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Abstract

Clustering algorithms are important for data mining, and K -means is

one of the most well-known clustering algorithms currently available. In

cases in which data are high-dimensional, however, mere application of

K -means to a data set may fail to uncover clusters due to presence of

masking variables, the curse of dimensionality, and difficulties in inter-

pretation of the obtained solution. A commonly used work-around is to

apply dimension reduction to the data prior to performing cluster anal-

ysis, a practice called Tandem Analysis (TA). A vulnerability of TA is

that the applied dimension reduction is not guaranteed to preserve clus-

ter structure present in the original data, jeopardising the usefulness of

subsequent cluster analysis. Multiple authors have provided algorithms

that reduce dimensionality of a data set and perform cluster analysis on

the reduced data, either in a sequential fashion or a simultaneous fash-

ion, all aiming to find suitable low-dimensional representations of data

while also keeping cluster structures intact. In this thesis, a novel ap-

proach to reducing dimensionality and performing cluster analysis on the

low dimensional representation of the data - called SICA - is described

and thoroughly tested in two systematically manipulated simulation stud-

ies and applied to three empirical data applications. Results show that

SICA is a computationally efficient algorithm well able to extract com-

ponents from the original data that preserve cluster structures, but that

performance depends on characteristics of the data and the model of data

generation. In addition, the correctness and validity of the clusterings

obtained through SICA is high, although it does not always outperform

currently available methods in this regard and is dependent on the same

characteristics of the data and model generation as the other algorithms.

Limitations and implications for future research are discussed.
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1 Introduction

In various academic and applied fields, cluster analysis is a commonly used

method for identifying and describing subgroups of subjects or individuals present

in data. These subgroups, or clusters, are based on patterns of similarity in

variable profiles and may shed light on important heterogeneity between sub-

jects in the observed concept at hand. Traditional clustering algorithms such

as K -means (MacQueen, 1967) use the full dimensionality of the data (i.e. all

variables in the data) to find potential cluster structures in the data. Although

the application of clustering algorithms to any full dataset is in line with the

general purpose of cluster analysis, the efficacy of clustering algorithms may be

compromised when the nature of the data is high-dimensional. This is due to

several reasons.

First, in large datasets, some variables may not at all contribute to clus-

ter structures or, worse, mask existing cluster structures present in the data

(Milligan, 1980; Parsons, Haque, & Liu, 2004). When applying traditional clus-

tering algorithms to such data, the presence of these noise or masking variables

results in decreased performance (see, for example, the simulation conducted by

Steinley & Brusco, 2008).

Second, as the number of dimensions increases for a given number of data

points, the distance between each data point and its nearest neighbour increases,

eventually approximating the distance between that same data point and its

most distant neighbour. Since clustering algorithms typically apply some dis-

tance metric to quantify similarity between points, the effect of increasing di-

mensionality on mutual distance between data points in the full-dimensional

space (the so called ’curse of dimensionality’) is that distance metrics will not

adequately quantify (dis)similarity between data points, jeopardising the ac-

curacy of these algorithms (Beyer, Goldstein, Ramakrishnan, & Shaft, 1999;
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Steinbach, Ertöz, & Kumar, 2004).

Lastly, when cluster analysis has been performed, a researcher will typi-

cally try to interpret the obtained clusters substantively in the light of some

research question. Although a two- or three-dimensional cluster structure is

well-suited for interpretation, any representation of a cluster structure in a

higher-dimensional space does not allow for an easy substantive interpretation.

This latter drawback is not so much a statistical one as the former two, but is

of large importance in the usefulness of cluster analysis nonetheless.

Several strategies have been proposed (and explored) to overcome these

drawbacks. One consists of applying weights to the variables based on their im-

portance in the underlying cluster structure, assigning higher weights to more

important variables and lower ones to variables that contribute little to the

cluster structure (see, for instance, Steinley & Brusco, 2008). The weights, in

the example of Steinley and Brusco (2008) are based on the ratio of a variable’s

range to its variance and are thus defined a priori. A weight of 0 can be assigned

to a variable if that variable does not contribute to the cluster structure at all,

amounting to a type of variable selection. One typically wants to assign such a

zero weight to noise and masking variables.

A second strategy consists of applying a clustering algorithm to a lower-

dimensional representation of the original data that contains as much informa-

tion as possible about the original data. This can be achieved by applying a

data reduction technique to the data (e.g. Principal Component Analysis; PCA)

and applying a clustering algorithm such as K -means to the first few (linear)

projections of the original data provided in the reduced data. The procedure

of applying PCA and consecutive K -means to the components is called tandem

analysis (TA) and its intuitive appeal lies in the fact that PCA, in its first few

principal components, explains as much variance as possible (formally by min-
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imising the sum of squares between the original data and some superimposed

linear projection making up the individual components), containing as much

information as possible about the original data in a (much) lower dimensional

projection.

Despite the fact that tandem analysis offers a clear strategy to overcome the

drawbacks of cluster analysis in high dimensional settings, a well-known and

warned against complication of this method is that the components extracted

are not guaranteed to preserve any potentially present cluster structure in the

original data (De Soete & Carroll, 1994; Arabie & Hubert, 1996). This is due to

the fact that the individual components extracted by the PCA are extracted in

such a way that the variance of each of the individual components is maximised,

often resulting in more or less unimodal, Gaussian components. Components

exhibiting cluster structure, in contrast, are expected to take on a more bimodal

or multimodal shape (the clusters of (dis)similar observations making up the

modes), but PCA is not guaranteed/able to extract components of such a shape.

Over time, multiple methods have been developed aimed at overcoming the

difficulties in cluster analysis associated with high dimensionality beyond the

suboptimal solution provided by tandem analysis. Notable examples are Re-

duced K -means (RKM; De Soete & Carroll, 1994), Factorial K -means (FKM;

Vichi & Kiers, 2001), Subspace K -means (SKM; Timmerman, Ceulemans, De Roover,

& Van Leeuwen, 2013) and Principal Cluster Axes Projection Pursuit (PCAPP;

Steinley, Brusco, & Henson, 2012). These methods all apply component analysis

or a similar projection method to reduce the dimensionality of the original data,

in combination with a clustering algorithm. However, since all these methods

(except PCAPP) capitalise on PCA as a means of dimension reduction, the

aforementioned characteristics of their extracted components may well fail to

return cluster structures embedded in subspaces of the original data. PCAPP,
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instead, maximises an index known as the Clusterability Index (CI ; Steinley et

al., 2012) instead of variance, in order to obtain components of non-Gaussian

shapes. As such, PCAPP explicitly searches for projections of the data with a

high potential for clustering.

Another method that might be better equipped to return non-Gaussian

structures embedded in a subspace of the original data that contain relevant

clustering information is Independent Component Analysis (ICA; Comon, 1994;

Hyvärinen & Kano, 2003), a method coming from the field of signal-processing.

ICA is a multivariate latent variable model that searches for maximally non-

Gaussian projections in multivariate data, which are mutually statistically in-

dependent. Applying ICA to a dataset containing a cluster structure in its

subspace will yield projections that exhibit a non-Gaussian (e.g. bimodal or

multimodal) structure, making it a suitable alternative to find the relevant clus-

tering in the data.

ICA provides an attractive alternative to PCA in reducing dimensionality

of data while also preserving potentially present cluster structures residing in

the data subspace. However, ICA has the ambiguity that the order in which it

estimates these components is free to vary without affecting the overall model

outcome. In comparison, PCA estimates its components in the same order every

time, as the components are ordered in terms of the amount of variance they

explain in the data. ICA does not possess such a property and, as a consequence,

application of ICA to a multivariate data set to find components exhibiting

cluster structure may require visual inspection of each individual component

or some other time-consuming endeavour. This is not a realistic strategy for

large data sets, and so it is proposed to combine ICA with a metric assessing

the multimodality of the returned projections called the Bimodality Coefficient

(BC ; Freeman & Dale, 2013) to return individual components exhibiting cluster

8



structures. This method is called Subspace-ICA (SICA; Durieux & Wilderjans,

2019) and will be central to this thesis.

Preliminary results show that SICA recovers cluster structures residing in

a subspace of the full data well over multiple different conditions (e.g. num-

ber of clusters or amount of noise present in the data), returns components

that exhibit more cluster structure than components extracted by tradition-

ally applied methods and is computationally efficient (Durieux & Wilderjans,

2019). Furthermore, application of SICA to toy data reiterates these findings

and demonstrates the performance of SICA in finding well-interpretable and

well-separated clusters. Based on these findings, it can be hypothesised that

SICA will outperform other (more traditional) methods in terms of finding rel-

evant cluster structure in (a subspace of) high dimensional data. Therefore,

the aim of this thesis is to subject SICA and related methods to a more strin-

gent comparison by means of two simulation studies and an application to three

realistic empirical data problems.

This thesis is structured as follows. In section 2, an elaborate description

of all methods used in this thesis will be provided in terms of their inner work-

ings and mathematical formalities. Section 3 contains the simulation studies

and their results, and section 4 presents the application to two functional mag-

netic resonance imaging (fMRI) data sets and one data set containing measures

of sensory processing sensitivity (SPS). Section 5 contains the discussion and

limitations of this thesis, along with possible future directions for research.
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2 Existing methods

In this section, an overview of currently existing methods that combine dimen-

sion reduction and clustering techniques in either a sequential or simultaneous

fashion will be given.

2.1 K -means clustering

The K -means clustering algorithm (MacQueen, 1967; Forgey, 1965; Lloyd, 1982;

Hartigan & Wong, 1979) is one of the most commonly used clustering algorithms

currently available, and is central to all methods discussed in this chapter. K-

means seeks to partition N (i = 1, 2 ..., N) objects into K (k = 1, 2 ..., K)

homogeneous, hard clusters in which every subject belongs to one and only one

cluster, such that K � N. It does so by minimising the following loss function:

Q(P,C) = ||X−PC||2 (1)

This amounts to minimising the within-cluster variance between the subjects of

a cluster or the within-cluster distances between the subjects and their associ-

ated cluster centroid. In this equation, X denotes the N × P observed data

matrix, P is an N × K binary indicator matrix in which, for each of 1 to N

objects, the element i equals 1 if and only if that subject belongs to that clus-

ter k. Lastly, the rows of the K × P centroid matrix C contain the centroid

vectors for each of the K clusters. Estimation of the partitioning matrix P and

the centroid matrix C can be done using an alternating least-squares type of

algorithm which estimates P with respect to the current estimate of C after

which it estimates C given the current P. These steps are alternated repeatedly

until convergence. The first step in this algorithm is using some initial estimate

10



of P, which is obtained using random assignment of objects to the K clusters.

Since these types of algorithms are sensitive to local minima, it is advised to

use a multiple random start procedure in conjunction with K -means. Such a

procedure runs the K -means algorithm several times, each time with a different

(random) initialisation of P. The solution with the lowest loss value encountered

across all runs is selected as the final solution.

2.2 Tandem analysis

Tandem analysis, as described in the introduction, requires first reducing the di-

mensionality of an observed data set (using, for example, PCA) that preserves as

much information as possible from the original data, after which some clustering

algorithm is applied to the reduced data set. PCA projects an observed data set

X to a space in which the individual components are orthogonal and explain as

much variance as possible using the linear transformation Xr = XEr where Er

is an orthonormal matrix (with r columns) containing the first r eigenvectors

of the covariance matrix of X ordered by the strength of their accompanying

eigenvalues as λ1 > λ2 > ... > λr (Shlens, 2014). In practice, this linear trans-

formation can be obtained by means of a singular value decomposition of X (for

more information, see Shlens, 2014).

Although intuitively reasonable, there is no guarantee that the data reduc-

tion method applied to the full data preserves potential cluster structures em-

bedded in it. This jeopardises the usefulness of tandem analysis in finding

cluster structures in high-dimensional data.

2.3 Simultaneous dimension reduction and clustering

Unlike tandem analysis, in which dimension reduction and clustering take place

in a sequential manner, multiple methods exist that combine dimension re-

11



duction and clustering in a simultaneous fashion. The gain of these methods

over tandem analysis is that, by simultaneously reducing dimensionality and

performing cluster analysis, potential cluster structures underlying the data are

contained to a larger extent in the lower-dimensional representation, potentially

improving performance of applying cluster analysis (De Soete & Carroll, 1994).

2.3.1 Reduced K -means

Reduced K -means (RKM; De Soete & Carroll, 1994) aims to perform dimension

reduction on the full data matrix X while simultaneously clustering objects

into a predefined number of hard clusters. The formal loss function it aims to

minimise is much the same as Equation 1 but with the constraint that the rank

of the centroid matrix C is lower than that of the full data matrix X (De Soete

& Carroll, 1994). In matrix notation (based on Timmerman, Ceulemans, Kiers,

& Vichi, 2010; adapted to match current notation):

Q(P,C,A) = ||X−PCA||2 (2)

Note RKM achieves this lower-rank representation using an R-truncated

singular value decomposition of the data matrix X in which only the first R

singular values and left and right singular vectors are used (De Soete & Carroll,

1994). The value of the number R is defined by the user beforehand. All

matrices in Equation 2 are the same as in Equation 1, except for the (M × R)

orthonormal loading matrix A.

De Soete and Carroll (1994) provide an alternating least-squares algorithm

that minizes Equation 2 alternating between minimising P given the current

estimate of C and minimising C given the updated estimate of P until con-
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vergence is reached (De Soete & Carroll, 1994). This results in a clustering in

which the centroid vectors that make up the rows of C are restricted to lie in an

R-dimensional subspace of the full data matrix X (De Soete & Carroll, 1994).

As in K -means, a multiple random start procedure is adopted to prevent the

algorithm from converging into a single local minimum.

2.3.2 Factorial K -means

Vichi and Kiers (2001) pointed out that the loss-function that is minimised in

RKM increases considerably when the observed data in X contain large direc-

tions of variance orthogonal to the subspace in which the cluster centroids in

C reside. Factorial K -means (FKM; Vichi & Kiers, 2001), instead, minimises a

different loss-function in which the sum of squares are calculated for each cluster

using the cluster centroids in reduced space and orthogonal projections of the

subject data points in reduced space. This is contrary to reduced K -means, in

which the sum of squares are calculated between the cluster centroids in reduced

space and the subject data points in the full data space (De Soete & Carroll,

1994). This reduces the magnitude of the loss-function and is more in line with

the general thought of clustering in reduced dimensionality; that cluster struc-

tures and the subjects that shape them lie in a subspace of the original data.

The formal model underlying FKM is given by:

XAA′ = PCA′ + E (3)

in which E is a (N × K) Gaussian error term and A (K × M) an orthonormal

matrix defining the subspace of X (Vichi & Kiers, 2001). P and C, in turn, are

equivalent to their RKM-counterparts. The formal loss-function minimised to

estimate the FKM parameters is:
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Q(P,C,A) = ||XAA′ −PCA′||2 = ||XA−PC||2 (4)

Since the optimal cluster centroid matrix can be written as C = (P′P)−1P′XA,

the loss-function can be further simplified to:

Q(P,A) = ||XA−P(P′P)−1P′XA||2 (5)

which is then estimated using a multiple random-start alternating least-squares

algorithm in which P and A are updated alternatingly (for more information,

see Vichi & Kiers, 2001 and Timmerman et al., 2010).

