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Abstract

Longitudinal data are often collected in different research areas such as medicine,

biology, education, and psychology. We can build a transitional model using lon-

gitudinal binary data, which aims to model the probability of transition between

the response categories. In this type of data is common to find missing values due

to dropouts, costs, and organizational problems. The missing-indicator model is

often used as a method to handle missing values in this type of data. This method

consists in creating a new category for the missing values. Therefore, the binary

logistic model changes to a baseline-category logit model. This study aims to evalu-

ate the bias of the estimated coefficients when the missing-indicator method is used

in the response of a binary transitional model. Based on an empirical example,

a Monte Carlo simulation with three factors is carried out: (1) type of missing-

ness, (2) sample size, and (3) proportion of missing data. The coefficients bias

from the baseline-category logit model is evaluated using boxplots and a three-way

MANOVA analysis. The results suggest that sample size, the proportion of missing

data, type of missingness and the interaction between sample size and proportion

affect the bias of the estimated coefficients; nonetheless, the effect size is small.

When each dependent variable is analysed separately using ANOVA, the effects of

the proportion of missing and the interaction between sample size and proportion

were statistically significant for only one coefficient. However, the effect size is still

small. Therefore, the conclusion is that the estimated coefficients’ bias for all the

missingness types is low.
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1 Introduction

Longitudinal data are often collected in different fields like medicine, biology, education,

and psychology. This type of data makes it possible to study the tendencies and tran-

sitions of different phenomena over time. Furthermore, the advance of technology is

starting to facilitate the collection of longitudinal data (Ginexi et al., 2014).

For binary longitudinal data, there are two approaches for the analysis. The first one

has the objective of modelling the trends over time. For instance, the Generalized Esti-

mation Equations make estimations for correlated data based on predictors (Ghahroodi

et al., 2010). The second approach is transitional modelling, which aims to model the

probability of a transition from one response category to another. These models use

responses observed previously as predictors and may include other covariates (Azzalini,

1994; Bonney, 1987).

The first-order Markov transitional model for binary data can be written as a logistic

regression. This Markov chain is characterized by the response Yt being conditional on

the previous response (Yp) but conditionally independent of the responses further back

in time. In the model in Equation 1, the response at the previous time point (yp) and

covariates (xt, zt) are used as predictors of the response at time point (t), this is,

log
P (yt = 1|yp, xt, zt)

P (yt = 0|yp, xt, zt)
= α + β1yp + β2xt + β3zt. (1)

Missing values are especially common in longitudinal research affecting estimations

and predictions. This missing is generated in different ways, that is, they have different

mechanisms. Rubin (1976) proposed a classification of three categories according to the

missing data mechanisms: Missing Completely at Random (MCAR), Missing at Random

(MAR) and Missing not at Random (MNAR) (Buuren, 2018). First, in the MCAR case,

all cases have the same probability of being missing. Second, for MAR the probability of

being missing depends on the observed data. Lastly, the probability of missing in MNAR

depends on partially observed and unobserved information.

Longitudinal data often presents missing values due to dropout, costs, or organiza-

tional reasons (Madley-Dowd et al., 2019; Wang & Hsu, 2020). Various methods have

been developed to handle missing values in research with binary outcomes. For instance,

multiple imputations, last observation carried forward, complete case analysis, weighted

estimating equation, and the missing-indicator method (Greenland & Finkle, 1995; Yang
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et al., 2007). Every method mentioned has its advantages and disadvantages, but the

least recommended is the missing-indicator method due to the bias generated (Greenland

& Finkle, 1995; van der Heijden et al., 2006).

The missing-indicator method creates a new variable to indicate that there is a missing

value in the original numeric variable, whilst, in the case of categorical variables, a new

category is created. Thereby, starting with a dichotomous variable y ∈ 0, 1 would result

in a new variable with three categories 1, 0,m, where m indicates missing.

Using the missing-indicator method for missing values in the predictors results in

biased parameter estimates and is recommended against its use (Donders et al., 2006;

Greenland & Finkle, 1995; Knol et al., 2010; Pereira Barata et al., 2019; Song et al., 2021).

Other methods like multiple imputations showed better results in handling missing data

maintaining low the bias (Donders et al., 2006; Pereira Barata et al., 2019).

