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Abstract

We have investigated the buckling and snapping unstabilities of beams with a slit, both
experimentally and numerically, for different geometries. We find that beams with a slit dis-
play non-linear symmetry breaking. Specifically they display asymmetric buckled states af-
ter symmetrically buckling, a property that can be used in metamaterial design to propagate
and amplify symmetry breaking perturbations. We find hysteresis between the "closed" and
"open" post-buckling states of the beam and that the transitions between these are snappy.
This hysteresis implies that, under compression, these beams are tristable. Exploring two
of the states connected by a hysterectic transition, we can regard them as hysterons under a
compression field. We find that we can tune the degree of asymmetry as well as the regime
where there is hysteresis by modifying the geometrical parameters of the beam. Both the
non-linear symmetry breaking and its characteristic as hysterons make beams with a slit
useful tools to achieve functionality in metamaterial design.
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Chapter

Introduction

Mechanical metamaterials are materials that exhibit exotic properties that arise from their
structure rather than their composition. Examples of such materials are metamaterials with
a negative Poisson ratio (auxetic) [1] or pentamode materials, tri-dimensional structures that
behave similar to a fluid [2]. These exotic properties are often achieved with the careful ar-
rangement of slender elements, such as rods or beams.

More recently metamaterials that focus on having special properties related to informa-
tion, such as being able to store memory or being able to count have been developed [3], in
contrast to the traditional approach of finding exotic mechanical properties in the materials.

One of these materials, a counting metamaterial, serves us as the starting point of this
thesis [4]. This structure is an array of beams carefully arranged, that uses different beams,
including beams with a slit, to achieve its functionality. In this counter we see that a beam
with a slit can undergo spontaneous symmetry breaking and buckle like an ordinary beam,
while only becoming asymmetric somewhere in the post buckling regime. This property is
used in the structure to change the orientation of a neighbouring beam in one direction but
not in the other, which gives the structure the ability to count successive compression cycles.

The property to be symmetric in the linear regime and then become asymmetric in the
non-linear regime makes beams with a slit an interesting structure to design metamaterials,
and in this work we will investigate why it has this property and how we can tune such
beams in order to use them to design metamaterials.

1.1 Types of beams

Bifurcation diagrams are often used to represent the stable states of a beam. In this work
we will make use of bifurcation diagrams displaying the mid beam deflection of the stable
states as a function of the applied strain.

When compressing an ordinary beam, the mid beam deflection prior to the buckling
strain €}, remains unaltered and zero, as shown in the typical bifurcation diagram for an or-
dinary beam shown in figure 1.1 a). At the buckling strain the stable line splits into two sta-

1
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2 Introduction

Strain Strain Strain

c)
e — )
Ordinary buckling Curved beam _>

Figure 1.1: Sketch of the bifurcation diagrams and stable states of an ordinary beam a), and a pre-
curved beam b). c) Shows an example of a bifurcation diagram symmetric in the pre-buckling and
initial post-buckling regime but asymmetric in the later post-buckling regime corresponding to a
desired new beam.

ble states and one unstable state (red dotted line), representing the beam still being straight.
Both stable branches grow monotonically with the square root of the strain and are related
by reflection symmetry.

Alternatively, we can use pre-curved beams to obtain a beam with a non-symmetric bi-
furcation diagram (figure 1.1 b). This might be desired during design to guarantee that the
beam will bend in one direction when compressed. The bifurcation diagrams of pre-curved
beams have a stable branch that exists continuously for any range of strains, corresponding
to the beam bending in its natural pre-curved direction. At a certain strain €,, another stable
branch, together with an unstable branch, appear in the opposite direction of the natural
pre-curve. The two stable branches are not related by reflection symmetry.

One of the goals of this work is to achieve a structure with a bifurcation diagram that
is symmetric both in the pre and initial post buckling regime, but that becomes asymmet-
ric in the post buckling regime at a given strain, €,;, > €, (figure 1.1 ¢). One could use
such a structure to allow the system to decide the buckling direction using small symmetry
breaking perturbations, such as a small push on the beam, and having a noticeable different
response depending on the choice of direction in the post buckling regime. We will see that
a beam with a slit has a diagram with these characteristics.
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1.2 Beam with a slit 3
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Figure 1.2: Geometry of a beam with a slit. The beam has vertical length L, width W, and depth D.
withW << L, D. The slit is located at the right of the beam at a height L/2 and has a depth S < W. It
is terminated with a hole of diameter H < S which center is at a height L/2 and ata depth S — H/2.

1.2 Beam with a slit

We define here a beam with a slit as a rectangular beam of height L, depth D and width
W << L, D that has a partial cut of its mid beam cross section halfway its length L, along D
and of depth S < W. The cut creates a slit in the beam that we terminate with a cylindrical
hole of diameter H < S to prevent tearing (figure 1.2). The centre of the hole is at a depth
S — H/2, leaving the total slit size S unmodified. We discuss the effect of the specific values
of this parameters in section 4.1.

For the rest of the thesis, we will describe the beam as if it were in the orientation dis-
played in figure 1.2, where the slit is on the right side of the beam.

1.3 Stable states

We conduct an early exploration of the stable configurations of beams with a slit by per-
forming uniaxial compression experiments under clamped-clamped boundary conditions.
This short exploration of the beam’s response to compression allows us to distinguish four
distinct stable states, depicted in figure 1.3.

The first stable state we can distinguish is the trivial, non-buckled state where the beam
is completely straight.

For larger strains, the beam buckles and it can spontaneously do so in both directions,
left and right. When the beam buckles left, the beam adopts what we have named the left
buckled state, and when it buckles right the beam goes into the closed state. Both states
reassemble buckling of an ordinary beam and we will see in section 3.2 that they are sym-
metric in a certain range of strains.
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4 Introduction

When the beam buckles right and it’s in the closed state, further compression makes it
snap and transition into the open state, shown in figure 1.3. This state is clearly distinct from
the closed state in its shape, as it has the slit open and its asymmetric with the left buckled
state at the same strain.