2.3.3 Subspace K -means

The last method that capitalises on PCA in simultaneously reducing dimension-

ality and performing cluster analysis is Subspace K -means (SKM; Timmerman

et al., 2013). Like RKM and FKM, SKM models cluster centroids to reside

in a subspace of the original data and performs K -means clustering on this

reduced space. In addition, however, SKM allows to formally model the resid-

uals of these clusters in a subspace of the original data as well, using so called

within-cluster components. These components allow to describe the differences

between subjects in the same cluster and, as a result, explain more variance

than RKM or FKM. Formally, the SKM model is defined as

xi =

K∑
k=1

pik(fb
kAb

′ + fw
k
i + Aw

k′) + ek
i (6)
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Here, xi denotes (mean centered) row i from X, pik a binary scalar specifying

to which cluster k subject i belongs collected in the (N × K) binary partitioning

matrix P, fb
k a 1 × Qb vector containing between-component scores for cluster

k (k = 1, 2 ..., K ), Ab
′ a (P × Qb) matrix containing the between-cluster

loadings in which P is the number of observed variables in the full data matrix

X and Qb is the number of between-cluster components. fw
k
i is the (1 × Qw)

within-component vector for individual i in cluster k collected in the (N ×

Qw) within-component matrix Fw
k for cluster k, Aw

k′ the (P × Qw) within-

component loading matrix for cluster k (Qw being the number of within-cluster

components, kept the same for all clusters). Lastly, the (1 × P) vector ek
i

contains the residuals for subject i in cluster k.

For any chosen number of clusters K, between-cluster components Qb and

within-cluster components Qw, SKM optimises the following loss-function:

Q(P,Fb,Ab,Fw
k,Aw

k) =

I∑
i=1

∥∥∥∥∥xi −
K∑

k=1

pik(fb
kAb

′ + fw
k
i Aw

k′)

∥∥∥∥∥
2

(7)

Where the individual matrices and vectors are those as described in Equation

6. This loss-function is then optimised using an alternating least-squares algo-

rithm with multiple-start procedure to prevent the algorithm from converging

into a local minimum (Timmerman et al., 2013).

2.4 Principal Cluster Axes Projection Pursuit (PCAPP)

The methods described so far all rely to some extent on PCA (either in simul-

taneous or subsequent fashion) in combination with K -means clustering to find

cluster structures embedded in large multivariate data. A pitfall of PCA-based
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methods is that it extracts components by maximising variance for each of the

components. As a consequence, the structure of the first few extracted compo-

nents is often Gaussian. Gaussian components generally contain less clustering-

potential than bimodal or multimodal components do (Friedman & Tukey, 1974;

Hubert & Arabie, 1985; Steinley et al., 2012). Therefore, when aiming to find

individual components that preserve and contain cluster structures in data, it

is useful to move away from PCA as a means of dimension reduction.

A method that does not apply PCA as a means of data reduction is Principal

Cluster Axes Projection Pursuit (PCAPP; Steinley et al., 2012). PCAPP is

derived from a technique called Projection Pursuit (PP; Friedman & Tukey,

1974) which aims at finding individual projections of data - given by an optimal

vector wi - that maximises some user-defined index I of the projected data.

This index can be chosen to suit any data analysis problem and is, therefore,

not a single given metric. For any selected univariate index, however, it holds

that:

z = I(Xw) (8)

In which z is the individual projection obtained from the full data based on the

index I and the optimal vector w. Note that this index can also be defined

such that all wi in W are mutually orthogonal and explain as much variance as

possible, in which case PP is equivalent to PCA. Formally, this would require

maximizing z = var(Xw), subject to the constraint that all components are

orthogonal.

The flexibility of being able to choose any index raises the question which in-

dex should be chosen to obtain cluster structures embedded in high dimensions.

Steinley et al. (2012), along with other authors (Friedman & Tukey, 1974), ar-
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gue that, in order to find cluster structures embedded in high dimensions, the

aim should be to find projections that deviate from Gaussianity since these give

more insight in potential cluster structures present in the data than Gaussian

projections do (Steinley et al., 2012). In order to do so, PCAPP applies a mea-

sure called the clusterability index (CI ; Steinley et al., 2012) which, for any

projection, is given by:

CI =
12× σ2(x)

(r(x))2
(9)

Here, σ2(x) indicates the variance and r(x ) the range of some variable or projec-

tion x. The CI has the attractive property of being both affine invariant (i.e.,

its projections are invariant to linear transformations) and robust to outliers

(Steinley et al., 2012). PCAPP applies CI by estimating unit vectors wi in

a deflating fashion (i.e., each time removing the projection from the data and

estimating the next projection on the deflated data) in such a way that the CI

for each of the components is maximised. Once this has been achieved, PCAPP

ensures all unit vectors wi in W to be mutually orthogonal using Gram-Schmidt

orthogonalisation (for more information, see Steinley et al., 2012).

2.5 Subspace Independent component analysis

2.5.1 Independent Component Analysis

ICA is a method from the field of blind source separation and constitutes a

latent variable model aimed at finding interesting projections of multivariate

data, much like PCAPP. Specifically, it finds a linear transformation of the data

matrix X such that the extracted components are non-Gaussian and statistically

independent (Comon, 1994; Hyvärinen & Kano, 2003). Application of PCA on

Gaussian variables guarantees the extracted components to be uncorrelated. For
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non-Gaussian variables, however, PCA will not suffice in extracting independent

components (as independence is a more strict property than uncorrelatedness),

and the additional constraint of statistical independence is required to guarantee

this property of the components.

ICA is a specific case of the more general framework of Invariant Coordinate

Selection (ICS; Tyler, Critchley, Dümbgen, & Oja, 2009). ICS can be used to

find cluster directions in multivariate data and requires the definition of two

scatter-matrices that describe the dispersion in the data matrix X, which are

then compared in relation to their eigenvalues and eigenvectors. More specif-

ically, ICA is a case of ICS in which (1) all components in S are mutually

independent, (2) at most one of the components in S is not symmetrically

distributed around 0 and (3) all eigenvalues of X are distinct, meaning non-

identical.

ICA assumes that N (x1, x2, ..., xn) observed random variables are, in fact,

linear transformations of m latent variables (s1, s2, ..., sm), called sources. In

matrix notation:

X = SA (10)

Here, X is the (N × P) data matrix, S (N × P) the matrix containing the

independent components in its columns (also called the source matrix), and A

the mixing matrix containing the parameters that transform S to the observed

data X. A is often assumed to be a square matrix, meaning that the amount of

latent sources M is equal to the number of observed variables N (its dimensions,

then, would be P × P). This, however, is merely an assumption, and does not

have to be the case; the number of latent sources can differ from the number of

observed variables.
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In order to estimate the independent components in S, the inverse of A (i.e.

A−1 = W) is estimated to invert the linear system that yields X. Since both A

and S are unknown, however, estimating W is done based on the non-Gaussian

properties of the components in S. FastICA is a computationally efficient im-

plementation of ICA that estimates W by maximising the negative entropy

(negentropy) of the individual components in S (Hyvarinen, 1999). Negentropy

is a metric quantifying the extent to which a given variable deviates from a Gaus-

sian distribution, having a value of zero for Gaussian distributed variables and

increasing for components that deviate from a Gaussian variable. Maximising

the negentropy of the components in S, therefore, allows to estimate compo-

nents that are statistically independent and non-Gaussian. Formally, denoting

J an index for non-Gaussianity (e.g. negentropy), all wi in W are selected by

maximising the index of non-Gaussianity of the projected data as:

Ŝi = J(Xwi) (11)

A preprocessing step applied in FastICA to aid in extracting these compo-

nents is that data are whitened before ICA is applied. Whitening the data first

removes all linear dependencies among the data by means of a PCA, after which

it normalises the variance to a value of 1. After whitening the data, the optimal

loading matrix A is known to be a rotation matrix, which is obtained such that

all latent sources in S contain maximal negentropy. This reduces the number

of parameters that needs to be estimated and increases the performance of the

algorithm (Hyvarinen, Karhunen, & Oja, 2001).

Like PCA, ICA can be formulated as a specific case of PP in which the

maximised index is the negentropy. This relation only holds, however, when
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the assumptions of non-Gaussianity and statistical independence of the ICA

model hold. PP does not require these assumptions and so, if the assumptions

do not hold, application of ICA results in PP-directions of the data (Durieux

& Wilderjans, 2019). The assumptions underlying ICA also dictate that, in

the case in which there is more than one component in S that is Gaussian as

opposed to non-Gaussian, there is indeterminacy in A (Tyler et al., 2009), and

S can be only defined up to permutation and scaling (Tyler et al., 2009). A

final ambiguity in the ICA model is that its components can change sign due to

a change in orientation of the independent components in regards to the origin

of the data space caused by a scaling of −1 (Shlens, 2014).

2.5.2 Previous applications of ICA in cluster analysis

The general ICA model has been applied for clustering purposes before and this

paragraph will briefly describe these applications. One application of ICA in

cluster-analysis seeks to find a single most non-Gaussian projection of the data

by minimising the kurtosis of the data and visually inspecting the extracted la-

tent sources for clusters (Bugrien & Kent, 2009). This method utilises the prop-

erty of the ICA model that it extracts non-Gaussian components that may show

interesting cluster structures. In the field of genomics, ICA has been applied as

well. ICA has been used to extract latent features underlying RNA-sequence

data and has been tested in combination with multiple different clustering pro-

cedures, including K -means (Feng et al., 2020). ICA has also been applied

in RNA-sequencing data in which data were longitudinal (Nascimento et al.,

2017). In the latter study, ICA was used to obtain individual, independent vari-

ables from the dependent temporal data and the extracted latent variables were

subjected to K -means and hierarchical clustering analysis. These applications

demonstrate that ICA can be used as a method of achieving reduced dimen-

sionality as well as extracting statistically independent components from the
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data. Lastly, ICA has been applied to data sets normally used in deep-learning

based clustering methods to compare performance on such data. The appeal of

ICA in this setting is that it is less complex than deep-learning based cluster-

ing methods but may provide comparable performance to these more complex

methods while aiding in interpretation. Furthermore, ICA is less computation-

ally taxing due to the absence of hyperparameters that require the tuning for

deep-learning based methods to show good performance. Gultepe and Makre-

hchi (2018) showed that this is, indeed, the case as applying ICA in combination

with spectral graph clustering performed about as well as much more complex

methods based on deep-learning autoencoders.

2.5.3 Subspace ICA

As mentioned, the estimated components in S can be estimated up to a per-

mutation meaning that they will, generally, not be returned in the same order

(i.e., the order of the components is random and may differ when re-analysing

the data with ICA). This becomes clear once the permutation matrix O (P ×

P) and its inverse is added to the ICA model:

X = SO−1OA (12)

This does not change the observed data in X, and SO−1 now contains the

latent sources ordered by O, and OA the associated mixing matrix of this rep-

resentation, with the mixing vectors ordered in the same way as the sources in

SO−1. In order to become a unique ordering of components and retrieve compo-

nents that show cluster structure, Subspace-ICA (SICA, Durieux & Wilderjans,

2019) utilises the Bimodality Criterion (BC, Freeman & Dale, 2013; SAS, 2004)

to quantify the extent to which the components extracted by ICA demonstrate
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cluster structures. BC, here, is based on the skewness and kurtosis of a variable

and is given by:

BC =
x23 + 1

x4 + 3(n−1)2
(n−2)(n−3)

(13)

Here, x3 and x4 indicate the skewness and kurtosis of some variable x, and n

denotes the number of observations. BC -values vary from 0 to 1 and values

larger than .555 are indicative of multimodality (SAS, 2004). SICA orders the

obtained independent components by the magnitude of its univariate BC values

and performs clustering on a predefined number of components herewith select-

ing the components with the largest BC values (irrespective their BC value,

i.e. above .555 or not). Preliminary results suggest that SICA, by combining

fastICA and BC, returns cluster structures well (Durieux & Wilderjans, 2019).

Subsequent application of K -means to the extracted components can disclose

these clusters and allow further interpretation. In the following simulations,

the performance of SICA will be compared to the performance of the related

methods described earlier in this section.
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3 Simulation

In this section, SICA will be compared to the previously described other meth-

ods in terms of clustering performance by generating artificial and systematically

manipulated data and applying these methods to these data. The generation of

these data is conducted in two different ways, both of which will be described

in a detailed fashion in their respective sections.

3.1 Design and evaluation

For both simulations, the design of Steinley et al. (2012) will be replicated,

meaning the following factors will be manipulated:

• The number of clusters present in the data at three levels: 4, 6 and 8.

• The number of variables defining the subspace in which the clusters reside

at four levels: 4, 6, 8 and 12.

• The number of masking variables obscuring the cluster structures in the

data at four levels: 4, 6, 8 and 12.

• The way in which the subjects were divided over the clusters at three

levels: equal, 10% and 60%. In the first condition (equal), subjects are

distributed equally over the K clusters. In the second condition (10%),

there is one small cluster containing 10% of subjects whereas the remaining

subjects are distributed equally over the other K -1 clusters and in the

third condition (60%) there is one large cluster containing 40 percent of

subjects whereas the remaining subjects are distributed equally over the

other K -1 clusters (Steinley et al., 2012).

For all analyses, the number of within-cluster components Qw for SKM was

fixed at 2 and the number of subjects divided over the clusters N was fixed
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at 200 (a common number of subjects in cluster analysis; Steinley, 2003). The

number of variables ranged from 8 (4 components + 4 masking variables) to 24

(12 components + 12 masking variables). For each level of this factorial design,

ten replications were generated, totalling 3 (number of clusters) × 4 (number

of components making up the subspace) × 4 (number of noise variables) × 3

(division of subjects over clusters) × 10 (replications) = 1440 data sets. Each

simulated dataset was subjected to the six methods mentioned in Section 2 (TA,

RKM, FKM, SKM, PCAPP and SICA), using the true number of clusters and

components used to generate the data.

Evaluation of clustering performance and extraction of cluster structures

in the data will, for both simulations, be conducted using the following met-

rics. First, clustering accuracy (i.e., the extent to which the obtained clustering

matches the actual clustering) will be described using the Adjusted Rand-Index

(ARI, Hubert & Arabie, 1985). The ARI compares the accuracy of the obtained

clustering to the true clustering underlying the data and, in doing so, accounts

for chance-level agreement between the two. It has a maximum of 1 (Yeung &

Ruzzo, 2001), where 1 indicates perfect cluster recovery, 0 indicates recovery

at chance level and negative values indicate erroneous cluster recovery. Second,

the extent to which the obtained clusters demonstrate dense, compact clusters

is evaluated using the Silhouette Index (SI; Rousseeuw, 1987). The SI com-

pares within-cluster variance to the distance between the different clusters (i.e.,

between-cluster variance) and is bounded between -1 (indicating spread out,

incoherent clusters) and 1 (indicating very dense, compact clusters). Milligan

and Cooper (1985) and Arbelaitz, Gurrutxaga, Muguerza, Pérez, and Perona

(2013) found that the SI describes cluster-properties well.

The extent to which each of the methods returns non-Gaussian subspaces

will, for both simulations, be evaluated by applying BC (see Section 2.5.3;
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Freeman & Dale, 2013) and the Dip-test (Hartigan & Hartigan, 1985) to each

of the individual components/features extracted by the methods. The Dip test

allows to statistically test whether a distribution is unimodal or multimodal

(Hartigan & Hartigan, 1985). Components exhibiting multimodality with sta-

tistical significance lower than α = 0.05 will be considered multimodal. In order

to adequately discuss and compare the extent to which each of the 1440 data

sets contained non-Gaussian components, the median BC -value and Dip-test

p-value of the extracted components will be reported. Note that the median

was reported because this metric is less sensitive to the skewed distribution of

the BC -value and Dip-test p-values than the mean would be.

Lastly, computation time of each of the algorithms will be measured and

evaluated to provide a metric of computational efficiency.

Software implementation for the described algorithms is the same for both

simulation studies. For RKM and FKM, the ’clustrd’ package version 1.3.7-2

(D’Enza, Markos, van de Velden, & Markos, 2016) was used whereas for KM

and PCA, built-in functions were used in R-software. SKM and PCAPP code

were custom made and is added in Appendix A.