Nevertheless, it is also possible to find studies that supported, under certain condi-

tions, the use of the missing-indicator method. For instance, Blake et al. (2020) concluded

that the missing-indicator in the case where the covariance is missing with MNAR mech-

anism gives unbiased results. Some papers suggested that the missing-indicator method

is appropriate for specific designs like matched case-control studies and randomized stud-

ies (Groenwold et al., 2012; Huberman & Langholz, 1999). Finally, a small proportion

of studies conclude that although the results may be biased, it is an efficient method.

Thus, the selection of this method depends on the balance of efficiency-accuracy that the

researcher is willing to accept (Henry et al., 2013; Li et al., 2004).

In the case of transitional models, de Rooij (2018) used the missing-indicator method

for missing values in the response variable and obtained almost unbiased parameters

estimates for all types of missing data (i.e., MCAR, MAR and MNAR). de Rooij (2018)

analyzed longitudinal multinomial data with a transitional approach in the context of an

experiment comparing the transition probabilities of treatment and control conditions.

de Rooij (2018), used the Point Classification model (IPC), within a distance framework,

to fit a multinomial model with four categories. Three were response categories, and

one was created for the missing values. The results showed that the missing-indicator

method leads to unbiased parameter estimates. Despite the promising results, the reason

the results are almost unbiased is still unknown.

This study aims to establish whether using the missing-indicator method in longitu-
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dinal binary data results in unbiased parameter estimations. Adding a category for the

missing data changes the binary logistic model to a multinomial baseline-category logit

model. The baseline-category logit model uses a binary logit model for pairs of each

response category with a baseline category (Agresti, 2002). Therefore, for a model with

three categories (i.e., 0, 1, m), we have two different equations. The model is

log
P (yt = m|yp, xt, zt)

P (yt = 0|yp, xt, zt)
= α11 + β11I(yp = m) + β21I(yp = 1) + β31xt + β41zt (2)

log
P (yt = 1|yp, xt, zt)

P (yt = 0|yp, xt, zt)
= α12 + β12I(yp = m) + β22I(yp = 1) + β32xt + β42zt, (3)

where 0 is the baseline category, and I is an indicator function of the previous response.

Please note that the second subscript of each parameter differentiates both equations.

The logarithms of the odds of being in category 1 or m instead of being in category 0 are

the result of the sum of the intercept, the response at the previous time point and the

two covariates at the time point t. There are two coefficients in each equation related to

the previous response. The first one is β11 in Equation 2 or β12 in Equation 3 that refers

to the situation where the response at the previous time point is missing. The second

one is β21 in Equation 2 or β22 in Equation 3, which refers to the case when the response

at the previous time point is 1.

The main objective of this thesis is to evaluate the bias of the estimated coefficients

when the missing-indicator method is used in the response of a binary transitional model

comparing the estimations of equation 3 with the parameters in Equation 1, That is, we

will compare the corresponding parameters of each row in Table 1.

Table 1: Estimated coefficients with its corresponding population parameter.

Estimations Population parameters Parameter name

α12 α Intercept

β22 β1 Previous response

β32 β2 Time point

β42 β3 Maternal smoking

A Monte Carlo simulation is performed to carry out the comparison. The results

are divided into two sections, one for the multivariate analysis and the second for the

univariate analyses.
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2 Monte Carlo Simulation

2.1 Design

The simulation compares the population model parameters with the estimated coefficients

from the binary and baseline-category logit model for the different types of missing data.

The factors of this simulation are as follows:

1. Type of missingness: Non-missing data, Missing Completely at Random, Missing

at Random, and Missing not at Random.

2. The proportion of missing data: 25% and 40%

3. Sample size: 100 and 1000 participants.

The combination of the proportion of missing data and sample size make four de-

sign cells. For each cell, we use 100 replications creating 400 non-missing datasets in

total. Complete data is generated first, and then the different types of missing values are

introduced.

2.2 Population model

The population model is based on the example presented in Agresti (2002, p.480), where

the model predicted the presence of respiratory illness (yes, no) in children. The children

were examined annually at ages 7 through 10 and classified according to the presence or

absence of respiratory illness. Predictor variables are maternal smoking (a=1 indicates

regularly and a=0 otherwise), the child’s age (t= 7, 8, 9, 10), and the response at the

previous year (Yp).

