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Abstract

The recent trend towards gamification could lead to an increase of the number of learning

problems that need to be solved through reinforcement learning. It is therefore important

that people learn how to solve reinforcement learning problems. Understanding which

learning strategies people use, the processes behind them, and identifying sub-optimal

learning strategies could prove very beneficial for teaching people the best reinforcement

learning strategies. This study examines the processes behind reinforcement learning

strategies through cognitive modeling. A reinforcement learning model was fitted on

human behavior on a reinforcement learning problem. Some people were able to fully solve

the problem and others were not. The temporal parameter trajectories of these two groups

were compared to each other. The group that solved the problem showed expected results

with a lot of learning and exploration at the start and less learning and more exploitation

towards the end of the task. The other group started similarly but then started to learn

less while exploration remained high. This could indicate that these people would benefit

from short learning sessions after which they are able to focus on something else.
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Processes Behind Reinforcement Learning
An examination of the temporal progression of processes behind successful and

unsuccessful reinforcement learning strategies

1 Introduction

The ability to learn is an integral part of human and animal life. As soon as we are

born, we learn (Gray, 2011; Holt, 1967; Iverson, 2010). It is, therefore, no surprise that

several research fields related to psychology and biology (e.g. developmental psychology,

neurology, and social psychology) have been interested in when and how humans and

animals learn (Bransford et al., 2000; Gray, 2011; Kolb & Whishaw, 2009).

In recent decades, learning has expanded from an ability exclusive to humans and

animals to an ability that can be incorporated into artificial agents and machines (e.g.

computers). (Sutton & Barto, 2018). Often these machine learning algorithms can solve

specific learning problems better than humans but lack the ability to transfer their newly

obtained knowledge to (slightly) different learning problems. Even algorithms specifically

designed to transfer knowledge from one problem to another, remain limited in their ability

to transfer knowledge successfully (Lazaric, 2012). Nevertheless, the proper algorithm

should be able to always solve a specific learning problem at least as well as

well-performing humans.

Conversely, humans are not always able to flawlessly solve a learning problem.

Different people tend to approach problems differently and some approaches might lead to

a less-than-optimal or unsuccessful result (Nisbet & Shucksmith, 2017). To be able to

understand why some people can learn successfully and others cannot, it is recommended

to investigate the learning strategies they used when solving the learning problem

(Williams & Burden, 1997, as cited in Lee, 2010).

There are several ways humans, animals, and machines learn (Gray, 2011; Sutton &

Barto, 2018). One way is through trial-and-error-based learning (Thorndike, 1898). Little

to no information is given to the learner, forcing the learner to try out actions and learn
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the consequences of these actions afterward. Once at least some consequences are known,

the learner can select actions that lead to the preferred outcome. A rather well-known

trial-and-error-based learning method is reinforcement learning (Kaelbling et al., 1996;

Sutton & Barto, 2018); originally based on the principles of operant conditioning (Skinner,

1981)

This study aims to examine the process behind reinforcement learning strategies. A

recent trend towards gamification (Zainuddin et al., 2020) will likely result in an increasing

amount of learning taking place through reinforcement learning in the future. Therefore,

understanding the processes behind successful and unsuccessful reinforcement learning

strategies could prove necessary in teaching people how to avoid unsuccessful reinforcement

learning strategies in environments where reinforcement learning becomes ever more

present. We take a first look into the processes behind reinforcement learning in a very

controlled environment.

Before diving into the fine details of the study, the concept of reinforcement learning,

how the technique of cognitive modeling allows to research the processes of learning, and

the definition and examination of previous work on learning strategies will be examined.

1.1 Reinforcement Learning

Reinforcement learning has been a subject of interest for the last few decades

(Kaelbling et al., 1996) and can refer to a learning problem or a self-learning model

(Szepesvári, 2010). Reinforcement learning as a learning problem has been part of the

psychology field since Pavlov and Skinner started their research into conditioning (Clark,

2004; Skinner, 1981). Especially Skinner (1981) used reinforcement learning to train

pigeons to perform specific behaviors, such as turning a full circle. This method would

become known as operant conditioning. Skinner discovered that positive reinforcements

(e.g. food) would encourage the learner to perform the same actions again, while negative

reinforcements (e.g. a shock) would discourage the learner to perform the same actions
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again.

In its simplest form, reinforcement learning is a reward-based learning method to

learn a sequence of steps (Janssen & Gray, 2012; Kaelbling et al., 1996). Rewards can be

anything that a learner wants to earn at that moment (e.g. points or money) and can be

earned cumulatively for each N -number of steps taken or earned all at once at the end of

the problem (Sutton & Barto, 2018). Using these rewards it is possible to solve a

reinforcement learning problem without needing to exactly specify how this feat can be

accomplished. One only needs to know how to maximize the total reward obtained from

the problem (Sutton & Barto, 2018; Szepesvári, 2010), or to minimize the costs of negative

rewards (Bertsekas & Tsitsiklis, 1995).