1.4 Transitions between states

This early exploration allows us to right away catalogue the transitions between states in
two groups, those that are smooth and those that are sharp and snappy. The buckling tran-
sitions, between the non-buckled and the left buckled or open state, are smooth both during
compression and decompression. On the other hand, transitions between the closed and
open state are snappy. The beam snaps both when compressing and decompressing. The
tirst snap is the opening transition, going from the closed to the open state and the second
snap is the closing transition, going from the open to the closed state.

[ Left Buckled “ Non-buckled H Closed H \

Open
-

Snappy
) | V

Figure 1.3: The four distinct states of a beam with a slit: left buckled, non-buckled, closed and open.

1.5 Bifurcation diagram of a beam with a slit

In order to recover the bifurcation diagram of a beam with a slit, we perform compression
experiments on the beams while tracking its mid beam position and the strain applied. In
tigure 1.4 a), we present the bifurcation diagram of a beam with a slit.

When the beam is under small strains, the mid beam deflection of the beam is null (fig-
ure 1.4 a). This is the pre-buckled regime. The beam is in this state for the range of strains
comprised between € = 0 and the buckling threshold €;,. Once this threshold is reached,
under further compression the beam buckles and the mid beam deflection is no longer zero.
We have not explored what happens to the beam when pulling, that is € < 0, and thus we

4
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1.6 Left branch 5

can’t assure that in that regime the beam has a null mid beam deflection.

Once the beam buckles, for € > €, two distinct branches exist, the left branch (blue) and
the right branch (orange) (figure 1.4 a). In the bifurcation diagrams negative values of x are
associated with the left of the beam and positives values with the right.

1.6 Left branch

When the beam follows the left branch, for € > ¢, the beam is in the left buckled state.
This branch displays a monotonically increase of the mid beam displacement, in absolute
values, with the strain. We show that this branch follows a behaviour close to a square root
by squaring the x axis of the bifurcation diagram. In this representation the left branch is a
straight line, as shown in figure. 1.4 b).

When the beam is decompressed, for € >> €, the mid beam deflection closely matches
its compressing counterpart, but near € = ¢, it decays slower, reaching null mid beam de-
flection at a strain € < €, (figure 1.4 a). This discrepancy is consequence of the creep of the
material and is more pronounced near instabilities, such as the buckling point. Indeed, this
discrepancy vanishes for the idealized material of our 2D FEM simulations (figure 1.4 c),
pointing that it is a material effect and not a geometrical one.

1.7 Right branch

The phenomenology of the right buckling branch is richer. When crossing the threshold ¢,
the branch shows a monotonic increase with €, in a similar fashion to the left branch. It is at
a larger strain, that the beam undergoes a snapping event that opens the slit. We call such
strain the opening strain €,. This snap marks the transition from the closed to the open state.
The snap increases the mid-beam deflection of the right branch drastically and breaks the
qualitative symmetry with the left buckling branch (figure 1.4 b). Further compression of the
beam, that is in the open state now, shows like its left buckling counterpart, an approximate
monotonic square root increase of the mid beam deflection, as shown in figure 1.4 b).

When decompressing the beam, initially the branch follows the same square-root be-
haviour displayed during compression, and then we observe another remarkable event. The
beam, instead of snapping back at €,, snaps back at a lower strain, the closing strain €.. One
could think at first that the discrepancy between €, and €. is due to the creep of the material,
similar to the hysteresis displayed by the left branch, but simulations show that this effect is
persistent when there is no creep in the material (figure 1.4 c).

After the closing event, the beam proceeds to smoothly reach null mid beam deflection,
following a path symmetric to the left branch. We notice that here we find the same hys-
teresis effect due to creep that we observed in the left branch (figure 1.4 a, b). The curve
re-joining null deflection is different from the curve departing null deflection, after buck-

5
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6 Introduction

ling, while they are the same in the FEM diagram (figure 1.4 c).

The difference between €, and €, at which the opening and closing transitions take place
creates a hysteresis loop that gives rise to a strain regime where we have tristability (figure
1.4) opposed to the usual bistability in ordinary buckling. In this regime the beam can be
in either of three states: left buckled (figure 1.3 a), closed (figure 1.3 b) or open (figure 1.3
). Experimentally we have seen that these three states are stable, and it is possible to swap
between them by the simple operation of pushing the beam laterally while the beam is un-
der a strain €, < € < €,. This tristability is not a consequence of material creep, but rather
and intrinsic property of beams with a slit, as we still have this regime in FEM simulations
(tigure 1.4 c).
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1.7 Right branch 7
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Figure 1.4: a) Experimentally obtained complete bifurcation diagram for a beam with a slit (L =
80mm, W = 10mm, D = 25mm,t = 0.125,S = 6mm, H = 2mm) and localization of the stable states. b)
Same diagram as in a) showing the square root behaviour of the branches by squaring x and fitting
a simple linear regression (dashed line) to both branches during compression. c) Bifurcation dia-
gram obtained using Abacus/CAE simulations for a 2D beam with slit (L = 80mm, W = 10mm,t =
0.125,S = 6mm, H = 0.5mm).
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Chapter 2

Methods

2.1 Manufacturing of the beams

We manufacture the beams by 3D printing (Ultimaker S3, S5) beam molds of PLA with the
desired shape and dimension and we cast them with a well characterized silicone (Zher-
marck, Elite-Double 22). We have chosen this relatively hard silicone to minimize the effects
of gravity on the experiments while still being able to undergo large deformations without
breaking or showing significant plasticity. We leave them to cure for at least 6 hours before
breaking the mold and then we carefully cut the slit with a scalpel.

