consider other intrinsic characteristics of standard sirens, for instance,
their wavefront or emitted frequency.

Although we expect to measure distances far beyond those found by SNIa with
standard sirens, unlike their standard candle counterpart, their propagation
behaviour is theory-dependent. Here we will provide a rudimentary example of
how measured distances using standard sirens change depending on the
gravitational theory used, with a more comprehensive discussion provided in
Belgacem et al. (2019) [31].

Recall the GW evolution equation for GR (equation 4.72, rewritten below for
convenience):

0 = ĥ′′ij + k2ĥij + 2Hĥ′ij (5.1)

Setting and substituting ĥij = a−1(η)χA(η, k) where χA(η, k) is some field we get:

0 = (a−1χA)
′′ + 2H(a−1χA)

′ +
k2

a
χA (5.2)

0 =
(χ′

a
− χa′

a2

)′
+ 2H

(χ′

a
− χa′

a2

)
+

k2

a
χ (5.3)
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Expanding and then simplifying the expression:

0 =
(χ′′

a
− χ′a′

a2 −
χ′a′

a2 −
χa′′

a2 +
2χa′2

a3

)
+ 2

χ′a′

a2 − 2
χa′2

a3 +
k2

a
χ (5.4)

0 = χ′′ +
(

k2 − a′′

a

)
χ (5.5)

For modes inside the horizon then k = 2π
λ ≫ H ≈

a′′
a , which allows us to simplify

our expression into:

0 = χ′′ + k2χ (5.6)

This equation is reminiscent of a harmonic oscillator. It follows that the solutions
to χ in this gravitational framework is:

χ(η) = A sin (kη + ϕA) −→ ĥij =
A

a(η)
sin (kη + ϕA) (5.7)

The distance measured through a standard siren in GR follows the same damping
behaviour as those followed by photons emitted from SNIa observations due to its
minimal coupling nature. For this report, it suffices to know that the distance is
calculated via the amplitude of ĥij ([31]; [66]; [74]). In equation 5.7, this is inversely
proportional to the scale factor .

Shifting our discussion to f (R) gravity, we follow the same procedure but this
time, starting from equation 4.72.

0 = ĥ′′ij + k2ĥij +H
(

2 +
F′(R)
F(R)

)
ĥ′ij (5.8)

0 = ĥij + k2ĥij + 2H
(

1 +
F′(R)
2F(R)

)
ĥ′ij (5.9)

Using the same procedure we set ĥij ≡ χ
ã and define ã′

ã ≡ H
(

1 + F′(R)
2F(R)

)
. Solving

the wave equation term by term:

ĥ′ij =
(χ

ã

)′
=

(χ′

ã
− χã′

ã2

)
(5.10)

ĥ′′ij =
(χ′

ã
− χã′

ã2

)′
=

χ′′

ã
− χ′ ã′

ã2 −
χ′ ã′

ã2 −
χã′′

ã2 + 2
χã′2

ã3 (5.11)

ĥ′′ij =
χ′

ã
− χã′

ã2 + 2
χã′2

ã3 (5.12)
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Subbing both expressions into our wave equation:

0 = χ′′ + χ
(

k2 − ã′′

ã2

)
k≫H−−−→ 0 = χ′′ + k2χ (5.13)

which ends up having [31]:

χ(η) = A sin (kη + ϕA) −→ ĥij =
A

ã(η)
sin (kη + ϕA) (5.14)

Once more, we get a sinusoidal solution. Even so, its behaviour is different to the
case for GR as this time ĥij is dependent on ã−1 rather than a−1, and so is dependent

on the damping factor F′(R)
2F(R) .

From this additional term, we see that the dependence between distances
measured with standard candles and standard sirens in modified gravity
changes. This suggests that after taking measurements using both devices, a
non-zero value should arise when taking their differences. We make this more
explicit by taking the ratio of the distances measured.

Building on the results just found, and following Belgacem et al. (2018b) [66] and
Belgacem et al. (2019) [31], the distance measured via standard sirens in the case
of GR, dGR

L , and modified gravity, dMG
L , scale as: dGR

L ∝ a−1 and dMG
L ∝ ã−1. Taking

their ratios we have:

dMG
L

dGR
L

=
a(z)
ã(z)

(5.15)

Manipulating our expression for ã we see that:

ã′

ã
= H

(
1 +

F′(R)
2F(R)

)
(5.16)

dã
ã

= H
(

1 +
F′(R)
2F(R)

)
dη (5.17)

Using the fact that conformal time is defined by dt = adη:

dã = H
(

1 +
F′(R)
2F(R)

)
dt (5.18)

ã ∝ exp
[ ∫

H
(

1 +
F′(R)
2F(R)

)
dt
]

(5.19)
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Doing the same manipulation for GR, we get the following relation between scale
factor and the Hubble parameter:

a′

a
= H −→ da

dη
= aH −→ a ∝ exp

[ ∫
Hdt

]
(5.20)

Next, we make use of the following relation:

dt =
dt
da

da =
dt
da

da
dz

dz (5.21)

dt = −ȧ−1 dz
(z + 1)2 = − dz

aH(z + 1)2 (5.22)

dt = − dz
H(z + 1)

(5.23)

Subbing equations 5.19, 5.20 and 5.23 into equation 5.15:

dMG
L

dGW
L

=
a(z)
ã(z)

= exp
[ ∫ (

H − H − H
F′(R)
2F(R)

)
dt
]

(5.24)

dMG
L

dGW
L

= exp
[
−

∫
H

F′(R)
2F(R)

dt
]
= exp

[
−

∫ dz
(1 + z′)

δ(z′)
]

(5.25)

Where recall from equation 4.73 that δ(z′) ≡ F′(R)
2F(R) . Naturally, we see that if there is

no damping, the ratio between the two is equal to one - whereas if a modification
to gravity exists, the measured distances differ.

With sufficient understanding of a particular gravitational model and both types of
events occurring at similar redshifts, disagreements between theories can expose
themselves, allowing future research the possibility of delineating gravitational
theories.

In this thesis, we will compute two different luminosity distance power spectra.
One is based purely on the GW measurements, which allows us to track
differences in both the propagation behaviour of GW as well as the background
expansion history and scalar perturbations in which the sources are entrenched.
The other power spectrum uses both standard sirens and SNIa events to highlight
any discrepancy emerging from the propagation behaviour predicted, and to a
lesser extent, how differences in the evolutionary history influence the graviton,
as can be seen through the relation in equations 4.71 and 4.72. From the
discussion presented in this section, we expect no signals to emerge in the
interference power spectrum for GR, while for modified theories, a non-vanishing
one.
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6 Statistical Analysis

This section introduces the luminosity distance power spectrum, which forms the
basis of our results. Garoffolo et al. (2020) [71] initially formulated the luminosity
distance power spectrum with support provided by their companion paper [84].

The mathematical description of the luminosity distance power spectrum is
outside the scope of the paper. Instead, we provide a generalised description of
the angular power spectrum before delving into its qualitative characteristics. The
reader is encouraged to browse the two original papers if they want a more
profound understanding.

6.1 Angular Power Spectrum

Contrary to the Copernican principle, the Universe is not perfectly homogenous
and isotropic at all scales. This is clear when we look up at the night sky. Stars and
galaxies appear randomly distributed when observed at small enough scales.

As the Universe expands, the denser regions originating from the quantum
fluctuations present at the Big Bang attract more matter thanks to the force of
gravity, while voids become increasingly sparser. One can study the statistical
properties of these variations through the construction of a power spectrum,
which quantifies the variations at fixed scales through the Fourier transform of
the two-point correlation function (Appendix L shows the relation between the
two).

In the case of GWs, an angular power spectrum is necessary as there is currently
no way to identify the redshifts of their sources. An angular power spectrum looks
at the statistical properties between two events at different sections of the observed
sky.

To begin constructing an angular power spectrum, one takes the analogy of the
Fourier analysis in spherical harmonics. The discrete and continuous Fourier series
in Cartesian coordinates are:

f (x, y, z) =
∞

∑
nx=−∞

∞

∑
ny=−∞

∞

∑
nz=−∞

Anxnynz einxkxxeinykyyeinzkzz (6.1)

f (rn̂) =
1

(2π)3

∫
d3k A(k)eik·r (6.2)

where the unit vector is n̂ and k denotes the wavenumber (or scale) measured after
applying a Fourier transformation. We expand the exponential using Rayleigh’s
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plane wave expansion (equation 6.3) [85] since this allows mapping of functions
onto spherical surfaces.

eik·r = 4π
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

(i)ℓ jℓ(kr)Yℓm(θk, ϕk)Yℓm(θ, ϕ) (6.3)

Here, Yℓm is the spherical harmonic, while θ is the angle relative to the direction of
observation. ℓ denotes the multipole number and is associated with the number
of nodes present in the observed scale. A larger ℓ corresponds to a smaller scale
length. The number of modes along the polar coordinate ϕ is m. Finally jℓ(kr)
denotes the ℓ Bessel function dependent on the wavenumber k.

The Bessel function projects the inhomogeneity of a particular wavenumber onto
the angular anisotropy, defined by a fixed multipole number. In doing so, the
Bessel function highlights the fluctuations present at any given scale.

The spherical harmonic analog to the Fourier series is:

f (r, θ, ϕ) =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

âℓm jℓ(kr)Yℓm(θ, ϕ) (6.4)

Using the orthonomality and completeness properties of Yℓm we can say that [86]:

âℓm =
∫

dΩ
Y∗ℓm(n̂) f (rn̂) dΩ (6.5)

Here, f (rn̂) is the physical signal we measure, which in our case is the luminosity
distance along some coordinate distance rn̂, and aℓm the amplitude of the spherical
harmonic component measured along with a particular patch on the sky. We can
decompose âℓm into the background signal plus some additional perturbation as
follows:

âℓm = āℓm + aℓm (6.6)

Where āℓm denotes the average and aℓm the perturbed value at some (ℓ, m). To
construct a power spectrum, one would need countless independent ensembles to
extract impartial statistical information. However, only one sample (one
Universe) exists from which we can extract information. We resolve this issue
thanks to ergodicity. Ergodicity arises from the properties of the Gaussian
random field describing inflation and the Copernican principle. It replaces the
need for an ensemble average with that of a spatial average [2].
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Since any perturbation (and thus fluctuation) tends to zero at the infinite limit, it is
better to analyse the variance, ⟨a∗ℓmaℓm⟩, given as:

Cℓ ≡ ⟨a∗ℓ′m′aℓm⟩ =
1

2ℓ+ 1

ℓ

∑
m=−ℓ

a∗ℓmaℓm (6.7)

Intuitively, the variance illustrates the power of a signal at a particular scale ℓ for
all modes m. In our analysis, we can neglect the dependence of the polar angle ϕ
and m thanks to the isotropic nature of the Universe.

With the fundamentals listed, we can start constructing our power spectrum by
plugging our various expressions into equation 6.7. First, we re-express the Fourier
series (equation 6.2) incorporating the Rayleigh plane wave expansion:

f (rn̂) =
1

(2π)3

∫
A(k)

(
4π

∞

∑
ℓ=0

ℓ

∑
m=−ℓ

(i)ℓ
′
jℓ′(kr)Y∗ℓ′m′(n̂)Yℓ′m′(n̂)

)
d3k (6.8)

Plugging this into equation 6.5:

aℓ′m′ =
∫

dΩ
Y∗ℓ′m′(n̂)

[ 1
(2π)3

∫
A(k)

(
4π

∞

∑
ℓ=0

ℓ

∑
m′=−ℓ′

(i)ℓ
′
jℓ′(kr)Y∗ℓ′m′(n̂)Yℓ′m′(n̂)

)
d3k

]
dΩ (6.9)

Using orthonormality where
∫

Ω

(
Y∗ℓm(n̂)Yℓ′m′(n̂)

)
= δll′δmm′ , we remove the two

summations leaving us with:

aℓ′m′ =
4π

(2π)3

∫
A(k)(i)ℓ

′
jℓ′(kr)Y∗ℓ′m′ d3k (6.10)

Subbing this and its complex conjugate into equation 6.7:

Cℓ =
( 4π

(2π)3

)2〈( ∫
A∗(k′)(−i)ℓ

′
jℓ′(k′r)Yℓ′m′ d3k′

)( ∫
A(k)(i)ℓ

′
jℓ′(kr)Y∗ℓ′m′ d3k

)〉
(6.11)

From this, we use the orthogonality property of plane waves to simplify the
equation using the expression [87]:

⟨A∗(k′)A(k)⟩ = ⟨|A(k)|2⟩ (2π)3 2π2

k3 δ(k′ − k) (6.12)
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The expression above describes the two-point correlation function of the signal
measured at two different locations across the sky. Using the orthogonality
relation, we rewrite the final form of our (generalised) power spectrum as:

Cℓ = 4π
∫
⟨|A(k′)|2⟩j2ℓ(k′r) d ln k (6.13)

In reality, there are many more mechanisms to consider in the power spectrum,
with each observable having a unique expression. For this paper, we look at the
luminosity distance power spectrum, given as [71]:

CGW
ℓ = 4π

∫
Ix
ℓ (k
′)Iy

ℓ (k
′) d ln k (6.14)

Ix
ℓ (k) ≡

∫ z∗

0
dz jℓ(kχ)Wx(z)

(∆dGW
L

dGW
L

)
(6.15)

Note how our observed signal A(k) is now expressed as
(

∆dGW
L

dGW
L

)
. This term

denotes the luminosity distance fluctuation where ∆dGW
L = −dGW

L ∆ lnAGW [84].
From this we see how the fluctuations are dependent on the perturbed amplitude,
∆A, of the signal detected.

The factor W(z) in equation 6.15 denotes the window function and signifies the
probability of measuring a specific event at a given redshift and is dependent on
the survey. Since we take a theoretical analysis, the one used in this paper follows
a Gaussian function.

6.2 Luminosity Distance Power Spectrum

With a basic understanding of the mechanisms behind the angular power
spectrum, we now dissect equation 6.15 to gain further insights.

