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Abstract

Within the diverse order of beetle species that produce color through structural coloration,
some beetles produce light with a strong left-handed circular polarization caused by a chiral
structure in their outer shells. From an evolutionary perspective, there should be no substan-
tial benefit to left-handed over rather-handed polarization. This raises the question why no
beetles have been found showing right-handed polarization. Large-scale beetle surveys are
required to investigate this question further. A systematic beetle classification scheme based
on polarization would aid in such a survey and highlight species with interesting optical prop-
erties for further investigation. To this end we constructed a setup capable of measuring the
Stokes parameters of a beetle specimen for angles of incidence and observation. We tested
this setup on the beetle species protaetia speciosa jousselini and verified that the setup produces
accurate results. We are however sceptical this method will result in identifying beetle-specific
Stokes parameters, as their values vary with respect to both location on the beetle cuticle as
well as observational angles. Furthermore we provide quantitative evidence for earlier re-
ported inversion of the polarization handedness in beetle species jousselini at large angles of
observation. We detect such inversion at angles of observation of at least 70◦.

Cover picture: collage of different beetles taken from Seago et al. (2009).[1] The heart in the
center shows images of beetle species protaetia speciosa jousselini taken with a mirroless camera
through polarizing filters, with on the left a left-handed circular polarization filter and on the
right a right-handed circular polarization filter.
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Chapter 1
Introduction

Through millions of years of biological evolution, the animal kingdom contains many species
with utterly astounding abilities. Take for example the alpheidae, a group of shrimp species
capable of snapping their claws with devastating effect. Their claws are specialized to create
cavitation bubbles, which, upon implosion, create acoustic pressures large enough to kill small
fish. Unsurprisingly, these types of shrimp are commonly called pistol shrimp.[2]

Another amazing phenomenon involves color. Most objects we encounter in our daily lives
produce color by absorption and partial reflection by chemical compounds. A large number of
animals have devised a completely different mechanism: structural coloration. Instead of using
chemical properties, these animals exhibit wavelength-scale microstructures on their surface
which produce color by interference effects. The resulting iridescent hues can be incredibly
saturated and otherwise rare in nature. Structural coloration has been found in birds, fish, and
insects.[3]

In this thesis we focus on one particular type of animal: beetles. In terms of number of differ-
ent species, beetles outnumber all other animals: approximately 25% of all animal species are
thought to be beetle species.[4, 5] Beetles live in every habitat and their appearances range from
the camouflaged to the extravagant. With such broad diversity of species, it is no surprise that
different mechanisms for producing color have been found in beetles. Despite this diversity,
most beetles that show structural coloration have some form of multilayer reflector mecha-
nism, where alternating layers of different refractive indices cause constructive interference at
a particular frequency.[1]

Some beetles, however, have a curious modification to the multilayer reflector mechanism:
they produce light that is strongly left-handed circularly polarized.[1, 6–9] Since circular po-
larized light is rare in nature, one might wander if these beetles obtain some evolutionary ben-
efit thanks to this mechanism. Some biologists suggest a link to intra-species communication
[10–12], but there is still the possibility it has no evolutionary benefit at all.

Whatever the case may be, a more fundamental question about this ability remains. Why is the
left-handed orientation prevalent when evolving right-handed polarizing iridescence should
be equivalent? This phenomenon of seemingly arbitrary asymmetries can be found throughout
nature, from the chirality of snail shells [13] to the internal layout of human organs. Nature
seems to ’choose’ specific orientations and reproduce them with a high degree of accuracy.
For example, reversal of the organ layout (situs inversus totalis) occurs in only about 0.015% of
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human newborns.[14] The cause of these asymmetries is a yet unanswered question in biology.

Since beetle species are so numerous, large scale surveys are required to better understand
the origin of this circular polarization. To date, no beetle species has been found with a right-
handed polarization, nor do we know if a genetic mutation exists that can reverse the polar-
ization orientation within a species. To perform such a survey, one needs some systematic
approach to measuring and perhaps even classifying beetle specimen.

The need for a systematic beetle classifier formed the synthesis for this research project. We
wanted to investigate whether the Stokes parameter formalism can be used as a classification
scheme for beetles with polarizing iridescence mechanisms. In this thesis we describe our
attempt at constructing a setup that can produce images of a beetle with pixel-specific values
of the Stokes parameters. We tested our setup with a beetle of the species protaetia speciosa
jousselini. This beetle produces left-handed polarized light, but perhaps more interestingly, has
been reported to produce right-handed polarized light as well under certain conditions.[9, 15]
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Chapter 2
Background

Through millions of years of evolution, numerous species have devised a remarkable way of
producing color. Most objects we encounter in our daily lives produce color through absorp-
tion by chemical compounds, reflecting only certain wavelength (ranges) of light due to their
molecular energy spectra. Many animals however, from birds to fish to insects, produce color
through wavelength-scale structure. This structural coloration has its origin in interference ef-
fects caused rather than pigments. This wavelength-sized structure could be the result of the
underlying microscopic structure of molecules through self-assembly processes, but the nature
of this self-assembly is unknown and is part of active research on structural color.

Unlike colors that are produced by ordinary absorption and scattering, hues produced by
structural coloration tend to shift as the angle of illumination changes, a phenomenon de-
fined as iridescence. Different animals produce iridescent colors differently. Even within the
species of insects of order coleoptera* there is a great diversity of iridescence mechanisms.[1]
In section 2.1 we give a brief overview of the known iridescence mechanisms used by beetles
as context for the later chapters.

Some, but not all, iridescence mechanisms produce light that is left-handed circularly polar-
ized. This begs the question: are all beetles left-circularly polarized or do species exist that
produce right-handed circularly polarized light? If not, what is the cause for this asymmetry?
To answer these questions, large surveys of beetle species are required. While we do not pro-
pose or perform such a survey in this project, we investigate whether beetles can be classified
based on their polarizing properties. Specifically, we attempt to find a unique signature of a
beetle using the Stokes parameter formalism. Such a signature could, for example, consist of
a numerical value for Stokes parameter S3, which denotes the amount of circularly polarized
light. As a case study, we investigated the beetle protaetia speciosa jousselini as it not only pro-
duces left-handed polarized light, but also right-handed circular polarization under the right
circumstances.[9, 15] In section 2.2 we expand on the compelling characteristics of this beetle
species.