It is expected that, on average, SICA is better than the other methods at

identifying multimodal components, but that this deteriorates as the number of

noise variables and the number of clusters present in the data increases (Durieux

& Wilderjans, 2019; Steinley et al., 2012). In terms of goodness of recovery,

it is expected that SICA is, on average, well able to recover cluster structure

embedded in the data but that this is attenuated as the number of noise variables

increases (Durieux & Wilderjans, 2019) and that this is also the fact as the

number of clusters present in the data increases (Steinley et al., 2012). This

will be tested by conducting a mixed analysis of variance (ANOVA) in which

the methods make up the within-factor and the manipulated factors make up
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the between-factors. These analyses were carried out using the ez R-software

package (Lawrence, 2016).

3.2 Simulation 1

3.2.1 Data generation procedure

In this simulation, ICA and the related methods described so far will be sub-

jected to the factorial design conducted by Steinley (2012), which is based on the

procedure outlined by Milligan (1985) and implemented in an R-software pack-

age called clusterGeneration by Qiu and Joe (2006a) and Qiu, Joe, and Qiu

(2006). The procedure in Milligan (1985) ensures that each of the generated

clusters is separated on some subspace in the data, making for non-overlapping

clusters. In addition, clusterGeneration allows to specify the extent to which

the generated clusters are separated (Qiu & Joe, 2006a; Qiu et al., 2006; Qiu

& Joe, 2006b) and allows to generate a full factorial design with multiple repli-

cations of data sets such as the design specified in this thesis. The index of

separation was, for all designs, fixed at 0.3. Figure 1 illustrates the influence of

this index, and shows an example of four clusters rendered on two dimensions

with a separation index of 0.3.

3.2.2 Results simulation 1

Goodness of recovery Table 1 shows the average ARI values overall and

per method and factor level, alongside the accompanying standard deviations.

As can be seen from the bottom row, RKM yields the highest ARI values for

all factor levels. For all factor levels, SICA clearly performs substantially worse

than RKM, is in the same range as TA and SKM and outperforms FKM and

PCAPP. ANOVA on the ARI-values was conducted to find main effects and

interaction effects of the manipulated factor levels on goodness of cluster recov-
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Figure 1. Illustration of the separation value for four clusters and two dimen-

sions for separation values of 0.1, 0.3, 0.5 and 0.7. For this simulation, this

index was fixed at 0.3, indicated by the upper right plot.

ery. Only effects that are significant beyond the standard α = .05 level and have

a generalised eta-squared measure (η2G) larger than 0.15 (Bakeman, 2005) will

be reported. Multiple main- and interaction effects were found, of which the

main effects will be discussed first. No higher-order interactions were deemed

sufficiently interesting (based on η2G higher than 0.30) to discuss.

As expected based on the results in Table 1, there were significant differences

between methods in terms of their ARI-values (η2G = 0.56; F (5, 600) = 292.14,

p < .001). RKM shows the best overall average recovery as the average ARI

value over all 1440 data sets is 0.86. In addition, SKM shows good overall

performance with an overall ARI value of 0.71 and SICA follows with an overall

average ARI value of 0.67.
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Table 1

Average ARI values and standard deviations, overall and per method and factor

level for the first simulation study.

Factor Levels SICA TA RKM FKM SKM PCAPP Overall
M SD M SD M SD M SD M SD M SD M SD

# Clusters 4 0.77 0.22 0.76 0.24 0.96 0.10 0.40 0.31 0.80 0.12 0.50 0.24 0.70 0.29
6 0.62 0.22 0.62 0.30 0.86 0.24 0.69 0.28 0.71 0.24 0.46 0.23 0.66 0.28
8 0.61 0.24 0.49 0.29 0.76 0.29 0.67 0.28 0.62 0.28 0.42 0.23 0.59 0.29

# Components 4 0.57 0.26 0.30 0.18 0.62 0.32 0.47 0.27 0.49 0.27 0.30 0.20 0.46 0.28
6 0.68 0.24 0.53 0.25 0.89 0.19 0.62 0.32 0.74 0.19 0.41 0.21 0.64 0.28
8 0.72 0.22 0.76 0.20 0.97 0.07 0.66 0.35 0.81 0.14 0.51 0.21 0.74 0.26
12 0.72 0.21 0.89 0.13 0.96 0.08 0.59 0.30 0.79 0.14 0.63 0.20 0.76 0.23

# Noise variables 4 0.82 0.18 0.75 0.28 0.91 0.17 0.75 0.24 0.74 0.20 0.64 0.20 0.77 0.23
6 0.74 0.20 0.66 0.30 0.88 0.22 0.68 0.28 0.72 0.22 0.51 0.21 0.70 0.27
8 0.66 0.21 0.59 0.29 0.86 0.24 0.57 0.31 0.70 0.23 0.42 0.21 0.63 0.28
12 0.46 0.20 0.48 0.26 0.79 0.29 0.35 0.28 0.67 0.26 0.28 0.17 0.51 0.30

Division Equal 0.74 0.24 0.64 0.30 0.89 0.22 0.65 0.32 0.79 0.22 0.49 0.24 0.70 0.28
Large 0.58 0.23 0.60 0.30 0.82 0.26 0.47 0.27 0.59 0.20 0.43 0.23 0.59 0.28
Small 0.69 0.23 0.62 0.29 0.87 0.23 0.64 0.33 0.74 0.21 0.46 0.24 0.67 0.29

Overall 0.67 0.24 0.62 0.30 0.86 0.24 0.59 0.32 0.71 0.23 0.46 0.24 0.65 0.29

Note: Highest value per factor level is underlined. Abbreviations: SICA = Subspace
Independent Component Analysis, TA = Tandem Analysis, RKM = Reduced K-means,
FKM = Factorial K-means, SKM = Subspace K-means, PCAPP = Principal Cluster
Axis Projection Pursuit.

Regarding the manipulated factors, all factors except the number of clusters

present in the data demonstrated to be of substantial main influence. Cluster

recovery increases when the number of components increases (η2G = 0.48, F (1,

120) = 230.56, p < .001). As can be seen from Table 1 in conjunction with

the upper right plot in Figure 2, all methods showed increased goodness of

cluster recovery when the number of components increases. The nature of this

increase, however, differed per method as there was a significant and substantial

interaction between method and the number of components (η2G = 0.23; F (5,

600 = 67.99, p < .001). Specifically, the upper right plot in Figure 2 shows that

this increase is linear for PCAPP and TA, whereas for the other methods, this

trend decreases in steepness as the number of components increases. Durieux

and Wilderjans (2019) and Steinley et al. (2012), too, found that goodness of

recovery increased when the number of components making up the cluster space

increased, and the current results reiterate such findings.
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Figure 2. Average ARI values as a function of the method (lines in different

colours) and number of clusters (upper left), number of components (upper

right), number of noise variables (bottom left) and division of subjects across

clusters (bottom right).

For the number of noise-variables present in the data, ANOVA demonstrates

a substantial effect on goodness of recovery (η2G = 0.44, F (1, 120) = 194,98, p

< .001). Table 1 in conjunction with the bottom left plot in Figure 2 shows that

the goodness of recovery linearly deteriorates as the number of noise-variables

increases for all methods but that the extent to which this decrease takes place

differs per method (η2G = 0.16; F (5, 600) = 44.45, p < .001). SKM and RKM

appear less sensitive to increases in noise depicted by relatively flat lines com-

pared to the other methods that show more pronounced decreases in goodness
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of recovery as noise increases. These results too, were found by Durieux and

Wilderjans (2019) and Steinley et al. (2012).

The division of subjects per cluster, lastly, showed to be of main influence on

the goodness of recovery since η2G= 0.17 (F (2, 120) = 25.96, p < .001), albeit

to a lesser extent than the number of components or number noise variables,

indicated by the smaller magnitude of the η2G coefficient. Regarding division

of subjects over clusters, goodness of recovery was best when the division of

subjects was equal over all clusters. The condition in which clusters consisted

of one small cluster performed slightly worse and the condition in which one

large cluster dominated the cluster subspace shows the worst cluster recovery.

These results are visually represented in the bottom right panel in Figure 2,

and confirm results found by Steinley et al. (2012) and are, most likely, due to

the nature of the K -means algorithm itself and not inherent to the method of

projection (Steinley et al., 2012). Note that no interaction was found between

method and division of subjects.

The number of clusters present in the data showed no main effect, but did

demonstrate an interaction effect with methods (η2G = 0.31; F (5, 600) = 105.26,

p < .001). The interaction effect between the number of clusters present in the

data and the method is presented visually in the upper left panel in Figure

2 using the data in Table 1. Similar to what Steinley et al. (2012) found,

goodness of recovery decreases as the number of clusters present in the data

increases. This is expected as the projection of points to a lower-dimensional

space increases the chance of the clusters made up by these points overlapping,

which is further supported by the fact that goodness of recovery increases as

the number of variables making up the cluster space increases as shown in the

upper right plot in Figure 2. In larger cluster-spaces, projections of clusters

will, generally, show less overlap (Steinley et al., 2012). The upper left panel in
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Figure 2 shows a linear decrease for all methods in terms of goodness of recovery

except for FKM, which increases first, after which it flattens out.

Cluster validity Besides goodness of recovery of the true cluster structure,

the properties of the obtained clusterings were evaluated using the SI (Rousseeuw,

1987). Table 2 shows the overall average Silhouette values for each of the meth-

ods and factor level.

Table 2

Average Silhouette Index values and standard deviations, overall and per method

and factor level for the first simulation study.

Factor Levels SICA TA RKM FKM SKM PCAPP Overall
M SD M SD M SD M SD M SD M SD M SD

# Clusters 4 0.20 0.11 0.21 0.05 0.33 0.11 0.11 0.16 0.27 0.11 0.20 0.06 0.22 0.13
6 0.22 0.09 0.20 0.04 0.35 0.09 0.23 0.19 0.26 0.10 0.20 0.06 0.24 0.12
8 0.25 0.09 0.19 0.04 0.34 0.08 0.20 0.21 0.23 0.12 0.20 0.05 0.24 0.12

# Components 4 0.33 0.07 0.23 0.03 0.39 0.10 0.08 0.21 0.23 0.15 0.27 0.04 0.25 0.15
6 0.25 0.07 0.20 0.04 0.39 0.07 0.23 0.20 0.31 0.10 0.21 0.04 0.27 0.12
8 0.20 0.07 0.20 0.5 0.34 0.06 0.25 0.18 0.29 0.07 0.18 0.04 0.24 0.11
12 0.12 0.03 0.17 0.03 0.23 0.03 0.14 0.11 0.19 0.04 0.14 0.03 0.17 0.07

# Noise variables 4 0.26 0.10 0.24 0.04 0.36 0.11 0.27 0.19 0.27 0.12 0.23 0.06 0.27 0.12
6 0.24 0.10 0.21 0.03 0.35 0.10 0.23 0.19 0.25 0.12 0.21 0.05 0.25 0.12
8 0.22 0.09 0.19 0.03 0.33 0.09 0.17 0.19 0.25 0.11 0.19 0.05 0.22 0.12
12 0.18 0.08 0.17 0.04 0.32 0.08 0.06 0.14 0.25 0.10 0.17 0.05 0.19 0.12

Division Equal 0.24 0.10 0.20 0.04 0.34 0.10 0.20 0.20 0.29 0.12 0.20 0.06 0.25 0.13
Large 0.21 0.09 0.20 0.04 0.34 0.09 0.15 0.18 0.22 0.10 0.20 0.05 0.22 0.12
Small 0.22 0.09 0.20 0.04 0.34 0.10 0.18 0.20 0.25 0.11 0.20 0.06 0.23 0.12

Overall 0.22 0.10 0.20 0.04 0.34 0.09 0.18 0.19 0.26 0.11 0.20 0.06 0.23 0.12

Note: Highest value per factor level is underlined. Abbreviations: SICA = Subspace
Independent Component Analysis, TA = Tandem Analysis, RKM = Reduced K-means,
FKM = Factorial K-means, SKM = Subspace K-means, PCAPP = Principal Cluster
Axis Projection Pursuit.

As was done for the goodness of recovery, ANOVA was conducted on the SI

values and effects that are significant beyond the standard α = .05 level and

have a generalised eta-squared measure (η2G) larger than 0.15 will be discussed.

ANOVA showed there were significant main- and interaction effects. Again,

higher-order interactions were not deemed sufficiently interesting, and will not

be discussed.

There were significant differences between methods in the validity of their

obtained clusterings (η2G = 0.42; F (5, 600) = 143.43, p < .001). RKM showed
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the highest overall cluster validity as its average SI value is 0.34, SKM follows

with an average value of 0.26 and SICA is third in line with average overall SI

values of 0.22. Note, this order of performance is identical to the one found for

goodness of recovery.

Figure 3. Average Silhouette values as a function of the method (lines in differ-

ent colours) and number of clusters (upper left), number of components (upper

right), number of noise variables (bottom left) and division of subjects across

clusters (bottom right).

The number of components making up the cluster space showed a substantial

main effect (η2G = 0.24, F (1, 120) = 99.36, p < .001) and a substantial interac-

tion effect (η2G = 0.17 F (5, 600) = 40.63, p < .001). Table 2 together with the

upper right panel in Figure 3 provide an interpretation to this effect. As can be
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seen, all methods except FKM show an overall decreasing trend in cluster va-

lidity as the number of components making up the cluster space increases. The

trajectory making up this trend, however, differs per method. PCAPP, SICA,

TA and RKM show linear decreases, whereas SKM shows more of an inverted

parabola. Silhouette values for SKM increase at first for 6 and 8 clusters, after

which they decrease for 12 clusters. This pattern is very similar to that of FKM

which demonstrates lowest Silhouette values for the four-component data, shows

increased Silhouette values for 6 and 8 components, and shows a subsequential

decrease at twelve components. Comparing this result to the influence of the

number of components in the data on goodness of recovery, it is interesting to

see that, except for FKM, cluster validity can decrease even when the goodness

of recovery for those clusters increases. The fact that cluster validity decreases

as dimensionality increases (that is, either by adding noise variables or multi-

modal components) could be due to the fact that cluster validity decreases in

high dimensionality. This is what causes the curse of dimensionality described

in the introduction.

The last main effect on cluster validity was found to be the number of noise

variables present in the data (η2G = 0.19, F (1, 120) = 72.37, p < .001). Inspect-

ing Table 2 and the bottom left panel in Figure 3, it is apparent that Silhouette

values for all methods decrease as the number of noise variables present in the

data increases. This trend is a linear one for all methods, but demonstrates

to be especially pronounced for FKM. This is in line with the observation that

goodness of recovery decreases as the number of noise variables increases.

No further main or interaction effects of practical significance were found in

this simulation.

Bimodality of the extracted components Table 3 shows the average me-

dian BC values per method and factor level. As can be seen, SICA yields the
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Table 3

Average median Bimodality Criterion values and standard deviations overall,

and per method and factor level for the first simulation study.

