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Abstract

The reliability of statistics is essential for official statistics. With administrative data more often used instead of

survey data, non-sampling errors become important factors in the accuracy of statistics. For domain statistics,

such as yearly turnover of enterprises, classification errors occur. This study aims to measure the effect of

classification errors on domain statistics, more specifically, bias and variance due to classification errors.

In this study, a new method was developed that applies a a Gaussian mixture model, estimated by the EM

algorithm, in short referred to as the EM method. Further another method was introduced that combined

the EM method with bootstrapping, referred to as the combined method. Among them, the EM method

only estimates bias, and the combined method is able to estimate both bias and variance. Together with a

previously used bootstrap method, the three methods were tested in a simulation study and in a case study.

The bias and variance estimates from the three methods were compared with their corresponding true values

in different settings. The results showed that the bias estimates from the EM and the combined method were

closer to the true values compared to the bootstrap method; The combined method had closer outputs on

variance estimation than the bootstrap method. The EM and the combined method were equally accurate in

estimating the true bias.

These results suggest that the EM and the combined method estimated the bias and variance more accurately

than the bootstrap method. In practice, the combined method is recommended since both the bias and the

variance can be estimated. In a situation with a very large data set, where the variance is usually small and

the bias is of most concern, the EM method may be preferred.
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1 Introduction

It is widely recognized that reliability of statistics is of top importance in any field of research, especially in

official statistics, where most published statistics are used for policy making. It is a trend in official statistics

that administrative data is now replacing survey data in the production of statistics. As a result, the accuracy

of statistics is more determined by non-sampling errors, such as measurement errors in comparison to sampling

errors (Zhang, 2011). Among them, classification errors play a big role.

Classification errors often appear wherever there is a categorical variable in the administrative data. Although

administrative data has the advantage of efficiency, where data already exists in administrative registers and

covers a large part of the target population, statistical agencies have little control over the collection of these

data. The concepts and definitions used by the register owners sometimes differ from those used by official

statistics which can easily cause misclassification (Magnusson, Palm, Branden, & Mörner, 2017).

It is common in official statistics that classification codes are used for identifying units into domains of interests.

A wide range of standard statistical classifications are used. Eurostat and the Member States, for example, use

coding system CPA as the classification of products by activity, and NACE for classifying economic activities.

Classifications such as educational levels and types of occupation are also used quite often. A standard

set of classification codes is used to make sure statistics are comparable and reliable. Nowadays, statistical

agencies have also started to apply machine learning algorithms to classify units into subgroups (Meertens,

Diks, Van den Herik, & Takes, 2020).

Because the correct use of these codes is not guaranteed in administrative data, the effect of classification errors

cannot be neglected when assessing the quality of statistics. Even when the accuracy of the classifier increases,

the classification errors will still cause bias to subgroup proportion if its misclassification probabilities do not

conform to certain conditions (Scholtus & Van Delden, 2020). Measures such as increasing the accuracy of

classification or strict controls in registers, can be taken to reduce the effect of classification errors.

The effect of misclassification has been studied in different research fields, such as machine learning and

epidemiology. Furthermore, the effect of misclassification has been studied for, and applied to different types

of problems. A study in the field of software engineering reported that the misclassified bug reports have

introduced bias to their bug prediction model (Herzig, Just, & Zeller, 2013). Another study assessed the

uncertainty of predictive performance of a classification model and showed that the uncertainty of the model

increased when the probability of making classification errors became larger (Morais, Lima, & Martin, 2019).

A clinical research estimated the treatment effect in observational studies and found the misclassification of a

confounder would cause bias on the estimation of the average treatment effect (Nab, Groenwold, Van Smeden,

& Keogh, 2020).

For National Statistical Institutes (NSIs) and other statistical agencies, to ensure the quality of official statistics

is of central importance (Nordbotten, 2010). The main purpose of our study is to investigate the effect of

9



classification errors on the accuracy of statistics, such as subgroup means (Selén, 1986), counts (Scholtus &

Van Delden, 2020) and growth rates (Scholtus & Van Delden, 2020; Scholtus, Van Delden, & Burger, 2019).

In the studies considering the impact of classification errors on estimators, analytical expressions and a boot-

strap method have been proposed. Greenland (1988) formulated variance estimates for estimated log odds

ratios that are often used to measure effect size in epidemiology. Formulas for bias and variance brought by

misclassification for other domain estimators have also been derived, such as counts and growth rates (Scholtus

& Van Delden, 2020; Scholtus et al., 2019).

Zhang (2011) used the bootstrap method to measure the variance of total sum caused by misclassification of

households. The bootstrap method has been applied by Van Delden, Scholtus, and Burger (2016) to quantify

the bias and variance of level estimates brought by classification errors. Scholtus et al. (2019) also applied the

bootstrap method to quantify the bias and variance of growth rates.

The advantages of analytical expressions are quite obvious. Once the analytical solutions for corresponding

estimators are obtained, the calculation for bias and variance is straightforward. With the expression, the bias

and variance estimation is relatively more transparent where people can easily understand why misclassification

brings bias and uncertainty and how classification errors are constructed.

However, the estimations from the analytical expressions are inaccurate. In practice, the estimators in the

bias and variance expressions are replaced by their estimated values. When classification errors bring bias

and variance to the estimated values, the bias and variance estimated from the analytical expressions will

also contain bias and variance. Besides, the analytical expressions are different for every estimator. When

the assumptions of the classification model or other conditions are changed, expressions will no longer be

applicable.

Compared to the analytical method, the bootstrap method has more flexibility since it can be adopted to

almost any estimator. But like the use of analytical expressions, the bootstrap estimates may be biased in

practice (Burger, Van Delden, & Scholtus, 2015).

In order to evaluate the effect of classification errors, the probabilities of making classification errors need to

be obtained. Among these studies related to misclassification, there are situations where classification error

probabilities are known beforehand, and also the situation in which those errors need to be estimated. The

most common assumption is that the misclassification probabilities estimated from a suitable set of data, which

is called ”validation data” or ”audit sample”, are the same as in the target data set. An audit sample can

either be sampled from the target data set (Gravel & Platt, 2018), or from a different set of data where the

classification error probabilities are assumed to be representative (Edwards, Bakoyannis, Yiannoutsos, Mburu,

& Cole, 2019; Edwards, Cole, & Fox, 2020).

Our study focuses on estimating the accuracy of statistics, more specifically on measuring the bias and variance

that misclassification has brought to the statistics. We aim to develop methods that can estimate the bias and
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variance more accurately and overcome the weakness of the analytical method and the bootstrap method. By

doing so, a new method is developed by applying a Gaussian mixture model, estimated by EM algorithm, in

short referred to as EM method. Further a method combines EM method with bootstrapping, referred to as

the combined method. Together with the bootstrap method, the three methods will been tested in a simulation

study and in a case study. In the simulation study, Gaussian mixture distributions with various number of

components are simulated. In the case study, the criterion of BIC will be used to choose the optimal number

of components in a real data set. The bias and variance estimates from the three methods will be compared

with their corresponding true values.

Apart from more accurate estimation, the new methods estimate the classification error probabilities as a

part of their procedures. An audit sample is no longer needed in the new methods for the misclassification

probabilities estimation, which is necessary in the previous methods. Still, we will make use of an audit

sample when applying the new methods, but it plays a different and unnecessary role, to accelerate and

stabilize processes of model parameter estimations.

The remainder of this thesis is organised as follows. Section 2 describes the three methods that we compare,

including the details of the EM algorithm in the methods. The three methods are tested with a simulation

study, given in section 3 and with a case study in section 4. Section 5 provides practical guidelines of applying

the new method in real applications. Section 6 concludes results of our study and proposes future directions.

Appendices give more details of our study: Appendix A provides technical details of using the EM algorithm

with an audit sample; Appendix B includes more experiments in order to figure out what factors influence the

performance of our methods in the case study; Appendix C discusses more about the use of BIC in our study.
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2 Methodology

In this section, the methodology of the study is provided. To simplify our setting, we consider the condition

with only two classes. It includes the general setting of the study, how the data is modeled, how bias and

variance are defined, what statistics of interest include, and an audit sample used in our study. The three

methods used in the study are also described. One of them is the bootstrap method used in the previous

studies. Another two, the EM method and the combined method, are the new methods we develop in this

study. The EM algorithm that is applied in the new methods is introduced in detail.

2.1 General Settings

2.1.1 Notations

Consider a data set with N rows and two columns, where each column represents a particular variable and

each row corresponds to a unit i = 1, ..., N in a population. There are in total two classes in the population,

which are called class 1 and class 0. The proportion of class 1 in the population is denoted as α1 and that of

class 0 is α0, with α0 = 1 − α1. We assume there is no missing data in the data set, so that all values of all

variables are observed for all units in the population.

One of the variables is a continuous variable y. The continuous variable has some statistics we are interested to

estimate. For example, it could be yearly turnover of entrepreneurs, emission of nitrogen oxides of industries,

or harvest of vegetables of farms. We assume the continuous variable y is error-free.

Another variable is an observed classification variable ẑ identifying to which group these units belong in

practice. In official statistics, the observed classification variable ẑ usually comes from a register or a machine-

learning algorithm and contains classification errors. We assume the probabilities of making classification

errors are random in the same way for all units, which also means that they are independent of the continuous

variable y.

In order to better explain the misclassification probabilities, we introduce a true classification variable z which

does not have any classification errors. In practice, the true classification variable z is often unknown, and

only the observed classification variable ẑ really exists.

In our study, the distribution of the continuous variable y is assumed to be a mixture of normal distributions

for each class (see more details in Section 2.1.2). We also introduce a component variable m to identify which

component these units belong to. The variable m is unknown beforehand. The true classification variable z

and the component variable m together decide the distribution of y. The next section will explain it in detail.