Our method for characterizing the polarization of the beetle involved measuring its Stokes pa-
rameters. Using this quantitative approach we hoped to find a specific signature for the beetle
involved, or at the very least learn something about its iridescence mechanism. In section 2.3
we introduce the theoretical basis for the Stokes parameter calculation and in section 3.1 we

*Entomological term for beetles.
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introduce the physical setup used for performing the measurements.
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Figure 2.1: Examples of beetle iridescence. (a-b) diffraction
grating, (c-e) multilayer reflector, (f) photonic crystal. Image
taken from Seago et al. (2008).[1]

Figure 2.2: Bottom: image of pro-
taetia speciosa jousselini through a
left-handed polarization filter. Top:
image through a right-handed po-
larization filter. Image taken from
Horváth et al. (2014).[6]

2.1 Overview of Iridescence Mechanisms in Coleoptera

While no two species of coleoptera have identical structural color, most can be grouped into
three main mechanisms: diffraction gratings, multilayer reflectors, and three-dimensional pho-
tonic crystals. We describe these groups in general, but we highly recommend reading the
review by Seago et al. (2008) for an in-depth description.[1]

The most common iridescence mechanism in beetles is the multilayer reflector, three examples
of which are shown in figure 2.1c-e. This structure consists of multiple layers of differing re-
fractive index, commonly built up by layers of chitin. These layers cause light at particular
wavelengths to interfere constructively producing dominant hues. Since the path length of
light through this structure is angle-dependent, the wavelength at which constructive interfer-
ence occurs is angle-dependent as well. This results in a blue-shift in the visible hues when the
observation angle increases.

Other beetles show a surface structure that consists of microscopic ridges, edges, or slits with
a broad-scale preferred direction. Such a structure acts as a diffraction grating and produces a
rainbow-like iridescence pattern, as seen in figure 2.1a-b.

The final common structure has some similarities to the multilayer reflector. Where the multi-
layer is essentially a one-dimensional structure or crystal, some beetles show a structure that is
three-dimensional in nature. In other words, the structure consists of a highly ordered lattice
with a periodicity comparable to the wavelength of visible light. Typically, these structures are
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not perfect as they are not ordered over the entire beetle surface, but rather form patches of
ordered structure. This results in a more diffuse reflection and thus reduced angle dependence
of the visible color, see figure 2.1f.

2.2 Motivation for the Case Study on Protaetia Speciosa Jousselini

What sets protaetia speciosa jousselini, and some other beetle species, apart from the overwhelm-
ing majority of coleoptera is the fact that it reflects light that is left-handed circularly polarized,
as seen optically in figure 2.2.[6–8] Circular polarization is rare in nature, and even in human
experience. Most people, without even realizing it, will only encounter circular polarization
while watching a 3D movie.[16, 17]

The mechanism for producing circularly polarized light in this beetle is a modification to the
multilayer reflector. The main difference is that the chitin molecules order into long fibers
that are themselves aligned into two-dimensional layers. These rods of chitin molecules are
strongly anisotropic and thus optically birefringent. Each consecutive layer of chitin fibers is
rotated with respect to the underlying layer which creates a material with a helical structure
that shows circular birefringence. Light with a wavelength that matches the periodicity of this
helix is then constructively interfered and circularly polarized.

Biologists argue about potential evolutionary benefits of circular polarization reflectance. A
common hypothesis is that it aids in communication through vision.[10–12] We will not at-
tempt to answer this question here. Instead, in this work we will try to characterize this po-
larization signal quantitatively through Stokes parameters, in the hope of defining a unique
polarization signature for protaetia speciosa jousselini.

2.2.1 Handedness Inversion and Comparison to Bragg Mirror

The multilayer reflector that is so common among beetles is essentially a form of dielectric
mirror or Bragg mirror, a material built up of layers of alternating refractive index such that
constructive interference occurs at reflections of a specific wavelength (range). The proper-
ties of Bragg mirrors can be modeled numerically using Berreman calculus, a transfer matrix
method for Mueller calculus.[8]

Using this approach, Leiden University student Tim Reisinger found that beetles of species
jousellini are in fact capable of producing right-handed polarized light despite their surface
structure being left-handed. This effect becomes apparent at angles of incident larger than
40◦ and will be accompanied by a blue-shift of the reflection peak at increasing angles. This
suggests that this transformation from left to right-handed polarization indeed originates from
the helical structure itself. The presence of right-handed circularly polarized light has also been
observed experimentally by Hagedüs et al. (2006) in species jousellini.[9, 15]

We will attempt to add to the existing experimental and numerical evidence on this handed-
ness inversion by observing the Stokes parameters of the beetle at extreme angles of incidence.

2.3 Stokes Formalism

Characterizing the polarization of iridescent light from coleoptera (or any light source for that
matter) can be done using the Stokes parameter framework developed in the 19th century. It
is a set of four parameters that completely decompose and characterize the polarization state
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of light. The four parameters are defined as combinations of the electric field in different bases
for polarized light:

S0 = 〈E2
x〉+ 〈E2

y〉, (2.1a)

S1 = 〈E2
x〉 − 〈E2

y〉, (2.1b)

S2 = 〈E2
a〉 − 〈E2

b〉, (2.1c)

S3 = 〈E2
r 〉 − 〈E2

l 〉. (2.1d)

Here the brackets 〈·〉 denote time averages over the electric field. The basis (x, y) is the stan-
dard Cartesian basis of linearly polarized light in horizontal and vertical directions, (a, b)
is the cartesian basis rotated by 45 degrees, and (r, l) is the circular basis defined such that
l̂ = (x̂ + iŷ)/

√
2, r̂ = (x̂− iŷ)/

√
2. The four parameters can equivalently be defined purely in

the Cartesian basis:

S0 = 〈E2
x〉+ 〈E2

y〉, (2.2a)

S1 = 〈E2
x〉 − 〈E2

y〉, (2.2b)

S2 = 2〈Ex〉〈Ey〉 cos(δ), (2.2c)
S3 = 2〈Ex〉〈Ey〉 sin(δ). (2.2d)

Where δ is the phase difference between the x and y components of the beam. The four Stokes
parameters are often combined into a Stokes Vector ~S ≡ (S0, S1, S2, S3).

The first Stokes parameter gives the total intensity of a beam of light, which, in experimental
contexts where this quantity is not relevant in absolute terms, is often used to normalize the
Stokes vector such that S0 = 1. The parameters S1 . . . S3, and in particular their sign, allow
for clear decomposition of the polarization of a beam of light into horizontal (+) or vertical (-),
plus or minus 45◦, and right- (+) or left-handed (-) polarization, respectively.

2.3.1 Motivation for Preferring Stokes over Jones Formalism

The experienced reader might wonder why we are using the Stokes/Mueller calculus with
4-vectors and 4x4 matrices instead of the numerically simpler Jones calculus, which describes
polarized states with 2-vectors and optical elements with 2x2 matrices. The reason is straight-
forward: Jones vectors can only describe purely polarized states. Experiments involving coher-
ent or fully polarized light can use this fewer-element calculus. But in cases where one wants
to account for light with arbitrary (partial) polarization and the effects of depolarization, one
cannot avoid using Stokes/Mueller.

In this particular thesis, we have set our goal at measuring a polarization profile of the reflec-
tion and scattering of light on surfaces of coleoptera. We have no reason to expect that the
response to unpolarized light of these species is purely polarized, hence we have chosen to
design our measurement apparatus in accordance with the Stokes formalism.

