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1 INTRODUCTION  

 
1.1 Overview 

Artefact classification has been an important practice since the beginnings of 

archaeology, with the definition of the Three-age system by Thomsen in the early 

19th century (Gräslund, 2009, p. 17-30) and many other achievements such as the 

application of typology for the definition of prehistoric chronologies in Egypt 

(Figure 1.1) and the American Southwest in the early 20th century (O’Brien & 

Lyman, 1999, p. 32-56, p. 84-137). Classification is a constant in archaeology, 

from a simple separation of artefacts in an excavation according to the raw 

material to the basis for formulating complex research questions involving human 

social and cultural systems (Read, 2007, p. 19-20).  

Since the introduction of statistical analysis and computers in archaeology in the 

1950s, the study of artefact classification evolved considerably (Wilcock, 1999), 

culminating with recent applications of machine learning concepts and methods. 

 

 

Figure 1.1 – Genealogies of some forms of pottery from 
Predynastic Egypt (Petrie, 1899, Fig. 3). 
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Machine Learning (henceforth: ML) uses specific methods to create models that 

can identify potential patterns in data, initially fitting the model to the observed 

data and then using the built model to predict values from new sets of data  

(VanderPlas, 2017). ML concepts were introduced in the late 1950s and early 

1960s in areas such as neural network modelling and game programming, since 

then the discipline of machine learning has been associated with different 

paradigms and concepts along its history, among the most relevant is pattern 

recognition (Carbonell et al., 1983, p. 14-6), which is one of the bases of 

classification. ML uses data and standard algorithms as its basic mechanism in 

contrast to earlier computational approaches to reproduce human knowledge, such 

as the extensively programmed expert systems from the 1980s (Alpaydin, 2016, p. 

50-2). Figure 1.2 shows a basic comparison between the traditional system 

development and the ML approaches. A ML model has adjustable parameters that 

receive different values (data), and makes use of algorithms that can optimise a 

performance criterion defined for the data through a repetitive and incremental 

process  (Alpaydin, 2016, p. 24-5). ML is now present in a number of applications 

such as spam filters, detection of diseases based on image analysis, and prediction 

of customer behaviour (Alpaydin, 2016, p. 16-7, p. 23-4; Géron, 2019, p. 301-40).  

 

 

Figure 1.2 – Comparison of simplified diagrams for a traditional 
systems development approach (A) and a Machine Learning approach 
(B). After Géron (2019, Figure 1-1, Figure 1-2). 
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Applications of ML in archaeology started to be published in the 1990s (Barceló, 

1995), consolidated in the 2000s (Barceló et al., 2000; van der Maaten et al., 

2007), and have increased significantly in the past decade (Davis, 2020). 

Publications now include a variety of themes such as detection of archaeological 

features in the landscape (Lambers et al., 2019; Orengo et al., 2020), information 

retrieval from archaeological reports (Brandsen et al., 2019) and identification of 

ceramics through photos of shards (Anichini et al., 2021). In the specific case of 

artefact classification, works such as Hörr et al. (2014) and MacLeod (2018) 

demonstrate the potential and viability of ML methods.  

The remaining of this introduction chapter presents some fundamental concepts 

for the entire thesis such as the research aim, motives and research questions and 

briefly presents topics that will be further developed in subsequent chapters: the 

dataset and methods used in the ML classification model.  

 

1.2 Research aim and questions 

The aim of this research is to develop a ML model to classify archaeological 

pottery assemblages. There are three main motives and objectives associated with 

this aim.  

The first motive is to provide a tool to assist pottery experts in their decisions 

while performing the task of vessel classification. The efficacy of a ML 

classification model depends on many factors such as the data quality and 

quantity, and the adaptation of the model to certain characteristics of the input 

data (Géron, 2019, p. 607-732). An automated classification model will not 

replace an expert but can give suggestions on how to proceed, and help to identify 

some mistakes that may occur during data input such as digitising errors. For 

instance, if a vessel of large dimensions and high volumetric capacity is classified 

as a beaker due to some code input error, the classification suggested by the model 

might alert the expert of such occurrence.  

The human brain is well equipped for pattern recognition (Alpaydin, 2016, p. 20-

4) and can perform some tasks and identify details that cannot be easily matched 

by computer systems, even more so when the accumulated experience of experts 

in classification of pottery or other types of artefacts is added. On the other hand, 
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a ML model may identify patterns that would be left unnoticed by traditional 

analysis. The efforts provided by traditional analysis/classification and a ML 

proposed classification would be complementary and the sum of results an 

optimal alternative (Verschoof-van der Vaart & Lambers, 2021). 

The second motive is the possibility to provide standard methods of 

classification, which have clearly defined criteria suggested by the classification 

model. If there was no concordance between two or more experts regarding a 

certain classification within an assemblage, the alternative suggested by the model 

might help to achieve a final decision. When mentioning standard methods it is 

important to make clear that there is no general standard that might be applied to 

all sorts of assemblages. We refer here to standard methods that are possible to be 

applied to assemblages that share common characteristics, such as specific 

archaeological sites or cultures. A model that was created for one specific 

assemblage would probably have to be adapted to properly work for a culturally 

distinct assemblage, depending on the artefact characteristics, and dataset 

attributes and organisation. 

The third motive  is that, beyond the analysis and classification of new artefact 

assemblages, it is also possible to perform a new analysis on previously classified 

collections in accordance with new perspectives and approaches, to investigate 

new research questions or after new data becomes available on the collection. The 

remaining parts of this section define the main research question and sub-

questions, which specify the research aim and objectives. 

Which are the benefits and limitations of a machine learning classification model 

for pottery assemblages?  

To answer the main research question in a more structured way, a set of sub-

questions was defined: 

1) Which are the minimum features required to provide a basic classification, and 

which are additional features that could improve it? 

2) To what extent can this model replicate classifications made by experts? 

3) Which other kinds or levels of classification (e.g., subclasses, groups) that 

might be archaeologically relevant can the model suggest? 
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The fist two sub-questions will be addressed through supervised ML methods, the 

third sub-question will be addressed through unsupervised ML methods as briefly 

explained in the next section. The term feature, referred to in the first research 

sub-question, has different meanings in archaeology and ML. Section 2.1.2 

presents these and other definitions of terms used in this research, for clarification 

purposes the meaning in the context of ML is the one used through this research. 

A relevant note on the scope of this research: the proposed ML model will be 

prepared to process information on pottery vessels, not necessarily complete 

vessels (which may be uncommon in most archaeological assemblages), but 

vessels that have a minimum number of parts or measurements that are significant 

for shape identification. Associated with the first research sub-question (minimum 

required features for classification) is the issue of amount and quality of 

information available considering all features and values for one specific vessel, 

and how this can affect the model results. The model in this research therefore 

does not include the processing of smaller vessel parts such as pottery shards. 

 

1.3 Methodology 

This section provides a summary of the data and methods used to develop the ML 

classification model, which are described in more detail in Chapter 3.  

 

1.3.1 Dataset 

The source database for the dataset used in this research is the Project ARCANE - 

Associated Regional Chronologies for the Ancient Near East and the Eastern 

Mediterranean in the Third Millennium BC (Arcane, 2016), which records more 

than 8200 pottery objects from 168 archaeological sites.  

Samples from four sites from the Arcane database will be used to train the ML 

model and to test/validate it. The research dataset is composed of 496 vessels 

from the Tell Brak, Tell Beydar, Tell Leilan and Tell Barri archaeological sites 

located in northeast Syria; more information on the sites is presented in Section 

3.1.1. The pottery assemblage ranges from c. 3000 to 1950 BC, the Bronze Age 

period in the Near East. The assemblage is composed mostly from vessels types 
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associated with domestic and storage contexts such as jars, pots, bowls and 

beakers. A small proportion of vessels types is associated with funerary or ritual 

contexts. 

 

 

Figure 1.3 – Selection of pottery vessels from Tell Beydar (JZ002) and 
Tell Barri (JZ007): (1) Bowl - JZ002_P092; (2) Shallow bowl - 
JZ002_P620; (3) Open pot - JZ002_P605; (4) Jar (wide neck) - 
JZ002_P081; (5) Closed pot (high) - JZ002_P805, Closed pot (squat) - 
JZ002_P806 and Cup/Beaker - JZ002_P807; (6) Juglet - JZ007_P028; (7) 
Jar (restricted neck) - JZ002_P084; (8) Flask - JZ002_P618. Images at 
different scales. After Arcane (2016). 

 

Figure 1.3 shows a selection of some pottery from these sites that belong to the 

dataset used in this research, more information and illustrations of the vessel 

shapes are presented in Section 3.1.2. 

The Arcane pottery database was selected because of data requirements and also 

because it is an important reference for the archaeology of the region, presenting a 

classification method that is shared by all sites and objects contained in the 

database. ML models need both quantity and quality of data (representative 
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samples, relevant features) in order to identify possible patterns (Géron, 2019, p. 

22-6), and for this specific research it was necessary to use a dataset with 

distinctive types of features (described in detail in Chapter 3.1), belonging from 

both the categorical (vessel qualitative characteristics) and the continuous (vessel 

measurements) types. 

 

1.3.2 Machine learning methods and algorithms 

One criterion to distinguish the ML methods is according to the amount and type 

of the model supervision during training (Géron, 2019, p. 340-456): 

• Supervised: the training dataset used by the algorithms includes the expected 

solutions (or labels). In the thesis research objectives, this means to assign 

new vessels to pre-defined classes. 

• Unsupervised: the training dataset does not include the expected results 

(unlabeled data). In the thesis research objectives, this means the model seeks 

to identify potential classes based on vessel features (automatic grouping of 

similar objects). 

There are approaches that refer also to semi-supervised methods (Section 2.2.3). 

In addition to the basic methods of learning, it is necessary also to select methods 

for specific tasks such as splitting of the dataset, feature encoding and imputing of 

missing values, which are detailed in Chapter 3.3. Information about the software 

used in this research is provided in Chapter 3.2. 

Algorithms from the scikit-learn library (Scikit, 2021a) were used to build the 

model. A brief explanation about each algorithm is provided in Chapters 3.3 and 

3.4. The algorithms are divided in supervised and unsupervised learning. The 

algorithms belonging to the supervised learning group are divided according to 

their main function: classification and regression. In this research only 

classification algorithms are used. Six algorithms were selected for classification, 

and two algorithms for clustering, either to compare the results among them or to 

complement each other. 
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1.4 Thesis structure 

Following this Introduction chapter, this section briefly describes the thesis 

structure through its chapters. Chapter 2 – ‘Background and Context’ presents 

relevant concepts, methods and previous works in the areas of artefact 

classification, including quantitative methods, and ML. Chapter 3 – ‘Data and 

Methods’ details the dataset that was briefly presented in this introduction, 

including information about vessel shapes and each feature used in the ML model, 

and details the methods and algorithms applied to the dataset. Chapter 4 – 

‘Results’ presents the results of applying the methods and algorithms to the 

dataset, in both supervised and unsupervised learning approaches. The 

classification resulting from the ML model is compared to the classification made 

by the experts and the relevance of each vessel feature in the ML model is 

evaluated. Chapter 5 – ‘Discussion’ interprets the results obtained from the 

application of the ML model in the dataset and discusses the model benefits, 

issues and limitations. Chapter 6 – ‘Conclusion’ presents the answer to the 

research questions and possibilities of further research in the area of artefact 

classification through machine learning. 
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2 BACKGROUND AND CONTEXT  

 
This chapter presents relevant concepts, methods and previous works in the areas 

of artefact classification and ML, which form the theoretical framework of the 

research. 

 

2.1 Artefact classification 

There are many approaches to archaeological artefacts classification (Dunnell, 

1971; Orton et al., 1993, p. 152-65; Read, 2007; Rice, 1987, p. 274-88; Santacreu 

et al., 2017). The main focus of this chapter is on vessel shape and form since the 

research questions are related to this aspect of pottery vessels, nevertheless there 

are other relevant aspects and concepts that are related to vessel shape and 

classification that are presented. Some methods and techniques used for pottery 

classification can also be applied to other classes of artefacts that have a certain 

level of symmetry like some lithic tools (Read, 2007).  

 

 

Figure 2.1 – Diagram of the main analytical levels to approach pottery form 
and classification according to Santacreu et al. (2017). Levels 1 and 2 are 
within the objectives of this research. The original diagram includes also 
Level 5, related to Fractal patterns and Homology (extrinsic analysis 
between technology and remaining social spheres). After Santacreu et al. 
(2017, Figure 12.1). 
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Figure 2.1, a diagram showing the main analytical levels to approach this subject, 

is a convenient summary and starting point for the remaining of the chapter. The 

most relevant levels for this research are Levels 1 and 2 (approached in Sections 

2.1.1 to 2.1.4), however Levels 3 and 4 are equally relevant since they are related 

to interpretation and practical applications of classification, which is the final goal 

of this systematic method of arrangement (Dunnel, 1971, p. 43). 

 

2.1.1 Concepts of vessel form, shape and function 

According to Read (2007, p. 97-103) there are four conceptually independent 

operations or stages involved in the production of pottery objects, which include 

the definition of: 1) the material properties from the which the object is made, for 

instance type of clay, tempering material, firing techniques; 2) the object form and 

techniques of production such as coiling or wheel-thrown and inclusion of 

additional elements such as handles or spouts; 3) the surface treatment (e.g. 

smoothing, polishing); and 4) the decoration (e.g. incising, painting), if any. The 

second stage, related to the object form, is the main focus of this research and the 

basic criteria used for the pottery assemblages’ classification. A similar approach 

is presented by Rouse (1960), where he includes the definition of potential types 

based on the artefacts resulting from the operations or stages of production 

(Figure 2.2). 

 

 

Figure 2.2 – Analytical procedure for making artefacts and definition of 
potential types (Rouse, 1960, Fig. 1). 
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Formally, the concepts of form and shape are distinct, however it seems the terms 

are used as synonyms across many publications in archaeology. According to the 

Getty Art & Architecture Thesaurus (Getty, 2004a; Getty, 2004b), shape is an 

attribute or component of form, more like an outline or contour and, with 

additional characteristics included, a shape can become a form. An example where 

the terms are aligned with these definitions is Nelson et al. (2017), who define 

‘form’ as a combination of size and shape. For the purposes of this research there 

will be no formal differentiation between these terms, ‘shape’ will be used more 

frequently since it is the term used by the Arcane project to define the classes of 

vessels (the shape classes). 

Rice (1987, p. 215-7) approaches the description and classification of vessel forms 

based on two basic systems, one is use-oriented and the other one is based on 

solid geometry. The use-oriented systems are based on inferred use of the vessel 

according to diverse criteria such as vessel size, ratios of measurements (e.g., 

height vs. diameter), presence of functional attachments (handles, spouts), 

complemented by information provided by ethnographic studies and historical 

documents (Rice, 1987, p. 215). The systems based on solid geometry use a 

combination of solid shapes, surfaces and sections of these shapes to describe the 

vessel, some use numerical codes to identify the shapes (Rice, 1987, p. 219-21).  

Albeit rigorous and useful in some specific circumstances, these geometry-based 

systems are not practical enough to replace the more empirical use-oriented 

systems, even if these may present some inconsistencies and incompatibilities 

when used among different archaeological assemblages. The vessel shape 

terminology based on these systems is not standardised and the diversity of terms 

in different languages, and even within the same language (when different terms 

are used to define the same shape, or when one term is used to define different 

shapes), make the definitions of shape class imprecise (Rice, 1987, p. 215).  

Use-oriented classifications in archaeology are frequently based on ratios of 

height to maximum diameter and kind or size of orifice (Figure 2.3), but may use 

also the presence of functional attachments like handles or spouts (Rice, 1987, p. 

215-6). The Arcane project adopted a similar system to define the vessel shapes 

used in this research (Chapter 3.1). 
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Figure 2.3 – Shape categories based on vessel proportions as a ratio of 
height to diameter and types of neck/orifice. (a) plate; (b) dish; (c) 
bowl; (d) bowl; (e) vase; (f) jar; (g) neckless jar or vase; (h) florero or 
jar; (i) jar. Rice (1987, Figure 7.4). 

 

Sometimes the use of functional categories such as storage, cooking and serving 

are added to the shape class (e.g. storage jar, cooking pot) and albeit useful for 

expanding a classification system based only on shapes it can make assumptions 

on vessel use that are not always clear (Rice, 1987, p. 211-2). Other information 

like the context of finds, residue analysis and the mechanical and technical 

properties of the ceramic are important for the definition of vessel function (Hunt, 

2017; Rice, 1987, p. 224-43). 

Such diversity and sometimes inconsistency in vessel shape definitions in 

archaeology may cause some difficulties for ML methods and algorithms, the 

results must take this into account and this issue will be addressed in Chapter 5. 

 

2.1.2 Attributes, variables and features 

The concept of ‘characteristics or traits that can be observed in an object’ (Read, 

2007, p. 110) is of fundamental importance to objects definition and the formation 

of classes of objects. This concept may have several terms associated to it, 
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sometimes used as synonyms (Bruce et al., 2020, p. 12), but there are some 

differences among them that will be briefly described.  

Attribute and variable 

According to Dunnell (1971, p. 49-50), attribute is the ‘smallest qualitatively 

distinct unit involved in classification’. After defining the field of classification 

(e.g., archaeological artefacts) and the scale (e.g., assemblage of pottery vessels), 

the next step is the identification of the attributes that will become the potential 

criteria for classification (Dunnell, 1971, p. 49-50). There is a relation between the 

number of dimensions of attributes and the potential number of classes derived 

from them, leading to issues like lumping or splitting of attributes (Dunnell, 1971, 

p. 50). The color category ‘brown’, the temper category ‘grit’ and the height 

category ‘10.5’ applied to a vessel sample are examples of attributes according to 

this definition (Dunnell, 1971, p. 51; Read, 2007, p. 110-13). In ML, an attribute 

is equivalent to a data type, (e.g., ‘color’), but it can also be considered a synonym 

of feature (Géron, 2019, p. 8).  

A variable is a category for attribute values, for instance color, temper and height 

are variables that may be associated with pottery vessels, each variable have its 

own set of possible attribute values. Variables may be qualitative (e.g., color) or 

quantitative (e.g., height), also referred to as categorical or numeric respectively 

(Bruce et al., 2020, p. 9-10; Read, 2007, p. 36-9, p. 110-3, p. 243-6).  

Feature 

This term is commonly used in both archaeology and ML, but with different 

meanings. In data science and ML, features are used to predict target values and 

for this reason a set of features is also called predictors (Bruce et al., 2020, p. 13; 

Géron, 2019, p. 8). A feature can also be considered either a synonym for attribute 

(e,g., ‘color’) or an attribute plus its value (e.g., ‘color = brown’) depending on the 

context (Géron, 2019, p. 8). In archaeology, feature can be defined as a ‘separate 

archaeological unit that is not recorded as a structure, a layer, or an isolated 

artifact’ (Kipfer, 2000, p. 186), such as walls, hearths and storage pits. The 

meaning of feature as predictors, the elements used to predict targets by ML 

algorithms, is the one used through this research, and also used to refer to the 

characteristics or traits that can be observed in an object (Chapters 3.1 and 3.3). 
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2.1.3 Approaches for artefact grouping 

There are distinct approaches for artefact grouping (Bortolini, 2017, p. 658-60; 

Read, 2007, p. 27-8), one of these divides the alternatives in two methods (Figure 

2.4): top down, associated with classification (and supervised learning in ML), 

and bottom up, associated with clustering (and unsupervised learning). According 

to Read (2007, p. 64, p. 135-8), groups must be ‘internally coherent and externally 

isolated’, meaning that members must be clearly identified as belonging to one 

specific group and not to others. Figure 2.4 is divided into two domains, ideational 

(without objective existence) and phenomenological, following concepts from 

Dunell (1971). One important detail is the question about a possible equivalence 

between two types of classes, explicit or implicit, involved in the grouping 

processes; this issue is addressed in Chapter 5. 

 

 
Figure 2.4 – Two approaches for artefact grouping: top down, 
associated with classification, and bottom up, associated with 
clustering (Read, 2007, Figure 1.1). 

 

2.1.4 Classification strategies 

There are several classification strategies, organised according to different 

approaches to the question. Level 2 in Figure 2.1 is the analytical level related to 

this subject (Santacreu et al., 2017, p. 183-5). 
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Intuitive vs. objective 

Based on the applied level of formalism. The earlier approaches to classification 

are considered more intuitive since they were defined mainly on the analysts’ 

perceptions of the differences and similarities in ceramic assemblages such as in 

Krieger (1944) and Rouse (1960), while the objective approaches are mainly 

defined on analytical and/or statistical methods. Some of the earlier examples are 

those from Kroeber (1940) and Spaulding (1953), the objective later became the 

dominant approach in archaeology (Read, 2007, p. 107-8; Santacreu et al., 2017, 

p. 183-4). Read (2007, p. 67-70, p. 107-8) draws attention to a reversion to the 

subjective approach in the work of Adams and Adams (1991), which emphasizes 

the human capacity of patterning identification and the importance of intuition on 

the identification of types.  

Theoretical vs. practical/functional or emic vs. etic 

Based on different ontologies. Theoretical or emic classifications are based on the 

empirical characteristics and conceptual systems of the object producers, either 

tangible or intangible. Attributes used in the classification have cultural saliency, 

they carry important cultural and historical meanings (Read, 2007, p. 39-42, p. 69-

73; Santacreu et al., 2017, p. 184-5). Functional or etic classifications are based on 

the conceptual systems and technical criteria of the analyst who is attempting the 

classification. There is an understanding that the terminology and classificatory 

criteria used by object producers may be too complex to be perceived and 

replicated by foreigners (Read, 2007, p. 39-42, p. 69-73; Santacreu et al., 2017, p. 

184-5). 

Paradigmatic vs. taxonomic 

Based on how the attributes are considered. In taxonomic classifications not all 

the attributes are considered to be of equal importance for all pottery being 

classified, and must be used in a sequential and hierarchical order according to 

different criteria to define the classes. Some classes may miss an entire attribute, 

for instance ‘surface treatment’. Taxonomic classifications are usually represented 

in a hierarchical branching diagram as in Figure 2.8 (Dunnell, 1971, p. 70-6; 

Read, 2007, p. 81-3, p. 113-14, p. 241-2; Santacreu et al., 2017, p. 184). In 

paradigmatic classifications the classes are defined by each possible combination 
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of attributes, without hierarchy among the attributes. It is possible that some 

combination does not apply to some samples in the class (e.g. some do not have 

any surface treatment), but the attribute is still used to define the class (Dunnell, 

1971, p. 76-84; Read, 2007, p. 81-3, p. 113-14, p. 241-2; Santacreu et al., 2017, p. 

184).  

 

 

Figure 2.5 – Example of monothetic and polythetic groups of entities 
(classes) and attributes or artefacts. Clarke (1978, Fig. 3). 

 

Concepts similar to paradigmatic and taxonomic are polythetic and monothetic, 

which are based on the degree of shared attributes between objects in a class 

(Figure 2.5). In monothetic classifications an object is a member of a class if it 

presents all attributes that compose the class, while in polythetic classifications an 

object is a member of a class if it presents a sufficient number of attributes from a 

set of possible attributes that compose the class (Bortolini, 2017, p. 658-60; Read, 

2007, p. 134-5). 

 

2.1.5 Applications of classification: typology and seriation 

Classification of pottery vessels based on shape is fundamental for starting to 

answer a number of questions related to vessel function, place of origin or 

chronology, but in archaeology the more information available the better, 

therefore definition of shape classes must be whenever possible complemented by 

other specific techniques: residue analysis for determining contents and uses, 

ceramic petrography to identify vessel provenance, stratigraphy and absolute 

dating methods like TL for vessel chronology (Rice, 1987, p. 224-43, p. 435-46). 
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When such additional information is not available, shape can be of fundamental 

importance as in the case of the sequencing of Predynastic Egypt by Petrie (1899).  