In their paper, Garoffolo et al. (2021) [84] generalised their earlier results to
Degenerate Higher-Order Scalar-Tensor (or DHOST) gravitational theories. We
use this expression to extract intuition for our eventual results. By using the
Newtonian gauge (equation 4.11), they derived the following:

∆dGW
L

dGW
L

= −κ − (Φ + Ψ) +
1
χ

∫ χ

0
dχ̃ (Φ + Ψ) + Φ

( 1
Hχ
−

M′Pl
HMPl

)
+ v∥

(
1− 1
Hχ

+
M′Pl
HMPl

)
−

(
1− 1
Hχ

+
M′Pl
HMPl

) ∫ χ

0
dχ̃ (Φ′ + Ψ′)

+
MPl,φ

MPl
δφ +

MPl,X

MPl
δX (6.16)
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Here X ≡ −1
2∇µ φ∇µ φ where φ denotes the dark energy field, κ the weak-lensing

component, Φ and Ψ the Newtonian potentials and v∥ the peculiar velocity
component along the line of sight. Note that the equation is given in both
conformal time and comoving coordinates.

MPl is the Planck mass given by MPl =
√

h̄c5

G , with MPl,α denoting the derivative
of the Planck mass relative to some variable α. For certain theories we can say

that, MPl =
√

h̄c5

Geff
[31], although in most cases the behaviour is more complicated.

Since the Planck mass will differ between theories (shown in section 3.2), we see
how different theories will provide a unique imprint on the luminosity distance
power spectrum described by equation 6.16.

In order, the first line of equation 6.16 denotes; the dependence on the fluctuation
on the weak-lensing effect, volume dilation, the time delay due to relativistic
effects, and the ISW effect. The second line includes the peculiar velocity and the
ISW effect. Finally, the last line represents the dark energy clustering components.

In regards to the dark energy clustering, since MPl is a constant for GR, the effect
only contributes in the power spectrum for modified theories. The figures
presented throughout the report will represent this with a dotted curve in the
interference power spectrum.

As alluded to in the previous section, notice that for GR, due to a constant G, all
terms dependent on M′Pl or MPl,α will drop. Furthermore, since photons do not
couple with the scalar field - independent of the gravitational framework used,
the SNIa luminosity distance power spectrum will also have dropped M′Pl or MPl,α
terms. With this, we compute the interference power spectrum by adding together
the SNIa luminosity distance power spectrum and those constructed with standard
sirens while subtracting their cross correlation power spectrum:

∆φ ≡
∆dSN

L

dSN
L
−

∆dGW
L

dGW
L

=
M′Pl
HMPl

(
Φ− v∥ +

∫ χ

0
dχ̃ (Φ′ + Ψ′)

)
−

MPl,φ

MPl
δφ− MPl,X

MPl
δX

(6.17)

Note that equation 6.17 assumes the measurement of a GW event and supernova
event at the same redshift and location on the sky. Although some events may
satisfy such an assumption thanks to a gamma-ray burst emitted providing an
electromagnetic counterpart to the GW signal, the expectations are that these
events rarely happen.

However, through building a interference power spectrum and integrating over a
range of redshifts, one can abandon this need requiring only the SNIa event and
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GW to have overlapping regions on the sky [71]. The interference power spectrum
is:

C∆φ

ℓ = CSN
ℓ + CGW

ℓ − 2CSN−GW
ℓ (6.18)

We note that from equation 6.17 and our earlier remark that M′Pl and MPl,α
vanishes for GR, we deduce that GR will be the only theory to show no signals in
the interference power spectrum. Before discussing certain individual effects
present in equation 6.16, it is worth encapsulating the knowledge gained in visual
form.

Figure 6.1: The GW component of the luminosity distance power spectrum computed using
equation 6.14 for various background cosmology at a redshift z = 3.00. The equation of state
parameter for ΛCDM corresponds to w0 = −1, wa = 0. CPL1: w0 = −0.877, wa = 0.04. CPL2:
w0 = −1.037, wa = −0.55.

Figure 6.1 shows the CGW
ℓ luminosity distance power spectrum for different dark

energy equation of states using then Chevallier-Polarski-Linder (hereafter CPL)
parametrisation ([88]; [89]). The CPL model describes an evolving equation of
state for dark energy through the equation:

w(a) = w0 + wa(1− a) (6.19)
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The values of the parameters used in the plot are taken from Planck (2018) [19].
Since the observed differences between models are minimal, the remainder of the
report uses ΛCDM background when necessary.

Additionally, note that the y-axis includes a constant ℓ(ℓ+1)
2π factor, which ensures

scale-invariant measurements and allows for more straightforward analysis.

Figure 6.2: The purely C∆φ
ℓ luminosity distance power spectrum for f (R) gravity at a redshift

z = 0.05 for various Compton wavelengths B0. The dotted curve denotes dark energy clustering
(or anisotropic stress), zero for GR since MPl is a constant in the theory.

The results found for this thesis exclude f (R) gravity. f (R) gravity was useful to
illustrate how cosmologists attempt to alter gravitational theories as it is one of the
simpler examples with the insights extracted from the theory done similarly to GR.
Even so, it is fitting to wrap up our theoretical discussion by presenting a sample
of the non-zero interference power spectrum predicted by the theory. Figure 6.2
shows precisely this for various Compton wavelengths[1].

The values used in the plot are unrealistic and fall outside the constraints placed
by Planck et al. (2016) [90], they are only used to show the interference signal and
how GR exhibits no measurement, as was predicted by equation 6.17.

[1] The Compton wavelength of a particle corresponds to the wavelength of a photon whose energy

is the mass of that particle. For f (R) gravity it is given as: B0 ≡ H
H′

(F′(R)−1)
F(R)

∣∣∣
0
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6.3 Power Spectrum Distortions

6.3.1 ISW Effect

The ISW effect influences the flux measured due to the late-time evolution of the
intervening potential wells along the line of sight.

As incoming radiation propagates towards us, it will go through various density
perturbations. These perturbations can be thought of as bumps and dents along a
flat surface, with the former representing rarefied regions and the latter denser
ones. When a photon or graviton climbs up the perturbation, it loses energy since
it counteracts the gravitational force. Contrariwise, falling induces a blueshift
since the particles energy increases. This is exactly what was shown by Rebka and
Pounds experiment in the 1960’s (recall the brief mention given in section 2.1.1).

However, due to the dynamic nature of the Universe, perturbations evolve. They
smear out during the dark energy and radiation epoch and grow during
matter-domination. This evolution causes any particle traversing a particular
potential well to feel a net energy gain or net loss since the amount the radiation
climbs from the potential well or falls from it will differ during its travel time. In
this thesis, the effect is mostly dependent on the smearing induced by cosmic
accelerated expansion. With a net energy difference, the perceived flux differs
from what one should expect in a static Universe.

Looking back at equation 6.16, the ISW effect is given as:

ISW =
(

1− 1
Hχ

+
M′Pl
HMPl

) ∫ χ

0
dχ̃ (Φ′ + Ψ′) (6.20)

Figure 6.3 shows the components influence on the luminosity distance power
spectrum for GR.

Since dark energy has only recently been the dominant constituent, the effect is
skewed to peak at smaller multipoles since these scales correspond to larger scales
and signify the late-time evolution of the perturbations. The effect is suppressed
at high redshifts as this regime corresponds to epochs where perturbation has felt
less smearing and potential wells were still prone to grow, thus reducing the ISW
effect.

We also observe that at low redshifts, the signal disappears much quicker. This
tendency is primarily due to the integral along the line-of-sight. These tell us that
as radiation travels further, the effects of the evolution’s of any individual potential
become greater. It also implies that at small redshifts, the perturbations of smaller
scales have not yet felt the smearing effect cosmic accelerated expansion causes
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due to the relativistic effect entailing information takes time to arrive and influence
the underlying structure.
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Figure 6.3: The ISW effect for a GR modelled Universe on the luminosity distance power spectrum
for various redshifts.

6.3.2 Peculiar Velocities

Depending on the observed region of the sky, different density perturbations are
present. These deviations induce a variation in the underlying cosmological flow,
and therefore, sources recede from us at different rates depending on their location.

This difference in receding rate has an influence on the received flux analogous
to the Doppler effect. Sources moving away faster from us than others will be
redshifted and have fainter measured fluxes, thereby appearing further away than
they actually are. This is encapsulated by the power spectrum with the expression:

vpec = v∥
(

1− 1
Hχ

+
M′Pl
HMPl

)
(6.21)

with the parallel component v∥ in Fourier space being:

v∥(k, a) =
i fHδ(k, a)

k
(6.22)
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where δ is the density perturbation and f ≡ a
D1

dD1
da with D1 being the growth factor

whose evolution is intimately connected to the scalar perturbations discussed in
section 4. This connection with scalar perturbations and gravitational framework
also manifests itself through the MPl andH factors being present.

Figure 6.4 shows the effect, once more for GR.
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Figure 6.4: The contribution of peculiar velocity on the luminosity distance power spectrum for
various redshifts.

One immediately notices its stronger signals compared to the ISW effect and that
the closer the source, the greater its contribution on the power spectrum. Its
stronger signal stems from the fact it isn’t directly dependent on the otherwise
slowly evolving Φ or Ψ potentials, which are small compared to the v∥ pre-factor
the effect replaces it with when compared to the ISW effect.

By being a velocity-dependent effect, the signal in the power spectrum peaks at
low redshifts and large scales. The scale-dependence can be shown
mathematically by noting the inverse dependence on the wavenumber k present
in equation 6.22 implies that vpec ∝ ℓ−1. More intuitively, when we analyse two
sources in the complete opposite direction of the sky, the radiation emitted will
have to propagate through completely different environments, each of which
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with a very different cosmological flow. If we go to the other extreme, when
analysing the smallest scales, the radiation emitted by sources has their geodesics
follow roughly the same path. In turn, this entails that they go through the same
environments and feel the same bulk velocity. In this sense, as we probe
increasingly small scales, the variance in peculiar velocity along two different line
of sights has an increasingly minimised difference.

We can explain its redshift-dependent behaviour through a Newtonian gravity
argument. In general, the perceived velocity of any cosmological source is the
sum of the Hubble parameter, H0, at that distance plus some additional local
peculiar velocity, mathematically, this is:

vobs = H0d + vpec (6.23)

From this, we instantly see that the peculiar velocity gets suppressed at large
distances since the measured cosmological flow, H0d is linearly dependent on the
distance of the source, d. A fact also supported by the linear relation in a exhibited
by f . In general, this means that the closer the source is to us, the more time the
environment had to develop its separate gravitational perturbation, allowing it to
deviate away from the overall cosmological flow.

6.3.3 Weak-Lensing

The last notable effect worth discussing is weak-lensing. This effect influences the
propagation of photons and gravitons in the same fashion, hence its omission from
equation 6.17.

As radiation propagates near large scale structures, the spacetime curvature
imposed by the structure present causes the geodesics to bend, inducing
magnification.

Measuring this signal allows probing of the evolution of the gravitational
potential over various redshifts and the connection between matter perturbation
and gravitational potentials. The weak-lensing equation is given as [71]:

κ =
∫ χs

0
dχ′

χs − χ′

χ′χ
∆Ω(Φ + Ψ) (6.24)

Here χs denotes the comoving distance to the source while ∆Ω is defined as
∆Ω ≡ χ2∇2

⊥. Since structure is present throughout the Universe, the lensing effect
persists everywhere. By being dependent on the integral along the line of sight,
we deduce that the further we look, the more substantial the effect, as reflected in
figure 6.5 with the effect saturating at larger redshifts.
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With less structure needing to traverse to reach us, the lensing effect is minimal at
smaller distances. The suppressed signal at high ℓ and low z could be due to the
precision used in the code.

Ignoring this, one can generally observe that weak-lensing peaks at small scales.
This is due to the statistical distribution of large scale structures rendering it
effective at small scales only. That is to say, for weak-lensing, one measures the
apparent density contrast present in the Universe. As we observe larger scales,
we smear out potential wells causing the density of two separate objects to
converge to the overall background density ρ̄. Mathematically:

lim
ℓ−→0

ρ = lim
ℓ−→0

(ρ̄ + δ) = ρ̄ (6.25)

by definition of average background density ρ̄. We should note however that the
angular power spectrum, and any power spectrum for that matter, is constructed
by the variance in signals and not the average. This argument however holds for
both cases with larger scales smearing out the smaller, higher contrast potential
wells, the overall variance tends to zero.
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Figure 6.5: The weak-lensing effect for various redshifts.

It also becomes apparent from the calculation used in EFTCAMB ([91]; [92]; [93]),
just how significant the dependence on ℓ the weak-lensing effect has. Following
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Garoffolo et al. (2021), the code computes the weak-lensing effect in the following
fashion:(∆dGW

L

d̄GW
L

)κ

k,ℓ
= (Φk + Ψk)

∫ ηA

0
dη jℓ

( ∫ η

0
dη̃

ℓ(ℓ+ 1)
2

(χ̃− χ)

χ̃χ
W(χ̃)

)
(6.26)

Where W(η) is the window function in conformal time, defined here as
W(η) = (1 + z)H(z)W(z) and ηA the conformal time at z = ∞. Note the ℓ(ℓ+ 1)
dependence in the calculation which isn’t present for the other effects.

Of the three effects discussed, only the weak-lensing is independent of the running
of the Planck mass, MPl. So, although the signal should deviate between different
gravitational theories due to discrepancies in the scalar perturbations, when using
the same framework, the GW and photon experience the same effect lensing wise,
and therefore it does not influence the C∆φ

ℓ power spectrum. This helps explain the
observed decay in the signal of figure 6.2 at small scales.

We end the section by illustrating how these different effects manifest onto the total
signal predicted for the GW luminosity distance power spectrum at two different
redshifts corresponding to GR.
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Figure 6.6: The various effects all playing a role in the CGW
ℓ luminosity distance power spectrum

corresponding to GR. Left: The plot for z = 0.10. Right: The plot for z = 1.00.
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7 Methodology

To extract the various luminosity distance power spectrum’s, the thesis utilises
EFTCAMB ([91]; [92]; [93]). EFTCAMB builds from the foundations provided by another
code called Code for Anisotropies in the Microwave Background, CAMB for short
[94].

CAMB calculates the perturbation transfer functions using GR and allows
researchers to obtain theoretical predictions on different observables such as the
influence of different BBN parameters, the extraction of various angular power
spectra, modelling different theories of dark energy amongst many other
diagnostics.

By adopting the effective field theory (hereafter EFT) framework, proposed
originally by Gubitosi et al. (2013) [95], EFTCAMB extends the functionality of CAMB
by solving the linear perturbation equations for a range of different modified
theories. The EFT formalism describes the action up to quadratic order of any
given single scalar field dark energy or modified gravity model, allowing it to
study the perturbative equations up to linear order ([95]; [96]; [97]; [98]).