2.3.2 Measuring the Stokes Vector

Although the Stokes parameters cannot be measured directly, they can be inferred by the mod-
ulation of the intensity of a light source transmitted through two optical elements in series: a
rotating quarter-wave plate followed by a fixed linear polarizer.[8, 18]
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We can derive this relation analytically using Mueller calculus. This technique allows for
the manipulation of Stokes vectors through (4x4) matrices that represent specific optical el-
ements. For an incident beam with Stokes vector ~Sin passing through an element represented
by Mueller matrix M, the outgoing Stokes vector ~Sout is simply

~Sout = M~Sin . (2.3)

One of the benefits of Mueller calculus is that, through the associativity of matrix multiplica-
tion, several optical elements in series can be combined into a single matrix M̃ that describes
the entire measurement setup:

~Sout = MN MN−1 . . . M2M1~Sin = M̃~Sin . (2.4)

The order of the matrices is key. Matrix multiplication is not commutative, i.e. Mi Mj 6= Mj Mi,
and operates from right to left. Therefore, the first optical element in the beam path, is repre-
sented by the right-most matrix and the last optical element by the left-most. For our purposes,
we need only two Mueller matrices: the matrix for a horizontal linear polarizer,

MHL =
1
2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 , (2.5)

and the matrix for a general linear retarder,

Mretarder =


1 0 0 0
0 cos2(2θ) + sin2(2θ) cos(δ) cos(2θ) sin(2θ)(1− cos(δ)) sin(2θ) sin(δ)
0 cos(2θ) sin(2θ)(1− cos(δ)) cos2(2θ) cos(δ) + sin2(2θ) − cos(2θ) sin(δ)
0 − sin(2θ) sin(δ) cos(2θ) sin(δ) cos(δ)

 ,

(2.6)
where θ is the rotation angle of the linear retarder and δ is the phase difference that the retarder
introduces.[19] For a rotating quarter-wave plate (δ = π

2 ), matrix 2.6 simplifies to:

Mλ/4 =


1 0 0 0
0 cos2(2θ) cos(2θ) sin(2θ) sin(2θ)
0 cos(2θ) sin(2θ) sin2(2θ) − cos(2θ)
0 − sin(2θ) cos(2θ) 0

 . (2.7)

The combined Mueller matrix for the setup with a linear polarizer and a quarter-wave plate is
then

M̃ = MHLMλ/4 =
1
2


1 cos2(2θ) cos(2θ) sin(2θ) sin(2θ)
1 cos2(2θ) cos(2θ) sin(2θ) sin(2θ)
0 0 0 0
0 0 0 0

 . (2.8)

A beam of light of arbitrary polarization passing through this system will have its polarization
manipulated such that it exits the system with a Stokes vector of the form:

~Sout = M̃ ~Sin (2.9)

=
1
2


S0 + S1 cos2(2θ) + S2 cos(2θ) sin(2θ) + S3 sin(2θ)
S0 + S1 cos2(2θ) + S2 cos(2θ) sin(2θ) + S3 sin(2θ)

0
0

 . (2.10)
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The beam exits the system fully linearly polarized, but with the information of its original
polarization encoded in the first two Stokes parameters. Since S0 is simply the total intensity of
the light source (see equation 2.1a), we have an exact relation between a measurable intensity
and the degree of rotation of the quarter-wave plate:

I(θ) =
1
2
(
S0 + S1 cos2(2θ) + S2 cos(2θ) sin(2θ) + S3 sin(2θ)

)
. (2.11)

Using the half-angle formula cos2(2θ) = 1/2 + 1/2 cos(4θ) and the equality cos(2θ) sin(2θ) =
1/2 sin(4θ), we can rewrite the intensity equation to:

I(θ) =
(

1
2

S0 +
1
4

S1

)
+

(
1
2

S3

)
sin(2θ) +

(
1
4

S1

)
cos(4θ) +

(
1
4

S2

)
sin(4θ) (2.12a)

= A + B sin(2θ) + C cos(4θ) + D sin(4θ) . (2.12b)

Notice how the intensity relation has turned into a Fourier series with amplitudes A . . . D. In
experimental context one will always measure the intensity over discrete and finite samples of
θ. Therefore, the values of amplitude A . . . D can be found by taking sample averages of prod-
ucts of I with (co)sines of the corresponding frequencies. Assuming we measure N different
angles θ, we Fourier components are calculated by:

A =
2
N

N

∑
n

I(θn) (2.13a)

B =
4
N

N

∑
n

I(θn) sin(2θn) (2.13b)

C =
4
N

N

∑
n

I(θn) cos(4θn) (2.13c)

D =
4
N

N

∑
n

I(θn) sin(4θn) . (2.13d)

Finally, the four Stokes parameters can be extracted from the Fourier amplitudes:

S0 = A− C (2.14a)
S1 = 2C (2.14b)
S2 = 2D (2.14c)
S3 = B (2.14d)

As an example, figure 2.3 shows the expected intensity modulation as a function of wave-plate
rotation angle for different Stokes vectors. The right side of the figure shows how the vari-
ous Stokes vectors are represented in Fourier space. Clearly, the present angular frequencies
correspond to the ones in equation 2.13.

The question remains how many different angles θ should be sampled to achieve an accurate
result for the values of the Fourier components A . . . D. The Nyquist criterion states that a
continuous signal can be reconstructed from discrete samples if the sampling rate is at least
twice as large as its largest frequency. The largest angular frequency in equation 2.12b is 4,
so we conclude we must sample at least 8 different angles, where the sampling rate is ∆θ =
180◦/8.
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Figure 2.3: Left: angle-dependent modulation of intensity of light with four different polarizations, ac-
cording to equation 2.11. Right: Fourier transform of the left graph using the Fast Fourier Transform
algorithm. The Fourier amplitudes shown here are the absolute values of the complex Fourier ampli-
tudes. The four circles at each frequency are slightly displaced horizontally to increase readability but
should be interpreted as being centered at the corresponding x-axis label. Both graphs were created
numerically using 100 equidistant values of θ between 0 and 180 degrees.

2.3.3 Note on Stokes Parameter Ambiguity

The interpretation of the Stokes parameters is inherently tied to the defined frame of reference
of the experimental setup, as can clearly be seen in equation 2.1. As is often the case, we define
our basis such that the x-axis is parallel to the horizontal direction for a lab observer. This
implies for S1 = 1 a fully horizontally polarized beam, S1 = −1 fully vertically polarized etc.

However, an ambiguity to the interpretation for S3 remains. The direction of rotation for a
circularly polarized beam depends on perspective. Left-handed circular polarization from the
source perspective is measured as right-handed from the detector perspective. In practice, chang-
ing between the two perspectives requires little more than switching the sign of S3. But the
experimenter must be weary to keep in mind from which perspective they are describing their
experiment.

The procedure for measuring the Stokes vector in section 2.3.2 follows the source perspective of
a beam of light traveling through optical elements. However, literature on the polarization of
coleoptera, logically, describe the polarization of specimen from the perspective of the outside
observer. Hence, to avoid confusion or apparent contradiction, we will present our findings in
chapter 4 defined from the detector perspective.