Since little to no instructions are given, learning takes place through trial-and-error

(Kaelbling et al., 1996; Sutton & Barto, 2018). The learner has to figure out the rules,

action consequences, and rewards by themselves to achieve the highest possible reward.

Along the way, the learner is bound to make errors. However, these should decline over

time, signaling that the learner is learning to solve the reinforcement learning problem

(Kaelbling et al., 1996).

Reinforcement learning is part of our everyday life. The most straightforward

presence of reinforcement learning is in video games, where the correct actions progress the

game or lead to large rewards. However, reinforcement learning also happens more covertly

when, for example, an enthusiastic reaction from a friend for a nice birthday gift encourages

you to make another effort the next year. However, in the near future, reinforcement

learning might start to play an even larger role in our daily lives. Recently there has been a

rise in gamification in which game elements (e.g. rewards) are used to encourage learning

(Zainuddin et al., 2020). Hence, increasing knowledge on the topic could prove beneficial

and perhaps even vital for how well people are able to learn in the future.

In recent decades, interests in reinforcement learning as a self-learning model

increased with the large increase in computing power (Sutton, 1992). Nowadays,



PROCESSES BEHIND REINFORCEMENT LEARNING 6

reinforcement learning models have been updated; expanded on; and combined with other

(self-learning) models, such as, deep neural networks to create deep reinforcement learning.

Several action value update algorithms have been introduced, such as Q-learning

(C. J. Watkins & Dayan, 1992; C. J. C. H. Watkins, 1989), Temporal difference learning

(TD-learning) (Sutton, 1988), the Monte Carlo method and algorithm (Metropolis et al.,

1953; Metropolis & Ulam, 1949), as well as actions selection algorithms such as adaptive

ϵ-greedy (Tokic, 2010) and softmax (Sutton & Barto, 2018). By combining reinforcement

learning with a neural network and some human knowledge, Silver et al. (2016) were able

to build AlphaGo and defeat the world GO champion. A year later, Silver et al. (2017)

created AlphaGoZero without human knowledge and defeated AlphaGo.

These days, companies have also shown a great interest in implementing

reinforcement learning models for commercial purposes. Especially tech companies, such as

Tesla, Amazon, and Netflix, have been using reinforcement learning in their products (e.g.

self-driving cars, speech assist, and video recommendation respectively). Furthermore,

reinforcement learning models are now being used for advancement in healthcare. For

example, models have been used to mine biological data in an effort to better understand

pathologies (Mahmud et al., 2018) and to design new drugs (Popova et al., 2018). Lastly,

reinforcement learning models have been implemented in household appliances, such as

automated vacuum cleaners, to perform or optimize performances on tasks, such as

learning where the most dust tends to gather (Mahmood et al., 2018; Sutton & Barto,

2018). This is by no means an extensive list of applications. Reinforcement learning models

are used in many different ways, for many different purposes.

Reinforcement learning models have also found their way back to the research field

of psychology. For example, models have been used as statistical tools (e.g. for

bootstrapping) or as a cognitive model able to give insight into underlying processes in the

human brain (Sutton & Barto, 2018). A variation of the latter will be conducted in this

research.
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1.2 Cognitive Modeling

Cognitive models have become a crucial tool for research in the (neuro)cognitive

field (Busemeyer & Diederich, 2010). They allow researchers to have a look into the ’black

box’ that is our brain (Anderson, 2014) and help unravel the mysteries behind, for

example, memory, attention, decision making, and learning. Actions, processes, and

thoughts behind these systems can be modeled by stripping the theories and ideas behind

them down and translating them into algorithms and the parameters within (Anderson,

2014). When the correct model is built, the model should be able to perform the required

behavior, such as solving a learning problem. This way theories about processes in the

human brain can be explored, developed, and tested (McClelland, 2009).

Although cognitive models might be associated with computers, computers are not

necessary to engage in cognitive modeling (Anderson, 2014). Cognitive modeling has been

part of cognitive psychology long before Turing (1936) would lay the groundwork for the

first electronic computer. Nevertheless, computers made modeling a lot more efficient and

convenient (Anderson, 2014). The recent rise in computing power has enabled the creation

of increasingly complex and computationally demanding cognitive models (McClelland,

2009).

Researchers have started to use reinforcement learning models as cognitive models

(Daw & Frank, 2009; Janssen & Gray, 2012). For example, they have adjusted basic

reinforcement learning models to allow them to solve a specific learning problem (Balkenius

& Winberg, 2004), indicating that something similar should be happening in the brain.

Others have used reinforcement learning models to enhance the performance of their

previously existing cognitive models (Khalid et al., 2020).