12



2.1.2 General Model

To structure the probabilities of making classification errors, we use a 2× 2 transition matrix P (Formula 1),

P =

 p11 1− p11

1− p00 p00

 . (1)

The value p11 indicates the probability of identifying units as class 1 when their true class is 1, which can

be expressed as p(ẑ = 1|z = 1) = p11; p00 indicates the probability of identifying units as class 0 when

their true class is 0, which can be expressed as p(ẑ = 0|z = 0) = p00. Other probabilities are expressed as

p(ẑ = 0|z = 1) = 1− p11 and p(ẑ = 1|z = 0) = 1− p00.

Besides, we assume that the distribution of the continuous variable y for each class conforms to a Gaussian

mixture model with a certain number of components ni (i ∈ {0, 1}), which means that all the components for

each class conform to the normal distributions.

Here we introduce a component indicator j to identify components in class 1 with j ∈ {1, ...n1} and a component

indicator k to identify components in class 0 with k ∈ {1, ...n0}.

For component j of class 1 (j ∈ {1, ...n1}), π1j is its prior probability in class 1 (also called mixture weight)

and π11 + ...+ π1j + ...+ π1n1 = 1; µ1j is its mean and σ1j is its standard deviation.

For component k of class 0 (k ∈ {1, ...n0}), π0k is its prior probability in class 0 with π01+...+π0k+...+π0n0
= 1;

µ0k is its mean and σ0k is its standard deviation.

The probability of yi depends on the class it belongs to (the values of zi) and also by which component in this

class it belongs to (the value of mi). From Bayes’s theorem, the probability of yi conditional on its true class

zi is:

P (yi|zi) =



n1∑
j=1

P (mi = j | zi = 1)P (yi | zi = 1,mi = j) ,

n0∑
k=1

P (mi = k | zi = 0)P (yi | zi = 0,mi = k) ,

where P (mi = j | zi = 1) is the mixture weight for component j in class 1 and equals to π1j ; P (mi = k | zi = 0)

is the mixture weight for component k in class 0 and equals to π0k .

Therefore, the density function for yi can be expressed as,

f (yi|zi) =



n1∑
j=1

π1j · N
(
yi |µ1j , σ

2
1j

)
when zi = 1 ,

n0∑
k=1

π0k · N
(
yi |µ0k, σ

2
0k

)
when zi = 0 ,

(2)
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where N (y | µ, σ) is the probability density of y under a normal distribution with mean µ and variance σ2. The

identification of parameters in the density function can be guaranteed by restricting the order of means in the

Gaussian mixture model. Here we simply assume µ11 < ... < µ1j < ... < µ1n1 and µ01 < ... < µ0k < ... < µ0n0 .

We introduce θ to represent the full set of parameters in our model, which include the class proportion α1, p11

and p00 in the transition matrix P (Formula 1) and the parameters of components for each class. Therefore,

θ is denoted as θ = (α1, p11, p00, π1j , π0k, µ1j , µ0k, σ1j , σ0k) with j = 1, ..., n1 and k = 1, ..., n0. In practice,

Gaussian mixture models are often estimated by an EM algorithm. Section 2.3 describes how θ are estimated

from the EM algorithm.

2.1.3 Bias and Variance

With only the error-prone observed classification variable ẑ observable in practice, the accuracy of estimated

statistics for each class decreases, compared to their true values which can only be obtained from the true

classification variable z. Two aspects of the accuracy are discussed: bias and variance.

In this study, we only consider the bias and variance due to classification errors. The bias is defined as the

difference between the expected values of the estimated output and the correct value of domain statistics.

The variance is a measure of the expected amount that the estimated domain statistics will change if different

classification variables with same error distributions are used. The followings are the mathematical definitions

of bias and variance in our study:

Bias = E(ζ̂)− ζ,

Variance = Var(ζ̂) = E

((
ζ̂ − E(ζ̂)

)2
)
,

(3)

where ζ̂ are the estimated domain statistics from ẑ, and ζ is the true value from z (details below). We assume

that no other errors occur in the study.

2.1.4 Statistics of Interest

We are interested to estimate the accuracy of certain output for official statistics, namely the total sum for

class 1 (T1) and the proportion for class 1 (α1). Since our study is under the setting of a binary classifier, the

total sum and the proportion for class 0 can be calculated once these statistics for class 1 have been achieved.

Additionally, we also verify how well we are able to estimate descriptive statistics for each class: the mean µ1

for class 1 and µ0 for class 0; and the standard deviation σ1 for class 1 and σ0 for class 0.

All the domain statistics we included in our study are denoted as ζ = (T1, α1, µ1, µ0, σ1, σ0). Table 1 has listed

the formulas for the maximum likelihood statistics ζ given variable y and z. By replacing zi with ẑi in Table
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1, the observed domain statistics ζ̂ = (T̂1, α̂1, µ̂1, µ̂0, σ̂1, σ̂0) can be calculated. Other forms of ζ (such as ζ∗ in

Section 2.2) can also be calculated in the same way.

The theoretical ζ (Table 1) requires the true y and z values and so cannot be computed in practice. In practice,

we replace the unknown true z by the observed ẑ in these expressions, and this yields the estimated ζ̂. Once

z is replaced by ẑ, bias and variance occur (see details in Section 2.1.3).

Table 1: List of Formulas for the Maximum Likelihood Statistics ζ

Statistics of Interest Notation Formula given y and z

Total sum for class 1 T1

∑
ziyi

Proportion of class 1 α1

∑
zi
N

Mean for class 1 µ1

∑
ziyi∑
zi

Mean for class 0 µ0

∑
(1−zi)yi
N−

∑
zi

Standard deviation for class 1 σ1

√
1∑
zi

∑
zi(yi − µ1)2

Standard deviation for class 0 σ0

√
1

N−
∑
zi

∑
(1− zi)(yi − µ0)2

Note: 1. i stands for a unit in the population.

2. By replacing zi with ẑi in the formulas, ζ̂ = (T̂1, α̂1, µ̂1, µ̂0, σ̂1, σ̂0) can be calculated. Other forms of ζ (such as ζ∗

in Section 2.2) can also be calculated in the same way.

Maximum likelihood estimators are quite often applied in the context of mixture models. For the estimated

standard deviation, it should be noticed that the maximum likelihood statistics are not unbiased in finite data

sets since we divide by N rather than N − 1, but the bias disappears when N goes to infinity. Given that N

in our setting is quite large, maximum likelihood estimation is used.

2.1.5 Audit sample

We select a small group of units as an audit sample in our study, where the true classes z of these units are

known through manual checking. The audit sample is randomly sampled from the population to make sure it

is representative.

In our study, the audit sample is used in the EM algorithm in two ways: one is to set the starting values;

another is to add more information in the E step and the M step. Appendix A provides detailed information

about applying the audit sample to the EM algorithm.
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2.2 Methods

In our study, three methods were compared: the bootstrap method, the EM method and the combined method.

The first method originates from Van Delden et al. (2016) and the other two methods are new methods, where

the EM algorithm is applied to estimate the bias and variance (details in Section 2.3).

The three methods all start with the error-free continuous variable y and the observed classification variable

ẑ with classification errors.

The first method (see Algorithm 1) is the bootstrap method (Van Delden et al., 2016). It generates multiple

sets of z∗ by introducing classification errors again to ẑ with the same transition matrix P (Formula 1 in

Section 2.1.1), where p(z∗ = 1|ẑ = 1) = p11 and p(z∗ = 1|ẑ = 0) = p00. For each set of z∗, corresponding

statistics ζ∗ are calculated by formulas in Table 1. The bias is then estimated by Biasboot and variance is

estimated by Varboot, which refer to the empirical expectation (i.e., the mean) and the empirical variance

of the S simulated values. In this way, the algorithm is used to find a numerical approximation to the true

expectation and variance.

The classification error probabilities p11 and p00 in matrix P are assumed known in the bootstrap method. In

our study, we used the estimated p11 and p00 from the EM method or the combined method and applied the

estimated values in the bootstrap method.

Algorithm 1 The Bootstrap Method

Input: Variable y, ẑ, matrix P and S.
1: for s = 1 . . . S do
2: Generate z∗ by P (Formula 1), conditional on ẑ for every unit i in the data set
3: Calculate the corresponding ζ∗ for each z∗

4: end for
5: Calculate Biasboot = E(ζ∗|ẑ)− ζ̂, Varboot = Var(ζ∗|ẑ) based on S bootstraps

Output: Biasboot and Varboot

The second method (see Algorithm 2) makes use of the EM algorithm Therefore we call it the EM method.

The EM algorithm is used to estimate the parameters of the mixture Gaussian model (in Section 2.1.2) through

achieving its maximum likelihood. The parameters of the model are returned from the EM algorithm, including

p11 and p00 in the matrix P. With parameters of the model obtained, maximum likelihood statistics ζ̃ can

be achieved (formulas in Section 2.3.5). The maximum-likelihood estimates ζ̃ = (T̃1, α̃1, µ̃1, µ̃0, σ̃1, σ̃0) can be

seen close to the true value of our target statistics ζ (Table 1). Therefore, bias can be directly estimated from

Biasem = ζ̂− ζ̃, where ζ̃ is the statistics estimated from EM algorithm and ζ̂ is the statistics from the observed

classes. However, the variance that classification errors have brought to the statistics can not be estimated in

this method. A further step should be taken which becomes our third method.
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Algorithm 2 The EM Method

Input: Variable y, ẑ
1: Estimate parameters of the model θ, including p11 and p00, through iterating over an E step and an M

step until convergence in the EM algorithm, conditional on ẑ and y
2: Calculate the ζ̃ from the estimated parameters
3: Calculate Biasem = ζ̂ − ζ̃

Output: Biasem and matrix P

The third method (see Algorithm 3) combines EM method and bootstrapping in order to compute the variance

that classification errors have brought to estimators. By applying the EM algorithm, the parameters of the

model are obtained, including p11 and p00 in the matrix P. With the estimated parameters of the model,

statistics ζ̃ is achieved (see details in the second method) and p(z|y, ẑ) can also be calculated (Formulas 8

in Section 2.3.2). For unit i, given yi and ẑi, multiple z̃i are generated with success probability of p(zi =

1|y = yi, ẑ = ẑi). Through it, multiple sets of the predicted error-free classification variable z̃ are returned,

which play the same role as the true classification variable z. So far, we have come back to the status with no

classification error.

