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Abstract

Current quantum devices have shown that they can carry out difficult computations that cannot
be mimicked by classical computers, even though the number of qubits available in such devices
is in the range of several tens, and without quantum error correction. Several technological
challenges need to be overcome to increase the number of qubits of these devices in an effective
way. Therefore, how to overcome the scalability problem to construct more powerful quantum
computers is a topic of interest. One of the possible solutions is to use distributed quantum
computation, where the devices are connected through a coherent link that has a capacity limit of
few qubits (e.g. 1). Several protocols work with that setting, including cross-platform verification
protocols. They are used to check the correct functioning of the different quantum devices of the
distributed setting through the comparison of their generated output states when using the same
quantum circuit. In this project, we present three cross-platform verification protocols based on
Grover’s reflections, namely, they compare the output state of two different quantum devices
under the assumption that Alice’s device generates the searched state and see if Bob has also
generated it. We also show how these protocols could be used in quantum data verification.
Finally, we benchmark against the state-of-the-art.
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Chapter 1
Introduction

Quantum computers use the properties of quantum mechanics, such as the superposition of states
and their entanglement to perform different algorithms and simulations. Computability-wise,
when talking about quantum computers and classical computers, they are equivalent. In other
words, the quantum devices can not solve more problems than the classical ones, and vice versa.
The promise of quantum computers, as Feynman proposed two decades ago [1], is that they
may be more efficient than the classical ones to solve some problems in physics and chemistry
[1], [2], for example, the simulation of strongly-correlated systems, given the exponential cost of
simulating large quantum systems with classical devices.

1.1 NISQ devices.

Right now, we are in the “stone-age” of quantum computers: the NISQ (Noisy Intermediate
Scale Quantum) era. The intermediate scale term refers to the number of qubits available in such
devices which are in the range of 50 to a few hundred [2], [3]

The fact that the current quantum computers are noisy implies that the circuits available are
shallow, not making it possible to build up circuits with a big amount of gates. This size constraint
means that there is also a computational power constraint.

In order to be available to scale up to larger circuits, quantum error correction (QEC) plays a
fundamental role. However, the cost of correcting the errors that may show up in a quantum
circuit requires many additional physical qubits [4]. Therefore, what we have right now are NISQ
devices where the noise is present and unprotected by QEC [3].

How to increase the number of qubits in an effective way in such devices is not a trivial problem.
It requires to overcome several technological challenges. Hence, how to go through the scalability
problem to construct more powerful quantum computers is a topic of interest. One of the possible
solutions is to use distributed quantum computation.
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2 Introduction

1.2 Distributed quantum computation

Even though NISQ devices are “stone-age” quantum computers, by connecting them through a
coherent link with a capacity limit of just a few qubits (e.g. 1 qubit), we can build large-scale
devices. The use of different distributed settings is the roadmap of companies like IBM and
Google to set up a 1 million qubit quantum compute [5].

Figure 1.1: Distributed computation. Several NISQ devices are coherently connected to build up a quantum
computer that goes beyond the limit size of a few hundred of qubits of the intermediate scale quantum
machines.

1.3 Cross-platform verification protocols: state-of-the-art.

One of the challenges of these distributed settings is to check their correct functioning, which
can be done using cross-platform verification. Verification protocols compare the output states
generated by two different quantum devices using the same quantum circuit.

Quantum fidelity is one of the possible measures used to compare the quantum states of interest,
ρ1 and ρ2. Its mathematical expression is [6]:

F(ρ1, ρ2) = Tr
(√√

ρ1ρ2
√

ρ1

)
, (1.1)

where we can see that if ρ1 and ρ2 are the same quantum states, mixed or pure, the parameter is
equal to the unity, F(ρ1, ρ2) = 1.

The state-of-the-art [7] compute the upper bond of the fidelity, Eq.(1.1):

Fmax(ρ1, ρ2) =
Tr(ρ1ρ2)

max
(
Trρ2

1, Trρ2
2
) , (1.2)

where the value of the fidelity is also 1 when the states are the same.

In a totally quantum protocol, the quantum states would be teleported and compared using a
SWAP test. The teleportation of the states would be carried out by a quantum link. By doing

2
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1.4 Idea. 3

so, the fidelity can be computed. Unfortunately, a quantum link teleporting large quantum states
between two different devices is not available nowadays [7].

Therefore, the state-of-the-art for cross-device verification requires classical communication between
quantum devices.

Brute force tests make use of quantum state tomography to carry out a full classical reconstruction
and a subsequent classical comparison of the quantum states. The handicap of this technique is
that takes 3n measurements to determine an arbitrary n-qubit-quantum state [8].

To overcome the scaling problem of the last protocol, Carrasco et.al.[7] propose to compute randomized
measurements to get the quantum fidelity of two unknown states, ρ1 and ρ2, instead of fully
reconstructing them.

A randomized measurement [9] is carried out by applying a random unitary, U, to a quantum
circuit followed by the measure of the output on the computational basis. The unitary U can be
local (it acts on a certain number of qubits smaller than the system size, n). To do so, instead of
using a Haar measure[10] (measure of uniform probability distribution over the unitary group),
the whole set of unitaries can be sampled in a quantum 2-design [11], [12] (the properties of the
probability distribution over the unitaries of the Haar measure are duplicated in a polynomial of
grade 2) , namely they act on the Hilbert space: C2, U = ⊗n

k=1Uk, Uk acting on qubit k.

The random measurements have to be done with the same random unitaries on both states, ρ1
and ρ2, so there has to be a classical communication channel.

By carrying out several measurements, we can compute the cross-correlation and the autocorrelation
of the outcome probabilities, and consequently the trace of the quantum states, ρ1 and ρ2 [7], [9].

Tr(ρiρj) = 2N ∑
s,s′

(−2)−D[s,s′]P(i)
U (~s)P(j)

U (~s′), (1.3)

where P(i)
U (~s) = Tr(UρiU†|~s〉〈~s|), i, j = 1, 2, D[s, s′] is the Hamming distance [13] and Ā is an

estimation of A.

Unfortunately, the scaling of such protocol is 2bn, hence the number of measurements necessary
to estimate the fidelity increases exponentially with the subsystem size [7], [9].