Several research groups have used variations of reinforcement learning models to

solve, variations of, multi-armed bandit learning problems (kretchmar2002parallel;

Besbes et al., 2014; Bouneffouf & Féraud, 2016; Even-Dar et al., 2006; Sutton & Barto,

2018). In these types of problems, learners need to learn which of the one-armed bandits
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presented to them results in the highest turnover reward. Typically, the rewards are given

based on a chance system. Variations of this problem include non-stationary versions

where the underlying model of the problem changes (Besbes et al., 2014) and variations in

which the participant is informed beforehand of the reward trends they will encounter

(Bouneffouf & Féraud, 2016). Reinforcement learning models have been able to solve

learning problems like these successfully (Sutton & Barto, 2018), suggesting that,

according to the ideas behind cognitive modeling, similar reinforcement learning

mechanisms are likely to be present in humans when they are able to solve the problems.

In this research, we will also use a reinforcement learning algorithm as a cognitive

model to solve a learning problem that could be considered a variation of a multi-armed

bandit task. As mentioned before, cognitive models are created with a theory or notion of

some processes that might underlie specific behaviors. Then a model that can only do

those processes is built in hopes of achieving similar behaviors as observed in humans. The

question usually can be stripped down to: is this specific algorithm able to solve the given

learning problem? In the current research, the focus is slightly different. Instead of seeing

which parameters are needed or which variation of the algorithm is necessary to solve a

learning problem, the focus will be on if and how parameters in a typical reinforcement

learning model change over time and differ between participants when the model is fitted

to behave like a human. According to Sutton and Barto (2018), a reinforcement learning

model typically includes a learning rate parameter, a discounted reward rate parameter,

and, depending on the exact algorithm, one or two exploration parameter(s).

To elaborate, the learning problem used in this study could be considered a

combination of a multi-armed bandit task (Sutton & Barto, 2018) and a serial reaction

time (SRT) task (Nissen & Bullemer, 1987) in which participants need to respond to a

series of stimuli. The former is present in the task because participants needed to select

from options given and were then rewarded or punished for their choice. However, instead

of learning which fixed option would give the best rewards, the participants had to learn a
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sequence determining which option contained the best reward. Crucially, to ensure

variation in how successful people are in solving the learning problem, the problem needed

to be difficult enough that some people would fail the task and others would successfully

solve it.

1.3 Learning Strategies

Learning strategies can be defined as "a sequence of procedures for accomplishing

learning" (Schmeck, 2013). They are the specific behaviors or steps taken in hopes of

solving a learning problem (Scarcella & Oxford, 1992). Which learning strategy people use

depends on the learning problem and their own personal preference (Schmeck, 2013). The

latter depends in turn on the skills they possess and how they use these skills (Schumaker

& Deshler, 1992), their expertise on (the field of) the problem (Bransford et al., 2000), and

their learning style (i.e. the general approach to a learning problem, R. L. Oxford, 2003).

The latter tends to be fairly consistent (Entwistle & Peterson, 2004; Schmeck, 2013). Two

people solving the same learning problem might vastly differ in their learning strategy and

one person solving two different learning problems might select different learning strategies

for each problem. Someone might even decide halfway through solving the problem to

change their learning strategy to increase performance. Nevertheless, while people could be

using many learning strategies each time they learn, they tend to use a small subset of

strategies they prefer.

Various research fields (i.e., animal studies, cognitive psychology, developmental

psychology, social psychology, education, and artificial intelligence) have been interested in

studying learning strategies (Leelawong & Biswas, 2008; Weinstein & Underwood, 1985).

Unsurprisingly, a considerable number of studies on learning strategies focus on how

people, in particular children, adolescents, and students, learn in and outside the classroom

(Mayer, 1988; Weinstein & Underwood, 1985). These studies often focus on topics these

people have to learn, such as learning a language (R. Oxford & Crookall, 1989) and
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mathematics (Berger & Karabenick, 2011). The focus on this group is unsurprising because

people have to learn a lot in a relatively short time during this early period in their lives

(Gray, 2011). This is likely the period where people develop and stabilize most of their

learning strategies. Thus, people could benefit all their life from an early correction of

learning strategies that lead to an unfavorable outcome. To do this a lot of information

about learning strategies is needed including information about the processes behind them.

Many measurements have been created to investigate what learning strategies

people use (Nisbet & Shucksmith, 2017; Schmeck, 2013). Again, a large part of these

studies focus on how people study (Weinstein & Underwood, 1985), but not on the

cognitive processes happening during learning. These measurements often involve

observing behavior or asking for the subjective experience of people (R. Oxford & Crookall,

1989). While these measurements can give a lot of insight into many aspects of learning,

they lack the ability to examine the processes behind learning. However, the latter is

possible with cognitive modeling (Anderson, 2014; McClelland, 2009) allowing for an

expansion of the knowledge on reinforcement learning strategies that could not be accessed

through the classic measurements.