Then multiple sets of z̃∗ are generated by introducing classification errors to the variable z̃ with the transition

matrix P (Formula 1 in Section 2.1.1) where p(z̃∗ = 1|z̃ = 1) = p11 and p(z̃∗ = 0|z̃ = 0) = p00. Through

it, bias and variance have been brought by classification errors to statistics ζ̃∗. And the statistics ζ̃∗ can be

calculated from formulas in Table 1 by replacing zi with z̃∗i in the formulas. Therefore, bias is estimated by

Biascomb = Ez̃((E(ζ̃∗|ẑ, z̃)− ζ̃)|ẑ) and variance is estimated by Varcomb = Ez̃(Var(ζ∗|ẑ, z̃)|ẑ), where ζ̃ is the

statistics with classes z̃ and ζ̃∗ is the statistics with classes z̃∗. Here, again, these are empirical expectations and

variances of the simulated values, used as a numerical approximation to the true expectation and variance. The

outer expectation is evaluated using the outer for loop (over s1), the inner expectation/variance is evaluated

using the inner for loop (over s2).

Algorithm 3 The Combined Method

Input: Variable y, ẑ and S1, S2.
1: Estimate parameters of the model θ, including p11 and p00, from the EM algorithm, conditional on ẑ and
y

2: Calculate ζ̃ and p(z|y, ẑ)
3: for s1 = 1 . . . S1 do
4: Generate z̃ by p(z|y, ẑ) for every unit i in the data set
5: for s2 = 1 . . . S2 do
6: Generate z̃∗ by P (Matrix 1), conditional on z̃ for every unit i in the data set
7: Calculate the corresponding ζ̃∗ for each z̃∗

8: end for
9: end for

10: Calculate Biascomb = Ez̃((E(ζ̃∗|ẑ, z̃)− ζ̃)|ẑ), Varcomb = Ez̃(Var(ζ∗|ẑ, z̃)|ẑ) over S1 and S2 bootstraps
Output: Biascomb, Varcomb and matrix P

In our study, the three methods will be applied both in the simulation study (Section 3) and in the case study

(Section 4). The estimated bias and variance from the three methods will be compared to each other. What’s
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more, the true bias and variance will be estimated by formulas 3 in Section 2.1.3. The performance of bias

and variance estimation of the three methods will be assessed by comparing their estimated bias and variance

with the true bias and variance.
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2.3 EM Algorithm

The EM algorithm, with its full name as Expectation-Maximization algorithm, is used to estimate parameters

by achieving maximum likelihood (Dempster, Laird, & Rubin, 1977; Little & Rubin, 2002). As illustrated by

its name, it contains two steps: E step & M step. The E step describes the expected value of the complete-data

log-likelihood function, conditional on the observed data. The M step then finds the parameters that maximize

the log likelihood function.

In our study, the EM algorithm is applied in the EM method and the combined method to estimate the

accuracy of domain statistics (details in Section 2.2). In the EM method, we apply the EM algorithm to

calculate the maximum likelihood statistics ζ̃ and estimate Biasem. In the combined method, the parameters

estimated from the EM algorithm help us to come back to the status with no classification error.

In order to explain how the EM algorithm works in our methods, we start with a derivation of the log-likelihood

function of the Gaussian mixture model in the study.

2.3.1 Log-likelihood Function for Complete Data in the Mixture Model

In Section 2.1.2, we have already introduced the Gaussian mixture model in our study. We assume that the

continuous variable y for each class conforms to a mixture of normal distributions. Besides, we also assume that

the classification errors only depend on the true classification variable z and not on the variable y. Therefore,

the density function of the complete data (z,m, ẑ, y) for unit i is:

fθ(z = zi,m = mi, ẑ = ẑi, y = yi) = fθ(z = zi,m = mi)fθ(ẑ = ẑi|z = zi)fθ(y = yi|z = zi,m = mi)

= P (z = zi,m = mi)P (ẑ = ẑi|z = zi)fθ(y = yi|z = zi,m = mi).

Here, θ = (α1, p11, p00, π1j , π0k, µ1j , µ0k, σ1j , σ0k) stands for the full set of parameters in our model.

When zi = 1,mi = j with j = 1, 2, ..., n1,

fθ (z = 1,m = j, ẑ = ẑi, y = yi) = α1p
ẑi
11 (1− p11)

1−ẑi π1j

σ1j

√
2π

exp

{
− (yi − µ1j)

2

2σ2
1j

}
, ω1ji ; (4)

When zi = 0,mi = k with k = 1, 2, ..., n0,

fθ (z = 0,m = k, ẑ = ẑi, y = yi) = (1− α1) (1− p00)
ẑi p1−ẑi

00

π0k

σ0k

√
2π

exp

{
− (yi − µ0k)

2

2σ2
0k

}
, ω0ki . (5)

In order to indicate which component of the mixed distribution unit i belongs to, indication functions for mi
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are set as:

1(mi=j) =

1 mi = j

0 mi 6= j
; 1(mi=k) =

1 mi = k,

0 mi 6= k
. (6)

Note that zi

(
n1∑
j=1

1(mi=j)

)
= zi and (1− zi)

(
n0∑
k=1

1(mi=k)

)
= 1− zi for all units i. Therefore, the likelihood

function for θ = (α1, p11, p00, π1j , π0k, µ1j , µ0k, σ1j , σ0k) conditional on the complete data (z,m, ẑ, y) is:

L (θ|z,m, ẑ, y) =

N∏
i=1

 n1∏
j=1

f
zi1(mi=j)
θ (z = 1,m = j, ẑ = ẑi, y = yi)

n0∏
k=1

f
(1−zi)1(mi=k)
θ (z = 0,m = k, ẑ = ẑi, y = yi)

 ,
where θ stands for the full set of parameters which need to be estimated.

Then, the log-likelihood function for θ conditional on the complete data (z,m, ẑ, y) is derived by:

LL (θ|z,m, ẑ, y) =

N∑
i=1

[
n1∑
j=1

zi1(mi=j) log fθ (z = 1,m = j, ẑ = ẑi, y = yi)

+

n0∑
k=1

(1− zi)1(mi=k) log fθ (z = 0,m = k, ẑ = ẑi, y = yi)

}

=

N∑
i=1

{
n1∑
j=1

zi1(mi=j) log

[
α1p

ẑi
11 (1− p11)

1−ẑi π1j

σ1j

√
2π

exp{− (yi − µ1j)
2

2σ2
1j

}

]

+

n0∑
k=1

(1− zi)1(mi=k) log

[
(1− α1) (1− p00)

ẑi p1−ẑi
00

π0k

σ0k

√
2π

exp{− (yi − µ0k)
2

2σ2
0k

}

]}
.

2.3.2 E Step and M Step

We need to find parameters θ = (α1, p11, p00, π1j , π0k, µ1j , µ0k, σ1j , σ0k) that maximize the above log-likelihood

function. Therefore, partial derivative of the log-likelihood function is taken for each parameter (with j =

1, ..., n1 and k = 1, ..., n0):

∂LL

∂α1
=

∑N
i=1 zi
α1

−
∑N
i=1 (1− zi)
1− α1

,

∂LL

∂p11
=

∑N
i=1 ziẑi
p11

−
∑N
i=1 zi (1− ẑi)

1− p11
,

∂LL

∂p00
=

∑N
i=1 (1− zi) (1− ẑi)

p00
−
∑N
i=1 (1− zi) ẑi

1− p00
,

∂LL

∂π1j
=

∑N
i=1 zi1(mi=j)

π1j
−
∑N
i=1 zi1(mi=n1)

π1n1

,

∂LL

∂π0k
=

∑N
i=1 (1− zi)1(mi=k)

π0k
−
∑N
i=1 (1− zi)1(mi=n0)

π0n0

,

∂LL

∂µ1j
=

∑N
i=1 zi1(mi=j) (yi − µ1j)

σ2
1j

,
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∂LL

∂µ0k
=

∑N
i=1 (1− zi)1(mi=k) (yi − µ0k)

σ2
0k

,

∂LL

∂σ1j
= −

∑N
i=1 zi1(mi=j)

σ1j
+

∑N
i=1 zi1(mi=j) (yi − µ1j)

2

σ3
1j

,

∂LL

∂σ0k
= −

∑N
i=1 (1− zi)1(mi=k)

σ0k
+

∑N
i=1 (1− zi)1(mi=k) (yi − µ0k)

2

σ3
0k

.