2.2 Compression experiments

We carry out experiments in a custom rigid press setup with accurately aligned beam clamps.
In our experiments we fix the bottom plate and and apply compression by moving the top
plate, which is coupled to a drive system that allows us to have precise dynamical control
of its vertical position. We tightly fit the bottom and top supports of our beams to a pair of
precisely aligned 3D printed clamps that fix their position and rotation to achieve clamped-
clamped boundary conditions. In order to obtain absolute compression values of the beams
during the experiments U (figure 2.1), we calibrate the distance between the two plates us-
ing a digital height gauge, that allows us to set a point of zero strain. With this reference we
are able to obtain the compression applied during the experiments U, as the relative position
of the top plate controlled by drive system is known. We normalize U by the rest length of
the beam to obtain the strain applied € = U /L (figure 2.1).

2.3 Image Tracking

We chose to use image tracking to monitor the mechanical response of the beams in our ex-
periments and record a front view of the beam during the experiments using a ccd camera.
To facilitate computer analysis of the recorded images we incorporate small dots along the
vertical cross section of the beams and paint them white using an edding 8050 tyre marker.
We then analyse the images using a custom OpenCV based tracking software to track the

9
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10 Methods

x = X/L
e =U/L

I®* e e e OO P RE QRO

Figure 2.1: A compression experiment. Left beam is uncompressed. Right beam is in a typical con-
tiguration of the right branch in the open state. We record the compression U during the experiments
and compute the mid-beam deflection X using image tracking. We then obtain the strain and the
normalized mid-beam displacement by dividing these quantities, € and x by the rest length of the
beam L.

white dots, which allows us to obtain the position of the dots at every frame and numeri-
cally characterize the deformation of the beam. From this analysis we obtain the mid beam
displacement of the beams X, as shown in figure 2.1. We then divide the mid beam displace-
ment by the rest length of the beam to obtain the normalized mid beam displacement x =
X/L.

2.4 FEM simulations

2.4.a Simulations details

We recreate in Abaqus/CAE the frontal geometry of our beams with a slit to create a 2D
planar and deformable part made of an isotropic Neo-Hookean material with instantaneous
moduli time scale.

We choose to map Abaqus/CAE unit of distance to millimetres, the unit of mass to
10~%kg and the time unit to miliseconds. Using this references we can give dimensions

10
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2.4 FEM simulations 11

to the rest of material parameters and define them to closely reproduce the mechanical re-
sponse of our experimental beams. Table 2.1 shows the parameters used in the simulations.

For the contact between the top and bottom parts of the slit we define an interaction sur-
face to surface, using the kinematic contact method with finite sliding choosing as surfaces
only the top and bottom parts of the slit. We set the friction formulation of the tangential
behaviour to rough.

To avoid intersection between surfaces, we need to make the distance between the top
and bottom part of the slit nonzero. We make it 0.001, as its the smallest order of magnitude
for which errors are not present during the simulations.

Abaqus simulates materials by splitting them up into smaller simpler parts, called finite
elements, that together form a mesh. We design the mesh in the mid beam, around the
slit in a range of £5, to be denser than in the rest of the beam, with the mesh elements be-
ing rectangular to avoid rotation of the elements during the simulations, which cause errors.

To simulate the compression experiments we set the boundary conditions to be of the
type static, encastre, at the bottom part of the beam and of type displacement/rotation as-
sociated to a uniformly increasing and decreasing amplitude in the U2 direction, that com-
presses the beam in the vertical axis. We then use the explicit protocol to simulate the me-
chanical response of the beams using a step time to 120000, equivalent to two minutes, to be
in quasi static conditions. This time also approximates well the duration of the experiments.

24.b Buckling protocol

When simulating the buckling of an ordinary beam in abaqus, the simulations show the
beam to be straight for longer that what we see in the experiments, before finally buckling.
This is due to the perfect symmetry of the mesh, that together with complete numerical accu-
racy and dampening, allows the beam to remain longer in the straight unstable equilibrium
branch shown in 1.1 a). To correctly access the buckling branch near the buckling point we
follow a simulation protocol previously used in other work [5].

The protocol consists in compressing the beam beyond the buckling strain €, while ap-
plying a lateral load at one side of the beam to break the symmetry. We progressively turn
off the load following a linear pattern so that we can smoothly reach a buckled state, that
remains stable when the load is no longer applied. Next, we decompress the beam until we
reach €, to obtain the buckling branch. To explore the left branch of a beam with slit we ap-
ply the same protocol, but due to the opening and closing transitions, to simulate the right
branch we need to modify the protocol to correctly asses it.

During compression, we fine tune a lateral load, usually ranging from 15 to 100, so that
is large enough to make the beam buckle right but that is small enough to allow the beam to
access the buckling branch before the opening transition. This is needed to make the beam
buckle in the right direction, as the asymmetry introduced by the finite slit is enough to
induce the beam to buckle always left. Then we take advantage of the fact that when de-

11
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Methods

H Hyperparameters Value H
Density 2000
C10 121590.4394
D1 1.51997E-09
Alpha 0.1
Linear bulk viscosity 0.06
Quadratic bulk viscosity 1.2

Table 2.1: Material parameters used in Abaqus/CAE simulations.

compressing, after the closing transition, the beam rejoins the ordinary buckling branch of
the beam, to correctly assess the part of the buckling branch that we where not able to cor-
rectly asses due to the needed lateral load. We follow this protocols to obtain the bifurcation
diagram, disregarding the protocol derived artifacts in the branches as shown in figure 2.2.

To simulate the buckling of the half-beams introduced in section 3.4, we use the same
protocol as for ordinary beams.

0.20 A

0.15 4

0.10 4

0.05 A

0.00 A

—0.05 -1

—0.10 A1

—0.15 A1

—0.20 -

—

0.06

(3

0.00 0.02 0.04

0.08 0.10 0.12

Figure 2.2: Protocol to obtain the bifurcation diagram from simulations. In blue, the full simulation
run. The dashed orange line shows the bifurcation diagram without simulation artifacts.
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2.5 Spring Model for a Beam 13

2.5 Spring Model for a Beam

We use a simple spring model that is able to reproduce the buckling transitions of both ordi-
nary and pre-curved beams. With only one fit parameter for ordinary buckling, and two fit
parameters for pre-curved beams, the model can represent the bifurcation diagram of real
beams with good accuracy.