For the data generation, we have the following settings: (1) the data generated have

two response categories, the presence and absence of the respiratory illness. (2) Illness

presence at Y7 is the result of drawing random values from a Bernoulli distribution with

a probability of 0.2, equal to the proportion in the original example. (3) The mother’s

probability of being a smoker is 0.5; that is, a is drawn from a Bernoulli distribution with

P (a = 1) = 0.5. Moreover, this is a time constant predictor.
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Equation 4 shows the population model in which the response yt is drawn from a

Bernoulli distribution with the probability P (yt) derived from

log
P (yt = 1|yp, t, a)
P (yt = 0|yp, t, a)

= −0.293 + 2.21yp − 0.243t+ 0.296a. (4)

As mentioned before, the datasets with missing data are generated from the non-

missing datasets. In the non-missing datasets, a binomial logistic regression model is

fitted, while in the others, the baseline-category logit model is used.

2.3 Missing data

As in de Rooij (2018), the probability of an indicator of missing data was determined by

Pr(s = 1) =
exp(µ)

1 + exp(µ)
, (5)

where s is the missing indicator, and µ is the linear predictor of the missingness model,

which the missingness mechanism will define. There are some considerations in the

simulation of missing data. The first one is that it is possible that after a missing value,

the subject could respond again in further time points; that is, the missing cases can be

intermittent. Secondly, there are no missing data at age 7.

2.3.1 Missing Completely at Random

The probability of missing data in this mechanism is the same for every observation.

Therefore, µ equals a constant that depends on the proportion of missing data, that is,

µ1 = −0.4 (6)

µ2 = −1.1, (7)

where µ1 produces approximately 40% of missing data and µ2 produces around 25% of

missing data.

2.3.2 Missing at Random

In this case, the probability of missing was higher for the healthy subjects in the previous

year than the ill subjects, that is,
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µ1 = −0.3− 0.2Yp (8)

µ2 = −1− 0.2Yp, (9)

where µ1 produces around 40% of missing data and µ2 generates approximately 25% of

missing data.

2.3.3 Missing Not at Random

In this condition, the probability of missing depends on the response at the previous time

point as well as the response on the current time point. This means that there was a

higher probability of missing for healthy subjects,

µ1 = −0.3− 0.2Yp − 0.3Yt (10)

µ2 = −1− 0.2Yp − 0.3Yt, (11)

where µ1 produces around 40% of missing data and µ2 generates around 25% of missing

data.

2.4 Statistical Analysis

The estimated coefficients are compared to the actual model parameters to assess the

bias of the estimations according to the type of missing data. In the case of the baseline-

category logit model fitting, only the estimated coefficients resulting from the odds of

having a respiratory illness (category 1) instead of the absence of illness (category 0) are

considered. If the estimations are unbiased then

E(β̂22 − 2.21) = 0

E(β̂32 − (−0.243)) = 0

E(β̂42 − 0.296) = 0

E(α̂12 − (−0.293)) = 0

After the data and the missing are created, the non-missing datasets are fitted using

the binary logistic regression; meanwhile, the datasets with missing values are fitted
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using the multinomial baseline-category logistic model. Then, the estimated coefficients

are subtracted from their corresponding population values (see 1).

The deviations, estimated coefficients minus the population parameter, are used to

assess the bias with two methods. The first method is a three-way MANOVA analysis with

the criteria of α = 0.05, which determine if the combinations of the factor levels affected

the variation of the bias of the coefficient estimations. Moreover, the effect size partial-

eta squared allows us to inspect the proportion of the total generalized variance of the

estimated coefficients for each factor while controlling for other factors and interactions

(Huberty & Olejnik, 2006; Richardson, 2011). After this, an individual ANOVA is carried

out for each coefficient in order to determine the effect of each independent variable and its

interactions on the respective coefficient. The second method is a visual comparison of the

coefficient distributions for each type of missingness in different levels of the proportion

of missing data and sample size.

3 Results

The code with all the steps can be found in https://github.com/cnbi/missing-indicator-

simulation-study

3.1 Multivariate analysis

First, an analysis to test the assumption of normality from MANOVA was carried out.

This test showed that the assumption of normality is not possible to maintain. See Table

2. However, it is important to highlight that the condition of normality is not manda-

tory to perform MANOVA. Moreover, as seen in the boxplots of the intercept, previous

response, time and maternal smoking, the distributions are symmetrical. Another aspect

that stood out was the presence of outliers.