2.3.4 Error Estimation

Through error propagation we can get a quantitative estimate of the error on all four Stokes
parameters. We start with the error on a intensity measurement. If we measure the intensity at
every wave plate rotation angle θn M times, we define the error on I(θn) as

sI(θn) =
σ({I(θn)})√

M
, (2.15)
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where σ is the sample standard deviation on the collection of measurements {I(θn)}. Next, we
calculate the error propagation by considering the variance formula

s f =

√√√√∑
i

(
∂ f
∂xi

sxi

)2

(2.16)

where s f is the error on function f , xi are the variables that f depends on and sxi are their
errors.[20] When applied to the equation for the first Fourier component, equation 2.13a, we
get the following error equation:

sA =

√√√√( ∂

∂I(θn)

2
N

N

∑
n

I(θn)sI(θn)

)2

=
2
N

√
N

∑
n

s2
I(θn)

. (2.17)

Note here that the error is inversely proportional both to the number of angles measured N
and to

√
M, where M is the total number of intensity measurements. Similarly, we get for the

other Fourier components:

sB =
4
N

√
N

∑
n

sin2(2θn)s2
I(θn)

(2.18)

sC =
4
N

√
N

∑
n

cos2(4θn)s2
I(θn)

(2.19)

sD =
4
N

√
N

∑
n

sin2(4θn)s2
I(θn)

. (2.20)

Here we assume that the error on the wave-plate angles θ are negligible. Finally, we can prop-
agate these equations further to get errors for the individual Stokes parameters:

sS0 =
√

s2
a + s2

C =
2
N

√
N

∑
n
(1 + 4 cos2(4θn))s2

I(θn)
(2.21a)

sS1 = 2sC =
8
N

√
N

∑
n

cos2(4θn)s2
I(θn)

(2.21b)

sS2 = 2sD =
8
N

√
N

∑
n

sin2(4θn)s2
I(θn)

(2.21c)

sS3 = sB =
4
N

√
N

∑
n

sin2(2θn)s2
I(θn)

(2.21d)

In subsequent chapters the above equations will define the error values on Stokes parameter
measurements.
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Chapter 3
Method

The goal of this project is to gain understanding of the polarizing reflection characteristics of
the beetle species speciosa jousellini by studying its Stokes parameters. To do this systematically,
we need a device that can measure the Stokes parameters, a scheme to systematically define
incoming and outgoing reflection angles, and some automation scheme to collect the data. In
this chapter we describe how we built a setup capable of fulfilling these requirements.

3.1 Setup

The measurement setup can be split into two parts: source and imaging, as seen in figure 3.1.
The source consists of a Xenon arc lamp connected to an optical fiber with a 50 µm core-size.
The diverging beam from the fiber is collimated using a 50 mm lens and is directed to the
beetle through a variable aperture.

While the light-producing setup is relatively straightforward, one aspect is key: the use of
a high brightness source coupled to the optical fiber to create a well-collimated beam. We
want to investigate the reflection of the cuticle of a beetle as a function of both incoming and
outgoing angle. If we use a focused beam, or a standard household lamp for that matter,
we introduce a wide collection of incoming beams angles unto our sample, muddying the
resulting measurements. By using a collimated beam, we instead maximally constrict this
factor in our setup. The limiting factor in this accuracy is the cuticle of the beetle itself. Its
curvature is so significant that any practical collimated light source will have some uncertainty
with regards to the exact angle of incidence on the cuticle surface.

The downside of the use of a collimated spot on the beetle is brightness. The amount of light
that actually reaches the beetle is so sparse that multiple-second exposures are required to
detect a signal with a reasonable signal-to-noise ratio.

A necessary practical corollary to the use of a collimated beam is the introduction of an aper-
ture. Without one, there would be no means to selecting the area on the beetle to be illumi-
nated.

The imaging part of the setup measures light reflected by the beetle, transmitted by a series
of three optical elements: an achromatic quarter-wave plate, a linear polarizer and a 75 mm
lens. By rotating the wave plate around an angle θ ∈ [0, π] and fixing the linear polarizer at a
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Figure 3.1: The measurement setup used the measure the polarization of a species of coleoptera. The
setup can be split into two parts: source and imaging. The source produces a collimated beam of
white light (shown here in yellow), while the imaging part measures reflected light (shown here in
green) modulated by a rotating quarter-wave plate and a linear polarizer. Both the platform holding
the specimen and the arm holding the imaging device can rotate freely in the same plane. The reflection
angles φin and φout are defined in a co-rotating frame with the specimen.

horizontal* position, the intensity of reflected light from the beetle is modulated according to
equation 2.11. The collected light is focused into a CMOS camera and read-out by a connected
PC. Collectively, this setup allows for the measurement of the Stokes vector of light reflected
or scattered by a specimen on a per-pixel basis.

Both the stage holding the imaging setup as well as the platform with the specimen-holder can
rotate freely around a central axis, allowing investigation of reflection characteristics for many
combinations of angles. The reflection angles φin and φout are defined such that the normal axis
rotates along with the beetle, as shown in figure 3.1.

3.1.1 Automation

The very nature of this project implies collecting a large amount of data. Varying both in-
coming and outgoing reflection angles, measuring the intensity at different values for rotation
angle θ, and repeating the measurement multiple times for statistical validity, one quickly
accumulates thousands of single-measurement events. Any experimenter faced with such a
daunting amount of measurements, tedious if done manually, will be compelled to automate
as many elements of their setup as possible.

To tackle this problem, all to-be moved parts of the setup were connected to a combination of
motion controllers. These devices connect to at most three stepper-motors and allow for accu-
rate, independent rotation of each. Four parts of the setup were connected to two controllers
in such a manner: the platform holding the beetle specimen (φin), the arm holding the imag-
ing setup (φout), the quarter-wave plate (θ), and the linear polarizer. As noted in the previous
section, the measurements themselves were performed by a CMOS camera. Both it and the
motion controllers were connected using a USB interface to a measurement PC.

These devices did not free the experimenter of all physical involvement in measurements how-
ever: selecting a spot on the specimen to be illuminated still required manual alignment and

*Using the convention stated in section 2.3.3
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aperture adjustments. Once aligned though, long series of measurements could be performed
automatically through a scripting program.

To this end an object-oriented approach to scripting was chosen, using Python to drive the
involved hardware. Although Python is not the most performant programming language,
its ease of use and broad availability of (third-party) libraries made it an obvious choice. In
pure modular fashion, separate classes were written for each hardware device. Many custom
functions were written with built-in error handling to make the experience of using the setup
as user-friendly as possible. In the same vain, a master document was written using Jupyter
Notebook with general instructions on how to operate the different subsystems, while simul-
taneously functioning as a bare-bones interface. Appendix A contains the essential details on
how the code works and how hardware challenges were circumvented.

3.1.2 Data Management

The amount of single-measurement events involved in this project evidently produce large
amounts of data. A simple example: simple a measurement sequence involving a fixed φin, ten
values for φout and the bare minimum eight values for θ, measured on a sensor with 1000x1000
pixels, yields 240 megabytes of data (not counting file format overhead). If one repeats the
measurement for statistical validity or adds more values of θ, the amount of raw data quickly
grows to the order of gigabytes.

