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Abstract

The AdS/CFT correspondence provides a way to perform computations
on strongly interacting, conformal systems living in the AdS boundary
by studying the behaviour of the holographic dual in the form of a black
hole in the centre. Until now, such inquiries where limited to spatially ho-
mogeneous systems, however, metallic systems are characterized by the
presence of an ionic lattice. We study the DC magneto-transport of a dual
to Reissner-Nordström metal using a novel code which numerically com-
putes its behaviour in two dimensions in the presence of an explicit lattice
and a magnetic field. We find that conductivity is dominated by Drude
transport at low temperatures. Furthermore, we find that the transport is
described by a transverse relaxation rate ΓT of angular momentum in ad-
dition to a longitudinal rate ΓL and these depend differently on tempera-
ture. This hints that AdS/CMT may provide an explanation to the anoma-
lous temperature scaling of the Hall Angle in the strange metal phase of
high Tc superconductors.
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1 Introduction

1.1 Transport & Conductivity

The study of the conductivity of materials has long been limited to the
transport of certain conserved quantities facilitated by the movement of
(quasi)particles. For example, electric transport can be described as the
movement of electrons carrying charge through a lattice, heat (energy) can
be transported by electrons or phonons. A conductivity is defined as the
linear response of the flow of carriers to a small applied field - which can
be a temperature gradient, an electric field, a magnetic field, etc. In the
case of an electric field E⃗ sourcing a current J⃗:

J⃗ = σE⃗ (1)

which is known as Ohm’s law. In a real material, a certain carrier may
carry different quantities, like electrons carrying electrical charge and heat
through a metal, or there may be different carriers present, like phonons
opening a channel for heat transport. To describe how multiple conserved
quantities flow in a system which is brought out of equilibrium when an
electric field and a temperature gradient are applied simultaneously, we
use the generalized Fourier’s & Ohm’s law:(

J⃗
Q⃗

)
=

(
σ αT

ᾱT κ̄T

)(
E⃗
∇⃗T
T

)
(2)

Here Q⃗ is the heat current, T is the temperature, and α and κ̄ are the
thermo-electric and thermal conductivities respectively. In this thesis we
will be looking at two dimensional materials exclusively, in which case all
conductivities are 2 × 2 matrices. In contrast to measurements on one di-
mensional cables which we may be used to, resistivities are the elements
of the inverse matrices (not the inverse elements of the matrices), and we
have ρxx = σxx/(σxx + σxy), for example.

Due to the Onsager reciprocal relations, the conductivities will be anti-
symmetric if time reversal symmetry is broken [47]: α = −ᾱ and σxy =
−σyx, for example . In the time reversal invariant systems these matrices

Version of January 13, 2021– Created January 21, 2022 - 14:18

2



1 Introduction 3

are symmetric. The canonical way in which time reversal symmetry is
broken is by the presence of a magnetic field. In the Results section we will
be investigating magneto-transport in detail and the off-diagonal elements
are anti-symmetric in all cases.

Equation (2) is a compendium of sorts for a wide variety of experi-
mental settings available to the solid state physicist. For example, if one
heats one side of a material sample, this heat will diffuse throughout the
sample. If electrons (or some other charged quasiparticles, like holes) fa-
cilitate the transport of heat, charge will also invariably want to flow and
produce an induced electric field: the thermal potential creates an elec-
tric potential. This is known as the Seebeck-Peltier effect and is described
as the response coefficient between the applied thermal gradient and in-
duced electric field: E⃗ = −θ∇⃗T. We can easily read off that θ = −σ−1α,
since we take J⃗ = 0 as there is no net current actually moving through the
sample [53]. Accordingly, the Seebeck coefficient can be a measure of the
particle-hole asymmetry in a given material, for example.

The goal of the theoretical effort has been to find expressions for the
thermo-electric conductivities in terms of the properties of a material and
its thermodynamical quantities.

1.2 Drude Theory

The first quantitative theory of the conductivity of metals was written
down in 1900 by Paul Drude [17]. It is a purely classical model which
assumes Newtonian point-like objects, the electrons, which are only af-
fected by an electric field via the Lorentz force and by the ionic lattice,
which they bump into and subsequently lose momentum to. The latter
part, which may be a difficult affair, is modeled by introducing a relax-
ation rate τ (the frequency of bumps, or mean free time) which leads to
momentum leaking out of our system. This gives the equation of motion:

d
dt
⟨p⟩ = q

(
E +

⟨p⟩ × B
m

− ⟨p⟩
τ

)
(3)

where q is the electrical charge of a carrier and ⟨p⟩ is the averaged mo-
mentum. Noticing that the current is related to momentum via J⃗ = nq

m P⃗,
since we obtain velocity by dividing out the carrier mass m and must then
multiply by carrier charge and carrier density n to obtain units of current,
we can rewrite above expression into the form of equation (1), and in do-
ing so we obtain the historically first theoretical underpinning of Ohm’s
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1 Introduction 4

law. In one dimension and taking B = 0 we have:

σDrude =
nq2

m
1

1
τ + iω

(4)

Here we got rid of the time derivatives by applying the identity p(t) =∫
p̂(ω)eiωtdω which gives us a factor of iω, and the conductivity as a func-

tion of the frequency of the applied AC electric field: the (complex) optical
conductivity. In the remainder of this thesis, we will take ω = 0, and
exclusively look at the DC conductivity, as these values can be efficiently
computed in a holographic setting, whereas the optical conductivity in
more than one dimension and in presence of a magnetic field requires a
more complex numerical approach and falls outside of the scope of this
work. We end up with:

σDC = ω2
pτ. (5)

where we have defined the plasmon frequency as ωp = q
√

n/m. In the
Drude model, in one dimension with no magnetic field present, the con-
ductivity is directly proportional to the relaxation rate, multiplied by a
factor which is called the Drude weight, which is the plasmon frequency
squared. Plasmons are the particles related to translational symmetry break-
ing of our conducting medium: plasmons are to a plasma (a fluid of charged
particles, as electrons in a solid) what phonons are to the ionic lattice.

From this same picture we can also derive an expression for the ther-
mal conductivity κ, which is simply that for a kinetic gas: κ = 1

3 v̄nmcV l
where cV is the heat capacity and l is the mean free path. We observe what
happens when we inspect the ratio of thermal and electrical conductivity:

κ

σ
=

v̄m2cvl
3q2τ

=
8k2

BT
πq2 ≡ LT (6)

since cV = 3 kB
m for a kinetic gas and l = τv̄ and we have defined the

temperature independent Lorentz factor L. This result of Drude theory
is the Wiedemann-Franz law which states that the ratio of thermal and
electrical conductivity is proportional to temperature, found to be true for
most conventional metals across a range of temperatures [21].

1.3 Fermi Gas & Electron Band Theory

Drude theory fails to explain the existence of insulators and semi-conductors,
which show increasing conductivity as a function of temperature. In the

Version of January 13, 2021– Created January 21, 2022 - 14:18

4



1 Introduction 5

Drude picture, σ ∼ τ, and with increasing temperature the ionic lattice
shakes more violently, enlarging the cross section of scattering events, de-
creasing τ, showing behaviour as seen in conductors. It turns out the Pauli
exclusion principle is failed to be taken into account, which states that
multiple fermions cannot inhabit the same quantum state.

A Fermi gas is nothing else than a multiple particle version of the par-
ticle in an infinite square potential well, a classic exercise of Quantum Me-
chanics. One solves the Schrödinger equation with boundary conditions
Ψ(x) = 0 for x < a/2 and x > a/2 for a well with size a. One gets energies
En = n2π2h̄2

2ma where n enumerates the exited states and the ground state is
n = 1. The Fermi gas takes these solutions and fills the energy levels from
the ground state up until we run out of particles. Since there are no in-
teractions the levels are not affected, and we take V to be the size of our
solid: V = l3. In a classical gas, the chance to find a particle with energy ϵ
is given by the Maxwell-Boltzmann distribution:

nMB(ϵ) = e−(ϵ−µ)/kBT (7)

In a Fermi gas, due to the anti-symmetrization of the wave function with
respect to to identical fermions, this is replaced by the Fermi-Dirac distri-
bution:

nFD(ϵ) =
1

e(ϵ−µ)/kBT + 1
(8)

The effect of temperature is to blur the hard border of our Fermi sphere:
in the T → 0 case, we obtain a Heaviside function with a discontinuity at
ϵF = µ, which we call the Fermi energy. The Fermi energy is the energy
at the Fermi surface, the border between filled and unfilled states in phase
space.

Already our Fermi gas is quite different to the ideal kinetic gas which
was used in the Drude model, as it is characterized by a Fermi surface
and exhibits degeneracy pressure, which actually accounts for the solidity
of most common materials, built up from fermions [18]. However, we
need one more ingredient in our system to link it to conductivity as seen
in experimental settings, and that is, of course, the ionic lattice in which
our electrons live. It turns out that simply requiring that the potential to be
periodic, and not worrying about the intricate details of how atomic nuclei
would interact with electrons, is enough to reach our goal. This result is
known as Bloch’s theorem. Following [22], we have:

V(x + a) = V(x) (9)

and for ease of use we make it periodic with N periods so that V(Na) =
V(0). If we define a displacement operator D f (x) = f (x + a), we notice
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1 Introduction 6

that it commutes with our Hamiltonian which is also periodic. This means
they can be simultaneously diagonalized:

ψ(x + a) = λψ(x) (10)

with ψ an energy eigenstate and λ some complex number. Also note that:

ψ(x + Na) = ψ(x) =⇒ λNψ(x) = ψ(x) =⇒ λN = 1. (11)

Now let us look at the Schrödinger equation within the periodic lat-
tice, and assume the potential has no bearing within these regions, and so
is in some way spiked: electrons only notice the nuclei from very short
distances as compared to the interatomic spacing a - and when close to
the nuclei, the potential becomes effectively infinite. In that case, we are
dealing with a periodic infinite square well with Hamiltonian:

− h̄2

2m
d2ψ

dx2 = Eψ, (12)

and solution:
ψ(x) = Asin(kx) + Bcos(kx) (13)

within these free regions, where k ≡
√

2mE
h̄ . Writing λ = eiKa (which im-

plies K = 2πn
Na ) since |λ|2 = 1 must hold, and applying this to equation (13)

to jump to the cell immediately left of the origin we get:

ψ(x) = e−iKa[Asink(x + a) + Bcosk(x + a)] (14)

Equation (13) and (14) must be equal at x = 0. which gives us:

B = e−iKa[Asin(ka) + Bcos(ka)]. (15)

Multiplying by eiKa/B and taking only the real part we get:

cos(Ka) =
A
B

sin(ka) + cos(ka). (16)

We can see that, generically, there are not always solutions for any given
energy E ∼ k2 since we can choose |A

B | > 1 and the left hand side can
never exceed 1. Furthermore, there will also always be regions for values
of k where solutions do exist: these are called bands and they are separated
by gaps of forbidden energies.