Petrie did not have stratigraphic information to help him to define a chronological 

sequence for the period before the firsts Egyptian dynasties (c. 3200 BC) since 

superposition of graves or burials was rarely found, then he used the grouping of 

similar vessel types according to their form and style/decoration (Figure 2.6) 

(Midant-Reynes, 2000).  

 

 

Figure 2.6 – Representative types of pottery of seven successive 
stages in Predynastic Egypt known as Naqada period. The 
numbers represent the sequence dates, and the vertical lines 
represent the vessel types that link one stage to the next one. 
Petrie (1899, Fig. 1). 

 

The proportion of each group found in around 900 graves and the presence of 

specific types linked one stage to the next one, placing them in chronological 

order divided in seven stages and sub-stages (Midant-Reynes, 2000; Petrie, 1899). 

One of the key elements identified by Petrie to define the sequence dating was the 

vessel handles, which seemed functional in earlier vessels and gradually became 

less functional and more decorative as it can be seen in some vessels in the left in 

Figure 2.6 (O’Brien & Lyman, 1999, p. 87). Additional elements such as vessel 
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handles and spouts may be relevant to identify vessel shape classes and are 

included in the dataset as categorical features as explained in Chapter 3.1. 

 

 

Figure 2.7 – Frequency seriation of six assemblages (A-F) using five 
artefact classes (1-5). After O’Brien and Lyman (2003, Figure 2). 

 

The technique used by Petrie in Egypt is defined as phyletic or contextual 

seriation by O’Brien and Lyman (1999, p. 84-91, p. 111-14), in contrast with 

occurrence seriation and frequency seriation as created by Kroeber and further 

developed by Ford in the USA. The main difference is related to the use of 

quantitative information (relative abundance) associated with vessel features such 

as decoration and colors in different assemblages, and in the case of frequency 

seriation can be represented in graphs like the ‘battleship’ frequency curves 

(Figure 2.7), which are based on artefact classes and their frequency of occurrence 

on each assemblage (O’Brien & Lyman, 1999, p. 121-5). 

A typology is associated with some question or aspect of interest about an artefact 

assemblage such as function, decoration, morphology, or chronology, or a 

combination of more than one aspect (O’Brien & Lyman, 2003, p. 23-4). A 

typology goes one step further in relation to classification; it is possible to create a 

classification of pottery vessels based on shape, but without defining a further 

goal, this can be defined later by a typology. This is also Santacreu’s et al. (2017) 

approach, which is summarised in Figure 2.1; the first two analytical levels to 

study pottery form and classification are related to formal descriptions of form 

(qualitative or quantitative) and the classification itself, which can be of various 

aspects (e.g., intuitive or objective, paradigmatic or taxonomic). The next two 

levels are related to interpretation in various types of approaches (technological, 
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symbolic, chrono-cultural or functionalist), which are based on specific typologies 

(Santacreu et al., 2017).  

To conclude this section, ceramic seriation remains an important source of 

information about chronology besides the increasing application of scientific 

dating techniques (Lipo et al., 2015; Peeples & Schachner, 2012; Porcic, 2013). 

 

2.1.6 Quantitative classification 

The method developed by Read (2007) for classification of archaeological 

assemblages is associated to the concepts of quantitative classification, recursive 

division and numerical taxonomy (Dunnell, 1971, p. 98-102; Read, 2007, p. 127-

8, p. 199-240).  

 

 

Figure 2.8 – Taxonomic structure of the method developed by Read (2007) for 
the classification of artefact assemblages, in this example pottery vessels from 
the late Neolithic site of Niederwil, Switzerland. Qualitative (categorical) 
features are highlighted in purple and quantitative features (basic and relative 
measurements) in blue; the two basic shapes are highlighted in green. A, B, C = 
Belly shapes (convergent); DR = Decorated rim; SR = Smooth rim; S = Small; 
M = Medium; L = Large. After Read (2007, Figure 8.23). 
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The method of recursive division starts with the identification of potential 

qualitative (categorical) features that have cultural salience in an assemblage and 

then use one of these features, or variables in Read (2007) terminology, to divide 

the vessels in groups. In the example shown in Figure 2.8, this feature is the vessel 

handle, or more precisely, the number of handles (0, 1 or 2). The method suggests 

starting with qualitative features if possible because these can be identified on 

individual artefacts without the need to identify patterns in the entire assemblage; 

these patterns are better identified in subgroups after an initial division is made 

(Read, 2007, 214-15). 

After the first division based on the handle feature, one of these groups (the one 

without handles) is now divided based on a quantitative feature, the ‘Total Height 

/ Belly Diameter’ ratio (more information on these types of features is presented 

in Section 3.1.8), which represents the overall vessel shape, and identifies two 

main groups of vessels: ‘Squat shape’ and ‘Urn shape’. The method then 

continues subdividing the groups according to new features (qualitative or 

quantitative) until no more subgroups can be identified. The resulting groups can 

be seen in the last levels of the taxonomic structure (Figure 2.19). Some examples 

of these final classes are a ‘large Urn shape vessel with round belly and decorated 

rim’, and a ‘small Squat shape vessel with smooth rim’. 

 

2.2 Machine learning 

As briefly commented in the introduction, one of the main characteristics of ML 

systems is that they use data and standard algorithms to reproduce human 

knowledge in contrast to extensively programmed systems (Alpaydin, 2016, p. 

50-2). There still is need of some coding and understanding of basic data science 

concepts but it is a more straightforward approach than creating an entire 

knowledge system from scratch. The main challenges include choosing among the 

several alternatives of existing algorithms and the best alternatives of parameters 

for each of them; the choices will depend on the research questions and the 

characteristics of the dataset. One of the main advantages of ML systems is 

flexibility: if the pattern in the data changes it is not necessary to rewrite the 

system’s rules, the changes are mostly associated to data, like updating the target 
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labels. The application of ML has been increasing in many areas of knowledge, 

including archaeology and cultural heritage (Bickler, 2021; Fiorucci et al., 2020). 

In this Chapter some of the main applications in these areas are summarised. 

ML systems can be classified based on several criteria: according to the amount of 

human supervision during training, or whether the system can learn incrementally 

through online data, or how they generalise, through instance-based or model-

based learning (Géron, 2019, p. 7-17). Here the distinct types of ML systems 

based on the amount of human supervision are briefly described. 

 

2.2.1 Supervised learning 

In supervised learning systems the objective is to predict a certain outcome (the 

target) from a given input (the features, the samples’ attributes). During the 

training sessions the algorithms receive both types of information from the 

dataset, target labels and features (the training set) (Figure 2.9), in order to 

identify potential patterns and associations between them (Géron, 2019, p. 7-8; 

Müller & Guido, 2017, p. 27). The next step is to make predictions based on the 

same features from new, unknown data (the test/validation set) and the 

information obtained during the training sessions (Figure 2.10).  

 

 

Figure 2.9 – Example of training dataset for classification. After Scikit 
(2021b). 

 

 
Figure 2.10 – Example of classification: identification of digits based on 
handwritten samples. After Scikit (2021b). 
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There are two main types of supervised learning algorithms, which deal with 

classification or regression problems (Géron, 2019, p. 7-8; Müller & Guido, 2017, 

p. 27).  

In classification the goal is to predict a class label (the target) from a set of 

predefined values, which can be binary or multiple values. The binary 

classification is exemplified by the spam filter system: an email is either a spam or 

not. In the multiclass classification more than two classes form the target set, as in 

the system that identifies digits from 0 to 9 based on handwritten samples (Müller 

& Guido, 2017, p. 27; VanderPlas, 2017).  

In regression the goal is to predict a continuous number (the target), for instance 

the approximate value of a house in a certain region based on information like 

house median age, number of rooms and locality. The value predicted could be 

any value within a predefined range (e.g., $200,000 to $999,999) (Géron, 2019, p. 

8-9, 36; Müller & Guido, 2017, p. 27). 

 

2.2.2 Unsupervised learning 

In unsupervised learning systems there is no known output or target labels, 

knowledge must be extracted only by using input data. It can be more difficult to 

analyse the results, especially in the case of clustering algorithms, and for this 

reason this type of system is used in a more exploratory way when compared to 

supervised learning systems (Géron, 2019, p. 9-12; Müller & Guido, 2017, p. 133-

4).  

 

 
Figure 2.11 – Example of clustering based on the digits dataset; the X 
marks the centroids of each cluster. After Scikit (2021c). 
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Clustering is one of the most common types of unsupervised learning methods, 

other common types are the preprocessing and scaling algorithms, used for 

preparing the data for supervised learning algorithms (Müller & Guido, 2017, p. 

134-42). Clustering algorithms divide the dataset into groups (clusters), aiming to 

create clusters where samples are similar within a cluster and different from other 

clusters (Müller & Guido, 2017, p. 169). There are many types of clustering 

algorithms, among them two are commonly used: k-Means and Hierarchical 

Clustering. 

An example of the application of k-Means is shown in Figure 2.11, the same 

handwritten digits dataset used for classification in supervised learning now is 

used without target labels, as a result the algorithm creates clusters with the most 

similar samples together. In this example the result is easier to interpret because 

the total number of digits (from 0 to 9) is known in advance, so the number of 

clusters is equivalent. In the case of Hierarchical Clustering there is no initial 

parameter used for clustering criteria but there are useful tools for analysis like the 

dendrogram, described in Section 3.4.2. 

 

2.2.3 Semi-supervised learning 

It is an intermediate learning method where the data is partially labeled. Most 

samples are unlabeled as in the unsupervised learning methods, but some samples 

which can be labeled are used to better identify the shape of the data distribution 

and generalise to new samples (Géron, 2019, p. 12-13; Scikit, 2021d). Examples 

of semi-supervised learning are applications of photo identification, after the 

algorithm groups photos of the same person (an unsupervised learning process), 

the labeling of one of each person by the user is enough to propagate the label for 

other photos that belong to the same group (Géron, 2019, p. 12-13). Another 

example comes from Hörr et al. (2014), which is commented in Chapter 5.3. 

 

2.2.4 Applications in archaeology 

This section presents examples of applications of ML in archaeology and cultural 

heritage, grouped by the main subject of the research, in several levels:  

landscape, object/assemblage, ceramic materials, and chronology. Some of the 
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methods mentioned here involve artificial neural networks such as CNNs 

(Convolutional Neural Networks): these belong to a specific category of ML 

models inspired by networks of biological neurons, also associated to the Deep 

Learning concept, which involves the performing of large and highly complex ML 

tasks (Géron, 2019, p. 279, p. 289).  

Landscape archaeology, automated object detection, remotely sensed data 

Barberena et al. (2021) approach the human paleogeography and migrations in the 

Southern Andes between AD 800 and 1400 based on strontium isotopes analysis, 

the Random Forest regression algorithm and GIS analysis for construction of an 

isoscape (geological map of isotope distribution). In the area of archaeological 

survey, Lambers et al. (2019) integrate citizen science with the automated object 

detection in remotely sensed data based on CNNs to generate and validate the 

detection of archaeological objects (barrows, charcoal kilns, Celtic fields) in the 

Netherlands. Verschoof-van der Vaart and Lambers (2021) give continuity to the 

previous approach of archaeological survey through an automated object detection 

model (WODAN - Workflow for Object Detection of Archaeology in the 

Netherlands) and manual analysis in a way that both methods complement each 

other. Orengo and Garcia-Molsosa (2019) present an automated system for 

detection of pottery shards in the landscape based on an EE platform ML 

algorithm and high-resolution drone imagery, and Orengo et al. (2020) present an 

automated system for detection of archaeological mounds (Indus settlements from 

c. 3300 to 1500 BC) in Pakistan and the classification of satellite data using the 

Random Forest algorithm. 

Identification of ceramic shapes through image analysis 

Makridis and Daras (2012) present a technique for automatic classification of 

archaeological shards using k-Nearest Neighbors and feature selection algorithms, 

where a representative shard of each class is used as reference for the 

classification of the remaining ones through colour and texture features. Anichini 

et al. (2021) and Gualandi et al. (2021) present the ArchAIDE, a 

system/application for collection and automatic recognition of pottery through 

photos based on two complementary ML tools, one relies on the shard 

profile/outline and the other on decorative features. Núñez Jareño et al. (2021) 

make use of synthetic data (replicated features of the original objects) as a strategy 
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to make the Arch-I-Scan system viable for classification of Roman Fine Ware 

pottery, as datasets with limited size may cause difficulties for training of ML 

algorithms. MacLeod (2018) deals with the quantitative assessment of 

groups/types of North American Paleoindian projectile points through analyses of 

digital images and 3D scans using geometric morphometric data analysis and ML 

methods like PCA and Naïve Bayes. Pawlowicz and Downum (2021) present the 

application of CNNs on images of decorated ceramic for typology and 

classification of Tusayan White Ware from Northeast Arizona, USA. 

Geochemical analysis of soil, ceramic chemical composition and petrography 

Oonk and Spijker (2015) present a supervised ML approach to geochemical 

predictive modeling based on multi-element XRF results from archaeological 

features and background soils in the Netherlands using ML algorithms (k-Nearest 

Neighbors, Support Vector Machines) and artificial neural networks. 

Charalambous et al. (2016) present a method for classification of archaeological 

ceramics from the Early/Middle Bronze Age Cyprus through their chemical 

elements using ML algorithms (k-Nearest Neighbors, Decision Trees - C4.5) and 

the Learning Vector Quantisation (LVQ) method. Mikhailova et al. (2019) apply 

clustering algorithms (k-Means, DBSCAN and Hierarchical Clustering) to group 

ceramic and glass artefacts based on their chemical compositions, obtained 

through XRF analysis. Lyons (2021) uses CNNs for automatically recognise and 

classify ceramic fabrics from Honduras (AD 1000–1525) based on thin section 

samples. 

Chronology 

To conclude the examples of application of ML in archaeology, Klassen et al. 

(2018) present semi-supervised ML approaches (Multiple regression analysis and 

Graph-based SSL) for predicting the chronology of temples from medieval 

Angkor, Cambodia. The prediction is based on a dataset of temples with known 

architectural elements and artefacts that are used as a reference to estimate the 

date of most of other temples that are of unknown period. 
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3 DATA AND METHODS 

 
This chapter provides detailed information on the dataset and ML methods and 

algorithms used in this research, which were briefly presented in Chapter 1. The 

methodology can be summarised as the application of supervised and 

unsupervised ML methods and quantitative classification concepts to a pottery 

assemblage dataset. 

 

3.1 Dataset 

This presentation of the dataset starts with an introduction to the archaeological 

sites, assemblages and vessel shapes that form the target classes of the ML model, 

followed by an overview of the dataset and descriptions of the features used to 

predict the target classes. 

 

3.1.1 Archaeological sites and assemblages 

This section provides information on the four archaeological sites that provided 

the pottery assemblages for this research. The codes starting with ‘JZ’ follow the 

Arcane project nomenclature for the sites located in the Jezirah region in Syria, 

the ancient Upper Mesopotamia region (Arcane, 2016). The location of the sites in 

the Khabur River plain, between the Tigris and the Euphrates, is shown in Figure 

3.1. The information about phases and periods, probable origin/manufacture and 

contexts/functional categories correspond to the samples that were selected for the 

research dataset and do not represent the entirety of samples for that sites in the 

Arcane database. 

 

JZ001 - Tell Brak 

One of the largest ancient cities in Upper Mesopotamia, Brak (ancient Nagar) 

started to develop around 6000 BC as a small settlement, in the late 5th 

millennium BC (Late ‘Ubaid/ Late Chalcolithic 1 periods) it became one of the 

earliest cities in the Near East (Oates, 2005; Tell Brak, 2013). 
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Figure 3.1 – Location of the archaeological sites in the Khabur River plain, 
Northeastern Syria (Upper Mesopotamia), which provided the pottery 
samples (dataset) for this research: Tell Beydar, Tell Brak, Tell Leilan and 
Tell Barri. After OI (2021). 

 

In the 3rd millennium BC it was the dominant city in this part of Upper 

Mesopotamia, a strategic position in the Khabur River valley made Nagar an 

important connection among Anatolia, the Levant and Mesopotamia (Oates, 

2005). The city was destroyed around 2300 BC and later rebuilt as a centre for 

provincial administration under the Akkadian kingdom. During the second 

millennium BC Nagar was under the rule of the Mitanni kingdom, and the Middle 

Assyrian period is the latest surviving occupation on the main tell (Oates, 2005; 

Tell Brak, 2013). 

Dataset information. Phases and periods: from c. 3000 to 1950 BC.  Mostly 

phases L (pre Akkadian) and N (post-Akkadian/ Hurrian), some phases H (post-

Uruk/ pre Ninevite 5) and M (Akkadian) or undefined. Probable 

origin/manufacture: mostly local, some undefined. Contexts/functional categories: 

mostly domestic (tableware, storage or food processing), a few ritual or 

unspecified (Arcane, 2016). Number of samples: 270 (54%). 
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JZ002 - Tell Beydar 

The occupation of Tell Beydar I (ancient Nabada) started c. 2900 BC and its 

greatest extension lasted until c. 2600 BC when the lower city was abandoned. 

From this period until c. 2340 BC, the urban settlement remained in the upper city 

when the its main structures were abandoned, reducing the local to a village until 

it was no longer occupied around 2100 BC (Pruss, 2013). The period between c. 

2340 and c. 2000 BC was marked by urban settlements crisis in the Jezirah region, 

during this last period of occupation the village remained under the Akkadian 

control, and it was only briefly reoccupied again during the Hellenistic period 

(Pruss, 2013). Around the site of Tell Beydar I another settlement known as Tell 

Beydar II developed during the Mitanni period (c. 14th century BC) and rebuilt 

under the Neo-Assyrian period (Tell Beydar, 2016); this specific site and period 

are not represented in the pottery dataset. 

Dataset information. Phases and periods: mostly IIIb, some IVa, a few II, IIIa, or 

IVb (c. 2775 to 2200 BC). Probable origin/manufacture: local. 

Contexts/functional categories: mostly domestic (storage, tableware, food 

processing, cosmetic), a few ritual, burial or unspecified (Arcane, 2016). Number 

of samples: 133 (27%). 

JZ004 - Tell Leilan 

The initial occupation of Tell Leilan is recorded during the late northern ‘Ubaid 

period, and continued through the Uruk period until c. 3200 BC, when the 

settlement started to decline (Weiss, 2013). Around 2600 BC a new phase of 

expansion started with the construction of monumental walls and public buildings, 

until its decline c. 2200 BC under the Akkadian rule (Weiss, 2013). After near two 

centuries of abandonment, the city redeveloped as an Amorite capital (Shubat-

Enlil) c. 1950 BC. Its final ancient occupation was under the Mitanni rule during 

the 15th century BC (Weiss, 2013).  

According to Weiss (2013, p. 109-10), the decline in the urban occupation in the 

Khabu River plains during a period of around 300 years, c. 2200 to 1900 BC 

(which affected also other cities like Tell Brak and Tell Beydar), might have been 

triggered by an abrupt decline in precipitation and cooling event known from 

paleoclimate proxy records. 
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Dataset information. Phases and periods: EJ II and EJ II/III (c. 2800 to 2500 BC). 

Probable origin/manufacture: local. Contexts/functional categories: domestic 

(storage, food processing) and burial (Arcane, 2016). Number of samples: 69 

(14%). 

JZ007 - Tell Barri 

The initial occupation of Tell Barri (ancient Kahat) is recorded from the end of the 

4th millennium BC with relevant phases of occupation during the 3rd millennium 

BC and the Middle Assyrian period, after the decline of important urban centres in 

the region such as Tell Brak and Tell Leilan (Palermo, 2019). After the collapse of 

the Assyrian empire, Tell Barri had a shorter record of occupation under the 

Achaemenid period and later nearly two centuries of occupation during the 

Hellenistic period, and records of occupation continued under the Parthian, 

Roman and Sasanian rules until the 4th century AD (Palermo, 2019). 

Dataset information. Phases and periods: strata 37, 39, 41 (EJ II/IIIa to EJ IV, c. 

2650 to 2170 BC). Probable origin/manufacture: local and imported. 

Contexts/functional categories: tableware and burial (Arcane, 2016). Number of 

samples: 24 (5%). 

 

3.1.2 Vessel shape 

In the Arcane database the ‘shape class’ feature is divided in two parts, one 

containing a code varying from ‘A’ to ‘Z’ and the other one containing a 

description of the vessel shape. In some cases different shape descriptions are 

assigned to vessels belonging to the same shape class, for instance the sample 

JZ001_P916 (T class) has ‘Bottle’ as shape description, whereas sample 

JZ001_P925 (same T class) has ‘Flask’ instead. Another cases are the G class, 

which has samples described either as ‘Beaker’ or ‘Cup/Mug’, and the K class, 

which has samples described either as ‘Jug/Tankard’ or ‘Juglet’. It is the shape 

code that is used as the label for classification and not the shape description, 

therefore this is not an issue, but the description may provide information about 

possible sub divisions in a class, as it will be commented in the discussion section. 

The shapes are divided in three groups: open shapes, closed shapes and 

miscellaneous shapes. In this research the shapes that belong to the miscellaneous 
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group and some of the open and closed shapes will not be used, see Section 3.1.9 

for details on sample selection criteria. Table 3.1 lists all the shape classes defined 

by the Arcane project and the ones used in this research. 

 

Group Shape 
Class 

Shape Description # of 
samples 

A Plaque 1 
B Dish/Plate, Platter, Pan 1 
C Shallow Bowl 10 
D  Large Bowl 3 
E Bowl 182 
F Deep Bowl 7 
G Cup/Mug, Beaker 96 
H Open Pot 20 

O
pe

n 
 

S
ha

pe
s 

J Vat 2 
K Jug/Tankard, Juglet 22 
M Closed Pot (rounded, squat) 9 
N Closed Pot (high) 34 
P Jar (wide neck) 88 
R Jar (restricted neck) 32 
S Pithos 4 

C
lo

se
d 

 
S

ha
pe

s 

T Flask, Bottle 12 
L Lamp - 
V Anthropomorphic or zoomorphic 

vessel 
- 

W Composite vessel 4 
X Vessel with horizontal axis - 
Y Vessel without rotation axis - M

is
ce

lla
ne

ou
s 

S
ha

pe
s 

Z Stand, Andiron 7 
   496 

Table 3.1 – List of shape classes defined by the Arcane project (Arcane 
2016) and number of pre-selected samples from the four sites. The 
classes used in this research are marked in bold. 

 

The following specifications of open and closed shape classes present in the 

Arcane project were based on information provided by D. Meijer (personal 

communication, February 17, 2021). Some image examples are shown for the 

classes used in the research dataset. The dimensions specified for each shape 

(diameters, height) serve as a general reference and may not be strictly followed, 

therefore these dimensions alone cannot be used to characterise a shape class. 

Open shapes: 

A - Plaque 

• Diameter is 12 or more times the vessel height 

B - Dish, Plate, Platter, Pan 

• Diameter is between 6 and 12 times the vessel height 



39 

C - Shallow Bowl 

Examples: 

 
  

JZ001_P406 JZ001_P939 JZ007_P062 

Figure 3.2 – Examples of vessels from the ‘C – Shallow Bowl’ shape class. 
Images at different scales. After Arcane (2016). 

 

• Diameter is between 3 and 6 times the vessel height 

• Maximum diameter is 30 cm 

D - Large Bowl 

• Diameter is between 3 and 6 times the vessel height 

• Diameter is greater than 30 cm 

E - Bowl 

Examples: 

   

JZ001_P015 JZ001_P046 JZ002_P028 

Figure 3.3 – Examples of vessels from the ‘E –Bowl’ shape class. Images 
at different scales. After Arcane (2016). 