Clearly, this project required a robust data management system. The data format HDF5 quickly
emerged as a suitable format. It has a number of compelling features specifically for research
projects where data takes the form of a n-dimensional data cube. This makes the format popu-
lar in fields where observations are image-based, which for example is predominantly the case
in astronomy.

HDF5 is a system that stores a folder-like hierarchy in a single data file. N-dimensional arrays
are stored as datasets, which in turn can be grouped in to groups. What makes HDF5 particu-
larly useful for our purposes is that each object in the hierarchy can be assigned an arbitrary
amount of metadata. This allows, for example, each camera setting to be attached to every
dataset, which is incredibly useful in the data analysis stage of any project.

Additionally, HDF5 supports saving arrays using lossless data compression, which can reduce
the required storage by an order of magnitude. It does this while still allowing for on-the-fly
array indexing using NumPy syntax. For computers with (relatively) modern processors, this is
a no-regret strategy to data storage.

Unfortunately, HDF5 also comes with it’s drawbacks. Opening and manipulating the files
requires either out-dated software or the use of a non user-friendly command-line interface.
Furthermore, while stored data is very robust and can be accessed quickly, storing data is at
least inconvenient and at most volatile. Data cannot be inspected while a measurement is
running, an error during an experiment can lead to total data corruption and even the act of
transferring a large file over the network can result in data loss. Caution is clearly advised.
Despite these qualms, the benefits of the format prevailed and it remained the chosen data
format for this project. Appendix A.2.3 contains information on a custom Python script that
was written to ease the use of files.
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Figure 3.2: Measurement of the polarization of the source lamp. The intensity of the lamp was measured
for 60 different values of θ and is calculated by summing all pixel counts of the CMOS sensor. Both the
fit on the left as the Fourier transform on the right imply a negligible net polarization.

3.2 Calibration

To properly characterize the polarization of a specimen, we must investigate if the setup has an
inherent polarization preference or characteristic. Upon first inspection, two parts of the setup
require such investigation: the source lamp and the camera. However, by design the latter can
be ignored. The final polarizing element in the setup is a fixed linear polarizer, eliminating
the relevance of a preferred polarization of the camera. The lamp however warrants some
attention.

We measured the polarization of the lamp in a manner identical to how the polarization of
a specimen is to be measured: by passing its beam through the rotating wave-plate and the
linear polarizer. The imaging stage was rotated such that the camera was pointing straight
at the collimated beam produced by the lamp. The results of the measurement are shown in
figure 3.2. The result clearly implies a negligible inherent polarization originating from our
source.

While we didn’t expect any significant polarization in our light source, we did have con-
cerns about its output consistency. Arc lamps inherently vary in brightness on sub-second
timescales. This is obviously visible to the experimenter as ’flickering’ of the beam. To quan-
tify this variation in time, we measured the brightness of the lamp a hundred times at two
exposure times many orders of magnitude apart: 0.1 ms and 104 ms. The histograms of these
measurement are shown in figure 3.3.

At 0.1 ms exposures the distribution has an obvious mean but with a long tail of high bright-
ness peaks. These peaks of brightness reach up to a 20% higher value than the mean. This
distribution shows the ’spark-like’ behavior that we expect from an arc lamp. The same can-
not be said about the exposures at 10 s. In this regime we see that the high intensity sparks are
averaged out in time, leading to a normally distributed set with a clear mean and a standard
deviation corresponding to about 0.2%.

What do these results imply for the subsequent measurements with beetles? In practice, light
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Figure 3.3: Histograms of lamp brightness measurements at two different exposure times. The 0.1
ms exposures are spaced out in time by 36 ms due to processing limitation of the CMOS cam-
era. Brightness values are calculated by summing all pixel counts. The gaussian fit is defined as

G(x, µ, σ) = 1
σ
√

2π
exp

(
−(x−µ)2

2σ2

)
where µ is the sample mean and σ is the sample standard devia-

tion.

is a scarce quantity in the lab setting and long exposures are required to obtain a usable beetle
image. In fact, all measurements were performed with exposures larger than 1 second, giving
us confidence that we are in the normally distributed regime of the lamp.
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Chapter 4
Results

Using the measurement setup described in the previous chapter we can create a four dimen-
sional data cube with axes [φout, x, y, stokes vector] for each angle of incoming light φin.
Figure 4.1 shows a representation of this data for a specific combination of (φin, φout).

4.1 Stokes Vector as Unique Signature

Figure 4.1 already showcases a large challenge that we faced during measurement. The beetle
is highly reflective. When illuminated with a non-diffuse light source, this creates large peaks
of specular reflection in our data. In practice, using our 8-bit CMOS sensor, this means we
cannot properly expose the entire beetle surface illuminated by the collimated beam. Either we
properly expose the specular reflections or as much as possible of the other parts. Normally
one would attempt to minimize influence from specular reflections with linear polarization
filters. But this is inherently impossible in our setup.

In chapter 2.2 we expressed the hope to use these Stokes measurements to find a unique signa-
ture of the beetle jousellini. However we see that all Stokes parameters are non-uniform on the
surface of the beetle, and that, as we will see later, they vary in magnitude depending on the
angle of incidence and angle of observation. This is somewhat surprising for S3, as the mag-
nitude of circular polarization is orientation independent, unlike S1 and S2. An explanation
for this observation is that varying amounts of linearly polarized surface reflections suppress
the proportion of detected circular polarized light. In short, we are skeptical that this type of
measurement can be used as a reliable classification scheme for beetles.

4.2 Handedness Inversion

To get a more general value of the angle dependent magnitude of the Stokes vector, we per-
formed a measurement with decreased beam size such that only the red triangle on the bee-
tle surface is illuminated. We measured the intensity of reflected light at various angles and
treated the entire camera sensor as a single pixel. Essentially we measure the average value of
the Stokes vector on this part of the beetle surface. The exposure time was lowered to prevent
overexposing the specular reflections.

Figure 4.2 shows the result we were looking for that and was earlier reported by Reisinger [15]
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Figure 4.1: Representation of the beetle data cube for (φin, φout) = (40◦, 30◦). The first four images
show the visual RGB image and the three Stokes parameters S1-S3, where the magnitude is represented
as color intensity. The bottom two plots show the Stokes vector fit on one particular pixel, shown in the
upper images as a green box. The shaded blue region in the fit shows what the intensity would look
like for one standard error from the fitted value: I(θ, S = S± sS), as defined in equation 2.21.
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Figure 4.2: Stokes parameters on the red triangle of the beetle surface for different angle configura-
tions. The three columns show data for different incident angles and the rows show the four Stokes
parameters. The three different colors and shapes represent the camera color channels red (triangle)
blue (circle) and green (diamond). Parameters S1−3 are normalized such that at each value of φout, S0 is
scaled linearly to unity.

and Hegedüs [9]. We see that at large angles, the circular polarization is inverted from left to
right-handed. The result is most clear for φin = 30◦, where we have a clear signal (i.e sufficient
reflected light) for all angle values. At larger angles we see that the signal vanishes between
high intensity peaks that we infer are caused by very bright reflections. The fact that we see
multiple peaks in each column is due to the fact that the red triangle is a part of the surface
where multiple curvatures meet at a seam. Each peak in curvature causes its own specular
reflection.