The parameters that maximize the log-likelihood are returned when all these partial derivatives are equal to

zero (with j = 1, ..., n1 and k = 1, ..., n0):

α1 =

∑N
i=1 zi
N

,

p11 =

∑N
i=1 ziẑi∑N
i=1 zi

,

p00 =

∑N
i=1 (1− zi) (1− ẑi)∑N

i=1 (1− zi)
,

π1j =

∑N
i=1 zi1(mi=j)∑N

i=1 zi
,

π0k =

∑N
i=1 (1− zi)1(mi=k)∑N

i=1 (1− zi)
,

µ1j =

∑N
i=1 zi1(mi=j)yi∑N
i=1 zi1(mi=j)

,

µ0k =

∑N
i=1 (1− zi)1(mi=k)yi∑N
i=1 (1− zi)1(mi=k)

,

σ1j =

√√√√∑N
i=1 zi1(mi=j) (yi − µ1j)

2∑N
i=1 zi1(mi=j)

,

σ0k =

√√√√∑N
i=1 (1− zi)1(mi=k) (yi − µ0k)

2∑N
i=1 (1− zi)1(mi=k)

.

Since in practice, z and m are unknown, the corresponding expectations are taken in the EM algorithm. Before

reaching that, the conditional probability fθ (z = zi,m = mi|ẑ = ẑi, y = yi) is calculated,

fθ (z = zi,m = mi|ẑ = ẑi, y = yi) =
fθ (z = zi,m = mi, ẑ = ẑi, y = yi)∑

(zi,mi)
fθ (z = zi,m = mi, ẑ = ẑi, y = yi)

. (7)

Therefore, the expectation of zi1(mi=j) and (1− zi)1(mi=k) are calculated as:

E
(
zi1(mi=j)|ẑ = ẑi, y = yi

)
=fθ (z = 1,m = j|ẑ = ẑi, y = yi) =

ω1ji∑n1

j=1 ω1ji +
∑n0

k=1 ω0ki
, A1ji ,

E
(
(1− zi)1(mi=k)|ẑ = ẑi, y = yi

)
=fθ (z = 0,m = k|ẑ = ẑi, y = yi) =

ω0ki∑n1

j=1 ω1ji +
∑n0

k=1 ω0ki
, A0ki ,
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and from this it follows that the expectations of zi and (1− zi) are calculated as:

E (zi|ẑ = ẑi, y = yi) =

n1∑
j=1

fθ (z = 1,m = j|ẑ = ẑi, y = yi)

=

∑n1

j=1 ω1ji∑n1

j=1 ω1ji +
∑n0

k=1 ω0ki

=

n1∑
j=1

A1ji ,

E (1− zi|ẑ = ẑi, y = yi) =

n0∑
k=1

fθ (z = 0,m = k|ẑ = ẑi, y = yi)

=

∑n0

k=1 ω0ki∑n1

j=1 ω1ji +
∑n0

k=1 ω0ki

=

n0∑
k=1

A0ki .

(8)

By replacing the true (unknown) classification variable z and the (unknown) component variable m with the

above expectations, parameters in EM algorithm become (with j = 1, ..., n1 and k = 1, ..., n0):

α
(t+1)
1 =

∑N
i=1

(∑n1

j=1A
(t)
1ji

)
N

,

p
(t+1)
11 =

∑N
i=1

(∑n1

j=1A
(t)
1ji

)
ẑi∑N

i=1

(∑n1

j=1A
(t)
1ji

) ,

p
(t+1)
00 =

∑N
i=1

(∑n0

k=1A
(t)
0ki

)
(1− ẑi)∑N

i=1

(∑n0

k=1A
(t)
0ki

) ,

π
(t+1)
1j =

∑N
i=1A

(t)
1ji∑N

i=1

(∑n1

j=1A
(t)
1ji

) ,
π

(t+1)
0k =

∑N
i=1A

(t)
0ki∑N

i=1

(∑n0

k=1A
(t)
0ki

) ,
µ

(t+1)
1j =

∑N
i=1A

(t)
1jiyi∑N

i=1A
(t)
1ji

,

µ
(t+1)
0k =

∑N
i=1A

(t)
0kiyi∑N

i=1A
(t)
0ki

,

σ
(t+1)
1j =

√√√√√∑N
i=1A

(t)
1ji

(
yi − µ(t)

1j

)2

∑N
i=1A

(t)
1ji

,

σ
(t+1)
0k =

√√√√√∑N
i=1A

(t)
0ki

(
yi − µ(t)

0k

)2

∑N
i=1A

(t)
0ki

.
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2.3.3 Log-likelihood Function for Observed Data

The log-likelihood function of θ for the given observed data (ẑ and y) is given:

LL (θ|ẑ, y) =

N∑
i

log fθ (ẑ = ẑi, y = yi)

=

N∑
i

log

(∑
zi

∑
mi

fθ (ẑ = ẑi, y = yi, z = zi,m = mi)

)

=

N∑
i

log

 n1∑
j=1

ω1ji +

n0∑
k=1

ω0ki

 ,

(9)

where the true (unknown) values z and true (unknown) components m are left out.

The log-likelihood function for the observed data is used when choosing the optimal number of components

with a criterion such as BIC, finding outliers in the model and avoiding the local maximum when using random

starting values.

2.3.4 With an Audit Sample

An audit sample (details in Section 2.1.5) is selected to help with the initialization of the EM algorithm.

The use of the audit sample can also accelerate the convergence of the EM algorithm. Appendix A provides

technical details of how to apply the audit sample to the EM algorithm, including combining the information

of the audit sample into the E step and the M step, and choosing starting values.

It does not mean that the audit sample is necessary in our methods. Other initialization methods can also be

used in the EM algorithm. The updated parameter estimates and log-likelihood function in the above sections

work when there is no audit sample in the study.

2.3.5 Maximum Likelihood Statistics

When parameters of the model are obtained from the EM algorithm, the statistics of interest can be calculated .

In our setting, statistics α1 are directly estimated from the EM algorithm; µ1 is calculated by
∑n1

j=1 π1jµ1j ; µ0 is

calculated by
∑n0

k=1 π0kµ0k; σ1 =

√∑n1

j=1 π1j ×
(
σ2

1j + (µ1j − µ1)
2
)

; σ0 =

√∑n0

k=1 π0k ×
(
σ2

0k + (µ0k − µ0)
2
)

;

and T1 is calculated by T1 = N × α1 × µ1 .
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3 Simulation Study

To assess the performance of the bootstrap method, the EM method and the combined method (details in Sec-

tion 2.2), a simulation study was conducted to test the methods under different conditions (described in Section

2.1.2). The bias and variance estimated from the three methods were compared with their corresponding true

values.

3.1 Procedures

For the simulation study we used a population of N = 2000 units. For each unit we know the true classification

variable z and the value of the continuous variable y. Different from the situation in practice, one of the

variables is the true classification variable z, and another variable is the continuous variable y which is generated

conditional on z (Formula 2 in Section 2.1.2). The settings of parameters of our model will be introduced later

in Table 2.

Given the true classes z, 1000 sets of observed classes ẑ were generated by using the transition matrix (Formula

1), where p(ẑ = 1|z = 1) = p11 and p(ẑ = 0|z = 0) = p00 . Multiple values for ζ̂ were obtained by replacing

z with ẑ in the formulas in Table 1. Through that, the true bias and variance were estimated accordingly by

Biastrue = E(ζ̂)− ζ and Vartrue = Var(ζ̂) over 1000 simulated values. Here, ζ denote the true value of any

statistics of interest in Table 1 and ζ̂ denote the observed statistics of interest. We simulated ẑ 1000 times to

ensure an accurate estimate of the true bias and variance.

Another S0 = 100 sets of observed classes ẑ were generated in the same way. Given each set of ẑ and y, 5%

units from the population were random sampled as the audit sample, of which the true classes z were known.

The three methods described in Section 2.2 were applied. The number of iterations in the bootstrap method

and the combined method were set as S = S1 = S2 = 100. For each set of ẑ, bias and variance estimates were

obtained for the three methods, such as Biasboot and Varboot from the bootstrap method. In the end, the

performance of bias and variance estimation of the three methods were represented by the average over those

S0 bias and variance estimates.

3.2 Set-ups

Li (2020) has presented the performance of these methods in the setting of a normal distribution conditional

on z with different values of N , α1, p11 and p00. In the current study, we only varied parameters in the mixture

Gaussian distribution and considered N = 2000, α1 = 0.5, p11 = 0.8, p00 = 0.8 fixed in the simulation.

There were three set-ups in the simulation study. In these set-ups, the number of components and values of

the parameters in the model of each class are varied. Table 2 shows the different setting of the components in
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each class of the three set-ups. The number of mixture components ranges from 1 to 3 in the set-ups, which

corresponds to the situation of data we have in the case study (Section 4). By manipulating the parameters

of mixture components, we can evaluate the methods in various conditions.

Table 2: Parameters of Components in Different Settings in the Simulation Study

Set-up Class
Components in Each Class

Number Proportion Mean Standard Deviation

Set-up 1

Class 1 2
(0.1, 0.9), (0.3, 0.7), (0.5, 0.5),

(2, 4), (2, 6), (2, 8) (1, 2)
(0.7, 0.3), (0.9, 0.1)

Class 0 1 - 15 3

Set-up 2

Class 1 2
(0.1, 0.9), (0.3, 0.7), (0.5, 0.5),

(2, 4), (2, 6), (2, 8) (1, 2)
(0.7, 0.3), (0.9, 0.1)

Class 0 2 (0.5, 0.5) (15, 18) (1, 3)

Set-up 3

Class 1 3
(0.1, 0.2, 0.7), (0.2, 0.3, 0.5),

(2, 3, 4), (2, 4, 6), (2, 5, 8) (1, 1, 2)
(0.3, 0.3, 0.4)

Class 0 2 (0.5, 0.5) (15, 18) (1, 3)

3.3 Results

3.3.1 Bias Estimation

The performance of bias estimation from the three methods was compared and evaluated by the true bias

under the three set-ups in Figure 2 - 4, where the results were similar for the three set-ups. In the plots, the

y-axis indicates the bias from different methods and the x-axis indicates the mean of components in class 1

(µ11, µ12); columns represent the components proportion in class 1 (π11, π12) and rows represent the domain

statistics of interest ζ. For the points on the plot, the red dot stands for the true values; the symbol 4 stands

for the bootstrapped estimates; the symbol 5 stands for the estimates from the EM method; the symbol ×

stands for the estimates from the combined method.