On top of that, the construction of an empirical distribution P(s) implies the measurement of the
output states. Therefore, ρ1 and ρ2 will be destroyed after incompatible measurements (due to the
collapse of the wavefunction) and they will have to be generated again.

1.4 Idea.

Keeping in mind the disadvantages of the state-of-the-art aforementioned, we present here a
cross-device verification protocol that seeks to overcome them.

We will try to know if the states generated by Alice and Bob are the same without directly
measuring them. To do that, it is necessary an ancilla qubit. The basic idea is shown in the
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4 Introduction

following circuit:

|0〉⊗n C G′

|0〉 H
G =


−1 0 0 . . 0
0 1 0 . . 0
. . .
. . 0
0 . . . 0 1

 (1.4)

Figure 1.2: Cross-platform verification protocol based on Grover search reflections, where G′ = C†GC, is a
reflection with axis C|0〉.

Intuitively, the letter G makes reference to the reflection in the Grover search algorithm [14], where
the reflection 2(|0〉〈0|)⊗n − I⊗n is the matrix shown in Eq.(1.4).

G′ is the G gate expressed in the basis of the states generated by the random gate C, which should
be the same for Alice and Bob circuits.

|γi〉 = C|0〉⊗n, (1.5)

where i = 0, 1, ..2n − 1. |γi〉 is a basis containing the ideal state |γ0〉.

|ψA〉 =
2n−1

∑
i=0

αi|γi〉 (1.6) |ψB〉 =
2n−1

∑
i=0

βl|γl〉, (1.7)

where the indices A and B, Eqs.(1.6),(1.7), refer to the states that Alice and Bob generate.

Ideally, the amplitude of the states |ψA〉 and |ψB〉 is αi = δi,0 and βl = δl,0, respectively. So, the
desired state is:

|ψ0〉 = α0|γ0〉 = β0|γ0〉 = |γ0〉, (1.8)

where α0 = β0 = 1 due to normalization.

For the sake of simplicity, let us start working under the hypothesis that Alice and Bob generate
indeed the same state, which is also the desired one, |γ0〉. Hence, the amplitude of both states is
αi = βi = δi,0.

Following the different steps indicated in the quantum circuit of Fig.1.2, the output of both circuits
takes the form:

• Step 1.
|γ0〉|+〉, (1.9)

where |+〉 = (|0〉+ |1〉)/
√

2.

• Step 2.
|γ0〉|0〉+ G′|γ0〉|1〉√

2
= |γ0〉|−〉, (1.10)

where |−〉 = (|0〉 − |1〉)/
√

2

4
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1.4 Idea. 5

On the other hand, if we picture the situation where the state that Bob generates is orthogonal to
|γ0〉, namely |ψB〉 = ∑2n−1

l=1 βl|γl〉, the output of Bob’s circuit will be:

|ψB〉|0〉+ G′|ψB〉|1〉√
2

= |ψB〉|+〉. (1.11)

Following the results shown in Eqs.(1.10) and (1.11), we can conclude that if Alice and Bob
generate the same state, |γ0〉, the measurement of the ancilla of both circuits will give the same
outcome. However, if the state generated by Alice is |γ0〉, Eq.(1.6), and the one generated on Bob’s
circuit is different, the output measured in both circuits is going to be different as well.

On top of that, the fact that we only need to measure the ancilla to compare the states implies that,
as long as the tensor product structure in the system-ancilla is preserved, Eqs.(1.10),(1.11), they
will not be destroyed after the measurement and that we can measure the ancilla as many times
as we want without having to generate again Alice and Bob states.

Specifically, the aim of this protocol is to measure the output of both ancilla together and study
its outcome. To do so, a Bell measurement [15] needs to be carried out. Working under the
assumption that Alice and Bob generate the state |γ0〉, Eq.(1.6), and recalling that the output of
both circuits is shown in Eq.(1.10), we can obtain the density matrix of both circuits:

ρA,syst = ρB,syst =
1
2
(|0〉 − |1〉)(〈0| − 〈1|)|ψ0〉〈ψ0| (1.12)

By tracing over the system, the density matrices of the ancilla are calculated:

ρA = ρB =
1
2

(
1 −1
−1 1

)
(1.13)

Hence, the density matrices of the system computed by both ancilla is:

ρA ⊗ ρB =
1
4


1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

 (1.14)

Carrying out the Bell measurements with the following states:

|φ+〉 = 1√
2
(|00〉+ |11〉) (1.15) |φ−〉 = 1√

2
(|00〉 − |11〉), (1.16)

leads to the results:

〈φ+|ρA ⊗ ρB|φ+〉 = 1
2

(1.17) 〈φ−|ρA ⊗ ρB|φ−〉 = 0 (1.18)

On the other hand, if Alice generates |γ0〉 and Bob |ψB〉 = ∑2n−1
l=1 βl|γl〉. The output of Bob’s

circuit would be the one shown in Eq.(1.11) and the density matrix of the ancilla:

Version of August 4, 2021– Created August 4, 2021 - 11:16
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6 Introduction

ρB =
1
2

(
1 1
1 1

)
(1.19)

Analogously to the procedure performed in the previous case, the density matrix of both ancillas
is:

ρA ⊗ ρB =
1
4

 1 · · · −1
...

...
−1 · · · 1

 (1.20)

And the result of the Bell measurements:

〈φ+|ρA ⊗ ρB|φ+〉 = 0 (1.21) 〈φ−|ρA ⊗ ρB|φ−〉 =
1
2

, (1.22)

Finally, combining the results shown when Alice and Bob generate the desired state, Eqs.(1.17),(1.18),
and the ones obtained when Bob generate |ψB〉 6= |γ0〉, Eqs.(1.21),(1.22); we can infer that in the
situation where Bob is dealing with a noisy circuit:

|ψB〉 = β0|γ0〉+
2n−1

∑
l=1

βl|γl〉, (1.23)

where |βl| << |β0|, the value of the Bell measurements will be:

〈φ+|ρA ⊗ ρB|φ+〉 < 1
2

(1.24) 〈φ−|ρA ⊗ ρB|φ−〉 > 0 (1.25)

Therefore, by carrying out a Bell measurement on both ancillas, we can conclude if Bob and Alice
have generated the desired state or not.