Factor Levels SICA TA RKM FKM SKM PCAPP Overall
M SD M SD M SD M SD M SD M SD M SD

# Clusters 4 0.48 0.07 0.37 0.02 0.41 0.06 0.38 0.06 0.40 0.06 0.42 0.02 0.41 0.06
6 0.49 0.06 0.37 0.02 0.41 0.05 0.44 0.07 0.41 0.05 0.43 0.02 0.42 0.06
8 0.51 0.06 0.37 0.02 0.41 0.04 0.45 0.06 0.41 0.04 0.43 0.2 0.43 0.06

# Components 4 0.55 0.06 0.37 0.03 0.44 0.06 0.48 0.08 0.44 0.05 0.44 0.03 0.45 0.08
6 0.51 0.06 0.37 0.03 0.42 0.04 0.43 0.06 0.43 0.04 0.43 0.02 0.43 0.06
8 0.49 0.05 0.37 0.02 0.40 0.03 0.40 0.04 0.40 0.04 0.42 0.01 0.41 0.05
12 0.44 0.05 0.36 0.02 0.37 0.02 0.37 0.02 0.37 0.02 0.41 0.01 0.39 0.04

# Noise variables 4 0.49 0.07 0.37 0.03 0.42 0.06 0.43 0.07 0.41 0.05 0.43 0.03 0.43 0.06
6 0.49 0.07 0.37 0.02 0.41 0.05 0.43 0.07 0.41 0.05 0.43 0.02 0.42 0.06
8 0.50 0.06 0.36 0.02 0.41 0.05 0.42 0.07 0.40 0.05 0.42 0.02 0.42 0.06
12 0.51 0.05 0.36 0.02 0.40 0.04 0.40 0.06 0.40 0.04 0.42 0.01 0.42 0.06

Division Equal 0.51 0.07 0.37 0.02 0.42 0.05 0.43 0.06 0.42 0.05 0.43 0.02 0.43 0.06
Large 0.48 0.07 0.36 0.02 0.39 0.04 0.41 0.07 0.39 0.04 0.43 0.02 0.41 0.07
Small 0.49 0.06 0.37 0.02 0.41 0.05 0.42 0.07 0.41 0.05 0.42 0.02 0.42 0.06

Overall 0.50 0.07 0.37 0.22 0.41 0.05 0.42 0.07 0.41 0.05 0.43 0.02 0.42 0.06

Note: Highest value per factor level is underlined. Abbreviations: SICA = Subspace
Independent Component Analysis, TA = Tandem Analysis, RKM = Reduced K-means,
FKM = Factorial K-means, SKM = Subspace K-means, PCAPP = Principal Cluster
Axis Projection Pursuit.

components demonstrating the highest BC values over all factors and levels.

Note that, possibly due to taking the average median over the repetitions, no

BC values in Table 3 for SICA exceed the 0.555 threshold set for bimodality

(SAS, 2004). ANOVA main effects beyond the standard α = .05 level and that

have a generalised eta-squared measure (η2G) larger than 0.15 will be discussed.

To save space, discussion of interaction effects for the multimodality of the ex-

tracted components has been added as Appendix B.

ANOVA showed that there was a significant and very substantial difference

between methods in terms of their ability to extract multimodal components

since (η2G = 0.81, F (5, 600) = 857.66, p < .001). This becomes apparent from

Table 3 as the overall average median BC is highest for SICA, but does not

differ substantially between the other methods. A main effect was also found

for the number of components defining the cluster subspace (η2G = 0.63 F (1,

120) = 510.61, p < .001). As can be seen from the margin column in Table 3,
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Table 4

Average median Dip test p-value and standard deviations, overall and per method

and factor level for the first simulation study.

Factor Levels SICA TA RKM FKM SKM PCAPP Overall
M SD M SD M SD M SD M SD M SD M SD

# Clusters 4 0.49 0.28 0.89 0.09 0.75 0.19 0.81 0.20 0.77 0.19 0.87 0.12 0.76 0.23
6 0.49 0.29 0.89 0.10 0.85 0.13 0.77 0.21 0.86 0.12 0.88 0.09 0.79 0.22
8 0.54 0.33 0.89 0.10 0.85 0.14 0.78 0.21 0.87 0.12 0.88 0.10 0.80 0.22

# Components 4 0.31 0.27 0.84 0.14 0.70 0.21 0.60 0.27 0.73 0.21 0.83 0.15 0.67 0.28
6 0.49 0.30 0.89 0.09 0.81 0.14 0.79 0.17 0.83 0.13 0.87 0.10 0.78 0.22
8 0.52 0.28 0.90 0.07 0.86 0.11 0.86 0.11 0.87 0.10 0.87 0.08 0.82 0.20
12 0.71 0.20 0.91 0.05 0.90 0.07 0.90 0.06 0.90 0.06 0.90 0.06 0.87 0.12

# Noise variables 4 0.57 0.31 0.88 0.11 0.80 0.18 0.76 0.23 0.82 0.17 0.85 0.13 0.78 0.22
6 0.54 0.30 0.89 0.10 0.81 0.17 0.76 0.23 0.82 0.17 0.87 0.10 0.78 0.22
8 0.50 0.29 0.88 0.09 0.83 0.15 0.79 0.19 0.84 0.14 0.88 0.10 0.79 0.22
12 0.42 0.29 0.89 0.09 0.84 0.14 0.83 0.16 0.85 0.13 0.90 0.07 0.79 0.23

Division Equal 0.38 0.29 0.88 0.10 0.80 0.18 0.77 0.22 0.80 0.18 0.88 0.10 0.75 0.26
Large 0.66 0.24 0.88 0.10 0.85 0.14 0.84 0.16 0.86 0.14 0.87 0.10 0.83 0.17
Small 0.48 0.30 0.89 0.09 0.80 0.16 0.75 0.23 0.84 0.13 0.87 0.11 0.77 0.23

Overall 0.51 0.30 0.89 0.10 0.82 0.16 0.79 0.21 0.83 0.15 0.87 0.10 0.78 0.22

Note: Lowest value per factor level is underlined. Abbreviations: SICA = Subspace
Independent Component Analysis, TA = Tandem Analysis, RKM = Reduced K-means,
FKM = Factorial K-means, SKM = Subspace K-means, PCAPP = Principal Cluster
Axis Projection Pursuit.

median BC values decrease as the number of components increases. The other

factors showed no significant substantial main effects.

Much the same pattern appears in Table 4, showing median p-values aver-

aged over the ten repetitions resulting from applying the Dip test to the compo-

nents extracted by each of the methods. In agreement to the median BC values

shown in Table 3, Dip test p-values are lowest for SICA and are substantially

higher for all of the other methods. This reiterates the findings that SICA is

able to identify non-Gaussian components to a larger extent than other meth-

ods, despite not always exceeding the necessary thresholds to formally conclude

presence of non-Gaussian components (that is, exceed the 0.555 value set for

BC values or the 0.05 level set for statistical tests for the Dip test).

Again, ANOVA revealed there was a very substantial difference between

methods in terms of their average median p-values (η2G = 0.80, F (5, 600) =

824.62, p < .001). The number of components defining the subspace (η2G =
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0.55; F (1, 120) = 361.64, p < .001) and the division of subjects over clusters

(η2G = 0.20; F (2, 120) = 36.84, p < .001) also showed main effects. From

the margin column of the table, it becomes apparent that, on average, the

components extracted by all methods show more Gaussian shapes as the number

of components defining the subspace increases, and that components show, on

average, the most multimodality when the subjects are divided equally over

the clusters, narrowly followed by the small condition, and worst for the large

condition.

Multimodality and goodness of recovery A central notion in this thesis is

that multimodal components are more interesting when aiming to find clusters

in high dimensionality than unimodal/Gaussian components. To explore the

relation between goodness of recovery and multimodality, correlations between

BC values and ARI values, and between Dip test p-values and ARI values were

calculated. Output showed a positive, highly significant Pearson correlation

of r=0.09 between BC values and ARI values (t(8638) = 8.03, p < .001),

meaning multimodality and goodness of recovery are positively associated, be

it to a small extent. Conversely, there was a highly significant negative Pearson

correlation of r= -0.07 between goodness of recovery and the p-values of the Dip

test (t(8638) = −6.89, p < .001), demonstrating multimodal components are

significantly but slightly associated with better goodness of recovery. It must be

taken in consideration that, due to the large sample size in combination with the

small magnitude of these coefficients, the practical implications this association

is somewhat questionable. This is supported by the fact that SICA extracts

components exhibiting the most multimodality (see Table 3 and Table 4) but

that it does not outperform the other methods in terms of goodness of recovery

(see Table 1).
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Table 5

Average computation time and accompanying standard deviations, overall and

per method and factor level for the first simulation study.

Factor Levels SICA TA RKM FKM SKM PCAPP Overall
M SD M SD M SD M SD M SD M SD M SD

# Clusters 4 0.26 0.09 0.15 0.03 15.98 4.45 18.07 3.12 6.17 1.66 2.53 1.29 7.20 7.64
6 0.30 0.12 0.21 0.05 19.12 5.52 24.62 5.10 7.77 2.51 2.45 1.28 9.08 10.06
8 0.30 0.11 0.24 0.04 28.05 16.25 40.43 25.35 9.46 2.96 2.48 1.30 13.49 19.75

# Components 4 0.19 0.04 0.16 0.03 31.59 17.11 41.28 30.01 9.53 3.74 1.52 0.67 14.04 21.67
6 0.24 0.05 0.19 0.04 19.93 5.56 23.73 6.90 7.23 2.40 2.02 0.80 8.89 10.23
8 0.30 0.07 0.21 0.05 16.88 5.09 22.49 5.83 6.95 1.75 2.56 0.93 8.23 9.16
12 0.42 0.08 0.24 0.06 15.79 4.07 23.34 5.37 7.50 2.02 3.91 1.24 8.53 8.95

# Noise variables 4 0.24 0.09 0.19 0.05 19.07 16.57 27.56 20.54 7.46 2.72 1.61 0.74 9.36 15.05
6 0.27 0.10 0.20 0.05 19.81 11.78 29.17 18.86 7.80 2.99 2.06 0.91 9.89 14.29
8 0.29 0.10 0.20 0.06 20.99 3.40 28.99 16.76 7.84 2.81 2.54 0.98 10.14 13.49
12 0.35 0.11 0.21 0.05 24.32 4.89 25.11 13.75 8.10 2.56 3.79 1.31 10.31 12.15

Division Equal 0.29 0.11 0.20 0.05 21.00 10.78 28.45 18.87 7.03 2.67 2.55 1.34 9.92 14.12
Large 0.29 0.10 0.19 0.05 20.67 11.79 26.21 13.67 8.79 2.81 2.48 1.26 9.77 12.65
Small 0.29 0.10 0.21 0.06 21.47 11.71 28.46 19.92 5.58 2.56 2.47 1.28 10.08 14.53

Overall 0.29 0.11 0.20 0.05 21.05 11.43 27.71 17.72 7.80 2.78 2.50 1.29 9.92 13.79

Note: Lowest value per factor level is underlined. Abbreviations: SICA = Subspace
Independent Component Analysis, TA = Tandem Analysis, RKM = Reduced K-means,
FKM = Factorial K-means, SKM = Subspace K-means, PCAPP = Principal Cluster
Axis Projection Pursuit.

Computational efficiency The last evaluation metric used to measure per-

formance of SICA and the other methods is computation time. As shown in

Table 5, SICA converges to its final solution quickly due to the fastICA algo-

rithm used in this thesis. However, TA is quicker due to the computational

efficiency of PCA. All other methods take substantially more time to converge.

Evaluating performance of the first simulation Although RKM (and

SKM to a smaller extent) clearly outperforms SICA in terms of cluster recovery

and validity, it is more than 50 times (20 times for SKM) slower than SICA.

TA is faster than SICA but recovers the clustering to a substantially lesser

extent. Balancing computational efficiency and cluster recovery performance,

SICA seems to be (one of) the best method. Posterior inspection of the gen-

erated data showed that not all of the variables that should contain cluster

structure were multimodal, as depicted by the left boxplot in Figure 4 showing

the distribution of BC -values of these variables. The majority of the BC -values
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Figure 4. Boxplots of the BC-values for each component and noise variable

generated by clusterGeneration for the 1440 data sets. The 0.555 threshold

is depicted by the horizontal blue line and indicates that not all components

defining the cluster subspace are multimodal.

are lower than 0.555, and all noise variables show BC -values lower than 0.555.

In addition, the spread of BC -values is larger for the components than for the

noise variables. SICA explicitly aims to find multimodal components (and does

so better than other methods, as can be seen from Table 3 and Table 4), and the

weaker performance of SICA in the first simulation could very well be caused

by the fact that the components returned by clusterGeneration are not all non-

Gaussian.
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3.3 Simulation 2

As shown in Figure 4, the variables generated in the first simulation did not

exhibit sufficient multimodality. This may have negatively impacted SICA per-

formance in terms of goodness of recovery and cluster validity (see Table 1 and

Table 2, respectively). In the second simulation, data will be generated using

a procedure more adherent to the assumptions of SICA in terms of the multi-

modality of the components defining the subspace. It is expected that, by doing

so, SICA will outperform the other methods in terms of goodness of recovery

and cluster validity while attaining its computational efficiency and ability to

extract multimodal components.

3.3.1 Data generation procedure

For the second simulation, data were generated based on the procedure outlined

by Durieux and Wilderjans (2019) with some additional adaptations to fit the

current factorial design. First, the binary partitioning matrix P (N × K ) was

created based on the number of clusters and the division of subjects over these

clusters with the constraint that, for each row of P, the sum of the elements

in each row equals 1 (i.e., that each of the subjects belonged to one and only

one cluster). Next, a cluster centroid matrix C (K × Q) was created where Q

equals the number of components making up the space containing the cluster

structure for each of the four levels (4, 6, 8 or 12 components) this factor takes

on. Each row in C contains the centroid coordinates for one of the K clusters for

which the total number is specified by the factorial design. All cluster centroid

coordinates were sampled at random from the following set of numbers; [-20,

-15, -10, -5, 0, 5, 10, 15, 20], meaning that a cluster centroid can, on any

subspace component, have one of these values as its defining coordinate. No

two rows in C are identical to make sure that cluster centroids do not perfectly

39



overlap (a property also found in the algorithm of Milligan, 1985). P and C

are then multiplied and an error matrix E is added to this new matrix to make

for the cluster space in which each of the clusters now contain some within-

cluster variation. This error was generated by drawing independent numbers

from N (0,1) and rescaled to match 5% within-cluster variance, denoting dense

clusterings. Formally, the cluster structure B is then obtained as:

B = PC + E (14)

B was then evaluated with respect to which each of the components in

B demonstrates sufficient cluster structure. Specifically, if the BC value for

one of the components in B does not exceed 0.555, the centroid matrix C is

iteratively sampled again and evaluated until every one of the components in

B demonstrates sufficient cluster structure as indicated by the BC value. This

implies that the clusters in a lower dimensional data space are generated in such

a way that the variables have a multimodal distribution. An example of a two-

dimensional cluster space containing four clusters generated by this procedure

is given in Figure 5.

Next, the number of independent masking variables specified by the factorial

design are generated as N (µ,
∑

) where µ = 0 and
∑

= [Cov [Mi, Mj ], with

100 for i = j and 0 for i 6=j ] and concatenated to B. This combination is then

multiplied by the square mixing matrix A generated by sampling independent

numbers from U (-2,2). The dimensions of A were equal to ((number of compo-

nents + number of noise variables) × (number of components + number of noise

variables)), with the number of components and the number of noise variables

equalling that of the level of the factorial design for which the data are gen-
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Figure 5. Example of a two-dimensional cluster space containing 200 subjects

divided equally over four clusters generated by the procedure for simulation

study 2.

erated. The eventual (high-dimensional) data matrix X was then constructed

as:

X = BA (15)

In which B now denotes the cluster space concatenated to the noise variables.

As was done for the first simulation, the same combination of 1440 data sets
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Table 6

Average ARI values and accompanying standard deviations, overall and per

method and factor level for the second simulation study.