These bands are filled up from the bottom up, following the Fermi-
Dirac distribution. The crucial question now is, of course, where is the
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1 Introduction 7

Fermi energy as compared to our bands? Depending on the amount of
valence electrons in the outer shell of the atoms in our material, and any
doping which of course adds holes or extra electrons into the mix, the
outer most band may be either filled or partially full. In the case of a par-
tially filled outer band, which means the Fermi energy lies somewhere in
the middle of a band, relatively small energies suffice to excite electrons
into conductive channels within the material, since they lie within a band
- this is called a conductor. If the band is filled, any excitations will also
need to bridge the gap which requires a much larger energy for the elec-
trons to end up in the next band - this means the material is an insulator.
Doping the material may produce a semi-conductor accordingly. Further-
more, if one increases temperature, this means more electrons will end
up in the conducting band in the case of an insulator, making the jump
with the help of thermal fluctuations: insulators will conduct better with
higher temperature - this immediately follows looking at the Fermi-Dirac
distribution. This concludes how the Fermi gas model of an electron sys-
tem predicts the existence of insulators and semi-conductors as found in
nature.

1.4 Fermi Liquid Theory

Departing from a Fermi gas, we may wonder what happens when we in-
troduce electron-electron interactions. As we know, they do indeed exist
in the form of the Coulomb potential, and we may hope including them
more accurately describes electrons in a solid than the Fermi-gas band-
gap theory. Landau wrote down the phenomenological theory in an ef-
fort to describe Helium-3, which are fermions with slight interactions, in
what has now become known as Fermi liquid theory [36]. It is an effective
description of fermions at low temperatures compared to the Fermi level
(kBT ≪ ϵF) with significant interactions.

Landau’s argument boils down to that there is a one-to-one correspon-
dence between the excitations of the interacting theory and the particles of
the non-interacting theory: the Fermi gas. This means that we can effec-
tively describe a Fermi liquid as a Fermi gas of quasiparticles (the excita-
tions around the Fermi-surface): the properties of the quasiparticles take
all the effects of interactions into account - we use the quasiparticle mass
and charge in defining the plasmon frequency ωp = nq2

∗/m2
∗ in equation

(5). In the zero temperature case, a single electron lying above the Fermi
surface with energy ϵ1 can scatter with one lying in the Fermi sea with
energy ϵ2 into two states lying above the Fermi surface with energies ϵ3
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1 Introduction 8

and ϵ4. We have ϵ1 + ϵ2 = ϵ3 + ϵ4. Given our first electron, we have a
sliver above the sphere with of length |ϵ1 − ϵF| to scatter into - the size
of this sphere determines our scattering probability (the amount of states
permissible taking conservation of energy into account). Since, given ϵ1,
we have two choices in energy levels (e.g. ϵ4 is determined once we have
chosen the other two) the scattering rate goes as |ϵ1 − ϵF|2. In the finite
temperature case, the Fermi surface is blurred with a width kBT, and thus
we pick up a contribution to our scattering rate 1

τ ∼ (kBT)2 - as now the
available phase space is determined by the temperature more so than the
energy of the first exited electron. We, therefore, find the DC resistivity of
the Fermi liquid to be quadratic in temperature:

ρDC,FL =
1

σDC,FL
∼ T2. (17)

Another characteristic of the Fermi liquid is its entropy. The entropy is,
of course, the uncertainty with regard to the exact state the system is in.
Taking again the image of the Fermi surface being blurred by increasing
temperature, we can easily guess what it is: S ∼ Td−1. The fact that all
excitations lie around a surface effectively removes one dimension from
phase space: this is the Sommerfeld entropy.

One of the central assumptions of Fermi liquid is the stability of the
quasiparticles, expressed as τ ≫ h̄/kBT (where τ is the particle lifetime)
and we shall later see it is exactly this assumption which seems to be vi-
olated in strange metals. This means the quasiparticle picture in general
does not hold and a widely different approach is needed. Note that this
has nothing to do with the ’wave/particle’ duality: given a many-particle
wavefunction we can often find a Hermitian operator, for which the cor-
responding basis neatly orders the wavefunction into a product state of
its tensor elements. In the case of the momentum operator, we can call
these states ’waves’ and in the case of position we call these ’particles’,
however, more generally, the fact that the wavefunction decomposes into
a product makes that we call these states (quasi)particles for any arbitrary
corresponding operator. Thus, our particles may be purely wavelike. For
very complex states which cannot be written as product states, and highly
entangled states are examples of this, we say there are no quasiparticles.
However, no rigorous method exists to conclude no operator of the kind
exists for a given wavefunction.

NOTE: While electron-electron interactions as described above con-
serve energy, they, in fact, do not typically conserve momentum when the
Fermi liquid is embedded in a lattice. Due to the Umklapp process, when
the initial wave vectors are sufficiently large, the resulting particles can
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1 Introduction 9

have a flipped momentum: momentum has dissipated out of the electron
system into the lattice. That is the reason why the quasiparticle lifetime τ,
associated with their rate of interaction, is also a measure for momentum
dissipation of the Fermi liquid, and sets the resistivity. Due to the particles
living on the Fermi surface, their energies are quite small (seen from the
Fermi surface) as compared to their momenta (seen from the origin) - this
makes Umklapp scattering possible even at low temperatures.

NOTE: As described above, resistivity will go like T2 in Fermi liquids
like metals at low temperatures, however, when one measures the temper-
ature dependence resistivity, one will most likely find different a scaling.
This is because we only took electron-electron interactions into account.
If we increase temperature, a lot more phonons will start to populate our
material, as higher frequency modes will become available to them until
we reach the Debye frequency - phonon densities will increase with T3 and
because of how their interactions are angle dependent with cosθ we pick
up another T2 term giving us ρ ∼ T5 for electron-phonon interactions. At
even higher temperatures, where we have passed the Debye temperature,
and all of phase space is equally accessible for our phonons, they will start
to behave like classical springs and we can deduce from the equipartition
theory that they now increase linearly in T, as is measured for resistivity
in metals at high temperatures.

1.5 Superconductivity & BCS Theory

In 1911 it was discovered by Heike Kamerlingh Onnes in Leiden that mer-
cury loses its resistivity altogether when cooled below 4.2K [33]. Materials
which possess such superconducting properties have drawn attention be-
cause of their many useful applications, mostly based on generating very
large magnetic fields by induction, using currents which would otherwise
melt the components if even a little resistance remained and was allowed
to generate heat. Examples of technologies currently utilizing supercon-
ductivity are MRI’s, nuclear fusion reactors, using the magnetic fields to
contain the fusing plasma [19] and particle accelerators such as the LHC
[48].

On the other side, superconductivity drew the attention from the the-
oretical community as how to account for this phenomenon of vanishing
resistivity - which one would naively not expect to happen at any finite
temperature (for a Fermi liquid with ρ ∼ T2, resistivity only vanishes
at zero temperature). The solution was found by Bardeem, Cooper and
Schrieffer in what is now known as BCS theory [7]. It departs from a Fermi
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1 Introduction 10

liquid with a slight attractive interaction V0 between the fermions. In met-
als, phonons mediate this interaction between electrons. The isotope effect
was the hint that the lattice plays a role in the phenomenon: it was found
that TC ∼ M−1/2 where M is the atomic mass of the material [16].

The next experimental hint was the fact that the specific heat exponen-
tially decays at the critical temperature Tc, indicating that there was a large
reduction in the density of states at this point (so that a little extra energy
immediately fills all available states), which meant there has to be a gap
in the energy spectrum at Tc. A normal Fermi liquid metal is character-
ized by gapless excitations around the Fermi surface as discussed in the
previous section, which is why electrons are easy to excite into conducting
states.

The crucial ingredient to BCS theory is precisely the existence of a well
defined Fermi surface, which is why we have to depart from a Fermi liq-
uid: this makes it so that the attractive interactions between the particles
can only happen in small halo around the surface, and only the density of
states at this point in phase space is relevant. After some calculations, this
fact turns out to lead to a negative binding energy for pairs of fermions
for any V0, no matter how weak. Another way of putting it, is that a gap
springs into existence at low temperatures which protects these pairs from
decaying - which is why they can travel unhindered through the material
with zero resistivity. The gap at zero momentum is given by:

∆0 = 2h̄ωDe−
1

V0ρF (18)

where ωD is the Debye frequency (the maximum frequency of phonons in
a lattice, set by the lattice spacing and atomic weight) and ρF is the density
of states at the Fermi surface. The critical temperature is given by:

Tc =
eγE

πkB
∆0 (19)

where γE ≈ 0.577 is the Euler constant. We see that no matter how small
we choose V0 to be, Tc will always be some finite value. Another satisfac-
tory result is that Tc is proportional to ωD, which goes as M−1/2, explain-
ing the isotope effect.

The bound pairs, called Cooper pairs, are made up of a duo of fermions
and are thus bosons themselves: this makes them able to all condense
into the ground state at sufficiently low temperatures, forming a Bose-
Einstein condensate - even though the electrons they are made up of are all
still neatly occupying some unique state in phase space. This entire story
does not only explain superconductivity in metals, but also superfluidity
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1 Introduction 11

in fermionic Helium-3 via the exact same mechanism. Here there is, of
course, no lattice for phonons to mediate an attractive interaction - and it
is the Van der Waals force that makes 3He stick together into pairs [56]: as
predicted by BCS theory, the specific nature or even magnitude of the force
is not of the essence, as long as it is attractive there is some condensation
temperature.