Table 2: Multivariate Normality Test results.

Test Statistic p value

Mardia Skewness 1303.097 p < 0.01

Mardia Kurtosis 82.853 0
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The Box’s M value, which tests the homoscedasticity assumption, was 4071.9 (p <

0.05), meaning that the covariances matrices are not equal. Nevertheless, this test is

sensitive to the sample size. Therefore, it was decided to perform the MANOVA analysis

despite these preliminary results.

The multivariate analysis of variance was performed on four dependent variables:

intercept, the coefficient for the previous response, coefficient of the time point, and the

coefficient of maternal smoking. The independent variables were the type of missingness,

sample size and proportion of missing values. For this thesis, the type of missingness is

the variable of paramount interest.

The results of MANOVA in Table 3 showed that with the use of Pillai’s trace criterion,

the composite of deviations was different across the levels of the main effects of the three

independent variables and one interaction. This means that the sample size, proportion

of missing values, the type of missing, and the interaction of sample size and proportion

of missing values, produced bias.

Table 3: Test statistics for MANOVA including Pillai’s trace, approximate F-test, its

degree of freedom, its p-values, and effect size.

Effect Pillai approx

F

Df1 Df2 p-value η2partial

Sample 0.035 14.161 4 1581 0.000 0.030

Proportion 0.016 6.249 4 1581 0.000 0.020

Type 0.043 5.720 12 4749 0.000 0.010

Samp:Prop 0.017 6.969 4 1581 0.000 0.020

Samp:Type 0.005 0.631 12 4749 0.818 0.002

Prop:Type 0.011 1.422 12 4749 0.148 0.004

Samp:Prop:Type 0.003 0.392 12 4749 0.967 0.001

Residuals 1584

Note. Samp stands for sample size, Prop means proportion of missing data, and Type refers to

the type of missingness. In the header, df1 stands for degrees of freedom for numerator, while

df2 refers to the degree of freedoms denominator. The effect size is partial η2.

Nevertheless, the partial η2 shows that the effect sizes of the sample size, proportion,

type, and the interaction sample and proportion are no larger than 3%. That indicates

that the variables do not explain more than 3% of the variation of the deviations. Specif-
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ically, the type of missingness explains 1% of the variance.

3.2 Univariate analyses

3.2.1 Intercept

In this subsection, all the results are related to The results in Table 4 indicate that

the bias does not change considerably according to the sample, proportion, or type of

missingness. Likewise, the effect size indicates that these variables do not explain more

than 0.09% of the variation.

Table 4: ANOVA results with the intercept as dependent variable.

Effect Df Sum Sq Mean Sq F value p-value η2

Samp 1 0.3 0.2652 0.0795 0.7780 0.0001

Proportion 1 0.6 0.5582 0.1673 0.6826 0.0001

Type 3 2.6 0.8564 0.2567 0.8566 0.0005

Samp:Prop 1 1.1 1.0809 0.3240 0.5693 0.0002

Samp:Type 3 4.5 1.5113 0.4530 0.7152 0.0009

prop:Type 3 4.2 1.3985 0.4192 0.7393 0.0009

Samp:Prop:Type 3 3.3 1.1086 0.3323 0.8020 0.0006

Residuals 1584 5284.9 3.3364

Note. Samp stands for sample size, Prop means proportion of missing data, and Type refers

to the type of missingness. In the header, Df stands for degrees of freedom and Sq refers to

squares, ergo Sum Sq is the Sum of squares and Mean Sq is the Mean squares.

In Figure 1, the bias was close to zero for every type of missingness. Furthermore,

the proportion of missingness seemed to have little effect on the means. As expected,

the sample size affected the height of the boxes, indicating less variability for the large

sample size and, thus, more accurate estimation.

3.2.2 Previous response

In Table 5, the proportion of missing values and the interaction between sample size and

proportion of missing values affect the deviations of the estimated coefficients. Moreover,

the effect size shows that the proportion of variation that the mentioned variables can

explain is between 0.4% and 1.2%.
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Figure 1: Comparison of the distributions of the deviations of the intercept coefficients

for different types of missingness. The rows represent each level of the sample size, and

the columns are the proportion of missing values. The dashed line marks zero, which

indicates that there is no bias.
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Table 5: ANOVA results with the previous response as dependent variable.