Factor Levels SICA TA RKM FKM SKM PCAPP Overall
M SD M SD M SD M SD M SD M SD M SD

# Clusters 4 0.90 0.16 0.78 0.23 0.80 0.22 0.12 0.16 0.56 0.22 0.74 0.26 0.65 0.33
6 0.73 0.24 0.70 0.28 0.74 0.27 0.26 0.24 0.55 0.25 0.68 0.29 0.61 0.31
8 0.72 0.27 0.65 0.28 0.69 0.27 0.30 0.28 0.51 0.24 0.63 0.28 0.58 0.30

# Components 4 0.60 0.26 0.39 0.18 0.44 0.19 0.16 0.15 0.28 0.15 0.38 0.19 0.38 0.24
6 0.77 0.24 0.64 0.19 0.69 0.19 0.24 0.25 0.50 0.19 0.61 0.21 0.58 0.27
8 0.86 0.18 0.82 0.16 0.85 0.15 0.26 0.25 0.64 0.18 0.77 0.18 0.70 0.28
12 0.91 0.16 0.98 0.06 0.98 0.05 0.26 0.29 0.73 0.17 0.97 0.07 0.81 0.30

# Noise variables 4 0.85 0.21 0.77 0.24 0.79 0.23 0.40 0.30 0.58 0.23 0.77 0.23 0.69 0.29
6 0.83 0.22 0.73 0.27 0.75 0.26 0.26 0.24 0.52 0.23 0.72 0.27 0.64 0.31
8 0.78 0.24 0.69 0.27 0.72 0.26 0.18 0.18 0.53 0.24 0.67 0.27 0.59 0.32
12 0.68 0.26 0.65 0.28 0.70 0.27 0.07 0.07 0.52 0.25 0.58 0.29 0.53 0.32

Division Equal 0.89 0.19 0.76 0.25 0.80 0.23 0.24 0.25 0.61 0.24 0.73 0.27 0.67 0.32
Large 0.63 0.26 0.64 0.28 0.67 0.27 0.20 0.20 0.44 0.20 0.63 0.28 0.53 0.30
Small 0.84 0.19 0.73 0.27 0.76 0.26 0.25 0.27 0.46 0.25 0.70 0.28 0.64 0.32

Overall 0.78 0.24 0.71 0.27 0.74 0.27 0.23 0.24 0.54 0.24 0.68 0.28 0.61 0.32

Note: Highest value per factor level is underlined. Abbreviations: SICA = Subspace
Independent Component Analysis, TA = Tandem Analysis, RKM = Reduced K-means,
FKM = Factorial K-means, SKM = Subspace K-means, PCAPP = Principal Cluster
Axis Projection Pursuit.

were generated and subjected to SICA, TA, RKM, FKM, SKM and PCAPP

using the true number of clusters and components. The number of subjects

N was, for every data set, fixed at 200 and for all analyses, the number of

within-cluster components for SKM was set at two. Evaluation of performance

was conducted using the same metrics for goodness of recovery, cluster validity,

multimodality of the components and computation time.

3.3.2 Results simulation 2

Goodness of recovery Table 6 shows the average ARI values and standard

deviations, overall and per method and factor level. ANOVA on these results

(only significant and with η2G > 0.15) revealed that a significant main effect of

method was present (η2G = 0.82, F (5, 600) = 1448.41, p < .001). Inspection

of the last row of Table 6 shows that SICA had the overall highest goodness

of recovery as the overall average ARI value for SICA is 0.78. RKM (average
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ARI of 0.74) follows shortly and TA (average of 0.71) and PCAPP (average of

0.68) at some more distance. FKM (average of 0.24) and SKM (average of 0.54)

are clearly outperformed by SICA. No higher-order interactions were deemed

sufficiently interesting (based on η2G higher than 0.30) to discuss.

Figure 6. Average ARI values as a function of the method (lines in different

colours) and number of clusters (upper left), number of components (upper

right), number of noise variables (bottom left) and division of subjects across

clusters (bottom right).

The effects of all factors on goodness of recovery, and their respective inter-

actions with the factor method can be derived from Table 6 and Figure 6. The
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number of components defining the subspace showed a main effect (η2G = 0.75;

F (1, 120) = 584.05, p < .001) and interaction effect (η2G = 0.35, F (5, 600) =

171.33, p < .001). Average ARI values increase for all methods as the number

of components increases (reiterating what was found in the first simulation),

but the upper right panel in Figure 6 shows this to be especially pronounced

for PCAPP, RKM, SKM and TA. FKM shows only a minor increase, as does

SICA, for which the increase in average ARI values flattens out between 8 and

12 components.

The number of noise variables demonstrated a significant main effect (η2G =

0.31; F (1, 120) = 86.02, p < .001) and Table 6 shows average ARI values to

decrease as the number of noise variables increases, as was the case in the first

simulation. No substantial interaction was found between the factor method

and the number of noise variables.

The division of subjects over the clusters showed a main effect on average

goodness of recovery (η2G = 0.31, F (2, 120) = 42.90, p < .001) and Table 6

shows that all methods show the highest ARI values for equal division or small

division and show notable decreases in goodness of recovery when the cluster

structure is dominated by a single large cluster. Again, this confirms results

from the first simulation and effects reported by Durieux and Wilderjans (2019)

and Steinley et al. (2012). Division of subjects showed no substantial interaction

effect with any of the other factors.

Lastly, despite not showing a substantial main effect (η2G = 0.09; F (1, 120)

= 18.60, p < .001), the effect of the number of clusters differed significantly and

substantially per method (η2G = 0.23, F (5, 600) = 92.49, p < .001) Inspecting the

upper left panel in Figure 6 shows that, except FKM, which shows an increase

in average ARI values as the number of clusters increases, all methods show a

decrease in goodness of recovery for larger numbers of clusters. For TA, PCAPP
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Table 7

Average Silhouette Index values and accompanying standard deviations, overall

and per method and factor level for the second simulation study.

Factor Levels SICA TA RKM FKM SKM PCAPP Overall
M SD M SD M SD M SD M SD M SD M SD

# Clusters 4 0.25 0.11 0.32 0.09 0.40 0.09 -0.02 0.06 0.21 0.12 0.38 0.10 0.25 0.17
6 0.27 0.10 0.30 0.09 0.36 0.09 0.03 0.15 0.20 0.13 0.35 0.09 0.25 0.16
8 0.32 0.10 0.28 0.08 0.33 0.08 0.06 0.20 0.15 0.12 0.32 0.08 0.24 0.16

# Components 4 0.37 0.09 0.25 0.04 0.30 0.05 -0.07 0.06 0.07 0.08 0.31 0.06 0.20 0.17
6 0.30 0.10 0.26 0.06 0.32 0.07 0.00 0.12 0.16 0.10 0.31 0.08 0.23 0.15
8 0.25 0.08 0.29 0.07 0.37 0.08 0.06 0.14 0.22 0.10 0.34 0.09 0.26 0.14
12 0.19 0.07 0.39 0.08 0.46 0.06 0.10 0.20 0.29 0.10 0.43 0.08 0.31 0.17

# Noise variables 4 0.31 0.11 0.36 0.09 0.41 0.10 0.13 0.20 0.20 0.15 0.42 0.09 0.30 0.17
6 0.30 0.12 0.32 0.08 0.37 0.09 0.03 0.15 0.18 0.13 0.36 0.09 0.26 0.16
8 0.27 0.10 0.28 0.07 0.35 0.08 -0.01 0.10 0.18 0.12 0.33 0.07 0.23 0.15
12 0.23 0.09 0.24 0.05 0.33 0.07 -0.05 0.04 0.19 0.10 0.28 0.06 0.20 0.14

Division Equal 0.32 0.12 0.31 0.08 0.38 0.09 0.02 0.15 0.22 0.13 0.36 0.10 0.27 0.17
Large 0.24 0.08 0.29 0.09 0.35 0.09 0.01 0.14 0.15 0.11 0.33 0.09 0.23 0.15
Small 0.28 0.11 0.30 0.08 0.36 0.09 0.03 0.17 0.19 0.12 0.35 0.09 0.25 0.16

Overall 0.28 0.11 0.30 0.08 0.36 0.09 0.02 0.15 0.19 0.13 0.35 0.09 0.25 0.16

Note: Highest value per factor level is underlined. Abbreviations: SICA = Subspace
Independent Component Analysis, TA = Tandem Analysis, RKM = Reduced K-means,
FKM = Factorial K-means, SKM = Subspace K-means, PCAPP = Principal Cluster
Axis Projection Pursuit.

and RKM, this decrease is linear, whereas for SICA it is more pronounced from

4 to 6 clusters, after which it flattens out for 6 and 8 clusters. These results

reiterate those found in simulation 1 and those found by Steinley et al. (2012).

No higher-order interactions were deemed sufficiently interesting (based on

η2G higher than 0.30) to discuss.

Cluster validity Cluster validity was evaluated using the SI (Rousseeuw,

1987). Table 7 shows the average Silhouette values overall, and per method and

factor level.

ANOVA revealed multiple significant and substantial (η2G > 0.15) main-

and interaction effects, no higher-order interactions were deemed sufficiently

interesting (based on η2G higher than 0.30) to discuss. There was a substantial

main effect of method on cluster validity (η2G = 0.91, F (5, 600) = 2074.18, p <

.001). This was to be expected given the range of average Silhouette values per

method since RKM model output showed an average SI value of 0.36, whereas
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this was only 0.02 for FKM and 0.19 for SKM.

Figure 7. Average Silhouette values as a function of the method (lines in differ-

ent colours) and number of clusters (upper left), number of components (upper

right), number of noise variables (bottom left) and division of subjects across

clusters (bottom right).

The division of subjects over the clusters also exercised a main effect over

cluster validity (η2G = 0.18, F (2, 120) = 33.37, p < .001). The pattern observed

in regard to this factor is similar to that observed for goodness of recovery. For

equal and small divisions, cluster validity is similar but all methods except FKM

show a notable decrease in cluster validity for the factor level in which one large
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cluster dominates the division of subjects over clusters. This pattern was not

observed this clearly in the first simulation.

The number of components also showed a main effect (η2G = 56; F (1, 120) =

383.91, p < .001) and an interaction effect (η2G = 0.64, F (5, 600) = 349.10, p <

.001). From Table 7, it is apparent that average cluster validity increases as the

number of components increases. The upper right panel in Figure 7, however,

shows this to be the case for all methods except SICA, for which this pattern is

the exact opposite. For SICA, average cluster validity decreases as the number

of component increases, depicted by the linearly deteriorating red line. This

result is contrary to what would be expected based on the Silhouette values

in simulation 1. There, most methods showed an overall decrease in cluster

validity as the number of components defining the subspace increased.

The number of noise variables, too, showed both a main (η2G = 0.51, F (1,

120) = 318.19, p < .001) and interaction (η2G = 0.22, F (5, 600) = 54.90, p <

.001) effect. Average cluster validity deteriorates from 0.30 to 0.20 as the number

of noise variables increases, as shown in Table 7. In addition, the bottom left

panel in Figure 7 shows that all methods show an overall decrease in cluster

validity as the number of noise variables increases. This is in accordance with

earlier observations in this thesis that increasing noise in the data causes worse

recovery of clusters and less clear clusterings. Especially for FKM, denoted by

the black line, cluster validity quickly deteriorates as noise increases.

Despite showing no substantial main effect, an interaction was found between

the methods and the number of clusters (η2G = 0.32, F (5, 600) = 93.48, p <

.001). The upper left panel in Figure 7 shows that, except for SICA and SKM,

all methods show linearly decreasing cluster validity as the number of clusters

present in the data increases, confirming results found in simulation 1. FKM

and SICA, instead, show linearly increasing cluster validity, which does not
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Table 8

Average median Bimodality Criterion values and standard deviations overall,

and per method and factor level for the second simulation study.

Factor Levels SICA TA RKM FKM SKM PCAPP Overall
M SD M SD M SD M SD M SD M SD M SD

# Clusters 4 0.51 0.08 0.37 0.02 0.38 0.03 0.38 0.05 0.38 0.03 0.50 0.10 0.42 0.08
6 0.51 0.06 0.38 0.02 0.39 0.02 0.42 0.08 0.39 0.03 0.50 0.09 0.43 0.07
8 0.57 0.07 0.38 0.02 0.39 0.03 0.42 0.07 0.39 0.03 0.41 0.08 0.44 0.08

# Components 4 0.57 0.08 0.38 0.03 0.39 0.03 0.40 0.06 0.40 0.04 0.48 0.05 0.43 0.08
6 0.54 0.07 0.38 0.03 0.39 0.03 0.41 0.07 0.39 0.03 0.49 0.05 0.43 0.07
8 0.52 0.06 0.37 0.02 0.39 0.02 0.41 0.08 0.38 0.03 0.49 0.05 0.42 0.08
12 0.50 0.09 0.37 0.02 0.38 0.02 0.41 0.08 0.37 0.02 0.52 0.05 0.43 0.07

# Noise variables 4 0.52 0.09 0.38 0.03 0.39 0.03 0.45 0.09 0.39 0.04 0.53 0.05 0.45 0.09
6 0.54 0.09 0.37 0.02 0.39 0.03 0.42 0.07 0.39 0.03 0.50 0.05 0.43 0.08
8 0.53 0.07 0.37 0.02 0.38 0.02 0.39 0.05 0.38 0.03 0.49 0.04 0.42 0.08
12 0.53 0.06 0.37 0.02 0.38 0.02 0.37 0.03 0.38 0.02 0.46 0.03 0.42 0.07

Division Equal 0.57 0.08 0.38 0.02 0.39 0.03 0.40 0.07 0.39 0.03 0.50 0.05 0.44 0.09
Large 0.50 0.07 0.37 0.02 0.38 0.02 0.40 0.08 0.38 0.03 0.49 0.05 0.42 0.07
Small 0.53 0.07 0.37 0.02 0.39 0.03 0.41 0.07 0.39 0.03 0.49 0.05 0.43 0.08

Overall 0.53 0.08 0.37 0.02 0.39 0.03 0.41 0.07 0.39 0.30 0.49 0.05 0.43 0.08

Note: Highest value per factor level is underlined. Abbreviations: SICA = Subspace
Independent Component Analysis, TA = Tandem Analysis, RKM = Reduced K-means,
FKM = Factorial K-means, SKM = Subspace K-means, PCAPP = Principal Cluster
Axis Projection Pursuit.

match expectations based on the influence of numbers of clusters on goodness

of recovery.

Bimodality of the extracted components Besides clustering quality, meth-

ods were also evaluated based on the extent to which the returned components

show multimodal structure. Table 8 shows average median BC values averaged

over methods and factor levels, and overall.

As can be seen in Table 8 by inspecting the underlined values, SICA extracts

multimodal components to a larger extent than other methods, with two excep-

tions in which PCAPP yields components with higher BC values. The fact

that PCAPP identifies multimodal components is expected; it maximises the

CI which finds projections that deviate from Gaussian projections. All other

methods show stable unimodality, returning homogeneous average median BC

values and standard deviations.

ANOVA on these results revealed main- and interaction effects of the ma-
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nipulated factors on the multimodality of the extracted components. To save

space, discussion of all interaction effect has been added as Appendix C. Only

the most important main effects will be discussed here.

As expected based on the results in Table 8, there was a significant differ-

ence in multimodality between the methods (η2G = 0.91, F (5, 600) = 1508.37,

p < .001). This result is explained by the fact that PCAPP and SICA extract

components that, on average, are more non-Gaussian than the components ex-

tracted by the other methods. It must be noted, however, that the BC values

do not, for all cells in the design, exceed the 0.555 threshold set by SAS (2004)

to define multimodality. This can be due to the fact that noise was added to

the data, obscuring the multimodal structures present in the data or because

the average medians are reported.

The number of noise variables present in the data also exercised a main effect

(η2G = 0.24, F (1, 120) = 163.91, p < .001). Inspecting the margin column of

Table 8, it appears that average median BC values somewhat deteriorate as the

number of noise variables increase.