 

• Diameter is between 1.5 and 3 times the vessel height 

• Maximum diameter is 30 cm 

• Maximum height is 20 cm 

F - Deep Bowl 

• Diameter is between 1.5 and 3 times the vessel height 

• Diameter is greater than 30 cm 

• Shares some characteristics with class ‘J – Vat’ 
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G - Cup/Mug, Beaker 

Examples: 

   

JZ001_P110 JZ004_P403 JZ004_P079 

Figure 3.4 – Examples of vessels from the ‘G – Cup/Mug/Beaker’ shape 
class. Images at different scales. After Arcane (2016).  

 

• Diameter is up to 1.5 times the vessel height 

• Maximum diameter is 30 cm 

• Maximum height is 20 cm 

H - Open Pot 

Examples: 

   
JZ001_P073 JZ001_P087 JZ001_P252 

Figure 3.5 – Examples of vessels from the ‘H – Open pot’ shape class. 
Images at different scales. After Arcane (2016).  

 

• Diameter is up to 1.5 times the vessel height 

• Height is greater than 20 cm 

J - Vat 

• Diameter is up to 1.5 times the vessel height 

• Height is greater than 20 cm 

• Shares some characteristics with class ‘F - Deep Bowl’ 
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Closed shapes: 

K - Jug/Tankard, Juglet 

Examples: 

 
 

 
JZ001_P008 JZ004_P084 JZ007_P029 

Figure 3.6 – Examples of vessels from the ‘K – Jug/Tankard/Juglet’ shape 
class. Images at different scales. After Arcane (2016).  

 

• Maximum height is 35 cm (15 cm for Juglet) 

• Minimum diameter is between 20% and 60% of the Maximum diameter  

M - Closed Pot (rounded, squat) 

• Maximum height is 70 cm 

• Height is less than or equal to maximum diameter 

• Minimum diameter is between 60% and 80% of the Maximum diameter 

N - Closed Pot (high) 

Examples: 

   
JZ001_P001 JZ001_P043 JZ002_P072 

Figure 3.7 – Examples of vessels from the ‘N – Closed Pot (high)’ shape 
class. Images at different scales. After Arcane (2016).  

 

• Maximum height is 70 cm 

• Height is greater than or equal to maximum diameter 

• Minimum diameter is between 60% and 80% of the Maximum diameter  
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P - Jar (wide neck) 

Examples: 

   
JZ001_P260 JZ001_P923 JZ004_P036 

Figure 3.8 – Examples of vessels from the ‘P – Jar (wide neck)’ shape 
class. Images at different scales. After Arcane (2016).  

 

• Height is between 35 and 70 cm 

• Minimum diameter is between 40% and 60% of the Maximum diameter  

R - Jar (restricted neck) 

Examples: 

   

JZ001_P272 JZ002_P105 JZ002_216 

Figure 3.9 – Examples of vessels from the ‘R – Jar (restricted neck)’ shape 
class. Images at different scales. After Arcane (2016).  

 

• Height is between 35 and 70 cm 

• Minimum diameter is between 20% and 40% of the Maximum diameter  

S - Pithos 

• Height is greater than 70 cm 

• Minimum diameter is between 20% and 80% of the Maximum diameter  
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T – Flask, Bottle 

Examples: 

   
JZ001_P925 JZ002_P603 JZ002_P618 

Figure 3.10 – Examples of vessels from the ‘T – Flask/Bottle’ shape class. 
Images at different scales. After Arcane (2016).  

 

• Minimum diameter is up to 20% of the Maximum diameter  

• Maximum height is 15 cm for Flask 

 

3.1.3 Dataset overview 

Table 3.2 shows the summary information for the dataset used to train and 

test/validate the ML model. The detailed explanation for all features and the 

values associated with some of the features such as rim orientation and base 

typology are presented in the next sections.  

Features are divided in two broad types, according to their scale of measurements: 

categorical [cat] and continuous [con]. Categorical features have a limited number 

of qualitative and mutually exclusive possible outcomes, the analyst or expert 

defines their possible contents (Fletcher & Lock, 2005, p. 1-5; VanPool & 

Leonard, 2011, p. 5-11) during the database specification for instance, or they 

may be defined by some predetermined rule (the case of the Vessel ID feature). 

The ‘nominal’ is the only categorical subtype used in the dataset. Continuous 

features are quantitative, they may represent either an interval (a sequence with 

fixed distances) or fixed distances with a datum (fixed zero) point (Fletcher & 

Lock, 2005, p. 1-5), which is the case of all continuous features in the dataset used 

in this research. The continuous features in the dataset represent either vessel 

measurements (cm or litres) or ratio between measurements. 
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 # Feature Name Type Description 
1 Vessel ID [cat] Unique identification of the vessel composed by site code and 

sequence number 
2 Shape class [cat] Shape of the vessel e.g. Jar, Bowl, Open pot, Closed pot 

represented by letters from A to Z 
3 Rim orientation [cat] Orientation of vessel rim e.g. vertical, out-turned, in-turned, 

codified as A, B, C, D or E 
4 Rim profile [cat] Profile of the vessel rim, codified from 00 to 22 
5 Base typology [cat] Shape of the vessel base e.g. flat, pointed, rounded, codified 

from 00 to 15 
6 Miniature vessel [cat] Indicates whether the vessel is a miniature form of a vessel 

shape. N = No; Y = Yes 
7 Additional 

elements 
[cat] Indicates whether the vessel has any handle, lug or spout as 

an additional element. H = Handle(s); L = Lug(s); S = Spout;   
N = No elements 

8 Total Height [con] Total height of the vessel (cm) 
9 Diameter at 

opening 
[con] Diameter at vessel opening (cm) 

(Rim diameter) 
10 Minimum 

diameter 
[con] Minimum vessel diameter (cm) 

11 Maximum 
diameter  

[con] Maximum vessel diameter (cm) 

12 Base diameter [con] Diameter of the vessel base (cm) 
13 Capacity [con] Vessel capacity (litres) 
14 Neck diameter [con] Diameter of the vessel neck (cm) 
15 Belly diameter [con] Diameter of the vessel belly (cm) 
16 Neck height [con] Height from vessel base to neck (cm) 
17 Belly height [con] Height from vessel base to belly (cm) 
18 H-Bd [con] Total Height / Belly diameter ratio 
19 Bd-Rd [con] Belly diameter / Rim diameter ratio 
20 Bd-Nd [con] Belly diameter / Neck diameter ratio 
21 H-Bh [con] Total Height / Belly height ratio 
22 H-Nh [con] Total Height / Neck height ratio 
23 Bd-BaD [con] Belly diameter / Base diameter ratio 

Table 3.2 – Vessel features used in the ML model. Detailed information for each 
feature is provided in the following sections. Types: [cat]=categorical; 
[con]=continuous. 

 

The features are also divided in six groups (separated by bold lines in Table 3.2), 

according to their origin (if provided by the Arcane database or created 

specifically for the model) and purpose. Feature #1 (Vessel ID) has the purpose to 

uniquely identify each site and sample vessel and does not have any influence in 

the classification. Feature #2 (Shape class) is the information that will be used to 

evaluate the model (the target). In the supervised phase of the research, the model 

will attempt to assign the vessels to one of these pre-defined shapes; in the 

unsupervised phase the model will suggest potential new classes or sub-classes 

based on the vessel features.  
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Features #3 to #23 will be used as information for the classification model. The 

third group (features #3 to #7) is formed by categorical features that are provided 

by the Arcane database. The fourth group (features #8 to #13) is formed by 

features of continuous values, the vessel measurements that are provided by the 

database.  

The last two groups include features that were not provided by the database but 

can be either approximately measured based on the pottery illustrations or 

calculated from basic measurements. These features/measurements were 

considered relevant for shape determination (Hörr et al., 2014; Orton et al., 1993, 

p. 152-65; Read, 2007). The fifth group (features #14 to #17) includes 

measurements, and the sixth group (features  #18 to #23) includes ratios 

calculated from basic measurements. 

The Arcane database provides a number of vessel features besides the ones shown 

in Table 3.2, however these will not be used in the classification model: probable 

origin/manufacture (local or non-local), functional category (e.g. domestic, 

storage, ritual), fabric (ware quality, hardness, inclusions), firing and building 

techniques, surface treatments, marks and decoration. Albeit some of these are 

relevant information for identification of vessel function and, in the case of 

decoration, for typology and relative dating, they would not contribute to the 

identification of vessel shape, which is the main reference for the classification 

model and the focus of this research. 

Some categorical features (rim orientation, rim profile and base typology) have 

NA (null) values for some samples in the original Arcane database. Since scikit-

learn ML algorithms do not process features with NA values (Scikit, 2021e) these 

values were replaced by codes meaning ‘Undefined’ in the research dataset as 

explained in the next sections. 

 

3.1.4 Rim orientation and profile 

Information about rims in the Arcane database are divided in two features: 

orientation and profile. 
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a) Orientation 

There are three types of rim orientation in the research dataset (Figure 3.11, Table 

3.3), ‘B - Out-turned’ being the most common (present in 79% of the samples). 

The code ‘E – Undefined’ was created for this research replacing the NA values 

from the Arcane dataset because the scikit-learn algorithms require that 

categorical data have no null (NA) values when using preprocessing encoders 

such as OneHotEncoder (Scikit, 2021e; Scikit, 2021f). 

 
 

Type Description # of 
samples 

A Vertical 60 
B Out-turned 390 
C In-turned 43 
D  Asymmetrical - 
E Undefined 3 
  496 

Table 3.3 – List of rim orientations defined by the Arcane project 
(Arcane 2016). Only the first three types are present in the research 
dataset; the type ‘E’ – Undefined’ was created to replace the NA values 
from the Arcane dataset. 

 

   
Vertical Out-turned In-turned 

Figure 3.11 – Examples of the three types of rim orientation in the dataset. 
After Arcane (2016) images: JZ001_P004, JZ001_P003, JZ001_P046. 

 
 
b) Profile 

The two most common rim profiles are ‘01 – Thinned’ and ‘03 – Rounded’ (Table 

3.4). Among the profiles that are folded, the outside folded is the prevailing type. 

The code ‘00 – Undefined’ was created for this research replacing the NA values 

from the Arcane dataset for the same reason described for the rim orientation 

feature. 
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Type Description # of 

samples 
01 Thinned 146 
02 Squared 39 
03 Rounded 125 
04 Thickened 26 
05 Bevelled outside 4 
06 Bevelled inside 3 
07 Round-folded outside 62 
08 Round-folded inside - 
09 Horizontal folded outside 38 
10 Horizontal folded inside - 
11 Thin-folded outside 15 
12 Thin-folded inside - 
13 Square/flat-folded outside 10 
14 Square/flat-folded inside - 
15 Angular-folded outside 10 
16 Angular-folded inside - 
17 Moulded outside 8 
18 Moulded inside - 
19 Gutter outside - 
20 Gutter inside - 
21 Hammer - 
22 Hammer moulded - 
00 Undefined 10 
  496 

Table 3.4 – List of rim profiles defined by the Arcane project (Arcane 
2016). Some types are not present in the research dataset, and some rim 
profiles are undefined. 

 

3.1.5 Base typology 

 
Type Description # of 

samples 
01 Pointed 47 
02 Rounded 155 
03 Flattened 58 
04 Flat 136 
05 Concave 12 
06 Disk 31 
07 Disk concave 10 
08 Ring - 
09 Ring high 18 
10 Pedestal 5 
11 Ring folded - 
12 Ring protruding - 
13 Ring added - 
14 Button - 
15 Stump 5 
00 Undefined 19 
  496 

Table 3.5 – List of base types defined by the Arcane project (Arcane 
2016). Some types are not present in the research dataset, and some 
samples do not have a base preserved (undefined). 
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Among the several base types found in the dataset, five types are the most 

common: ‘01 – Pointed’, ‘02 – Rounded’, ‘03 – Flattened’,  ‘04 – Flat’ and ’06 – 

Disk’ (Figure 3.12, Table 3.5). The type ‘00 – Undefined’ was created for this 

research replacing the NA values from the Arcane dataset for the same reason 

described for the rim orientation feature. 

 

  
Pointed Rounded 

  

  
Flattened Flat 

 

 
Disk 

Figure 3.12 – The five most common base types in the dataset, together 
they are present in 85% of the samples. After Arcane (2016) images: 
JZ001_P209, JZ001_P009, JZ001_P014, JZ001_P005 and JZ001_P110  

 

Depending on the vessel shape, especially for round-based vessels, it can be 

difficult to distinguish the base from the side of the vessel (Rice, 1987, p. 212-4). 

Some samples with pointed or rounded base types have low values (less than 1 

cm) indicating a very small base or even a zero value, while vessels with similar 

shapes have greater values for the base diameter. Some samples have the base 

missing, in these cases the base diameter is recorded as NA. 

The base diameter is one of the key measurements used to identify the vessel 

shape (Section 3.1.8), and if different criteria are used for similar shapes it may 

affect the performance of ML algorithms. This issue is discussed in Chapter 5. 

When the base diameter has a zero value, the relative measurement Bd-BaD 

(Belly diameter / Base diameter ratio) is equal to the belly diameter. 
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3.1.6 Miniature vessels 

Some vessels are marked as miniatures in the Arcane database. There are only 17 

samples of this type in the research dataset, belonging to six different shape 

classes, the ‘E – Bowl’ is the most common one with six samples, followed by ‘G 

– Cup/Mug’ with three samples. In the dataset most of miniature vessels have 

relatively small height (from 2.4 to 5.8 cm), small opening diameter (from 2.0 to 

8.3 cm) and low capacity (from 0.02 to 0.22 litres) but no explicit criteria were 

found for classifying vessels as miniatures.  

Some miniature vessels have distinct characteristics, but in general it seems that 

there are not enough differences from other vessels within the same shape classes 

that would justify classifying the miniatures as different classes. A particularly 

interesting case is the shallow bowl JZ002_P113, which has an opening diameter 

equal to 8 cm, and it is very similar to vessel JZ001_P126, classified as a bowl 

(opening diameter equal to 11.8 cm), and not marked as a miniature. Both vessels 

have a peculiar shape and come from different sites. 

The use of this feature in the research is related to the investigation of the 

relevance of the size of vessels in the definition of their shape classes. 

 

3.1.7 Additional elements 

Some vessels may have additional elements, in the case of the research dataset 

these can be handles, lugs or spouts (Table 3.6, Figure 3.13).  

 

   

JZ002_P622 JZ004_P084 JZ001_P307 

Figure 3.13 – Examples of vessels with additional elements.  Images at 
different scales. Left: Jug with handles; center: Jug with spout; right: Jar 
(wide neck) with lugs. After Arcane (2016).  
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The types are adapted and summarised from the Arcane project database, which 

includes more details such as the position (upper, middle or lower part of the 

vessel body, or in the vessel rim), quantity and orientation (vertical/horizontal) of 

these elements. Since there are only 16 vessels that have additional elements in 

the research dataset (around 3% of the samples), only the most basic information 

(element type) was kept in order to not add unnecessary complexity to the ML 

model. 

 

Type Description # of 
samples 

H Handle(s) 1 
L Lug(s) 9 
S Spout 6 
N Without additional elements 480 
  496 

Table 3.6 – List of additional elements that may be present in some 
vessels.  

 
 
3.1.8 Vessel measurements 

There are three types of vessel measurements used in this research: i) original 

measurements from the Arcane project database; ii) additional measurements, 

based on vessel drawings from the Arcane project; and iii) relative measurements, 

which are calculated on the basis of the other two types of measurements. 

 

Arcane measurements 

• Height (cm) 

• DO - Diameter at Opening (cm) 

• D min - Minimum Diameter (cm) 

• D max - Maximum Diameter (cm) 

• D base - Diameter at Base (cm) 

• Capacity (litres) 
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Additional measurements 

These measurements (Figure 3.14) are based on Read (2007) and apply mostly to 

closed shapes because they are based on the concepts of neck and belly vessel 

parts (many open shapes vessels do not have these parts clearly defined), 

nevertheless the method was adapted to include also the open shape vessels as 

explained in the next paragraphs. 

 

 
 

Figure 3.14 – Vessel basic measurements. After Read (2007, Figure 
8.14). (1) total height; (2) rim diameter; (4) neck diameter; (5) height to 
neck; (6) belly diameter; (7) height to belly; (8) base diameter. In this 
research the capacity in litres replaces the original measurement (3) 
square root of cross sectional area. 

 

• Vessel height (cm) 

• Rim diameter (cm) 

• Neck diameter (cm) 

• Height to Neck (cm) 

• Belly diameter (cm) 

• Height to Belly (cm) 

• Base diameter (cm) 
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For this research purposes, three of these seven measurements (in italic) are 

exactly the same (vessel height, base diameter) or equivalent (diameter at 

opening/rim diameter) as three of the Arcane measurements. The other four 

measurements were obtained based on the vessel drawings available in the Arcane 

project using the ImageJ software, some of these drawings are shown in Sections 

3.1.2 and 4.2.2. The combination of the six Arcane measurements with these four 

additional measurements resulted in the ten basic measurements listed in Table 

3.2. The relative measurements, which are obtained through the basic ones, are 

described in the next section. 

Many samples from the open shape group, especially bowls and some types of 

beakers, do not have a neck or do not have neither belly nor neck, such as the 

examples in Figure 3.15. In this case, these shapes do not fit exactly in the method 

proposed by Read (2007) and used in this research, nevertheless there are some 

alternatives to characterise the vessel parts or anatomy (Rice 1987, p. 211-22). 

 

   

JZ001_P065 JZ001_P004 JZ001_P015 

Figure 3.15 – Examples of open shape vessels without neck: beaker 
(left), and without neck and belly: shallow bowl (center) and bowl 
(right). Images at different scales. After Arcane (2016). 

 

The alternatives for this research were to use:  

• Vessel height in place of the height to neck measurement (Figure 3.14) in the 

case of vessels without neck; 

• Vessel height in place of both the height to neck and height to belly 

measurements in the case of vessels without neck and belly; 

• Diameter at opening (rim diameter) in place of the neck and belly diameters. 

The measurements neck diameter and belly diameter (taken with ImageJ) are, for 

closed shapes vessels, in most cases coincident with the measurements minimum 

diameter and maximum diameter from the Arcane database. The equivalence 
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between neck diameter and minimum diameter measurements is 96% in average, 

and between belly diameter and maximum diameter is 98% in average, for closed 

shapes in the research dataset. The neck diameter and belly diameter 

measurements are preferred in the relative measurements formulas because of the 

significant number of minimum diameter and maximum diameter measurements 

which are missing (have NA values) in the Arcane database, and also to keep the 

original formulas proposed by Read (2007) as shown in the next section. 

 

Relative Measurements 

Since the neck diameter and belly diameter measurements (taken with ImageJ) are 

used in the relative measurements calculations, the other most relevant 

measurements (taken from the Arcane database) are height, diameter at opening 

and diameter at base. Both height and diameter at opening are recorded for all 

samples used in the research dataset. Diameter at base is missing for a number of 

samples mainly because the vessel base is not preserved; in these cases the 

formula Bd-BaD (Belly diameter / Base diameter ratio) is recorded as NA (not 

available) in the research dataset. When ‘Diameter at base’ is zero, the Bd-BaD 

value is equal to the belly diameter. 

These following measurements are based on Read (2007); a similar use of 

measurement-based classifications is mentioned in Orton et al. (1993, p. 155-8). 

 

 

 

Figure 3.16 – Vessel relative measurements: (A) overall vessel shape 
based on the total Height / Belly diameter ratio; (B) upper portion, 
based on the Belly diameter / Rim diameter ratio; (C) neck portion, 
based on the Belly diameter / Neck diameter ratio and the relative 
location of the neck in the vessel height; (D) lower portion, based on the 
Belly diameter / Base diameter ratio. After Read (2007, Figure 8.15). 
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Overall shape: 

• Total Height / Belly diameter ratio (Figure 3.16-A). 

Upper portion: 

• Belly diameter / Rim diameter ratio (Figure 3.16-B). If ratio > 1 then the 

upper portion is convergent, divergent if ratio < 1 or parallel if ratio = 1. 

• Belly diameter / Neck diameter ratio (Figure 3.16-C). Identifies the vessel 

shape located between the belly and the neck. 

• Total height / Neck height ratio: relative location of the neck in the vessel 

vertical dimension. 

Lower portion: 

• Belly diameter / Base diameter ratio (Figure 3.16-D). Identifies the vessel 

shape located between the belly and the base. 

• Total height / Belly height ratio: relative location of the belly in the vessel 

vertical dimension. 

 

3.1.9 Sample selection 

The criteria to select the samples in the Arcane database were: 

1. They must belong to archaeological sites that are culturally related, located in 

the same region and within the same broad time period. 

2. They must be enough well preserved so that their shape can be identified 

through a minimum of basic measurements and categorical features, and 

preferably have also images (drawings). 

3. They must belong to the open shapes or closed shapes groups. Shapes from the 

miscellaneous shapes group have no measurement parameters for defining the 

shape classes, have very particular shapes and there are few or none samples 

among the selected sites (except for the Z class). 

4. There must be at least 10 samples of the shape class among the different sites. 

During the dataset split into training and test parts, the test will have at least tree 

samples from any shape class (¼ of the class total samples, that’s 2.5 rounded up 

to 3 when using stratified distribution). Classes that have too few samples may be 

problematic for pattern recognition by ML algorithms (Géron, 2019, p. 22-6).  
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As a result of these selection criteria, the final dataset used in this research is 

composed by a total of 496 samples divided in nine shape classes. 

 

3.2 Software 

The toolkit used to create the ML model was chosen based on recommendations 

from A. Brandsen, researcher in Digital Archaeology at the Faculty of 

Archaeology, giving preference to Open Source software. The possibility for 

contribution to Open Science practices was also considered in this research. The 

dataset and the Jupyter notebooks created to run one supervised learning training 

session (Section 4.1.3) and the clustering analyses with k-Means (Section 4.2.1) 

are available in the Zenodo repository (Zenodo, 2013). Instructions on how to 

access these resources can be found in Appendix C.1. 

 

3.2.1 Machine learning toolkit 

• Anaconda: a distribution of the Python and R programming languages and a 

platform for data science and ML applications (Anaconda, 2021), allows the 

execution of packages and libraries such as scikit-learn and Jupyter used in 

this research. Version: 3-2020.11 (Windows) 

• scikit-learn: an open source ML library of algorithms for supervised and 

unsupervised learning methods such as classification and clustering 

(Pedregosa et al., 2011; Scikit, 2021a). Version: 1.0 

• Jupyter Notebook: an open source, interactive web-based environment 

(Jupyter, 2021), used to define the training/test datasets, set parameters and 

control the execution of ML algorithms. Version: 6.1.4 

 

3.2.2 Additional software 

• ImageJ: a public domain Java image-processing program (ImageJ, 2021), used 

for taking vessels measurements not provided by the Arcane database. 

Version: 1.53k 
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• SciPy: an open source library of algorithms for scientific computing in Python 

(Scipy, 2021a), used for the dendrogram generation. Version: 1.8.0 

• Spreadsheet for creating the research dataset, based on information obtained 

from the Arcane database application. The dataset is further converted to .CSV 

format and loaded into the Jupyter Notebook. 

 

3.3 Supervised learning methods and algorithms 

The supervised learning part of this research is based on classification methods 

and algorithms, which are detailed in this Chapter, starting with information about 

the dataset structure. The research dataset is divided in four parts: the target 

classes are separated from the features used to characterise the classes, and the 

samples used to train the ML model are separated from the samples used to test it. 

 

3.3.1 Target classes and features 

 
 

Figure 3.17 – The dataset divided into four parts: target classes vs. 
features, train vs. test dataset. After VanderPlas (2017, Figure 5-13). 

 

In scikit-learn the dataset is implemented by a matrix of features and samples (by 

convention represented as X) and a target array (represented as y); the features are 
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the columns and the samples are the rows in the X matrix (Figure 3.17) 

(VanderPlas, 2017). The features must be numeric (continuous or discrete-valued) 

in scikit-learn, while the target array may be numeric or categorical, representing 

discrete classes/labels (VanderPlas, 2017), depending on the type of supervised 

learning main problem, regression or classification. Because of this scikit-learn 

requirement, the categorical features in the research dataset must be processed 

through the encoding method as detailed in Section 3.3.3. 