Nevertheless, the construction of G carries some undesired errors that can be avoided. In the case
of being working with 2 qubits (without taking into account the ancilla), the circuit to compute
the reflection in the computational basis, 2|00〉〈00| − I, is the following one [15]:

|0〉 X X

|0〉 X H H X

Figure 1.3: Quantum circuit that computes the reflection 2(|0〉〈0|)⊗n − I
⊗n (the operation called G), for

n = 2.

Fig.1.3 shows that to construct G is necessary a CNOT gate. The former gate in a system of 2
qubits does not suppose a problem to implement it. However, when working with n qubits, we
will have a C⊗(n−1)NOT gate. Controlling n− 1 should be avoided in NISQ devices due to the
large, O(n), gate complexity it demands [16].

6
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1.4 Idea. 7

In this project we show three cross-platform verification protocols based on the idea just explained.
To overcome the depth complexity that the latter requires, the controlled-unitaries used in the
quantum circuits, Fig.1.2, of the following protocols are constructed using Z gates, Zφ gates [15],
[17] or Haar gates [10]. We study how to implement them and how the number of experimental
runs scales with the system size. Additionally, we explain that besides being useful to check the
correct functioning of the different devices of the quantum distributed computation, they can
be used in quantum data verification [18]. Finally, the protocols studies are compared with the
state-of-the-art [7].

Version of August 4, 2021– Created August 4, 2021 - 11:16
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Chapter 2
Cross-platform verification protocols

Combining the need of designing a new cross-platform verification protocol and the basic idea
of the one explained in the previous chapter, gives as a result three new possible protocols that
we present in this section. In other words, they are used to compare Alice’s and Bob’s generated
states and check if they are the same and equal to the searched one, |γ0〉, Eq.(1.6). Specifically,
they are designed to work under the assumption that Alice generates the latter and see if Bob
has also generated it. Additionally, all of them seek to have a different eigenvalue between the
searched state and the rest, |ψi〉, i 6= 0. Therefore, when performing the Bell measurements, if
Alice and Bob generate |γ0〉 the outcome will not be the same that when generating any other
state.

The idea behind the first one is to use a Z gate, [15], [17], on different qubits of Alice’s and Bob’s
circuits, leading to two non-identical controlled-unitaries, C−UA and C−UB [15], [17]. However,
this protocol only works when Bob’s unitary, UB, changes every time we measure. In other words,
the Z gate must be applied on a different qubit on each measurement.

In order to optimize the previous protocol, the following uses different controlled unitaries constructed
by applying n different Zφ gates [15] to the n qubits of the circuit, where φ is a random phase
different on each qubit. In this way, the eigenvalue of each eigenstate |γi〉 is different from each
other, being able to distinguish |γ0〉 from the rest with just a single circuit configuration.

Finally, the last protocol also uses random values as the previous one, but this time the unitaries
are a special construction of Haar gates [10], where the eigenvalue of |γ0〉 is 1 and the eigenvalues
of the rest of the states are random values.

2.1 Z gates

A Z gate, key in this protocol, is a one qubit gate and one of the Pauli matrices (σz) [15]. Additionally,
is a specific case of Zφ rotation gate, where φ = 180◦.

Zφ =

(
1 0
0 eiφ

)
(2.1) Z =

(
1 0
0 −1

)
(2.2)

Version of August 4, 2021– Created August 4, 2021 - 11:16
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10 Cross-platform verification protocols

As we can not implement G without a large amount of gates, we can instead use the Z gate and
implement different unitaries like the ones shown below:

...
n

Z

n-1
U′ = Z⊗ I(n−1) =


1

. . .
−1

. . .
−1

 (2.3)

Figure 2.1: Alternative unitary to implement instead of the Grover search unitary, G, using a Z gate on the
first qubit.

...n
n-1

Z

U′′ = I(n−1) ⊗ Z =


1
−1

. . .
1
−1

 (2.4)

Figure 2.2: Alternative unitary to implement instead of the Grover search unitary, G, using a Z gate on the
last qubit.

To move the spins where we need, we add X gates [15], [17] to the beginning and to the end of
each of the wires of the circuits shown in Figs.2.1,2.2, and we implement the unitaries U′X and
U′′X. The eigenvalues of these last unitaries are inverted with respect to U′ and U′′, i.e., the first
eigenvalue of U′X is the last of U′, the second of U′X, the second last of U′, and so on. By using U′X
and U′′X, the eigenvalue of |γ0〉 is minus one, same value as the one shown in the G gate, Eq.(1.4),
of the previous chapter.

Nevertheless, it does not matter if the eigenvalue of the searched state has a positive or a negative
sign, the goal is that its eigenvalue is different from the rest. Therefore, for the sake of simplicity
and trying to avoid extra errors by adding unnecessary gates, we will work with the unitaries U′

and U′′, Eqs.(2.3),(2.4).

Fixing our attention on the aforementioned unitaries, we can see that there are eigenvectors that
share the eigenvalue of the searched state. This would lead to the problem of not being able to
know if Alice and Bob have really generated the latter. Let us check this out by computing a Bell
measurement on the ancilla of both circuits.

Alice:
|0〉⊗n C U′C

|0〉 H

Bob:
|0〉⊗n C U′′C

|0〉 H

Figure 2.3: Alice’s (left) and Bob’s (right) circuits for the implementation of a cross-platform verification
algorithm using Z gates on the controlled-unitaries, U′C, U′′C, being the Z gate applied on a different qubit
on each unitary.

10
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2.1 Z gates 11

The controlled unitaries, C−U′C and C−U′′C, of Alice’s and Bob’s circuits, Fig.2.3, are constructed
using U′ and U′′, Eqs.(2.3),(2.4), and a change of basis, U′C = C†U′C, U′′C = C†U′′C. Therefore,
they work on the basis of the output states of gate C. From now on, for the sake of simplicity in the
notation, when calculating the output states of both circuits, the unitaries U′ U′′ will be already
in the desired basis, so u′ii and u′′ll will be the eigenvalues of |γi〉, |γl〉 respectively.

|ΦAL〉 ≡
1√
2

(
|0〉|ψ〉+ |1〉U′|ψ〉

)
=

1√
2

2n−1

∑
i=0

(
|0〉αi|γi〉+ |1〉αiu′ii|γi〉

)
(2.5)

|ΦBob〉 ≡
1√
2

(
|0〉|ψ〉+ |1〉U′′|ψ〉

)
=

1√
2

2n−1

∑
l=0

(
|0〉βl|γl〉+ |1〉βlu′′ll|γl〉

)
, (2.6)

where the basis used has been already shown in the previous chapter, Eqs. (1.5), (1.6) and (1.7).