The second metric applied to quantify the extent to which the methods

extract non-Gaussian subspaces is the Dip test (Hartigan & Hartigan, 1985).

The average median p-values of the application of this test to the components

extracted by each of the components are shown in Table 9.

As can be seen from Table 9, SICA components, on average, show higher

multimodality than any other method as its overall average median p-value

is 0.34, lower than any of the other overall average median p-values. ANOVA

confirmed this difference to be very substantial (η2G = 0.90, F (5, 600) = 1329.76,

p < .001).

As was the case for the BC -values, the number of noise variables exerts

a substantial main effect on the extent to which extracted components were
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Table 9

Average median Dip test p-value and standard deviations, overall and per method

and factor level for the first simulation study.

Factor Levels SICA TA RKM FKM SKM PCAPP Overall
M SD M SD M SD M SD M SD M SD M SD

# Clusters 4 0.40 0.27 0.87 0.11 0.83 0.13 0.86 0.15 0.84 0.13 0,59 0.29 0.73 0.26
6 0.36 0.27 0.88 0.09 0.85 0.11 0.75 0.27 0.85 0.11 0.64 0.25 0.72 0.27
8 0.26 0.28 0.88 0.09 0.87 0.10 0.77 0.25 0.86 0.12 0.70 0.23 0.72 0.29

# Components 4 0.26 0.25 0.87 0.12 0.84 0.13 0.82 0.17 0.82 0.15 0.67 0.26 0.71 0.28
6 0.29 0.27 0.87 0.10 0.85 0.12 0.79 0.24 0.85 0.13 0.65 0.26 0.72 0.28
8 0.38 0.27 0.87 0.08 0.85 0.11 0.79 0.24 0.86 0.10 0.66 0.25 0.73 0.26
12 0.44 0.28 0.88 0.08 0.86 0.09 0.78 0.26 0.86 0.09 0.58 0.26 0.73 0.26

# Noise variables 4 0.40 0.31 0.86 0.11 0.83 0.13 0.67 0.30 0.82 0.14 0.46 0.30 0.67 0.29
6 0.35 0.28 0.87 0.11 0.85 0.11 0.78 0.24 0.86 0.10 0.63 0.25 0.72 0.27
8 0.34 0.26 0.88 0.09 0.85 0.10 0.85 0.17 0.84 0.12 0.69 0.21 0.74 0.26
12 0.27 0.24 0.98 0.09 0.87 0.10 0.87 0.10 0.86 0.10 0.78 0.16 0.76 0.26

Division Equal 0.21 0.24 0.87 0.10 0.83 0.12 0.77 0.25 0.83 0.13 0.61 0.27 0.69 0.30
Large 0.51 0.24 0.89 0.09 0.87 0.10 0.83 0.19 0.86 0.11 0.68 0.25 0.77 0.22
Small 0.30 0.26 0.87 0.11 0.84 0.12 0.78 0.25 0.85 0.11 0.64 0.27 0.71 0.28

Overall 0.34 0.28 0.88 0.10 0.85 0.12 0.80 0.23 0.85 0.12 0.64 0.26 0.72 0.27

Note: Lowest value per factor level is underlined. Abbreviations: SICA = Subspace
Independent Component Analysis, TA = Tandem Analysis, RKM = Reduced K-means,
FKM = Factorial K-means, SKM = Subspace K-means, PCAPP = Principal Cluster
Axis Projection Pursuit.

multimodal (η2G = 0.18; F (1, 120) = 137.62, p < .001), with average median

p-values increasing as the number of noise variables increases, meaning that the

components become more unimodal.

A main effect of the division of subjects over clusters was also found (η2G =

0.25; F (2, 120) = 100.25, p < .001) and the margin column in Table 9 shows

that the equal condition yielded the lowest average median p-values, followed

by the small condition and worst for the large condition.

Multimodality and goodness of recovery As was done in the first simu-

lation, the association between multimodality of the extracted components and

goodness of recovery for each of the methods was explored using correlation

analysis. The correlation between BC values and ARI values was highly signif-

icant and positive (r=0.32) as t(8638) = 31.40, p < .001, indicating a medium

association between multimodality and goodness of recovery. Association was

also observed for median Dip test p-values and ARI values as r = -0.32 (t(8638)
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Table 10

Average computation time and accompanying standard deviations, overall and

per method and factor level for the second simulation study.

Factor Levels SICA TA RKM FKM SKM PCAPP Overall
M SD M SD M SD M SD M SD M SD M SD

# Clusters 4 0.25 0.09 0.11 0.02 15.49 10.39 15.88 3.40 9.71 2.39 2.75 1.59 7.37 8.13
6 0.28 0.09 0.15 0.02 28.82 19.84 31.52 17.71 10.84 2.46 2.75 1.57 12.39 17.04
8 0.26 0.08 0.18 0.03 72.38 50.70 73.28 52.23 11.78 2.75 2.71 1.53 26.77 44.27

# Components 4 0.19 0.06 0.15 0.04 48.40 44.27 68.63 63.15 11.87 2.93 1.55 0.68 21.80 41.41
6 0.24 0.06 0.15 0.04 36.81 45.39 39.54 29.19 10.58 2.56 2.12 0.93 14.91 27.73
8 0.28 0.06 0.15 0.04 29.93 29.10 28.52 16.86 10.08 2.33 2.82 1.08 11.96 18.69
12 0.35 0.07 0.14 0.04 40.46 37.70 24.22 10.01 10.57 2.53 4.46 1.58 13.37 21.64

# Noise variables 4 0.21 0.07 0.14 0.04 58.46 53.14 44.11 42.49 10.45 2.56 1.67 0.85 19.18 36.28
6 0.24 0.08 0.15 0.04 38.23 36.62 44.20 38.10 10.81 2.74 2.23 1.03 15.31 27.66
8 0.27 0.07 0.15 0.04 33.73 34.70 40.19 42.84 10.69 2.62 2.80 1.24 14.64 27.78
12 0.34 0.08 0.16 0.04 25.17 22.30 36.40 36.13 11.16 2.74 4.23 1.70 12.91 22.03

Division Equal 0.25 0.09 0.15 0.04 35.12 33.66 39.70 39.70 9.90 2.50 2.69 1.59 14.63 29.91
Large 0.28 0.08 0.15 0.04 46.99 48.69 38.35 35.27 11.81 2.65 2.77 1.57 16.56 30.84
Small 0.26 0.08 0.15 0.04 35.59 35.59 42.63 44.59 10.62 2.53 2.76 1.53 15.34 29.02

Overall 0.26 0.09 0.15 0.04 38.90 40.16 40.23 40.05 10.78 2.68 2.74 1.56 15.51 28.97

Note: Lowest value per factor level is underlined. Abbreviations: SICA = Subspace
Independent Component Analysis, TA = Tandem Analysis, RKM = Reduced K-means,
FKM = Factorial K-means, SKM = Subspace K-means, PCAPP = Principal Cluster
Axis Projection Pursuit.

= -31.41, p < .001), indicating a medium effect too.

Computational efficiency The last metric used to evaluate model perfor-

mance is the computational efficiency of each of the models. Table 10 shows

the average computation time and standard deviations overall and per method

and factor level. The pattern observed is the same as that of simulation 1, TA

and SICA demonstrate low computational taxation whereas all other methods

show significantly longer average computation times (about 10 times more for

PCAPP, 40 times more for SKM and more than 100 times for RKM and FKM).

Balancing cluster recovery and computational efficiency, SICA is clearly the best

performing method as it is substantially faster than the other methods (except

TA) and (clearly) outperforms all the other methods (see Table 6).

Evaluating performance of the second simulation SICA performance in

terms of goodness of recovery was superior in the second simulation but not in

the first. The procedure of data generation applied in the second simulation
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adhered more closely to the assumptions of SICA in terms of the multimodality

of the generated independent components. As a consequence, in simulation two,

SICA outperformed traditional methods both in terms of goodness of recovery

and in terms of computational efficiency. In the first simulation, only the latter

was the case. Based on the combination of results from the two simulations,

it is evaluated that SICA is an attractive alternative to traditional methods in

that sense that, in the case of Gaussian subspaces (simulation 1), it challenges

performance of the other methods, and in the case of non-Gaussian subspaces

(simulation 2), it outperforms the other models while also retaining its compu-

tational efficiency.

52



4 Analysis of empirical data

In this section, the aforementioned models will be applied to three psychological

data sets to compare performance of SICA to other methods. As will be dis-

cussed, for the fMRI applications, the number of clusters is set to the number of

diagnoses present in the data but the number of components is decided based on

model selection. Vice versa, for the sensory-processing sensitivity application,

the number of components is set, whereas the number of clusters will be based

on model selection.

4.1 Application to two-group fMRI data

In this section, SICA will be applied to fMRI data containing diagnoses on

Alzheimers’ Disease (AD) and elderly healthy control (HC) patients from the

Medical University of Graz, Austria. These data were collected as part of the

the prospective registry on dementia (PRODEM; Seiler et al., 2012) project

and contain multiple modalities of MRI for 77 clinically diagnosed probable AD

patients and 173 normal elderly controls (N =189) and were pre-processed by de

Vos et al. (2016). Data were only used for AD patients for which diagnoses were

conducted on the basis of the NINCDS-ADRDA criteria (McKhann et al., 2011).

Grey matter density (GMD) values were used since grey matter atrophy is one

of the main characteristics of AD and has been found to discriminate AD well

from healthy control subjects (Cuingnet et al., 2011). For each subject, voxel-

wise averaged GMD values were computed for each of the 48 regions in the

probabilistic Harvard-Oxford cortical atlas yielding 48 GMD values per subject

(de Vos et al., 2020).

Data were subjected to K -means on the full data, SICA, TA, RKM, FKM,

SKM and PCAPP with the number of clusters set to 2, one for each of the

clinical diagnoses present in the data. For each of the models, two components
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were selected because, as shown in Appendix D.1, model performance did not

increase substantially for larger number of components, and because using two

components allows for easy visual interpretation. For SICA and PCAPP, com-

ponents were selected based on the highest BC and CI values, respectively, and

the number of within-cluster components for SKM was, for all combination of

clusters and components, set to 2. Model performance was evaluated based on

the ARI-values (Hubert & Arabie, 1985) of the obtained clusters compared to

the diagnoses and the Silhouette indices of the obtained clusters (Rousseeuw,

1987). The components extracted by each of the models were compared based

on their BC -value (Freeman & Dale, 2013; SAS, 2004) and the p-values result-

ing from the Dip test (Hartigan & Hartigan, 1985).

Table 11

ARI, SI, BC and Dip test p-values for the two extracted dimensions for each

method in the two-group problem.

Method ARI Silhouette BC dim. 1 BC dim. 2 Dip p-value dim. 1 Dip p-value dim. 1
SICA <0.01 0.37 0.53 0.47 0.36 0.80
PCAPP 0.01 0.40 0.40 0.40 0.15 0.95
TA 0.39 0.43 0.39 0.35 0.94 0.99
RKM 0.41 0.53 0.40 0.35 0.93 0.38
FKM 0.00 0.44 0.46 0.34 <.001 0.98
SKM 0.04 0.16 0.34 0.30 0.97 0.84
KM 0.41 0.16

Abbreviations: SICA = Subspace Independent Component Analysis, TA = Tandem
Analysis, RKM = Reduced K-means, FKM = Factorial K-means, SKM = Subspace
K-means, PCAPP = Principal Cluster Axis Projection Pursuit, KM = K-means.

Table 11 shows the ARI-values, Silhouette-values, BC -values and Dip test p-

values for each of the models for the two-cluster problem. ARI-values compare

the true diagnostic labels with the obtained clustering and shows that RKM

and K -means yield the highest agreement between the actual diagnoses and

the predicted clusterings. SICA yields (very) low agreement between these two,

showing ARI-values close to chance (close to 0). Silhouette values are the high-
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est for RKM and SICA performs in the middle when comparing the methods in

terms of cluster validity as the Silhouette value is 0.37. SICA does, as expected,

yield the highest BC -values for its extracted components, demonstrating the

most multimodal components. These values do not, however, exceed the 0.555

threshold (SAS, 2004). Lastly, Dip test p-values are lowest for RKM and FKM.

Only the first FKM component, however, is lower than the common .05 thresh-

old set for p-values and so only this component demonstrates multimodality. It

should be noted that this is unexpected since FKM also capitalises on PCA and

does not explicitly aim to find non-Gaussian subspaces (as SICA is doing).

Figure 8. Results of applying SICA, TA and PCAPP to the two-cluster Graz

data. Obtained clusterings are shown on the left and true diagnoses shown on

the right, with the axes being the components extracted by each method.
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To study why SICA and PCAPP fail to discover the two-cluster structure,

Figure 8 shows the true diagnoses on the right and the obtained clusterings on

the left for the two dimensions obtained by SICA, PCAPP and TA (to save

space, figures for RKM, FKM, SKM and KM have been moved to Appendix

E). For SICA and PCAPP, no clear cluster structure can be detected but the

cluster structure identified by the PCA (in the first step of TA) is recognised

by TA quite well. This reiterates the relatively large ARI value for TA in the

two-cluster problem visible in Table 11. The high ARI values for KM and

RKM are reiterated in the agreement between the actual and the obtained

clusterings by these methods visible from Figure E.1 and Figure E.2 in Appendix

E. Conversely, low ARI values for SKM and FKM are depicted in Figure E.1 and

Figure E.2 as showing little agreement. It can be concluded that it seems that

the components of the two-dimensional subspace in which the two diagnostic

clusters reside have a more or less Gaussian shape and, therefore, cannot be

identified by SICA and PCAPP.

4.2 Application to three-group fMRI-data

In this section, SICA will be applied to fMRI data containing diagnoses on

AD as well. However, unlike the data used in the previous section, the clini-

cal diagnoses present in these data are AD, mild cognitive impairment (MCI)

and subjective memory complainers (SMC). Data were used from the Leiden-

Alzheimer Research Nederland (LeARN) project (Handels et al., 2012; Jansen

et al., 2017). These data contain multiple modalities of MRI for 61 probable

Alzheimers’ Disease (AD) patients, 61 patients with mild cognitive impairment

(MCI) and 67 subjective memory complaining (SMC) subjects (N = 189). AD

diagnosis was conducted based on the NINCDS-ADRDA criteria (McKhann et

al., 2011), SMC diagnosis was done based on the clinical criteria for AD-caused
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MCI (Albert et al., 2011), and subjects that did not meet criteria for either AD

or MCI were included in the SMC group. Data were preprocessed by de Vos

et al. (2020). Similar to the two-cluster problem, GMD values were used and

evaluation of model performance is conducted using the same metrics as used

in the previous section. All models were applied using three clusters (based on

the presence of clinical diagnoses as described) and two components to aid in

interpretation and because, as shown in Appendix D.2, model performance did

not increase substantially for larger number of components.

Table 12

ARI, SI, BC and Dip test p-values for the two extracted dimensions for each

method in the three-group problem.

Method ARI Silhouette BC dim. 1 BC dim. 2 Dip p-value dim. 1 Dip p-value dim. 1
SICA 0.01 0.34 0.53 0.24 0.23 0.86
PCAPP 0.01 0.44 0.40 0.42 0.99 0.92
TA 0.06 0.36 0.31 0.31 0.82 0.99
RKM 0.08 0.42 0.32 0.31 0.89 0.99
FKM -0.01 -0.03 0.50 0.48 0.07 0.69
SKM 0.01 0.11 0.31 0.32 0.99 0.43
KM 0.08 0.09

Abbreviations: SICA = Subspace Independent Component Analysis, TA = Tandem
Analysis, RKM = Reduced K-means, FKM = Factorial K-means, SKM = Subspace
K-means, PCAPP = Principal Cluster Axis Projection Pursuit, KM = K-means.