The beam is modeled as two linear springs joined by one torsional spring, as sketched in
tigure 2.3 a). At rest the system has height L. The energy of the spring system is given by:

E = %kl(Lk — A)Z + %kt(e — Qk)z (2.5.1)

Where Ly is is rest length of the linear spring and 6y the rest angle of the the torsional spring,
k; the spring constant of the linear spring and k; the spring constant of the torsional spring.
For a pre-curved beam we need to introduce another parameter, the natural deflection x;.

We adjust the length of the linear springs to be at rest Ly = {/x2 + (L/2)2. This preserves

the total height of the beam to be L. We also set the neutral angle of the torsional spring to
be 0, = arctan(x;/L/2).

As all stable solutions have top-down symmetry, the vertical position of the torsional
spring is fixed to be (L-U)/2, simplifying in great measure the configuration space that we
have to explore to find a stable solution. We find stable solutions of the structure by probing
the system’s energy varying the horizontal position of the torsional spring. We find that
probing the horizontal space left and right a distance L/2, is enough to recover an energy
landscape with at least one stable energy minimum, as shown in 2.3 b), c).

Finding the energy minimum for the desired range of strains reproduces the bifurcation
diagram of a beam, shown in figure 2.3 d). The position of the enrgy minimums of the sys-
tem is dependant on the ratio of the stiffness of the linear and torsional springs and not their
absolute values. As so, we set the linear spring stiffness to be k; = 1 and the solutions are
now only dependent on the parameter k = ’,z and the natural deflection x;. The ratio k can
be considered the equivalent of the parameter t in ordinary beams, as it determines the buck-
ling strain €}, following the same scaling that t has: €}, o t? and €}, o« k?, as seen in tigure2.3 e).

13
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Figure 2.3: a) Sketch of the spring system used in the buckling of a beam model. b) Energy landscape
for a spring system with x; = 0, L = 80 and k = 74 in the pre-buckling regime. c) Energy landscape
for a spring system with x; = 0, L = 80 and k = 74 in the post-buckling regime. d) Bifurcation
diagram constructed by finding the energy minimum on the energy landscapes for different strains.
e) Right branch of the bifurcation diagram of ordinary beams with different t compared to the bifur-
cation diagram of springs systems with different k.
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Chapter 3

States and dynamics of a beam with a slit

To further study and understand the behaviour of beam under compression experiments
we now use a finite element method (FEM) software, Abaqus/CAE, to simulate compres-
sion experiments on beams with a slit. We have seen that these simulations display the
same phenomenology that the one observed in experiments (figure 1.4) and we are confi-
dent exploring the beams response using FEM Simulations have a number of advantages
over experiments, such as the absence of creep, the fast exploration of different geometries
by avoiding the need of having to manufacture samples and that they allow us to study the
internal strains and stresses of the beam . We will discuss the specifics of the differences
between experimental data and FEM simulations in section 4.2 to assess the validity of the
conclusion drawn from our simulation analysis.

3.1 Left buckled state

We have seen that the left buckled state resembles ordinary buckling (figure 1.3). To pre-
cisely characterize the left buckled state, and compare it to ordinary buckling, we simulate
an ordinary beam, a beam with a hole in the centre, and a beam with a slit with same di-
mensions L, W and H under clamped-clamped boundary conditions.

We compare the branches corresponding to a regular beam and a beam with a hole, and
tind that both lie on top of each other precisely, as shown in figure 3.1. The hole ,if small
h < 0.25, has very little effect on the overall buckling behaviour of a beam. Figure 3.1 also
shows that the left buckling branch of a beam with a slit buckles in the same way as a regular
beam, and thus we can consider that in this state the slit is has no effect.

3.2 Closed state

We now compare the closed state to the left buckled state, by flipping the left buckled branch.
Figure 3.1 shows that both states share the same €;, and immediately after €;, the branches
are related by symmetry. This is true for the majority of the strain regime comprised be-
tween €, and €,, but not all.

15
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16 States and dynamics of a beam with a slit

As the applied strain approaches €,, we can see that the right branch of the beam with a
slit starts to deviate from the regular buckling branch, just before snapping. We define the
strain at which this deviation starts as €;;. We can then divide the closed state behaviour in
two regimes. In the first regime, €, < € < €, the slit has no effect, and the buckling be-
haviour is identical to a regular beam and symmetric to the left buckled state. In the second
regime, €5 < € < €,, this is no longer true, but the beam has not snapped yet and remains
in the closed state. We will see in section 3.3 that €45 is the onset of tensile stresses in the
mid-beam.

—— Ordinary beam

Ordinary beam with a hole
----- Beam with a slit - left buckling
—-- Beam with a slit - right buckling

0.20

0.15 A

0.10 A

0.05 -

—— Ordinary beam
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——- Beam with a slit - right buckling
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4
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0.00 0.02 0.04 0.06 0.08 0.10 0.12 I

Figure 3.1: a) Comparison of the bifurcation diagrams obtained by simulating an ordinary beam, an
ordinary beam with a hole and both the left and right branches of a beam with a slit. b) Same as a)
but zoomed around the buckling point.

3.3 Opening transition

In this section we will study the opening snapping transition, which drives the beam with a
slit from the closed state to the open state.

In order to tackle this task, we have studied the stress profile in the mid beam cross sec-
tion of a beam. We are only able to recover this magnitudes in Abaqus/CAE simulations, as
these allow us to record physical magnitudes that are hard to access experimentally, such as
the strain and stresses of the beam at each element.

Obtaining the mid beam profile of a beam with a slit directly is not very helpful. Because
the top and bottom parts of the slit cannot be under tensile stresses, we cannot evaluate their
magnitude. It will prove much more useful to look at the mid beam profile of a beam with
no slit, and then ask: what would happen now if we make a cut?