NOTE: Another way to look at superconductivity is with a mean field
method, where one can see that the gap ∆ is actually the order parame-
ter of the condensate phase, breaking local U(1) gauge symmetry [1]. As
this is not a global symmetry, we do not end up with a Goldstone boson,
but instead, ’the photon acquires mass’ via the Anderson-Higgs mecha-
nism. The same idea was later applied to particle physics to explain the
mass of elementary particles. In a superconductor, the mass of the pho-
ton means electric and magnetic fields are mediated by a massive particle,
which makes its effects very short ranged (∼ e−mPhr instead of ∼ 1/r) and
thus we have phenomena like magnetic fields being expelled from the in-
sides of superconductors in what is known as the Meissner effect.

From equation (19) one can deduce some upper bound for the maxi-
mal attainable critical temperature to be found in nature, which is known
as McMillan’s limit, and lies somewhere around 40K [41]. In 1986, a major
experimental discovery was made in the form of the first high temperature
superconductor, breaking the limits of which had been possible in BCS the-
ory [9]. Nowadays, these copper-oxide compounds (cuprates) have been
known to have a critical temperatures as high as 133K [52]. Moreover, it
are precisely these materials which defy Fermi liquid theory at tempera-
tures above their critical temperature... It is clear some new framework
of conductivity and transport is needed in dealing with these challenges
brought forth by experiment.

1.6 High-Temperature Superconductivity

Let us first go over the experimental findings in the field of high temper-
ature superconductors. The most salient feature is the high Tc, with the
record being 133K as mentioned, higher than permissible by BCS theory.
However, when trying to discern what goes on within these materials, su-
perconductivity may actually be an antagonist, as we have no probe for
resistivity as function of temperature, and the Meissner effect dispelling
magnetic fields makes the study of magneto-transport impossible. Thus,
we investigate these materials above their critical temperature. Here, a
plethora of strange transport behaviour is to be found. First and foremost,
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1 Introduction 12

these materials exhibit a linear in T resistivity going up directly from the
origin at zero T all the way up to the melting point of the material [31].
(One can effectively turn off superconductivity by turning on a very strong
magnetic field, to measure finite resistivity at low temperatures.) This is in
direct contradiction with Fermi liquid predictions as discussed in section
1.4, where we expect different regimes of T2 and T5 behaviour before it
saturates for linear in T only at high temperatures. That cuprates seem to
ignore these subtleties is quite puzzling.

Another surprising feature is that the Hall angle, which is the ratio of
transverse and longitudinal conductivity σxy/σxx, has a 1/T2 temperature
dependence, different from the linear in T longitudinal resistivity [46]. Regard-
ing this finding, which has not been explained using conventional Fermi
liquid theory and central to the magnetotransport of cuprates, we will go
into more detail later, and show that Holographic metal theory predicts
different temperature scaling of the Hall angle and longitudinal resistivity
in section 3.6.

In most metals, one can lower the longitudinal resistivity by applying
a magnetic field perpendicular to the plane of flow: the electrons start
performing cyclotron motion and are deflected, raising resistance. This
phenomenon is called magnetoresistance (MR). While the MR in common
metals adheres to Kohler’s law, cuprates surprise us once again and show
what is called ’Planckian quadrature’ in the overdoped regime, and a mod-
ified version of Kohler’s law in the underdoped regime [2]. We study the
MR of our RN metal in section 3.9.

There are more strange characteristics of these materials to be listed,
however, those mentioned above are the most relevant to our current re-
search and observations listed in the results section.

What exactly are these high temperature superconducting materials
made out of? There are a number of different classes, but here we will
focus on the cuprate based substances. Essentially, they are structured
from two dimensional layers of copperoxide, with layers of other materi-
als between them, such as Lanthanum-Barium (LB-CuO), Yttrium-Barium
(YB-CuO) and Bismuth-Strontium-Calcium (BiSC-CuO)[34]. These layers
do not participate in transport and act as a charge reservoir for the con-
ducting copper oxide layers between them, effectively doping the system.
By doping we add or remove electrons from our system, which is a cru-
cial parameter in exploring the behaviour of cuprates, as we enter widely
different regimes and phases when altering the doping and temperature,
shown in the famously complex phase diagram (simplified here) in figure
1.

Going from optimal doping, where we find our highest Tc and strange
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Figure 1: Phase diagram of cuprate as a function of temperature and doping
as from [8]. As we move from underdoped to overdoped, we go from an anti-
ferromagnetic Mott insulator via the pseudogap and Non-Fermi liquid Strange
metal phase to the normal metallic phase at high doping. The superconducting
dome lies mostly under the Strange metal phase, with its peak at optimal doping.

metal behaviour and increasing doping drastically, removing electrons as
we go, we find we reenter the domain of normal metallic behaviour as
described by Fermi liquids with a well defined Fermi surface [55]. It is
always good to have a charted area as a starting point - what exactly could
be going wrong as we increase the electrons density? An easy guess it that
it would have to be something to do with electron-electrons interactions,
as those are reduced with the electron density... Let us check in the highly
underdoped regime: here we find our cuprate to be an anti-ferromagnetic
insulator known as a Mott insulator, a system characterized by its enor-
mous electron-electron interactions. It seems we were on the right path
with our guess. Let us take a closer look at these materials.

1.7 Mott Insulators

Cuprates descend from a parent Mott insulator by doping them to some
critical value. What are Mott insulators? In a certain sense Mott insulators
are the exact opposite of a Fermi liquid/gas system: where these are char-
acterized by free moving electrons in momentum eigenstates with negli-
gible interactions, the electrons in a Mott insulator are in position eigen-
states, dominated by their strong interactions and have negligible kinetic
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energy. They are the ordered, potential dominated version of the Fermi
gas and can perhaps be understood as a Fermi crystal. Why they are in-
sulators is not hard to see: the electrons are locked in a kind of traffic jam,
where, if one electrons where to hop to the next atom, all electrons in the
material would have to hop at the same moment [34]. Note that the mech-
anism for their insulating behaviour is completely different from that of
the band-gap theory, which actually predicts most Mott insulators to be
good conductors [44]. It appears the chemistry of the cuprates amplifies
the Coulomb interactions between electrons in the outer shells to a large
degree.

Mott insulators can be effectively described by the Hubbard model,
which is deceivingly simple, here given for one dimension:

ĤHubbard = −t ∑
i,σ
(ĉ†

i,σ ĉi+1,σ + ĉ†
i+1,σ ĉi,σ) + U ∑

i
(n̂i↑n̂i↓). (20)

It describes spins ĉi,σ sitting at lattice sites i with hopping potential t and
repulsive interaction U. n̂i,σ = ĉ†

i,σ ĉi,σ is of course the spin density opera-
tor. Depending on the ratio U/t this describes a a perfect insulator in the
U/t → ∞ limit, where it becomes identical to a tight binding system, or
an (anti)ferromagnetic system of spins if U/t is not too large [30]. In fact,
analytical solutions to the Hubbard model in arbitrary dimensions have
not been found. Why is this the case? Most likely, it has to do with the fact
that these systems are strongly interacting, or, strongly correlated.

Perturbation theory is based on the principle that one can get predic-
tions to arbitrary accuracy by performing an expansion around the solu-
tion to the non-interacting case in powers of the interaction coefficient g
(coupling constant). It can easily be seen that this ploy only works when
g < 1 in whatever units we have chosen, as higher terms will be increas-
ingly irrelevant to the final outcome. A famous example is Quantum Elec-
trodynamics (QED) where the coupling constant is the Fine Structure con-
stant α ≈ 1

137 and Feynman diagrams provide a way to keep track of the
expressions of higher order terms. The opposite is true in strongly inter-
acting systems which are defined as having g > 1: the higher the term
the more relevant it is, and there is no hope of using perturbation theory
in these cases. Quantum Chromodynamics (QCD), describing the strong
nuclear interactions as the exchange of virtual gluons via a SU(3) gauge
symmetry, is the famous counterpart to QED. Except in the case of very
high energies where asymptotic freedom kicks in, one needs other meth-
ods than perturbation theory to make predictions within QCD.

That strange metal cuprates descend from a parent Mott insulator is
a strong indication that they in fact are strongly coupled systems. Fur-
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thermore, another hint that strong correlation is causing the strange metal
behaviour, is given by the experimental fact that the linear in T resistivity
is observed in multiple systems where electrons are know to be strongly
correlated, even though they may not exhibit high Tc superconductivity
[31].

1.8 Strongly Interacting Systems

As described above, strongly interacting systems present a challenge to
analytical methods, however, cases exist where theory did indeed gain a
foothold in these domains. One method is to unleash the power of modern
supercomputing clusters on the equations of motions and simply brute
force a way into a solution, as is done in Lattice QCD - which can, of
course, always be done in principle, but is highly resource intensive. Are
there more elegant approaches?

Take the action describing photon propagation in quantum field theo-
retic (QFT) language:

S[A] = −
∫

dx4 1
4g2 F2

µν. (21)

When we include charged fermions (such as electrons described by a spinor
field) interacting with our vector potential we get the complete theory of
electromagnetism (QED). Here Fµν = ∂µ Aν − ∂ν Aµ. Taking δS = 0 we find
the EoM:

∂µFµν = Jν
Electric, (22)

in the general case with charged particles (for our vacuum case equation
(22) is 0). Note that equation (22) together with Bianchi’s identity, ∂[µFνρ] =
0, gives us all four of Maxwell’s equations. (The square brackets around
the indices denote that the tensors are anti-symmetrized in these indices.)
Let us now take Bianchi’s identity as the EoM and supply it with a four
current:

∂[µFνρ] = ϵµνρσ Jσ
Magnetic. (23)

Note that, in Maxwell equation notation, now ∇ ·B ̸= 0: we have acquired
a magnetic charge in the process, also known as the magnetic monopole.
We can build the Bianchi identity into the action with a Lagrange multi-
plier Ã:

S[A, Ã] = −
∫

dx4(
1

4g2 F2
µν + Ãµϵµνρσ∂νFρσ). (24)
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By completing the squares on Fµν we can integrate it out completely and
are left with:

S[Ã] = −
∫

dx4 g2

4
(∂[ρ Ãσ])

2 = −
∫

dx4 g2

4
F̃2

ρσ. (25)

We see that this is identical to the original action (21), with the transfor-
mation g → 1/g̃. Therefore, there exists a dual description of electromag-
netism in terms of magnetic monopoles instead of electric charges, known
as the Montonen-Olive duality [43]. The crucial element here is that it is a
strong/weak duality: trying to perturbation theory in the magnetic case has
no hope of succeeding, however, transforming to the electric dual descrip-
tion inverts our coupling constant g and we enter a weakly interacting
theory. Thus, if one is able to find a strong/weak duality for a strongly
interacting theory, the validity of perturbation theory is restored. Is there
such a duality available for our strongly interacting, doped Mott insulator
cuprate system?