Effect Df Sum Sq Mean Sq F value p-value η2

Sample 1 0.364 0.364 2.8042 0.0942 0.002

Proportion 1 0.769 0.769 5.9275 0.0150 0.004

Type 3 0.243 0.081 0.6256 0.5985 0.001

Samp:Prop 1 2.544 2.544 19.6228 0.0000 0.012

Samp:Type 3 0.231 0.077 0.5950 0.6183 0.001

prop:Type 3 0.447 0.149 1.1500 0.3276 0.002

Samp:Prop:Type 3 0.337 0.112 0.8657 0.4583 0.002

Residuals 1584 205.397 0.13

Note. Samp stands for sample size, Prop means proportion of missing data, and Type refers

to the type of missingness. In the header, Df stands for degrees of freedom and Sq refers to

squares, ergo Sum Sq is the Sum of squares and Mean Sq is the Mean squares.

In Figure 2, the bias of the estimated coefficients for the previous response was close

to 0 for all the types of missingness. Thus we can conclude that for our variable of

interest, the type of missingness did not have a main effect or an interaction effect that

could explain the variance in the deviations. When we explore the interaction between

the sample size and the proportion of missing data with boxplots, we can see that the bias

in the case of 100 participants with 40% of missing data is slightly larger than zero (see

Figure 3). However, we have to remember that this effect only explains 1.2%. Moreover,

When the proportion of missing is the only variable in the boxplot, it can be noted that

the bias in the two situations is similar (see Figure 4).

The sample size affected the variation of the coefficients, so the variation was smaller

when there were 1000 participants. The proportion of missing values seems to have a

negligible effect on the means. In the cases where the proportion is 40%, the variation of

the estimated is slightly bigger.
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Figure 2: Comparison of the distributions of the bias for the previous response for each

type of missingness according to the sample size and the proportion of missing values.

The dashed line marks the zero, which indicates that there is no bias.
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Figure 3: Comparison of the distributions of the bias for the previous response according

to the sample size and the proportion of missing values. The dashed line marks the zero,

which indicates that there is no bias.
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Figure 4: Distributions of the bias for the previous response according to the proportion

of missing values. The dashed line marks the zero, which indicates that there is no bias.

3.2.3 Time point

In Table 6 it can be seen that there is no difference in the bias of the coefficients estimated.

Thereby, the change in sample size, the proportion of missing values or the type of missing

do not generate a variation in the bias.

Table 6: ANOVA results with the time point as dependent variable.

Effect Df Sum Sq Mean Sq F value p-value η2

Samp 1 0.062 0.0623 1.4173 0.2340 0.0009

Proportion 1 0.009 0.0093 0.2104 0.6465 0.0001

Type 3 0.060 0.0199 0.4539 0.7145 0.0009

Samp:Prop 1 0.007 0.0071 0.1613 0.6881 0.0001

Samp:Type 3 0.046 0.0154 0.3491 0.7898 0.0007

Prop:Type 3 0.066 0.0218 0.4968 0.6846 0.0009

Samp:Prop:Type 3 0.036 0.0119 0.2707 0.8466 0.0005

Residuals 1584 69.644 0.0440

Note. Samp stands for sample size, Prop means proportion of missing data, and Type refers

to the type of missingness. In the header, Df stands for degrees of freedom and Sq refers to

squares, ergo Sum Sq is the Sum of squares and Mean Sq is the Mean squares.
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Figure 5 also shows that independent of the sample size, type of missingness and

proportion of missing values; all biases are around 0. The difference that stood out

in the boxes is its height, indicating that the estimations with 1000 participants were

more accurate than 100 participants. Also, having 40% of missing data generates more

variation than 25%.

Figure 5: Comparison of the distributions of the deviations of the estimated for the time

point for each type of missingness according to the sample size and the proportion of

missing values. The dashed line marks the zero, which indicates that there is no bias.

3.2.4 Maternal smoking

Like other estimations, Table 7 shows that all biases are similarly independent of the

sample size, the proportion of missing values and type of missingness. In Figure 6, the

biases for maternal smoking are close to 0. As before, the large sample size led to more

accurate estimated coefficients. Moreover, the datasets with 40% of missing values had

a larger variation.
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Table 7: ANOVA results for maternal smoking as dependent variable.