Following this line of thought we simulate an ordinary beam under the usual uni-axial
compression conditions and recover the buckling branch using the usual protocol. During
these simulations we record the vertical stress values for each of the elements in the mid
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3.3 Opening transition 17
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Figure 3.2: a) Mid beam stress profile of a regular beam for different strains. b) Sketch of the proposed
hinge model for the slit opening and the moment exerted into it by the mid beam profile. c) View of
a stable configuration of the closed state of a beam with a slit, with the slit partially open.

beam cross section of the beam, which allows to reconstruct the mid beam stress profile as a
function of the applied strain, as shown in figure 3.2 a).

In an ordinary beam, we see that before buckling, the stress profile is constant along the
beam, and it increases with the strain (figure 3.2 a). In the post buckling regime, the profile is
no longer constant along the mid-beam and becomes monotonically increasing towards the
right of the beam with a constant gradient. The profile seems to tilt in a counter clockwise
fashion around the middle of the beam, increasing the compressive strains in the left and
decreasing them in the right. At the middle of the beam the stresses barely change with the
strain.

For big enough ¢, tensile stresses appear at the right side of the beam, and we define
the strain at which the first tensile stresses appear to be €. For larger strains than e we
have now a zone of tensile stresses in the right of the beam, that increases both in extension
and magnitude as strains become larger. On the contrary, compressive stresses on the left
of the beam become larger with the applied strain. We expect that the appearance of tensile
stresses on the right side of the beam to play a role in the opening transition.

We also expect the existence of the slit to be only relevant when tensile stresses are
present, as under compression the slit has no effect, and thus € is the dividing strain be-
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Figure 3.3: Strain where the first tensile stresses appears €;s (blue) and opening strain €, prediction
using the hinge model (black), over the right branch diagram of beams with a slit with different t.

tween the two regimes of the closed state. We associate the regime for which the bifurcation
diagram of the closed state follows strictly the buckling branch, with the range of strains
€y < € < €1, and expect to see some deviation from the buckling branch in the regime
€ts < € < €,. Indeed, in the regime €;; < € < €, we observe closed stable states where the
slit is partially open. In this cases the opening of the slit is smooth, partial and small as seen
in figure 3.2 c). In this regime we can observe in the diagram how the state deviates from
the ordinary buckling branch, just before the opening transition (figure 3.3).

The equivalence of the left buckled state with ordinary buckling can also be explained
by inspecting the mid beam stress profile. When the beam with a slit buckles left, the region
with the slit is under highest compressive part of the profile, and it’s not exposed to tensile
stresses. As so, it behaves like a regular beam for any value of €.

Hinge model for slit opening

We have seen that the slit can partially open without the beam transitioning to the open
state, but now we want to find a criteria, based on an analysis of the tensile stresses of the
beam, able to predict the strain of the opening transition, €,.

To asses this problem we think of the slit as a hinge. We consider the top and bottom
sides of the slit as rigid surfaces, and the uncut part of the beam as a simple hinge that al-
lows the rigid surface to rotate and open without opposing any resistance (figure 3.2 b). To
determine when such a structure will open, we need to look at a change of sign in the total
torque applied to the plates of the hinge. Because the beam is symmetric around the mid
beam cross section, assessing the change of sign in either the top or bottom plate is enough,
as that will happen for the same value of €,.
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3.4 Open state 19

We chose the size of the rigid parts to be W/2, regardless of the slit size motivated by
two observations. The first observation is that the strain profile rotates around this point,
W/2 (tigure 3.2 a), and we know that in the profile left of this point, the stresses only get
more and more compressive. And the second observation, that we will see in detail later in
section 4.1.b, is that the size of the slit has no effect on the opening strain e,.

We compute the total torque in the slit to predict €,. In figure 3.3 we show the predicted
values with the simulated beam diagrams for four different beams. We find that the predic-
tion are in good agreement with the actual opening event.

It is clear now that the appearance of tensile stresses is critical to understand our system.
In the absence of tensile stresses, the slit has no effect, and the behaviour of the beam can be
explained by regular buckling. Furthermore, the analysis of the magnitude of these tensile
stresses allow us to understand the opening of the slit and opening transition. We can pre-
dict the opening strain €, by understanding that it is triggered by a change of sign in the total
moment in the right half of the mid beam. Nonetheless, the importance of tensile stresses
is only relevant while the beam is similar to and ordinary beam, that is in the non-buckled,
left-buckled and closed state, while we will see in the next section that the behaviour of the
beam in the open state is driven by other factors.

3.4 Open state

—— L/2 right branch
T — w2 left branch

0.00 =

S
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—0.15 A

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Figure 3.4: a) Reinterpretation of the beam with a slit as the composition of two half beams with
different boundary conditions. The blue rectangle represents boundary conditions fixing the position
of both axis, while the red rectangle fixes only the vertical position. b) Bifurcation diagram of the half
beam.

The open state is very different from ordinary buckling and has the distinct characteris-
tic that the top and bottom parts of the slit are never in contact. We want to simulate the
open state while always preserving this condition, and we realize that we can do so by only
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20 States and dynamics of a beam with a slit

simulating one half of the beam.

Instead of looking at one single beam with a slit under clamped-clamped boundary con-
ditions we "cut" the beam in half and consider the open state to be a composition of two
beams of length L/2, one above the other, as sketched in figure 3.4 a). Each beam has one
end clamped, preserving the boundary conditions that we applied to the beam with a slit,
and at the "cut" extremes we apply a boundary condition that constrains only it height,
allowing for free movement in the horizontal direction. We don’t apply any boundary con-
ditions to the top and bottom parts of the slit. We are allowed to make this reinterpretation
of the beam by noting that the open state has top-down reflection symmetry. This imposes a
boundary condition along the uncut part of the mid beam that restricts its vertical position
to be (L-U)/2.