 

3.3.2 Training and test datasets 

In addition to the division between target classes and features, in supervised 

learning problems the dataset is divided into training and test (or validation) parts 

(Figure 3.17). The training set is used to build the ML model, while the test set is 

used to assess how the model will generalise, or how well the model works on 

unknown data (Müller & Guido, 2017, p. 17). The model uses the knowledge 

provided by the associations between features (X_train) and target classes 

(y_train) in the training set to predict the target classes in the test set based on its 

features (X_test); the predicted classes (y_pred) are then compared to the test 

target classes (y_test) to assess the model accuracy. 

The dataset is split in the following proportions, following the scikit-learn default 

(Müller & Guido, 2017, p. 17): 75% of the samples are used for training, and 25% 

of the samples are used for test/validation of the model. Other proportions such as 

80/20 or 70/30 could also have been used. In order to guarantee reproducibility of 

the ML sessions and results, the same value for the ‘random_state’ parameter 

(used by the ‘train_test_split’ method) is used across all the algorithms and 

training sessions (Müller & Guido, 2017, p. 17-18). 

A final important parameter is related to whether the distribution of samples 

during the application of the ‘train_test_split’ method is stratified or not stratified. 

In the stratified variation, the distribution of samples for each shape class in the 

test dataset is proportional to their quantities in the full dataset; when the 

distribution is not stratified, this proportion is not taken into consideration when 

the test dataset is created. 
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3.3.3 Encoding 

Scikit-learn ML algorithms do not process categorical features directly (Scikit, 

2021f). It is necessary to convert them in some numerical form before using the 

dataset in the training process. There are two alternatives available in the scikit-

learn library (Géron, 2019, p. 65-7; Müller & Guido, 2017, p. 213-24): 

OrdinalEncoder and OneHotEncoder. The first method simply converts the 

categorical values into numeric ones, whereas OneHotEncoder creates one binary 

feature per category (for each sample and category, only one feature will be equal 

to 1 and the others will be equal to 0). The feature rim orientation is used as an 

example in Table 3.7. 

 

(1) OrdinalEncoder: 

ORIGINAL DATA ENCODED DATA 
Vessel ID Rim orientation Rim orientation 

JZ001_P001 B 2 
JZ001_P004 A 1 
JZ001_P037 B 2 
JZ001_P038 C 3 

 
(2) OneHotEncoder: 

ENCODED DATA ORIGINAL DATA 
Rim orientation 

Vessel ID Rim orientation A B C 
JZ001_P001 B 0 1 0 
JZ001_P004 A 1 0 0 
JZ001_P037 B 0 1 0 
JZ001_P038 C 0 0 1 

 
Table 3.7 – Examples of results from different scikit-learn data 
encoding methods based on the rim orientation feature.  

 

The main issue with the OrdinalEncoder method is that ML algorithms will 

assume that the categories are ordered, and two nearby values would be more 

closely related than distant values (Géron, 2019, p. 66; Scikit, 2021f). For 

instance, the rim orientation ‘A’ (encoded as 1) would be considered more related 

to ‘B’ (encoded as 2) than to ‘C’ (encoded as 3), which is not true for this specific 

feature and the other categorical features in the research dataset. One disadvantage 

of OneHotEncoder is when the feature has a large number of possible categories, 

resulting in a large number of input features in the ML model, which may create 

performance issues during the training sessions (Géron 2019, 67). Since none of 
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the categorical features in the dataset have a large number of categories and the 

dataset is not large, this is not a problem here and the OneHotEncoder was 

selected for the dataset preparation for the ML algorithms. All the categorical 

features, except shape class (the model target), are encoded to numerical format 

before processing by ML algorithms. The features rim profile and base typology, 

despite being codified as numbers, are also encoded because of the ordering issue 

already mentioned.  

Values from categorical features that have very few occurrences in the dataset 

(e.g., rim_profile[6] ‘Bevelled inside’ occurs only three times) may cause 

problems after the dataset is split into train and test parts. If the test part does not 

have any occurrence of the categorical feature value (which is present in the train 

dataset), scikit-learn algorithms return an error because the number of features 

between the two datasets parts does not match. A possible alternative in case this 

situation occurs is to change the ‘random_state’ parameter used by the 

‘train_test_split’ method (Section 3.3.2) and by some algorithms, which causes a 

new distribution of samples between the train and test datasets. 

 

3.3.4 Missing values 

Scikit-learn ML algorithms do not process features with NA (null) values (Scikit, 

2021e). In the case of categorical features, one solution adopted was to replace the 

null values with codes representing ‘undefined’ values in the research dataset, 

before the processing by ML algorithms (Sections 3.1.4 and 3.1.5). In the 

remaining (continuous) features, the solution was the application of the scikit-

learn impute method, which replaces the null values with a choice of alternatives 

(the feature mean, median, most frequent or a constant value such as zero). In this 

research the choice was to replace all the null values in the continuous features 

with zeroes.  

 

3.3.5 Classification algorithms 

For the supervised learning part of this research, six classification algorithms were 

selected, including two ensemble methods, which combine the predictions of 

several base algorithms (Scikit, 2021g). The four base algorithms follow distinct 
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principles for classification, they all have strengths and weaknesses and their 

performance will depend on the research problem, the dataset characteristics (e.g., 

type and quantity of features, number and quality of samples), and the types and 

values of parameters used (Müller & Guido, 2017, p. 31). For some algorithms 

there are classification and regression versions, here only the classification 

versions are considered. The images that illustrate the algorithms are based on 

simple models with generic features and classes. It is easier to visualise the basic 

mechanism of the algorithms through these models using only two features and a 

few classes than using more complex models. 

k-Nearest Neighbors 

 

 

Figure 3.18 – k-Nearest Neighbors algorithm predictions for two classes 
and the parameter set to three nearest neighbours. After Müller & Guido 
(2017, Figure 2-5). 

 

KNN is the simplest classification algorithm used in this research (Müller & 

Guido, 2017, p. 36). To make a prediction the algorithm finds the closest data 

points (the nearest neighbours) in the training set. The number of neighbours to be 

used (starting with one) can be defined as a parameter in the algorithm (Müller & 

Guido, 2017, p. 36-7). In the example shown in Figure 3.18 three neighbours are 

used to predict the class of new instances (the blue and red stars), in this case a 

voting system is used, counting how many classes 0 (circle) and 1 (triangle) the 

new instances can be associated, and the instance is assigned to the class with the 

greatest neighbours count (Müller & Guido, 2017, p. 36-7). 
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Logistic Regression 

 

 

Figure 3.19 – Decision boundaries of Logistic Regression algorithm 
with three classes. The curved lines represent the probabilities of the 
instances belong to the blue square class. After Géron (2019, Figure 4-
25). 

 

Despite the ‘regression’ on its name, this is a classification and not a regression 

algorithm (Müller & Guido, 2017, p. 58). Logistic (or Logit) Regression estimates 

the probability that an instance belongs to a particular class. In its basic form, 

binary classification, this algorithm returns the logistic (an S-shaped function that 

produces a number between 0 and 1) of the result, based on a weighted sum of the 

features (Géron, 2019, p. 142-3). In the multiclass version, also known as Softmax 

or Multinomial Logistic Regression, this algorithm computes a score of every 

class and estimates the probabilities that an instance belongs to each class 

applying the softmax (normalised exponential) function (Géron, 2019, p. 147-8). 

The linear decisions boundaries are accompanied by probabilities of the instances 

belong to each class as shown by the curved lines in Figure 3.19 (Géron, 2019, p. 

150-1). 

Support Vector Machines – SVM 

SVMs include a range of algorithms for linear and non-linear classification and 

regression problems. Scikit-learn implementations are Linear SVC and SVC 

algorithms for classification, and Linear SVR and SVR algorithms for regression 

(Scikit, 2021a). In this research the SVC algorithm, which supports both linear 

and non-linear (polynomial) variants, and allows the utilisation of several 

parameters to control the overfitting or underfitting of the model (Géron, 2019, p. 
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157-8), was selected. The basic concept of SVM is to create a boundary to keep 

the training instances from different classes as distant as possible using specific 

instances (the support vectors) located on the edges of the classes as reference 

(Figure 3.20-A) (Géron, 2019, p. 153-4).  

 

 

Figure 3.20 – (A) linear and (B) polynomial decision boundaries of 
SVM algorithms for two classes; (A) shows the support vectors 
(outlined circles and squares) for each class. After Géron (2019, 
Figure 5-1, Figure 5-7). 

 

The non-linear classification is an alternative for more complex datasets that 

cannot be separated by linear functions, in this case a polynomial function is used 

(Figure 3.20-B) (Géron, 2019, p. 157-8). SVMs may need pre-processing (feature 

scaling) in case the features are of completely different orders of magnitude 

(Müller & Guido, 2017, p. 103-4), which is not the case of this research dataset 

since the numeric values are mostly in centimetres or defined as a relation 

between measurements. 
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Decision Tree Classifier 

The Decision Tree Classifier algorithm searches for all possible tests based on the 

dataset features, and defines the test that results in the most significant 

information to define a boundary between classes. This process is repeated 

recursively until some termination criterion is reached, for instance until the tree 

reaches a certain depth (Müller & Guido, 2017, p. 73-7). If no explicit criterion is 

determined, the process continues until the leaves are pure (all the instances in a 

leaf share the same target classes), which can result in higher accuracy in the 

training set but causes a lower accuracy with unknown data (model overfitting) 

(Müller & Guido, 2017, p. 75-7).  

 

 

Figure 3.21 – Decision Tree algorithm boundaries according to different 
tree depths. After Géron (2019, Figure 6-2). 

 

The vertical line in Figure 3.21 represents the decision boundary in the root node 

(depth = 0), which separates the yellow circle class from the other two classes; at 

least one more boundary (depth = 1), represented by the horizontal dotted line, is 

necessary to separate the green triangle and the blue square classes, and if the 

depth parameter is set to 2, an additional boundary is defined (Géron, 2019, p. 

177). It is possible to notice that some instances are left outside the class 

boundaries and therefore associated with the wrong classes (misclassification) in 

this example. 
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Figure 3.22 – Example of simple decision tree based on three geometric 
shapes. 

 

Depending on the features used to characterise the target classes (the geometric 

shapes in the example of Figure 3.22) and the criteria used by the algorithm to 

identify them, the classification can be more or less accurate. The shape � is a 

square according to the geometric definition (all angles equal to 90º), but because 

of its rotated position it could be misclassified as a diamond if a non-exact 

criterion was used. 

The Classification and Regression Tree (CART) algorithm implemented in scikit-

learn always produces binary trees, where non-leaf nodes have two children based 

on True/False questions using a single feature and a threshold value (Géron, 2019, 

p. 177-8). It is possible to observe some similarities between this classifier and the 

taxonomic structure presented in Section 2.1.6. Some of the main differences are 

that the algorithm implemented in the scikit-learn library uses only quantitative 

features (the qualitative features must be converted to a quantitative 

representation) and makes only binary tests (whether the feature is less or equal 

than, or greater than a certain value). 

 

3.3.6 Ensemble methods 

Ensemble methods aggregate the results from a group of predictors (classifiers or 

regressors), aiming to obtain an overall improved performance than provided by 

individual predictors (Géron, 2019, p. 189-90). Scikit-learn provides several 

implementations of ensemble methods, divided in two groups: averaging methods 
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and boosting methods. In averaging methods the ensemble applies the average of 

several independent predictors resulting in a final variance reduction, while in 

boosting methods the ensemble applies several predictors sequentially, reducing 

the bias based on the results provided by the preceding predictor (Scikit, 2021g). 

For this research two ensembles of the averaging method were selected: Random 

Forest Classifier and Voting Classifier. 

Random Forest Classifier 

The Random Forest Classifier is a special type of bootstrap aggregating method 

(shortened to bagging) that uses the Decision Tree Classifier as the base training 

algorithm. The bagging method uses the same algorithm for several predictions 

using different random subsets of the training set (Géron, 2019, p. 192-7). The 

ensemble aggregates the predictions from all training subsets and then associates 

the class with the most frequent prediction to a new instance, that way reducing 

the variance when compared to an algorithm trained only on the original training 

set (Géron, 2019, p. 192-3). An additional characteristic of the Random Forest is 

that it searches for the best feature among a random subset of features when 

splitting a node in the decision tree (Géron, 2019, p. 196).  

In summary, while the Decision Tree algorithm generates one tree based on the 

training set, Random Forest returns the tree with the best performance among 

several alternative trees. 

Voting Classifier 

 

 

Figure 3.23 – Voting Classifier mechanism. After Géron (2019, Figure 
7-2). 
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A Voting Classifier aggregates the predictions of diverse independent classifiers 

such as Logistic Regression, SVC and KNN, and associates an instance to the 

class that gets the majority of votes (Géron, 2019, p. 189).  

In the example shown in Figure 3.23, class ‘1’ is the ensemble’s prediction 

because it received the votes from three algorithms, while class ‘2’ received the 

vote from only one. This basic system is called hard voting, a variation of it that 

gives more weight to highly confident votes (highest class probability) is called 

soft voting (Géron, 2019, p. 192). Depending on the types of the classifiers 

involved (the more diverse algorithms the better) and the results provided by 

them, the Voting Classifier is capable to provide a higher performance than all the 

individual classifiers (Géron, 2019, p. 189-91). 

 

3.3.7 Grid search and cross-validation 

Grid search (parameters selection) and cross-validation are two techniques used to 

evaluate, fine-tune and improve the ML model (Géron, 2019, p. 73-77; Müller & 

Guido, 2017, p. 270-79), summarised in Figure 3.24. Trough the scikit-learn 

implementation GridSearchCV (Scikit, 2021h) it is possible to apply both 

techniques as a single method that behaves like a classifier (Müller & Guido, 

2017, p. 272-4).  

 

 

Figure 3.24 – Overview of grid search (parameters selection) and cross-
validation workflow. After Müller and Guido (2017, Figure 5-7) and 
Scikit (2021i). 
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This method is applied in the third training session (Section 4.1.4), this is a way to 

verify that the best possible combinations of parameters were applied during the 

previous training session. 

In cross-validation the dataset is split in several different ways instead of a unique 

split into training and test sets, resulting in multiple models being trained (Müller 

& Guido, 2017, p. 258). In the k-fold cross-validation method, the dataset is 

partitioned into k parts (folds), where most folds are used as the training set and 

the remaining ones as the test set, and the model performance is evaluated in this 

configuration. In the next iterations (defined by the parameter k) the folds are 

changed, the model is trained again and, at the end of the process, an average 

performance is obtained (Müller & Guido, 2017, p. 258). 

Grid search is a technique used to test several possible combinations of the 

parameters used in the algorithms in order to identify the optimal combination, the 

one that produces the higher model performance. For instance, two important 

parameters in SVC algorithm are gamma (kernel bandwidth) and C 

(regularisation); if each parameter receives six different values, there are 36 

possible combinations (Müller & Guido, 2017, p. 267). The parameter 

requirements are specific for different algorithms, a few parameters are mandatory 

while most are optional, and some parameters have a broader range of values than 

others. The grid search technique facilitates the evaluation of a higher number of 

parameters alternatives (Müller & Guido, 2017, p. 267). 

 

3.3.8 Feature importance 

Decision Tree algorithms and some ensemble methods based on decision trees 

such as Random Forest have a useful resource that helps to summarise and 

interpret the tree mechanism, the feature importance property. This property rates 

how important or informative each feature is for the decision making process that 

builds the tree, using a proportional value between 0 (feature not used) and 1 

(feature perfectly predicts the target), the values of each feature are added together 

resulting in 1 for the complete tree (Müller & Guido, 2017, p. 79). Features with a 

low rate are not necessarily uninformative, it can happen that more than one 
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feature codifies similar information and the algorithm uses only one of them 

(Müller & Guido, 2017, p. 79). 

The feature importance is relevant also for feature selection, the utilisation of 

those features that contribute the most to increase the ML model performance 

without adding unnecessary complexity to it. 

 

3.3.9 Confusion matrix 

The confusion matrix is one of the most effective resources to evaluate the 

performance of a classifier algorithm: it counts the occurrences of 

misclassifications by the model, the times the instances of a certain class are 

classified as another class (Géron, 2019, p. 90). Each row represents an actual 

class, while each column represents a predicted class; the true positives and true 

negatives classifications are shown in the main diagonal (top left to bottom right), 

while false positives and false negatives are shown outside the diagonal (Géron, 

2019, p. 90-1). These terms are described below: 

 

• TP = True Positives: instances of class ‘C’ correctly classified as class ‘C’ 
(value in the diagonal in the class row) 

• FP = False Positives: instances that do not belong to class ‘C’ incorrectly 
classified as class ‘C’ (values in the class column outside the diagonal) 

• FN = False Negatives: instances of class ‘C’ incorrectly classified as a 
class different from ‘C’ (values in the class row outside the diagonal) 

• TN = True Negatives: instances that do not belong to class ‘C’ correctly 
classified as a class different from ‘C’ (all other values in the diagonal) 

 
 
 

Classified as ���� ���� ���� ���� 

���� Square 15 3 - 

���� Diamond 2 20 - 

���� Triangle - - 10 

Table 3.8 – Example of confusion matrix based on three simple 
geometric shapes. 
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Table 3.8 shows an example of confusion matrix based on three simple geometric 

shapes with 50 instances in total. The class ‘Square’ has 15 TP (true positives) and 

three FN (false negatives), misclassified as ‘Diamond’, these are visualised in the 

‘Square’ row; the FP (false positives) for class ‘Square’ are visualised in the 

‘Square’ column: two ‘Diamond’ instances are misclassified as ‘Square’. The 

class ‘Square’ has also 30 TN (true negatives). The class ‘Triangle’ has all 

instances correctly classified: 10 TP (true positives). 

 

3.3.10 Accuracy and other metrics 

This section presents some of the most common ML metrics for classification 

models, based on the confusion matrix counts described in the previous section: 

TP = True Positives, FP = False Positives, FN = False Negatives, and TN = True 

Negatives. 

 

 

Figure 3.25 – Common ML metrics for classification models. After 
Müller and Guido (2017, p. 289-90). 

 

Accuracy is the number of correct classifications made by the model divided by 

the number of instances used in the model, which is equal to the sum of all entries 

in the confusion matrix (Müller & Guido, 2017, p. 288-9). This is therefore a 

metric used for the entire set, it is not used specifically for a class. 

Precision measures how many instances associated to a class actually belong to 

that class (Müller & Guido, 2017, p. 289). 
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Recall, also known as sensitivity or true positive rate, measures how many 

instances of a class are actually associated to that class (Müller & Guido, 2017, p. 

289). 

The F1-Score is the harmonic mean of precision and recall, therefore it shows a 

balanced result of the classification model since there is usually a trade-off 

between optimising precision and recall; deciding which metric is more important 

depends on the research objectives (Géron, 2019, p. 91-6; Müller & Guido, 2017, 

p. 289-90). For this research, both metrics are considered equally important, 

therefore the F1-Score is used as the reference metric for the classes in the results 

chapter, in addition to accuracy as an overall metric. The F1-Score can be also 

calculated for the entire set. 

The following is an example of metrics calculation for class ‘Square’ based on the 

confusion matrix in Table 3.8: 

TP = 15; TN = 30; FP = 2; FN = 3 

Accuracy (model) = (15 + 30) ÷ (15 + 30 + 2 + 3) = 45 ÷ 50 = 0.90 

Precision (class) = 15 ÷ (15 + 3) = 0.83 

Recall (class) = 15 ÷ (15 + 2) = 0.88 

F1 (class) = 2 × (0.83 × 0.88) ÷ (0.83 + 0.88) = 0.85 

 

Other metrics provided by scikit-learn and used in the summary of results (Section 

4.1.1) are the macro average and weighted average. The macro average calculates 

the score giving equal weight to all classes, while the weighted average calculates 

the score based on the class support (the number of instances that belong to the 

class) (Müller & Guido, 2017, p. 304-5). 

 

3.3.11 Training sessions procedure 

The first two supervised learning sessions follow this procedure. 

The third training session performs the same steps #1 to #8, in step #9 the 

difference is that the technique of grid search with cross-validation is applied for 

each base algorithm (ensembles excluded) and step 9.6 is not executed. 
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Procedure for Supervised Learning sessions 

 
1. Start Anaconda navigator 
2. Launch Jupyter Notebook 
3. Import Python and scikit-learn libraries 
4. Load the dataset (.csv file) 
5. Check dataset structure and summaries 
6. Define variables and parameters used through the session 
7. Prepare the dataset: 

7.1 Separate dataset into target classes and features 
7.2 Split dataset into training (75%) and test (25%) datasets 

8. Apply features transformations: 
8.1 Encoding of categorical features 
8.2 Imputing in continuous features with NA (missing) values 

9. For each one of the ML algorithms: 
9.1 Create a model instance 
9.2 Fit the model with training data 
9.3 Predict the results with test data 
9.4 Print algorithm accuracy and metrics 
9.5 Print confusion matrix 
9.6 For Decision Tree Classifier execute these additional steps: 

  i. Generate a decision tree in graphic format 
  ii. Generate a decision tree in text format 
  iii. Print feature importance values 
  iv. Plot feature importance graphics 
10. Record the results and end session 

 
 
 
3.4 Unsupervised Learning Methods and Algorithms 

This unsupervised learning part of this research is based on the clustering method, 

represented by two algorithms: k-Means and Hierarchical Clustering. For 

unsupervised learning there are no comparable metrics to those used in supervised 

learning that allow to assess how well the cluster correspond to an element of 

reference (the equivalent of the target classes in supervised learning), the best 

alternative is to analyse the clusters manually (Müller & Guido, 2017, p. 196), and 

in a complementary way to perform analyses on reduced parts of the dataset 

through the dendrogram. 
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3.4.1 Clustering algorithms 

k-Means 

This algorithm is based on the identification of cluster centers, which are located 

as a mean of the instances associated to the clusters. Two steps are performed 

iteratively until no modifications to the clusters are identified: i) the assignment of 

instances to the closest cluster center, and ii) the recalculating of the center 

(Müller & Guido, 2017, p. 170-1). The number of clusters to be used is defined as 

a parameter (k) of the algorithm, and the optimal results will depend on the dataset 

characteristics. Figure 3.26 shows the same instances associated to two and five 

clusters, in this example two clusters do not seem enough to identify all the 

potential groups and, while five clusters might perform better than two, an 

alternative of three clusters could also have been considered. k-Means may result 

in lower performances when the clusters have different densities or have non-

spherical shapes (Müller & Guido, 2017, p. 175-83). 

 

 

Figure 3.26 – k-Means cluster assignments based on two clusters (left) 
and five clusters (right). Müller and Guido (2017, Figure 3-26). 

 

The main objectives of clustering and classification are equivalent: to associate 

similar instances in groups (either clusters or classes) according to their features 

where each instance receives a label, however in the case of clustering the labels 

do not have a pre-defined meaning, there is no ground truth which to compare the 

results (Müller & Guido, 2017, p. 173). In addition, in the k-Means algorithm the 
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analyst must define the number of clusters as a parameter and evaluate which one 

provides the most meaningful results.  

Hierarchical Clustering 

Hierarchical clustering is a type of agglomerative clustering, where one of the 

iterative steps, the assignment of instances to a cluster, is similar to the k-Means 

algorithm, but the next step consist in the merging of the two most similar clusters 

based on one of three methods, implemented by scikit-learn: ward, average or 

complete (Géron, 2019, p. 258; Müller & Guido, 2017, p. 183-88). The difference 

among the methods is how they measure cluster similarity: the ward method 

considers the least variance within all clusters, the average considers the smallest 

average distance between all clusters instances, and the complete or maximum 

method considers the smallest maximum distance between all clusters instances 

(Müller & Guido, 2017, p. 183-4). Figure 3.27 shows an example of a hierarchical 

clustering based on the agglomerative clustering method. 