In order to perform a Bell measurement, we need the density matrix of the output of both circuits:

ρA,syst = |ΦAl〉〈ΦAl| =
1
2 ∑

i,j

(
|0〉+ u′ii|1〉

) (
〈0|+ ū′jj〈1|

)
αiᾱj|γi〉〈γj| (2.7)

ρB,syst = |ΦBob〉〈ΦBob| =
1
2 ∑

l,k

(
|0〉+ u′′ll|1〉

) (
〈0|+ ū′′kk〈1|

)
βl β̄k|γl〉〈γk| (2.8)

By tracing out over the system, we get the density matrix of each of the ancilla:

ρA = Trsyst(ρA,syst) =
1
2 ∑

i
|αi|2

(
1 u′ii

u′ii 1

)
(2.9)

ρB = Trsyst(ρB,syst) =
1
2 ∑

l
|βl|2

(
1 u′′ll

u′′ll 1

)
, (2.10)

where we applied that ū
′
ii = u

′
ii and ū′′ll = u′′ll.

Before carrying out with the calculations, let’s work under the usual assumption that the state
generated by Alice is |ψ0〉, i.e, the amplitude of the state is αi = δi,0. Considering that u′00 = 1:

ρA0 =
1
2

(
1 1
1 1

)
, (2.11)

and the density matrix of the system of both ancillas is:

ρA0 ⊗ ρB =
1
4 ∑

i
|βl|2


1 . . u′′ll
. . . .
. . . .

u
′′
ll . . 1

 , (2.12)

Version of August 4, 2021– Created August 4, 2021 - 11:16
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12 Cross-platform verification protocols

where just the terms needed to perform the Bell measurements are shown, and the outputs of the
aforementioned measurements are:

〈φ+|ρA ⊗ ρB|φ+〉 = 1
4 ∑

l
|βl|2(1 + u

′′
ll) (2.13)

〈φ−|ρA ⊗ ρB|φ−〉 =
1
4 ∑

l
|βl|2(1− u

′′
ll) (2.14)

In the ideal case, where Bob generates also |ψ0〉, u′′00 = 1, the former expressions, Eqs.(2.13),(2.14),
have the following values:

〈φ+|ρA ⊗ ρB|φ+〉 = 1
2

(2.15) 〈φ−|ρA ⊗ ρB|φ−〉 = 0, (2.16)

same result as the ones obtained in the previous chapter1, Eqs.(1.17), (1.18).

Recalling now the shape of U′′, Eq.(2.6), unitary of Bob’s circuit, we can appreciate that: u′′ll = 1,
if l is an even number, l = 2n; and u′′ll = −1, if l is an odd number, l = 2n + 1. Therefore, if
Bob instead of generating |ψ0〉, generates |ψ2l〉 = β2l|γl〉, we can not distinguish the former states
when carrying out a Bell measurement.

The previous mishap can be solved by changing Bob’s controlled-gate every time we measure,
in such a way that in the intersection space between all the unitaries the only eigenvalue equal
to 1 is u′′00. To do so, we need to apply n controlled-gates of the form: U′′0 = Z ⊗ I(n−1); U′′1 =

I⊗ Z⊗ I(n−2) ... U′′n = I(n−1) ⊗ Z, being n the number of qubits.

As a final remark, the gates used do not need to be Z gates, since the goal is in principle apply a
different phase between |ψ0〉 and |ψi〉. Therefore, any Zφ works in this algorithm. Additionally,
the aforementioned eigenvalues do not have to be real anymore, u′ii 6= ū′ii u′′ll 6= ū′′ll, and Eqs.(2.14),(2.13)
take the form:

〈φ+|ρA ⊗ ρB|φ+〉 = 1
4 ∑

l
|βl|2(1 + Re(u

′′
ll)) (2.17)

〈φ−|ρA ⊗ ρB|φ−〉 =
1
4 ∑

l
|βl|2(1− Re(u

′′
ll)) (2.18)

2.1.1 Hypothesis test

The correct estimation of the values of the Bell measurements requires to measure the ancillas
of Bob’s and Alice’s circuits more than once. To know how many times, we need to compute a
hypothesis test.

For the sake of simplicity, we will start by showing the ideal case, where there is no noise in
any of the circuits, and Bob prepares and eigenstate of the unitary, |γj〉, i.e, there is not yet a
superposition of different states, |ψB〉, Eq.(1.7).

12
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2.1 Z gates 13

• if µ̂ = 0, we accept the hypothesis that "Bob generates |γ0〉". We will call it the null
hypothesis, H0.

• if µ̂ 6= 0, we reject the hypothesis. It is the alternative hypothesis, Ha.

Where µ = 〈φ−|ρA ⊗ ρB|φ−〉, µ̂ := ∑ne
i=1 Xi/ne, being Xi random variables.

The total number of measurements needed to carry out this protocols to have an acceptable value
of the expectation value of the Bell measurements is defined by:

N = k× ne, (2.19)

where k is the number of times Bob changes the unitary in his circuit and ne is the number of times
the output is measured in a certain circuit configuration, i.e. ne is the number of experimental runs
computed for each k. As we are dealing now with the ideal case, where the noise is not considered,
ne = 1.

To compute k we calculate the error of the first kind. The latter implies to accept H0 when it is not
true, i.e, to accept that Bob generates |γ0〉 when he does not.

P( accept H0|Ha is true ) := δ (2.20)

Let us picture that in the first circuit configuration, Bob’s unitary is In−1 ⊗ Z. Recalling that he
prepares an eigenstate |γj〉, the probability that the eigenvalue of |γj〉 is 1 is 1/2. One of the former
eigenvalues corresponds to the eigenvector |γ0〉, i.e. the searched state. Hence, the probability of
making an error of the first kind is:

δ =
1
2
− 1

2n . (2.21)

Now, in the second circuit configuration, Bob’s unitary is I⊗ Z ⊗ In−2, and the probability that
the eigenvalue of |γj〉 is +1 in both measurements, i.e. in the intersection space between the two
unitaries, is 1/4. Therefore, after two measurements the probability of accepting wrongly that
Bob also generated |γ0〉 is:

δ =
1
4
− 1

2n . (2.22)

When carrying out the third circuit configuration with another unitary where the Z gate is on
another qubit, the probability that the eigenvalue of |γj〉 is 1 in the intersection state between the
unitaries is 1/8 = 1

2n , where n = 3.