We now simulate only one beam of L/2 under this boundary conditions which allows
us to explore the behaviour of the beam in isolation, disregarding any contact that the slit
has between its top and bottom parts and allowing us to recover the full bifurcation diagram.

The bifurcation diagram for the half beam shows that when we compress the half beam,
starting from an uncompressed straight state, the half beam naturally bends left even for
small strains, as seen in figure 3.4 b). The asymmetry of the boundary conditions has bro-
ken the symmetry present in regular buckling, and we don’t see a regime of null mid beam
displacement.

As the half beam naturally bends left, to access the right stable branch of the bifurcation
diagram, we compress the beam while applying a lateral load that bends it to the right, that
later we turn off progressively to recover the right branch of the diagram during decompres-
sion.

When we decompress the beam, the right branch becomes unstable and snaps towards
the stable left branch. This phenomenology is similar to the closing event that a beam with
a slit undergoes when going from the open state to the closed state (figure 3.5 b).

Now we compare the right branch of the half beam with the right branch of a beam with a
slit and find that the branches match well, but it slightly underestimates the closing strain e,
and slightly overestimates the mid beam deflection at large strains, as shown in figure 3.5 b).

We suspect that the small discrepancies between the branches is due to the fact that the
boundary condition applied to the "cut" part in the half beam doesn’t allow that region to
expand, while this is allowed in a beam with a slit. Nonetheless, as the discrepancy is small,
we conclude that the half beam is effective in capturing the behaviour of the open state and
we trust the full bifurcation diagram obtained as a good representation of the open state in
isolation.
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3.5 Closing transition 21

Open state as a pre-curved beam

The complete bifurcation diagram of the half beams resembles in its shape the diagram of a
pre-curved beam shown in figure 1.2 b). For this reason, we model here a pre-curved beam
using the spring model described in section 2.5 and compare it with the half beam.

We obtain the bifurcation diagram of a pre-curved beam using the spring model dis-
cussed in methods for different values of k, the ratio between the linear and torsional spring
constant, and the natural deflection of the pre-curved beam x,;. By only modifying these two
parameters we are able to find a spring system with a bifurcation diagram very similar to
the one of the half beams, as seen in figure 3.5 a).

Hence, we can draw a parallelism between the open state of a beam with slit and a pre-
curved beam, as the left right symmetry broken by the boundary conditions of the half beam
has a very similar effect on the half beam as pre-curving does to an ordinary beam.

The two defining factors of the open state, which are a larger mid beam deflection com-
pared to ordinary buckling and the loss of stability at €. can be explained by a pre-curved
beam. A pre-curved beam reaches further because its longer than an ordinary beam given
that the two beams have the same rest length. Also, the pre-curvature of the beam makes
the right branch unstable under a critical strain.

3.5 Closing transition

This loss of stability of the right branch of the half beam gives us a clear interpretation of
the beam with a slit closing. For € < €, the right branch of a half beam under this boundary
conditions is unstable and the system wants to reach the stable left branch. This transition
is sharp and hence we observe snapping. In its trajectory the beam with a slit never reaches
the stable left branch of the half beam because the top and bottom parts of the slit come into
contact, and the beam with a slit changes its state to the closed state.

3.6 Bifurcation Diagram Interpretation

We have enough ingredients now to understand the phenomenology of the right branch of
a beam with a slit. The branch is a composition of the bifurcation diagram of a regular beam
of length L and a pre-curved beam, joined by the opening event. The opening event, caused
by a change of moment in the right half of the beam with a slit, causes the beam with a slit
to snap from the buckling curve of a regular beam to the right branch of a half beam bifur-
cation diagram. Then, when the half beam becomes unstable due to being asymmetric, it
snaps again and re-joins the buckling branch of a regular beam, as shown in figure 3.5 b).

We have seen that the asymmetric response of the slit upon compressive or tensile stresses
dynamically changes the effective boundary conditions that are imposed on the half beam,
allowing the same structure to be in two distinct states and giving the bifurcation diagram
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Figure 3.5: a) Bifurcation diagram obtained for a spring system with k = 38 and x; = 5 compared to
the bifurcation diagram of a half beam . b) Right branch of the bifurcation diagram of a beam with
a slit, together with the right branches of the bifurcation diagrams for an ordinary beam and a half
beam.

of a beam with a slit asymmetry in the post buckling regime as well as an hysteresis loop
that creates a strain regime of tristability.
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Chapter I

Beams with slit for metamaterial design

4.1 Role of the beam geometry on the bifurcation diagram

We believe that the beams mechanical response, displayed in the branching diagram in fig-
ure 1.4, is ruled by the values of the geometrical dimensionless parameterst=W/L,s=S/W
and h = H/W. In this section we will characterize the effect that changing the values of these
parameters has on the bifurcation diagram of beams with a slit, with the final goal of being
able to predict and tune them during design.

4.1.a Role of the length to width ratio

To assess the effect of t in the diagram of the beam with a slit, we carry on compression ex-
periments and simulations with a set of beams with different t, progressively changing their
width W and keeping the height L constant. At the same time, we scale H and S so that the
ratios h = H/W and s = S/W are constant trough the beams.

We find that the shape of the bifurcation diagrams of the beams is preserved and displays
similar phenomenology, but the diagrams are displaced in the x axis, as seen in figure 4.1
a). To assess if this displacement is the same that we would have in ordinary buckling, we
proceed to plot the different diagrams of the beams together in a plot where the horizontal
axis is divided by the euler buckling strain and shifted by -1, showing = —1. €, = #
is the Euler buckling strain for ordinary beams. We can appreciate in figure 4.1 b) that the
buckling strain in beams with a slit is proportional to €;, as we expect knowing that the open
state behaves as an ordinary beam.

While the the buckling strain of the different beams is proportional to €}, we see in figure
4.1 a) that the tristability regimes don’t lie on top of each other. This shows that the opening
and closing strains €,, €. are not strictly proportional to €, but there is an extra dependence
that shifts the hysteresis regimes to the right for smaller t values.