The estimated biases from the EM method (symbol5) and the combined method (symbol ×) were closer to its

true value (red dot) compared to the one estimated from the bootstrap method (symbol 4) for all estimators

in general. Exceptions occurred under some cases for α1, where the estimates for all three methods were quite

similar.

For T1, the bias estimated by the EM method and the combined method were accurate, while the bias

estimated by the bootstrap method tended to underestimate the bias caused by classification errors. When

(π11, π12) = (0.1, 0.9), µ11 = 2 and µ0 = 15, with µ12 increasing from 4 to 8, the bias caused by classification
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Figure 2: Bias estimation for set-up 1.

error decreased. This makes sense since classification errors tend to average the distributions of the two classes.

When the distributions of the two classes gets closer, the difference of domain total in each class is smaller

and the extent of bias that classification errors can cause will be lower. In an extreme case where the accuracy

of classification error p11 and p00 were 0, the estimated value of T1 would be equal to the true value of total0

and the difference of domain total would be equal to its bias. Therefore, with closer distance of two classes,

the absolute bias for T1 and total0 will be lower. The same is true also for the domain means µ1 and µ0.

The estimated bias for α1 from the bootstrap method was as close to the true bias as the other two methods.

This is reasonable when considering the variance of the true biases and these bias estimations and the scale

of the y-axis in the second row compared to other statistics. Actually, with α1 = 0.5, p00 = 0.8 and p11 = 0.8,

the theoretical true bias of the observed α1 is zero (Scholtus & Van Delden, 2020). The deviations from zero

of the red dot for alpha in Figure 2 - 4 are all due to simulation noise.

For µ1 and µ0, the bias estimates from the EM method and the combined method were close to the true biases

and the bootstrap method tended to underestimate the bias. The bias of µ1 was always positive while that

for µ0 was always negative. With α1 = 0.5, the absolute bias for µ1 and µ0 should be equal which was also

validated from Figure 2.

For σ1 and σ0, their true biases overlapped with the estimates of bias from the EM method and the combined

method and showed distance with the estimates from the bootstrapped method. When the distributions of the

two classes are far apart, units that are misclassified will increase the spread of the original distribution where
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Figure 3: Bias estimation for set-up 2.

Figure 4: Bias estimation for set-up 3.

bias is generated. With two distributions getting closer, the distance of misclassified units from the original

units will be lower and the absolute bias should become smaller. This is validated from Figure 2. When

(π11, π12) = (0.1, 0.9), µ11 = 2 and µ0 = 15, with µ12 increasing from 4 to 8, their bias caused by classification

27



error also decreased.

From the plots, we notice that the bias estimate of the EM and the combined method are nearly the same for

all of the statistics, and they are close to the true bias, which is reasonable. There are two elements in the

definition of bias (Formula 3): the true values of statistics ζ (ζ̃ are used to approximate ζ in the two methods)

and the observed statistics ζ̂. The ζ̃ from the two methods are the same, are all calculated through parameters

estimated from EM algorithm (Section 2.3.5). By estimating the model parameters and misclassification

probabilities, the combined method ‘restores’ the classes without and with classification error(s), which refer

to z̃ and z̃∗ separately.

Furthermore, 95% confidence intervals of the bias estimates from the three methods and the estimated true

bias in the set-up 1 were calculated. From Figure 5, the 95% confidence intervals for bias estimates from the

EM method and the combined method are still closer to the true bias, compared to the bootstrap method. It

suggests that in a practical situation where there is only one single set of ẑ, the EM and the combined method

lead to better bias estimates than the bootstrap method.

Figure 5: Bias estimates with 95% confidence intervals for set-up 1. The range of points stands for 95%
confidence interval of the corresponding estimators.

3.3.2 Variance Estimation

In this section, the variance estimation performance was compared between the bootstrap method and the

combined method and was evaluated by comparing them to the true values in Figure 6 to 8. To better show

the results, the standard error, which is the square root of the variance for domain statistics, was shown to
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illustrate the variance estimation in the plots.

The results for all three set-ups were similar. In the plots, the x-axis indicates the mean of components in

class 1 (µ11, µ12) and the y-axis indicates the bias from different methods; columns represent the components

proportion in class 1 (π11, π12) and rows represent the domain statistics of interest ζ. For the points on the

plot, the red dot shows the true value; the symbol 4 shows the bootstrapped estimate; the symbol × shows

the estimation from the combined method.

The variance estimation performance of the combined method in variance estimation was better than that

of the bootstrap method for all estimators except α1 under all conditions. For estimator α1, the true value

was closer to the estimation from the combined method only under some cases. For all other estimators,

the estimated variance from the combined method was overlapped with its corresponding true variance. The

bootstrapped estimates were also equal to the true values for estimator T1 but tended to underestimate the

variance for µ1, µ0, σ1 and σ0.

Figure 6: Variance estimation for set-up 1.
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Figure 7: Variance estimation for set-up 2.

Figure 8: Variance estimation for set-up 3.
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4 Case Study

In order to assess the performance of our methods in real applications, a case study was conducted. In the case

study, the bias and variance of domain statistics, including subgroup total, proportion, mean and standard

deviation, were estimated for an economic sector. The methods used in the case study were exactly the same

as those we used in the simulation study of the previous chapter, which have been introduced in Section 2.2.

4.1 Data

For the case study, we started with a data set (Oosterveen, 2020) that contains log yearly turnover for a

population of enterprises. The enterprises in this data set is divided into 25 economic activities, which are

presented by NACE codes (Eurostat, 2008). Next, we made three selections to obtain the final data for the

case study.

Firstly, the units of the population were limited to the smaller enterprises (with three or less legal units),

because they contain most errors in economic activity. Economic activity codes of larger enterprises are

checked manually, which usually does not lead to any classification error.

Secondly, the economic activities were checked and we only preserved the units with true economic activities.

The economic activities are the observed ones, which contain classification errors. With only observed classi-

fication variable ẑ, we are not able to estimate true bias and variance, and the estimates of our methods will

not be assessed. We therefore made a selection of units for which the NACE code is likely to be correct.

This selection of units with true classes was made by Oosterveen (2020, described the details of units selection).

The website texts of the units ( which can be seen as auxiliary variable) were used to train three machine

learning models. The classes of the units were then predicted by the three machine learning algorithms. Only

units whose codes were consistent with the results from three algorithms were selected and these codes were

assumed as true classes.

Thirdly, certain classes were selected. We only considered our methods in the setting of a binary classifier in

our study. Therefore, two classes were chosen for each test (Table 3). By matching two classes together for

each test, we wanted to test our methods in different settings, where the distributions of the two classes have

different ‘distance’ and the shapes of the distributions vary. We also made sure that the numbers of units in

the two groups are not too small and not too unbalanced, which also means that α1 in each test is not close

to 0 or 1.

The distributions of log yearly turnover by 25 NACE codes were plotted in Figure 9. Seven groups (NACE

codes) were selected to form the final 4 data sets (Case 1, 2, 3a and 3b). Table 3 has shown the allocation of

the 7 groups and Table 4 has described the basic statistics of each group.

31



Figure 9: Density distribution of log turnover for all groups. The labels refer to NACE codes (Eurostat, 2008).

The four cases stand for different settings in the real application. In the first case, the distributions of the two

classes are well separated with a similar shape. In the second case, the distributions of the two classes are also

well separated but with different shapes. In the case 3a and 3b, the distributions of the two classes are not

well separated with different shapes.

After the manipulation of the original data, the data used for each case was analysed by our methods. There

are only two classes in each data set, and the classification variable in each data set was assumed to be true.

4.2 Procedures and Set-ups

The case study started with data sets with two columns, where each column stands for a variable. We regarded

the log yearly turnover as the continuous variable y and the allocated classes as the true classification variable

z ∈ {1, 0} (Table 3). The number of rows differed among the cases. Table 4 describes the true domain statistics

ζ of each class.

The procedures of the case study were similar to that of the simulation study, except that the number of

components in the Gaussian mixture model needs to be obtained in the case study. Given z and y, we fitted

the Gaussian mixture model to the data of each class and BIC (Bayesian information criterion) was chosen as

a criterion for selecting the optimal number (McLachlan & Peel, 2004; Scrucca, Fop, Murphy, & Raftery, 2016)

(Appendix C has more details about using the criterion of BIC). The selected optimal number of components

is also listed in Table 4 for each class.
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Table 3: The Selected Groups and Their Allocations in the Case Study

NACE Code Description of Economic Activity Case No. Class

56101 Restaurants Case 1 Class 1

96022 Beauty treatment, pedicures and manicures, Case 1 Class 0

make-up and image consulting

43221 Plumbing and fitting; Case 2 Class 1

installation of sanitary fittings

74201 Photography Case 2 Class 0

4932 Taxi operation Case 3a, 3b Class 1

5630 Bars Case 3a Class 0

8121 General cleaning of buildings Case 3b Class 0

Given the true classification variable z, S0 = 100 sets of observed classification variable ẑ were generated by

using the transition matrix (Formula 1 in Section 2.1.2), where p(ẑ = 1 | z = 1) = p11 and p(ẑ = 0 | z = 0) =

p00 .

Since p11 and p00 represent the probabilities of being classified correctly, they are always larger than 0.5. If

any of them is lower than 0.5, it is useful to reverse the classification rules to make it higher than 0.5. We

simulated three levels of classification error probabilities in the case study: high (0.6), medium (0.75), low

(0.9). The values of p11 and p00 were chosen from 0.6, 0.75, 0.9.