1.9 AdS/CFT Correspondence

We must first note that it is believed there is a phase transition taking place
in the cuprates at critical doping [50]. As is known from Renormalization
Group theory, critical points signal the onset of scale invariance in a sys-
tem as driven by temperature. However, here it is driven by doping - as
we have seen in figure 1, doping is a way to effectively tune the coupling
coefficient of our system from dominant (Mott phase) to negligible (Fermi
liquid phase). Imagine a Hamiltonian with a potential term proportional
to g - if we slowly vary g, the energies of all the Hamiltonian eigenstates
will also continuously shift accordingly. It may happen that the energy of
some eigenstate may suddenly acquire an energy lower than the ground-
state and become the new groundstate at a critical coupling gc: therefore,
we get a sudden jump in the structure of our groundstate (even though
all states vary smoothly as a function of g). This is called a Quantum
Phase transition at a Quantum Critical Point (QCP) [51]. Such a transi-
tion can take place at zero temperature, furthermore, it is found that even
at non-critical coupling, quantum critical behaviour is restored at finite
temperature, resulting in the famous quantum critical wedge. A system in
a quantum phase transition may be described by a conformal field theory
(CFT) which is a Quantum Field theory endowed with conformal invari-
ance. Barring many subtleties and the unsolved question concerning the
presence of a QCP in cuprates, let us for now suppose a cuprate at critical
doping can be effectively described by a CFT.
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It was noticed by Maldacena that there is a special relationship between
CFTs in d-dimensions and AdS space in d+1 dimensions [39]. Anti-de-
Sitter space is a maximally symmetric, vacuum solution to the Einstein
equation, which describes gravity in terms of the curvature of space-time
with the metric tensor gµν as the dynamic field. In Euclidean geometry,
the maximally symmetric spaces are the sphere, flat space and hyper-
bolic space: Anti-de-Sitter space is the Lorentzian equivalent of hyperbolic
space, characterized by a negative cosmological constant, or a negative in-
herent curvature. The metric tensor in AdS is given by:

ds2 =
1
y2

(
−dt2 + dy2 + ∑

i
dx2

i

)
(26)

Here, y is the radial coordinate where y → ∞ is the centre of our space. It is
easily seen that as we transform all spatial coordinates (y, xi) → (λy, λxi),
our metric remains unchanged: it is scale invariant. Furthermore, AdS
possesses the curious feature that it reduces to a flat Minkowski space
at infinite spatial distance from the centre, as we take y → 0 we get:
ds2 = −dt2 + ∑i dx2

i . This infinitely far away region thus has a well de-
fined structure, and is called the boundary of AdS. The finding of Malda-
cena was that, in the context of string theory, if one defines a CFT living
on the conformal, Minkowski boundary of AdS, this theory is dual to the
gravitational theory in the bulk. The crucial discovery was that this also
was an instance of a strong/weak duality...

This is very promising, as it would allow us to actually perform cal-
culations on our strongly interacting CFT which is quite impenetrable to
ordinary analytical methods, by performing the calculations in the weakly
interacting bulk dual of our AdS space and then translating back. A dic-
tionary has been composed for this very purpose linking expectation val-
ues on the boundary to those in the bulk, knows as the Gubser-Klebanov-
Polyakov-Witten (GKPW) rule:

⟨e
∫

ddxJ(x)O(x)⟩CFT =
∫

Dϕe−SAdS |ϕ(x,∂AdS)=J(x) (27)

for some field ϕ sourced by J and an operator O. One can churn the math-
ematical gears, and find that, for example, the stress energy tensor in the
boundary (so what would describe the energy, pressure and shear terms
of our conformal metal) Tµν is given by the metric tensor gµν in the bulk.
The source of our operator O in the boundary CFT is given by the leading
part of the value of the field ϕ on approaching the boundary -the vacuum
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expectation value (VEV) of O is given by the subleading part of ϕ on ap-
proaching the boundary.

This tells us how to relate operators in the boundary to fields in the
bulk, but imagine we want to implement thermodynamical aspects in the
gravitational bulk theory, how would we go about that? Certainly, the
cuprate systems exist at a certain temperature, posses a chemical poten-
tial, a charge density, an entropy and so forth. To understand the relation-
ship between thermodynamics and gravity, we have to turn to Hawking’s
famous finding that black holes radiate light via black body radiation at a
temperature given by [29]:

TBH =
h̄c3

8πGkBM
(28)

where M is the black hole mass and G is Newton’s constant. Temperature
is the exchange rate between entropy and energy, so a black hole having a
temperature implies it has some entropy. This is given by the Bekenstein-
Hawking formula:

SBH =
c3kb A
4Gh̄

(29)

where A is the area of the black hole (proportional to the Schwarzschild
radius squared).

Furthermore, it was Bekenstein who recognized that black holes hav-
ing an entropy sets an entropy limit on all forms of matter, in what is
known as the Bekenstein bound. Imagine having an object of mass m, with
entropy S and general length scale R and throwing this object into a black
hole. The entropy of an object can be seen as the amount of bits needed
to describe its exact state, or the amount of bits we are missing in know-
ing its full description, which can also be seen as the amount of ’chaos’
in system - although this last expression can be misleading, as an ordered
material like a crystal also has a finite entropy. Now, the mass of the black
hole increases with that of the object, and so does the Schwarzschild ra-
dius as rS = 2GM/c2. As the radius increases, so does the area, and thus
we know how much the BH entropy increases: δSBH. However, imagine
we chose S > δSBH: it would mean information has been destroyed, or,
that the entropy of our total initial system S + SBH would be higher than
that of our final state SBH + δSBH, in contradiction with the second law
of thermodynamics. This is not permissible, and sets an upper bound on
the entropy of our object given by: S < 2πRmc2 [10]. This is a generic
trait of all matter in a theory which includes both quantum mechanics and
gravity.
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A crucial feature of equation (29) is that the entropy/information con-
tent of a black holes goes as the surface the black hole, not as the volume, as
one might naively expect. Combined with the Bekenstein bound, this has
profound implications for the maximum information content of all matter
and things: it scales with their area. Therefore, the information needed
to describe the state of all quantum fields in a room goes as the area of
the walls surrounding it, not as the volume of the room. This has become
known as the Holographic principle, and was first recognized by ’t Hooft
in 1993 [54]. AdS/CFT is, in essence, the first mathematically applica-
ble and precise realization of the Holographic principle: a d-dimensional
Anti-de-Sitter space contains the same amount of information as the d-1
dimensional CFT on the boundary.

Thus, the thermodynamics in the boundary theory is described by black
hole thermodynamics living in the centre of our AdS space. As we require
our CFT to possess a charge density (it should be made up out of electrons,
after all), we need our black hole to charged. This is not a generic feature
of a Schwarzschild black hole, but is described by the Reissner-Nordström
solution to the Einstein equations [14]. On top of that, to study magneto-
transport, our CFT needs to be exposed to a magnetic field, leading us to
a black hole which has both electric and magnetic charge, and we end up
with an dyonic AdS Reissner-Nordström black hole [13].

Furthermore, the BH entropy is conjectured to be equal to the entan-
glement entropy of the boundary CFT [49]. Therefore, these conformal,
quantum critical systems in the boundary may be incarnations of what
one could call maximally entangled quantum matter, or densely entangled
matter - as the entanglement entropy satisfies the Bekenstein bound and
cannot be any higher (black holes, of course, exactly satisfy the Bekenstein
bound). The highly dense many-body entanglements may mean these
kinds of materials can only be microscopically simulated with the help
of a Quantum computer as classical computers cannot handle the expo-
nential complexity of the Hilbert space needed to describe them, and can
hence be termed ’Quantum Supreme Matter’ [58]. Holography, however,
may provide a shortcut in obtaining theoretical predictions on the trans-
port behaviours of these types of quantum matter pur sang.

In our case of transport of strange metals, we do not have a CFT in a
spatial in a spatial continuum, so we must introduce some periodic lat-
tice, responsible for Umklapp and band structure in ordinary materials.
A lattice imposed on the boundary is dual to hair growing on the hori-
zon (a counterexample to the no-hair theorem). This is done by modu-
lating the chemical potential on the boundary explicitly, in our case with
a square lattice [5]. A major problem arises, though: our clever ploy
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of making things computationally tractable with the strong/weak dual-
ity collapses, because the lattice activates all the highly complicated non-
linearities present in the Einstein equation in the bulk. Therefore, numer-
ical methods are required to say anything about transport properties of
Holographic metals. These are explained in more detail in the Methods
section.