With EFT being a universal language for a wide range of models, the framework
becomes an ideal tool to investigate the influence various gravitational models
have on the perturbation equations and how their different predictions manifest
themselves onto certain observables. The intricacies of the code and framework
are outside the scope of the paper, but the original authors have several papers
describing its construction (see ref. ([91]; [92]; [93])).

The EFT action encapsulating all single scalar field dark energy and modified
gravity models in conformal time, Jordan frame and unitary gauge is ([90]; [91]):

S =
∫

d4x
√
−g

[m2
0

2

(
1 + 2Ω(η)

)
R + Λ(η)− a2c(η)δg00

+
M4

2(η)

2
(a2δg00)2 − 2M̄3

1(η)a2δg00δKµ
µ −

M̄2
2(η)

2
(δKµ

µ)
2

−
M̄2

3(η)

2
δKµ

νδKν
µ +

a2M̂2(η)

2
δg00δR(3)

+ m2
2(η)(gµν + nµnν)∂µ(a2g00)∂ν(a2g00)

]
+ Sm[χi, gµν] (7.1)

where m0 is the Planck mass at the current epoch, R the Ricci scalar once more,
δR(3) the three-dimensional spatial Ricci scalar, δKµν the extrinsic curvature with
its (perturbed) trace given as δKµ

µ. The unitary gauge corresponds to a specific
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choice for the ADM foliation of spacetime [99]. The gauge transformation causes
the scalar field and its perturbations to be absorbed by the metric, resulting in
spatial hypersurfaces of constant time to coincide with those of constant scalar
fields.

Of the EFT functions listed above, {Ω, Λ, c, M4
2.M̄3

1, M̄2
2, M̄2

3, m2
2, M̂2}, only the first

three influence the background equations of the Universe. In general, the first line
of equation 7.1 influences the background and perturbation solutions, whereas the
second line only affects the behaviour of perturbations. For this report, one of the
modified theories we investigate is how Ω influences the predicted power spectra.
In terms of f (R) gravity, we will use the analogy Ω = F(R)− 1 [100]. This analogy
glosses over many of the intricate details present in the gravitational framework,
otherwise not exhibited by f (R) gravity. Nevertheless, it for the thesis as it helps
us gather intuition regarding the results obtained.

In addition to using a Universal language for single scalar modified theories,
EFTCAMB doesn’t rely on the quasi-static approximation when evolving the linear
perturbations. Instead, the code solves the full perturbative equations on all
linear scales keeping in mind the time evolution of the gravitational potentials,
thereby preserving essential information on the dynamics of the scalar field,
strengthening the accuracy of its predictions on scales and redshifts potentially
probed by future surveys [91].

Additionally, the user has the freedom to choose a set of stability conditions the
theory has to satisfy to ensure it is reasonable. Here, the only criteria we preserve
are the mathematical ones (to enforce theoretical stability) and prior parameters
(to ensure the parameters used satisfy observational constraints). The physical
stability flags are neglected due to them constantly rejecting more theories than
necessary, with their applicability being a field of ongoing research [93].

Before going to the global parameters used to define our cosmology, it is also
essential to note the different methods EFTCAMB can use to simulate a given
Universe. Below is a list of the relevant procedures used for the thesis and their
different methodologies [93]:

• EFTflag= 1:
Selecting this option, the user defines the background expansion history
through a chosen dark energy equation of state and one of the background
variables {Ω, Λ, c}. The code then restricts the behaviour of the other two
EFT functions to correlate with the particular expansion history. In our case,
we choose to vary Ω(a) to see how it influences the predicted power
spectrum, fixing Λ and c in the process.
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Although this method loses information on the perturbation equations of a
specific theory, its generalised procedure allows the analysis of a wide range
of classes. In the context of this thesis, its use helps delineate the influence
the various EFT functions have on the propagation of GWs.

• EFTflag= 4:
Selecting this option corresponds to the ’full mapping’ approach. Here, a
model with particular Horndeski/Generalised Galileon functions is
specified before the code solves its corresponding background equations.
After solving for the background equations, the code extracts the Hubble
parameter and the theory gets mapped into the EFT framework, allowing
solutions for the full perturbative equations [100].
Note that when selecting this option, the parameters chosen are not fixed
based on the chosen dark energy equation of state and so allow a better
analysis of individual models as deviations in the background and
perturbative equations manifest themselves in the observables.

Table 7.1 below show the various theories analysed in the thesis and their
corresponding flags.

Theory Linear Ω(a) Exponential Ω(a) k-Mouflage GBD
Flag 1 1 4 4

Table 7.1: Tested models and their corresponding flags.

The parameters used for each of the theory will be laid out one-by-one when
analysing the results in section 8. The parameters used in the simulation are
based on the data from Planck (2018) [19] at the 3σ level. The main ones are listed
in table 7.2.

Parameter Value Parameter Value
H0 66.8800 Ωbh2 0.02237
As 2.101× 10−9 Ωch2 0.12000
ns 0.96490 Ωκ 0
Neff 3.04600 mν 0.06000

Table 7.2: Global parameters used throughout the simulation based on [19]. H0 corresponds to
the present day Hubble parameter in km s−1 Mpc−1, As the comoving curvature power at k,
ns the scalar spectral index, Neff the number of effective degree of freedoms for neutrinos based
on theoretical predictions, Ωbh2 and Ωch2 the current day baryonic matter and cold dark matter
density parameter respectively, Ωκ the curvature density parameter and mν the mass of neutrinos
in electron volts.
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8 Results

8.1 EFT Functions

8.1.1 Linear Ω Functions

Let us start our analysis by looking at how a linear relation between the scale factor
and Ω(a) influences the different luminosity distance power spectra.

Table 8.1 shows the various Ω0 values used for this section, with the second set of
models used only to illustrate how a negative value influences the spectrum.

Parameter Model 1 Model 2 Model 3 Model 4
Ω0 0.005 0.025 0.050 0.075
Ω0 −0.012 −0.006 0.006 0.012

Table 8.1: The values used for Ω0 where Ω(a) follows a linear relation relative to the scale factor a.
The values correspond to the 5σ confidence level of those from table 8 of Planck 2015 [90].

Figure 8.1 shows the resulting luminosity distance GW power spectrum.

Beyond ℓ ≈ 500 (denoted by the dashed vertical line), structures are no longer in
the linear regime. We will ignore those results since EFTCAMB solves up to linear
order in perturbations.

At first glance of figure 8.1, it is clear that the differences in the power spectrum
between standard GR and those mapped with the EFT functions are insignificant,
and any hopes of a future survey delineating any specific theory is unrealistic.

We expected this since following the logic set out by table 7.1, models mapped
with the EFT functions are fixed to have the same H(z) and dark energy equation
of state. Doing so, any deviation exhibited in the results originates only from
modifications of the perturbation equations.

We see that the signal decreases for larger Ω0. This decrease seems to originate
from the effective gravitational constant having the proportionality Geff ∝ F−1(R),
or, using our equation Ω(a) = F(R)− 1, a proportionality Geff ∝ (1 + Ω(a))−1.

By being inversely proportional to Ω(a), the gravitational strength adopts smaller
values for larger Ω0. Doing so, both the peculiar velocity contribution dominating
the power spectrum at large scales and the weak-lensing effect dependent on
density contrast dominating the contribution at small scales get suppressed,
explaining the consistent smaller amplitude throughout the range of ℓ.
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Figure 8.1: The CGW
ℓ luminosity distance power spectrum for various Ω values following a linear

relation at a redshift of z = 0.05. The vertical dashed line denotes the (arbitrarily-chosen) transition
from linear to non-linear regime, and where results may no longer be accurate.

In general, we note that smaller values in Ω0 converge towards GR. This is hinted
at via the effective gravitational constant since if we substitute Ω0 = 0 in our
proportionality Geff = G

F(R) = G
Ω0+1 stemming from the discussion laid out in

section 3.2 and Raveri et al. (2014) [100], the effective gravitational constant
adopts the same expression of that for GR.

This trend is also suggested in the interference power spectrum (figure 8.2) where
we observe that the amplitude of the signal received flips in behaviour. We can
understand this behaviour intuitively following the same reasoning since a smaller
Ω0 converges towards GR and thus also implies a matter field to couple weaker to
the scalar field.

Nevertheless, it is important to keep in mind that basing our intuition purely on
the behaviour of Geff makes us ignore the numerous other effects that may come
to play such as the influence the fifth force has on the perturbations present, or
the extent which the ISW effect gets enhanced/suppressed through differences in
the coupling behaviour of the scalar field. These effects should be taken into
consideration for papers that wish to take a more rigorous approach, however it
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remains outside the scope of the current paper.

Even so, we will use this reasoning for the remainder of the results since the
gravitational constant appears in both effects that dominate the power spectrum
and gives a nice overall description with straightforward intuition. It appears in
the peculiar velocity equation (equation 6.21) in several ways, both through its
linear influence on the Hubble parameter, but also through influencing the
growth factor present. The effective gravitational constant also plays a
fundamental role in the weak lensing effect (equation 6.24) since it changes the ∆Ω
which alters the steepness of the potential well through it describing the strength
of gravitational attraction and changes the extent clustering is encouraged.
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Figure 8.2: The C∆φ
ℓ luminosity distance power spectrum for various Ω0 values following a linear

relation at a redshift of z = 0.05. The dotted lines convey the dark energy clustering component
of the power spectrum which GR has none of since it has a constant Planck mass throughout
spacetime. The dark energy clustering is represented with the two last terms of equation 6.16.

Since a larger Ω0 diverges from GR, we can infer that so too does the propagation
behaviour of GWs. We can reason with this more robustly by exploiting our
relation between Ω(a) and f (R) gravity once more. Equation 4.73 implies:

δ ≡ −d ln MPl

da
= −MPl

a
dMPl

da
(8.1)
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Using MPl ∝ 1√
Geff

then:

dMPl = −
1

2
√

G3
eff

dGeff −→ δ ∝
1

aG2
eff

dGeff

da
(8.2)

With larger Ω0 suppressing Geff, the term in the denominator of the expression
increases meaning that the scalar field has a stronger effect on the GW.

Furthermore, due to the models all following the same linear relations with the
scale factor, we can assume that dGeff

da is only dependent on the Ω0 term used, in
which a larger value implies a larger dGeff

da relation. This assumption, though useful
for our intuition, once more glosses over a lot of the intricate details and more
rigorous analysis should be made if one wishes to understand the gravitational
theory better.

With this in mind, although modified theories exhibit a non-zero interference
power spectrum, the predicted signal is so low that an enormous amount of
sources are needed to distinguish between gravitational theories.

As a reference point, Garoffolo et al. (2021) [84] showed that we will need at
minimum 109 detections of SNIa and GW events assuming a distance calculation
error of 10% if we wish to construct a C∆φ

ℓ power spectrum with signals up to
10−9 at a 5σ confidence level. Given the smaller amplitudes presented here and
the expected 7× 104 neutron star-neutron star (NS-NS) merging events detected
by the future Einstein Telescope per year [101], to construct such a power
spectrum remains outside the realm of possibility in the foreseeable future.

The difficulty in constructing such a power spectrum is amplified by the fact that
the 7× 104 number of NS-NS merging events corresponds to an integrated value
up to z ≈ 2, whereas these results look at a fixed redshift (with widths of
∆z = 0.01), meaning the actual number of detections for a given redshift using the
telescope will diminish severely. This quoted value also doesn’t consider the fact
that not all events will have their electromagnetic counterpart detected, with a
paper suggesting roughly 0.1%− 1% of them getting observed ([101]; [102]), and
thus only a fraction of them would have their redshift identified.

We reference NS-NS merging events as they allow for identification of redshift
thanks to their electromagnetic counterpart emitted through gamma-ray bursts
([103]; [104]; [105]). If we ignore the need for a fixed redshift but instead want any
detection of the interference power spectrum given its capabilities as a smoking
gun tool for the presence of modified theories, one would need 1012 GW and SNIa
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detections [84] instead. This number remains unrealistic even if ignoring the
redshift allows us to expand the number of detections provided by the Einstein
Telescope to 105 − 106 events per year ([101]; [102]) since it now comprises of
black hole-black hole merging events as well.

For figure 8.3, the parameters chosen lie within the constraints imposed by Planck
2015 [90] data. The figures show that the main source of deviations with GR
comes from the absolute magnitude of Ω0. Negative values have a mild increase
in signals for both power spectra, which for the CGW

ℓ power spectrum follows
from the logic laid out earlier since the effective gravitational constant now has
Geff > G. It should be noted however that this observation only helps gather
information on the theories since negative Ω0 values are plagued with
instabilities and thus are not realistic.

The bottom half of the same figure also highlights why the relation
Ω(a) = F(R) − 1 should only be used as an analogy. Since a negative Ω0
enhances Geff then following the logic set out by equation 8.2, it should exhibit
smaller signals in the interference power spectrum. However, this isn’t what
happens, making it a prime example of the limitations in our f (R) analogy to
Ω(a) since doing so removes a lot of the intricate detail unique to the particular
modified theory, namely ignoring the effects of the various
{Λ, c, M4

2, M̄3
1, M̄2

2, M̄2
3, m2

2, M̂2} functions fixed within the simulation.

Before looking at the power spectrum corresponding to exponential relations, we
note that the results found remain consistent no matter the redshift (see Appendix
M for larger redshifts). For all redshifts investigated, a linear scale factor relation
for Ω(a) shows tiny deviations from GR in the GW power spectrum and signals
for the interference power spectrum barely exceed 10−10.
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Figure 8.3: Top: The CGW
ℓ luminosity distance power spectrum for various Ω0 values following

a linear relation. Bottom: The subsequent C∆φ
ℓ luminosity distance power spectrum for the same

models with the dotted lines representing dark energy clustering.
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8.1.2 Exponential Ω Functions

Table 8.2 shows the various values used when modelling a Universe with an
exponential dependency on the scale factor when modelling Ω(a).

Parameter Model 1 Model 2 Model 3 Model 4
s 0.001 0.010 0.100 1.000

Table 8.2: The values used for the EFT functions following an exponential relation between Ω(a)
and the scale factor as. The values are taken from figure 12 of Planck 2015 [90] and correspond to
values lying between the 3σ and 5σ confidence level. For all models, a value of Ω0 = 0.050 was
chosen.