1.4 Current Study

In conclusion, the current research aims to study the processes behind reinforcement

learning strategies of people who are successful in solving the learning problem and

compare them to the processes of people who are unsuccessful in solving the learning

problem. For this purpose, a relatively standard reinforcement learning model will be used

as a cognitive model. Learning strategies can be extracted from the model by interpreting

the progression of parameter values during problem-solving when the model is fitted on

human behavior. The information gained from this research not only increases knowledge

but could also help to combat unsuccessful learning strategies with a more targeted

approach. Presently, reinforcement learning might not be very overtly present in daily life
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and there might not seem to be many reinforcement learning problems to solve. However,

this could soon change due to the rise of gamification.

Expectations regarding reinforcement learning strategies are difficult to make,

especially for the people that will be unable to successfully solve the learning problem. It

all depends on the progress of the parameters. For example, one of the parameters is

learning rate (α). One could expect the learning rate to drop for people that quickly solve

a reinforcement learning problem, since no additional learning is needed, but remain

relatively high for people that do not solve the problem, indicating that they try to keep

learning and solving the problem, but fail on some other aspect. On the other hand, the

learning rate of people that don’t solve the problem might quickly drop, preventing them

from learning and solving the problem properly. However, what is certain is that temporal

analyses will be conducted for each parameter in which the two groups (i.e. successful and

unsuccessful reinforcement learning problem solvers) will be compared.

2 Methods

2.1 Participants

The participants were 40 students from Leiden University that participated for

either a fixed monetary reward or fixed credits score. Of these participants 13 were male

and 27 were female. All of the participants completed the experiment without

complications.

2.2 Materials

To examine the processes behind participants’ strategies during a reinforcement

learning task with a cognitive model, both a reinforcement learning problem and a

reinforcement learning model were needed. These were, however, not the only two

measurements in the study. This study was part of a larger umbrella project that also

measured IQ scores with Ravens Progressive Matrices, Locus of Control, participants’
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personal need for structure, and working memory. In addition, participants had to

complete a serial reaction time (SRT) task during the studies. However, this study focuses

exclusively on the reinforcement learning problem and the reinforcement learning model.

Therefore these other measurements will not be mentioned again.

2.2.1 The Reinforcement Learning Problem

The reinforcement learning problem used for this study was the same as De Kleijn

et al. (2018) used in their studies. The participants were shown four squares on the screen,

one in each quadrant (top-left = 1, top-right = 2, bottom-left = 3, bottom-right = 4). The

squares could color red or green and give -1 or +1 points depending on whether they were

the incorrect or correct square respectively for that trial. In each trial, three squares were

incorrect and one was correct. The next trial would start when the correct square was

found. A different square would then become the correct one and the correct square

became an incorrect square. The goal was to score as many points as possible. Both the

participants and the model had to finish 800 trials. To reach the highest possible score

both the participants and the model had to learn a sequence of ten consecutive correct

positions in a row. This sequence was derived from Nissen and Bullemer (1987):

4-2-3-1-3-2-4-3-2-1 and was proven to be difficult enough for some, but not all, people to

fail to learn the full sequence.

The task was performed on a 21-inch monitor computer at Leiden University with a

1024x768 resolution and 60Hz refresh rate. The acceleration of the cursor was disabled

which was suggested by Fischer and Hartmann (2014).

2.2.2 The Reinforcement Learning Model

A rather default reinforcement learning model, described by Sutton and Barto

(2018), was used. The model contained a Q-learning (C. J. Watkins & Dayan, 1992)

algorithm (i.e. a model-free reinforcement learning algorithm), the softmax action selection

algorithm, and the maximum likelihood estimation for optimization.
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2.2.3 The Q-Learning Algorithm

The Q-learning algorithm assigns action values to each action in a trial. These

action values depend on the reward the model expects to receive directly from that action

immediately and in the future after a series of actions. The higher the reward, the higher

the action value will be. Equation 1 shows the algorithm used in this study to calculate

action values. The values are updated after every action.

As seen in equation 1, the algorithm is parameterized by α (i.e. learning rate

parameter) and γ (i.e. discounted reward rate parameter). The higher α is the more the

model focuses on new information and forgets old information. Higher γ values mean a

higher emphasis on future rewards, while lower γ values mean a higher emphasis on

immediate rewards. The values of both parameters ranged between 0 and 1.

Q(st, at)← (1− α) ·Q(sold,t, aold,t) + α · (rt + γ ·max(Q(st+1, a)) (1)

2.2.4 The Softmax Action Selection Algorithm

The softmax action selection algorithm calculates the likelihood that each action

will be selected for each trial (see equation 2). These probabilities depend on the action

values calculated by the aforementioned Q-learning algorithm.

The probabilities calculated range from 0 to 1 excluding 0 and 1. This allows for

some occasional exploration when a task is fully learned. This, in turn, could help change

strategies after a possible change in the rewards values. The exploration of other options is

not completely random, as is the case with the -greedy action selection algorithm. Instead,

each option has an individual probability of being selected, reflecting outcome differences

between these other options. While a score of -1 might be bad, it is not nearly as bad as a

score of -100. The softmax algorithm skews the probabilities towards the lesser of the two

evils, while the -greedy algorithm assigns equal selection probability to both options.