Effect Df Sum Sq Mean Sq F value p-value η2

Samp 1 0.033 0.0334 0.3286 0.5665 0.0002

Proportion 1 0.194 0.1943 1.9104 0.1671 0.0010

Type 3 0.113 0.0378 0.3715 0.7736 0.0007

Samp:Prop 1 0.022 0.0222 0.2178 0.6408 0.0001

Samp:Type 3 0.115 0.0384 0.3772 0.7695 0.0007

Prop:Type 3 0.029 0.0098 0.0966 0.9619 0.0002

Samp:Prop:Type 3 0.033 0.0112 0.1097 0.9544 0.0002

Residuals 1584 161.110 0.1017

Note. Samp stands for sample size, Prop means proportion of missing data, and Type refers

to the type of missingness. In the header, Df stands for degrees of freedom and Sq refers to

squares, ergo Sum Sq is the Sum of squares and Mean Sq is the Mean squares.
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Figure 6: Comparison of the distributions of the deviations of estimated of maternal

smoking for each type of missingness according to the sample size and the proportion of

missing values. The dashed line marks the zero, which indicates that there is no bias.

4 Discussion and conclusions

Using the missing indicator method in longitudinal binary transitional models leads to

estimated coefficients that, on average, are close to the population values regardless of the

type of missingness. The simulation of an empirical example with different proportions

of missing data, sample size and type of missingness indicated that the deviations of the

estimated coefficients on average are close to zero.

These results indicated a difference statistically significant in the bias due to the

main effects of sample size, the proportion of missing values, type of missingness and

the interaction of sample and proportion. Nevertheless, the effect sizes of these variables

were small according to Cohen’s rule of thumb (Field, 2009). Concerning the type of
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missingness, the differences between MCAR, MAR, MNAR and non-missingness only

explained 1% of the deviations variation.

When the coefficients were examined individually, only the bias of the estimated of

the previous response was significantly different for the different levels of proportion and

the interaction between sample size and proportion of missing values. This result is not

surprising, considering that this variable was the predictor with missing values. However,

the effect size is small, and the variable of interest is the type of missingness. Therefore,

the effect of sample size and the interaction are not in the scope of this study.

The results presented are in line with previous research. The bias that can be seen

in the estimated coefficient of the previous response depended mainly on the sample size

and the proportion of missing values; the same was found in Rambhadjan (2016) where

the missing-indicator was tested in longitudinal data with the three missing mechanisms

(MCAR, MAR, and MNAR). Moreover, in the context of transitional modelling de Rooij

(2018) found that the use of the missing-indicator also led to unbiased estimations.

The main strength of this study is that the population model is based on an empirical

example. Using an actual situation that the researcher can find gives ecological validity

to the conclusions. Furthermore, the simulation allowed to test the effect of the types of

missing values in scenarios with different proportions of missing data and sample sizes.

It is also important to note that this study has some limitations. The main limitation

of this study is that the assumptions for MANOVA and ANOVA were not met. The

assumptions of multivariate normality, homogeneity of the covariance matrices, and the

absence of outliers were not met. The final decision of performing MANOVA despite

the assumptions being not met was based on the literature. Huberty and Olejnik (2006)

indicated that the normality is not necessary in the case that the data are symmetrical,

which can be seen in the boxplots. Secondly, Box’s test used for testing the equality

of the covariances matrices is unstable. As a countermeasure, we used Pillai’s statistics

which is considered as robust (Field et al., 2012; Tabachnick & Fidell, 2013).

Other limitations are related to the simulation. The study included only one set of

population parameters. Also, the generalization is limited to other cases that have the

same characteristics as the example used. For this reason, the test of the missing indicator

in other data and under diverse conditions is essential.

In conclusion, this study showed that it is possible to use the missing-indicator method
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in longitudinal binary data in the context of a transitional model with a first-degree

Markov chain to obtain unbiased estimations. When the response is missing, the missing-

indicator method can handle different types of missing data resulting in unbiased esti-

mated coefficients on average. The generalization of these results is limited to the char-

acteristics of the model and the simulation. For this reason, it is necessary to test the

missing-indicator method in other types of data and situations. Also, it is essential to test

the missing-indicator method with other methods different to ANOVA, like analyzing the

standards errors, the type I error, and the classification performance.
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