Compared to the previous set of plots, figure 8.4 shows that an exponential relation
has more substantial deviations from GR than their linear counterparts. Even so,
due to the model still using EFTflag= 1 and the chosen dark energy equation of
state to adopt the cosmological constant behaviour, the expansion history present
in the simulation mimic those of GR and so deviations are restricted to some extent.
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Figure 8.4: The CGW
ℓ luminosity distance power spectrum for various exponential relations for

Ω(a) at z = 0.05.
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We see that a smaller s value diverges from GR. This stems from the fact that the
scale factor is less than or equal to one by definition, and so a smaller s enhances
Ω(a). In turn, this results in the same trend observed with linear functions except
that now smaller s means a larger Geff. We can show how a larger parameter
converges towards GR mathematically with help of our f (R) analogy:

lim
s−→∞

Ω(a) = lim
s−→∞

(exp (Ω0as)− 1) = 0 for |a| ≤ 1 (8.3)

∴ lim
s−→∞

Geff = lim
s−→∞

G
exp [Ω0as]− 1

= G (8.4)

Although difficult to tell with the linear functions, we note that when looking at
larger redshifts (see figure N.2), the deviations at small scales tend to increase.
Nevertheless, this redshift behaviour remains insufficient if one wants to
successfully identify a possible Ω(a) dependence in gravitational theories during
future surveys.

In fact, when comparing to the previous set of CGW
ℓ plots it would be harder to

constrain theories shown here since they have smaller recorded signals and thus
would require more observations of standard siren events due to their need of
more precise measurements.
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Figure 8.5: The C∆φ
ℓ luminosity distance power spectrum for various s values following an

exponential relation at a redshift of z = 0.05. The dotted line represents the dark energy clustering
component of the theory.
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Interestingly, figure 8.5 suggests a heavy dependence on the propagation
behaviour of GW with the scale parameter. Since the models here all use
Ω0 = 0.050, then the analogous signal for the linear behaviour is the red curve
marked in figure 8.2. At the upper limit of the parameters used, s = 1.000, we
observe a C∆φ

ℓ signal nearly two orders of magnitude larger than its linear
counterpart. By doing so, the plots tell us that the exponential relation has a
significant effect on the behaviour of GWs.

If we go back to our earlier relation, δ ∝ 1
aG2

eff

dGeff
da , it is quite clear how the

denominator of the damping term decreases when minimising Geff (decreasing s).
Even so, the plot also shows how a larger s has an enhanced damping effect. With
these two points, we can infer that the relation dGeff

da has a stronger effect on the
damping than the G−2

eff proportionality. This reiterates the fact that our analogy of
Ω(a) = F(R)− 1, although useful for intuition, brushes away a lot of the intricate
details present in the gravitational framework.

Nevertheless, in this scenario, it is straightforward to see how a larger s parameter
increases dGeff

da value since a larger s factor implies a larger scale factor dependence
for Ω(a), and subsequently the effective gravitational constant.

We note that once more, this signal remains short of what is required for future
surveys to delineate theories realistically if we take ref. [84] into consideration.
Planck (2015) data suggests an upper bound of s ⪅ 1.6 at the 3σ level. If we
extrapolate information from our plot, since the signal seemingly exhibits a
C∆φ
ℓ,s1

/C∆φ
ℓ,s2
≈ (s1/s2)2 proportionality, then using s1 = 1.60 and s2 = 1.00 whose signal

is roughly 10−10 as conveyed by the orange curve above, we should not exceed an
amplitude of 3× 10−10 in the cross correlation power spectrum, which once more
falls short of this 10−9 benchmark signal referenced earlier who already needed a
staggering 109 GW and SNIa detections to be observed at best.

Before concluding our discussion on varying the EFT functions, we note that here
we only looked at changing Ω(a), a background term in the EFT action of
equation 7.1 which influences the expansion history and linear perturbation
equations. The terms {M4

2, M̄3
1, M̄2

2, M̄2
3, m2

2, M̂2} are those which affect purely the
behaviour of perturbations. Analysing the perturbation terms would more likely
influence the individual behaviour seen between theories, especially at small
scales. In any case, due to the fashion the EFT functions get implemented within
EFTCAMB, the influence they have on the various luminosity distance power
spectrums will be small. Implementing them would not alter the conclusion that
identifying such theories remains unrealistic in surveys of the foreseeable future.
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8.2 k-Mouflage

Let us now focus on models whose background is not confined to follow the same
dark energy equation of state or Hubble parameter as ΛCDM. By taking into
account both the background and perturbation solutions of the gravitational
model, most terms in equation 6.16 will deviate considerably from GR, thereby
emphasising the unique signatures predicted by the gravitational theory in the
CGW
ℓ power spectrum. This will also contribute to a lesser extent to the signal for

the C∆φ
ℓ power spectrum.

8.2.1 Varying γA

Table 8.3 shows the values of γA used when simulating with k-Mouflage. γA
defines the epoch where dark energy becomes the dominant constituent.

Parameter Model 1 Model 2 Model 3 Model 4
γA 0.100 0.500 1.000 5.000

Table 8.3: The fixed values used for the k-Mouflage models when varying γA. The values are taken
from figure 12 of Benevento et al. (2018) [54] and correspond to the 3σ to 5σ level. For all models,
the remaining parameters are fixed to αU = 0.400, γU = 1.000, m = 1.500 and ε2.0 = −0.0350.
These parameters lie in the 5σ confidence level (table 3 of the same paper). Note that for EFTCAMB,
k-Mouflage requires no massive neutrinos to exist, hence mν = 0.

From figure 8.6, we notice that the influence of the modified theory on the power
spectrum is clearer than those predicted for Ω(a) relations, with a smaller γA value
diverging away from GR. This divergent behaviour for smaller γA was expected
based on the argument using limits laid out in section 3.3.

The increase in signal of the power spectrum at small scales stems from the fact
that k-Mouflage predicts Geff > G [54]. With a larger gravitational constant,
clustering effects are accentuated, inducing a larger contrast and thus greater
variance between individual potential wells when comparing all the models
simulated to GR.

To explain the suppressed effect for larger γA at small scales, we use the weak-
lensing parametrisation defined by Benevento et al. (2018) [54] given as Σ ∝ Ā2

(where Σ = 1 corresponds to GR). Increasing γA decreases the coupling factor Ā
(equation 3.58) and, in the process, causes the effect to converge to that predicted
by GR since the parameterisation approaches Σ = 1.
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Figure 8.6: The CGW
ℓ luminosity distance power spectrum for various γA values in a k-Mouflage

based Universe z = 0.05.

A different parameterisation defined by the same paper shows a similar relation
for the Poisson equation where µ ∝ Ā2 (µ = 1 corresponding to GR). Once more,
since increasing γA decreases the coupling parameter, the gravitational theory
becomes more like GR’s minimally coupled nature when adopting larger values.
This parameterisation of the Poisson equation helps explain the decreased signals
measured throughout the range of ℓ since it describes the dynamical nature of
perturbations present at all scales.

Note that equation 3.62 states that if you decrease Ā, you also decrease the
Hubble parameter of the theory. Naively, we should expect larger γA, which
causes a smaller Hubble parameter, to have greater signals since it resulted in a
Universe with a longer matter-dominated epoch. However, as we have just seen
in the figures presented this is not the case.

Instead, the figure highlights how the coupling parameter plays a more decisive
role than the expansion rate in the luminosity distance power spectrum. That is to
say, a Universe with a shorter matter-dominated epoch but strong coupling
between scalar field and matter constituents (small γA) encourages the growth of
perturbations more than a Universe with a longer matter-dominated epoch but
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minimal coupling between either component.
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Figure 8.7: The CGW
ℓ luminosity distance power spectrum for various γA values in a k-Mouflage

based Universe z = 1.00.

When tracking the deviation along larger ℓ, deviations from GR become more
apparent at large redshift and small scales (compare figure 8.6 with figure 8.7).
We observe that for γA ≈ 0.100, a significant deviation in the predicted signal is
observed at small scales and shows encouraging signs that constraints on the
theory can be a realistic target for future surveys since this deviation lies in a
regime not plagued by cosmic variance. Doing so would still require an
astronomical amount of detections and improvements in detection facilities if we
take Garoffolo et al. (2021) [84] as a reference.

Deviations are more pronounced at high redshifts due to the nature of the
peculiar velocity and weak-lensing effects. At low redshifts where the peculiar
velocity dominates, the divergence from GR appears to be less substantial. This is
because, by being a large-scale effect (as shown by figure 6.4), the peculiar
velocity contribution, who more readily incorporates the ensemble average,
doesn’t highlight any sensitive information the gravitational framework predicts
for small scales.
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Contrariwise, as we look further out, weak-lensing becomes the dominant factor
thanks to its dependence on the integral along the line-of-sight. Weak-lensing not
only feels the effect of the differences in predicted scalar perturbation equations
and field equations for all scales, but also preserves information on the fifth force
mediated by the scalar field. The fifth force has a substantial influence on smaller
structures and is framework-dependent. By preserving this effect, it allows the
gravitational theory to imprint its unique signature in the power spectrum with
more success.

We note that since weak-lensing covers the complete range of scales probed, a
domino-like behaviour amplifies the signal at small scales since the
theory-dependent small scale perturbations also lie within the theory-dependent
large scale perturbations, forming a complementary effect.

The interference signal doesn’t differ much with those previously seen. Even
though it is mostly used to define the epoch dark energy dominates the Universe,
γA having some influence is understandable since it affects the coupling
parameter defined by equation 3.58. Since a larger γA suppresses the coupling
factor, GWs feel a smaller damping effect when it propagates through spacetime
converging towards the minimal-coupling nature otherwise predicted by GR and
resulting in the suppressed signal.
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Figure 8.8: The C∆φ
ℓ power spectrum for various k-Mouflage theories sampled at z = 0.05. The

dotted lines correspond to the dark energy clustering contribution of the theory.
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8.2.2 Varying ε2.0

When varying ε2.0, the following parameters were used:

Parameter Model 1 Model 2 Model 3 Model 4
ε2.0 −0.010 −0.020 −0.030 −0.040

Table 8.4: The values used for the k-Mouflage models when varying ε2.0. For all models, the
remaining parameters are the same as those listed in the caption of table 8.3 with the addition
of γA = 1.000 (3σ confidence).

Although solar system tests restrict the values to |ε2.0| < 0.01, we use values
exceeding this threshold following the logic laid out by ref. [54] in that we aim to
look at cosmological distances, undeterred by the screening mechanisms at play.
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Figure 8.9: The CGW
ℓ luminosity distance power spectrum for k-Mouflage theories varying ε2.0 at

redshift z = 0.05.
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Figure 8.10: The CGW
ℓ luminosity distance power spectrum for k-Mouflage theories varying ε2.0 at

redshift z = 1.00.

Based on the various plots (figure 8.6 vs. figure 8.7 and figure 8.9 vs. figure 8.10),
the most encouraging scales to delineate k-Mouflage in the nearby Universe
would be at scales between 10 < ℓ < 100, while in the distant Universe (z ≈ 1) at
multipole values 100 < ℓ. The former would prove more complicated to achieve
due to the smaller deviations present in the predicted signal and only being
relatively significant for smaller ℓ’s, where statistical uncertainty is made
prominent by cosmic variance. The latter, however, could be prone to exaggerated
signals due to the code using massless neutrinos who are known to enhance
matter perturbations, and thus amplify the variation in potential wells at small
scales [106].

Even so, if we use Garoffolo et al. (2021) [84] as a reference point once more,
under the same 10% distance calculation errors, 105 GW detections are needed to
construct a CGW

ℓ power spectrum reaching such amplitudes at the 5σ confidence
level. Such a value is within the means of the Einstein Telescope if we ignore all
the limitations of the quoted 7 × 104 predicted NS-NS detections mentioned
earlier.

With that said, although k-Mouflage is seemingly the most encouraging prospect
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to start analysing in the future, we remind ourselves that the value 105 referenced
only describes the number of detections needed to observe the power spectrum
that exhibits amplitudes at this order of magnitude. It is safe to assume that one
would need many more detections to start discerning the theories present in
figure 8.9 and more notably in figure 8.10 given their close behaviour relative to
one another.

Furthermore, we need to remember that the predicted 7× 104 number of NS-NS
events observed by the Einstein Telescope constitute those occurring at a wide
range of redshifts, not simply a fixed one as conveyed in the spectrum here.
Additionally, only a fraction of them are expected to have their redshift identified
throughout this range, suggesting that even next-generation interferometers will
not suffice if we hope to constrain the theory. It is left for future work to give a
more accurate portrayal of the number of events needed to start constraining the
gravitational theory and how a different combination of next-generation
interferometers can help us reach this target. This paper only shows that
k-Mouflage has the most encouraging signs for future surveys.

The behaviour exhibited in the figures here follow the same logic as that explained
for γA, with larger |ε2.0| values now diverging away from GR instead of converging
since they represent stronger coupling to matter. The more distributed spread from
results is due to both the parameters chosen to be evenly spread out, but also due
to the variable linearly influencing Ā rather than a power-law effect found by γA.

Furthermore, we note that although a larger |ε2.0| value result in stronger
coupling, unlike its γA counter-part, it also directly influences the Hubble
parameter (equation 3.62). With algebraic manipulation using equation 3.58 and

equation 3.61, one can show that H2(a) ∝
[
ε2.0(1− ε2.0)

]2
, and so with larger |ε2.0|

values, you suppress the Hubble parameter thereby providing a longer matter
dominated epoch to the Universe and thus amplifying the density contrast.

In both parameters analysed, the C∆φ
ℓ signal never exceeds 10−9 (figure 8.8 and

figure 8.11). This entails that identifying its corresponding interference power
spectrum would require a vast amount of detections once more even if some
models show larger signals than those present for the various EFT functions.
Even in these idealised conditions, we can safely assume one would need to
greatly increase this number if we wish to delineate any k-Mouflage theory
successfully using such a power spectrum, let alone detect its signal.
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Figure 8.11: The C∆φ
ℓ luminosity distance power spectrum for various ε2.0 values at a redshift of

z = 0.05. The dotted curve represents the dark energy clustering component of the theory.