There is one further twist to the story: the radial direction of AdS space,
what is called the the holographic direction, can be seen as the renormal-
ization parameter [59]. This actually means the renormalization group
flow is geometrized in the bulk. In a certain sense, therefore, the black
hole can be seen as a highly renormalized infrared (IR) version of our mi-
croscopic, ultraviolet (UV) boundary theory. A critical system is said to
have a diverging correlation length ξ, which signals scale invariance. We
can also introduce a correlation time t related as ξ = t−1/z, thus, z, the dy-
namical critical exponent, represents the relative scaling of time and space
[26]. Normally, we would expect z = 1, or some finite number, however,
in AdS/CFT, our systems acquire a critical timescale while still having a
finite correlation length. This is called semi-locality [32] and is a GR effect:
light signals coming from a point on the boundary will reach only a finite
patch of the horizon - light coming from different points may or may not
overlap depending on the boundary distance. Effectively, it means that
z → ∞ in these systems. Exactly this type of anomalous scaling behaviour
has been found in cuprates [42]. Using normal renormalization intuition,
we can see a UV entity like the lattice imposed on the CFT gets renormal-
ized towards the IR black hole horizon: however, if it becomes relevant,
irrelevant or marginal actually depends on the length scale of the lattice
(the lattice spacing). We will go into more detail in the Results section 3.8.

The AdS/CFT correspondence allows us to perform calculations on a
wide range of strongly correlated, critical systems. A case in point is the
quark-gluon plasma: the deconfined state of matter ruled by the strong
force, a soup of quarks and gluons at extremely high temperatures, as,
for example, the universe perhaps was directly after the Big Bang. The
viscosity is found to obey [35]:

η

s
≈ h̄

4πkB
(30)

where s is the entropy density and η is the shear viscosity. It is conjectured
that this is a lower bound for strongly correlated systems in general, and
therefore called the minimal viscosity. It has been found that the quark-
gluon plasma in a particle collider setting indeed satisfies this bound [38].
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A central result of the theory of Quantum criticality (like our CFT) is
that it predicts a universal momentum relaxation time τh̄:

τh̄ =
h̄

kBT
(31)

This is conjectured to be the shortest possible timescale permissible by na-
ture in which equilibrium can be reached, therefore called Planckian dissi-
pation [57]. By dimensional analysis, it can be shown that the Minimal vis-
cosity is an incarnation of Planckian dissipation [58]. Furthermore, when
fed into the Drude formula for conductivity (5), it predicts linear in T resis-
tivity at all T, protected by a very strong principle (namely, strongly cor-
related quantum critical matter must satisfy this relaxation time bound).
Perhaps most importantly, it actually rolls out of DC transport data for
both hole and electron doped cuprates [37]. Finally, this is independent of
material properties - as has observed in a wide range of strongly correlated
electron systems [31]. The bottom line is that relaxation times of the form
(31) are the hallmark of quantum criticality, meaning many-body physics,
and harder to explain from single quasiparticle behaviour [28].

1.10 Hydrodynamics

Let us return to the phase diagram in figure 1: what do we expect to lie
between a perfect solid (Mott insulator) and a perfect gas (Fermi liquid)?
Of course, we should expect a regime of hydrodynamics. This seems to
be a sidetrack at first: weren’t we interested in densely entangled, quan-
tum critical behaviour as described by black holes? How would hydrody-
namics factor in? It has been shown, however, that the full Navier-Stokes
equations can be obtained in the boundary of AdS/CFT by studying the
dynamical near-horizon geometry in the bulk - therefore, there exists a
Fluid/Gravity duality in the AdS/CFT correspondence [11]. Furthermore,
hydrodynamics describes the flow of conserved quantities under a system
that is brought out of equilibrium, over distances and timescales which
are long compared to the local relaxation times - and with strange metals
and quantum critical, holographic metals, we know we are dealing with
the shortest relaxation timescale achievable (equation (31)) and so these
conditions are actually easily achieved. Thus, we expect these systems to
behave very hydrodynamically, meaning with minimal viscosities, near-
ing perfect fluids, as local equilibrium is reached super quick. (Hydrody-
namics in electron systems is rare: in normal metals, collision times are
short compared to relaxation times, preventing local equilibrium from be-
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ing reached. It may be observable in graphene, as that is clean enough for
electron motion to collectivize, since scattering is rare.)

Another key insight is that Drude theory is applicable as long as mo-
mentum relaxes slowly - and is not inherently related to the scattering
particle picture Drude himself envisioned. If we interpret τ as the particle
lifetime, which makes sense at least in a Fermi liquid situation, quasipar-
ticle excitations are the shortest possible, and we in essence have a highly
unparticle-like type of matter, effectively described by hydrodynamics. Fi-
nally, it has been verified that strange metals shows a Drude peak in AC
resistivity [40]. This concludes our tour of the history of the theory of
transport in metals, which has brought us back to the start: Drude theory.

To analyze our data in full generality, we need some adjustments to
the plain vanilla Drude sketched in section 1.2. First, we need to recognize
that when we introduce a lattice, we are in fact not only breaking spatial
symmetry, but also break rotational symmetry (the Lie group SO(2) gets
replaced by the finite point group specific to the crystal lattice we choose).
Thus, not only linear momentum relaxes: angular (transverse) momentum
will leak out of our system as well and we have a second relaxation time τT
in addition to τL. In ordinary metals these times will be identical, however,
the Hall angle conundrum in strange metals gives reason to believe these
may be different and have different temperature dependence. Therefore,
our EoM become:

dPx,L

dt
= eEx −

1
τL

Px,L (32)

dPx,T

dt
= ωCPy −

1
τT

Px,T (33)

and likewise for PY. Here, ωc = qEB/m is the cyclotron frequency. Pro-
ceeding as in section 1.2 we now obtain two components of our DC con-
ductivity matrix as in [20]:

σxx =
ωpτL

1 + (ωcτT)2 (34)

σxy = σxxωcτT (35)

A further adjustment we need to make concerns the expressions for the
plasmon and cyclotron frequencies, as they should now be in terms of our
relativistic theory of hydrodynamics, instead of colliding particles. They
are obtained by taking m → (ϵ + P) (the mass becomes the energy density
and pressure) and q → n (the single particle charge become the charge
density). Below are given the full expression for electric, thermal and
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thermo-electric resistivities as found in [15]:

σ−1 =
1
n2 R̂

α−1 =
1
ns

R̂

κ̄−1 =
1

sT2 R̂

(36)

where s is the entropy density and R̂ is a 2 × 2 matrix defined as:

R̂ = (ϵ + P)

(
1
τL

−ωc
τT
τL

ωc
τT
τL

1
τL

)
(37)

The DC transport coefficients can be efficiently calculated by evaluating
hydrodynamical response very close to black hole horizon [6]. This amounts
to solving the Navier-Stokes equations using the hairy AdS black hole as
a background over which our electrodynamically charged liquid flows (as
water would flow over pebbles, the riverbed here being a dyonic, hairy
black hole).

One further comment that needs to be made is that equations (36) are
not full expressions for the DC resistivities in full generality in a holo-
graphic context. While it is true a hydrodynamical mode governs DC
transport - termed the coherent sector, as it is generated by the coherent
motion of conserved quantities - there is also incoherent transport in all
quantum critical systems, as our boundary CFT is an example of. Incoher-
ent transport is generated by the collective diffusion of energy and charge
in such a system [24]. This incoherent conductivity σQ is additive:

σFull = σDrude + σQ (38)

Its contribution is expected to be small at the low temperatures we are in-
terested in. We will go into more detail regarding Drude versus incoherent
transport in the Results section 3.1.

1.11 Weak Lattice Hydrodynamics

Forgetting the holographic origin of our fluid for a moment, we can won-
der what transport coefficients are predicted for a charged fluid flowing
through a lattice in presence of a magnetic field purely by relativistic hy-
drodynamics. In the small lattice strength (A) limit, exact results can be

Version of January 13, 2021– Created January 21, 2022 - 14:18

23



2 Method 24

obtained [4]. For the resistivity, we have:

ρ =
ϵ + P

n2

(
( 1

τ0
+ 1

τS
) −(ωc +

1
τA
)

(ωc +
1

τA
) ( 1

τ0
+ 1

τS
)

)
(39)

Note that the thermodynamical quantities comprising the Drude weight
are here taken at their homogeneous (A = 0) values, as opposed to equa-
tion (36) where they are defined in-lattice. We immediately see weak lat-
tice hydrodynamics in a magnetic field predicts two extra relaxation rates,
τS and τA (symmetric and anti-symmetric), proportional to both the mag-
netic field strength and the lattice strength. More precisely, hydrodynam-
ics predicts scaling as: 1

τ0
∼ A2, 1

τS
∼ A2B2 and 1

τS
∼ A2B in the small A

regime. Having these analytical results provides a useful check for trans-
port coefficients as calculated holographically in the near horizon geome-
try, as they must coincide with above findings for small A. Furthermore,
it shows we expect a magnetic field dependent term in the longitudinal
relaxation rate for such a hydrodynamic system, τS. Namely, there exists
a direct transformation between equation (36) and (39): 1

τ0
= 1

τ0
+ 1

τS
and

ωcτT
τl

= ωc +
1

τA
. This immediately shows that there is a B2 term present in

τL in the weak lattice case. Lastly, we know:

ωcτA

1 + ωcτA
=

ΓT

ΓL
> 1 (40)

(where Γ ≡ 1
τ ) since the relaxation rate in the transverse direction must

always exceed that in the longitudinal direction. For this to hold, τA < 0,
and is therefore perhaps better thought of as a shift of cyclotron frequency
than a relaxation rate per se. These relaxation times with proper scaling are
indeed found in Results section 3.7, and the range of validity is checked.

2 Method

2.1 Linear Differential Equations

Any differential equation may be written in the form:

F [y] = 0. (41)

We are given F , which are the equations of motion (EoM) of our system
in addition to any boundary conditions on y, and are then tasked with
finding the solution y. y may be the position and momentum of a single
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particle as function of t, or of many particles. It may also be a field or
many different fields defined on every point in space, as is the case in our
AdS/CFT setup.

We can take all non-derivative containing terms of F to the RHS and
write:

G[y] = b. (42)

When G is a linear operator, we are dealing with a linear differential equa-
tion and we have:

G[λy1 + µy2] = λG[y1] + µG[y2]. (43)

In this case, solving the differential equation is conceptually very simple
and amounts to calculating the inverse G−1 so that:

y = G−1[b]. (44)

When solving differential equations numerically, you are limited by a phys-
ical computer with finite RAM, which is why you have to work with finite
differences. Again, conceptually very simply, this amounts to interpret-
ing all differential operators d

dx as matrices, which give the differences be-
tween neighbouring points in fields or in time and proceeding as usual.
Instead of calculating the inverse matrix directly, other methods exist like
LU-decomposition [12] - but they all amount to solving equation (44).