Hence, the softmax algorithm is generally the preferred action selection algorithm.
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The softmax algorithm contains an exploration parameter τ (or sometimes called

temperature). The lower this parameter value is, the larger the difference between the

action selection probabilities is. This leads to an increased chance that the model will

exploit actions with known favorable outcomes.

P (s, a) = eQ(s,a)/τ∑
eQ(s)/τ

(2)

2.2.5 Optimize the Model’s Fit

The model was fitted onto the behavior of each participant. To do this, the three

parameters discussed needed to be configured so that the behavior trajectory of the model

would come as close as possible to the behavioral trajectory of each participant. To be able

to test how far the model deviated from the human trajectory, we needed an error metric.

The maximum likelihood, or the minimum log-likelihood, was selected for this purpose.

The model already demanded a lot of computational power and the softmax algorithm

would already calculate the likelihood of each action. Therefore, by using the minimum

log-likelihood, little to no extra computational power would be needed.

For each action a participant would take, the model would pick the same action and

return the probability of that selection. The higher the returned probability, the more

likely the model would have done the same as the participant. Then the log values were

calculated over these probabilities (see equation 3) so that the values could be accumulated

and optimized towards zero.

LL = −2Log(P (model picks the same action as the participant)) (3)

2.3 Procedure

Participants were asked to come to Leiden University to participate in the study.

They would first sign an informed consent letter before they were allocated to a computer

in a quiet room. Participants were given no instructions on how to do the task.
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The task had already been started by the experimenter. The participants saw a

white screen with four black squares in each corner of the screen, a mouse cursor in the

middle, and a score of zero points. There was no indication or cue for the participants to

start. They could move the mouse whenever they wanted. Once they moved their cursor

over one of the squares, that square would become either red or green and the participant

would either lose or gain 1 point, respectively. The square remained colored until the

participant moved his cursor to a different square. The next trial would start when the

participant found the green square.

After participants had completed the task, they were asked whether they thought

there was any sequence present in the task. When the participants agreed that there

indeed was a sequence, then they were asked to give the sequence. Participants that

correctly could recall the full sequence, irrespective of the starting point in the sequence,

were marked as having explicit knowledge of the sequence.

2.4 Analysis

The main analysis conducted in this study evaluated the temporal progression of

the parameter values while solving the learning problem. To extract this temporal

progression, parameters needed to be optimized several times during the task. Every

optimization would take a lot of computational power and therefore a lot of time.

Therefore, we decided to limit the number of times the model had to optimize the

parameter to every 100 trials, resulting in 8 optimizations. Furthermore, for each

optimization, all previous trials would be used and not only the 100 new trials. The

information learned in previous trials is not suddenly forgotten by humans and so should

also be used for accurate optimization of the parameters.

To find the optimal parameter configurations grid-searches were performed. In these

searches, α and γ values could range between 0 and 1. After exploring what the minimum

and maximum possible values of τ would be in our sample, the search space was set to
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comfortably fit these values. The search space of the parameter value was set between 0.5

and 4. The parameter configurations with the lowest log-likelihood scores would then be

returned.

After extracting the data, a within-subject mixed model ANOVA was performed to

test the main and interaction effects of the temporal trajectory of each parameter, and task

performance of people that performed well or poorly.

3 Results

All participants solved the problem to some degree. All participants managed to

have a final positive score even though there were three incorrect options and one correct

option in each trial. The scores ranged from 140 points to 774 points (M = 523.8, SD =

207.53). On average, participants needed 1074 moves to finish the reinforcement learning

task. Almost two-thirds of the participants (N = 26, 65%) managed to explicitly recite the

whole sequence directly after they finished the task.

3.1 Learning Rate (α)

The within-subject mixed model ANOVA for the learning rate parameter, α, showed

a main effect of temporal change (F (1, 278) = 61.27, p < .001), no main effect of group

difference between people with and without explicit knowledge of the task (F (1, 153) =

0.06, p = .803), and a significant interaction effect between temporal change and explicit

knowledge (F (1, 278) = 18.06, p < .001).

For both groups (i.e. with and without explicit knowledge of the sequence) the

learning parameter value decreased over time (see figure 1). The parameter decreased more

(i.e. to a lower point) for participants without explicit knowledge than for participants

with explicit knowledge of the sequence
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Figure 1. Temporal change of the learning rate parameter (α) split by explicit knowledge.

3.2 Discounted Reward Rate (γ)

The within-subject mixed model ANOVA of the discounted reward rate parameter

showed a main effect of temporal change of the parameter value during the task (F (1, 316)

= 82.88, p < .001), a main effect of explicit knowledge (F (1, 316) = 29.92, p < .001), and

an interaction effect of temporal parameter value and explicit knowledge (F (1, 316) =

33.23, p < .001).