Can we see this inversion as well visually, similar to the images in figure 4.1? We performed a
similar measurement to the one that gave the result of figure 4.2, but this time with the aperture
fully opened and the camera exposure set to its maximal value of 10 s. In figures 4.3 and 4.4 we
present a series of images showing the circular polarization on the beetle surface for increasing
values of φout for an angle of incidence of 40◦ and 60◦.

In both series of images we see that the beetle surface is overwhelmingly left-handed polar-
ized. Only at (φin, φout) = (60◦, 70◦) do we see a hint of right-handed polarization in the red
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Figure 4.3: Series of images of increasing value of φout at φin = 40◦. The color scale represents the
magnitude and sign of Stokes parameter S3.

triangular area. The signal is faint but it is certainly there. This seems to contradict the result
from figure 4.2. However, that measurement literally focused only on a small part of the beetle
surface, while the last measurement is more ’broad-band’. Direct comparison is therefore chal-
lenging, especially since the object in question is highly curved. Nevertheless, because both
experiments yield significant results, we feel like this project adds validity to earlier claims of
handedness inversion in beetle species jousellini.
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Figure 4.4: Series of images of increasing value of φout at φin = 60◦. The color scale represents the
magnitude and sign of Stokes parameter S3.
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Chapter 5
Conclusion

At the start of this project we set out to see if Stokes parameters can be used as a classification
scheme for coleoptera with a polarizing iridescence mechanism. To this end, we constructed
a measurement setup capable of producing pixel-specific Stokes vectors of light reflected by
an arbitrary specimen. Furthermore this setup has multiple rotational axes, which allow for
control of the angle of incidence and angle of observation.

After analyzing light reflected by the beetle specimen with our setup, we conclude that Stokes
parameters are not a suitable framework for classifying a animal species, as in practice the
values of the four Stokes parameters are inhomogeneous on the surface of said animal and
vary depending on lighting and observational perspective. Our measurement setup can how-
ever be used to investigate qualitatively which parts on a beetle surface contain a (circularly)
polarizing iridescence mechanism.

An additional goal of this project was to verify earlier claims of handedness inversion in the
beetle species protaetia speciosa jousselini at large angles of observaton an incidence. By observ-
ing a specimen of said beetle at multiple combinations of angles, we conclude that indeed the
beetle shows this handedness inversion. We conclude that the handedness inversion occurs at
angles of observation of at least 70◦ normal to the surface. However, we do not have enough
evidence to to quantify if this phenomenon occurs for all or a subset of angles of incidence.
Finally, we observed that the magnitude of the right-handed polarized light, in terms of Stokes
parameter S3, to be small compared to the magnitude of left-handed polarized light.
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Appendix A
Python Interface

Commanding all moving parts in the setup, performing measurements with the camera and
analyzing the data was all done using various Python scripts. An object-oriented approach
was used, where seperate parts of the measurement setup were coded as instances of various
Python classes. This mainly provides benefits to the user experience as connections to physi-
cal devices can be initialized easily, and connections to multiple similar devices can be main-
tained by creating multiple instances of the same class. The measurement setup as a whole is
controlled through a simple Jupyter Notebook pseudo-interface.

The Python project as a whole is lovingly dubbed Beetle Classifier Robot or BCR for short. The
master file BCR.py, containing the BCR class, is the main script an experimenter interfaces with.
Upon initialization, it connects to all necessary devices. Once connected, the user is free to
control all devices individually. The main attraction however, are the different class func-
tions representing automatic measurement sequences. In section A.1 we provide a step-by-step
overview of running a experiment.

In section A.2 we dive deeper into the individual classes that were written for this project.
We will also discuss hardware bugs that were discovered and attempts to circumvent them
through software.

The entire script including documentation can be found on the author’s GitHub repository.

A.1 Program Flow

In this section we will walk through the process of initializing the BCR script and performing
an angle-dependent measurement of the Stokes parameters of a specimen. These steps are also
described in the Jupyter Notebook master.ipynb in the root directory of the project.

First we import the BCR module and create an instance for our experiment.

from BCR import BCR

user = ’Naor Scheinowitz ’

exp = BCR(user)

Welcome to the Beetle Classifier Robot. Great to have you back!

Resource manager used: Resource Manager of Visa Library at C:\ Windows\

system32\visa32.dll
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Detected devices: (’ASRL1 ::INSTR ’, ’GPIB0 ::1:: INSTR’, ’GPIB0 ::2:: INSTR

’)

Initializing new connections with ESP with identifiers: [’GPIB0 ::1’, ’

GPIB0 ::2’].

Initializing connection with camera

With everything loaded, the user can interface directly with the different devices. The fol-
lowing commands rotate the specimen by 10 degrees, move the imaging stage to position 20
degrees, and take 5 images, respectively.

exp.sample.move(10,’relative ’)

exp.big_arm.move(20,’absolute ’)

exp.cam.take_images (5)

It is highly recommended to check the camera exposure settings before actually starting a
measurement sequence. This can be done automatically:

exp.cam.auto_expose(E_start =0.01, target =220, margin =20)

The script will start taking images at exposure E Start (in seconds) and adjust the exposure
time until the brightest pixel has reached a value of target±margin. The exposure can also be
set manually:

exp.cam.set_settings ({’exposure ’: 0.1})

Once a satisfactory exposure is achieved, one can start a measurement sequence with one of
the built-in functions of the BCR class.

readme = ’Test measurement ’

exp.beetle_polarization(

mode=’create ’,

angle_in =30, # phi_in

angles_out =[0, 90], # bounds of phi_out

step_size =10, # step size of phi_out

readme=readme ,

name=’Test measurement ’,

repeats =10

)

Working directory changed to: N:\ Beetle Project\Beetle Classifier Robot\

Experiments\

Created file Test measurement.hdf5

Created HDF5 group 30 degree reflection

Starting measurement.

100%|----------------------------------| 10/10 [16:28:55 <00:00 , 5933.51s/it]

Measurement sequence completed!

Closed file Test measurement.hdf5.

An important note is that any amount of metadata that is passed with the metadata keyword
argument is saved to the HDF5 data file of this experiment. It is advised to write important
information either there or in the readme field.

A.2 Custom Classes

The goal of this section is twofold: firstly we will give an overview of the most important
functions of each of the written Python classes. Secondly, we will discuss which hardware
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bugs we encountered and how we attempted to write code to circumvent these bugs. Each
Python class was written to include the boolean parameter testflight during initialization.
When set to True, the code can be run without having any of the physical devices actually
connected. Some code snippets will be shown to illustrate how problems were tackled but to
save space only the relevant parts will be presented. Please refer to the actual Python files to
see the full code.