Even so, to keep the discussion complete, we observe that a larger |ε2.0| value
corresponds to a stronger signal in figure 8.11 since it represents the strength of
the coupling parameter. With matter being coupled to the scalar field more
strongly, we deduce that the damping factor felt by GW increases, causing larger
deviations in their propagation to the minimally-coupled photon emanating from
SNIa events.
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8.3 Generalised Brans-Dicke

EFTCAMB allows us to vary two parameters when simulating the GBD models, n
and ω. When looking back through equations 3.64 - 3.66, the former results in
influencing the extent the scalar field couples to matter while the latter, the
influence of the scalar fields kinetic term.

8.3.1 Varying ω

Let us start by investigating ω. The table below summarises the values used.

Parameter Model 1 Model 2 Model 3 Model 4
ω −0.100 −0.500 −1.000 −5.000

Table 8.5: The fixed values used for the GBD models when varying ω. The values are taken from
private discussion with Fabrizio Renzi and lie within the constraints placed by Planck (2018) data
[90]. Note that the various values are also based on those found in the stability plots seen in figure
6.4 of Canevarolo (2020) [32]. The plots will use either n = 2.973 or n = 2.990.

When looking at the predicted signals of these respective parameters, we see that
at large scales, the signal doesn’t deviate from GR as much as that for k-Mouflage
theories. This is because we chose n ≈ 3 in both sets of plots. Doing so, F(φ)
(equation 3.64), which defines the dark energy equation of state only slightly
deviates from standard ΛCDM cosmology as seen through the first term of the
action in equation 3.63 being R, which roughly corresponds to the GR expression.
By imitating the dark energy equation of state for GR, we can understand why the
models tend to behave like ΛCDM cosmology at large scales since this regime
and redshift corresponds to a time where dark energy plays a more prominent
role.

Nevertheless, the model predicts interesting behaviour at small scales for all
redshifts (figure P.1 for a higher redshift). For the previous three classes of
theories, we saw that the behaviour of the CGW

ℓ power spectrum remained
consistently over or under the signal predicted for GR. Here, the signal varies as a
function of scale less trivially.
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Figure 8.12: The CGW
ℓ luminosity distance power spectrum when varying ω for GBD functions at

redshift z = 0.05. The values are taken from private discussion with Fabrizio Renzi and lie within
the constraints placed by Planck (2018) data [19]. Note that the various values are also based on
those found in the stability plots seen in figure 6.4 of Canevarolo (2020) [32].

Understanding the behaviour corresponding to various ω values would require
intimate knowledge of the GBD model, something not done in the thesis given its
more phenomenological approach.

At small scales, the scalar field mediating the fifth force becomes influential in the
evolution of density perturbations, and in turn, influences the weak-lensing
contribution, which dominates the CGW

ℓ in this regime. That is to say, by affecting
its non-canonical kinetic energy term through varying ω, the behaviour of the
scalar field differs more between theories. With the fifth force influencing
(relatively) small scale structure, this difference in behaviour stimulates
substantial differences in the recorded signal at high ℓ.

It is also interesting to note that upon comparison with the left-hand side of figure
P.1, we see that for large |ω|, a quicker decay of the peculiar velocity contribution
occurs. We see this since at scales 10 ⪅ ℓ ⪅ 70, large values of |ω| show a minute
suppression in the CGW

ℓ plot relative to the other models, a feature otherwise not
seen at higher redshifts where the peculiar velocity effect has minimal
contribution.
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Furthermore, we note that for large n, this behaviour doesn’t occur (see figure
8.13). Since larger n enhances the effect of B(φ) (since φ

MPl
< 1 as we will see

later), following the logic laid out for ω, we should have expected the same
behaviour. However, in this case increasing n also enhances F(φ) and ξ(φ), and
so their complementary effects amongst other dynamics may remove this
behaviour from occuring.

It could be insightful to dissect the mechanism of this effect in future papers as it
may lead to profound insight regarding the gravitational theory. As a guess, it
could be because a larger kinetic term provides a more influential fifth force. With
more influence, environments at fixed distances from one another are
ever-so-slightly more connected when |ω| increases, hence reducing their
respective peculiar velocities at small scales. Contrariwise, by increasing n, all
other terms present in the gravitational theory are enhanced through a power law.
This minimises the influence of the non-canonical kinetic term in the process,
possibly resulting in the non-observation.

The other two terms present in the gravitational theory, namely ξ(φ) and F(φ),
remain constant between models here. This means the self-interaction of the
scalar field, along with their respective expansion history, remain equivalent to
one another. The equivalent expansion history between models explains the small
deviation present between models at large scales.

Figure 8.13 shows the same set of plots for n = 2.99. We see that as we take the
limit n −→ 3, the signal is lowered overall in both the CGW

ℓ and C∆φ
ℓ power spectrum

(figure P.2 showing the interference spectrum for n = 2.973). We will dissect the
influence of n further in the next section.

For now, we note that although up to an order of magnitude difference in the CGW
ℓ

power spectrum at small scales is exhibited, when we look at higher redshifts,
which results in larger predicted signals at these scales, we see that the model tends
to converge with GR making. This makes it harder to constrain the gravitational
theory, let alone identify it relative to k-Mouflage and some of the exponential Ω(a)
gravitational models tested.
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Figure 8.13: The CGW
ℓ luminosity distance power spectrum for various Ω values following a linear

relation at a redshift of z = 0.05.
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8.3.2 Varying n

Let us investigate the influence of n. Here we will make two sets of plots, one
using ω = −0.100 and the other ω = −3.000 following constraints placed by
Planck (2018) [19]. A summary of the values used are shown under table 8.6.

Parameter Model 1 Model 2 Model 3 Model 4
n 2.960 2.970 2.980 2.990

Table 8.6: The fixed values used for the GBD models when varying n. The values are chosen
through the same reasoning outlined in the caption of table 8.5. The plots will fix ω = −0.100 or
ω = −3.000.

When comparing figure 8.12 with figure 8.14 we see that varying n has an
inconsequential influence on the deviation between independent theories
compared to ω, especially at small scales. This is perhaps due to the stronger
constraints placed on its values minimising deviations in the background
equation and interaction terms present within the gravitational framework.

We observe that higher n suppresses the signal found at all scales. This follows
from the fact that a larger n enhances F(φ) if we follow the same assumption as
before that φ

MPl
< 1.

This assumption holds since GBD has that Geff ∝ G
F(φ)

([32]; [57]). Therefore, to
keep previous results found in this paper and those cited throughout the section
to remain coherent φ

MPl
< 1.

Since increasing n enhances F(φ), then as we have just seen, Geff decreases.
Recalling what we have iterated many times in the section, a larger Geff
encourages density contrast due to increasing the gravitational attraction and
perhaps may induce a longer matter-dominated epoch. By decreasing Geff, we
suppress both the weak-lensing and peculiar velocity effects simultaneously. With
that being said, we make a note once more that such an argument brushes over a
lot of the sensitive information about dynamics present within the gravitational
framework and other effects could play a substantial role influencing the
observed luminosity distance power spectrum.

We can also understand the trend seen by noting that as n approaches n = 3,
then our equation 3.63, imitates the form of GR in that the Ricci scalar becomes
minimally coupled. Doing so, it illustrates why the curves tend to converge to
GR at large scales. For smaller scales where the fifth force plays a larger role,
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when increasing n you enhance the kinetic term and screening mechanism which
possibly explains the tendency for these models to diverge at ℓ > 100.

We also make a note that having fixed ω, there isn’t this curious behaviour seen at
intermediate scales otherwise present in figure 8.12 and figure 8.13. This supports
our earlier point that B(φ) drives the decay of the peculiar velocities present since
the figures show for fixed ω and varying n, the same tendency doesn’t appear.
We note that it remains the case that when altering n, it is infeasible given the
minuscule deviations with respect to GR to start delineating or constraining the
theory.

Interestingly, the corresponding C∆φ
ℓ signal predicted for GBD exceed those

previously seen. This may be due to the non-linear self-interaction term of the
scalar field within the theory. Even with such substantial signals, following
Garoffolo et al. (2021) [84] once more, identifying gravitational theories using this
power spectrum would require a vast number of detections as we had stated
previously.

If we take a very naive assumption based on their results found for GBD and
f (R) gravitational theory’s and look at their corresponding required number of
detections, an order of magnitude increase in the signal corresponds to an order
of magnitude decrease in needed detections. This means we would require 108

SNIa and GW sources to be detected (or 1011 detections if we wish to detect any
hint of the spectrum without fixing redshifts), a number out of reach for current
technology.
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Figure 8.14: The CGW
ℓ and C∆φ

ℓ luminosity distance power spectrum for various ω values for GBD
models at a redshift of z = 0.05. Top: Signals predicted using ω = −3.000. Bottom: Signals
predicted using ω = −0.100. For the plots on the right-hand side, the dotted curves represent the
dark energy clustering contribution of the theory.
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9 Conclusion

The thesis starts by laying the ground-works and introducing the theory of general
relativity, mentioning its numerous successes along the way and dissecting the
mathematical side of the theory to develop intuition regarding how various effects
predicted by the theory emerge.

Although highly successful, with the influx of ever-precise measurements,
limitations of the theory of general relativity have started to become uncovered -
one example being the cosmological constant problem showing a difference of
112 orders of magnitude between theory and observation on the vacuum energy
density. This discrepancy, amongst other limitations such as its unsuccessful
reconciliation with Quantum Mechanics, has led to some physicists developing
modified theories of gravity.

We start by investigating scalar-tensor theories using f (R) theories thanks to its
similarity with GR and relatively simple analytical solutions allowing us to gain
precious physical insight on how different theories predict different effects. Scalar-
tensor theories imply a non-minimal coupling of the matter constituents to the
scalar field. The addition of a scalar field provides a natural explanation for both
late-time cosmic acceleration and inflation through the potential term defined in
their action. This class of gravitational theories, until recently, were mostly ignored
due to solar system constraints, yet with the development of various mathematical
tools providing screening mechanisms, they have had a recent resurgence within
the field.

By dissecting the theoretical aspects of f (R) gravity in section 3.2, we show how
the non-minimal coupling nature of scalar-tensor theories implies the emergence
of a running of the Planck mass and an extra scalar degree of freedom. Moreover,
scalar-tensor theories introduce the fifth force through the additional scalar degree
of freedom, a gravitational constant now dependent on spacetime location, as well
as deviations in both the scalar and tensor cosmological perturbations equations.
These divergences between gravitational frameworks are potentially observable
using different probes.

With the onset of gravitational wave astronomy emerging, one can start testing
the different gravitational theories on all scales, including cosmological ones, with
hopes of getting a better understanding of reality. With this, it becomes essential to
analyse how probes with the potential of revolutionising physics predict different
observations at different scales depending on the gravitational theory used. More
specifically, this thesis investigates the influence of a gravitational framework on
the predicted luminosity distance power spectrum.
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The luminosity distance power spectrum tracks the variance in the luminosity
distance fluctuations to individual GW events occurring on the plane of the sky.
The fluctuations present are dependent on both the observing line-of-sight and
the overall environment sources originate in. Effects such as peculiar velocity,
weak lensing and the general propagation behaviour of radiation influence our
deduction of the distances to these sources, eventually resulting in this variation
and a non-zero signal in the luminosity distance power spectrum. Each of these
effects gets elaborated on in section 6.3 and overall, when changing gravitational
frameworks all these effects will also change accordingly, with new effects also
emerging, for instance, the fifth force.

With this in mind, the thesis uses Garoffolo et al. (2021) [84] as a reference point
and analyses using EFTCAMB how various theories predict different luminosity
distance power spectra. Namely, it looks at a general class of models through
varying the EFT function Ω(a) in addition to probing more specific theories such
as k-Mouflage and GBD.

More explicitly, Ω(a) is one of the parameters in the EFT language to describe
both the background and perturbative equations of a given Universe. It denotes
the non-minimal coupling nature of the theory, of which we investigate two
different relations. We begin by analysing how changes in Ω0 influence the power
spectrum when the parameter is linearly related to the scale factor as Ω(a) = Ω0a,
before investigating the effect of an exponential-dependence, that is to say,
Ω(a) = exp [Ω0as]− 1.

The results show that the interference power spectrum, C∆φ
ℓ , which emphasises

the difference between propagation behaviour of photons and gravitons within a
given framework, have a non-zero signal for every modified theory due to the
non-minimal coupling to the scalar field inducing variations in the computed
luminosity distance. This links to the knowledge built when discussing the
differences emerging in the tensor perturbation equations since GR remains the
only minimally coupled gravitational theory. By being so, GR is the only theory to
predict no signal in the interference power spectrum, meaning that any detection
of which would result in a smoking gun test for the existence of modified gravity.
Even so, the signals predicted for this power spectrum from the simulations are
so low that it would require future surveys to have incredible precision to get
constructed, let alone start constraining gravitational theories.

More explicitly, following the results from Garoffolo et al. (2021) [84], to detect a
signal of 10−9 with distance uncertainties of 10% in the interference power
spectrum, a (naive) estimated number of 109 SNIa and GW events have to be
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detected at a fixed redshift. This is far beyond the reach of future surveys.

We contextualise this number by referencing the upcoming Einstein Telescope
[81] which we expect to detect up to 7× 104 NS-NS merging events per year up to
a redshift of z ≈ 2 [101]. A number, whom although impressive, falls drastically
short of the needed amount especially given the fact the quoted 109 value
corresponds to detecting the interference power spectrum at a fixed redshift.

The idea of this being an unrealistic target is further supported when we consider
that not all NS-NS merging events have their electromagnetic counter-part
detected here on Earth. Sathyaprakash et al. (2010) [102] suggest that only 0.1%
events will have their redshift identified through detecting their electromagnetic
radiation leaving only 70 detections per year for all redshifts when using the
Einstein Telescope. Even when constructing additional interferometers or
assuming better precision in measurements to try and reduce this number, it
would require staggering improvement on either component to construct this
power spectrum, something not attainable in the foreseeable future.

It is perhaps more encouraging to probe the CGW
ℓ power spectrum to delineate

modified theories since the differences in measured amplitudes become clearer, as
signified by those predicted for k-Mouflage and GBD (recall figure 8.9 and figure
8.12). Of either theory, k-Mouflage provides the most leniency with significant
deviation in signals observed at small scales where better statistical analysis can
occur.