Table 12 shows the ARI-values, Silhouette-values, BC -values and Dip test

p-values for each of the models for the three-cluster problem. ARI-values com-

pare the true diagnostic labels with the obtained clustering and shows that

RKM and K -means yield the highest agreement between the actual and the

predicted clusterings, although agreement is very low (ARI below .10) in gen-

eral. SICA yields very low agreement between these two, showing ARI-values

close to chance (close to 0). Silhouette values are the highest for PCAPP for the

three cluster-problem and SICA does outperform some (but not all) methods,

as its Silhouette value is 0.34.
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SICA does, as expected, yield the high BC -values for its extracted compo-

nents. However, the second dimension of FKM yields higher BC values than

the second dimension for SICA. Note that none of the extracted components

exceeds the 0.555 threshold (SAS, 2004). Lastly, Dip test p-values are lowest for

FKM and SKM for the three-cluster problem, which is an unexpected result.

To further investigate the weak performance of SICA, Figure 9 shows the true

diagnoses on the right and the obtained clusterings for each subject on the left

on the two dimensions obtained by SICA, PCAPP and TA for the three-cluster

problem (to save space, figures for RKM, FKM, SKM and KM have been moved

to Appendix F). For all three methods shown in Figure 9, it is true that the

retained lower-dimensional subspace does almost contain no cluster structure,

which explains the very weak cluster recovery performance of the methods. This

is equally the case for RKM, FKM, SKM and KM (visible in Figure F.1 and

Figure F.2 in Appendix F, respectively). The visual representations of the actual

versus the obtained clusterings show little agreement, explaining the ARI values

at chance level (or only slightly above, in the case of RKM and KM).

4.3 Sensory-processing sensitivity

In this section, SICA performance will be compared to performance of the other

models discussed so far on sensory-processing sensitivity (SPS) data. In this il-

lustrative example, however, no diagnoses or ’true’ clusters are present with

which obtained clusterings can be compared, making it more akin to a real-

istic academic or applied scenario in which the number of clusters has to be

decided based on model fit. As will be described, the number of components

for all methods will, however, be set. Moreover, cluster recovery cannot be used

as a performance metric and cluster validity remains as the sole performance

criterion.
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Figure 9. Results of applying SICA, TA and PCAPP to the three-cluster LeARN

data. Obtained clusterings are shown on the left and true diagnoses shown on

the right, with the axes being the components extracted by each method.

The data consist of 998 subjects measured on the Highly Sensitive Person

Scale (HSPS; Aron & Aron, 1997) which is a scale measuring SPS using 27

items rated from 0 to 7 (”Strongly disagree” to ”Strongly agree”; Smolewska,

McCabe, & Woody, 2006). Psychometric inspection of the HSPS using factor

analysis shows it can be decomposed into three underlying factors/components

with differing substantive meaning in terms of SPS and relation to personality

traits (Smolewska et al., 2006). Therefore, the number of components for each

of the methods applied in this section was set at three.
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All models were applied to the data with a combination of three components

and a number of clusters varying from two to six, where model-performance was

evaluated using the Calinski-Harabasz criterion (Caliński & Harabasz, 1974).

For each of the models, the number of clusters was selected that yielded the

highest Calinski-Harabasz criterion, subsequently subjected to suitable meth-

ods of evaluation. For a full comparison of model performance per number

of clusters, we refer the reader to Appendix D.3. Obtained clusterings were

compared using the SI and, for each of the three extracted components, their

BC -value and Dip test p-value was computed.

Table 13

BC values and Dip test p-values for each of the three extracted dimensions for

each method.

Method BC Dim. 1 BC Dim. 2 BC Dim. 3 p-value Dim. 1 p-value Dim. 2 p-value Dim. 3
SICA 0.58 0.39 0.33 <.001 0.96 0.99
PCAPP 0.42 0.39 0.41 0.96 0.99 0.99
TA 0.42 0.30 0.30 0.99 0.99 0.98
RKM 0.42 0.30 0.30 0.99 0.39 0.99
FKM 0.31 0.29 0.27 0.95 0.87 0.74
SKM 0.45 0.36 0.28 0.96 0.98 0.99

Abbreviations: SICA = Subspace Independent Component Analysis, TA = Tandem
Analysis, RKM = Reduced K-means, FKM = Factorial K-means, SKM = Subspace
K-means, PCAPP = Principal Cluster Axis Projection Pursuit, KM = K-means.

Table 13 shows the BC -values and Dip test p-values for each of the three

extracted components for each method. The first SICA dimension exceeds the

0.555 threshold, demonstrating bimodality (SAS, 2004), a result which is con-

firmed by the p-value returned by the Dip test, illustrating the first component

is at least bimodal (Hartigan & Hartigan, 1985). For the second and third di-

mensions, no method extracts dimensions that exceed the bimodality threshold

or the 0.05 significance-threshold for the Dip test. SICA does, together with

PCAPP, yield the most bimodal second dimension but this is not sufficient.
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Similarly, the third component extracted by SICA has a lower BC value than

that of PCAPP. All PCA-based methods extract components that do not exceed

either the BC or Dip test threshold for bimodality/multimodality. This was ex-

pected, since PCA extracts predominantly Gaussian, unimodal components.

Table 14

Silhouette index values and the number of clusters selected for each model.

Method Silhouette Number of clusters
SICA 0.27 6
PCAPP 0.33 5
TA 0.48 2
RKM 0.51 2
FKM 0.25 5
SKM 0.09 2
KM 0.23 2

Note: Highest value is underlined. Abbreviations: SICA = Subspace Independent
Component Analysis, TA = Tandem Analysis, RKM = Reduced K-means, FKM =
Factorial K-means, SKM = Subspace K-means, PCAPP = Principal Cluster Axis
Projection Pursuit, KM = K-means.

Cluster validity was assessed using the SI (Rousseeuw, 1987) and is shown

in Table 14. As can be seen, RKM yielded the highest Silhouette value (0.51),

whereas SICA yields a Silhouette value of 0.27. PCAPP and TA, in turn, out-

perform SICA as well, yielding Silhouette values of 0.33 and 0.48, respectively.

For more detailed interpretation, Silhouette plots have been added in Appendix

G. Inspecting Table 14, it is interesting to see that TA, RKM, SKM and KM

deliver solutions with two clusters, whereas PCAPP, SICA and FKM deliver

more complex solutions with up to six clusters.
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5 Discussion

In this thesis, SICA, a novel method for finding clusters in non-Gaussian sub-

spaces for high dimensional data, is proposed. SICA uses the Bimodality Coef-

ficient (BC ) to extract multimodal independent components that may contain

relevant clustering information and performs K -means on the selected com-

ponents. The merits of SICA have been thoroughly tested in two simulation

studies and applied to three empirical settings using data on Alzheimer’s Dis-

ease and Sensory Processing Sensitivity. In these studies, SICA is also compared

to traditional methods that combine dimension reduction with clustering.

SICA performance was evaluated in comparison to performance of other

methods aimed at finding clusterings in lower-dimensional projections of the

original data based on (1) goodness of cluster-recovery, (2) the properties of

the obtained clusters, (3) the extent to which the extracted components were of

non-Gaussian shape, and (4) computational efficiency of the algorithms. Simu-

lation studies allowed to systematically compare these metrics in a wide range

of scenarios regarding (1) the number clusters in the data, (2) the number of

components defining the cluster subspace, (3) the amount of error present in the

data and (4) the division of subjects over the clusters. Empirical applications

allowed to evaluate SICA in scenarios where the number of clusters or compo-

nents have to be defined based on model selection, and illustrated its usefulness

in applied or academic settings.

Results show that SICA is well able to recover obscured cluster structures in

high-dimensional settings but that the extent to which it is capable of doing so

depends on the data model and the characteristics of that data defined in the

study design.

Goodness of recovery was specifically investigated in regard to increasing

numbers of clusters in the data and increasing numbers of noise variables. Re-
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garding the number of noise variables present in the data, all methods demon-

strated a decrease in goodness of cluster recovery as more noise variables were

present in the data, including SICA. This pattern was expected as it was re-

ported earlier by Durieux and Wilderjans (2019) and Steinley et al. (2012). For

SICA, this was especially pronounced in simulation 1, but less in simulation

2. Regarding the number of clusters present in the data, all methods showed

decreased goodness of recovery as the number of clusters in the data increased

(FKM being an exception in simulation 1), confirming, again, what was ob-

served by Durieux and Wilderjans (2019) and Steinley et al. (2012). SICA

suffered less from this influence in simulation 2 than in simulation 1. Results

from both simulations allow to conclude that the hypotheses regarding good-

ness of recovery in section 3.2 seem to hold; goodness of recovery decreased for

all methods as the number of noise variables increased and as the number of

clusters present in the data decreased. For the other manipulated factors, no

formal hypothesis were formulated but these demonstrated the same effect in

both simulations; goodness of recovery increased as the number of components

defining the subspace increased and was the best for the equal division of sub-

jects over the clusters and the worst for the condition in which one large cluster

dominated the cluster subspace. For the empirical fMRI data, SICA did not

show high goodness of recovery, contrary to the simulation studies. Application

to empirical data naturally carries the risk that data contain no (underlying)

cluster structure, making application of cluster algorithms of little use. It must

be acknowledged, however, that other methods such as RKM did manage to find

underlying cluster structures. A possible explanation for this finding is that the

components of the subspace in which the clusters reside are Gaussian, which

prevents SICA from correctly retrieving these components and the associated

cluster structure.
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Besides goodness of recovery, the validity of the obtained clusterings was

investigated for each of the methods using the Silhouette Index (Rousseeuw,

1987). SICA did not demonstrate superiority in terms of validity of its obtained

clusterings as RKM mostly obtained more compact clusterings. In regard to

the manipulated factors, cluster validity decreased as the number of noise vari-

ables increased but showed little sensitivity to the number of clusters present

in the data, but did demonstrate an interaction effect in simulation 2, differing

significantly per method and number of clusters. The influence of the number

of components defining the cluster subspace revealed incoherent as increasing

numbers of components made for decreasing cluster validity in simulation 1 but

increasing cluster validity in simulation 2. Division of subjects over clusters

showed the same effect on cluster validity as it did for all performance metrics

as average Silhouette values decreased for the condition in which the cluster

subspace was dominated by a single cluster. Application to sensory processing-

sensitivity and Alzheimer’s Disease data, however, showed SICA did not yield

high Silhouette values.

The extent to which each method was able to identify a low-dimensional rep-

resentation containing cluster structure was also investigated using the Bimodal-

ity Coefficient (Freeman & Dale, 2013; SAS, 2004) and the Dip test (Hartigan &

Hartigan, 1985). Results were clear in this regard. SICA extracts components

demonstrating the highest multimodality (and non-Gaussianity) of all other

methods in both simulations, confirming the hypothesis. The influence of the

number of noise variables and clusters on the multimodality of the extracted

components was less clear. Both simulations showed that the multimodality

of the components extracted by SICA increased as the number of clusters in-

creased, confirming expectations. However, as the number of noise variables

present in the data increased, simulation 1 showed decreasing multimodality of
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the extracted components, whereas simulation 2 showed increasing multimodal-

ity. The hypothesis regarding the influence of the number of clusters present in

the data on multimodality can, therefore, be confirmed, whereas the hypothesis

concerning the number of noise variables cannot be considered confirmed. Ap-

plication to empirical data shows SICA identifies multimodal components well,

although not all components exceeded the thresholds for multimodality.

Concluding, results show SICA is a computationally fast algorithm for iden-

tifying non-Gaussian subspaces, and that subsequent application of K -means

can identify clusterings to a large extent, especially when the true components

making up the subspace are non-Gaussian (and multimodal). This combination

does not always outperform similar methods when the subspaces are of Gaus-

sian shape, but does substantially challenge them and is less computationally

taxing than these methods. SICA can, therefore, be considered an attractive

alternative to the other methods. It performs quickly and outperforms them

when the true components are multimodal or, in the case of unimodal, Gaus-

sian components, challenges them.

5.1 Limitations and future directions

Limitations to this thesis were that no method for model selection was used in

the simulation studies. Instead, for every method and factor combination, the

true number of components and clusters were used. This is not akin to real-

life situations since these require model selection in order to obtain the final

combination of number of components and clusters. As described in Durieux

and Wilderjans (2019), an easy and intuitive method for deciding the number

of components for SICA is choosing the number of components that exceed the

0.555 threshold for the Bimodality Coefficient (SAS, 2004). Consequently, the

number of clusters can be decided using existing formal model selection pro-
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cedures such as CHull (Ceulemans & Kiers, 2006; Wilderjans, Ceulemans, &

Meers, 2013). CHull finds the optimal model, balancing model fit and complex-

ity, from a range of fitted models and allows to compare models with, in the

context of cluster analysis, different numbers of components and/or clusters.

A second limitation is that all compared methods use some form of linear

transformation (i.e., dimension reduction) to map the full data on to a lower-

dimensional subspace. Methods that apply non-linear transformations were

not taken into account, but may very well be of interest to the reader. The

exercise of finding non-linear representations of data to which cluster analysis

can be applied is called manifold clustering, and we refer the interested reader to

Abdolali and Gillis (2021) for a brief overview of manifold clustering methods.

In addition, this thesis has also not considered the exercise of clustering sparse

data and we refer to Witten and Tibshirani (2010) for an example of a method

for doing so.

A third limitation, also described in Steinley et al. (2012) and Durieux and

Wilderjans (2019), is that the sequential and/or orthogonal fashion in which

the described methods extract components resulting in single, unidimensional

representations of cluster structures. It is, however, entirely conceivable that

cluster structures are not well representable in such unidimensional component

extractions and may, instead, require multidimensional representations to be

held intact. Such representations have not been discussed in this thesis and new

research is required to extrapolate the univariate nature of the BC criterion to

a larger number of dimensions.

Lastly, all methods applied in this thesis utilise K -means clustering resulting

in hard, non-overlapping clusters. However, due to the fact that SICA applies

dimension reduction and clustering in two separate steps, soft or fuzzy cluster-

ings, in which subjects can belong to more than one cluster at once, can also be
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applied. Incorporation of such methods in SICA requires further study.

67



References

Abdolali, M., & Gillis, N. (2021). Beyond linear subspace clustering: A com-

parative study of nonlinear manifold clustering algorithms. arXiv preprint

arXiv:2103.10656 .

Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox,

N. C., . . . Phelps, C. H. (2011). The diagnosis of mild cognitive im-

pairment due to alzheimer’s disease: recommendations from the national

institute on aging-alzheimer’s association workgroups on diagnostic guide-

lines for alzheimer’s disease. Alzheimer’s & dementia, 7 (3), 270–279.

Arabie, P., & Hubert, L. (1996). Advances in cluster analysis relevant to

marketing research. In From data to knowledge (pp. 3–19). Springer.

Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., & Perona, I. (2013).
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Appendices

A Code

All code and data necessary to reproduce this thesis will be made available on

Git and accessible to the readers via https : //github.com/LJRozema/MSmasterthesis.git.
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B Interaction effects multimodality simulation

1

B.1 BC values

Figure B.1. Average median BC values per method and number of components

making up the cluster space. BC values deteriorate, except for TA, for which

it remains the same.

There were interaction effects between method and the number of compo-

nents (η2G = 0.34, F (5, 600) = 104.67, p < .001) and method and number of

clusters (η2G = 0.19; F (5, 600) = 48.17, p < .001). The first interaction effect

is visualised in Figure B.1. From Figure B.1, it becomes apparent that, for all

methods, BC values decrease as the number of components increase and that
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this trend trend is linear for all methods but especially pronounced for SICA.