2.2 Non-Linear Differential Equations

When our differential operator F is no longer linear, it cannot be written as
a matrix and efficiently inverted numerically. A ploy is to hazard a guess
y′0 which gives us:

F [y′0] = r (45)

where r ̸= 0 if our guess is wrong. Suppose our guess is almost right,
however, and we can expand around the solution as y′0 = y + δy:

F [y + δy] = F [y] +
d

dy
F [y]δy + O(δy2) = r (46)

If our guess was right enough, we can ignore higher order terms, and since
y was the solution we have:

d
dy

F [y]δy = r (47)
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This is again a linear equation, which we can solve with the method from
the previous section. We can update our guess as y′1 = y′0 − δy and then re-
peat this procedure until |r| < threshold. This gives us an efficient method
of approaching a solution to a non-linear differential equation if we have
a good ansatz to start with. (We are ignoring derivatives of δy, however,
these can be taken into account by calculating the Jacobian of F and pro-
ceeding as above.)

2.3 Implementation

In our study of a RN holographic metal, we wish to solve Einstein’s equa-
tions and Maxwell’s equations in an AdS space. Notoriously non-linear,
this is only exacerbated by the fact that we wish to implement a lattice
on the boundary. Thus, computations where performed on the ALICE
supercomputing cluster in Leiden, using the PETSc C-library differential
equation solvers [3].

The Einstein-Maxwell action is given by:

SEM =
∫

dx4√−g
(

R − 2Λ − FµνFµν

)
(48)

where g is the metric determinant, R the Ricci scalar and Λ the cosmologi-
cal constant (which gives us the inherent curvature of AdS space). We take
AdS3 to describe a two dimensional boundary metal. We obtain the EoM:

Rµν − Λgµν =
1
2

(
FµνFρ

ν − 1
4

gµνFρσFρσ

)
(49)

∇µFµν = 0 (50)

The chemical potential on the boundary is modulated as a boundary con-
dition to implement the lattice:

µ(x, y) = µ̄ (1 + sin(Gx)sin(Gy)) . (51)

For a more detailed derivation and how the field components are related
to solid state observables and thermodynamics, see [5].

In short, we were able to acquire numerical solutions to above equa-
tions - RN metals - for a given temperature T, lattice strength A, magnetic
field strength B and lattice vector G (inverse of lattice spacing). For the
non-linear solver, the ansatz was a simple homogeneous A = 0 AdS RN
black hole at arbitrary values of the other parameters. A could then be
slowly increased, and taking sufficiently small steps guaranteed conver-
gence of the algorithm even to low temperatures (T ≈ 10−4µ). Such a
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background can then be used to perform Navier-Stokes computations on
the black hole horizon to give DC (electric, thermal and thermo-electric)
transport properties. Furthermore, the energy, pressure and charge den-
sity can be calculated from the fields approaching the boundary - the en-
tropy is acquired from the black hole via the Bekenstein formula (29). All
thermodynamic quantities are given in units of chemical potential µ, and
B is given in units of µ2. All backgrounds were calculated on a grid size of
40 × 40 × 50 where 50 is the holographically radial direction.

2.4 Numerical Accuracy

Apart from bugs in the code and structural errors, when doing numerical
work you are dealing with finite numerical accuracy. Akin to an experi-
mental setting, we had to make sure our numerical noise-to-signal ratio
was sufficiently small. We tested for numerical accuracy in multiple ways:
firstly, simply checking the differential solver indicated it properly con-
verged. Another straightforward method is rerunning code and compar-
ing outcomes. Yet another method was varying grid sizes, which should
not have a significant effect on outcomes. A last method was checking ba-
sic identities, for example: σxx = σyy and σxy = −σyx. These were found
not to hold in presence of significant numerical noise (no convergence).
Notably, the gamma ratio peak in section 3.6, which is perhaps most sus-
pect, is not affected by varying grid sizes. Only results which held up to
the above tests are reported.

3 Results

3.1 Drude Fit

We wish to study the coherent Drude transport of the holographic RN
metal - to do that we must first know if transport is indeed governed by
Drude forms. As mentioned in section 1.10, we expect an incoherent mode
of transport σQ to also be present in a critical system. The set of equations
is underdetermined: we fit six independent transport coefficients (σxx, σxy,
αxx, αxy, κxx, κxy) with two relaxation times, ΓL and ΓT. To examine the
accuracy of the Drude fit, we extract the relaxation rates from σ and re-
construct the thermal and thermo-electric conductivities using equations
(36). The plasmo and cyclotron frequency were determined thermody-
namically. The deviation from the actual numerical transport coefficients
is an indication of the accuracy of the Drude model. In figure 2 we see that
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over a range of temperature and lattice strength, the model holds well for
low temperatures and lattice strengths. Deviations all fall withing 10%
within the domain we are interested in. For higher temperatures, on the
order of µ, σQ starts to dominate. Similar deviations are seen when vary-
ing B and G, with the highest fields and lattice vectors giving the largest
deviations, and all within 10%.

Figure 2: a. Deviation of the thermo-electrical conductivity from that predicted
by the Drude model, with relaxation rates extracted from σ at B = 0.001µ2 and
G = 0.1µ. For T > 0.1µ we have an error of the order of 10−1 at the strongest
lattices. b. Same as a for the transverse component. Here the deviation follows
a sinusoidal-like distribution with amplitudes set by lattice strength, however,
errors stay withing 5%. c. Same as a for the thermal conductivity. d. Same as b
for the transverse thermal conductivity.

3.2 Magnetic Insulator

In figure 3a we see σxx increase with temperature at low A and low T/µ -
the characteristic behaviour of an insulator - while our holographic mate-
rial shows ordinary metallic temperature dependence in the rest of phase
space. Perhaps puzzling at first, this is actually normal Drude behaviour
for a two dimensional metal with a vanishingly small relaxation rate in the
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Figure 3: a. The longitudinal conductivity in presence of a magnetic field of
strength B = 0.001µ2 and Umklapp vector G = 0.1µ at at range of tempera-
ture and lattice strength. Note that for A < 0.3 and T/µ < 0.05, the conductivity
displays insulator like temperature dependence. b. The longitudinal relaxation
rate ΓL from a Drude fit of a. It displays normal behaviour at all values of A and
T, increasing with temperature.

presence of a magnetic field. We have:

σxx =
ω2

pτ

1 + (ωcτ)2 . (52)

As A → 0, the relaxation time, of course, diverges: τ → ∞. We get that
(ωcτ)2 ≫ 1 and so

σxx ≈
ω2

pτ

(ωcτ)2 ∼ 1
τ

. (53)

Now, if τ decreases with temperature, which causes metallic temperature
dependence in the conductivity normally, in this limit, it actually causes
the conductivity to increase. In figure 3b we indeed see that this is the
case. Thus, it is an interplay between the two dimensionality, the presence
of a magnetic field and the zero lattice limit which causes the singular be-
haviour. The order of limits is important: were we to take B → 0 first, then
ωc → 0, and we would get the normal DC Drude expression (5), which
would still give metallic conductivity in the τ → ∞ limit. From here, we
will mostly ignore this regime, as the case where momentum relaxes on
timescales of millennia is not quite relevant to the study of non-Fermi liq-
uids and does not imply a breakdown of the applicability of Drude theory.
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3.3 Wiedemann Franz Law & Nernst Effect

As derived in section 1.2, in normal metals at low temperatures (and very
high temperatures), the ratio κxx/(σxxT) ≡ L is temperature independent,
as heat and charge are both transported by the same carriers (electrons).
In hydrodynamical systems and quantum critical systems especially, mo-
mentum and current relax via very different kinematics, and they are ex-
pected to be violate the Wiedemann-Franz law as derived by Hartnoll et
al. [21]. Furthermore, they expect κxx/(σxxT) ∼ 1/T2. As seen in figure
4a, we do see strong deviations from temperature independence, however,
we do not find 1/T2 behaviour.

As explained in section 1.1, the Nernst effect concerns the thermo-
electric transport. The Nernst signal is defined as θyx = −(ρα)yx and is
expected to be positive for hydrodynamical vortex systems, while nega-
tive for positive for quasiparticle systems [45]. As we see in figure 4b,
we indeed find a positive Nernst signal. Furthermore, it was derived by
Hartnoll et al. for the Nernst signal to be linear in field B for a strongly
correlated quantum critical fluid [27]. We also find this to be the case for
the RN metal. Finally, the Nernst coefficient, ν = θyx/B is predicted to
scale as 1/T4 in the same paper. However, we find the Nernst coefficient
to increase with temperature, as seen in figure 4c.

Figure 4: a. The ratio of thermal and electrical conductivity over a range of tem-
peratures at different lattice strengths for G = 0.1µ. As it is not a constant, the
RN metal violates the Wiedemann-Franz law. b. The Nernst signal as a function
of the field B at different temperatures at A = 0.5 and G = 0.1µ. Except at very
low temperatures, it is found to follow linear in field behaviour. c. The Nernst
coefficient over a range of temperature for different field strengths - the same data
as in b - found to increase with temperature. As expected, it is almost totally field
independent.
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3.4 Holographic Umklapp: Hartnoll-Hoffman Scaling

Momentum relaxes out of our electron system via the Umklapp process.
In section 1.4 this was shown to lead to Γ ∼ T2 temperature dependence in
a Fermi liquid. It has been shown that in locally critical systems (z → ∞)
this temperature dependence instead follows ΓL ∼ TαL , where αL(G) is a
function of the lattice momentum/Umklapp vector. Hartnoll and Hofman
find in [25] (equation (28) and (35)):

αL =

√
5 + 4k2 − 4

√
1 + 2k2 − 1 (54)

Note that due to differences in conventions we have: k = 3
2
√

2
G. In figure

5a we see that ΓL displays neat power law in T behaviour for G/µ ≥
0.4. We can extract the T exponents and in figure 5b we see that these
exponents indeed match the predicted Hartnoll-Hofman scaling at both
high and low lattice strength. Finally, at high lattice strength, one can
turn on a magnetic field and extract the transverse temperature exponent
ΓT ∼ TαT . In figure 5 we see that these do not differ significantly over our
chosen range of Umklapp vectors.