However, these results cannot and should not be interpreted. The values of the

parameter were on the boundary of the feasible parameter spaces. Elaborations and

discussions of this issue and the parameter itself will be covered down in the discussion.

3.3 Exploration (τ)

Lastly, the within-subject mixed model ANOVA for the exploration parameter

showed a main effect of temporal change of the parameter value during the task (F (1, 278)

= 29.94, p < .001), no significant effect of the explicit knowledge of the two groups (F (1,

66) = 2.79, p = .0996), and a significant interaction effect of the temporal parameter value
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change and explicit knowledge (F (1, 278) = 86.03, p < .001).

Similar to the learning parameter, the exploration parameter shows a temporal

effect and an interaction effect. Thus, the parameter changes over time regardless of

performance. However, when the two groups are split, as shown in figure 2, we see that

participants with explicit knowledge of the sequence decreased in their exploration value

while participants without explicit knowledge seem to increase in their exploration value.

Suggesting that people with explicit knowledge decreased in the amount they explored

during the task, while participants without explicit knowledge increased in the amount

they explored during the task.

Figure 2. Temporal change of the exploration parameter (τ) split by explicit knowledge.

3.4 Additional Exploration and Discoveries

Testing if participants have explicit knowledge of the sequence is only one way to

split the group. Since the final score could also represent participants’ performances, the

group was also split by the mean final score. An advantage of this method is that both

groups now contain the same number of participants (N = 20). The most notable

difference is that, in addition to the aforementioned significant effects, the main effect of
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group difference for the exploration parameter τ became significant in a similar analysis to

the one done before (F (1, 100) = 18.42, p < .001).

Furthermore, a strong correlation was found between the model fit score (i.e.

log-likelihood) and the performance of the participants measured by their final score (r(38)

= .9977, p < .001, see figure 3). Indicating that the better a participant performed on the

reinforcement learning task, the better the model could fit its behavior to the actions of the

participant.

Figure 3. Correlation between the performance of the participants (reflected by their final score of the task)
and the fit score of the model (i.e. -2 log likelihood score of the model) for each participant.
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4 Discussion

4.1 Summary of the Findings

In summary, this study aimed to examine the processes behind reinforcement

learning with a cognitive model to see if there is a difference in the learning strategies of

participants that were able to fully solve the learning problem (i.e. the explicit knowledge

group) and those that could not fully solve it (i.e. the non-explicit knowledge group). For

this purpose, a relatively standard reinforcement learning model with three parameters (i.e.

learning rate, discount reward rate, and level of exploration) was fitted on human behavior

on the reinforcement learning problem. The temporal trajectories of the parameters for

participants with and without explicit knowledge were analyzed and compared. Learning

rate (α) decreased relatively early for both groups but decreased most for the non-explicit

knowledge group. Furthermore, discount reward (γ) also showed main and interaction

effects, suggesting a strong increase for both groups to focus on future rewards instead of

immediate rewards. However, the data had some singularity issues. Third, the exploration

parameter (τ) seemed to stay the same or even increase for the non-explicit knowledge

group and steadily decrease for the explicit knowledge group. Lastly, a strong correlation

between model fit scores and participants’ performances was found.

4.2 Discussions and Implications of the Findings

4.2.1 Learning rate

The temporal decrease of the learning rate value (α) of the explicit knowledge group

is in line with our expectations. The problem never changes and therefore participants in

this group do not need to learn new information. Perhaps more surprisingly, the learning

rate parameter value of the non-explicit knowledge group also decreased. The value

decreased even more than the value of the explicit knowledge group. This decrease

indicates that they likely stopped learning a lot of new information before they were able
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to fully solve the problem, preventing this group from fully solving the learning problem. A

possible explanation could be that the participants in this group had little to no attention

and/or motivation to fully solve the problem. Motivation and learning strategies have been

shown to influence each other before (Berger & Karabenick, 2011).

Hence, both groups stopped learning a lot of new information relatively early in the

task. This could indicate that the attention span of both groups had reached its limit,

reducing the amount of attention they can pay to new information. The explicit knowledge

group had the benefit of already having solved the problem that the non-explicit knowledge

group did not have. On the other hand, it could be that the explicit knowledge group could

learn more information, but there simply was no new information to be learned. The lesser

decrease could indicate a readiness to learn new information when presented allowing the

learning rate value to quickly increase to a high value. In any case, it seems that for the

non-explicit knowledge group, spending more time on the same issue in hopes of learning

at some point might not work. Intuitively, we tend to think that if people spend more time

on something, they will eventually learn to do it. However, here it seems that people might

benefit more from short periods of learning than long learning sessions.

4.2.2 Discount reward rate

The discount reward rate values (γ) increased for both groups until values very close

to one were reached. This resulted in a singularity issue because the values were on the

edge of the limited valid value space. A proper analysis could therefore not reliably be

conducted.