Multiple ζ̂ were obtained by replacing z with ẑ in the formulas in Table 1. Through that, the true bias and

variance were estimated accordingly by Biastrue = E(ζ̂) − ζ and Vartrue = Var(ζ̂) which refer to empirical

expectation and the empirical variance over S0 simulated values.

Given each set of ẑ and y, 5% units from the population were randomly selected as the audit sample, of which

the true classes z were known. The three methods described in Section 2.2 were applied. By applying the three

methods, the bias and variance estimates given each set of ẑ were obtained, such as Biasboot and Varboot

from the bootstrap method. The number of iterations in the bootstrap method and the combined method

were set as S = S1 = S2 = 100 . In the end, the performance of bias and variance estimation of the three

methods were represented by the average over those S0 bias and variance estimates.
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Table 4: Domain Statistics for Each Class in the Case Study

Case No.

Class 1 Class 0

Number of
Size Total Mean

Standard Number of
Size Total Mean

Standard

Components Deviation Components Deviation

Case 1 1 3076 17415 5.66 0.358 2 6993 30377 4.34 0.501

Case 2 3 1535 8606 5.61 0.587 2 3932 16551 4.21 0.597

Case 3a
2 642 3294 5.13 0.597

2 947 5162 5.45 0.436

Case 3b 1 1067 5847 5.48 0.687

4.3 Results

4.3.1 Bias Estimation

The performance of bias estimation in the case study is shown from Figure 10 to 13. In the plots, the y-axis

indicates the bias estimated from different methods and the x-axis indicates values of p11; columns represent

values of p00 and rows represent domain statistics of interest ζ. For the points on the plot, the red dot shows

the true value; the symbol 4 shows the bootstrapped estimates; the symbol 5 shows the estimation from the

EM method; the symbol × shows the estimation from the combined method. The estimated biases from the

bootstrap, EM and combined method were compared with the true bias.

Figure 10: Bias estimation in case 1.
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Figure 11: Bias estimation in case 2.

For case 1 and 2, the estimated bias from EM and combined method were overlapping with the corresponding

true bias for all estimators; the bootstrap method always tended to underestimate the true bias. For case 3a

and 3b, the results for T1 and α1 conformed to what had been found in case 1 and 2, while the results for

subgroup mean µ1, µ0 and subgroup standard deviation σ1, σ0 had slightly different results.

Parameter p11 is the probability of a unit being classified as class 1 when its true class is also class 1; parameter

p00 is the probability of a unit being classified as class 0 when its true class is class 0. With p00 fixed and p11

increased, the number of units being classified as class 1 was increased. Therefore, the bias of α1 increased

which conformed to what has been shown in the figures (Figure 10-13).

When p11 was increased and p00 was fixed, among those units being classified as class 1, the relative proportion

of units whose true class was 1 became larger; among those units being classified as class 0, the relative

proportion of units whose true class was 0 became larger. This can explain the tendency that the absolute

bias for µ1, µ0, σ1 and σ0 decreased with larger p11 within each block of the plots.

In case 3a and 3b, the bias estimation from EM and combined method for T1 and α1 was overlapping with

the true bias, while that for domain statistics µ1, µ0, σ1 and σ0 was not better than the estimation from the

bootstrap method. The cases 3a and 3b compared to case 1 and 2 and various set-ups in the simulation study,

have two differences: the distributions of the two classes are closer and the population size is smaller. Therefore,

we simulated a condition with closer distributions of the two classes and also with a smaller population to test
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Figure 12: Bias estimation in case 3a.

Figure 13: Bias estimation in case 3b.
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whether the methods could work properly in such extreme conditions (see details in Appendix B). From the

results of the experiments, neither of these two factors would influence the performance of our methods. Using

further experiments, it was found that it was the outliers in these cases that influenced the estimation of our

method (Appendix B).

4.3.2 Variance Estimation

The performance of variance estimation from bootstrap and combined method for all cases is shown in Figure

14 - 17. To better show the results, the standard error, which is the square root of the variance for domain

statistics, was shown to illustrate the variance estimation in the plots.

The results from all cases suggest that the variance estimation from the bootstrap method was already close to

that from the combined method. Comparing the estimation results from the bootstrap method, the estimate

from the combined method was usually still closer to the true value.

Figure 14: Variance estimation in case 1.

Comparing the variance estimation results from the simulation study, the gap between the bootstrap method

and the combined method was closer in the case study. One of the reasons might be that the distributions of

the two classes are much closer.

In order to test this assumption, we simulated a setting with closer distributions where the mean of the

components in class 1 was set as (µ11, µ12) = (2, 4) and the mean in class 0 was set as µ0 = 5 (see experiment
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Figure 15: Variance estimation in case 2.

Figure 16: Variance estimation in case 3a.
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1 in Appendix B). Under this condition, the variance estimates from the bootstrap and the combined methods

for domain statistics T1, α1, µ0 and σ0 were close to what was shown in the case study, and the variance

estimation from the combined method was far from the true variance. When the simulated number of ẑ

increased from 100 to 1000, the accuracy of estimated standard error improved and the variance estimates

from the combined method was overlapping with the true value.

Figure 17: Variance estimation in case 3b.
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5 Practical Guidelines

In this part, we provide simple guidelines on how to use the EM method and the combined method in real

applications, where data sets only contain the observed classification variable ẑ and the continuous variable y.

We consider the situation with only two classes.

5.1 Procedures

To begin with, the number of components for each class in the Gaussian mixture model needs to be estimated

before applying the methods. The criterion of BIC can be applied with the log-likelihood function as Formula

9 in the context without any audit sample, or as Formula 11 when there is an audit sample.

With ẑ and y, the EM method and the combined method can be applied according to Algorithm 2 and

Algorithm 3 in Section 2.2. Through it, bias and variance caused by classification errors can be estimated.

5.2 Outliers

The problem of outliers will influence the performance of our methods as shown in case 3a and case 3b (Section

4.3 and Appendix B).

With only observed classes in practice, two ways to find the unusual observations were proposed by McLachlan

and Peel (2004, p. 74-75). One way is through a modified likelihood ratio test, where the likelihood ratio

statistic λ for each unit is calculated and tested. For unit i, the corresponding λi is to test the null hypothesis

H0 that unit i is from the mixture normal model versus the alternative hypothesis H1 that it is not. To apply

the modified likelihood ratio test, the mixture model first has to be estimated on the data set without this

observation. So if we want to check a data set of N units for outliers, the model has to be estimated N times.

This is clearly a lot of work. A simpler method based on the Mahalanobis distance was also proposed, where

for a single continuous variable like in our case, this distance is equivalent to a z score. This method requires

much less work, but it does not contain a formal statistical test. Still, it may be useful in practice as a quick

way to find outliers.

In order to deal with outliers, unusual data that do not conform to the mixture of Gaussian models need to be

checked manually. These outliers might be misclassified. We can then assign them to the correct classes. Some

of them are not necessarily misclassified and just do not conform to the assumption of the mixture normal

distribution, which influence our estimation of bias and variance. As long as we are sure that there isn’t any

classification error among these units after this manual check, we can still apply the methods on the rest of

the data to get the bias and variance, and include the outliers only in the final statistics (e.g. total turnover).
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6 Discussion

In this thesis, we have proposed two new methods, the EM method and the ‘combined’ method (a combination

of the EM method and bootstrapping), for estimating the accuracy of statistics when there are classification

errors in the data sets. The performance of the EM method and the combined method were compared with the

bootstrap method, which is commonly used nowadays for official statistics. We have tested the performance

of the three methods in simulated data sets and also in real applications. Two aspects of the accuracy have

been investigated: bias and variance.

The results of our study have shown that, in general, the EM method and the combined method perform

better than the bootstrap method. The estimated bias from the EM method and the combined method were

closer to the true bias than the bootstrap method. The variance estimation results from the combined method

were also more accurate than the bootstrap method.

We have also shown the evidence by comparing the 95% confidence intervals of bias estimates in the simulation

study, that even in a practical situation where there is only one single set of ẑ, the EM and the combined

method lead to better bias estimates than the bootstrap method.

The EM method directly uses the model parameters obtained from the EM algorithm to calculate maximum-

likelihood statistics, through which the bias is estimated. Apart from its accurate bias estimation, the EM

method can estimate the bias easier and saves lots of computation time compared to the combined method.

However, it is not able to estimate the variance of statistics caused by classification errors.

The combined method applies the estimated model parameters from the EM algorithm and combines it with

the bootstrap method to generate multiple sets of true classes conditional on the continuous variable y. The

accuracy of its bias estimation is almost equal to that of the EM method, even though it requires more

computation. Compared to the original bootstrap method, its performance on bias and variance estimation is

much better.

The EM method and the combined method also have the advantage of flexibility. The use of a Gaussian

mixture model ensures that these two methods can accommodate various distributions for the continuous

variable (McLachlan & Peel, 2004). Besides, when all the model parameters have been estimated from the

EM algorithm, various maximum-likelihood estimators can be evaluated by our methods. Moreover, the

probabilities of classification errors can also be estimated from the EM algorithm (details in Section 2.3) .

In previous studies these could only be obtained from audit samples (Van Delden et al., 2016). If an audit

sample is available, it can be incorporated into the EM algorithm (details in Appendix A) and this benefits

the stability of the methods.

For real applications, the combined method is recommended since both the bias and the variance can be

estimated. In a situation with a very large data set, where the variance is usually small and the bias is of most
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concern, the EM method which is easier and simpler, may be preferable.