At best, k-Mouflage showed an amplitude nearly three times larger than GR at
small scales resulting in signals of the order 10−4. Following the same paper and
using the same error on the distance calculations, only 105 GW detections are
needed to construct this power spectrum. Although this number is more realistic
to achieve when we look back at the predicted numbers for the Einstein
Telescope, it falls short once more when considering the various observational
effects already stated which drastically reduce the expected 7 × 104 NS-NS
detections to only a fraction.

Even in the most idealised scenario, to start constraining the various k-Mouflage
parameters tested, one can assume it will require many more detections. This is
because measurements will need to be much more precise to start discerning
individual models from one another than simply detecting a signal of 10−4, which
the predicted 105 GW detections otherwise provides.

More pessimistically, GBD theories showed much smaller deviations with respect
to GR. By exhibiting small divergences from GR even at large redshifts, one would
need a significant number of detections to start constraining the model, even when
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compared to k-Mouflage.

Regarding the EFT models, since we incorporated the models to have the same
expansion history and dark energy equation of state with GR (equation of state
following ΛCDM cosmology), their signals showed smaller divergences with GR.
More explicitly, adopting the same expansion history results in the removal of
intricate details between the different gravitational frameworks, although it
provides the benefit of allowing a more efficient way of studying a general class
of models. The smaller deviations with respect to GR were also because, unlike
the other two models, the EFT functions tend to suppress the signals present
rather than enhance them in the CGW

ℓ power spectrum relative to GR, suggesting
it requires the most number of detections to start constraining the theory out of
the theories investigated here.

It would be interesting to build on the results found here similarly to what was
done in Garoffolo et al. (2021) [84]. More explicitly its left for future work to
estimate more rigorously the number of sources needed to successfully distinguish
(or constrain) the various gravitational theories investigated here. One can expand
on this by referencing next-generation telescopes to get a better perspective on how
far we are from detecting the interference power spectrum or from identifying
individual gravitational theories using either luminosity distance power spectra.

A more theoretical development from the project could be to dissect some of the
behaviour observed in the results, namely the origin of the rapid peculiar velocity
decay for low n and large |ω| in GBD theories otherwise not observed with
different combinations of the parameters. Although this wouldn’t necessarily be
revolutionary in the field, a deeper understanding of the theory could give
profound insights on scalar-tensor theories in general.

To finish on a more encouraging note, with the ongoing development of GW
interferometers, we are at the beginning of a revolutionary time in the field of
cosmology and fundamental physics. Bertacca et al. (2019) [107] showed that
future proposed observatories such as the Big Bang Observer ([108]; [109]) have
enough precision to start constructing the luminosity distance power spectrum
for GR.

Although not one of the next-generation observatories, it follows that these
proposed interferometers may begin to constrain theories of modified gravity.
With this, it remains that the luminosity distance power spectrum has the
capability of being a unique and powerful tool in our task of probing the
fundamental nature of our Universe, and, until then, any predictions of the
imprints of modified gravity on the observable is a worthwhile task to analyse.
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Appendix A: Mathematical Necessities

GR uses its own mathematical convention. This section provides the reader with
a refresher with Carroll (2004) [3] and Flournoy (2021) [18] as supplementary
references if needed.

Manifolds

When going from special relativity to GR, we go from flat Minkowski space to
generalised curved space. This change influences the interpretation of some
fundamental properties such as vectors, necessitating the existence of manifolds.
Before defining a manifold, a few definitions need to be in order.

Definition A.1 (Set): A set is an infinite or finite collection of elements a. The
expression ai ∈ S tells us that the element ai is part of the set S. A set with no
elements, ∅, is called the null set.

Definition A.2 (Subset): A set U is a subset of S if all the elements in U are in S.
Mathematically this is denoted as U ⊆ S.

Definition A.3 (Map): Given two independent sets, M and N, a map is some
function ϕ which assigns to each element in M an element in N.

Maps can come in two different forms. An injective map is one where every
element in the original set maps to one or fewer points on the other. A surjective
map is one where the elements of the original set corresponds to several different
points of a new set. An injective and surjective map maps every element to
exactly one component. Figure A.1 illustrates these two concepts.

Figure A.1: Left: A one-to-one map, ϕ, which gives for each element in U at most one element in
the new set Rn. Right: A many-to-one map ϕ, mapping two different elements in the original map
to the same point on the new set.

A map is said to be diffeomorphic if the manifold is infinitely differentiable and
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can map elements from M to N or N to M through its inverse. Mathematically:

There exists C∞ map for ϕ : M −→N

There exists C∞ map for ϕ−1 : N −→M

Take a conical surface as an example. Although a conical surface has a smooth
surface, due to the presence of a vertex, it doesn’t satisfy the requirement of C∞,
hence no diffeomorphic map exists.

Definition A.4 (Chart): A chart, Uα, is a subset of the set M with a one-to-one map
ϕ to Euclidean space Rn. See left-hand side of figure A.1.

Definition A.5 (Atlas): An atlas of the set M is the set of charts, Uα, whose union
when sewn together using a Cp transition function covers M.

Definition A.6 (Manifold): A C∞ n-dimensional manifold is the set M with a
maximal atlas. That is to say, M comprises the set of carefully sewn together
regions of Rn Euclidean space. In terms of GR, the set M conveys the collection of
points in spacetime.

Definition A.6 is somewhat abstract. Intuitively, one can think of manifolds as a
region of space that may have complex curvature and topologies but in any given
local section appears as Rn Euclidean space, thereby simplifying calculations. A
classic example would be Earth, appearing flat in day-to-day life but spherical
when looked through a larger region.

Vectors and Tensors

In curved space, vectors take on a different meaning and become essential to GR
thanks to a few properties, namely:

1. Vectors are invariant under coordinate transformations.

2. Vectors consist of components that satisfy a specific transformation law.

3. Vectors do not live in spacetime, but rather live in tangent space Tp.

The second and first points are connected. Although a change in coordinate
systems influences the components of the vector and its basis, the combination of
the effect follows a specific transformation law such that they compensate one
another, leaving the vector invariant.

This third point makes explicit the difference in interpretation of vectors in special
relativity and GR. Since Minkowski space is always flat, one can interpret its
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tangent space to spacetime. However, with GR investigating curved space, this
interpretation changes.

Figure A.2: The tangent space Tp
of a vector at point xµ. Note that
the arrow does not extend into
tangent space, it simply illustrates
the vector component Vµ. Image
adapted from [110].

For a particular location in spacetime, xµ, the vector
can be mathematically expressed as Vµ = dxµ

dλ with
λ some parameter defining the curve going through
spacetime which we aim to decompose into tangent
space. By being dependent on xµ, a vector is
not an object that extends between locations on
spacetime but, rather, denotes the tangent space at
a specific location. One can go from a vector (with
superscript indices) to its dual (subscript indices)
by applying the metric convention, where like-wise
dummy indices get summed over. That is to say:

Vν = gνµVµ ←→ Vν = gνµVµ (A.1)

Another essential tool for generalising to curved spaces is that of tensors.

Definition A.7 (Tensor): A tensor is something that transforms as a tensor. It
represents physical quantities invariant under transformations.

In general, a (k, l)-tensor has k denote the tangent space and l the cotangent space.
Adopting this nomenclature, we see that the metric tensor gµν is a (0, 2)-tensor,
whereas a vector such as xµ in figure A.2 is a (1, 0)-tensor.

Although they have an ambiguous definition, tensors find themselves rooted in
various fundamental aspects of GR such as the metric tensor, the
energy-momentum tensor and the Riemann curvature tensor.

The Metric Tensor

The metric tensor provides a reference frame and allows the concept of past,
present and future. In Minkowski space, the metric tensor is denoted by ηµν. In
curved space, it takes the form gµν.

In our discussion about vectors, we already saw how the metric tensor allows one
to go from a vector representation to its dual and vice-versa by raising or lowering
indices. The metric tensor features several other important properties, namely that:

1. The metric tensor allows calculation of the proper time τ and path length,
ds2, which is a metric invariant.

2. The metric tensor determines the shortest path between two points.
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3. The metric tensor introduces the idea of locally inertial frames.

4. The Newtonian gravitational field gets replaced by the metric tensor.

5. The metric tensor implies causality.

The first property introduces proper time, which is fundamental to relativity.

Definition A.8 (Proper Time): The time measured by a moving frame passing
between events A and B. Mathematically, dτ =

√
−gµνdxµdxν.

This definition gives insight regarding the link between features (1) and (5). When
plugging in the usual convention where gµν = diag(−c, 1, 1, 1) we see that:

dτ =
√
−(−c2dt2 + dx2

i ) (A.2)

Which only has a real solution if the argument inside the square root is a positive
number. This leads to the following equality:

0 < c2dt2 − dx2 −→ dx
dt

= v < c (A.3)

In other words, the equality entails that any particle must travel a distance less
than that travelled by light during a time interval dt, implying causality.

Before moving to the discussion on the Riemann curvature tensor, one should note
that the fourth property illustrates how the intrinsic curvature of space relates to
gravity.

Riemann Curvature Tensor and the Covariant Derivative

As it is confusingly defined, a tensor transforms like a tensor. However, its
derivative does not, as seen with the following transformation relations:

T ν
µ −→ T ν′

µ′ =
∂xµ

∂xµ′
∂xν′

∂xν
T ν

µ (A.4)

∂µ −→ ∂µ′ =
∂xµ

∂xµ′
∂µ (A.5)

∂µTν −→ ∂µ′Tν′ =
∂xµ

∂xµ′
∂xν′

∂xν
∂µTν +

∂xµ

∂xµ′
Tν∂µ

(∂xν′

∂xν

)
(A.6)

Notice that both equations A.4 and A.5 transform like a tensor under their usual
transformation laws. However, equation A.6 does not since a new term emerges.
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Since this term is not necessarily zero in GR, the derivative of a tensor does not
transform like a tensor.

This non-tensorial derivative of a tensor requires the introduction of a covariant
derivative, ∇µ ≡ ∂µ + Γ (...)

µ (...). Notable properties of the covariant derivative are:

1. ∇µVν is tensorial.

2. ∇µ reduces to ∂µ when acting on scalars.

3. The covariant derivative is metric compatible, meaning that: ∇µgµν = gµν∇µ

Figure A.3: Left: A flat 2D Euclidean space
will have a vector parallel transport back
onto itself when going around a closed loop.
Right: A curved surface will force a vector to
change when travelling along a closed loop.

Given that acting ∂µ on a vector is non-
tensorial, then for ∇µ to be tensorial, the
Christoffel connection Γ (...)

µ (...) is also non-
tensorial. The combinations of Γ (...)

µ (...) and
∂µ transform in a specific fashion to leave
the covariant derivative tensorial.

The covariant derivative parallel transports
a vector Vµ at some position (xµ + εµ) to
xµ. By parallel transporting a vector, the
covariant derivative becomes an essential
tool when probing the curvature of a
given topology since parallel transporting a
vector along a closed path in flat space has
the vector unchanged, ∇µVν = 0, which isn’t the case for curved spaces. Figure
A.3 illustrates this.

The Riemann curvature tensor is best introduced by following a simple example,
set up by the closed-loop conveyed in figure A.4.

Figure A.4: A surface in which A is located at (0, 0) and B at (xµ, xν).
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Let us say that the vector at A, Vρ
A can return to itself Ṽρ

A through the following
translations:

Ṽρ
A = (−∆xν)(−∆xµ)(∆xν)(∆xµ)Vρ

A (A.7)

If Vρ
A = Ṽρ

A, then we know that the surface denotes one of flat space. Decomposing
this translation up to point B we have:

Vρ
B = ∆xν∆xµVρ

A (A.8)

Ṽρ
B = (−∆xµ)(−∆xν)Vρ

A (A.9)

Equation A.8 denotes the anti-clockwise path starting from A while equation A.9
the clockwise one. Taking the difference between either expression, we notice the
commutation relation between vectors ∆xµ and ∆xν emerges:

Ṽρ
B −Vρ

B = −[∆xµ, ∆xν]Vρ
A (A.10)

To better analyse the differences in the path taken, one needs a tool that parallel
transports a vector so that its components or basis remain invariant. As we saw
earlier, this is provided by the covariant derivative in generalised curve space
altering the commutator to:

[∇µ,∇ν]Vρ =

{
0 if flat
̸= 0 otherwise

(A.11)

Now plugging in the relation ∇µ ≡ ∂µ + Γ (...)
µ (...) into the commutator and

simplifying (∂µ∂ν = ∂ν∂µ):

[∇µ,∇ν]Vρ =
(

∂µΓρ
ν σ − ∂νΓρ

µ σ + Γρ
µ αΓα

ν σ − Γρ
ν αΓα

µ σ

)
Vρ (A.12)

If the term in the bracket is zero, we are looking at a flat space, and if not, it is
curved. Due to being invariant through the construction of the covariant
derivative, such an expression immerses itself throughout GR and is the Riemann
curvature tensor:

Rρ
σµν = ∂µΓρ

ν σ − ∂νΓρ
µ σ + Γρ

µ αΓα
ν σ − Γρ

ν αΓα
µ σ (A.13)

Applying index contraction we obtain other useful variables, namely the Ricci
tensor and Ricci scalar:

Rρν ≡ Rλ
ρνλ and R = gµνRµν (A.14)
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Appendix B: Energy-Momentum Tensor Definition

The definition of the energy-momentum tensor given in section 2.1 needs
motivation as it may seem arbitrarily chosen. Its definition is:

Tµν ≡ −
2√−g

δSM

δgµν (B.1)

Lets motivate this definition through an example using a single scalar field with
Lagrangian density:

L̂ = −1
2

gµν(∇µ φ)(∇ν φ)−V(φ) (B.2)

Using the same method when deriving the Einstein equation (section 2.1) and that
done by Carroll (2004) [3], we vary the action with respect to the metric to extract
the equations of motion. In this case:

Sφ =
∫

d4x
√
−gL̂ (B.3)

δSφ =
∫

d4x δ
√
−g

(
− 1

2
gµν(∇µ φ)(∇ν φ)−V(φ)

)
+

∫
d4x

√
−g

(
− 1

2
δgµν(∇µ φ)(∇ν φ)

)
(B.4)

Where the potential V(φ) is metric-independent. Plugging in the same identity
seen before δ

√−g = −1
2
√−ggµνδgµν:

δSφ =
∫

d4x
[
− 1

2
√
−ggµνδgµν

](
− 1

2
gαβ(∇α φ)(∇β φ)−V(φ)