We collapse the branches so that for all beams 60 = 0 and find that the width of the

hysteric region, €, - €. is proportional to €, (figure 4 1 ¢). This means that while we cannot
predict the small shifts of the hysteresis regime shown in figure 4.1 b), we know how the
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24 Beams with slit for metamaterial design

width of the hysteresis regime evolves upon change of the beam’s t.
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Figure 4.1: Right buckling bifurcation diagrams for beams with different t, W, and constant L, D, h
(L = 80mm, D = 25mm,t = 0.125,h = 0.25,5 = 0.6). b) The horizontal axis is is re-scaled as =~ — 1 to
show that the displacement of the diagrams is similar to ordinary buckling. c) We colapse €, at 0 to
appreciate that all hysteresis loops have the same width.

4.1.b Role of the slit size

The slit in our beams is the feature that gives beams with a slit new phenomenology when
compared to ordinary beams, and thus we expect that changing the size of the slit will have
a great effect in a beam with a slit diagram. To explore this dependence, we conduct exper-
iments and simulation in which we systematically modify the slit size s, while keeping all
other beam parameters constant.

Figure 4.2 shows the effect of the slit size on the right branch of the bifurcation diagram.
We note that the slit size has no effect on the opening strain €,. All beams open at the same
strain, which is surprising. This observation allowed us to realize that the driving factor of
the beam opening is the change of moment in the right half of the mid beam, regardless of
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Figure 4.2: Right buckling bifurcation diagrams for beams with different s and constant L, W, D, h
(L = 80mm, W = 10mm, t = 0.125, D = 25mm, h = 0.2).

the slit size, as discussed in section 3.4.

However, we find that the slit size has a significant effect on the mid beam displacement
of the open state. While the slit size does not affect the behaviour of the beam while in the
closed state, it determines the open state that is reached. Larger s cause a larger mid beam
displacement of beams with a slit in the open state.

We also notice that the slit size s has a significant effect in the €, (figure 4.2). For larger
slits, €, becomes smaller, which makes the tristable regime larger. The closing of the beam is
dictated by the open state that is reached, which we have seen that its affected by s.

As we have seen in section 3.5, the size of the slit increases the asymmetry of the beam.
In our spring model we understand that as a larger natural deflection, which increases the
mid beam deflection of the right branch, in a similar fashion to figure 4.2. The larger slit also
implies that the section of the mid beam that is not subject to any boundary conditions is
larger, which results in beam with less bending (figure 3.4). In our spring model this is rep-
resented with an increase of the ratio k, which has the effect of lowering the minimal stable
strain of the right branch. This agrees with the increased stability of the open state seen in
figure 4.2.

It’s interesting to note that, for slits that are big, of approximately s > 0.75, when the
beam closes it returns to the non-buckled state, opposite to the usual closing transition to
the closed state (figure 4.2). In this regime the symmetry of the beam is recovered after the
closing transition, while for smaller slits the symmetry remains broken to the right after clos-

25

Version of March 16, 2022— Created March 16, 2022 - 12:40



26 Beams with slit for metamaterial design

0.200

h=0.5mm

0.175 - h=1.0mm

—— h=1.5mm

0.150 —— h=2.0mm

' —— h=2.5mm
0.125 4
>< 0.100 +
0.075 4
0.050 +
0.025 4

0.000 —
0.03 0.04 0.05 0.06 0.07 0.08 0.09

3

Figure 4.3: Right buckling bifurcation diagrams for beams with different h and constant L, W, D, s
(L = 80mm, W = 10mm, t = 0.125, D = 25mm, s = 0.6).

ing. This recovery of the symmetry might be desired for some matematerial design, and its
clear that by only modifying the size of the slit s, we can tune the beam with a slit to have
this characteristic.

Small s cause the open state to be closer to the ordinary buckling branch while making
the open state less stable. This tendency is consistent with the fact that a beam with slit
with s=0 is a an ordinary beam. We observe in 4.2 how smaller s steadily converge to this
situation. The snapping transitions get progressively dimmer and the tristability regime be-
comes smaller as s approaches 0. The behaviour discussed in this work for beams with a slit
is clearly present in those with s > 0.5, and may be hard to appreciate for lower s values.

4.1.c Role of the hole diameter

We terminate each slit with a small hole, to prevent tearing of the slit. This introduces an
additional parameter in the beam. To investigate the effect of the hole we have performed
a series of experiments where we systematically vary the hole diameter h (figure 4.3) while
keeping the slit s width W and length L of the beam constant.

We focus on the right-buckled branch and find that neither the opening strain €. nor the
mid beam deflection of the open state vary significantly with h (figure 4.3). We interpret this
as evidence that the effect of the hole in the open state is very small and can be disregarded
during design. In contrast, the opening strain €, can vary significantly with h shifting to
larger strains for increasing h, as shown in (figure 4.3 b).
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Figure 4.4: a) Mid beam stress profile of an ordinary beam with a hole of 2mm of diameter in its
center, for increasing strains.

If we recall our arguments in section 3.3 where we argued that the opening is driven by a
change of moment on the right half of the mid beam, we can understand why are we seeing
€, increase with h. The presence of the hole perturbs the profile for an ordinary beam shown
in figure 3.2, in a way that the change of moment happens at a larger strain.

Figure 4.4 depicts the evolution under compression of the mid beam stress profile in a
beam with a centred hole (H = 0.2mm). We see that the profile is similar to the profile of a
regular beam without the hole (figure 3.2), the main difference being that stresses around
the hole are perturbed and deviate slightly from the typical linear behaviour. Specifically,
we see the stresses to be more compressive around the hole than what they would be if they
followed the linear trend of the profile. We understand that this is an effect of the hole acting
as an arch and translating the stresses towards the support points in the sides.

For small h, h < 0.15, the snap out compression will be well approximated by the linear
profile as the €, increase with h is slow. As h gets larger the increase with h is faster and the
effect more noticeable. This allows us to not worryabout the hole effet for small h, while we
can use it to tune the tristability regime using large h values in our design.