A.2.1 Camera

We used a ThorLabs DCC1645C* CMOS camera for our measurements due to its compactness
and USB interface. Controlling the camera is done through the Cam class, which combines
features from the pylablib package with custom functions specific to the scope of this project.

Connecting and Disconnecting

Connecting to the camera is done by initializing an instance of the Cam class. Camera settings
can be passed upon initialization in dictionary form.
cam = Cam(settings ={})

Any settings not passed will be reset to their default value. If the script exits without prop-
erly disconnecting the camera, it cannot be reconnected to without manually removing and
reattaching the USB cable. To ensure proper disconnection upon script exit, without human
intervention, a close() command is added in the deletion dunder.
def __del__(self):

self.instrument.close ()

Changing Camera Settings

In changing the camera settings we encounter our first series of hardware bugs. Some settings
seems to reset one another, without any seemingly logical reason behind it. For example,
changing the ROI (Region Of Interest) of the sensor sometimes, but not always, resets the
exposure time. We also found that when increasing the exposure time, it is useful to change
frame period first, while the opposite order is more reliable when decreasing the exposure
time. This is because the camera often (but not always) refuses exposure times longer than
the set frame period. It would make sense that the frame period scale automatically with the
exposure time, but such luxuries are not reserved voor scientists. To combat these bugs, the
function that changes settings prints all camera settings after a change attempt by default. This
allows the user to verify if the change was successful and no other settings were altered.

Another bug that we encountered is that the first few images taken after a change in exposure
time still use the old time despite reporting otherwise. The simple solution to this bug is to
take number of images after each settings change and throw them away immediately.
def set_settings(self , settings ={}, test_img=True):

if type(settings) is not dict:

raise TypeError(’Variable "settings" should be of type dict.’)

s = self.instrument.apply_settings(settings)

if test_img:

self.take_images(nframes=1, show=False)

*ThorLabs documentation refers to this class of camera as a ’DCx’ camera, but it is equivalent to the classification
’UC480’, which occasionally shows up in other documentation.
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Taking Pictures

Managing to reliably take pictures with the camera has been one of the most challenging as-
pects of this research project. One would expect that taking an image would be as simple as
(1) sending a command to take an image and (2) reading out that image. Unfortunately, that
was not the case. Using that naı̈ve approach, one would often, but not always, receive an im-
age where a proportion of rows were devoid of pixel values. In other words, it seems like the
camera self-interrupts exposures or read-outs at random, even when manually commanding
the script to wait until a full frame is available.

After many attempts at narrowing down the origin of the problem, we decided to circumvent
the problem instead of solving it. We found that the problem does not occur as frequently when
the camera is commanded to take multiple images before reading out to system memory. The
camera has an internal image buffer that the full frames are then temporarily saved to.

This multi-frame approach did have its own downside: sometimes the camera takes a bit
longer to process the images then the set frame period, which would lead to time-out errors.
Luckily, this problem was easily solved by manually setting a large maximum time-out.

Despite these efforts, the ’partial-frame bug’ would now and then appear. As a final mitigatory
measure, a user can choose to take a per-pixel median through a stack of frames. A single
ruined frame in a stack will not factor in heavily when taking a median, making it a better
operation than taking a mean.

Finally, the user can choose to immediately plot the image taken by camera to check if the
image is satisfactory and if any pixels are overexposed.

def take_images(self , nframes =20, median=True , show=True):

frame_period = self.instrument.get_frame_timings ()[1]

max_TO = frame_period * 2 + 1.0

self.instrument.start_acquisition ()

self.instrument.wait_for_frame(

nframes = nframes , timeout =( max_TO * nframes , max_TO))

img = self.instrument.read_multiple_images ()

self.instrument.stop_acquisition ()

img = np.array(img)

if median and nframes > 1:

img = np.median(img , axis =0)

if show:

# Plotting functions ...

return img

A.2.2 Motion Controller

The specimen-holder, imaging stage, linear polarizer and quarter-wave plate used during the
project were all controlled using two Newport ESP300 motion controllers. Despite their age,
the motion controllers proved very reliable (with a few caveats, more on that later). Interfacing
with the motion controllers is done through a GPIB to USB connector. A neat feature of GPIB
is that many devices can be daisy-chained together with clever multi-input GPIB-to-GPIB con-
nectors. Only a single motion controller is connected to a measurement PC with a GPIB-to-USB
cable, but the PC is able to address all devices through device-specific identifiers.
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The motion controllers can receive commands and send status messages through a ASCII input
bus. Managing this bus was done using the PyVisa Python package.

On top of the functionality provided by PyVisa, two Python classes were written to control the
motion controllers: ESP and Motor. The former handles connections to a physical controller,
while the latter represents individual motors. Users will primarily interface with the Motor

class as it contains all the functions for moving the measurement stages.

Connecting to Devices

The way the code is setup, all motion controllers are represented by a single instance of the ESP
class, while each separate motor is represented by separate instances of the Motor class. The
procedure for setting everything up is as follows. First create a ESP object:

controller = ESP.ESP(identifiers =[’GPIB0 ::1’, ’GPIB0 ::2’], name=’ESP’)

The identifiers that are passed are the GPIB addresses of the connected motion controllers.
This class instance contains the class variable instruments, which is a list of PyVisa instances
(one for each physical device). To initialize a specific motor, the corresponding PyVisa instance
must be passed to the Motor class. For example, the imaging stage is connected to the first axis
of the motion controller that is second on the list of addresses, so the correct syntax to connect
to it is:

imaging_stage = ESP.Motor(controller.instruments [1], axis=1, bounds =[-35, 100],

velocity =10, name="imaging_stage")

The argument bounds defines the maximum positions the stage can rotate to. This can be
useful if collisions between stages are a risk. The velocity argument sets the angular velocity
in degrees per second.

Unlike the camera, properly disconnecting is less of a concern with the motion controllers.
Nevertheless, the deletion dunder of ESP also includes the PyVisa function to close the connec-
tion.

Moving the Stages

Rotating the different connected stages can be done with a single class function: Motor.move().
For the example stage in the previous section, the following command will first move it to
position -20, after which it will move +10 degrees from there.

imaging_stage.move(-20, ’absolute ’)

imaging_stage.move(10, ’relative ’)

Moving axis 1 to position -20 degrees.

Moving axis 1 to position -10 degrees.

If a command is sent to a stage that would move it beyond its bounds, the movement is can-
celled.

imaging_stage.move (300, ’absolute ’)

Desired position 300 is out of operating bounds of axis 1.
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Sending Commands and Error Handling

The motion controller can interpret a wide range of commands, each encoded with two ASCII
characters. The syntax for a command is aaXXbbb, which encodes axis number, command, and
optional value, in that order. For example, the command to move to an absolute position is
PA, so the first command of the previous section would be encoded as 1PA-20. Commands
can be strung together in a single line by separating them with a semicolon. For example, to
command the controller to move an axis and then wait until the motion has stopped, one could
send the command 1PA-20;1WS0.