PCAPP and TA, on the other hand, appear to be invariant to changes in BC

values due to the number of components making up the subspace.

The interaction effect between method and number of clusters (η2G = 0.19;

F (5, 600) = 48.17, p < .001) present in the data is visualised in Figure B.2.

Inspecting Figure B.2, it becomes apparent that BC values slightly increase as

the number of cluster present in the data increases. This could be explained by

the fact that more clusters in the data requires more components that show mul-

timodality, making for increasing BC values in the methods aiming to extract

multimodal components.

Figure B.2. Average median BC values per method and number of clusters

present in the data. BC values slightly increase as the number of clusters

increase.
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B.2 Dip test p-values

There was a substantial interaction effect between method and number of com-

ponents defining the cluster subspace (η2G = 0.30, F (5, 600) = 85.95, p < .001).

Inspecting Table 4 and Figure B.3, it becomes clear that all methods show in-

creasing average median p-values as the number of components defining the

subspace increases. SICA, despite showing the most bimodal components of

all methods, demonstrates this trend too, but does so steeper than the other

methods. This can be explained by the fact that the other methods appear,

almost by default, to extract Gaussian shapes and, in doing so, are invariant to

the number of components.

Figure B.3. Average median Dip test p-values per method and number of com-

ponents. Dip test p-values increase as the number of components defining the

subspace increase.
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A second interaction effect was found between method and the number of

masking variables present in the data (η2G = 0.16; F (5, 600) = 39.56, p < .001).

Inspecting Figure B.4, it is apparent that most methods remain invariant to

increasing numbers of noise variables when it comes to their average median

p-values. SICA, conversely, demonstrates a trend that it extracts components

from the data that show higher multimodality as the number of noise variables

increases. There is no clear explanation for this observation and it is contrary

to expectations.

Figure B.4. Average median Dip test p-values per method and number of noise

variables. Dip test p-values increase as the number of components defining the

subspace increase, except for SICA, for which they decrease.

The last interaction was found between method and the division of subjects

over clusters (η2G = 0.28; F (10, 120) = 39.92, p < .001) and is shown in Figure
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B.5. In this figure, it shows that all methods except SICA are not very sensitive

to the way in which subjects are divided over clusters for their average median

p-values. SICA, again, shows a different trend and does appear sensitive to this

division because it extracts components demonstrating less multimodality for

the large condition.

Figure B.5. Average median Dip test p-values per method and division of

subjects over clusters. SICA shows the lowest average median Dip test p-values

of all methods but these increase for the large level.
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C Interaction effects multimodality simulation

2

C.1 BC values

Figure C.1. Average median BC values per method and number of clusters

present in the data. SICA shows increased multimodality as the number of

clusters increases.

Interaction effects were found between method and each of the four factors,

each of which will be discussed. First, the number of clusters present in the data

substantially differed per method (η2G = 0.20, F (5, 600) = 39.38, p < .001). In-

specting Table 8 and Figure C.1 reveals that FKM and SICA demonstrate a

small increase in average median BC values of the extracted components when

81



the number of clusters increases, whereas other methods show little effect. Inter-

estingly, this simulation shows that PCAPP extracts somewhat less multimodal

components when larger numbers of clusters are present, despite the fact that

it maximises a metric quantifying multimodality.

Figure C.2. Average median BC values per method and number of components.

SICA shows decreased multimodality as the number of components increases.

The influence of the number of components defining the cluster subspace

also differed per method (η2G = 0.25; F (5, 600) = 51.95, p < .001), as shown

in Figure C.2. Again, all PCA-based methods show little to no effect of the

number of components on the multimodality of their extracted components,

shown by the flat lines for these methods. SICA shows a somewhat decreasing

trend, meaning BC values decrease as the number of components defining the

cluster subspace increase. In contrast, PCAPP shows a minor increase in its
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ability to identify multimodal components for larger numbers of components,

depicted by the increasing pink line.

The influence of the number of noise variables added to the data differed

per method (η2G = 0.28, F (5, 600) = 60.91, p < .001). As shown in Figure

C.3, FKM and PCAPP are somewhat less capable of identifying non-Gaussian

components as the number of noise variables increases as their lines decrease.

SICA demonstrates invariance regarding multimodality as the number of noise

variables increases, whereas other methods show diminished multimodality

Figure C.3. Average median BC values per method and number of noise vari-

ables.

Lastly, the effect of the division of subjects over clusters on the capacity of

the models to extract multimodal components differed substantially per method

(η2G = 0.20, F (10, 600) = 19.13, p < .001). Figure C.4 reveals that this is
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only really the case for SICA. SICA shows a minor decrease in average median

BC value of its extracted components for the case in which the cluster space is

dominated by a large cluster, compared to when equal clusters or a combination

of one small cluster and equal remaining clusters make up the cluster structure.

All other methods show to be invariant to the division of subjects over clusters

and its effect of the multimodality of its extracted components.

Figure C.4. Average median BC values per method and division of subjects

over clusters.
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C.2 Dip test p-values

Figure C.5. Average median Dip test p-values values per method and number

of clusters present in the data. SICA components show increased multimodality

as the number of clusters increases.

The interaction between method and number of clusters in the data showed

a η2G value of η2G = 0.22 (F (5, 600) = 41.45, p < .001) and is presented visually

in Figure C.5. All methods except FKM and SICA show an overall increase in

average median p-values as the number of clusters present in the data increases.

SICA and FKM show a decrease in average median p-values as this number

increases. For SICA, this is conform expectations as larger numbers of clusters

should make for more multimodal components and SICA identifies this pattern.

For FKM, this pattern in surprising as it is based on PCA, which should be
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relatively invariant to the non-Gaussianity of the components making up the

subspace. It should be noted that, possibly due to taking the average median,

that average median p-values in Table 9 do not, for any method, fall below the

standard α = 0.05 to conclude formal significance of the Dip test.

Figure C.6. Average median Dip test p-values values per method and number

of components. SICA components show decreased multimodality as the number

of components increases.

The interaction between method and number of components making up the

subspace also demonstrated to be substantial η2G = 0.19 (F (5, 600) = 35.36, p <

.001). Figure C.6 shows this interaction visually. From the figure, it is observed

that most methods are relatively invariant to change in average median p-values

indicated by the flat lines as the number of components increases. SICA shows

an increase in average median p-values as the number of components increases,
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possibly due to the fact that it maximises non-Gaussianity for the first few

extracted components, while remaining extracted components may demonstrate

more Gaussian shapes. PCAPP, which also aims at identifying multimodal

components, shows an opposite trend in which, as the number of components

defining the subspace increases, its average median p-values decrease.

Figure C.7. Average median Dip test p-values values per method and number of

noise variables present in the data. Contrary to expectations, SICA components

show increased multimodality as the number of noise variables increases.

The interaction between method and number of masking variables present

in the data is presented in Figure C.7 and shows the expected pattern for all

methods except SICA (η2G = 0.39; F (5, 600) = 96.19, p < .001). Specifically, as

the number of noise variables increases, average median p-values of all methods

increase, meaning that it becomes harder for each of these methods to identify
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non-Gaussian subspaces. This was also found in simulation 1. SICA demon-

strates the unexpected trend that it manages to identify components displaying

bimodality to a larger extent when the number of noise variables in the data

increases.

Figure C.8. Average median Dip test p-values values per method and divi-

sion of subjects over the clusters. For the large level, all methods show worst

multimodality.

The interaction between method and division of subjects over the clusters,

lastly, had a η2G value of η2G = 0.28 (F (10, 600) = 29.46, p < .001) and is

presented in Figure C.8. All methods show the lowest average median p-values

for the equal and small divisions of subjects whereas these increase for the large

division of subjects. SICA appears very sensitive to this manipulation as its

average median p-values increase dramatically for the large division of subjects.
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This pattern was also observed in the first simulation study.
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D Model selection empirical data sets

D.1 Graz data

Table D1

ARI and Silhouette values for each method for different numbers of components

from applying each method to the Graz data.

N comps ARI SICA Sil SICA ARI TA Sil TA ARI RKM Sil RKM ARI FKM Sil FKM ARI SKM Sil SKM ARI PCAPP Sil PCAPP
2 0.03 0.36 0.39 0.43 0.41 0.54 0.00 0.44 0.04 0.19 0.10 0.40
3 0.03 0.24 0.39 0.36 0.41 0.51 0.00 0.33 0.04 0.16 0.08 0.32
4 0.03 0.18 0.39 0.31 0.41 0.48 0.00 0.25 0.04 0.15 0.08 0.32
5 0.03 0.15 0.41 0.29 0.41 0.46 0.00 0.20 0.04 0.13 0.12 0.27
6 0.04 0.13 0.41 0.27 0.41 0.44 0.00 0.19 0.04 0.13 0.10 0.25
7 0.02 0.11 0.41 0.25 0.41 0.41 0.00 0.17 0.04 0.12 0.10 0.23
8 0.02 0.10 0.41 0.24 0.41 0.39 0.00 0.15 0.04 0.12 0.14 0.22
9 0.02 0.09 0.41 0.23 0.41 0.37 0.00 0.15 0.04 0.11 0.16 0.19

10 0.02 0.08 0.41 0.22 0.41 0.35 0.00 0.12 0.04 0.11 0.23 0.19
11 0.00 0.07 0.41 0.22 0.41 0.34 0.00 0.12 0.04 0.10 0.22 0.18
12 0.02 0.06 0.41 0.21 0.41 0.33 0.00 0.11 0.04 0.10 0.26 0.20
13 0.00 0.06 0.41 0.21 0.41 0.32 0.00 0.10 0.04 0.10 0.28 0.19
14 0.00 0.05 0.41 0.20 0.41 0.31 0.00 0.09 0.04 0.09 0.24 0.18
15 0.00 0.05 0.41 0.20 0.41 0.30 0.00 0.09 0.04 0.09 0.25 0.18
16 0.00 0.05 0.41 0.20 0.41 0.29 0.00 0.09 0.04 0.09 0.25 0.17
17 0.01 0.04 0.41 0.19 0.41 0.29 0.00 0.07 0.04 0.08 0.25 0.16
18 0.00 0.04 0.41 0.19 0.41 0.28 0.00 0.08 0.04 0.08 0.26 0.16
19 0.00 0.04 0.41 0.19 0.41 0.27 0.00 0.08 0.04 0.08 0.26 0.15
20 0.00 0.04 0.41 0.18 0.41 0.27 0.00 0.08 0.04 0.08 0.22 0.15

Note: Goodness of recovery and cluster validity do not substantially increase for larger
number of components for any of the methods (the only exception being the ARI values
for PCAPP) and so the number of components for this analysis was set to two.
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D.2 LeARN data

Table D2

ARI and Silhouette values for each method for different numbers of components

from applying each method to the LeARN data.

N comps ARI SICA Sil SICA ARI TA Sil TA ARI RKM Sil RKM ARI FKM Sil FKM ARI SKM Sil SKM ARI PCAPP Sil PCAPP
2 0.00 0.34 0.06 0.36 0.08 0.42 0.00 0.55 0.06 0.11 0.01 0.44
3 0.03 0.31 0.06 0.28 0.08 0.40 0.00 0.41 0.06 0.10 0.02 0.36
4 0.03 0.21 0.07 0.23 0.08 0.36 0.00 0.32 0.06 0.09 -0.00 0.25
5 0.02 0.17 0.07 0.20 0.08 0.34 0.00 0.26 0.06 0.08 -0.00 0.20
6 0.01 0.14 0.07 0.18 0.08 0.31 -0.01 0.22 0.06 0.07 -0.01 0.18
7 0.01 0.12 0.07 0.17 0.08 0.30 0.00 0.19 0.06 0.07 0.01 0.18
8 0.00 0.11 0.07 0.16 0.08 0.28 0.00 0.18 0.06 0.06 0.02 0.17
9 0.00 0.09 0.08 0.15 0.08 0.26 0.00 0.16 0.06 0.06 0.01 0.15

10 0.01 0.08 0.08 0.15 0.08 0.25 0.00 0.14 0.06 0.05 0.05 0.14
11 0.01 0.07 0.08 0.14 0.08 0.24 0.01 0.13 0.06 0.05 0.03 0.14
12 0.00 0.07 0.08 0.14 0.08 0.23 -0.01 0.12 0.06 0.04 0.03 0.13
13 0.00 0.06 0.08 0.13 0.08 0.22 -0.01 0.11 0.06 0.04 0.03 0.12
14 0.00 0.06 0.08 0.13 0.08 0.21 0.00 0.11 0.06 0.04 0.03 0.11
15 0.00 0.05 0.07 0.12 0.08 0.21 0.01 0.11 0.06 0.04 0.03 0.11
16 0.01 0.05 0.07 0.12 0.08 0.20 0.00 0.11 0.06 0.03 0.02 0.11
17 0.00 0.04 0.07 0.12 0.08 0.19 0.00 0.09 0.06 0.03 0.03 0.11
18 0.01 0.04 0.07 0.12 0.08 0.19 0.00 0.09 0.06 0.03 0.03 0.10
19 0.00 0.04 0.07 0.11 0.08 0.18 -0.01 0.08 0.06 0.03 0.02 0.10
20 -0.01 0.03 0.08 0.11 0.08 0.17 0.00 0.08 0.06 0.03 0.03 0.09

Note: Goodness of recovery and cluster validity do not substantially increase for larger
number of components for any of the methods and so the number of components for
this analysis was set to two.
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D.3 SPS data

Table D3

Calinski-Harabasz values for each method for each number of clusters for the

SPS data.

Number of clusters SICA TA RKM FKM SKM PCAPP
2 346.22 1177.72 1547.83 1.26 174.27 1067.45
3 364.19 985.01 1354.55 2.01 87.55 936.47
4 379.05 833.33 1179.61 2.73 60.90 956.07
5 377.91 758.04 983.50 4.06 51.97 1085.08
6 385.00 698.34 901.61 3.58 44.47 791.99

Note: For each model, the number of clusters yielding the highest Calinski-Harabasz
value is underlined.

92



E Graz cluster figures

Figure E.1. Results of applying RKM and FKM to the two-cluster Graz data.

Obtained clusterings are shown on the left and true diagnoses shown on the

right, with the axes being the components extracted by each method.
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Figure E.2. Results of applying SKM and KM to the two-cluster Graz data.

Obtained clusterings are shown on the left and true diagnoses shown on the

right, with the axes being the components extracted by each method. Note

that no dimension reduction was performed for K -means, and so the axes are

the first two variables from the data set.
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F LeARN cluster figures

Figure F.1. Results of applying RKM and FKM to the three-cluster LeARN

data. Obtained clusterings are shown on the left and true diagnoses shown on

the right, with the axes being the components extracted by each method.
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Figure F.2. Results of applying SKM and KM to the three-cluster LeARN

data. Obtained clusterings are shown on the left and true diagnoses shown on

the right, with the axes being the components extracted by each method. Note

that no dimension reduction was performed for K -means, and so the axes are

the first two variables from the data set.
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G Silhouette plots SPS data

Figure G.1. Silhouette plots of the application of SICA to the SPS data with

six clusters.

97



Figure G.2. Silhouette plots of the application of PCAPP to the SPS data with

five clusters.
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Figure G.3. Silhouette plots of the application of TA to the SPS data with two

clusters.
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Figure G.4. Silhouette plots of the application of RKM to the SPS data with

two clusters.
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Figure G.5. Silhouette plots of the application of FKM to the SPS data with

five clusters.
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Figure G.6. Silhouette plots of the application of SKM to the SPS data with

two clusters.
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Figure G.7. Silhouette plots of the application of K-means to the SPS data with

two clusters.
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