Role of the length L

We expect beams with a slit to display equivalent mechanical responses in a wide range of
scales, which facilitates the incorporation of beams with a slit in the design of different sized
metamaterials. To check if this holds, we manufacture beams of different lengths L and scale
all three other relevant beam parameters, s, h, and t so that the proportions are preserved
and we carry out compression experiments. As simulations are dimensionless, they are in-
herently scale free and we only do this experimentally. We find that the scaled bifurcation
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Figure 4.5: Right buckling bifurcation diagrams for beams with different L and proportionally scaled
t=0.125,5 = 0.6 ,h = 0.25

diagrams are roughly equivalent (figure 4.5), confirming that we can confidently scale our
results to fit manufacturing requirements.

4.2 Simulations vs Experiments

We have carried out the above analysis using data from FEM simulations. Now we will
compare the bifurcation diagrams from FEM simulations to our experimental data, as we
ultimately we are interested in designing real meta-materials.

We find that the phenomenology described in this chapter is still true for real beams, as
seen in figure 4.6. Beams with different t are displaced following a t? scaling, and the width
of the hysteretic regime also scales as t>. For beams with different slit sizes we again see that
the opening strain €, is constant, while the hysteretic regime grows with the slit size. Finally
beams with different hole sizes show a monotonic increase of €,, with the hole diameter,
while keeping the closing strain €, constant. Notably, not only this tendencies hold for real
beams, but direct comparison of of the diagrams also holds well. The compression branch
is very similar, while the decompression branch deviates slightly from what is seen in the
simulations due to creep (figure 4.6).
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Figure 4.6: Comparation of the bifurcation diagrams obtained using Abaqus/CAE simulations with
the bifurcation diagrams obtained doing uniaxial compression experiments.
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30 Beams with slit for metamaterial design

4.3 Using beams with a slit in metamaterials

We will see in this section how we can use the particular shape of the bifurcation diagram
of a beam with slit, seen in the previous sections, to achieve functionality in metamaterials,
and we will see that there are mainly two distinct properties of the beams that are interesting.

The first property, is that we can use the fact that the diagram is symmetric in the pre-
buckling and initial post-buckling regime to decide the buckling direction with only a small
perturbation, and then propagate and amplify it using the asymmetric response in the post
buckling regime. In the counting beams that inspired this work [4], the small perturbation is
in the form of contact with a thinner neighbouring beam. This contact decides the buckling
direction. Later, the if the beam is in the right branch, it will snap and enter in contact with
a neighbouring thinner beam, changing its buckling direction. On the contrary, if the beam
buckles left, it does not reach far enough to enter in contact with a neighbouring beam and
the "signal" does not propagate.

We can also use beams with a slit as hysterons under compression due to the existence
of a hysteresis loop in the right branch diagram. Hysterons are relevant in metamaterials
because they can encode memory effects [6]. Using beams with a slit as hysterons has two
distinct properties that might be of interest. The first is that the field applied to make the
beam snap (compression) is perpendicular to the direction of snapping. The second prop-
erty is that, as we have seen, beams with a slit are tristable in the hysteresis loop and have
one extra stable state, opposed to the usual bistability of hysterons. Figure 4.7 shows two
independent beams with a slit that together make a system that has a particular transition
graph, determined by the specific hysteresis regimes of both beams. In this case the hystere-
sis regime of the left beam is inside the hysteresis regime of the right beam. We can note that
in this simple system we already have some sense of memory. To reach state 01 we need to
have compressed and then decompressed the system, giving us some information of past
events.
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Figure 4.7: Example of the use of beams with slit as hysterons. We define the closed state as 0 and the
open state as 1. This particular diagram result from the system of two independent hysterons with
one hysteresis loop (left beam) inside the other beam hysteresis loop (right beam).
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Chapter

Conclusion and discussion

We conclude that beams with a slit provide a new beam design that can be used in metama-
terials to obtain a tuneable asymmetric response in the post-buckling regime after symmetric
buckling. Additionally, we have found that the open and closed states of beams with a slit
present hysteresis upon compression and decompression with snappy transitions between
the states, which opens the possibility of using beams with a slit as mechanical hysterons [6].

We understand now the bifurcation diagram of beams with a slit. The bifurcation dia-
gram combines the bifurcation diagrams of an ordinary beam and a pre-curved beam, united
by a snapping transition. The beam with a slit behaves like an ordinary beam while the
stresses in the mid beam are compressive everywhere, a regime in which the slit has no
effect. In the open state, we have seen that its behaviour can be captured by a half beam
whose bifurcation diagram is shaped as that of a pre-curved beam, due to the asymmetry
of its boundary conditions. The beam with a slit can transition from the closed to the open
state due to a change of moment in the right half of the mid beam, that opens the beam,
uniting the two diagrams.

We have also seen how we can tune the mechanical response of beam with a slit by modi-
tying its geometrical parameters. The size of the slit controls the degree of asymmetry in the
post buckling regime, increasing its mid beam deflection and making the open state more
stable, which increases the tristability strain regime of the beam. The size of the hole can
be used to increase the same tristability regime without making the open state more stable.
It’s also possible to modify the buckling strain of the beam by changing its (width to length
ratio) t.

As of now, we know of one structure that uses beams with a slit to achieve its func-
tionality, the counting beams [4]. This structure uses the asymmetrical response of the post
buckling regime to propagate a signal in only one direction. The ability of beams with a slit
to buckle left or right depending on small perturbations, for example a small lateral force
due to contact, and having a much stronger post-buckling response than this perturbation
upon snapping and opening makes them a good amplifier of such perturbations.

As a hysteron, beams with a slit have two unusual properties. Beams with a slit are hys-
terons under a force perpendicular to its snapping direction and are tristable, opposed to
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the usual bistability of other hysterons, introducing an extra state that may prove useful in
finding unusual transition graphs.
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