The use of the EM algorithm is not new in the studies concerning classification errors. Sinclair and Hooker

(2017) and Kosinski and Flanders (1999) have applied the EM algorithm to improve the performance of their

classification model. Greenland (2008) has used it to improve the accuracy of estimators. It’s natural to

apply the EM algorithm once we build statistical models depending on the unobserved true classes. With the

purpose of assessing the effect of classification errors, we have broadened the usage of the EM algorithm.

In official statistics, using model-based approaches is not common. The main reason is that NSIs (National

Statistical Institutes) tend to avoid model-based estimators, particularly if assumptions of the model are not

verifiable (Brakel & Bethlehem, 2008). In our study, we assume the data for each class conform to a Gaussian

mixture model. For the purpose of quality estimation, we only use the Gaussian mixture model to estimate the

accuracy of estimators, such as total sum and proportion, which does not contradict the traditions of the NSIs.

Once the bias and variance are obtained, we either accept the current accuracy and publish the statistics, or

apply further data editing to improve the accuracy of the estimator based on the estimated misclassification

probabilities of each class.

Application of our methods has a number of limitations. For the combined method, the computation load is

relatively high, especially for a large data set. Furthermore, the use of the EM algorithm in our methods has

the risk of finding a local maximum of the likelihood function which will influence the accuracy of estimates

of bias and variance.

We used only one set of starting values in our study since the starting values of the EM algorithm were obtained

from the audit sample which was sufficient to obtain accurate bias and variance estimates. Concerning the

potential problem of local maxima, usually, a better strategy is to apply multiple random starting values which

is what we did in experiment 6 in Appendix B. When the empirical distribution gets more complicated, it is

likely that the parameters of the model achieve a local maximum in the EM algorithm. Then multiple starting

values would be helpful to avoid this problem.

Outliers are another potential risk to influence the performance of our methods, as the results for case 3a in

the case study show. In case 3a, the performance of the EM method and the combined method was not as

good as expected in the beginning. After removing atypical observations in the experiment 8 in Appendix B,

the performance improved greatly. The EM algorithm in our study is sensitive to violations of the underlying

assumption that the data for each class are a mixture of normals, and may be markedly influenced by one or

a few atypical observations.

The number of iterations for each method will influence the accuracy of their estimates. In our study, we

used a fixed number of iterations for the experiments. Based on the results, we judged that we had performed

enough iterations. In practice though, the number of iterations should be adjusted according to properties of

the data sets, such as size, distribution of each class, distance between the two classes, etc. Normally, more
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iterations are needed for a smaller population size. Section 5 has provided more guidelines when applying our

methods in real applications.

In a future study, the assumptions for the probabilities of classification errors could be relaxed. In our study,

the probabilities of making classification errors, p11 and p00, were assumed independent of the continuous

variable. However, in real situations, this assumption does not always hold. For instance, in the case of

turnover, the error probabilities for very large as well as for small enterprises are usually low. For the top

enterprises, their influence on the final statistics is significant therefore their recordings are often checked

manually, decreasing the probability of wrong classifications. The small enterprises tend to have more uniform

economic activities which also reduce their misclassification probabilities. For medium-size enterprises, their

probabilities of being misclassified will be larger than for other companies, since fewer manual checks are done

for these enterprises and their businesses are at the same time diverse. Auxiliary variables can be added as

predictors of the probabilities, where the method of regression models can be applied (Oosterveen, 2020; Shaw

et al., 2020).

Furthermore, instead of only two classes as in our study, future research can be expanded to more classes.

With more classes, the transition matrix describing the probabilities of misclassification will no long be 2× 2,

depending on how many classes are involved (Burger et al., 2015). When there are n classes in the population,

the probabilities of misclassification among these classes will be described by an n×n matrix. The number of

parameters estimated from the EM algorithm will also correspondingly increase.

Another possible extension is to use multiple numerical target variables, such as height and weight of patients

in medical records. Then there will be more than one target variable in the general model. A multivariate

Gaussian mixture model can be a suitable model for this case (McLachlan & Peel, 2004).
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A EM algorithm with audit sample

A.1 E step and M step

An audit sample of size n is introduced with its z known. If an audit sample is available, the true classes

observed in the audit sample can be used to improve the efficiency and accuracy of the EM algorithm. The

audit sample can also be used to choose good starting values for the EM algorithm. Let Ω represent the index

of the whole population, Ωw be the part with the audit sample and Ωwo be the part without the audit sample.

For units within the audit sample, their z are known but m unknown, so their m should be replaced by the

corresponding expectation during the E step. For units without the audit sample, both z and m need to be

replaced by their expectation as described in Section 2.3.2.

When i ∈ Ωw, the expectation of m is:

E
(
1(mi=j)|z = 1, ẑ = ẑi, y = yi

)
=fθ (m = j|z = 1, ẑ = ẑi, y = yi)

=
fθ (m = j, z = 1, ẑ = ẑi, y = yi)∑n1

j=1 fθ (m = j, z = 1, ẑ = ẑi, y = yi)

=
ω1ji∑n1

j=1 (ω1ji)
, Q1ji ,

E
(
1(mi=k)|z = 0, ẑ = ẑi, y = yi

)
=fθ (m = k|z = 0, ẑ = ẑi, y = yi)

=
fθ (m = k, z = 0, ẑ = ẑi, y = yi)∑n0

k=1 fθ (m = k, z = 0, ẑ = ẑi, y = yi)

=
ω0ki∑n0

k=1 (ω0ki)
, Q0ki .

(10)

Therefore, parameters in EM algorithm should be updated during the M step as follows,

α1 =

∑
i∈Ωw

zi +
∑

i∈Ωwo

(∑n1

j=1A1ji

)
N

,

p11 =

∑
i∈Ωw

ziẑi +
∑

i∈Ωwo

(∑n1

j=1A1ji

)
ẑi∑

i∈Ωw

zi +
∑

i∈Ωwo

(∑n1

j=1A1ji

) ,

p00 =

∑
i∈Ωw

(1− zi) (1− ẑi) +
∑

i∈Ωwo

(
∑n0

k=1A0ki) (1− ẑi)∑
i∈Ωw

(1− zi) +
∑

i∈Ωwo

(
∑n0

k=1A0ki)
,

π1j =

∑
i∈Ωw

ziQ1ji +
∑

i∈Ωwo

A1ji∑
i∈Ωw

zi +
∑

i∈Ωwo

(∑n1

j=1A1ji

) ,

π0k =

∑
i∈Ωw

(1− zi)Q0ki +
∑

i∈Ωwo

A0ki∑
i∈Ωw

(1− zi) +
∑

i∈Ωwo

(
∑n0

k=1A0ki)
,
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µ1j =

∑
i∈Ωw

ziQ1jiyi +
∑

i∈Ωwo

A1jiyi∑
i∈Ωw

ziQ1ji +
∑

i∈Ωwo

A1ji
,

µ0k =

∑
i∈Ωw

(1− zi)Q0kiyi +
∑

i∈Ωwo

A0kiyi∑
i∈Ωw

(1− zi)Q0ki +
∑

i∈Ωwo

A0ki
,

σ1j =

√√√√√√
∑
i∈Ωw

ziQ1ji (yi − µ1j)
2

+
∑

i∈Ωwo

A1ji (yi − µ1j)
2

∑
i∈Ωw

ziQ1ji +
∑

i∈Ωwo

A1ji
,

σ0k =

√√√√√√
∑
i∈Ωw

(1− zi)Q0ki (yi − µ0k)
2

+
∑

i∈Ωwo

A0ki (yi − µ0k)
2

∑
i∈Ωw

(1− zi)Q0ki +
∑

i∈Ωwo

A0ki
.

A.2 Log-likelihood function for observed data (assume n1 ≤ n0)

lobsθ =
∑
i∈Ωw

log fθ (ẑ = ẑi, y = yi, z = zi) +
∑
i∈Ωwo

log fθ (ẑ = ẑi, y = yi)

=
∑
i∈Ωw

log

(∑
mi

fθ (ẑ = ẑi, y = yi, z = zi,m = mi)

)

+
∑
i∈Ωwo

log

 ∑
(zi,mi)

fθ (ẑ = ẑi, y = yi, z = zi,m = mi)


=
∑
i∈Ωw

log

 n1∑
j=1

(ω1ji)
zi (ω0ji)

1−zi +

n0∑
k=n1+1

(ω0ki)
1−zi


+
∑
i∈Ωwo

log

 n1∑
j=1

ω1ji +

n0∑
k=1

ω0ki

 .

(11)

A.3 Starting Values

According to the definition in Formula 10, Q1ji and Q0ki refer to the identification to which component of its

(known) class unit i belongs. For example, Q1ji is the expectation of unit i belonging to component j of class

1, given that we know unit i belongs to class 1.