When interpreted, a close-to-one value would indicate that the participants heavily

favored looking at the reward of the next trial over the reward in the current trial when

deciding in the current trial. However, in both trials, the rewards were the same and no

larger future reward could be obtained. Thus, the rewards in each trial were independent

of the rewards in all other trials. Consequently, a look-ahead parameter would likely not
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have been necessary for this model. In addition, since the rewards are independent for each

trial, one would expect the value to decrease to zero. It is not necessary to look ahead

when considering the action of the current trial. However, the opposite happens. This

could have been a side effect of the parameter not fitting its application properly. In

hindsight, the model would have likely fitted the learning problem better without this

parameter. Additional research is necessary to study the process of this parameter and its

effects on reinforcement learning strategies.

4.2.3 Exploration parameter

The exploration parameter value (τ) was the only value that showed a different

temporal trajectory between the two groups. The explicit knowledge group showed a

steady decrease in the amount they explored. In other words, they seem to increasingly

exploit answers they know are correct. Since the sequence of correct answers never

changed, exploiting the knowledge they had would lead to high rewards.

On the other hand, the non-explicit knowledge group showed a steady exploration

value and perhaps even increased the value. This group at no point seemed to start

exploiting the knowledge they did obtain, even if it was only a small amount. The increase

in exploration value during the task might even indicate that the participants in this group

might have discarded knowledge obtained in favor of extra exploration.

This increase in exploration might have been on purpose. Perhaps participants felt

that their learning strategy would not help them solve the learning problem and so they

changed strategies. The increase in exploration could signal people mentally starting over

with learning halfway through the task. Unfortunately, this would likely be futile since

learning new information was already at a very low point. Another reason for the increased

exploration could be that some of these participants started the task poorly, having little

luck in selecting the correct tiles in the first few trials resulting in a large negative score

they had to compensate. Going through this might have demotivated some participants to
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put in the effort to learn properly. They did not know how many trials they would get to

turn the score and so they might have thought that their scores were doomed to be bad

scores. Additional research is needed to test these theories and if the exploration truly

stays the same or increases.

Furthermore, τ was also the only parameter for which the main effect of group

differences became significant after the groups were split differently. Splitting the groups at

the mean final score, instead of splitting by explicit knowledge, resulting in the main effect

of group difference for the exploration parameter. When split by explicit knowledge, the

main effect was already close to significance with a value just under 0.1. The new split

resulted in equal group sizes, causing an increase in statistical power (Lachin, 1981) and

thus probably also a significant result. Another contribution to the shift toward

significance could be because the participants that were moved from the ’well-performing’

group to the ’poorly-performing’ group had learning strategies and parameters progressions

more similar to the latter than the former. They, for example, solved the problem

relatively late in the task. This would increase the difference between the two groups and

result in an increased chance for a significant effect.

4.2.4 Learning strategies

Combining the learning rate and exploration parameters to examine participants’

learning strategies, we see that the explicit knowledge group had a learning strategy one

might expect when solving a problem like this. From start to end they: explored their

options, learned which ones were best, and stuck to those options. Once they didn’t need

to learn as much new information, they decreased their learning rate and favored old

information over new information. Since this group managed to solve the problem, one

could state that this was the correct learning strategy for this learning problem.

On the other hand, the non-explicit knowledge group showed a different learning

strategy. They also declined the amount of new information that they would learn in favor
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of the old information around the same time as the other group. However, they seem to

have done this without having properly solved the full problem yet. This group then also

seemed to explore more over time, but due to the low learning rate were unable to learn

the new knowledge discovered through exploration. It even seems that information already

learned is not exploited in favor of more exploration.

From the decrease in the learning rate, we can derive that simply putting more time

in one go into the learning problem will accomplish little toward solving the problem.

When also taking exploration into account we see that even if one goes looking for new

information after, for example, changing their learning strategy, the low learning rate

prevents them from storing this new information. However, these strategies could have also

been caused by a lack of motivation (Berger & Karabenick, 2011) causing people to pay less

attention to the problem they need to solve. A better learning strategy would, therefore,

probably be to take a break or focus shortly on something else than this learning problem.

In practice, this could mean that students in a class might benefit from short lessons and

then do some exercises, or that learning through gamification should come in short bursts.

4.2.5 Log-likelihood optimization

The reinforcement learning model used in this study increased in participants’ fit

scores the better these participants performed (i.e. the higher they scored). There were

likely two causes resulting in this high correlation: the fit scores for each trial and the

number of moves made. The model is created in such a way that it will always try to reach

the goal of gaining as many points as possible. Hence, the model will almost always, except

at the start of the task, be more likely to select the correct option and thus fit well for

participants that also performed that action. For the other actions, the likelihood the

model would select those options would be higher and thus the log-likelihood would be

lower. Each time an incorrect action is performed by the participant, the log-likelihood

value would be higher than for the correct action. Furthermore, the poorer the participants
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performed the more moves they had to make. The model needed to also perform every

move resulting in a higher number of fit scores that were summed. Hence, the sum of the

fit scores was higher due to higher individual fit values for bad performances, but also

because the more values were summed the worse the performance was.