When a string containing commands is sent to the controller, all commands up to a new-
line character will be executed immediately. This means one must be careful which com-
mands are sent after one another. If one sends the command to ask for an error code while
a motion is still under way, the result is unpleasant. To prevent these scenarios, the generic
Motor.send command function is written in such a way that every command is followed by a
wait command and terminated by a error query. If the query returns a non-zero value, some-
thing has gone wrong and the user is informed. The downside of this approach is that stages
cannot move in parallel, but this is a small price to pay for the enhanced reliability.

Common functions and error codes are saved as class constants in dictionary form so that a
user need not memorize two-character commands or two-digit error codes. This transforms
the command-line interface from:
imaging_stage.send_ASCII_command(’1VA10’)

Error code 13 on device imaging_stage.

to a more readable:
imaging_stage.send_command(’set velocity ’, 10)

Error code 13: MOTOR NOT ENABLED on device imaging_stage.

Caveats

The main caveat of the Newport ESP300 motion controllers is its age. At unpredictable mo-
ments, one of the controllers will give a time-out error. Our best guess to the origin of these
errors is that the communication from speed modern PC is so much greater than what the
controllers were designed for in the nineties that they occasionally get overloaded. But at this
point that is pure conjecture.

The time-out errors completely halt the execution of a measurement sequence, making them
extremely inconvenient. They were reduced by adding manual delays in the class function that
sends commands to the controller, Motor.send command, but no amount of delays prevented
these errors completely.

Like we did with the Thorlabs camera, we circumvented the problem instead of solving it.
This time we wrote a simple try/except statement that will re-send a command up to three
times. Since implementing this statement, no measurement-interrupting time-out errors have
occurred.

The command flow follows the following order: move -> send command -> write command,
with the order going from high to low level. The most important code snippets of these three
commands are shown below.
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def move(self , degrees , mode=’relative ’):

if mode == ’absolute ’:

new_position = degrees

elif mode == ’relative ’:

new_position = self.get_current_position () + degrees

allowed = self.bounds [0] <= new_position <= self.bounds [1]

if allowed:

self.send_command(’move to absolute position ’, new_position)

else:

print(f’Desired position {new_position} is out of operating bounds of

axis {self.axis}.’)

def send_command(self , command , parameter=’’):

time.sleep (1)

full_command = f’{self.axis}{self.COMMANDS[command ]}{ parameter}’

if ’move’ in command:

wait = f’{self.axis}{self.COMMANDS ["wait for motion stop "]}0’

full_command += ’;’ + wait

self.write_command(full_command)

err = self.query_command(self.COMMANDS[’read error code’])

# remove first number from error code if the first number is the

# same as the axis number.

if err [0] == str(self.axis) and len(err) > 2:

err = err [1:]

if err != ’0’:

if err in self.ERROR_CODES:

print(

f’Error code {err}: {self.ERROR_CODES[err]} on device ’

f’"{self.name}" while executing command ’

f’"{ full_command }".’)

else:

print(

f’Error code {err} on device {self.name}.’)

return False

else:

return True

def write_command(self , command , attempt =1):

try:

self.instrument.write(command)

except pyvisa.VisaIOError:

print(

f’Got a VisaIOError on device "{self.name}" while ’

f’ executing command "{ command }" (attempt {attempt }).’)

if attempt < 3:

self.write_command(command , attempt=attempt + 1)

else:

print(’Three attempts failed. Will continue with ’

’next command.’)

return ’VisaIOError ’

A.2.3 HDF5

As described in chapter 3.1.2, we used the HDF5 data format during this project. The two
main benefits of this format for us are the flexible way of saving metadata and automatic data
compression. A drawback of HDF5 is that is not the most intuitive format to use. To make life
a bit easier, often used code snippets were combined into a custom HDF5 class.
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Creating New Files

The first thing to note is that HDf5 files are very fragile while opened in ’write mode’. A python
script crash or copying the file while open can be enough to completely corrupt the embedded
data. Caution is certainly advised. We therefore strongly advise to only use the custom class
with the with/as syntax.

HDF5 uses a folder-like internal structure where ’groups’ and ’datasets’ are the analogues of
folders and files. Each object in the hierarchy can have metadata assigned to it. With the
custom HDF5 class, creating a new file and filling it with data can be done as follows:

# Create some (meta)data

data = np.random.randint(0, 255, (500 ,500))

metadata = {’meta1 ’: 5, ’meta2 ’: [1, 2, 3]}

with HDF5(’test.hdf5’, ’create ’, user=’Naor Scheinowitz ’, date=True) as f:

f.group(’test group’)

dset = f.create_dataset(’test set’, data , parent=’test group ’, metadata=

metadata)

HDF5.read_metadata(dset , print=True)

Created file 2022.04.12 test.hdf5

Created HDF5 group test group

meta1: 5

meta2: [1 2 3]

Closed file 2022.04.12 test.hdf5.

Viewing and Editing Metadata

The beauty of saving metadat cannot be overstated. It is incredibly useful for data analysis
that all relevant information is bundled with the raw data itself. Using the custom functions
read metadata and print structure, the metadata can be easily viewed.

with HDF5(’test.hdf5’, ’read only’) as f:

f.print_structure ()

dset = f.file[’40 degree reflection/Frames 0’]

HDF5.read_metadata(dset , True)

user: Naor Scheinowitz

Groups:

40 degree reflection

60 degree reflection

Datasets of group "40 degree reflection":

Frames 0

Metadata of group "40 degree reflection":

angle_in: 40

angles_out: [ 0 80]

date: 2022.02.23

median: True

nframes: 3

repeats: 5

software_verion: 0.8

step_size: 10
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angles_out: [20 30 40 50 60 70 80]

color_mode: rgb8p

exposure: 9.99915

frame_period: 9.9997492

gains: [1. 1. 1. 1.]

pixel_rate: 5000000.0

polarizer_angles: [ 0. 12. 24. 36. 48. 60. 72. 84. 96. 108. 120. 132.

144. 156.

168. 180.]

roi: [ 0 1280 0 1024 1 1]

Using the read metadata and write metadata functions, metadata can easily be copied be-
tween files. This can be useful when creating a new file with corrected data from a raw data
file.

with HDF5(’raw.hdf5’, ’read only’) as raw:

with HDF5(’corrected.hdf5’, ’open’) as f:

for dset in raw.file:

metadata = HDF5.read_metadata(raw.file[dset])

HDF5.write_metadata(f.file[dset], metadata)

Appending Datasets

HDF5 can be very rigid once datasets have been created. In fact, upon creation, the dimensions
of a dataset are fixed. This implies that during measurement runs, each piece of new data must
be saved as a separate dataset, or the entire dataset should be stored in system memory until
the measurement terminates. Both not attractive options.

Luckily, there is a loophole: upon creating a dataset, at maximum one axis can have an un-
derfined size. This opens the door to appending data to an existing dataset. The following
function achieves such functionality.

def append_dataset(dataset , new_data):

current = dataset.shape [0]

new = new_data.shape [0]

total = current + new

dataset.resize(total , axis =0)

dataset[current:total] = new_data
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