 

 

Figure 3.27 – Agglomerative clustering. After Müller and Guido (2017, 
Figure 3-35). 

 

3.4.2 Dendrogram 

Scikit-learn provides an algorithm for hierarchical clustering, the Agglomerative 

Clustering, but it does not provide a method for generating a dendrogram, which 

is the best tool to visualise the grouping of clusters (Müller & Guido, 2017, p. 

185-88), the alternative used in this research is the dendrogram algorithm from the 
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SciPy library (Scipy, 2021b). Figure 3.28 shows the dendrogram version of the 

hierarchical clustering shown in Figure 3.27. A further difference between the k-

Means algorithm and hierarchical clustering is that the latter does not require the 

information of the number of clusters as a parameter. 

 

 

Figure 3.28 – Dendrogram of the agglomerative clustering. Müller and 
Guido (2017, Figure 3-36). 

 

3.4.3 Silhouette score 

When the number of pre-defined clusters is too small for one particular dataset, 

the clusters that would be better separated end up being merged and, on the other 

hand, when the number is too large some clusters may be inappropriately 

separated (Géron, 2019, p. 245). The silhouette score is a metric that provides a 

starting point for the analysis of clusters, through the identification of the range 

that may provide the optimal number of clusters. This method measures the mean 

distances among instances in the same cluster and the mean distances to the 

instances of the next closest cluster. The score ranges from –1 to 1, if the values 

are closer to 1 then the instances are stronger related to their own clusters and far 

from other clusters (Géron, 2019, p. 245-8).  
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4 RESULTS 

 
The results of the training sessions are presented separately for supervised and 

unsupervised learning. An integrated summary based on the shape classes is 

presented next, and results from both approaches are compared in Chapter 5. 

 

4.1 Supervised learning 

The supervised learning process was divided in three sessions, each session was 

subdivided in two variations: 

• First session: uses the complete set of features described in Chapter 3.1 and 

the six algorithms described in Section 3.3.5. 

• Second session: the features miniature, min_diam (minimum diameter), 

max_diam (maximum diameter) and capacity were removed, using the same 

six algorithms. 

• Third session: uses the same dataset of the second session with the grid 

search and cross-validation methods (Section 3.3.7). 

 

The variation within each session is related to whether the distribution of samples 

during the application of the ‘train_test_split’ method is stratified or not stratified. 

Table 4.1 shows the difference between the two approaches. 

 

Test dataset (25%) 
Shape 
class 

Full 
dataset Stratified Not 

stratified 
C 10 3 1 
E 182 46 47 
G 96 24 22 
H 20 5 7 
K 22 5 4 
N 34 8 8 
P 88 22 21 
R 32 8 10 
T 12 3 4 

TOTAL 496 124 124 

Table 4.1. Differences between the stratified and not 
stratified distribution of samples in the test dataset. 
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The results presented in the training sessions are always from the stratified 

variation since this is the one that provided the best overall results. 

 

4.1.1 Summary of results 

The summaries of results for supervised learning are presented in three tables and 

one figure. Table 4.2 is a summary by shape classes of F1-Scores of the five 

algorithms that achieved the highest overall performances (≥ 0.80) in both 

accuracy (Acc) and F1-Score (F1). Table 4.3 is a summary of feature importance 

averages from Decision Tree Classifier algorithm, and Table 4.4 is a summary of 

accuracy, precision, recall and F1-Score metrics for all algorithms and training 

sessions. 

The highest scores taking into account all sessions were provided by the ensemble 

Voting Classifier (Acc = 0.87, F1 = 0.86), closely followed by Logistic Regression 

and SVC (Acc = 0.86, F1 = 0.86). The algorithm with the lowest scores was k-

Nearest Neighbors (Acc = 0.77, F1 = 0.74). The Decision Tree Classifier (Acc = 

0.81, F1 = 0.81) and the ensemble Random Forest (Acc = 0.83, F1 = 0.81) 

provided intermediate scores.  

 

 

F1-Score Shape class 
Logit SVC DT RF VC Avg 

C Shallow bowl 0.50 0.50 0.50 0.00 0.50 0.40 

E Bowl 0.93 0.92 0.94 0.95 0.96 0.94 

G Cup/Mug or Beaker 0.92 0.90 0.84 0.92 0.92 0.90 

H Open pot 0.89 0.89 0.73 0.89 0.89 0.86 

K Jug/Tankard or Juglet 0.77 0.73 0.60 0.60 0.67 0.67 

N Closed pot (high) 0.67 0.67 0.50 0.55 0.67 0.61 

P Jar (wide neck) 0.77 0.84 0.86 0.73 0.81 0.80 

R Jar (restricted neck) 0.88 0.82 0.63 0.62 0.82 0.75 

T Flask or Bottle 0.67 0.67 0.33 0.80 0.67 0.63 

 Weighted average 0.86 0.86 0.81 0.81 0.86  

Table 4.2 – Summary of F1-Scores of five algorithms, second training 
session with stratified distribution, highlighting the best results for each 
shape class. Logit = Logistic Regression; SVC = Support Vector 
Machine for Classification; DT = Decision Tree Classifier; RF = 
Random Forest Classifier; VC = Voting Classifier; Avg = Average. 
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Feature Description Occur- 

rences 
Average 

importance 
H-Bd Height / Belly diameter ratio 5 0.368 
Bd-Nd Belly diameter / Neck diameter ratio 5 0.218 
base_diam Base diameter 5 0.096 
neck_diam Neck diameter 4 0.064 
Bd-Rd Belly diameter / Rim diameter ratio 5 0.047 
belly_height Belly height 5 0.045 
rim_profile[7] Rim rounded-folded outside 4 0.041 
belly_diam Belly diameter 4 0.038 
H-Nh Height / Neck height ratio 5 0.033 
height Vessel height 4 0.022 
base_type[2] Rounded base 5 0.019 
Bd-BaD Belly diameter / Base diameter ratio 5 0.016 
additional_elem[S] Spout(s) 3 0.015 
neck_height Neck height 1 0.014 
rim_orient[B] Out-turned rim 1 0.012 
H-Bh Height / Belly height ratio 4 0.012 
additional_elem[N] No additional element 1 0.011 
base_type[1] Pointed base 2 0.009 
opening_diam Opening/rim diameter 3 0.009 
rim_profile[3] Rounded rim 4 0.008 
rim_profile[1] Thinned rim 2 0.006 
base_type[4] Flat base 1 0.006 

Table 4.3 – Feature importance in Decision Tree Classifier algorithm, average 
value based on the second training session using five different combinations of 
parameters max_depth and min_samples_leaf: (5-1, 6-1, 6-2, 6-4, 7-1). 
Occurrences indicate in how many combinations the feature appeared. 

 
 

 
Figure 4.1 – Feature importance in Decision Tree Classifier algorithm, 
average value based on the second training session using five different 
combinations of parameters max_depth and min_samples_leaf: (5-1, 6-1, 6-2, 
6-4, 7-1). Based on data from Table 4.3. 
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Precision  Recall F1-Score 

Algorithm Training 
session 

Accu-
racy M W M W M W 

1.1 0.71 0.56 0.70 0.49 0.71 0.50 0.69 

1.2 0.75 0.61 0.75 0.53 0.75 0.53 0.73 

2.1 0.73 0.49 0.72 0.49 0.73 0.47 0.71 

2.2 0.77 0.59 0.74 0.55 0.77 0.54 0.74 

3.1 0.69 0.49 0.69 0.48 0.69 0.46 0.68 

KNN 

3.2 0.75 0.59 0.73 0.55 0.75 0.55 0.73 

1.1 0.80 0.70 0.80 0.64 0.80 0.66 0.79 

1.2 0.80 0.78 0.80 0.69 0.80 0.72 0.79 

2.1 0.84 0.75 0.85 0.67 0.84 0.69 0.83 

2.2 0.86 0.86 0.88 0.76 0.86 0.78 0.86 

3.1 0.83 0.76 0.85 0.69 0.83 0.71 0.83 

Logit 

3.2 0.86 0.86 0.88 0.76 0.86 0.78 0.86 

1.1 0.81 0.67 0.80 0.65 0.81 0.66 0.80 

1.2 0.83 0.73 0.83 0.75 0.83 0.73 0.83 

2.1 0.79 0.75 0.81 0.73 0.79 0.71 0.79 

2.2 0.86 0.86 0.87 0.75 0.86 0.77 0.86 

3.1 0.78 0.67 0.80 0.63 0.78 0.63 0.78 

SVC 

3.2 0.86 0.86 0.87 0.75 0.86 0.77 0.86 

1.1 0.77 0.65 0.79 0.63 0.77 0.63 0.78 

1.2 0.80 0.69 0.81 0.60 0.80 0.61 0.79 

2.1 0.79 0.67 0.81 0.65 0.79 0.65 0.79 

2.2 0.81 0.72 0.82 0.65 0.81 0.66 0.81 

3.1 0.77 0.66 0.79 0.63 0.77 0.63 0.78 

DT 

3.2 0.78 0.65 0.80 0.64 0.78 0.63 0.78 

1.1 0.80 0.71 0.82 0.59 0.80 0.62 0.79 

1.2 0.84 0.76 0.84 0.65 0.84 0.67 0.82 

2.1 0.81 0.74 0.84 0.63 0.81 0.66 0.81 
RF 

2.2 0.83 0.76 0.83 0.64 0.83 0.67 0.81 

1.1 0.82 0.71 0.84 0.67 0.82 0.68 0.82 

1.2 0.84 0.87 0.84 0.70 0.84 0.75 0.83 

2.1 0.83 0.72 0.84 0.69 0.83 0.69 0.83 

E
ns

em
bl

es
 

VC 

2.2 0.87 0.85 0.88 0.75 0.87 0.77 0.86 

Table 4.4. Summary of training sessions’ results. 

Algorithms: KNN = k-Nearest Neighbors; Logit = Logistic Regression; SVC = 
Support Vector Machine for Classification; DT = Decision Tree Classifier; RF 
= Random Forest Classifier; VC = Voting Classifier. When more than one 
parameter was used, the result which achieved the greater accuracy is shown. 
Training sessions: the best results for each algorithm are highlighted. 
Metrics: M = Macro average; W = Weighted average. 
Support (quantity of samples in the test dataset) = 124 for all training sessions. 

 

The following sections detail the results of the training sessions, which are shown 

through confusion matrices and other information (feature importance and 

decision tree for DT algorithm), for those algorithms that achieved the highest 

performances, in both Accuracy (Acc) and F1-Score (F1). 
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4.1.2 First training session 

In the first training session the algorithms Voting Classifier (Acc = 0.84, F1 = 

0.83), Random Forest (Acc = 0.84, F1 = 0.82) and SVC (Acc = 0.83, F1 = 0.83) 

provided the highest scores. Table 4.5 shows the confusion matrix for the Random 

Forest algorithm and Figure 4.2 shows the feature importance for continuous 

features in the Decision Tree Classifier. The Random Forest performance was the 

only case an algorithm in the first session provided a higher score compared to the 

second or third sessions, the reasons for this behaviour are unclear. 

 

Random Forest 

Classified as ���� C E G H K N P R T F1 

C Shallow bowl - 3 - - - - - - - 0.00 

E Bowl - 43 3 - - - - - - 0.93 

G Cup/Mug or Beaker - - 24 - - - - - - 0.91 

H Open pot - - 1 3 - 1 - - - 0.75 

K Jug/Tankard or Juglet - - 1 - 4 - - - - 0.89 

N Closed pot (high) - - - - - 4 4 - - 0.57 

P Jar (wide neck) - - - - - 1 21 - - 0.81 

R Jar (restricted neck) - - - - - - 4 3 1 0.55 

T Flask or Bottle - - - - - - 1 - 2 0.67 

Table 4.5 – Confusion matrix resulting from the Random Forest 
algorithm, which provided the highest scores in the first training session 
with stratified distribution, together with Voting Classifier and SVC. 

 
Correct classifications = 104 
Total classifications = 124 
General accuracy = 0.84 
F1-Score, weighted average = 0.82 

 

The shape classes with the highest scores (F1 ≥ 0.80) are ‘E - Bowl’, ‘G – 

Cup/Mug’, ‘K – Jug/Tankard’ and ‘P – Jar (wide neck)’, in that order. The class 

with the lowest score is ‘C – Shallow bowl’, the three samples of this class were 

misclassified as ‘E – Bowl’, resulting in an unusual score of 0.00. The Decision 

Tree Classifier (Acc = 0.80, F1 = 0.79) used nearly all the continuous features to 

build the decision tree (Figure 4.2), with the exception of min_diam (minimum 

diameter) and opening_diam (diameter at opening). H-Bd (total Height / Belly 
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diameter ratio) and Bd-Nd (Belly diameter / Neck diameter ratio) are the features 

with highest importance. 

 

 

Figure 4.2 – Feature importance of continuous features in the Decision 
Tree Classifier, first training session, using parameters max_depth = 6 
and min_samples_leaf = 1. 

 

The next training session will be analysed in more detail since it provided the best 

results among all sessions. 

 

4.1.3 Second training session 

In the second training session the algorithms Voting Classifier (Acc = 0.87, F1 = 

0.86), Logistic Regression (Acc = 0.86, F1 = 0.86) and SVC (Acc = 0.86, F1 = 

0.86) provided the best results. Tables 4.6 to 4.10 shows the confusion matrix for 

these algorithms and also for the Random Forest and Decision Tree Classifier.  

One modification in the dataset was made for the second training section, the 

removing of four features: one categorical (miniature) and three continuous 

(min_diam, max_diam, capacity). The reason for this modification was to reduce 

the dataset complexity, allowing the ML algorithms to focus on the most relevant 

features (Géron, 2019, p. 26-7). These specific continuous features were chosen 

because there is some overlap among them and the measurements obtained 

through the Arcane images (neck_diam, belly_diam, neck_height, belly_height), 

these were preferred over the original Arcane measurements because of the 

absence of NA values and also because these measurements are used in the 

formulas of the relative measurements. The features removed have low values of 
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feature importance: miniature = 0, min_diam = 0, max_diam = 0.025, capacity = 

0.014, in a scale from 0 to 1 (Figure 4.2), and two have high amount of NA values 

(min_diam = 253, max_diam = 131, in a total of 496 samples), which can 

potentially influence the results as commented in the discussion chapter. 

These modifications resulted in increasing accuracies compared to the first 

training session for all algorithms (Table 4.4), with the exception of Random 

Forest with stratified distribution, which slightly decreased from 0.84 to 0.83. 

 

Logistic Regression 

Classified as ���� C E G H K N P R T F1 

C Shallow bowl 1 2 - - - - - - - 0.50 

E Bowl - 43 3 - - - - - - 0.93 

G Cup/Mug or Beaker - - 24 - - - - - - 0.92 

H Open pot - - 1 4 - - - - - 0.89 

K Jug/Tankard or Juglet - - - - 5 - - - - 0.77 

N Closed pot (high) - - - - - 4 4 - - 0.67 

P Jar (wide neck) - 1 - - 2 - 17 1 1 0.77 

R Jar (restricted neck) - - - - 1 - - 7 - 0.88 

T Flask or Bottle - - - - - - 1 - 2 0.67 

Table 4.6 – Confusion matrix resulting from the Logistic Regression 
algorithm, which provided the second highest scores in the second 
training session with stratified distribution, together with the SVC 
algorithm. 

 
Correct classifications = 107 
Total classifications = 124 
General accuracy = 0.86 
F1-Score, weighted average = 0.86 
 
 

The individual results from the Logistic Regression and SVC are very similar 

(Tables 4.6 and 4.7). The three shape classes with the highest scores (F1 ≥ 0.80) 

are ‘E - Bowl’, ‘G – Cup/Mug/Beaker’, ‘H – Open pot’, in that order. The class 

with the lowest score is ‘C – Shallow bowl’, two of the three samples of this class 

were misclassified as ‘E – Bowl’. The main difference between the two 

algorithms are the results from the ‘P – Jar (wide neck)’ and ‘R – Jar (restricted 

neck)’ classes. While both classes resulted in high (F1 ≥ 0.80) and similar scores 

in SVC, the result for the R class was considerably better than the P class in the 

case of Logistic Regression. 
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SVC 

Classified as ���� C E G H K N P R T F1 

C Shallow bowl 1 2 - - - - - - - 0.50 

E Bowl - 43 3 - - - - - - 0.92 

G Cup/Mug or Beaker - 1 23 - - - - - - 0.90 

H Open pot - - - 4 1 - - - - 0.89 

K Jug/Tankard or Juglet - - 1 - 4 - - - - 0.73 

N Closed pot (high) - - - - - 4 4 - - 0.67 

P Jar (wide neck) - 1 - - - - 19 1 1 0.84 

R Jar (restricted neck) - - - - 1 - - 7 - 0.82 

T Flask or Bottle - - - - - - - 1 2 0.67 

Table 4.7 – Confusion matrix resulting from the SVC algorithm, which 
provided the second highest scores in the second training session with 
stratified distribution, together with the Logistic Regression algorithm. 

 
Correct classifications = 107 
Total classifications = 124 
General accuracy = 0.86 
F1-Score, weighted average = 0.86 

 
 
 

Voting Classifier 

Classified as ���� C E G H K N P R T F1 

C Shallow bowl 1 2 - - - - - - - 0.50 

E Bowl - 45 1 - - - - - - 0.96 

G Cup/Mug or Beaker - - 24 - - - - - - 0.92 

H Open pot - - 1 4 - - - - - 0.89 

K Jug/Tankard or Juglet - - 1 - 4 - - - - 0.67 

N Closed pot (high) - - - - 1 4 3 - - 0.67 

P Jar (wide neck) - 1 1 - 1 - 17 1 1 0.81 

R Jar (restricted neck) - - - - 1 - - 7 - 0.82 

T Flask or Bottle - - - - - - - 1 2 0.67 

Table 4.8 – Confusion matrix resulting from the Voting Classifier 
algorithm, which provided the highest scores in the second training 
session with stratified distribution. 

 
Correct classifications = 108 
Total classifications = 124 
General accuracy = 0.87 
F1-Score, weighted average = 0.86 
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The Voting Classifier (VC) algorithm achieved the highest scores considering all 

the training sessions (Table 4.8), albeit with a minimum difference from Logistic 

Regression and SVC. These results are coherent with the algorithm mechanism 

explained in Section 3.3.6. From the nine shape classes, five resulted in high (F1 ≥ 

0.80) scores, with three classes near or above 0.90. The independent classifiers 

used as parameters for VC were Logistic Regression, SVC, Decision Tree 

Classifier and KNN, using the ‘hard’ voting variation. Other combinations of 

classifiers and variations were tested, but this one returned the highest scores. 

 

Random Forest 

Classified as ���� C E G H K N P R T F1 

C Shallow bowl - 3 - - - - - - - 0.00 

E Bowl - 44 2 - - - - - - 0.95 

G Cup/Mug or Beaker - - 24 - - - - - - 0.92 

H Open pot - - 1 4 - - - - - 0.89 

K Jug/Tankard or Juglet - - 1 - 3 - 1 - - 0.60 

N Closed pot (high) - - - - - 3 5 - - 0.55 

P Jar (wide neck) - - - - 2 - 19 1 - 0.73 

R Jar (restricted neck) - - - - - - 4 4 - 0.62 

T Flask or Bottle - - - - - - 1 - 2 0.80 

Table 4.9 – Confusion matrix resulting from the Random Forest 
algorithm in the second training session with stratified distribution. 

 
Correct classifications = 103 
Total classifications = 124 
General accuracy = 0.83 
F1-Score, weighted average = 0.81 

 

The Random Forest Classifier achieved a middle-range performance (Table 4.9) if 

compared against other algorithms. It performed slightly better than the Decision 

Tree Classifier (Table 4.10), but worse than its own score in the first training 

session (Table 4.5). When compared to the DT, it can be noted that the RF 

concentrated the misclassifications in fewer shape classes, for instance the N class 

in RF was misclassified as the P class only, whereas in the DT the N class was 

misclassified as four other classes; similar results are visible in the P and R shape 

classes. 
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Decision Tree 

Classified as ���� C E G H K N P R T F1 

C Shallow bowl 1 2 - - - - - - - 0.50 

E Bowl - 44 2 - - - - - - 0.94 

G Cup/Mug or Beaker - 2 21 1 - - - - - 0.84 

H Open pot - - 1 4 - - - - - 0.73 

K Jug/Tankard or Juglet - - 1 - 3 - - 1 - 0.60 

N Closed pot (high) - - - 1 1 3 2 1 - 0.50 

P Jar (wide neck) - - 1 - - 1 18 1 1 0.86 

R Jar (restricted neck) - - - - 1 - - 6 1 0.63 

T Flask or Bottle - - - - - - - 2 1 0.33 

Table 4.10 – Confusion matrix resulting from the Decision Tree 
algorithm in the second training session with stratified distribution. 

 
Correct classifications = 101 
Total classifications = 124 
General accuracy = 0.81 
F1-Score, weighted average = 0.81 

 

Despite not being among those with the best overall results, the Decision Tree 

Classifier is one of the most important algorithms in this research because it 

provides a range of useful information based on the visualisation of the decision 

tree and the importance of the features used in the tests that generate the tree. This 

information can be used for the improvement of the dataset and the final ML 

model. 

k-Nearest Neighbors 

This algorithm achieved its highest performance in the second training session 

(Acc = 0.77, F1 = 0.74). KNN was the only algorithm that did not achieved a 

minimum score of 0.80 in accuracy or F1-Score, and for that reason its results are 

not analysed in detail. It was already commented about the KNN being known as 

a simpler ML algorithm but that does not mean it is not efficient and should be 

excluded from other studies, its usefulness will depend on the research problems, 

and its performance on the characteristics of the dataset (this is true for other ML 

algorithms as well). For instance, KNN was important as a parameter for the VC 

classifier, and its performance was superior to other two algorithms as described 

in a related research case (Chapter 5.3). 
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Figure 4.3 – Feature importance in the Decision Tree Classifier, second 
training session, using the parameters max_depth = 6 and 
min_samples_leaf = 1. Top and middle images: categorical features; 
bottom image: continuous features. 
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The feature importance is a very useful resource to understand how the features of 

the dataset contribute to the identification of the shape classes. It is clear in the 

graph in Figure 4.3 that the two most relevant features are H-Bd (total Height / 

Belly diameter ratio), with more than one third of the total score in the Decision 

Tree Classifier, and Bd-Nd (Belly diameter / Neck diameter ratio), with around 

one fifth of the total score. Together, these two features represent almost 60% of 

the total score for the classifier, however the utilisation of other features is also of 

importance as will be described in the analysis of the decision tree.  

 

Parameters Results 

max_ 
depth 

min_ 
samples_ 
leaf 

# of  
features Accuracy 

4 1 7 0.73 
4 2 7 0.73 
5 1 11 0.78 
5 2 11 0.78 
5 3 11 0.77 
6 1 19 0.81 
6 2 16 0.77 
6 3 15 0.77 
6 4 16 0.78 
7 1 19 0.81 
7 2 17 0.75 
7 3 15 0.76 
8 1 23 0.78 
8 2 19 0.73 

Table 4.11 – Summary of important features and 
accuracies for different combinations of parameters from 
Decision Tree Classifier, second training session. The 
max_depth and min_samples_leaf combination used in 
this research (6-1) is the one that returns the highest 
accuracy and at the same time it is less complex than 
other combinations with similar score (such as 7-1). 