Figure 5: a. Longitudinal relaxation rate on a log-log plot versus temperature at
different lattice momenta at A = 0.6 and no magnetic field. There is clear power
law behaviour in T for G/µ ≥ 0.4, while below that value, the lines acquire a
kink at T/µ ≈ 10−2. The dashed line shows the power law fit for G/µ = 1.
b. Temperature exponents of GammaL as a function of lattice momentum for
A = 0.01 and A = 0.6. The dashed line represents equation 54. c. The ratio of
longitudinal and transverse relaxation rate temperature exponents versus lattice
momentum at A = 0.6 and B/µ2 = 0.001.
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3.5 The First Law of Thermodynamics

In a hydrodynamic system, we assume the time scales and length scales
to be long as compared to local relaxation times, and can therefore assume
local equilibrium to hold in the fluid. Concretely, this means the laws of
thermodynamics hold at a local scale. Here, we will focus on the first law
in integrated form, essentially giving an expression for the internal energy
of a fluid element:

ϵ + P = TS + µρ (55)

We calculate these values by averaging over the AdS boundary (so in ac-
tuality, µρ ≡ µρ|∂AdS

) to obtain the thermodynamical expressions of our
holographic metal. All thermodynamic values are implicitly averaged
from now on. An exception is the entropy, which is calculated by deter-
mining the area of the BH horizon in the centre of AdS via the Bekenstein
formula (29) by integrating over the metric.

In the homogeneous case, with A = 0 and B = 0, the solution is equal
to the analytical solution of a Reissner Nordström black hole, and equation
(55) is satisfied trivially at all temperatures - providing an easy and basic
check for the holographic code.

Next, we stay in the homogeneous case, but turn on a magnetic field.
We expect an extra magnetization term to enter expression (55):

ϵ + P = TS + µρ + MB (56)

where M = µB is the magnetization. As we see in figure 6a, this identity
is satisfied in our system.

However, things get hairier when we start modulating the chemical po-
tential on the boundary. As we see in figure 6b, when plotting the expres-
sion ϵ + P − µρ − TS − MB, which should be identically zero, this is only
satisfied in the A = 0 case. Some term must be ill-defined, and a likely
candidate is the entropy S, as it is not clear that the Bekenstein expression
should also hold for a corrugated black. Moreover, we are dealing with
a fluid, and thus we have a local entropy density at every point in space
(the entropy of the fluid element which can be thought of as a large N sys-
tem which is, in itself, in equilibrium) - it is not straightforward how to go
from these local entropy densities to the total system entropy. Although
these things may all be true, they actually cannot solve the current issue,
as we see that in the T → 0 limit in figure 6b, the identity is actually also
not satisfied for larger A, where we can ignore the TS term. For a further
discussion, see section 5.2.

Finally, as we see in figure 6c, the characteristic zero temperature en-
tropy of the RN black hole is retrieved by our system. When the two hori-
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Figure 6: a. In the homogeneous case with a magnetic field B, the following
equation must be satisfied: ϵ+ P− µρ− TS = MB where M is the magnetization.
We see that this is perfectly satisfied at all temperatures. Shown here is B =
0.001µ2, however, this holds for any B. b. Here we have plotted the expression
of the first law such that it should be identically zero, in presence of a field B =
0.001µ2 and G = 0.1µ. We see that this is only satisfied in the homogeneous A = 0
case. Therefore, we can conclude that in the presence of a lattice, the terms are
adjusted in some non-trivial way. See section 5.2 for a further discussion. c. As
the temperature goes to zero, there is a residual entropy left at all lattice strengths.
Zero temperature entropy is characteristic of a Reissner-Nordström black hole -
for a discussion of the implications, see section 5.1.

zons of the RN black hole coincide, we end up with an extremal black
hole with finite radius but zero temperature [14]. For a discussion of the
implications for transport in the boundary CFT, see section 5.1.

3.6 The Gamma Ratio Peak

A key experiment in strange metals is the ’Hall effect conundrum’: while
longitudinal resistivity goes as ρxx ∼ T, the Hall Angle scales quadrat-
ically ΘH ∼ T2. It is proposed an anisotropic Drude model as in sec-
tion 1.10 can explain this phenomenon via two different relaxation rates,
ΓL and ΓT, with different temperature dependencies, as ρxx ∼ ΓL and
ΘH = ρyx/ρxx ∼ ΓT [20]. Here we investigate the temperature depen-
dence of the Gamma ratio ΓT/ΓL of our holographic Reissner-Nordström
metal. In figure 7c we see that, in the isotropic limit where A is small or
T is high, the Gamma ratio is temperature independent, however, in the
low temperature strong lattice regime, we break isotropy and the Gamma
ratio acquires a temperature dependence.
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Although nothing like ∼ T as seen in strange metals, this does pro-
vide a proof of principle that in Holography, longitudinal and transverse
relaxation rates need not scale identically. As to why the ratio displays a
peak of increasing height with increasing lattice strength, we are still in the
dark, although it is clear the ’peak-like’ behaviour stems from ΓT as seen
in figure 7b. Furthermore, as seen in equation (36), all Hall resistivities go
as ρxy ∼ ΓT

ΓL
with some proportionality constant set purely by thermody-

namical quantities. On the one hand, this means the Gamma ratio peak
is directly visible in the observable Hall resistivity as in 7d. On the other
hand, it implies that in the isotropic case, where ΓL = ΓT, Hall resistivi-
ties are set entirely by thermodynamical quantities, namely: ρxy = −ωc

ω2
p

and likewise for thermal and electro-thermal Hall resistivities. This is dis-
played in figure 7d, where the transport coefficient and thermodynamical
ratio coincide in the small A regime. It was further found the Gamma peak
is suppressed as one increases the magnetic field, as shown in figure 11a
in the Appendix.

3.7 Weak Lattice Hydro

In section 1.11 the transport of a relativistic fluid in presence of weak spa-
tial symmetry breaking and a magnetic field was expressed in terms of
three relaxation rates. Here we investigate the weak lattice limit and ex-
plore where this regime breaks down. In terms of the resistivity, the relax-
ation rates are:

1
τ0

= ω2
pρxx(B = 0) ∼ A2 (57)

1
τS

= ω2
pρxx −

1
τ0

= ω2
p(ρxx(B)− ρxx(B = 0)) ∼ A2B2 (58)

1
τA

= ω2
pρyx − ωC ∼ A2B (59)

Note that the thermodynamic quantities are here as defined in the homo-
geneous (A = B = 0) limit, τA < 0 and that τS sets the magneto-resistance.
We see in figure 8a that predicted scaling in A is found for all three, and
starts to deviate from A > 0.1, which is the upper bound of the weak lat-
tice limit. At this bound, we find the predicted B for τS and τA holds up to
magnetic fields strengths of B ≈ 0.001µ2. For reasonable magnetic fields
(B < 0.001µ2) we see that 1/τS and 1/τA are only slight corrections to 1/τ0
and ωC, as expected.
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Figure 7: a. & b. The longitudinal and transverse relaxation rates as function
of temperature of a range of lattice strengths at B = 0.001µ2 and G = 0.1µ. We
see that for A = 0.7, the peak becomes pronounced in ΓT, although it is also
present at lower strengths. c. The gamma ratio at B = 0.001µ2 and G = 0.1µ. For
small A, the system becomes isotropic and ΓT/ΓL = 1. At higher A, the ratio has
clear temperature dependence, and thus the relaxation rates scale differently in
T. d. The hall resistivity as function of temperature over the same range of A, at
identical B and G. The gamma ratio peak is directly visible. In the isotropic limit,
the Hall resistivity becomes determined entirely by thermodynamics: the dashed
line which is −ωc/ω2

p at A = 0.2 coincides with the data.

3.8 Renormalization of the Lattice

As touched upon in section 1.9, values on the AdS boundary get renor-
malized towards the black hole horizon. Strictly speaking, the lattice is
irrelevant towards the horizon - why can we then speak of DC transport
in presence of a lattice when this is calculated on the horizon?

The answer lies in the fact that we are dealing with geometrized renor-
malization: the intrinsic curvature of AdS sets a length scale over which
renormalization takes place, and areas further away than this distance are
causally disconnected and do not renormalize. As explained in [32], the
boundary effectively splits into many domains, each which independently
acts like a conformal liquid. Are we able to see this effect in our RN metal?
By varying G/µ we vary the lattice spacing. When G is small, the spacing
is large, and when the period of the lattice is larger than the AdS length
scale, it cannot effectively renormalize because of the GR implications, and
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Figure 8: All data is at G = 0.1µ. a. Log-log plot of all three relaxation rates as
a function of A at B = 0.001µ2. For very small values of A, the off-diagonal ele-
ments of ρ become numerically unstable, which is why ΓA can only be accurately
shown for A > 0.01. Deviation from A2 behaviour starts at A = 0.1. b. Log-log
plot of ΓS at A = 0.1 as function of B; B2 behaviour is seen in up to B ≈ 0.05µ2. c.
Log-log plot of −ΓA at A = 0.1 as a function of B; linear in B behaviour holds up
to B ≈ 0.01µ2.

the lattice survives in the boundary. Oppositely, when G is big, many lat-
tice periods fit into one conformal domain, and these will be evened out
and become irrelevant on the horizon. Exactly this behaviour is what we
see in figure 9a & b. Furthermore, the relaxation rates also diminish when
G → 0: this is simply the lattice spacing becoming so huge, that the lat-
tice becomes very sparse and does not impede the movement of the fluid
(G → 0 is equal to the lattice spacing going to infinite, in which we re-
cover our spatially homogeneous system with no lattice). It is these two
competing effects which produce the Γ peak as a function of G. Lastly,
in figure 9c we see the Gamma ratio saturating at 1 a lot earlier than the
rates themselves going to zero: this indicates that the system becomes ef-
fectively isotropic at G > 0.4µ, while becoming very anisotropic at lower
G. Temperature seems to have little effect on the ratio as a function of G.