Therefore, we can appreciate how the probability of committing an error of the first kind decreases
exponentially with the number of qubits, n. As we are not considering noise, after N = k = n
measurements, δ = 0, Eq.(2.23).

δ =
1
2n −

1
2n = 0. (2.23)
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Generally, the hypothesis H0 is accepted with a certain confidence interval. In other words, if we
want to be right at least 90% of the times that we say that Bob has generated the same state as
Alice, we set δ′ = 0.1.

So, what is the number of different circuit configurations, k, needed to compute for a certain δ′?
In the next section, we obtain the upper limit of k by picturing the worst case, where Bob wants
to fool Alice and commit an error of the first kind.

Worst case scenario

Usually, we will have that the probability of accepting H0 when Ha is true is of the form:

P( accept H0|Ha is true ) =
1
2k −

1
2n ≤ δ′. (2.24)

After some algebra:

1
2k ≤ δ′ +

1
2n −→ −klog(2) ≤ log

(
δ′ +

1
2n

)
−→ k ≥

log
(

1
δ′+ 1

2n

)
log(2)

k ≥ log2

(
1

δ′ + 1
2n

)
(2.25)

We can appreciate that if δ′ = 0, k ≥ n, in concordance with the result shown in Eq.(2.23).
Additionally, if δ′ = 1/poly(n), then 1/2n is negligible and k ≥ log2(n). So k has a logarithmic
dependence with the system size, n, if we choose δ′ = 1/poly(n).

Noisy states

Besides considering that Bob can generate any other state than |γ0〉, we may also think about
the possibility that he generates a noisy |ψ0〉, Eq.(1.23), due to a systematic mistake in the circuit.
Therefore, the output of the Bell measurement will be:

〈φ+|ρA ⊗ ρB|φ+〉 ≤ 1
2

(2.26) 〈φ−|ρA ⊗ ρB|φ−〉 ≥ 0, (2.27)

where the inequality holds for the case of Bob not generating |γ0〉 perfectly.

On top of that, the current quantum devices are NISQ devices, which implies that it is not just
Bob the one generating noisy states. In this case, we will consider that the expectation value of
the Bell measurements is:

E(〈φ−|ρA ⊗ ρB|φ−〉) = α ≈ 0, (2.28)

14
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2.2 Random phase 15

which shows that both, Alice and Bob, are working with NISQ devices.

To check whether Bob is generating a noisy state due to, for instance, an error in the implementation
of the gates, or if he is generating the same state as Alice, we need to carry out a hypothesis test.
On top of that, we need to balance between the two possible situations of Bob being a bit clumsy
and Bob trying to fool Alice (worst case scenario). To do that, we consider a regime of possible
values for the outcome of the Bell measurements.

• If |µ̂−E(µ)| < ε, we accept the hypothesis that Bob generates the same state as Alice. This
is the null hypothesis, H0.

• If |µ̂−E(µ)| ≥ ε, we reject the hypothesis. It is the alternative hypotehsis, Ha

Where µ = 〈φ−|ρA ⊗ ρB|φ−〉, µ̂ := ∑ne
i=1 Xi/ne, and ε is the precision that we want to reach

between the measured outcome and the expected one. In other words, ε is the parameter that
expresses how clumsy can be Bob generating his state.

The computation of the error of the second kind gives the number of measurements, ne, needed
to accept the previous hypothesis with a certain confidence interval. An error of the second kind
involves accepting Ha when H0 is true. We seek that the probability of committing an error of the
second kind is smaller than a certain δ′′.

P(|µ̂−E(µ)| ≥ ε) ≤ δ′′ (2.29)

Since Xi is bounded and a Bernoulli random variable [19] of parameter p = α, being α the
theoretical value of the expectation value of the Bell measurement (Eq.(2.28)), Eq.(2.29) is basically
the Chernoff- Hoeffding’s inequality [20]:

P(|µ̂−E(µ)| ≥ ε) ≤ 2e−2neε2
(2.30)

Combining Eqs.2.29 and 2.30:

ne ≥ log(2/δ”)/2ε2 ∝ O(ε−2) (2.31)

2.2 Random phase

As it was mentioned in the previous section 2.1, it does not matter if the gates used are Z gates
or any Zφ gates. The goal is to use a gate that applies a different phase between |γ0〉 and the
rest of the states |γi〉, i 6= 0. This protocol seeks to use just one circuit configuration and not the
k needed in the previous one to have a reliable value of the Bell measurements. To do that, the
controlled unitaries of this protocols are constructed using n different Zφ rotation gates, being n
the number of qubits and φ a random phase, on each qubit of Alice’s and Bob’s circuits. By doing
so, the eigenvalue of the searched state will be 1 and the rest of them eiφi , being φi the phase of the
eigenvalue uii of the state |γi〉, i = 1...2n − 1.
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16 Cross-platform verification protocols

Zk ⊗ Zl =
Zk

Zl

Zk ⊗ Zl =


1

eil

eik

ei(l+k)

 (2.32)

Figure 2.4: Cross-platform verification protocol using Z rotation gates with a random and different phase
each for the case of n=2.

Zk ⊗ · · · ⊗ Zm = ...

Zk

Zm

Zk ⊗ · · · ⊗ Zm =


1

eim

. . .

ei ∑n−1
i=0 φi

 (2.33)

Figure 2.5: Cross-platform verification protocol using Z rotation gates with a random and different phase
each for the case of n qubits.

Let us picture first the case of n = 2 qubits followed by the general case of n qubits.

Figs.2.4 and 2.5 shows that by applying different Z rotation to the different qubits, the resultant
controlled unitary applies different eigenvalues to the different eigenvectors. However, we need
to be careful with the value of the different phases, φi 6= 2nπ, n = 0, 1, 2..., i 6= 0 and their sum,
ei ∑n−1

i=0 φi 6= 2nπ, to avoid that a random state |γi〉 has the same eigenvalue as |γ0〉.