)
+

∫
d4x

√
−g

(
− 1

2
δgµν(∇µ φ)(∇ν φ)

)
(B.5)

Grouping the two intergrals together:

δSφ =
∫

d4x
√
−gδgµν

[
− 1

2
gµν

(
− 1

2
gαβ(∇α φ)(∇β φ)−V(φ)

)
− 1

2
(∇µ φ)(∇ν φ)

]
(B.6)

Using our definition for the energy-momentum tensor we find:

T(φ)
µν = (∇µ φ)(∇ν φ)− 1

2
gµνgαβ(∇α φ)(∇β φ)− gµνV(φ) (B.7)

The expression above denotes the correct representation of the
energy-momentum tensor for a (real) single scalar field [3], thereby showing the
validity of the definition.
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Appendix C: Deriving the Friedmann Equations

To derive the Frieman equations, we will need the following expressions:

Gµν = Rµν −
1
2

Rgµν =
8πG

c4 Tµν (C.1)

Tij =
(

ρ +
P
c2

)
UiUj + Pgij (C.2)

Rµν = ∂λΓλ
µν − ∂νΓλ

µλ + Γλ
λρΓρ

µν − Γρ
µΓλ

νρ (C.3)

R = gµνRµν = Rµ
µ (C.4)

The following derivation takes the particles rest-frame as this will simplify
calculations with the four-velocity reducing to U = (c, 0, 0, 0). Thanks to the
isotropic nature of the Universe, the FLRW metric consists of only diagonal
elements, and thus, the Ri0 terms vanish. The remaining Ricci tensors are R00 and
Rij:

R00 = ∂λΓλ
00 − ∂0Γλ

0λ + Γλ
λρΓρ

00 − Γρ
0λΓλ

0ρ (C.5)

Using the relations of the Christoffel connections given in equation 2.12:

R00 = −∂0Γλ
0λ − Γρ

0λΓλ
0ρ (C.6)

Expanding the R00 Ricci tensor for the different (non-vanishing) combinations of
the spatial and time indices using expressions laid out in equations D.1 - D.3:

R00 = −∂0Γ0
00 − ∂0Γi

0i − Γi
00Γ0

0i − Γi
0jΓ

j
0i (C.7)

R00 = −∂0

( 1
c2

ȧ
a

δi
j

)
− 3

1
c2

( ȧ
a

)2
(C.8)

R00 = − 3
c2

ä
a
+

3
c2

( ȧ
a

)2
− 3

c2

( ȧ
a

)2
(C.9)

R00 = − 3
c2

( ä
a

)
(C.10)

Rij is a bit more tedious to calculate, but using the same methodology one obtains:

Rij =
1
c2

( ä
a
+ 2

( ȧ
a

)2
+ 2

κc2

a2R2
0

)
gij (C.11)
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As seen earlier, contracting the Ricci tensor with the metric gives us the Ricci scalar.
That is to say:

R = gµνRµν = (−1)R00 + a−2Rii (C.12)

Subbing in equation C.10 and C.11 keeping in mind gijgij = 3:

R =
6
c2

( ä
a
+

( ȧ
a

)2
+

κc2

a2R2
0

)
(C.13)

Plugging our results into the Einstein field equations, we extract the Friedmann
equations. In particular, we want the G00 component, which will provide the
expansion equation and Gij, which provides us with the accelerated expansion
expression.

G00 =
8πG

c4 T00 = R00 −
1
2

Rg00 (C.14)

G00 =
8πG

c4 ρc2 = − 3
c2

ä
a
+

1
2

[ 6
c2

( ä
a
+

( ȧ
a

)2
+

κc2

a2R2
0

)]
(C.15)

G00 =
8πG

c4 ρc2 =
3
c2

[( ȧ
a

)2
+

κc2

a2R2
0

]
(C.16)

Re-arranging in terms of
(

ȧ
a

)2
:( ȧ

a

)2
=

8πG
3

ρ− κc2

a2R2
0
=

8πG
3

ρ + (1−Ω0)
H2

0
a2 (C.17)

Where we used the curvature relation κ =
H2

0 R2

c2 (Ω − 1). For the accelerated
Friedmann equation, we shift our focus on Gij.

Gij =
8πG

c4 (3Pa2) =
1
c2

( ä
a
+ 2

( ȧ
a

)2
+ 2

κc2

a2R2
0

)
a2

− 1
2

[ 6
c2

( ä
a
+

( ȧ
a

)2
+

κc2

a2R2
0

)]
a2 (C.18)

With some rather straightforward algebra, this expression becomes:

Gij =
8πG

c4 (3P) = − 3
c2

(
2

ä
a
+

8πG
3

ρ
)

(C.19)

Re-arranging for ä
a :

ä
a
= −4πG

3
(ρ + 3P) (C.20)
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Appendix D: Deriving the Fluid Equation

To derive the fluid equation, we will need the following Christoffel connections
corresponding to the FLRW metric:

Γ0
00 = Γ0

0i = Γ0
i0 = Γi

00 = 0 (D.1)

Γ0
ij = δij = ȧa (D.2)

Γi
0j = Γi

j0 = δij
ȧ
a

(D.3)

As the reader is free to check. The fluid equation emerges from the Bianchi identity
(equation 4.16) as this is the general relativistic form of energy conservation. The
identity ensures causality and forbids the spontaneous decay of the vacuum [3].
Subbing in the form of the energy-momentum tensor:

0 = ∇µTµ
ν = ∇µ

(
(ρ + P)UµUν + Pgµν

)
(D.4)

The fluid equation aims to investigate the time evolution of the different energy
constituents, therefore we wish to derive the expression where ν = 0. Plugging in
the expression for the covariant derivative acting on a (1, 1)-tensor:

0 = ∇µTµ
ν = ∂µTµ

0 + Γµ
µλTλ

0 − Γβ
µ0Tµ

β (D.5)

We plug both the time-component and space components separately to solve this
equation. In doing so, we keep in mind the Copernican principle which states
the Universe is isotropic as this implies ∂µTi

0 = 0. Furthermore, we choose to

investigate a perfect fluid with no self-interaction (Ti
0 = dρi

dV = 0). Imposing this
gives us:

0 = ∂0T0
0 + Γµ

µ0T0
0 − Γ0

00T0
0 − Γi

i0Ti
i (D.6)

0 = ∂0T0
0 + Γ0

00T0
0 + Γi

i0T0
0 − Γ0

00T0
0 − Γi

i0Ti
i (D.7)

0 = ∂0T0
0 + Γi

i0(T
0
0 − Ti

i) (D.8)

The components of our energy-momentum tensor as seen by a comoving observer
is now gµσ = Tσ

ν = Tµ
ν = diag{−ρ, P, P, P}. Upon substitution:

0 = ρ̇ + Γi
i0(ρ + P) (D.9)

Plugging in our expression for Γi
i0, we get the final form of the fluid equation:

ρ̇ = −3
ȧ
a
(ρ + P) (D.10)
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Appendix E: The Cosmological Constant Problem

Quantum mechanics tells us that the vacuum has non-zero energy due to the
quantum fluctuations present. Section 2.2.2 showed us that the vacuum energy is
a natural phenomena of theory of GR and can emerge as T(vac)

µν . The working laid
out here follows closely to that provided by Garbutt (2020) [4].

If we define the energy cut-off of quantum theory as the Planck energy,

Ep ≡
√

h̄c5

G ≈ 1019 GeV, we can calculate the predicted energy of this vacuum
constituent by treating the virtual particles as a set of harmonic oscillators with
energy density:

ρvac =
1
V ∑

k

1
2

h̄ωk (E.1)

The summation tells us that the vacuum field is expressed as an infinite set of
harmonic oscillators, each contributing an energy of h̄ω

2 . Going into (continuous)
momentum space to calculate the total value up to the Planck energy, the
summation becomes:

ρvac ≈
h̄

2π2c3

∫ ωmax

0
ω3dω (E.2)

ρvac ≈
h̄

8π2c3 ω4
max (E.3)

Recall that our cut-off is the Planck energy, which we can convert to ω through
ωmax = Emax

h̄ . Substituting this provides us with the expected vacuum energy
value:

ρvac ≈ 10114 erg cm−3 (E.4)

This result doesn’t coincide at all with the currently observed value of ρvac ≈ 10−9

erg cm−3 [4], leading to the biggest discrepancy between observation and theory
in physics.
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Appendix F: The Chameleon Mechanism

We mentioned in section 3.2.2 that the Brans-Dicke parameter was constrained to
values of ωBD > 3800, but that f (R) gravity corresponds to a vanishing
Brans-Dicke parameter. This discrepancy between the model and constraints was
accentuated in section 3.2.3 when we saw the non-minimal coupling that emerges
between the scalar field and the matter field violated the EEP.

How is it then that such theories are still analysed?

Theorists have cunningly developed a way of bypassing this restriction by having
characteristics of the scalar field dependent on the local environment, fittingly
named chameleon mechanism since it forces the scalar field to camouflage with
its surroundings in dense environments. Once more, the discussion here is to try
and keep the thesis as self-contained as possible. The reader is encouraged to
browse through various resources if they wish to dig further (i.e [45], [111], [112],
[113]).

As we saw, f (R) gravity has the scalar field couple to the Ricci scalar arbitrarily.
Since the scalar field now has a propagating degree of freedom (equation 3.56), the
scalar φ must mediate a force between the various fields to be able to couple with
them [113].

Using Lunar ranging tests to compare the free fall rate of Earth and the Moon
towards the Sun, results coincide with the EEP, meaning that this extra force should
not appear, at least not locally. Without going into the mathematical details, below
is an example of a screening potential [113]:

V(r) = − g2(φ̄)

Z(φ̄)c2
s

exp
[
− m(φ̄)√

Z(φ̄)cs(φ̄)
r
]

4πr
M (F.1)

Here Z describes self-interactions in the fields, M the point-source mass, cs the
speed of sound, g the trace of the background metric and m the mass of the
mediator.

Note that equation F.1 takes a static potential and only portrays the general form
of a screening mechanism. The expression shows us that if one forces the scalaron
mass m(φ) to be large, which is the case in dense environments such as on Earth,
this fifth force emerging from the extra degree of freedom camouflages itself and
is unobservable due to the exponential suppression it encounters. Contrariwise, in
low-density regions, deviations may be observed. This motivates the use of voids
when probing theories of gravity.
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Appendix G: Scalar Field Equation of Motion

The equations of motions are found by solving the Euler-Lagrange equations. In
this case, for f (R) gravity we vary the metric with the new dynamical field φ such
that the Euler-Lagrange equations for equation 3.55 becomes:

0 =
∂(
√
−g̃L̂φ)

∂φ
+

∂LM

∂φ
− ∂µ

(∂(
√
−g̃L̂φ)

∂(∂µ φ)

)
(G.1)

Solving this for equation 3.55, the first and third factor are:

∂(
√
−g̃L̂φ)

∂φ
=

√
−g̃(∂φV(φ)) (G.2)(∂(

√
−g̃L̂φ)

∂(∂µ φ)

)
= −
√
−g̃
2

(
gµν∂µ φδ

µ
ν + gµν∂ν φδν

µ

)
(G.3)

(∂(
√
−g̃L̂φ)

∂(∂µ φ)

)
=

(
−

√
−g̃∂µ φ

)
(G.4)

∂µ

(∂(
√
−g̃L̂φ)

∂(∂µ φ)

)
= −

√
−g̃∂µ(∂

µ φ) = −
√
−g̃□̃φ (G.5)

We can use our earlier definition of the energy-momentum tensor as a starting
point for deriving the second term in equation G.1. For this case we have that
T̃(M)

µν ≡ − 2√
−g̃

δLM
δg̃µν . Using the various relabling conventions for conformal

transformations (equations 3.45 - 3.47) and recalling F = Ω2:

T̃(M)
µν = − 2

F2√−g
δLM

Ω−2δgµν = − 2
F
√−g

δLM

δgµν (G.6)

Looking back at the Lagrangian of the matter field:

∂LM

∂φ
=

δL
δgµν

∂gµν

∂φ
= F−1

( δL
δg̃µν

)(∂(Fg̃µν)

∂φ

)
(G.7)

Substituting the definition of the energy-momentum tensor for the second term:

∂LM

∂φ
= −F−1

√
−g̃
2

T̃(M)
µν

∂(Fg̃µν)

∂φ
= −

√
g̃κT̃(M)

µν Qg̃µν (G.8)

Where the coupling strength is defined as Q ≡ − 1
2κ

∂φF
F [38]. Taking its trace and

substituting the three terms derived into our Euler-Lagrange equation we extract
the scalar field equation of motion:

0 = □̃φ− ∂φV(φ) + κT̃Q (G.9)
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Appendix H: Deriving Some Newtonian-Gauge
Christoffel Symbols

Starting from the expression of the Christoffel connection (equation 2.12):

Γ0
µν =

1
2

g0σ[∂νgσµ + ∂µgνσ − ∂σgµν] (I.1)

Γ0
00 =

1
2

g0σ[∂0gσ0 + ∂0g0σ − ∂σg00] (I.2)

By nature of our metric tensor being diagonal, the only time the expression above
is non-zero is if σ = 0, meaning that:

Γ0
00 =

1
2

g00∂0g00 =
1
2
[−(1− 2Ψ)a−2]× ∂0[−(1 + 2Ψ)a2] (I.3)

Here, we use the fact that at linear order g00 = −a−2(1 + 2Ψ)−1 ≈ −a−2(1− 2Ψ).
Expanding this;

Γ0
00 =

1
2
(1− 2Ψ)a−2 × [2aa′ + 2Ψ′a2 + 4Ψaa′] (I.4)

Γ0
00 =

1
2

(
2

a′

a
+ 2Ψ′ + 4Ψ

a′

a
− 4Ψ

a′

a

)
+O(Ψ′2) (I.5)

Γ0
00 = H+ Ψ′ +O(Ψ′2) (I.6)

Similarly, for Γ0
i0:

Γ0
i0 =

1
2

g0σ[∂0gσi + ∂ig0σ − ∂σgi0] =
1
2

g00[∂0g0i + ∂ig00 − ∂0gi0] (I.7)

Γ0
i0 =

1
2

g00∂ig00 =
1
2
[(1− 2Ψ)a−2]× ∂i[−a2(1 + 2Ψ)] (I.8)

Γ0
i0 = ∂iΨ +O(Ψ2)