We applied k-means clustering to partition the audit sample into a certain number of clusters (the number is

n1 for class 1 and n0 for class 0). Through it, the starting values Q
(0)
1ji and Q

(0)
0ki are computed. In the audit

sample, if unit i in class 1 is divided into component j, then Q
(0)
1ji equals to 1, otherwise Q

(0)
1ji is 0. The same

holds for class 0. In the audit sample, if unit i in class 0 is divided into component k, then Q
(0)
0ki equals to 1,

otherwise Q
(0)
0ki = 0 .
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Once Q
(0)
0ji and Q

(0)
0ki are obtained from k-means clustering, all the starting values can be set as:

α
(0)
1 =

∑
i∈Ωw

zi

n
,

p
(0)
11 =

∑
i∈Ωw

ziẑi∑
i∈Ωw

zi
,

p
(0)
00 =

∑
i∈Ωw

(1− zi) (1− ẑi)∑
i∈Ωw

(1− zi)
,

π
(0)
1j =

∑
i∈Ωw

ziQ
(0)
1ji∑

i∈Ωw

zi
,

π
(0)
0k =

∑
i∈Ωw

(1− zi)Q(0)
0ki∑

i∈Ωw

(1− zi)
,

µ
(0)
1j =

∑
i∈Ωw

ziQ
(0)
1jiyi∑

i∈Ωw

ziQ
(0)
1ji

,

µ
(0)
0k =

∑
i∈Ωw

(1− zi)Q(0)
0kiyi∑

i∈Ωw

(1− zi)Q(0)
0ki

,

σ
(0)
1j =

√√√√√√√
∑
i∈Ωw

ziQ
(0)
1ji

(
yi − µ(0)

1j

)2

∑
i∈Ωw

ziQ
(0)
1ji

,

σ
(0)
0k =

√√√√√√√
∑
i∈Ωw

(1− zi)Q(0)
0ki

(
yi − µ(0)

0k

)2

∑
i∈Ωw

(1− zi)Q(0)
0ki

.
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B Experiments

In order to figure out what factors have influenced the performance of the EM method and the combined

method in case 3a and 3b in Section 4, some experiments have been conducted. We only explored the reasons

behind case 3a since case 3b has similar results as case 3a.

Before the experiments are introduced, we should first to analyse the conditions of case 3a. First, compared

to the situations in the simulation study, the distributions of the two classes are closer in the case study,

especially for the case 3a and 3b where the distance between the two classes is the closest for all the cases.

Besides, the population size of case 3a is the smallest among all the other cases in the case study.

We began with experiments where data sets were simulated and then to experiments where the data set of

case 3a was used.

B.1 Simulating data sets

To create a similar situation as in case 3a, we simulated data sets where the distributions of the two classes

were closer and the population size was smaller (Table 5). In the first experiment, the setting was adjusted

according to the simulation study. The settings of components for the second and the third experiment were

the same as the model parameters estimated from the EM algorithm in case 3a. Compared to the second

experiment, the size of the third experiment was only half of it and was also smaller than the population size

of case 3a.

The proportion of class 1 was fixed to α1 = 0.5. The probabilities of misclassification for each class, p11 and

p00, were chosen from 0.6, 0.75 and 0.9.

Table 5: Experiments by simulating similar data set

No. Size

Components in Class 1 Components in Class 0

Number Proportion Mean
Standard

Number Proportion Mean
Standard

deviation deviation

1* 2000 2 (0.5,0.5) (2,4) (1,2) 1 1 5 3

2 2000 2 (0.46,0.54) (4.76,5.33) (0.22,0.74) 2 (0.36,0.64) (5.77,5.32) (0.35,0.27)

3 1000 2 (0.46,0.54) (4.76,5.33) (0.22,0.74) 2 (0.36,0.64) (5.77,5.32) (0.35,0.27)

* Experiment 1a has the same condition as experiment 1. Only the number of simulations in Experiment 1a increases from 100 to 1000.

The results of these experiments by simulating data sets showed that the performances of the EM and the

combined method were not influenced by more difficult conditions in general, where the distributions of the

two classes were closer or the population size was smaller (Figure 18, 22 and 24). As for the bias estimation,
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Figure 18: Bias estimation in experiment 1.

Figure 19: Variance estimation in experiment 1.
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Figure 20: Bias estimation in experiment 1a.

Figure 21: Variance estimation in experiment 1a.
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Figure 22: Bias estimation in experiment 2.

Figure 23: Variance estimation in experiment 2.
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Figure 24: Bias estimation in experiment 3.

Figure 25: Variance estimation in experiment 3.
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the bias estimates from the EM and the combined method were closer to the true bias compared to those from

the bootstrap method.

The variance estimates (Figure 19, 23 and 25) from the combined method were also more accurate than those

estimated from the bootstrap method. We have also noticed that the variance estimation results in experiment

1 to 3 were not that good. Although the estimates from the bootstrap method and the combined method

were close, they still had some distance from the estimated true bias. It can be that the estimated true

biases were not that accurate from only 100 simulations. Therefore, we conducted experiment 1a, where the

settings were exactly the same as in experiment 1 and only the number of simulations increased from 100 to

1000. The results (Figure 20 and 21) showed that after improving the accuracy of the estimated true bias, the

performance of variance estimation of the combined method was better.

B.2 Using the same data set

Then we realized that the empirical distribution of case 3a looked quite different from what was simulated

from the three experiments. The empirical distribution of case 3a probably does not conform to the Gaussian

mixture model, which makes the estimation in case 3a from the methods difficult. Therefore, we conducted

five more experiments by using the original data set of case 3a (Table 6).

Table 6: Experiments by using the original data set of case 3a

No. Strategies

4 Simulate more times to get a more accurate estimation of true bias

5 Apply the whole set of variable z to set starting values

6 Using 5 sets of random starting values and increase the size of audit sample from 5% to 50%

7 Double the population size by sampling with replacement from the empirical distribution of the case 3a

8 Remove data points which are below Q1 − 1.5× IQR or above Q3 + 1.5× IQR

In the experiment 4, we wanted to make sure that the true bias estimated from simulations was accurate

enough. We increased the number of simulations of ẑ from 100 to 1000. The performance of our methods did

not have any obvious improvement (Figure 26 and 27).

In order to decrease the difficulty of the estimation from the EM algorithm, the 5th and the 6th experiment

were conducted. In the experiment 5, the true classes of all the units in the data set were used to set the

starting values (Formulas in Appendix A.3). And in the experiment 6, random starting values and a larger

audit sample were applied. Therefore, the strategies in experiment 5 and 6 used more information compared

to the formal studies, which should help the EM algorithm to achieve the global maximum. However, the

results from these two experiments did not show any improvement (Figure 28 and 30).
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Another possibility would be the population size of case 3a, which was the smallest among all the cases. With

a data set of smaller size, it is more likely that the performances of our methods would be influenced by noise,

since the EM algorithm would get into the problem of a local minimum. In experiment 7, the kernel density

of the continuous variable y for each class was estimated and units were sampled with replacement from the

kernel density to get a data set of double size. From the results, the performance of our method did not show

any improvement as well (Figure 32).

So apparently, finding the global maximum is not the problem for case 3a.

As should be done before fitting models to data, outlier detection was required, which generated our last but

most important experiment 8. In this experiment, we removed the data points whose y values were below

Q1 − 1.5× IQR or above Q3 + 1.5× IQR, where Q1 is the first quartile of the data in each (true) class and

Q3 is the third quartile of the data in each class and IQR is the difference between Q3 and Q1. Through it,

17 outliers were removed in class 1 z = 1 and 20 outliers were removed in class 0 z = 0 . Then the remaining

data for each class was fitted by the Gaussian mixture model and the optimal number of components was

selected again by the criterion of BIC, which returned 2 components in class 1 and 1 component in class 0.

After that, three methods were applied. It turned out that the performance of the EM and the combined

method were highly improved (Figure 34). These two methods outperformed the bootstrap method on the

bias estimation and the variance estimates from the combined method were also more accurate than from the

bootstrap method.

Figure 26: Bias estimation in experiment 4.
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Figure 27: Variance estimation in experiment 4.

Figure 28: Bias estimation in experiment 5.
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Figure 29: Variance estimation in experiment 5.

Figure 30: Bias estimation in experiment 6.
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Figure 31: Variance estimation in experiment 6.

Figure 32: Bias estimation in experiment 7.
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Figure 33: Variance estimation in experiment 7.

Figure 34: Bias estimation in experiment 8.
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Figure 35: Variance estimation in experiment 8.
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C More discussion about using BIC

In the case study, we applied the criterion of BIC to select the optimal number of components for data in each

class. However, using BIC in the mixture of normals can be problematic because this model has ‘singularities’

(parameter vectors with noninvertible Fisher information) (Drton, Plummer, et al., 2017). When the two

components in the Gaussian mixture model become very close, with similar mean and variance, using BIC will

result in a different number than the actual Bayesian marginal likelihood. Thus we applied a modification of

the BIC criterion that has better justification for mixture models, sBIC (Drton et al., 2017), to see whether

the selection of optimal number of components in the case study would be same. Table 7 showed the optimal

number of components selected by the criterion BIC and sBIC, where the results were close. In the group with

code 4932, the optimal number of component selected by sBIC was 4, compared to 2 in BIC, which may be

because of the problem of outliers (Appendix B).

Table 7: The Optimal Number of Components Selected by BIC and sBIC

NACE Code Case No. Class
Optimal Number

BIC sBIC

56101 Case 1 Class 1 1 1

96022 Case 1 Class 0 2 2

43221 Case 2 Class 1 3 2

74201 Case 2 Class 0 2 3

4932 Case 3a, 3b Class 1 2 4

5630 Case 3a Class 0 2 2

8121 Case 3b Class 0 1 1

In this study, the purpose of applying the Gaussian mixture model is just to describe the distribution of the

data. It does not make much difference if the selected number of components is a bit too large.

On the one hand, choosing the optimal number of components is consistent with the principle of having a

parsimonious model. With more parameters to estimate, the uncertainty of the model will increases. It is also

preferred, if only a part of the data or an audit sample is applied to select the number of components.

On the other hand, using more components to fit the data helps reduce the bias of the model. In the case

study, we used the data from the population to select the number of components and the model will not be

used to predict other data, so the problem of overfitting does not have a strong influence in our case. As long

as the number of components in the Gaussian mixture model is not too big (for example, 10% of the number

of units), it will not a big issue.
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So all in all, we suspect it does not make a lot of difference in the end whether BIC or sBIC is used, since,

while different, for both methods the number of components chosen is always very small compared to the size

of the data set. What criterion is better depends on the purpose of studies. Since we only found out that

there was a difference at the very end of this project, re-running the experiments with the different number of

components will be left for future work.
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