2.2.1 Considerations on the hypothesis test

The main difference between the number of measurements of the previous protocol using Z gates
and this one, is found in k, i.e. the different circuit configurations needed to apply to be able to
accept or reject the hypothesis that Bob also generates |γ0〉with a small probability of committing
an error of the first kind. The randomness of the different phases used in the controlled unitary
of the latter protocol, makes the idea of Bob generating a state with the same eigenvalue as |γ0〉
a hard task. In the worst case scenario, he can generate a state whose phase in the C− Zφ gate is
really close to 2π. On the other hand, the randomness of the phases previously mentioned, makes
the previous situation not highly probable. Therefore, when working with Zφ we can guess that
the number of different circuit configurations required to know if Bob has generated |γ0〉 is going
to be k′ < k.

Additionally, taking into account that Alice and Bob work with NISQ devices, we need to repeat
several times the experimental runs with each circuit configuration to have an acceptable estimation
of the expected values of the Bell measurements, up to a give precision ε. The procedure to get that
number of experimental runs is the same that the one described in section 2.1.1 and the number
of measurements needed to estimate the value of the Bell measurement to a given precision to a
given probability is N = k′ × ne, Eq.(2.31).

16
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2.3 Haar gates 17

2.3 Haar gates

Instead of applying n different Zφ gates with random phases, we can check if Alice and Bob have
generated the same state |γ0〉 by using Haar unitaries [10] (random gates) as controlled gates.
Such gates must meet the following conditions:

UA s.t. UA|γ0〉 = |γ0〉 (2.34) UB s.t. UB|γ0〉 = |γ0〉 (2.35)

Therefore, the Haar unitaries should be of the form shown in Eqs.(2.36),(2.37).

UA =


1 0 · · · 0
0 u⊥A,11 · · · u⊥A,12n

...
...

...
...

0 u⊥A,2n1 · · · u⊥A,2n2n

 (2.36) UB =


1 0 · · · 0
0 u⊥B,11 · · · u⊥B,12n

...
...

...
...

0 u⊥B,2n1 · · · u⊥B,2n2n

 (2.37)

Following the same procedure as in chapter 1 and 2.1, Alice’s and Bob’s circuits are shown in
Fig.2.6, where UA and UB are already in the C-basis, and the output of Alice’s circuit is:

Alice: |ψA〉 UA

|+〉
Bob: |ψB〉 UB

|+〉

Figure 2.6: Alice’s (left) and Bob’s (right) circuits when the controlled gates used are Haar unitaries.

1√
2
(|ψA〉|0〉+ UA|ψA〉|1〉) =

1√
2

(
α0|γ0〉(|0〉+ |1〉) + ∑

i>0
αi

(
|γi〉|0〉+ U⊥A |γi〉|1〉

))
, (2.38)

where the last equation, Eq.(2.38), is equivalent to |ΦA,syst〉.

As usual, we calculate now the reduced density matrix, ρA. To do so, we first obtain the density
matrix of the ancilla and the system, ρA,syst = |ΦA,syst〉〈ΦA,syst|, and trace over the system part,
considering that ∑i |γi〉 in an orthonormal basis, so |γi〉〈γj| = δi,j.

ρA = Trsyst(ρA,syst) =
1
2
|α0|2

(
1 1
1 1

)
+

1
2 ∑

i>0
|αi|2

(
1 0
0 1

)
+

1
2 ∑

i,j>0

(
0 c̄ij
cij 0

)
, (2.39)

where cij = αiᾱj〈γj|U⊥A |γi〉, and c̄ij is the complex conjugate.

Arranging a bit Eq.(2.39), we get to the expression:

ρA =
1
2

(
|α0|2 + ∑i>0 |αi|2 |α0|2 + ∑i,j>0 c̄ij
|α0|2 + ∑i,j>0 cij |α0|2 + ∑i>0 |αi|2

)
(2.40)
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18 Cross-platform verification protocols

Analogously, the reduced density matrix for the ancilla of Bob’s circuit is:

ρB =
1
2

(
|β0|2 + ∑l>0 |βl|2 |β0|2 + ∑l,k>0 b̄lk
|β0|2 + ∑l,k>0 blk |β0|2 + ∑l>0 |βl|2

)
, (2.41)

where blk = βl β̄k〈γk|U⊥B |γl〉, and b̄lk is the complex conjugate.

Finally, the density matrix of both ancilla is:

ρA ⊗ ρB =
1
4

A00B00 · · · A01B01
... · · · ...

A10B10 · · · A11B11

 , (2.42)

where A00 = A11 =
(
|α0|2 + ∑i>0 |αi|2

)
, B00 = B11 =

(
|β0|2 + ∑i>0 |βl|2

)
, A10 = |α0|2 + ∑i,j>0 cij,

A01 = Ā10, B10 = |β0|2 + ∑l,k>0 blk, and B01 = B̄10.

Using the terms of the resultant density matrix, Eq.(2.42), we get the expectation value of the Bell
measurements:

〈φ+|ρA ⊗ ρB|φ+〉 = 1
8
(2A00B00 + A10B10 + A10B10) =

1
4
(A00B00 + Re(A10B10)) (2.43)

After some algebra:

〈φ+|ρA ⊗ ρB|φ+〉 = 1
2

Γ +
1
4
(∆ + η), (2.44)

where:

Γ = |α0|2|β0|2, (2.45)

∆ = |α0|2 ∑
l>0
|βl|2 + |β0|2 ∑

i>0
|αi|2 + ∑

i,l>0
|αi|2|βl|2, (2.46)

η = Re(|α0|2 ∑
l,k>0

blk + |β0|2 ∑
i,j

cij + ∑
i,j,l,k>0

cijblk. (2.47)

Repeating the same procedure, the expectation value of the |φ−〉 Bell state is:

〈φ−|ρA ⊗ ρB|φ−〉 =
1
8
(2A00B00 − A10B10 − A10B10) =

1
4
(A00B00 − Re(A10B10)) (2.48)

Analogously to the expected Bell measurement with |φ+〉:

18

Version of August 4, 2021– Created August 4, 2021 - 11:16



2.3 Haar gates 19

〈φ−|ρA ⊗ ρB|φ−〉 =
1
4
(∆− η) (2.49)

If Alice and Bob generate the state |γ0〉, Eq.(1.6), then:

〈φ+|ρA ⊗ ρB|φ+〉 = 1/2 and 〈φ−|ρA ⊗ ρB|φ−〉 = 0, (2.50)

same values for the Bell measurements as the ones computed with the previous algorithms,
chapters 1, 2.1.