 

The results for the Decision Tree Classifier were based on a combination of 

different parameters (Table 4.11). This combination also reflects how the features 

are used, as can be seen in Figure 4.4 compared to Figure 4.3 (bottom). The 

algorithm variation with parameter max_depth = 5 uses less features than the 

variation with max_depth = 6, however the accuracy is lower because not enough 

tests were done to correctly associate the classes with as many samples as 

possible. 
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Figure 4.4 – Feature importance of continuous features in the 
Decision Tree Classifier, second training session, using parameters 
max_depth=5 and min_samples_leaf =1. 

 

Since the combination of parameters max_depth = 6 and min_samples_leaf = 1 

was the best result for the Decision Tree Classifier, this specific decision tree 

generated by the algorithm will be analysed in this section. 

 
 
 

 
 

Figure 4.5 – Root node and first two levels of the tree generated by the 
Decision Tree Classifier algorithm in the second training session. The 
complete tree with six levels (max_depth = 6) is shown in text format in 
Figures 4.6 and 4.7. 
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|--- H-Bd <= 0.77 
|   |--- H-Nh <= 1.07 
|   |   |--- H-Bd <= 0.34 
|   |   |   |--- base_diam <= 5.25 
|   |   |   |   |--- class: C         (5/5 = 100%) 
|   |   |   |--- base_diam >  5.25 
|   |   |   |   |--- class: E         (2/2 = 100%) 
|   |   |--- H-Bd >  0.34 
|   |   |   |--- H-Bd <= 0.67 
|   |   |   |   |--- Bd-BaD <= 12.07 
|   |   |   |   |   |--- H-Bh <= 2.08 
|   |   |   |   |   |   |--- class: E              (104/108 = 96%) 
|   |   |   |   |   |--- H-Bh >  2.08 
|   |   |   |   |   |   |--- class: E              (2/4 = 50%) 
|   |   |   |   |--- Bd-BaD >  12.07 
|   |   |   |   |   |--- class: G         (1/1 = 100%) 
|   |   |   |--- H-Bd >  0.67 
|   |   |   |   |--- rim_profile[7] <= 0.50 
|   |   |   |   |   |--- rim_profile[3] <= 0.50 
|   |   |   |   |   |   |--- class: E              (15/18 = 83%) 
|   |   |   |   |   |--- rim_profile[3] >  0.50 
|   |   |   |   |   |   |--- class: G              (4/6 = 67%) 
|   |   |   |   |--- rim_profile[7] >  0.50 
|   |   |   |   |   |--- class: G         (3/3 = 100%) 
|   |--- H-Nh >  1.07 
|   |   |--- Bd-BaD <= 3.00 
|   |   |   |--- H-Nh <= 1.12 
|   |   |   |   |--- class: G             (2/2 = 100%) 
|   |   |   |--- H-Nh >  1.12 
|   |   |   |   |--- base_type[4] <= 0.50 
|   |   |   |   |   |--- class: K       (2/2 = 100%) 
|   |   |   |   |--- base_type[4] >  0.50 
|   |   |   |   |   |--- opening_diam <= 14.60 
|   |   |   |   |   |   |--- class: C            (1/1 = 100%) 
|   |   |   |   |   |--- opening_diam >  14.60 
|   |   |   |   |   |   |--- class: H            (1/1 = 100%) 
|   |   |--- Bd-BaD >  3.00 
|   |   |   |--- class: P        (2/2 = 100%) 

 
 
Figure 4.6 – First half (H-Bd ≤ 0.77) of the decision tree in text format, 
second training session. The numbers in brackets show the positive 
identifications and the total amount of samples involved in the test. 
100% means the leaf is pure (all samples belong to the same class). The 
lines in red show a limitation of the algorithm: the class is the same 
regardless the test result. The first two levels of the tree are represented 
graphically in Figure 4.5. 

 

This tree achieves an accuracy of 0.90 based on the training dataset, and when 

applied to the test dataset the accuracy decreases to 0.81. This issue is related to 

the concept of generalisation: a ML model is built on training data and the goal is 

to maximise the accuracy in the test/validation data, which is previously unknown 

to the model, that way the model will have an optimal performance when dealing 

with new, unknown data. The ML model based on the Decision Tree Classifier 

can achieve an accuracy of 1.00 (100%) in the training dataset if the algorithm 

does not receive any pruning parameter such as max_depth or min_samples_leaf, 

however that way it becomes too complex and too specific, and behaves poorly 

when faced with unknown data. 
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|--- H-Bd >  0.77 
|   |--- Bd-Nd <= 1.41 
|   |   |--- belly_diam <= 18.21 
|   |   |   |--- base_diam <= 5.85 
|   |   |   |   |--- H-Bd <= 0.81 
|   |   |   |   |   |--- H-Bd <= 0.80 
|   |   |   |   |   |   |--- class: G     (6/8 = 75%) 
|   |   |   |   |   |--- H-Bd >  0.80 
|   |   |   |   |   |   |--- class: E     (3/3 = 100%) 
|   |   |   |   |--- H-Bd >  0.81 
|   |   |   |   |   |--- height <= 12.50 
|   |   |   |   |   |   |--- class: G     (43/44 = 98%) 
|   |   |   |   |   |--- height >  12.50 
|   |   |   |   |   |   |--- class: G     (2/5 = 40%) 
|   |   |   |--- base_diam >  5.85 
|   |   |   |   |--- height <= 7.55 
|   |   |   |   |   |--- class: E     (6/6 = 100%) 
|   |   |   |   |--- height >  7.55 
|   |   |   |   |   |--- class: G     (3/3 = 100%) 
|   |   |--- belly_diam >  18.21 
|   |   |   |--- neck_diam <= 16.50 
|   |   |   |   |--- class: P      (2/2 = 100%) 
|   |   |   |--- neck_diam >  16.50 
|   |   |   |   |--- opening_diam <= 15.90 
|   |   |   |   |   |--- class: N     (1/1 = 100%) 
|   |   |   |   |--- opening_diam >  15.90 
|   |   |   |   |   |--- rim_profile[1] <= 0.50 
|   |   |   |   |   |   |--- class: H     (12/13 = 92%) 
|   |   |   |   |   |--- rim_profile[1] >  0.50  
|   |   |   |   |   |   |--- class: N     (1/1 = 100%) 
|   |--- Bd-Nd >  1.41 
|   |   |--- Bd-Nd <= 1.62 
|   |   |   |--- base_diam <= 6.20 
|   |   |   |   |--- base_type[2] <= 0.50 
|   |   |   |   |   |--- H-Bh <= 2.06 
|   |   |   |   |   |   |--- class: P     (3/3 = 100%) 
|   |   |   |   |   |--- H-Bh >  2.06 
|   |   |   |   |   |   |--- class: H     (1/2 = 50%) 
|   |   |   |   |--- base_type[2] >  0.50 
|   |   |   |   |   |--- class: N     (5/5 = 100%) 
|   |   |   |--- base_diam >  6.20 
|   |   |   |   |--- class: N      (11/11 = 100%) 
|   |   |--- Bd-Nd >  1.62 
|   |   |   |--- base_diam <= 0.25 
|   |   |   |   |--- belly_height <= 3.82 
|   |   |   |   |   |--- neck_diam <= 3.76 
|   |   |   |   |   |   |--- class: T     (7/7 = 100%) 
|   |   |   |   |   |--- neck_diam >  3.76 
|   |   |   |   |   |   |--- class: K     (1/2 = 50%) 
|   |   |   |   |--- belly_height >  3.82 
|   |   |   |   |   |--- H-Bd <= 0.98 
|   |   |   |   |   |   |--- class: K     (7/9 = 78%) 
|   |   |   |   |   |--- H-Bd >  0.98 
|   |   |   |   |   |   |--- class: R     (12/18 = 67%) 
|   |   |   |--- base_diam >  0.25 
|   |   |   |   |--- Bd-Rd <= 2.45 
|   |   |   |   |   |--- additional_elem[S] <= 0.50 
|   |   |   |   |   |   |--- class: P     (52/60 = 87%) 
|   |   |   |   |   |--- additional_elem[S] >  0.50 
|   |   |   |   |   |   |--- class: K     (2/3 = 67%) 
|   |   |   |   |--- Bd-Rd >  2.45 
|   |   |   |   |   |--- neck_height <= 19.37 
|   |   |   |   |   |   |--- class: P     (2/2 = 100%) 
|   |   |   |   |   |--- neck_height >  19.37 
|   |   |   |   |   |   |--- class: R     (9/9 = 100%) 

 

Figure 4.7 – Second half (H-Bd > 0.77) of the decision tree in text 
format, second training session. The numbers in brackets show the 
positive identifications and the total amount of samples involved in the 
test. 100% means the leaf is pure (all samples belong to the same class). 
The lines in red show a limitation in the algorithm: the class is the same 
regardless the test result. The first two levels of the tree are represented 
graphically in Figure 4.5. 
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A decision tree is generated based on the training dataset (in this case, n_samples 

= 372 in the first level, or 75% of the full dataset); the algorithm then uses this 

decision tree to predict the classes in the test dataset. The number of samples in 

each class (training dataset) is shown in the ‘value’ line (Figure 4.5). In this 

example they are [7, 136, 72, 15, 17, 26, 66, 24, 9], corresponding to the classes 

[C, E, G, H, K, N, P, R, T]. The class with the greatest number of samples on the 

node is shown as the reference class (they are E in the tree root, and E and P in the 

first level). The values for the complete tree are shown in Figures 4.6 and 4.7. The 

tree can be broadly divided in four parts, which are analysed in the next 

paragraphs. Only the analysis of the top levels and some specific tests in the 

lowest levels are described, enough to explain the logic behind the algorithm, the 

concepts of open/closed shapes and the relevance of the features. 

The root level split – H-Bd feature 

The algorithm uses the H-Bd feature (total Height / Belly diameter ratio) as the 

first test (H-Bd ≤ 0.77), and uses the result (true or false) to split the tree in two 

parts. All samples from the ‘C – Shallow bowl’ class and the majority of the 

samples (125 out of 136) of the ‘E – Bowl’ class were placed in the left branch. 

Nearly all (64 out of 66) of the ‘P – Jar’ and ‘K – Jug/Juglet’ (15 out of 17), and 

all samples from the N, R and T classes were placed in the right branch, 

completing the set of closed shapes group. Most samples of other classes that 

belong to the open shapes group (‘G – Cup/Mug/Beaker’ and ‘H – Open pot’) 

were also placed in the right branch, but these shapes are going to be dealt later in 

the decision tree. 

The H-Bd (Fig. 3.16-A) is the most important feature to differentiate the two 

broad groups of classes, open and closed shapes. This ratio identifies the overall 

vessel shape, values much greater than 1.00 indicate higher or closed shapes such 

as jars, and values much lower than 1.00 indicate wider or open shapes such as the 

majority of bowls, but there are shapes that are closer to the 1.00 ratio such as 

beakers and open/closed pots. The algorithm then proceeds with the next tests to 

refine the association of samples to the shape classes. 
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First level split (right branch) – Bd-Nd feature 

The test using the Bd-Nd feature (Belly diameter / Neck diameter ratio) (Figure 

4.7) further differentiates the two broad groups of classes, open shapes and closed 

shapes. As the ratio gets closer to 1.00 the shapes become more of the open type 

(Figure 3.16-C), since some open shape samples such as bowls and beakers do not 

have bellies or necks (Figure 3.15) and both have the same measurements for 

these vessel parts, which are equal to the rim/opening diameter. In this case, the 

samples where the Bd-Nd ratio is greater than 1.41 were associated to the closed 

shapes, whereas the remaining ones (ratio ≤ 1.41), from the E, G and H classes, 

were associated to the open shapes group.  

There still remained samples from the closed group in the ‘open’ branch of the 

tree. The belly_diam (belly diameter) feature, with a value of 18.21 cm, was used 

to identify most of them, separating samples of the E and G classes from samples 

of the H, N and P classes. After further divisions and utilisation of other features 

for testing, eight samples from the closed shapes group remained in the final level 

of the tree in this branch. As a final result, two high level ‘open’ branches can be 

identified, one with E and G samples and one with H samples (Figure 4.8), with 

residual closed shape samples. The residual samples are located in leaves that are 

not 100% pure, as shown in Figures 4.6 and 4.7. 

 

 

Figure 4.8 – Summary of the tree generated by the Decision Tree 
Classifier algorithm. The number of samples in the root (372) is from 
the training dataset (75% of the total), the numbers under each shape 
class represent the amount of samples of that class in each node. 
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In the ‘closed’ branch of the tree (Bd-Nd > 1.41), where all the closed shapes are 

present, only one sample of the open shapes, of the ‘H – Open pot’ class, 

remained.  

First level split (left branch) – H-Nh feature 

After the first (root) split, which placed all C class, most of E class (125/136), part 

of G class (18/72) and a few samples from other shapes in the left branch of the 

tree, a test using the H-Nh (total Height / Neck height) ratio was used to further 

differentiate the samples (Figure 4.6). This measurement indicates the relative 

location of the neck in the vessel vertical dimension (Section 3.1.8). Samples with 

H-Nh ≤ 1.075 included all E class in this branch, and nearly all C (6/7) and G 

(16/18) classes. In the right branch eight samples from the C, G, H, K and P 

classes remained (Figure 4.8, ‘miscellaneous’). It is possible to consider these 

samples as more atypical members of their classes. This specific test (H-Nh ≤ 

1.075) was less decisive on separating the classes, since the majority of samples in 

this branch had already been identified in the previous test (H-Bd ≤ 0.775), this is 

suggested also by the value of H-Nh in the feature importance graphic (Figure 

4.3), which is in the average only. Usually the features that are either used in the 

top levels of the tree or used in a number of different tests are considered of 

higher importance, but this is not exactly the case with H-Nh. 

Other tests with continuous features 

The H-Bd (total Height / Belly diameter ratio) feature was used in five other tests 

in different levels beside the root level split, using different values to differentiate 

between C and E, between E and G and between K and R classes. 

Some continuous features beyond the ones used in the top levels of the tree were 

considered of higher importance by the Decision Tree classifier (Figure 4.3). 

The Bd-Rd (Belly diameter / Rim diameter, Figure 3.16-B) identifies the shape of 

the upper portion of the vessel: it is convergent if the ratio is > 1, divergent if ratio 

< 1 or parallel if ratio = 1. This feature was used to separate samples of the K and 

P classes from samples of the R class, which has a more restricted neck and a 

smaller opening/rim diameter. In these cases they are all convergent, but the 

algorithm used the ratio = 2.445 as the reference to identify the shapes. 
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The features base_diam (base diameter) and belly_diam (belly diameter) had the 

third and fourth higher scores respectively (Figure 4.3). The test belly_diam ≤ 

18.21 was used in the second level of the tree (right branch, Figure 4.7) to 

separate samples of the E and G classes from samples of the H, N and P classes. 

Three different tests with base_diam were used, the separation of samples of the N 

class from other closed shapes, the separation of samples of the P class from 

samples of the K, R and T classes (Figure 4.7), and the separation of C and E 

classes (Figure 4.6). 

All the continuous features were used in at least one test by the Decision Tree 

classifier in this parameters configuration (max_depth = 6 and min_samples_leaf 

= 1). In some cases, specific tests in the lower levels of the tree were necessary to 

identify samples belonging to similar classes or samples that are atypical within 

the class, which can not be identified by the more broad tests in the highest levels 

of the tree. Some absolute measurements show a low score in the feature 

importance graph but it does not necessarily mean they are not relevant; they are 

used indirectly as a base for the relative measurements. This is the case of 

open_diam (opening/rim diameter), used in the Bd-Rd ratio, neck_diam (neck 

diameter), used in the Bd-Nd ratio, and height (total height), used in the H-Bd 

ratio. 

Categorical features 

The categorical features used in this research (rim orientation, rim profile, base 

typology, miniature vessel and additional elements) were used in a secondary way 

by the Decision Tree algorithm when compared to the continuous features. In this 

parameters configuration (max_depth = 6 and min_samples_leaf = 1) of the 

algorithm, three types of rim profile, two base types and one additional element 

were used in tests in the lowest levels of the tree (Figures 4.6 and 4.7). Despite 

their secondary utilisation, in some cases they may be the only alternative to 

identify a vessel shape class. This is the case of the test additional_elem[S] ≤ 0.5 

which means that the test result is true if there is no additional element ‘spout’ in 

the sample, or the result is false when there is an additional element ‘spout’, 

according to the encoding method applied (Section 3.3.3). This test is used to 

separate samples of the ‘K – Jug/Juglet’ class, which have spouts, from samples of 

the ‘P – Jar (wide neck)’, which are similar in shape but don’t have these 
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elements. In the research dataset, only samples of the K and N classes have 

spouts. 

The base_type feature was used twice by the algorithm: base_type[2] (rounded) 

and base_type[4] (flat), which are the two most common base types in the dataset, 

were used to separate samples of the N class from the P class, and to separate 

samples of the K class from samples of the C and H classes, respectively. 

The rim_profile feature was used three times by the algorithm: rim_profile[1] 

(thinned), rim_profile[3] (rounded) and rim_profile[7] (rounded-folded outside), 

which are the three most common rim profile types in the dataset, were used to 

separate samples of the H class from the N class (rim_profile[1]), and to separate 

samples of the E class from the G class (rim_profile[3] and [7]). 

Decision Tree summary 

Figure 4.8 illustrates the summary of the decision tree analysis. From the four 

main branches of the tree, two represent the open shapes group, one represents the 

closed shapes group and one is composed by samples from both groups 

(miscellaneous). In the closed shapes group (K, N, P, R and T classes), only one 

open shape sample (H class) is present. Only open shapes (C, E and G) compose 

the leftmost of the two open shapes branches, while the other branch (E, G and H) 

include eight residual samples from the closed shapes group. Eight samples, four 

open and four closed shapes, compose the last branch (miscellaneous). 

The open shapes branch E-G-H was divided in two parts: the E-G part included 65 

samples of E and G classes and three samples of H, P and T classes, while the H 

part included 12 samples of H class and other six closed shapes samples, 

suggesting some similarity among the H class and the closed shapes. This issue 

will be discussed in Chapter 5. 

 

4.1.4 Third training session 

The main goal of the third and last training session was to test an alternative 

technique that might improve the accuracy results, the grid search with cross-

validation. This technique was applied in all algorithms with the exception of the 

ensemble group.  
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Two algorithms returned the highest scores: Logistic Regression (Acc = 0.86, F1 = 

0.86) and SVC (Acc = 0.86, F1 = 0.86). These results and also the confusion 

matrices are equal to those from the second training session (Tables 4.6 and 4.7). 

It was expected that the confusion matrices would show slightly different results 

when compared to the second training session because of the cross-validation 

mechanism of the GridSearchCV method, explained in Section 3.3.7.  

 

Algorithm Fixed  
parameters 

Parameter values returned 
by GridSearchCV 

Best parameter values 
(2nd training session) 

KNN  n_neighbors = 3 n_neighbors = 4 

Logit 
solver = ‘sag’,  
max_iter = 1000 

C = 0.01,  
penalty = ‘none' 

Same as GridSearchCV 

SVC  C = 0.1, gamma = 'scale', 
kernel = 'linear' 

Same as GridSearchCV 

DT 
 max_depth = 6, 

min_samples_leaf = 4 
max_depth = 6, 
min_samples_leaf = 1 

Table 4.12 – List of parameters used in the GridSearchCV method, with 
the values returned by the method and the ones that provided the best 
performances in the second training session. Algorithms: KNN = K-
Nearest Neighbors; Logit = Logistic Regression; SVC = Support Vector 
Machine for Classification; DT = Decision Tree Classifier. 

 

Table 4.12 shows the parameter values returned by the method and the values that 

provided the best performances in the second training session. Since this method 

uses different combinations of the training and test datasets (the parameter was set 

to five different combinations) it was unlikely that the same combination of 

training/test datasets used in the second session would be repeated here, 

nevertheless the results suggest that. In addition, the possibility that some 

unidentified problem occurred in the application of the method by the author 

cannot be ruled out. 

The grid search part of the GridSearchCV method was very useful despite this 

issue with the cross-validation. The parameters that were considered the best ones 

by the method were tested in the second training session script, following the 

method’s cyclic workflow (Figure 3.24) and the Logistic Regression and SVC 

algorithms’ performance increased. On the other hand the parameter values 

suggested by GridSearchCV provided a lower performance for k-Nearest 

Neighbors and Decision Tree Classifier when compared to the values used in the 

second training session (Table 4.4). 
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Under the column ‘Fixed parameters’, two parameters that were tested a number 

of times through the GridSearchCV method are shown, they always appeared 

among the best results, therefore they were fixed in the Logistic Regression 

parameter’s list and were not tested anymore under the GridSearchCV method. 

There are a number of other parameter options beside the ones presented in Table 

4.12, and other combinations not shown here were tested. It is beyond the scope of 

this research to provide more detailed information on algorithms’ parameters, this 

is available in the scikit-learn documentation. The objective here is to draw 

attention to this important aspect of ML and indicate the resources available that 

help to arrive at the best possible solution. 

A final observation about the kernel = ‘linear’ parameter in SVC algorithm. Other 

options beside the linear were tested, including the polynomial, but resulted in 

lower scores. This suggests that linear functions work best for the dataset used in 

this research, this is consistent with the results from Logistic Regression, an 

algorithm based on linear functions (Müller & Guido, 2017, p. 46-69). 

 

4.2 Unsupervised learning 

The results of the unsupervised training sessions are presented separately for k-

Means and Hierarchical Clustering. 

 

4.2.1 Clustering with k-Means 

As commented in Chapter 3.4 the best alternative to interpret unsupervised 

learning results is the manual analysis of the clusters, which is done in tables 4.13 

to 4.16 and through the dendrogram (Figure 4.10). The dendrogram is a very 

useful tool however the number of samples must be limited in order to allow a 

visual analysis. 

The silhouette scores provided a starting point for determining the optimal 

number of clusters, but the number of clusters that are meaningful for the analysis 

limited its practical application. Figure 4.9 shows the scores for three different 

versions of the dataset. The first version is the full dataset with 496 samples, the 

second version is a reduced dataset with 10% of the samples obtained using the 
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scikit-learn ‘train_test_split’ method with stratified sampling, and the third 

version is a reduced dataset with five to six samples of each shape class, resulting 

in 50 samples. In the third version the samples were randomly selected; for the 

shape classes with greater number of samples (E, G, P, N and R), six samples 

were selected, and for the remaining shape classes, five samples were selected. 

The third version was used also for analysis in the dendrogram. 

 

 

Figure 4.9 – Silhouette scores for three different versions of the 
research dataset, based on the k-Means algorithm: the full dataset 
with 496 samples; reduced dataset with 10% of the samples 
(proportional number of shape classes); reduced dataset with five 
to six samples of each shape class (50 samples in total). 

 

Results in the silhouette scores look better when the number of clusters is low 

(two or three) because the samples are less dispersed across clusters, but these 

numbers of clusters are less useful for the analysis. Above three clusters the 

silhouette score vary according to the version of the dataset used, in general the 

full dataset and the 10% dataset versions perform in a more similar way. Despite 

the silhouette scores, the more useful range to analyse the research dataset in 

search of meaningful clusters is between four and six clusters, above that number 

the samples become too dispersed across the clusters.  

The results based on four and six clusters are presented here, and the other clusters 

created for this research (2, 3, 5 and 8 clusters) can be consulted in Appendix A. 
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 Clusters  
Shape 0 1 2 3 Total 

C 3  7  10 
E 56 1 125  182 
G 75  21  96 
H 1 13 2 4 20 
K 15 2 5  22 
N 10 16 1 7 34 
P 56 22 1 9 88 
R 8 19  5 32 
T 12    12 

Total 236 73 162 25 496 

Table 4.13 – Summary of samples divided into four clusters (0-3) and the 
corresponding shape classes, based on the k-Means algorithm. Cells in grey 
indicate the prevailing cluster for each shape class, cells in light blue indicate 
significant amounts of samples associated to secondary clusters. 