Fourier Space−−−−−−−→ Γ0
i0 = ikiΨ +O(Ψ2) (I.9)
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Appendix I: Perturbed Ricci Tensors and Ricci Scalars

This appendix derives the various forms of the Ricci tensor and Ricci scalar. The
Ricci tensor is a contraction of the Riemann tensor, expressed as:

Rµν ≡ Rλ
µλν = ∂λΓλ

µν − ∂νΓλ
µλ + Γλ

λρΓρ
µν − Γρ

µλΓλ
νρ (I.1)

Focusing on the time-time Ricci tensor first:

R00 = ∂λΓλ
00 − ∂0Γλ

0λ + Γλ
λρΓρ

00 − Γρ
0λΓλ

0ρ (I.2)

Expanding the indices of the various Christoffel connections, the equation
becomes:

R00 = ∂iΓi
00 − ∂0Γi

0i + Γi
0iΓ

0
00 + Γi

jiΓ
j
00 − Γ0

0iΓ
i
00 − Γj

0iΓ
i
0j (I.3)

R00 = ∇2Ψ− ∂0[H−Φ′]δi
j + (H−Φ′)δi

j(H+ Ψ′)

+ (2δi
(j∂k)Φ + δjkδjl∂lΦ)(∂jΨ)− (∂iΨ)(∂jΨ)

− ([H−Φ′]δi
j)([H−Φ′]δi

j) (I.4)

We can cancel the fourth and fifth term due to being second order in perturbations.
Doing so, and taking i = j = 0 such that δi

j −→ δi
i = 3:

R00 = ∇2Ψ− 3∂0(H −Φ′) + 3(H + Ψ′)(H −Φ′)− 3(H−Φ′)2 (I.5)

R00 = ∇2Ψ− 3H′ + 3H(Φ′ + Ψ′) + 3Φ′′ +O(Φ2, Ψ2) (I.6)

Using the same methodology and once more keeping terms linear in order, the
other two Ricci tensors needed are:

Rij =
[
H′ + 2H2 −Φ′′ +∇2Φ−HΨ′ − 5HΦ′

− 2(H′ + 2H2)(Φ + Ψ)
]
δij + ∂i∂j(Φ−Ψ) (I.7)

R0i = 2∂i(Φ′ +HΨ) (I.8)

The perturbed Ricci scalar is simply the contraction of each Ricci tensor with the
corresponding metric element.

R = g00R00 + 2g0iR0i + gijRij (I.9)
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Here, the factor g0iR0i is only composed of second order and higher terms and thus
can be neglected. For the other two terms, we substitute the previously derived
expressions such that our Ricci scalar becomes:

R = −a−2(1− 2Ψ)(∇2Ψ− 3H′ + 3H(Φ′ + Ψ′) + 3Φ′′)

+ a−2(1 + 2Φ)
(

δii[H′ + 2H2 −Φ′′ +∇2Φ

− 2(H′ + 2H2)(Φ + Ψ)−HΨ′ − 5HΦ′] +∇2(Φ−Ψ)
)

(I.10)

Expanding to linear order:

a2R = 3H′ −∇2Ψ− 3HΦ′ − 3HΨ′ − 3Φ′′ − 6H′Ψ + 3H′

+ 6H2 − 3Φ′′ + 3∇2Φ− 6H′Φ + 6H′Ψ− 12H2Φ− 12H2Ψ

− 3HΨ′ − 15HΦ′ + 6ΦH′ + 12H2Φ +∇2Φ−∇2Ψ (I.11)

Cancelling terms and combining like terms, the Ricci scalar at linear order
perturbation is:

a2R = −2∇2Ψ + 6(H′ +H2) + 4∇2Φ− 6Φ′′

+ 6H(Ψ′ + 3Φ′) + 12(H′ +H2)Ψ (I.12)
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Appendix J: The 00-Einstein Equation for Tensorial
Perturbations

Deriving the time-time component of the Einstein equation requires us to find R00,
which we can do by using the Christoffel connections listed in section 4.4. The
00-Ricci tensor is given as:

R00 = ∂σΓσ
00 − ∂0Γσ

0σ + Γα
00Γσ

σα − Γα
0σΓσ

0α (J.1)

Note that all terms in this expression cancel when we set σ = 0. Setting σ ≡ i:

R00 = ∂iΓi
00 − ∂0Γi

0i + Γ0
00Γi

0i + Γj
00Γi

ji − Γ0
0iΓ

i
00 − Γj

0iΓ
i
0j (J.2)

Since Γi
00 = 0 our expression reduces to:

R00 = −∂0Γi
0i + Γ0

00Γi
0i − Γj

0iΓ
i
0j (J.3)

Using the aforementioned Christoffel connections listed in section 4.4:

R00 = −∂0(Hδi
i + ĥi ′

i) +H(Hδi
i + ĥi ′

i)− (Hδ
j
i + ĥi ′

i)(Hδi
j + ĥi ′

j) (J.4)

Recall that our perturbed metric is traceless such that ĥi
i
′ = 0 and that δi

i = 3 the
Ricci scalar reduces to R00 = −3H′, and thus:

G00 = −3H′ − 1
2

a2
[ 6

a2 (H
′ +H2)

]
(J.5)

G00 = −3(2H2 +H′) (J.6)

Due to the lack of ĥij terms, we see that the G00 component has no perturbation
meaning the nature of GWs purely resides in the Gij components.
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Appendix K: Deriving the ij-Ricci Tensor for
Tensorial Perturbations

Here we will use the Christoffel connections listed out in section 4.4. The ij-Ricci
tensor is expressed as:

Rij = ∂ρΓρ
ij − ∂jΓ

ρ
iρ + Γα

ijΓ
ρ
αρ − Γα

iρΓρ
jα (K.1)

The second term vanishes due to the traceless nature of the perturbation. More
explicitly:

Γρ
iρ = Γ0

i0 + Γj
ij (K.2)

Γρ
iρ = 0 + ∂jĥ

j
i + ∂iĥ

j
j − δjl∂l ĥji (K.3)

Γρ
iρ = 0 (K.4)

After using the traceless nature of the perturbed metric. Going back to equation
K.1 and expanding the Christoffel connections:

Rij = (∂0Γ0
ij + ∂kΓk

ij) + (Γ0
ijΓ

k
0k − Γk

ijΓ
0
k0)− (Γ0

ikΓk
j0 + Γk

i0Γ0
jk + Γk

ilΓ
l
jk) (K.5)

The second term in the second bracket and last term in the last one are zero and
higher than first order in perturbation. Plugging in the various Christoffel
connections into the expression above:

Rij =
(

∂0[Hδij + 2ĥijH+ ĥ′ij] + ∂k[∂jĥk
j + ∂iĥk

i − δkl∂l ĥij]
)

+ (Hδij + 2ĥijH+ ĥ′ij)(4H)−
(
(Hδik + 2ĥikH+ ĥ′ik)(Hδk

j + ĥk′
j)

− (Hδk
i + ĥk′

i)(Hδjk + 2ĥjkH+ ĥ′jk)
)

(K.6)

Expanding this, many of the terms cancel and join together to give the final
expression:

Rij = (H′ + 2H2)δij + ĥ′′ij −∇2ĥij + 2Hĥij + 2ĥijH′ + 4ĥijH2 (K.7)
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Appendix L: Intuition for the Power Spectrum

The two-point correlation function shows the excess signal of some variable
between two points relative to a random, uncorrelated distribution described by
Poisson’s distribution. Below we illustrate this using points α and β:

PPoiss(α, β) = G2
bgdVαdVβ (L.1)

Here Vα and Vβ denote the observed volume at the two points and Gbg the
background value for a given observable G. We compare this Poisson distribution
with another distribution modelled through the average value extracted of the
observable at the two separate locations. We express this second probability as:

Pmodel(α, β) = ⟨G(α)G(β)⟩dVαdVβ (L.2)

Decomposing the observable as the background value plus some random field ϕ:

Pmodel(α, β) = ⟨Gbg(1 + ϕα)Gbg(1 + ϕβ)⟩dVαdVβ (L.3)

The average of the fluctuations vanish, however the same cannot be said for our
two-point correlation function ⟨ϕαϕβ⟩. This leaves:

Pmodel(α, β) = G2
bg⟨1 + ϕαϕβ⟩dVαdVβ = G2

bg(1 + ζ(α− β))dVαdVβ (L.4)

Where we defined ⟨ϕαϕβ⟩ ≡ ζ(α − β). Taking the ratio between the Poisson
distribution with this new formulated model, we see our two-point correlation
function describes the excess signal relative to a Poisson distribution:

Pmodel

PPoiss
= 1 + ζ(α− β) (L.5)

Since Fourier modes evolve independently, it is beneficial to take the statistical
analysis to Fourier space. Our two-point correlation function in Fourier space is:

⟨ϕkϕk′⟩ =
∫

d3x eik·x
∫

d3x′e−ik′·x⟨ϕk(x)ϕk′(x′)⟩ (L.6)

Here we used the fact that ϕ∗k (x) = ϕ−k(x) due to it being a real field. Furthermore,
we can say x′ = x + r for some separation vector r, giving us:

⟨ϕkϕk′⟩ =
∫

d3x eik·x
∫

d3r e−ik′·(x+r)⟨ϕ(x)ϕ(x + r)⟩ (L.7)
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Looking back at our earlier expression we can express the correlation function as
ζ(r) = ⟨ϕ(x)ϕ(x + r)⟩ such that:

⟨ϕkϕk′⟩ =
∫

d3r e−ik′·rζ(r)
∫

d3x ei(k−k′)·x (L.8)

⟨ϕkϕk′⟩ = (2π)3δ(k− k′)
∫

d3r e−ik′·rζ(r) (L.9)

⟨ϕkϕk′⟩ = (2π)3δ(k− k′)P(k) (L.10)

and thus we see that the two point correlation function corresponds to the Fourier
transform of the power spectrum.

120



Appendix M: Supplementary plots for linear Ω
functions

Figure M.1: Left: The CGW
ℓ luminosity distance power spectrum for various Ω0 values following

a linear relation at redshift z = 1.00. Right: The C∆φ
ℓ luminosity distance power spectrum for the

same parameters at the same redshift.
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Figure M.2: The CGW
ℓ luminosity distance power spectrum for various Ω0 values following a linear

relation at z = 0.10.

121



Appendix N: Supplementary plots for exponential Ω
functions

Figure N.1: Left: The CGW
ℓ luminosity distance power spectrum for various exponential values

where Ω0 follows an exponential relation. Right: The C∆φ
ℓ luminosity distance power spectrum for

the same models at the same redshift. Both plots are at a redshift z = 1.00
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Figure N.2: The CGW
ℓ luminosity distance power spectrum for various exponential values where

Ω0 follows an exponential relation. Redshift z = 0.50.
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Appendix O: Supplementary plots for k-Mouflage

Figure O.1: The C∆φ
ℓ luminosity distance power spectrum for k-Mouflage using the same

parameters.
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Appendix P: Supplementary plots for GBD

Figure P.1: Left: The CGW
ℓ luminosity distance power spectrum for GBD models varying ω at

redshift z = 1.00 for fixed n = 2.973. Right: The resulting C∆φ
ℓ luminosity distance power spectrum

for the same models at the same redshift.
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Figure P.2: The C∆φ
ℓ GBD luminosity distance power spectrum for various ω values at z = 0.05. The

dotted line corresponds to the dark energy clustering component of the individual gravitational
theories.
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Figure P.3: Left: The CGW
ℓ luminosity distance power spectrum for GBD models varying ω at

redshift z = 1.00 for fixed n = 2.990. Right: The resulting C∆φ
ℓ luminosity distance power spectrum

for the same models at the same redshift.

Figure P.4: Left: The CGW
ℓ luminosity distance power spectrum for GBD models varying n at

redshift z = 1.00 for fixed ω = −3.000. Right: The resulting C∆φ
ℓ luminosity distance power

spectrum for the same models at the same redshift.
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Figure P.5: Left: The CGW
ℓ luminosity distance power spectrum for GBD models varying n at

redshift z = 1.00 for fixed ω = −0.100. Right: The resulting C∆φ
ℓ luminosity distance power

spectrum for the same models at the same redshift.

126


	Introduction
	Convention Used
	Outline of the Paper

	The Theory of General Relativity
	Einstein Field Equations
	Experimental Evidence

	Current State of Cosmology
	Friedmann Equations
	Constituents of the Universe

	CDM Model
	Evidence for Cosmic Acceleration
	Shortcomings of General Relativity


	Modified Gravity: Scalar-Tensor Theories
	Scalar-Tensor Theories
	f(R) Gravity 
	Deriving the Field Equations
	Equivalence with Brans-Dicke Theory
	Conformal Transformations
	Model Restrictions

	k-Mouflage
	Generalised Brans-Dicke

	Cosmological Perturbations
	Scalar-Vector-Tensor Decomposition
	Choosing the Gauge
	Scalar Perturbations
	Tensor Perturbations
	Linearised Gravity
	Evolution of Gravitational Waves


	Distances
	Supernova Ia
	Standard Sirens

	Statistical Analysis
	Angular Power Spectrum
	Luminosity Distance Power Spectrum
	Power Spectrum Distortions
	ISW Effect
	Peculiar Velocities
	Weak-Lensing


	Methodology
	Results
	EFT Functions
	Linear  Functions
	Exponential  Functions

	k-Mouflage
	Varying A
	Varying 2.0

	Generalised Brans-Dicke
	Varying 
	Varying n


	Conclusion
	Appendix A: Mathematical Necessities
	Appendix B: Energy-Momentum Tensor Definition
	Appendix C: Deriving the Friedmann Equations
	Appendix D: Deriving the Fluid Equation
	Appendix E: The Cosmological Constant Problem
	Appendix F: The Chameleon Mechanism
	Appendix G: Scalar Field Equation of Motion
	Appendix H: Deriving Some Newtonian-Gauge Christoffel Symbols
	Appendix I: Perturbed Ricci Tensors and Ricci Scalars
	Appendix J: The 00-Einstein Equation for Tensorial Perturbations
	Appendix K: Deriving the ij-Ricci Tensor for Tensorial Perturbations
	Appendix L: Intuition for the Power Spectrum
	Appendix M: Supplementary plots for linear  functions
	Appendix N: Supplementary plots for exponential  functions
	Appendix O: Supplementary plots for k-Mouflage
	Appendix P: Supplementary plots for GBD