2.3.1 Construction of the Haar gate

The effective implementation we propose of the Haar gates shown in Eqs.(2.36),(2.37) need the
use of several controlled gates. Let us start then by explaining them.

0

1 W
C0 −W =


1 0 0 0
0 1 0 0
0 0 w00 w01
0 0 w10 w11

 (2.51)

Figure 2.7: 2-qubit controlled gate, where W is a single qubit gate, and C−W is the controlled gate of W.
The numbers on the left side of the circuit indicates which qubit is the control one, namely the first or the
last one. In this case the control qubit is the first one, implying that when its |1〉, the unitary W is applied
on the second qubit.

0 W

1
C1 −W =


1 0 0 0
0 w00 0 w01
0 0 1 0
0 w10 0 w11

 (2.52)

Figure 2.8: 2-qubit controlled gate, where W is a single qubit gate, and C−W is the controlled gate of W.
The numbers on the left side of the circuit indicates which qubit is the control one, namely the first or the
last one. In this case the control qubit is the last one, implying that when its |1〉, the unitary W is applied
on the first qubit.

Figs.2.7 and 2.8 show 2-qubits controlled gates with different control qubits. In Fig.2.7, the control
qubit is the first one, meaning that if its state is |1〉 the single-qubit unitary W is applied to the
second qubit, Eq.(2.53). On the other hand, in Fig.2.8 the control qubit is the second one implying
the operations shown in Eq.(2.54).

|00〉 → |00〉 ; |01〉 → |01〉 ; |10〉 → |1〉 ⊗W|0〉 ; |11〉 → |1〉 ⊗W|1〉 (2.53)

|00〉 → |00〉 ; |01〉 → W|0〉 ⊗ |1〉 ; |10〉 → |10〉 ; |11〉 →W|1〉 ⊗ |1〉 (2.54)
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20 Cross-platform verification protocols

0 W

1 W


1 0 0 0
0 w00 w01w10 w01w11
0 0 w00 w01
0 w10 w10w11 w2

11

 (2.55)

Figure 2.9: Construction of the Haar gates UA,B, Eqs.(2.36),(2.37) for the case of 2 qubits. The matrix product
of the 2 controlled gates gives as a result a matrix 22 × 22 where the 00 element is 1 and the other elements
of the fist row and first column are 0. The elements of the remaining columns and rows are a combination
of zeros and random values. By computing several times the configuration shown in the left side of the
figure, the resulting gate is the searched Haar gate.

By repeating several times the configuration shown in Fig.2.9, i.e. computing the matrix product
of Eq.(2.55) more than once, and working under the supposition that the different elements of the
single qubit gate, W, are random (w00, w01, w10 and w11 are random values), the Haar gates used
in the previous protocol, 2.3 can be implemented.

0 W
W

1
W

2 W

Figure 2.10: Construction of the Haar gates UA,B, Eqs.(2.36) and (2.37), for the case of 3 qubits. The matrix
product of the three controlled gates gives a result a matrix 23 × 23 where the 00 element is 1 and the other
elements of the first row and first column are zero. The elements of the remaining columns and rows are a
combination of zeros and random values. By computing several times the configuration shown in the left
side of the figure, the resulting gate is the searched Haar gate.

For the case of n = 3 qubits, we will have the setup described in Fig.2.10. And, in general, for n
qubits, the setup to compute the Haar gates, Eqs.(2.36) and (2.37), is built using n controlled gates
(C0−W, C1−W,..., Cn−1−W), where the control qubit is different on each gate and all the qubits
end up being a control qubit.

2.3.2 Considerations on the hypothesis test

Following the same procedure that the one described in the previous protocols, we need to carry
out a hypothesis test to know the number of measurement, N, required to estimate the expectation
value of 〈φ−|ρA ⊗ ρB|φ−〉. Picturing the worst case scenario where Bob wants to fool Alice seems
a harder task that in the case of the previous protocols, sections 2.1.1 and 2.2.1. The reason of that
is that in this case, using Haar gates, the values used are completely random, implying that the
chances that Bob generates an eigenstate orthogonal to |γ0〉 are really low. Therefore, like in the
case of using Zφ gates, we can guess that the number of different circuits configurations required
to know if Bob has generated also |γ0〉 with a small probability of being wrong is k′ < k, being k
the expression shown in Eq.(2.25).

The number of experimental runs needed to estimate the expectation value of the Bell measurements
up to a given precision and a given probability in each of the different circuit configurations, is

20
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2.3 Haar gates 21

the same that in the previous protocols, ne. Eq.(2.31). So, the total number of measurements is,
N = k′ × ne.

Finally, the advantage of the last two protocols explained in this chapter (using Haar gates or Zφ

gates with random phase as controlled gates on Alice’s and Bob’s circuit), is clear when taking
about the number of different cirucit configuration needed to carry out the protocol. Comparing
now the protocols of Zφ gates and Haar gates, even though it is a bit easier for Bob to manipulate
Alice when using random phases, constructing Haar gates is not an easy task, as it was shown in
section 2.3.1.
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Chapter 3
Conclusions and outlook

In this thesis we have shown three different cross-platform verification protocols, where the goal
is to compare two quantum states generated by two different quantum devices, Alice’s and Bob’s
quantum circuits. Specifically, they check if Bob has generated the same state as Alice, |γ0〉,
Eq.(1.8).

The first protocol presented uses a controlled-unitary constructed by applying a Z gate on a
different qubit of the system in each circuit configuration computed. In the next protocol, a
different phase is also applied between the different eigenstates, but in this case the controlled-unitary
is formed by n Zφ gates with different random phases on the different qubits leading to a unitary
where all eigenstates have different eigenvalues. So, just one circuit configuration is needed in the
latter. The last protocol showed uses a special construction of Haar gates, where |γ0〉 eigenvalue
is 1 and the rest of the states |γj〉 are random values. Finally, we also study how the different
protocols scale with the system size.