 

 Clusters  
Shape 0 1 2 3 4 5 Total 

C 7    3  10 
E 124 1   56 1 182 
G 22    72 2 96 
H 1 9 4   6 20 
K 1    14 7 22 
N 1 10  5 8 10 34 
P  8  9 42 29 88 
R  12  5 7 8 32 
T     11 1 12 

Total 156 40 4 19 213 64 496 

Table 4.14 – Summary of samples divided into six clusters (0-5) and the 
corresponding shape classes, based on the k-Means algorithm. Cells in grey 
indicate the prevailing cluster for each shape class, cells in light blue indicate 
significant amounts of samples associated to secondary clusters; shape N has 
two prevailing clusters. 

 
 (A)    (B)  
 Clusters    Clusters  

Shape 0 1 2 3 4 5 Total  Shape 0 1 2 3 4 5 Total 
C  1     1  C     5  5 
E 1 16   1  18  E    1 5  6 
G 2 8     10  G 4    2  6 
H   1  1  2  H 1 2 2    5 
K 1 1     2  K 4    1  5 
N 1   3   4  N 1 3  2   6 
P 6 2    1 9  P 4   2   6 
R 1   2   3  R 1 2  2  1 6 
T 1      1  T 5      5 

Total 13 28 1 5 2 1 50  Total 20 7 2 7 13 1 50 

Table 4.15 – Summary of samples divided into six clusters (0-5) and the 
corresponding shape classes, based on the k-Means algorithm. Table (A): reduced 
dataset with 10% of the samples; Table (B): reduced dataset with 5 to 6 samples of 
each shape class. Cells in grey indicate the prevailing cluster for each shape class, 
cells in light blue indicate significant amounts of samples associated to secondary 
clusters or no prevailing cluster. In the more balanced division of (B) is easier to 
visualise a general trend equivalent to the full dataset (Tables 4.13 and 4.14). 
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Both Tables 4.13 and 4.14 show a similar distribution of the shape classes across 

the clusters. The arrangement of clusters groups the majority of samples of shapes 

‘C – Shallow bowl’ and ‘E – Bowl’ into one cluster, shapes ‘H – Open pot’ and 

‘R – Jar (restricted neck)’ into a second cluster and ‘G – Cup/Mug/Beaker’, ‘K – 

Jug/Juglet’, ‘P – Jar (wide neck)’ and ‘T – Flask/Bottle’ into a third cluster. Shape 

‘N – Closed pot (high)’ is more clearly associated to the same cluster as H and R 

in the four clusters version  (Table 4.13), but an association among these shapes 

can also be seen in the six clusters version (Table 4.14). In the four clusters 

version, the fourth cluster (#3) is formed mainly by residual samples of the shape 

classes. In the six clusters version, four clusters concentrate the majority of 

samples and two clusters (#2 and #3) are formed by residual samples, but even in 

this version the division in three main clusters is visible. 

 

 

Distribution across 6 clusters 
(496 samples) 

Shape Main 2nd 3rd 4th Resi-
dual Total 

C 0.70 0.30      1.00 
E 0.68 0.31   0.01 1.00 
G 0.75 0.23   0.02 1.00 
H 0.45 0.30 0.20  0.05 1.00 
K 0.64 0.32   0.05 1.00 
N 0.29 0.29 0.24 0.15 0.03 1.00 
P 0.48 0.33 0.10 0.09  1.00 
R 0.38 0.25 0.22 0.16  1.00 
T 0.92 0.08      1.00 

Table 4.16 – Distribution of shape classes across the clusters based on 
table 4.14. Shape T is the most uniform, with 92% of samples in the 
same cluster, followed by G and C. Shapes C, E, G and K are divided 
into two clusters, one of them being the prevailing one. The shapes H, 
N, P and R are distributed across three or four clusters. 

 

Table 4.16 shows the distribution of the shape classes across the six clusters 

version (Table 4.14). Apart from shape ‘T – Flask/Bottle’ which has 92% of its 

samples associated to one cluster, the other shape classes show a distribution of 

samples in at least two and, in some cases, three or four clusters. Shapes C, E, G 

and K are divided basically into two clusters (with few residual samples), one of 

them being the prevailing cluster. Shapes H, N, P and R are distributed across 

three or four clusters. 
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The second version of the dataset (10% of the samples, Table 4.15-A), shows 

fewer meaningful associations most likely because the small amount of samples 

for some shape classes; four shapes have only one or two samples and this limits 

the utility of the results. The most visible associations are the grouping of classes 

P and T (cluster #0), classes C, E and G (cluster #1) and classes N and R (cluster 

#3). One relevant aspect here is the association among shapes of the open group 

(cluster #1) and among shapes of the closed group (clusters #0 and #3). The 

shapes that are not clearly associated to one of these groups, H and K, are the 

shapes that share most characteristics of both groups (open and close). 

This reduced version was intended to be used in the dendrogram analysis, 

however because of the issue of sample distribution, a third version of the dataset, 

with five to six samples for each shape class, was created (Table 4.15-B). This 

version shows a similar pattern in the grouping of shape classes to the one 

presented by the full dataset with six clusters. As a matter of clarification there is 

no direct relation in the cluster numberings (#0 to #3, or #0 to #5) between the 

different versions of the dataset, or different cluster numbers within the same 

dataset; for instance, cluster #0 in Table 4.13 is the equivalent of cluster #4 in 

Table 4.14, and cluster #0 in Table 4.14 is the equivalent of cluster #4 in Table 

4.15-B. 

In Table 4.15-B the shapes G, K, P and T form a cluster like in Table 4.13, and 

shapes C and E form a second clear cluster. Two other clusters are less clearly 

formed: cluster #1 includes shapes H, N and R, and cluster #3 includes shapes N, 

P, R and a residual sample of E shape. The relationships among these shapes will 

be analysed in detail through the dendrogram. 

 

4.2.2 Hierarchical Clustering 

The Hierarchical Clustering algorithm using the Ward linkage method, based on 

the dataset version with 5 to 6 samples of each class, generated the dendrogram 

shown in Figure 4.10. In this algorithm the number of clusters is not informed by 

the analyst, the level of detail is higher and it is possible to identify sub-clusters in 

addition to the main clusters provided by the k-Means algorithm. 
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An important observation is necessary at this point: despite the fact that shape 

classes have been used as a way to assess the results of clustering algorithms, both 

k-Means and Hierarchical Clustering results (the clusters) are independent of 

shape classes, the results are based only on categorical and continuous features 

present in the research dataset, and the proposed clusters in fact indicate different 

criteria to shape classification which might be or not related to the original shape 

classes associated to the samples. It is necessary therefore to consider the 

possibility that other patterns of grouping exist beyond the ones provided by the 

experts and supervised learning algorithms. 

 

 

 

Figure 4.10 – Dendrogram from the Hierarchical Clustering algorithm 
based on five to six samples of each shape class. Roman numbers identify 
the main clusters and sub-clusters. The numbers below the bars identify the 
individual samples (Sample index), each sample is associated to one shape 
class represented by letters. The red and green bars below the letters 
indicate whether the class belongs to the open (red) or closed (green) shape 
groups. 
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In Figure 4.10 all the 50 samples used in the analysis are shown in the bottom 

(lowest level) of the graph. It is possible to identify four main clusters (indicated 

in Roman numerals) and corresponding sub-clusters; Figure 4.11 shows the top-

level clusters only, here it is visible the unbalanced distribution of samples across 

the main clusters: cluster II includes more than half of the samples, and cluster IV 

includes only 3 samples.  

The clustering patterns become clearer when the sub-clusters are analysed, but 

even in this level some unidentifiable patterns emerge when the hierarchical 

clustering is taken into consideration. The cluster distance, measured in the 

vertical axis in the graph, indicates how close the relation among clusters is. 

According to this information, clusters II.1 and II.2 are more closely related than 

clusters III.1 and III.2 for instance. However, when applying the criteria of open 

vs. closed shapes (shown in red and green lines below the shape classes in Figure 

4.10), clusters II.1 and II.2 do not seem to have the closer relation between them, 

since cluster II.1 is formed by closed shapes and II.2 by open shapes, except for 

one sample (#13). On the other hand, clusters I.2 and II.1 seem to be more closely 

related because they contain only closed shapes. Another example is cluster II.4, 

which can be related to its neighbour clusters II.3 and III.1 by the presence of 

open shapes. In the case of cluster II.3, the presence of two samples of the ‘K – 

Jug/Juglet’ shape, which is the closed shape closest to the open shape group, 

reinforces this observation. Figures 4.12 to 4.15 illustrate the samples that belong 

to each cluster. 

 

 

Figure 4.11 – Same dendrogram from Figure 4.10 showing the four top-
level clusters only. 
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There are similarities and differences in the results from the Hierarchical 

Clustering and the k-Means algorithms. Comparing the data from Tables 4.13 to 

4.15 with the dendrogram in Figure 4.10, it is evident the grouping of shape 

classes C and E, and P and T. Depending on the version of the dataset used in the 

k-Means algorithm (represented by Tables 4.13 to 4.15), the G class is joined 

either to the C-E group or to the P-T group. In the dendrogram, samples of the G 

class are all associated to the open shapes group (clusters II.2, II.3 – partial, and 

II.4). Samples of the H class are clearly associated to samples of N and R classes 

in Table 4.13 and also in the dendrogram (clusters III and IV), but samples of H 

class do not follow a clear pattern in other versions of k-Means algorithm (Tables 

4.14 and 4.15). Samples of the K class are associated to the P-T group in two of 

the three versions of the k-Means algorithm (Tables 4.14 and 4.15-B) but are 

divided into three clusters in the dendrogram (I, II.1 and II.3), which includes both 

open and closed shapes. Shapes of the N and R classes are associated in the 

dendrogram (cluters III and IV) but are clearly associated in k-Means clusters 

only in Table 4.15-A. 

The criteria of open vs. closed shapes as defined by the Arcane project is being 

applied here for cluster analysis but, as it was commented previously in this 

chapter, this is not the only criteria and it is possible that another unidentified 

patterns of similarity among clusters exists. The next set of figures (Figure 4.12 to 

Figure 4.15) illustrates the samples included in the dendrogram (Figure 4.10). The 

figures are divided basically according to the four high level clusters (I to IV), 

with cluster II divided in two figures and clusters III and IV included in the same 

figure. Through these associations of shapes and the samples illustrations it is 

possible to identify some patterns that are not clear in tables or graphs. 

Cluster I 

The main characteristic of the first association of shape classes (Figure 4.12), 

which includes clusters I.1 and I.2, is the predominance of closed shapes, except 

for one sample of the ‘H – Open pot’ class. Two samples from the ‘T – 

Flask/Bottle’ class, which are clearly different from those included in cluster II.1 

(Figure 4.13) are included here, as well half of the samples of the ‘P – Jar (wide 

neck)’ class. The other samples of the P class are divided in different clusters. 
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Figure 4.12 – Samples belonging to cluster I.1 and I.2 (complete dendrogram is 
shown in Figure 4.10). The number indicates the sample random number (from 
0 to 49) and the letter in brackets indicate the sample shape class. First row: 
JZ001_P010, JZ002_P622, JZ002_P204 and JZ004_P037; second row: 
JZ001_P916, JZ001_P930, JZ001_P011 and JZ002_P081. Images at different 
scales. After Arcane (2016). 

 

Clusters II.1 and II.2 

The second association of shape classes (Figure 4.13) includes cluster II.1 and II.2 

and it is characterised by the differences between them. In cluster II.1 all samples 

belong to the closed shapes group, with a predominance of samples of the ‘T – 

Flask/Bottle’ and ‘K – Jug/Juglet’ classes. In cluster II.2 there is a predominance 

of open shapes, especially the majority of the samples of the ‘G – 

Cup/Mug/Beaker’ class. One sample from the ‘P – Jar (wide neck)’ class is 

included here (#13). This sample is an uncommon representative of this class and, 

despite being a closed shape, it has similarities with some samples of the G class. 

It seems clear that the samples from cluster II.2 are visually closer to the samples 

from clusters II.3 and II.4 (Figure 4.14) than to the samples in cluster II.1, 

whereas the Hierarchical Clustering algorithm joined the clusters II.1 and II.2 

first, and then joined them to clusters II.3 and II.4 later (Figure 4.10). It is likely 

that the algorithm recognised an unidentified pattern between the two clusters, 
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without using the open/closed shapes criteria, but the hypothesis that the 

agglomerative clustering technique was inefficient in this case cannot be ruled 

out. 

 

 

Figure 4.13 – Samples belonging to cluster II.1 and II.2 (complete dendrogram 
is shown in Figure 4.10). The number indicates the sample random number 
(from 0 to 49) and the letter in brackets indicate the sample shape class. First 
row: JZ007_P001, JZ001_P947, JZ002_P603, JZ002_P618 and JZ002_P624; 
second row: JZ001_P001, JZ001_P008 and JZ001_P083; third row: 
JZ001_P119, JZ004_P053, JZ001_P192, JZ002_P602; fourth row: 
JZ001_P485, JZ001_P182 and JZ001_P492. Images at different scales. After 
Arcane (2016). 
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Figure 4.14 – Samples belonging to clusters II.3 and II.4 (complete dendrogram 
is shown in Figure 4.10). The number indicates the sample random number 
(from 0 to 49) and the letter in brackets indicate the sample shape class. First 
row: JZ007_P012, JZ007_P026, JZ001_P024 and JZ001_P295; second row: 
JZ002_P243, JZ001_P004 and JZ001_P939; third row: JZ001_P005, 
JZ001_P942 and JZ002_P693; fourth row: JZ001_P292 and JZ002_P621. 
Images at different scales. After Arcane (2016). 

 

Clusters II.3 and II.4 

The third association of shape classes (Figure 4.14), which includes clusters II.3 

and II.4, is composed mostly by samples of the open shapes group, including the 

almost totality of samples of the ‘C – Shallow bowl’ and ‘E – Bowl’ classes, and 

the two remaining samples of the ‘G – Cup/Mug/Beaker’ class. Two samples of 

the ‘K – Jug/Juglet’, a closed shape, are included in this association. The fact that 

samples of this class that have a higher H-Bd ratio were joined with closed shapes 
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(cluster II.1) and those with a lower ratio were joined with open shapes will be 

commented in the next Chapter. 

 

 

Figure 4.15 – Samples belonging to clusters III and IV (complete dendrogram is 
shown in Figure 4.10). The number indicates the sample random number (from 
0 to 49) and the letter in brackets indicate the sample shape class. First row: 
JZ001_P203 and JZ002_P060; second row: JZ001_P088, JZ002_P101, 
JZ001_P052, JZ002_P068 and JZ001_P072; third row: JZ001_P283, 
JZ001_P932, JZ002_P203, JZ001_P051 and JZ001_P241; fourth row: 
JZ002_P084, JZ001_P252 and JZ001_P273. Images at different scales. After 
Arcane (2016). 
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Clusters III and IV 

The predominance of closed shapes, mainly samples of the ‘N – Closed pot 

(high)’ and ‘R – Jar (restricted neck)’ classes, characterises the fourth association 

of shapes, represented by the clusters III and IV (Figure 4.15). The presence of 

one sample of the ‘P – Jar (wide neck)’ class occurs naturally here, apparently 

unusual is the presence of four samples (from a total of five) of the ‘H – Open pot’ 

class. There may be an explanation for this association, which will be discussed in 

the next Chapter. A final sample (#30) that could be considered an outlier in this 

association is a member of the ‘E – Bowl’ class. The main difference between this 

one and other common samples of the E class is the presence of lugs, this is the 

only sample in the class that has this additional element. 

 

4.3 Summary of results by shape 

This summary aims to provide an overview of the results from both supervised 

(classification) and unsupervised (clustering) methods focused on the individual 

shape classes. Each set of information (Figures 4.16 and 4.17) is divided into three 

parts: i) a generic illustration of the shape class; ii) a summary of metrics for 

supervised learning, indicating the score of the VC (Vote Classifier), the 

algorithm with the best overall results, and the highest score considering all 

algorithms; iii) the relationship among the shape classes, taking both approaches 

(classification and clustering) into consideration. 

In the third part the symbols �/ indicate whether the relationship between two 

shape classes is stronger (�) or weaker (), or the cell is left blank if there is no 

clear relationship. For classification, the criteria are the results provided by the 

confusion matrices in the second training session (Section 4.1.3). If among the 

algorithms five or more misclassifications occur for one particular shape, then the 

relationship between the shapes is stronger. If there are two to four occurrences, 

the relationship is weaker. For clustering, the criteria are the results provided by 

the k-Means (Tables 4.13 to 4.15) and Hierarchical Clustering (Figure 4.10). If the 

shapes are part of the same cluster in 4-5 results, the relationship among the 

shapes is stronger. If the shapes are part of the same cluster in 2-3 results, the 

relationship is weaker. 
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4.3.1 Open shapes 

    
Classification      
Total samples 10  Relation to other shapes 
Test samples 3  Shape  Classif. Clust. 
F1-Score - VC 0.50  E � �  

Shallow bowl F1-Score - highest 0.50  G   

 
    

Classification   Relation to other shapes 
Total samples 182  Shape  Classif. Clust. 
Test samples 46  C � � 
F1-Score - VC 0.96  G �   

Bowl F1-Score - highest 0.96  P   

 
   Relation to other shapes 

Classification   Shape Classif. Clust. 
Total samples 96  C   
Test samples 24  E �  
F1-Score - VC 0.92  H �  
F1-Score - highest 0.92  K  � 
   P   

 
Cup/Mug or Beaker 

   T   

 
    

Classification   Relation to other shapes 
Total samples 20  Shape Classif. Clust. 
Test samples 5  G �  
F1-Score - VC 0.89  N  � 
F1-Score - highest 0.89  R  � 

      
 

Open pot 
      

Figure 4.16 – Summary of results: open shapes. Images drawn after Arcane (2016) 
samples: JZ001_P939, JZ001_P015, JZ001_P110 and JZ001_P087. 

 
4.3.2 Closed shapes 

   Relation to other shapes 
Classification   Shape Classif. Clust. 
Total samples 22  G  � 
Test samples 5  P � � 
F1-Score - VC 0.67  R �  
F1-Score - highest 0.89  T  � 
      

 
Jug/Tankard or Juglet 

      
 

    
Classification   Relation to other shapes 
Total samples 34  Shape Classif. Clust. 
Test samples 8  H  � 
F1-Score - VC 0.67  P �  
F1-Score - highest 0.67  R  � 
      

 
Closed pot (high) 
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   Relation to other shapes 

Classification   Shape Classif. Clust. 
Total samples 88  E   
Test samples 22  G   
F1-Score - VC 0.81  K � � 
F1-Score - highest 0.86  N �  
   R �   

Jar (wide neck)    T � � 

 
   Relation to other shapes 

Classification   Shape Classif. Clust. 
Total samples 32  H  � 
Test samples 8  K �  
F1-Score - VC 0.82  N  � 
F1-Score - highest 0.88  P �  
   T �   

Jar (restricted neck) 
      

 
   Relation to other shapes 

Classification   Shape Classif. Clust. 
Total samples 12  G   
Test samples 3  K  � 
F1-Score - VC 0.67  P � � 
F1-Score - highest 0.80  R �  
       

Flask/Bottle       

Figure 4.17 - Summary of results: closed shapes. Images drawn after Arcane (2016) 
samples: JZ001_P008, JZ001_P001, JZ001_P923, JZ001_P272 and JZ002_P618. 
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5 DISCUSSION 

 
The research results based on the supervised and unsupervised approaches will be 

assessed with a focus on the main themes directly related to the research 

questions, on general issues of the application of ML in archaeology, and how the 

research results compare to selected related studies. 

 

5.1 Main themes 

5.1.1 Artefact features 

The Decision Tree Classifier (DT) was not among the algorithms with the higher 

performance, nevertheless it was very useful for the analysis of results through the 

generated decision tree and the relevance of the features used in the tree. The 

analysis of the decision tree, either in graphic or textual form, makes easier to 

understand the criteria used by the algorithm for the classification and, based on 

this information, the traditional classification may be evaluated and provide new 

insights into the applied methods. Despite the feature importance being a property 

of algorithms based on decision trees like DT and Random Forest, the information 

provided by them can be used to improve the dataset as a whole and consequently 

improve the results of other algorithms. 

As summarised in Table 4.3 and Figure 4.1, the most important features are two 

relative measurements, H-Bd (Total Height / Belly diameter ratio) and Bd-Nd 

(Belly diameter / Neck diameter ratio), followed by two absolute measurements, 

base diameter and neck diameter. The most relevant categorical feature is 

rim_profile[7] (round-folded outside), and the next one is base_type[2] (rounded 

base). If all categorical features were considered not individually, but as a unit, 

without the division created by the OneHotEncoder method, they would have the 

following average importance based on Table 4.3: rim_profile = 0.055, base_type 

= 0.034, additional_elem = 0.026, and rim_orient = 0.012. The rim_profile feature 

would be the 5th in importance, and the base_type the 10th. These are just 

estimative, the actual values would only be revealed if the encoder had not 

processed these features. 
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The identification of the most relevant artefact features and how these contribute 

for the identification of vessel shape is one of the strengths of ML. The following 

case, based on the tree generated by the DT algorithm during the second training 

session (Section 4.1.3), illustrates at the same time the importance of feature 

definitions and the exactness of the data used to build the ML model.  

 

 

Figure 5.1 – Vessel measurements used by the Decision Tree classifier 
in the root (H-Bd ≤ 0.775) and first level (Bd-Nd ≤ 1.41) tests. Left: 
shape proportions that separated the majority of bowls from other 
shapes; Right: proportions that separated the majority of closed shapes 
samples from the open shapes. H = total Height, Bd = Belly diameter; 
Nd = Neck diameter; Rd = Rim/opening diameter; BaD = Base 
diameter. 

 

Figure 5.1 illustrates the vessel measurements used by the Decision Tree classifier 

in the root (H-Bd ≤ 0.775) and first level (Bd-Nd ≤ 1.41) tests. Both tests applied 

the relative measurements defined in Section 3.1.8. The left image shows the 

shape proportions that separated the majority (92%) of ‘E – Bowls’ samples from 

other shapes in the training part of the dataset. The right image shows the 

proportions that separated the majority (91%) of closed shapes samples from the 

open shapes samples in the training part of the dataset. 

The samples of the ‘E – Bowl’ class were separated into two initial branches, and 

then further divided in the deeper level branches, as described in Section 4.1.3. 

The focus here is the first division, especially the separated branch that included 

the minority of E class samples. Figure 5.2 illustrates the samples that were 

included into this branch by the DT classifier, which represent bowls that are 

deeper than the more common bowl types. 
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Figure 5.2 – Samples of ‘E – Bowl’ shape class that were classified in a 
separated branch by the Decision Tree classifier (Section 4.1.3), under 
the condition H-Bd > 0.775. The highlighted sample JZ002_P067, 
which originally would not match this condition, was included in this 
branch by the algorithm because of a measurement error in the Arcane 
database. Images at different scales. After Arcane (2016). 

 

The sample JZ002_P067 (highlighted in Figure 5.2) was included in this selection 

by the DT algorithm because an error in the Arcane database measurements. After 

analysing these results, the vessel was measured through ImageJ using the scale 

provided in the original Arcane image. It was possible to conclude that its height 

(6.0 cm) and other measurements are correct, however the diameter at opening 

was recorded as 5.70 cm, when the correct measurement should be around 11.0 

cm. The diameter at opening is used in the relative measurement H-Bd in the 

place of belly diameter when the vessel has no belly and neck, as explained in 

Section 3.1.8. As a consequence of this error, the shape recognised by the 

algorithm did not reflect the original shape of the vessel. 

The next issue is related to NA (null) values in features, in this case the base_diam 

(base diameter) feature, extending to the Bd-BaD (Belly diameter / Base diameter 

ratio) feature. Both features have a number of samples with NA values (89 in 496 

samples). As commented in Section 3.3.4, scikit-learn algorithms does not process 

NA values and these must be converted to zero or other calculated value. This 

may not be a big problem for those vessels that have a pointed or small base in 
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relation to the body, e.g., the samples starting with ‘JZ004’ in Figure 5.2, but for 

vessels with larger proportional bases, the vessel shape can be distorted and 

consequently being misclassified by the algorithms.  