4.3 Limitations

As mentioned before, the present research was part of a larger study in which many

other variables were also measured in one sitting. These other measurements could have

influenced the results. Participants had to spend a long time on all of the tests, which

might have made them rather tired and/or unmotivated to continue performing well. Even

though all these tests were conducted, the only demographic that was asked for was

gender. Other relatively standard demographics (e.g. age or education level) were not

asked for. This makes it impossible to know if the results are in any way generalizable and

whether the sample looked balanced in terms of age distribution. This study likely would

have benefited from a more direct approach, where only the participants only needed to

solve this learning problem and fill in a few demographics.

Furthermore, the task itself was relatively long. On average participants needed

1074 moves, meaning that, on average, participants made 275 incorrect moves. Due to the

nature of the task, where it is a lot more likely for participants to make mistakes at the

beginning of the task and the task would only continue to the next trial with a correct

action, we can assume that most mistakes were made in the first 300 trials by most of the

participants. After these trials, the participants had to do another 500 identical trials,

which seems like a bit too many trials for the learning problem presented. It could have

disengaged and/or demotivate some of the participants, especially if they were not able to

learn the task.

Another limitation was the algorithm itself. As mentioned before, while the

algorithm was perfectly capable of learning the task correctly, the discount reward (i.e. γ)
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was somewhat unnecessary to solve the current problem. While the discount reward is a

standard part of many, if not most, reinforcement learning models, for this study it would

have been cleaner to leave it out. An additional side effect would be that only two

parameters need to be optimized, reducing the computational power the fitting process

needs.

4.4 Future Works

Thus, one of the findings in this study was that the discount reward rate (γ) was

redundant in the current model. Nevertheless, it would still be interesting to see what the

effect of the discount reward rate would be for people that can solve a reinforcement

learning problem and people who cannot. A different learning problem would be needed to

research this. An interesting variation on this problem would be when not all actions need

perfect to reach the optimal reward. This could manifest as something like a set of lives in

games or allowing students a few mistakes, but still being able to pass the exam. It would

allow people that don’t fully solve the problem to still achieve this reward, which is quite

realistic in our world. People are generally allowed to make some mistakes and still

succeed. For the current non-explicit group, interesting questions are: Would they focus

only on the large rewards or only the smaller intermediate rewards? Would they be able to

obtain a large reward at all? When there are multiple large rewards, would they focus on a

subset of them or possibly try to collect all of them? How successful would they be in

collecting multiple large rewards? Could these larger rewards aid the participants in some

way to fully solve the problem, by, for example, forcing participants to ’chunk’ the

information (Groome, 2014; Miller, 1956)? Finally, could these larger rewards work as an

incentive to fully solve the learning problem, especially for participants that had a bad

start to the task?

Not only could the task be adjusted to investigate the discount reward rate, but it

could also be adjusted to add more variation, or an earlier cutoff moment, to make the task
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more enjoyable for the participants and perhaps research the influence of motivation on the

performance. One could for example change the rules during the task and examine the

effects on the parameter trajectories. With the right setup, one might be able to determine

if the decrease in learning rate in one or both groups was due to a lack of attention and/or

motivation.

Furthermore, an experiment in which a reinforcement learning task and the

reinforcement learning model are used without having all the other measurements and

where the exploratory findings found in this study are tested, is needed to validate the

results that were found. Also, this study would likely benefit from a larger (and perhaps

more diverse) sample of participants and a more extensive measure of the demographics to,

for example, investigate whether educational level influences how long the learning rate

stays high.

Lastly, reinforcement learning is only one way of learning. Cognitive models can be

created for all sorts of tasks. These types of models, when used and implemented properly

with the correct underlying theories and ideas, could give additional insight into the black

box that is the human brain for other types of learning problems.

4.5 Conclusion

In conclusion, this study examined the process behind solving a reinforcement

learning problem to better understand reinforcement learning strategies. At the start,

people learn a lot of new information, but they quickly change towards a strategy that

consolidates old information instead of learning new information. Notably, this change was

larger for people that were unable to fully solve the learning problem, suggesting that they

kept holding on to incorrect old information. Furthermore, everyone started with a

relatively high amount of exploration which is expected when solving reinforcement

learning problems. People that solved the problem increasingly exploited the correct

actions, while people that did not fully solve the problem kept exploring and seemed to
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even increase how much they explored. This could indicate that these people tried to

change strategies, but were unable to store the new information or that they might have

lost attention and/or motivation to keep striving toward the best possible reward. These

people might benefit from short learning sessions and then focus on something else, such as

practical application of the material or a break.
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