What we present in this project is just a first building block in the very ambitious program of
scaling up quantum devices with a new architecture, demanding novel algorithms and tools. The
most basic one considered here is to compare two states. The last comparison reminds of file
verification [18], to check if one file (quantum state) is the same as a previous one, the "desired"
one.

3.1 Quantum hashing and quantum fingerprints

In this chapter, we will introduce the cryptographic hash functions [21] and the fingerprint algorithm
[22], [23], and show that the comparison between two hash functions or two fingerprints is how
the security protocol of data verification works.

A cryptographic hash function is a mathematical function that maps data of arbitrary size to
a short, fixed-length, hash value with some properties. One of the tasks of these functions is to
resist different cryptanalytic attacks. To do so, they are defined following three specific properties:
pre-image resistance, second pre-image resistance and collision resistance.

The first one implies that hash functions are one-way functions, meaning that it is too difficult to

Version of August 4, 2021– Created August 4, 2021 - 11:16

23



24 Conclusions and outlook

find their pre-image. In other words, given a hash value h, it is hard to find a message, m, such
that h = hash(m). On the other hand, given a message m, it is easy to compute a hash value that
h = hash(m).

The second property, the second pre-image resistance, shows that given an input message m, it
should be difficult to find another message, m′, such that m 6= m′ and hash(m) = hash(m′).

The last property is like the “strong" version of the previous one. It says that it should be difficult
to find two different messages, m and m′, such that hash(m) = hash(m′).

The set of these properties imply that a small change in a message produces such a change in the
hash value that a new one is generated (avalanche effect)[21]. Consequently, an adversary can not
change the input data without changing the hash function.

Therefore, cryptographic hash functions can be used in file verification. In order to make sure that
a file has not been modified, hash-based protocols compare the file’s hash value to a previously
calculated one. If the values match, we can suppose that the file has not been corrupted.

Fingerprints, analogously to hash functions, are mathematical functions that map a great amount
of data to a smaller string, its fingerprint (like human fingerprints). However, fingerprints do not
need to follow the three properties aforementioned for hash functions. The condition that they
must meet is that its probability of collision, i.e. two files of data having the same fingerprint,
has to be negligible. There are several ways of computing them, and one is using cryptographic
hash functions. Fingerprints are usually used to avoid the comparison and transmission of big
blocks of data. For example, in file verification, a web browser can check if a remote file has been
corrupted by comparing its fingerprint with the one of the previous copy [24].

Hash functions and fingerprints have their quantum representation [22], [25]. Buhrman et.al. [22]
propose to use a SWAP test to compare if the fingerprints of Alice and Bob, |φA〉 and |φB〉, are the
same. As it was already mentioned in chapter 1, to carry out a SWAP test implies teleporting the
states for their comparison through a quantum link. However, a quantum link teleporting large
quantum states between two different devices is not currently accessible.

Therefore, to compare the different hash functions, |hA〉 and |hB〉, or the different fingerprints,
|φA〉 and |φB〉, we can use any of the algorithms explained in chapter 2.

C X

H

Figure 3.1: Alice and Bob circuits used for file verification with hash functions and fingerprints. C
represents the quantum circuits that generates the quantum hash functions and the quantum fingerprints
and C− X the different controlled-gates in the C basis of the protocols previously shown in chapter 2.

Fig.3.1 shows Alice’s and Bob’s circuits and how they would be used for quantum data verification.
Gate C represents the quantum algorithm that generates the quantum hashing functions or the
quantum fingerprints, and C − X the controlled unitaries of the different protocols in the C
basis. Recalling that we are working under the assumption that we trust that Alice generates
the searched state |ψ0〉 and that we check if Bob has generated the same, we can make some
analogies with the case of file verification. The state that Alice generates can be interpreted as

24
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the quantum hashing function or the quantum fingerprint of the original quantum data, i.e. the
quantum data that is known to be unmodified, and Bob generates the hash value of the quantum
data that is checked whether it has been changed. The comparison is made by carrying out Bell
measurements of the ancilla qubits.

In conclusion, besides being useful in quantum distributed computation, the latter protocols may
be also find used in security protocols.

3.2 Comparison with the state-of-the-art.

Additionally, the latter protocols present some advantages compared to the state-of-the-art, [7].
The latter, uses quantum tomography to compute the fidelity, Eq.(1.2), of the output states ρ1 and
ρ2. Quantum tomography implies the measurement of the states and their consequent destruction
(due to the collapse of the wavefunction) if the measurements are incompatible. Therefore, every
time an incompatible measurement of the output is carried out, the states need to be constructed
again. On top of that, the scaling of the experimental tests with the system size, 2bn, makes it
unsuitable for large systems [7].

On the other hand, in the protocols we explain here, chapter 2, we measure the ancilla of the
circuits, implying that there is no need to generate the output states after every measurement,
as long as the tensor product structure system-ancilla is preserved. Regarding the scaling, in the
protocol where the unitaries are computed by Z gates, the number of different circuit configurations
needed goes with the number of qubits of the generated states, Eq.(2.25). This dependence can be
logarithmic if δ′ = 1/poly(n). Additionally, in the protocols where the unitaries are Haar gates
and Zφ gates with random phase, we can guess, due to the randomness of the eigenvalues of the
eigenstates orthogonal to the searched state, that the number of different circuit configurations
needed is k′ < k. On top of that, in the three protocols shown in this project, the number of
experimental test required goes with the precision we want in the estimation of 〈φ−|ρA ⊗ ρb|φ−〉,
ε.

Finally, regarding the state-of-the-art, Elben et.al. [9] show that for a 10-qubit system, the number
of measurements needed to compute an estimation of the fidelity * for an statistical error of
ε = 0.05 is of the order of 104 − 105. Moreover, for the protocols of this project, setting
ε = δ′ = δ′′ = 0.05 we obtain ne = 738 and k = d4.30e = 5. Therefore, the number of
measurements required for the Z-gate protocol, section2.1, is N = kne ≈ 4000, of the order of
103, and for the last two protocols explained in chapter 2, N = k′ne < 4000. This indicates that
better results than the ones that the state-of-the-art shows may be achievable.

*|Fmax(ρ1, ρ2)e − Fmax(ρ1, ρ2) ≤ ε|, where Fmax(ρ1, ρ2) is the target fidelity and Fmax(ρ1, ρ2)e is the estimated one
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