Note that ΓT/ΓL ≥ 1 as each rotation can effectively be decomposed in
two translations: the relaxation of angular momentum must be at least as
big as that of longitudinal momentum.

3.9 Magneto Resistance

When we turn on a magnetic field perpendicular to our plane of con-
ductivity, electrons will start to perform cyclotron motion which hinders
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Figure 9: a. Longitudinal relaxation rate as a function of the lattice vector G over
a range of different temperatures at a strong lattice A = 0.5 and B = 0.001µ2.
We see that the rate fizzles out to zero as we take G larger due to renormalization
effects kicking in. For small G, the spacing grows so big that it becomes unnotice-
able for transport. The rate increases with temperature as expected. b. The same
as for a except for transverse relaxation. We see less of a diminishing for small
G. c. The ratio of relaxation rates as a function of G. Note that it saturates to 1
for G > 0.5µ as the system become isotropic and that this happens for smaller G
than the reduction of the rates themselves.

them from crossing straight through: the result is an increase in resis-
tance, magneto-resistance(MR). It is defined as the percentage of resistance
caused by the magnetic field in terms of the zero field resistance:

MR =
∆ρ

ρ(B = 0)
=

ρ(B)− ρ0

ρ0
(60)

In standard isotropic, quasiparticle Drude theory, this is captured by
supposing two types of charge carriers (electrons and holes) with opposite
charge, such that J⃗ = J⃗1 + J⃗2 = (σ1 + σ2)E⃗. One can go through the typical
Drude procedure in this case to obtain an expression for ρxx which gives:

MRquasi ∼ (ωCτ)2. (61)

As ωc, we expect MR ∼ B2. However, as we have seen, Drude theory ap-
plies to any system which relaxes momentum slowly, and so also to a hy-
drodynamical substance. A notable difference, however, is that in a fluid,
we cannot have different charge carriers flowing independently without in-
teracting as in the ideal Fermi gas/liquid theory: one cannot pump water
and oil through a pipe in opposite directions. Thus we are dealing with
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a single charge carrying substance. As we have seen in section 1.10, this
gives a resistivity:

ρxx =
ΓL

ω2
p

(62)

Where would magneto resistance originate from in this case when we
no longer have a cyclotron frequency factor left? This is normally inter-
preted as that single carrier Drude does not predict MR. However, in our
RN metal, we do measure MR. Thus, it must be the relaxation rate Γ it-
self which internalizes the magnetic field - as opposed to the two particle
Drude case, where Γ was B independent. As we see in figure 10a, we also
measure a B2 MR in our RN metal for reasonable field strengths. There-
fore, suppose we write: ΓL = Γ0(1 + ΓBB2). Then we have:

MRhydro ∼ ΓBB2 (63)

A clear difference between the two-quasiparticle picture and the hydrody-
namical picture is that the MR goes as the relaxation time in the former,
and the relaxation rate in the latter. Suppose that relaxation rates always
increase with temperature, then an immediate consequence would be that
the derivatives of the MR in the quasiparticle and hydro cases would differ

by sign:
dMRquasi

dT < 0 but
dMRhydro

dT > 0. However, things do not appear to
be that simple, as when we inspect the temperature behaviour of ΓB in our
system, we find that it increases drastically with temperature, see figure
10b. Thus, it may not be as easy as to interpret ΓB as simply a relaxation
rate.

Note that in the weak lattice hydrodynamical language of section 1.11,
such a magnetic field dependent component of the longitudinal relaxation
rate was predicted in the form of 1

τS
∼ B2. Such field dependent relaxation

rates may therefore be a hall-mark of hydrodynamics coupled to electro-
dynamics.

4 Conclusion

While far from being a one-to-one model for strange metals, the local
quantum critical, dual to RN holographic metal does seem a promising
lead for investigating some of the peculiar aspects of strange metal trans-
port. Most notably, it displays an angular momentum relaxation tempera-
ture dependence which is different from the longitudinal, as shown in sec-
tion 3.6, which could eventually explain the anomalous temperature scal-
ing of the Hall angle in strange metals. Furthermore, it was found thermo-
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Figure 10: a. Magneto-resistance as a function of field strength at differing tem-
peratures for A = 0.5 and G = 0.1µ. The MR follows B2 behaviour as indicated
by the dashed line. Note that the MR decreases with temperature. b. The re-
laxation rate which couples to the magnetic field component in the longitudinal
relaxation rate. It is almost B independent, which means that ΓL has a field com-
ponent which is almost perfectly quadratic (perhaps related to numerical noise
at low temperatures). Also, it decreases with temperature, which is perhaps sur-
prising for a relaxation rate.

electric transport in the RN metal can be accurately described by Drude
theory at low temperatures in section 3.1. The RN metal was found to vi-
olate the Wiedemann-Franz law and show a Nernst signal characterizing
vortex motion 3.3. It was found the relaxation rate follows a temperature
power law as predicted from Holographic Umklapp at larger Umklapp
vectors in section 3.4. In the case of a highly corrugated black hole, it was
found the expression for the energy undergoes some non-trivial adjust-
ment which has not yet been properly understood, and is not linked to the
entropy, as described in section 3.5. In the weak lattice limit, the RN metal
transport was found to behave in good agreement with theory of hydro-
dynamics with a perturbatively small lattice and magnetic field, as seen in
section 3.7. It was found that the effects of semi-locality of AdS/CFT are
visible in the renormalization of the lattice as expected in section 3.8. Fi-
nally, it was shown in section 3.9 that in a hydrodynamical metal system,
the magnetoresistance is set by the relaxation rate Γ acquiring a field de-
pendent term, as opposed to the MR entering via the cyclotron frequency,
also in correspondence with the weak lattice prediction.
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5 Discussion

5.1 Choice of Black Hole

The RN black hole is characterized by its singular zero temperature en-
tropy [14]. This is a surprisingly deep problem for the study of transport
in a holographic metal, as we are dealing with hydrodynamical flow. In a
fluid, momentum relaxes via the shear drag: momentum in the x direction
diffuses into the y direction by internal friction, and if the fluid experi-
ences a resistance along the boundary of the flow (for example, a pipe),
this causes the fluid as a whole to slow down and lose momentum. There-
fore, there is a relationship between the momentum relaxation rate and the
viscosity, known as Poiseuille’s law:

Γ =
η

(ϵ + P)l2 (64)

where l is the relevant length scale of the system (pipe radius, for exam-
ple). Now, if we plug in our expression for the minimal viscosity (equation
(30)), which is known to be an incarnation of Planckian dissipation, which
is known to characterize quantum critical systems, we get the following
simple relation:

Γ ∼ S. (65)

Therefore, if our BH entropy does not go to zero linearly as the temper-
ature does, we do not expect a linear to zero behaviour of the relaxation
rate, as is seen in strange metals.

A way around this is to introduce a scalar dilaton field in addition to
the Einstein-Maxwell action (48). The dyonic black hole was studied by
Gubser and Rocha in this setting and was found to obtain a entropy pro-
portional to temperature at low temperature [23]. Therefore, in a holo-
graphic metal dual to a Gubser-Rocha black hole, we can expect to see the
linear in T resistivity at low temperatures.

5.2 First Law of Thermodynamics

As we saw in section 3.5 of the results, the first law is not satisfied at zero
temperature. Therefore, one might conclude there is a problem with either
ϵ, P, µ or ρ. However, since the Drude model fits all transport data (see
section 3.1), something must be going right. On closer inspection we see
that the ϵ + P term drops out when comparing different transport coeffi-
cients. This indicates that the error is most likely to lie in these terms. Fur-
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thermore, the pressure P is defined as the diagonal element of the Stress-
Energy tensor in the boundary Txx = Tyy (in a square lattice). In the case of
broken spatial symmetries (the lattice), these terms no longer correspond
to conserved charges associated with spatial translational symmetry - one
may wonder what the pressure that features in the first law is. In short:
what is the relation between thermodynamics and conserved Noether cur-
rents in broken symmetries? More thought is probably required to solve
this issue.

Furthermore, all this has ignored the TS term so far: it is not excluded,
and perhaps even unlikely, that there may be an issue with the entropy -
after all, does the Bekenstein entropy expression (29) hold in the case of a
highly corrugated black hole? Hair, of course, increases the area to a sig-
nificant amount. Are we supposed to integrate the area along the horizon,
or are we supposed to calculate the average Schwarzschild radius and go
from there? These questions still need answering before a in depth analy-
sis of the thermodynamics of our Holographic metal can be performed.

6 Appendix

Figure 11: a. The Gamma ratio as a function of T for a range of field strengths at
A = 0.5 and G = 0.1µ. The peak is subdued by increasing the field strength.
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Figure 12: Conductivities and thermodynamical variables as a function of tem-
perature for a range of lattice strengths at B = 0.001µ2 and G = 0.1µ. Note that
ϵ = 2P is always found to hold, and P is therefore omitted. Also note that µ is not
in units of µ but in units of horizon radius, so that it is not identically 1.

Figure 13: Conductivities and thermodynamical variables as a function of lattice
strength for a range of temperatures at B = 0.001µ2 and G = 0.1µ. Note that ϵ, ρ
and S are all of the form: αA2 + const., where constant means not a function of A.
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Figure 14: Conductivities and thermodynamical variables as a function of mag-
netic field strength for a range of temperatures at A = 0.5 and G = 0.1µ.

Figure 15: Conductivities and thermodynamical variables as a function of the
lattice vector for a range of temperatures at A = 0.6 and B = 0.001µ2. The peak
in conductivities as a function of G is elaborated on in section 3.8.
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[25] Sean A. Hartnoll and Diego M. Hofman. Locally critical resistivities
from umklapp scattering. Physical Review Letters, 108(24), Jun 2012.

[26] Sean A. Hartnoll and Andreas Karch. Scaling theory of the cuprate
strange metals. Physical Review B, 91(15), Apr 2015.

[27] Sean A. Hartnoll, Pavel K. Kovtun, Markus MÃŒller, and Subir
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