Alternatives to this issue could be the non-utilisation of these features in the ML 

model (as it was done with min_diam and max_diam after the first training 

session), or the removal of samples that have NA values for these features. It was 

decided to keep these features and samples in this research because completely 

preserved pottery vessels in archaeology are relatively rare, the most usual is the 

preservation of certain parts of the vessel, which in some cases can lead to 

identification of missing parts and the ‘visualisation’ of the complete vessel shape 

based on its measurements (Orton et al. 1993, p. 76-80). The occurrence of 

incomplete samples is important to assist in the identification of potential issues 

and limitations in the ML model, in order to develop techniques that may improve 

the results taking these limitations into consideration.  

 

5.1.2 Shape classes 

Some shape classes may be more complicated to classify than others, apart from 

the sample size of the class. It is for instance the case of ‘N – Closed pot (high)’, 

which has a sample size greater than other shape classes (H, K and R) but returned 

lower scores than these classes. In the second training session (Tables 4.6 to 4.10), 

nearly half of the samples of the N class were misclassified as ‘P – Jar (wide 

neck)’ or other shapes. The N shape is also the one with greatest dispersal in 

clustering (Table 4.16, almost equally divided into three clusters), followed by the 

‘R – Jar (restricted neck)’ class. 

The class ‘G – Cup/Mug/Beaker’ has samples with significant differences among 

each other (Figures 3.4 and 4.13), especially regarding the base type, nevertheless 

it is one of the shape classes with higher scores in classification (0.92), and it is 

divided basically into only two clusters (Table 4.16). A similar comment can be 

made about the class ‘K – Jug/Juglet’, a high score in classification (0.89) and 

only two basic clusters. Some of the differences in the case of samples of the K 

class are related to the presence of additional elements, especially spouts, which 

were correctly identified by the Decision Tree algorithm (Figure 4.7). 



115 

From the five samples of the ‘H – Open pot’ class present in the dendrogram 

(Figure 4.10), four are associated with clusters represented by closed shapes. One 

sample of the H class is associated with samples of the K, P, R and T classes 

(Figure 4.12), while other three H samples are associated with samples of the N 

and R classes (Figure 4.15). The decision tree generated in the second training 

session (Figure 4.8) also indicates a proximity between the H class and those of 

the closed shape group, however the closer shape to H according to supervised 

learning in general is the ‘G – Cup/Mug/Beaker’ class (Figure 4.17). These results 

suggest that the H class can be considered a ‘hybrid’ class, having characteristics 

from both open and closed groups. From the open shapes the most evident is the 

wider opening/rim diameter, and from the closed shapes, the presence of a neck 

and the rim profile/orientation. 

 

 

Figure 5.3 – Types of ‘H – Open pot’ shape classes identified through 
analysis of the tree generated by the Decision Tree classifier. Vessels: 1 
= JZ001_P258; 2 = JZ004_P092; 3 = JZ001_P049; 4 = JZ001_P010. 
Images at different scales. After Arcane (2016). 

 

The Decision Tree classifier can also be useful in the definition of potential sub-

classes/types, or in the identification of outliers (atypical class members). Figure 

5.3 shows four types of vessels of the H class, and Appendix B.1 shows the 

structure that identified these types based on the DT classifier. The tree 

mechanism is the same from the original decision tree (Figures 4.5 to 4.7), the 

difference is the focus in just one shape class. Another difference is that the 

original tree used only the 15 samples that are part of the training dataset, in 

Figure 5.3 and in the appendix all 20 samples of the H class are considered. The 
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vessel type #1 is the most common type of the H class in the dataset, 15 samples 

of this type have at the same time H-Bd > 0.77, Bd-Nd ≤ 1.41 and belly_diam > 

18.21. Other 5 vessels have at least one feature that has different values from 

these parameters defined by the algorithm: type #2 is shorter, type #3 has a more 

restricted neck and type #4 has narrower belly diameter when compared to the 

average vessels of the H class. This is a simplified classification, a more complete 

one would also apply categorical features (rim profile/orientation, base type) to 

refine it. The tests applied by the DT classifier using these features and values 

were created to process all shape classes in the dataset, in the case of a dataset 

where only samples of H class were used, it is possible that different criteria 

would be applied. 

According to the specifications in Section 3.1.2, the main difference between jugs 

and juglets is the vessel height (up to 15 cm for juglets). From the five samples of 

the K class included in the dendrogram, four are defined as juglets in the Arcane 

database. Three samples are associated with closed shapes (Figures 4.12 and 4.13) 

and two are associated with open shapes, closer to the ‘G – Cup/Mug/Beaker’ 

class (Figure 4.14). It is possible to identify that the two samples associated with 

open shapes have a lower H-Bd ratio compared to the other three, but there is no 

relation between this information and the division between jug and juglet, since 

three juglets were associated to the closed shapes, which have a higher H-Bd ratio. 

It would be necessary to expand this analysis to a greater number of samples in 

order to identify a clearer pattern for the K class, and the criteria used by the 

clustering algorithms to group its samples. Furthermore, the presence of additional 

elements should be considered since only samples of K and N classes have spouts, 

and the only sample with handles in the dataset is a jug (Figure 4.12, sample #42). 

The ‘P – Jar (wide neck)’ class is peculiar in the sense that it produced high scores 

(up to 0.86) but at the same time it was the class that produced the most variety in 

misclassifications (Table 5.1), with three to four related shapes in average, five in 

the case of Voting Classifier. The positive side of the results is probably due to the 

high number of samples (the third highest in the dataset), an opposite situation 

when compared to the C and T classes. In terms of cluster analysis, the P shape 

was divided into four clusters, but only two are the prevailing ones, with 81% of 

samples (Table 4.16). 
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During the development of this research it was not possible to access the complete 

Arcane project documentation, which is available in printed volumes (Arcane, 

2016b). For this reason there is limited information about potential criteria used in 

the assemblages classification and how the vessels are associated to shape classes, 

beyond the general guidance presented in Section 3.1.2. These specifications work 

as a general reference and may not necessarily be rigorously followed since the 

final definition of shape classes may be a subjective matter.  

Taking this limitation into consideration, one explanation for associations 

described in the previous paragraphs may be related to the concepts of open and 

closed shapes and how the shape classes are defined. In principle, two possibilities 

can be considered regarding the process of defining the vessel shape class, which 

are also related to the top down and bottom up approaches described in Section 

2.1.3. The first alternative is broadly classifying a vessel as either open or closed 

(or some of the other groups listed in Table 3.1), and then comes the decision of 

what specific class the vessel belongs to. The second alternative is to directly 

define the vessel shape class, and it is then automatically defined as belonging to 

either the open or closed group. 

The criteria for defining the shape classes are different for open and closed shapes 

(Section 3.1.2). In the case of open shapes, both the relation between vessel 

diameter and vessel height, and the absolute diameter and height, are used as 

reference. For closed shapes, the relation between the minimum and the maximum 

vessel diameter, and the absolute height are used. Since there are different criteria 

for both groups and these criteria are not mutually exclusive, there is an overlap in 

the classification criteria between the two groups. In order to avoid this problem, 

it would be necessary to define first whether a vessel belongs to the open or close 

group, and then apply the classification criteria to define the shape class under one 

of these groups. 

Finally, the possibility of misclassifications caused by occasional data input errors 

must be considered. In one specific case, identified during the sample selection in 

the Arcane database, the vessel JZ001_P175, classified as a beaker (G class), 

clearly does not belong to this class, according to the vessel measurements (height 

of 95 cm and capacity of 298 litres) and illustration, it could be classified as a 

large storage jar (possibly a ‘S – Pythos’?). 
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Voting Classifier 

Classified as ���� C E G H K N P R T F1 

C Shallow bowl 1 2 - - - - - - - 0.50 

E Bowl - 45 1 - - - - - - 0.96 

G Cup/Mug or Beaker - - 24 - - - - - - 0.92 

H Open pot - - 1 4 - - - - - 0.89 

K Jug/Tankard or Juglet - - 1 - 4 - - - - 0.67 

N Closed pot (high) - - - - 1 4 3 - - 0.67 

P Jar (wide neck) - 1 1 - 1 - 17 1 1 0.81 

R Jar (restricted neck) - - - - 1 - - 7 - 0.82 

T Flask or Bootle - - - - - - - 1 2 0.67 

Table 5.1 – Confusion matrix resulting from the Voting Classifier 
algorithm (reproduced from Table 4.8), with some misclassifications 
highlighted in blue. The sample highlighted in orange is JZ004_P064 
vessel (Figure 5.4). 

 

 

Figure 5.4 – JZ004_P064, vessel of the ‘P – Jar (wide neck)’ 
class misclassified as ‘E – Bowl’. After Arcane (2016). 

 

This sample was not included in the research dataset because it would just provide 

wrong information for the training of ML algorithms. If an error like this was not 

identified during the sampling selection process and a ML model processes a 

problematic sample, the results provided by tools such as the confusion matrix 

(e.g., an association between two completely distinct classes) would raise the 

attention of the analyst for a potential mistake in the dataset. This is one of the 

benefits of using ML in pottery classification. 

This issue can also be exemplified through the confusion matrix provided by the 

Voting Classifier algorithm (Table 4.8), and reproduced here (Table 5.1). A 

characteristic of ML algorithms that achieved the highest scores in this research is 

to produce misclassifications of shapes that are closer to the original shape. The 

misclassifications are mostly adjacent or near to the main diagonal, shown in pale 

blue in Table 5.1. Because of the shape classes characteristics, it is more 
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reasonable to expect samples of the C class misclassified as E class, or samples of 

the N class misclassified as P class than, for instance, samples of the C class 

misclassified as T class. The cell highlighted in orange in Table 5.1 shows a 

sample of the ‘P – Jar (wide neck)’ class misclassified as a sample of the ‘E – 

Bowl’ class. These classes are not close to each other. After a more detailed 

analysis on this particular case, the sample was identified as the JZ004_P064 

vessel.  

This vessel (Figure 5.4) looks like an uncommon member of the P class, it is 

possible to identify similarities in the vessel body with some samples of the E 

class, and it was interpreted that way by the VC and other ML algorithms. This 

vessel is also similar to some samples of the ‘K – Jug/Juglet’ class (e.g., sample 

#49 in Figure 4.14), the main difference is in the base type. It is not possible to 

know if this was a misclassification in the Arcane database, this vessel was not 

originally classified as a bowl likely because of certain details beyond the basic 

shape, like the neck and the rim profile. In this particular case, the vessel 

measurements and the categorical features were not enough to identify it as a 

sample of the P class (or other class, in the case of an original misclassification in 

the Arcane database). In any case, the analysis of the confusion matrix result 

would draw the analyst’s attention to a revision in the classification of the sample. 

 

5.1.3 Classification and clustering 

A ML model can be used as a tool to assist pottery experts in their decision while 

performing the task of vessel classification. In the supervised learning approach, 

the overall performance of 0.87 in accuracy achieved by the Voting Classifier 

algorithm indicates that ML may produce results that can be useful to the expert, 

and it is theoretically possible that a more balanced dataset, with a more uniform 

distribution of shape classes, could provide highest results. This could be a 

question for future research. 

The benefits of using unsupervised learning methods are not so clear initially, as it 

is the case of supervised learning, mostly because there is no straightforward way 

to assess the results since there are no target classes to be compared. On the other 

hand, clustering methods such as k-Means and Hierarchical Clustering have the 
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benefit to create clusters, which can become potential classes, based on different 

criteria and therefore providing new insights into the pottery assemblage. 

Clustering methods also allow a new analysis on previously classified collections 

in accordance with new perspectives and approaches. The basic classification 

criteria used in this research, dividing the shape classes mainly in open and closed 

shapes, was only followed partially by the clustering algorithms. This cannot be 

considered a problem, on the contrary, because one of the goals of unsupervised 

learning is to identify possible new patterns and relationships among artefacts.  

Groups of artefacts (either classes or clusters) should be internally coherent and 

externally isolated (Read, 2007, p. 64, p. 135-8), and the groups should be 

precisely defined to allow the classification to be externally reproduced (Orton et 

al., 1993, p. 152). Members (the samples in the dataset) must be clearly identified 

as belonging to one group and not to others. In practice this may not be easily 

achieved, as the results from ML algorithms show. Samples from the same shape 

class are split into two or more clusters, and misclassifications occur in all shape 

classes, with different degrees of precision/recall. Nevertheless, it is possible to 

identify patterns in the grouping of shape classes. 

Five shapes clearly relate to each other in terms of both classes and clusters, based 

on the results: C-E, K-P and P-T. Some shape classes show stronger relations with 

other classes in terms of classification: E-G, G-H, N-P, P-R and R-T, while other 

shape classes show stronger relations with other classes in terms of clustering: G-

K, H-N, H-R, K-T and N-R. 

The creation of a complete taxonomic structure for this assemblage like the 

example shown in Figure 2.8 is beyond the scope of this research, nevertheless it 

is possible to provide some examples of structures based on the results from both 

supervised and unsupervised learning. The experts from the Arcane project 

somehow created a specialisation for some shape classes as commented in Section 

3.1.2, it is the case of the G class, divided in samples described as ‘Cup/Mug’ or 

‘Beaker’, the K class, divided in ‘Jug/Tankard’ or ‘Juglet’, and the T class divided 

in ‘Flask’ or ‘Bottle’. In these cases the size of the vessel usually indicates the 

differences in the description, but the shape class (the target) is the same, therefore 

there is no way for ML algorithms to recognise any difference between them.  
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The taxonomic structures presented here are valid for the assemblage used in this 

research only, and do not represent other archaeological sites or cultures recorded 

in the Arcane database, for this reason ‘Research assemblage’ is on the top of the 

structures. In addition, not all potential subclasses or super classes are shown in 

these structures. 

 

 

Figure 5.5 – Possible hierarchy of classes (taxonomic structure) 
based on supervised learning algorithms results. C = Shallow bowl; 
E = Bowl; G = Cup/Mug/Beaker; H = Open pot; K = Jug/Juglet; N = 
Closed pot  (high); P = Jar (wide neck); R = Jar (restricted neck); T 
= Flask/Bottle. 

 

Through supervised learning results it is possible to identify a closer relation 

among certain shape classes, especially C-E in the open shapes group, and P-R-T 

in the closed shapes group. These shape classes could be grouped to form two 

super classes, Bowls and Jars (Figure 5.5). 

The ‘T – Flask/Bottle’ class could be considered a special case of the ‘Jars’ class, 

since the main differences between members of the T class and those of the P and 

R classes is the more restricted neck, and the lower height in the case of flasks. On 

the opposite way, the E class could be separated in two subclasses, as identified 

by the Decision Tree classifier. The bowls with a higher H-Bd (total Height / 

Belly diameter) relation could compose one of these subclasses, not necessarily 

based on the H-Bd value greater than 0.775 as in the DT test, but a similar value 
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could be used as a reference. This subclass of ‘deeper’ bowls would be an 

intermediate between the ‘E – Bowl’ and the ‘F – Deep bowl’ classes. 

 

 

Figure 5.6 – Possible hierarchy of classes (taxonomic structure) 
based on unsupervised learning algorithms results. C = Shallow 
bowl; E = Bowl; G = Cup/Mug/Beaker; H = Open pot; K = 
Jug/Juglet; N = Closed pot  (high); P = Jar (wide neck); R = Jar 
(restricted neck); T = Flask/Bottle. The dotted lines indicate 
shape proximities. 

 

Through unsupervised learning results it is also possible to identify a closer 

relation between C-E shape classes as in the case of supervised learning, but the 

clustering analysis revealed different groupings in the case of the closed shapes 

group (Figure 5.6). One group is the cluster resulting from the K-P-T classes (with 

the possible inclusion of the G class), and the other one is the cluster resulting 

from the H-N-R classes. This cluster has the peculiarity of including the H class, 

an open shape class, together with two closed shapes, N and R. The criteria used 

in the Arcane project to separate the classes in open and closed groups (which is 

based partially on the relation between belly and neck diameters) was not 

followed by the clustering algorithms. It is easier to identify a similarity between 

the H and N shapes, since both are described as ‘pots’; it must be also observed 

the Arcane project division of closed pots in two classes, ‘N – Closed pot (high)’ 

and ‘M – Closed pot (squat)’, which is not used in this research because the 

motives explained in Section 3.1.9. 

The relation of both shapes, H and N, with the ‘R – Jar (restricted neck)’, is more 

complex to identify through the information provided by the clustering 

algorithms, and it would require an individual analysis of most samples from these 
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classes. It is possible however to identify some similarities through the vessels 

shown in Figure 4.15, which contains most samples from the H, N and R classes 

selected for the dendrogram. In this figure it is possible to identify the more 

restricted neck of the samples belonging to the R class, and therefore the neck 

diameter was probably not among the main criteria to create these clusters.  

Based on a visual and exploratory analysis, since unsupervised learning 

algorithms do not provide information about the importance of features, it is 

possible to suggest that the overall vessel shape (represented by the H-Bd feature) 

was more decisive in this case, and also the rim orientation/profile in a secondary 

way. The majority of vessels in Figure 4.15 (excluding the ones in the first row, 

samples #15 and #30) have a similar overall shape, with an H-Bd range of 0.83 to 

1.27 (mean = 1.06), and prevalence of rim profiles 03 (Rounded), 04 (Thickened) 

and 09 (Horizontal folded outside). If these vessels are compared with the ones 

from Figures 4.13 and 4.14, this idea is reinforced. On the other hand, the vessels 

in Figure 4.15 are more similar to those in Figure 4.12, which belong to a distant 

cluster. One difficulty here is to name the clusters (except the Bowls), the K-P-T 

and the H-N-R clusters do not have a clear term that could be used to represent all 

the shape classes in each cluster. 

 

5.2 Machine learning issues 

Dataset context 

The results provided by the ML model are valid at first only for pottery 

assemblages that are culturally related in some way to the assemblage used for 

this research. The four archaeological sites, selected among 168 sites available in 

the Arcane dataset, are from the same region (Northeast Syria), approximately 

from the same period (Third millennium BC) and the contexts of finds are similar 

(domestic/storage) for the great majority of the samples (Section 3.1.1). The 

model trained with information about this dataset would probably not generalise 

well for pottery associated with other cultures or periods, but tests should be made 

in order to quantify this hypothesis.  

The decision to use an assemblage from four different sites (even if culturally 

related) was made in order to provide a minimal amount of well-preserved 
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samples to allow the training of ML algorithms. It is possible that this choice 

contributed to the variation of shapes within certain shape classes and, 

consequently, to limit the ML model performance. The site with greater amount of 

samples, Tell Brak, is also the one with greater time range, however the great 

variety in shapes is probably from Tell Leilan, since part of the samples are from 

funerary contexts and not from domestic/storage contexts as the majority of 

samples in the dataset.  

In respect to the dataset structure (the features used to obtain the target classes) 

and the procedure used in the training sessions (Section 3.3.11), they are generic 

enough and at first they could be used to other types of assemblages, therefore the 

model could be reutilised with new samples and trained with them without 

significant modifications. 

Benchmark 

One of the most relevant aspects observed in the results is related to how 

consistent is the benchmark used to assess the performance obtained from the 

training sessions. The results were assessed analytically through the confusion 

matrices and synthetically through accuracy and F1-Score metrics, but their utility 

is limited by the quality of the benchmark.  

As explained in Section 5.1.2, the access to the completed Arcane project 

documentation was not possible, limiting the hypotheses about the original 

classification process used in the project. It is remarkable that all vessels in the 

database (more than 8200 records from 168 sites) were classified under the same 

shape classes’ scheme, allowing the comparison of different sites and periods. It is 

possible, however, that different experts were responsible for defining the vessels’ 

shape classes in different sites, using slightly different criteria when classifying 

samples for different sites or different contexts within sites. There is a section in 

the Arcane pottery database where some information about the users responsible 

for specific actions is found: entering and editing data, scientific validation, and 

technical validation (which is software related). In the case of the four sites used 

in this research, only JZ002 – Beydar has information about a scientific validation 

task, and the users responsible for entering data are different for each one of the 

four sites.  
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Even if the four selected sites and their assemblages are reasonable similar among 

each other, it is possible to expect some differences in the classification criteria 

applied by the experts, which would impact the learning process and consequently 

the performance during prediction. 

Algorithms parameters 

Some of the algorithms that provided better results than DT are less transparent in 

their mechanisms (Logistic Regression, SVC) and more sensible to the 

combination of input parameters, and in those cases the utilisation of the grid 

search and cross-validation methods is important to fine tune the ML model and 

obtain the best possible performance. Albeit it is possible to test a combination of 

parameters manually in the algorithms, the utilisation of methods such as 

GridSearchCV in scikit-learn makes this task easier. Even when applying this 

method it may be necessary to test different parameters combinations since some 

algorithms, especially SVC, have a considerable alternative of parameters, and 

using a large number of them at the same time may slow down the running of 

training scripts. This was not a problem in this research particularly, since the 

dataset is relatively small, and the longest time for a script to run the 

GridSearchCV method was limited to a few minutes. 

The DT classifier has some disadvantages when compared to other ML algorithms 

used in this research, among them is the sensitivity to small variations in the 

training data, and unbalanced datasets (certain classes are dominant in terms of 

sample quantity) (Géron, 2019, p. 185-6; Scikit, 2021j). Another issue is related to 

the necessity to limit the growth of the tree to avoid the model overfitting, which 

means that the model may perform well on the training data but it does not 

generalise well for unknown data (e.g., the test dataset) (Géron, 2019, p. 27-9, p. 

180-1; Müller & Guido, 2017, p. 28-30). When the DT classifier is not limited in 

depth, it can generate a highly complex tree that produces a very high 

performance on the training dataset (accuracy can be equal to 1.00), but produces 

a much lower performance on the test dataset. After limiting the tree growth (in 

this research the limit in 5 or 6 levels produced the best results, but that depends 

on the dataset characteristics), the generated tree based on the training dataset 

produced a lower performance but on the other hand the performance increased 

for the test/unknown dataset, which is the goal of the ML models. 
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The issue of overfitting is valid for other algorithms beside DT classifier, how 

they will perform on both the training and test datasets is controlled by a series of 

parameters, some algorithms requires the use of none or few parameters, while 

others requires an optimal combination of several parameters to acquire the 

maximum performance. For that reason the technique of grid search with cross-

validation was applied in the third training session. Another relevant issue related 

to parameters is the optional randomness during the creation of training and test 

datasets through the ‘train_test_split’ method. It is preferable to use the option for 

not generating a random splitting of the train and tests datasets each time the 

training session runs, that way the samples will be splitted the same way every 

time and the results can be reproduced in order to assess and compare them. 

 

5.3 Related research 

Some of the studies presented in Section 2.2.4 have aims similar to those of this 

research, one of the differences is related to method: while others use mainly 

visual features and image analysis as a basis for classification, this research uses 

categorical and continuous vessels features to identify shape classes. Another 

difference is related to the type of artefact: complete or near complete vessels as 

in the case of this research, or ceramic shards in case of many others. This Section 

comments on three studies that have similar goals or apply methods that are more 

closely related to this thesis, or that raise relevant issues to it. 

Methodology for typology development 

Hörr et al. (2014) apply a combination of unsupervised, semi-supervised and 

supervised learning methods to create a methodology for a ML based typology 

development in archaeology. The method consists in the application of the 

different ML methods in a sequence, starting with an unsupervised phase 

(including the definition of features to estimate similarities between instances), 

continuing through a semi-supervised phase (when the relevance of the features is 

measured, the most relevant ones are selected and preliminary types are defined), 

and finishing with the supervised phase when several classifiers are trained with 

the labelled data and new instances are assigned to one of the defined types. If a 

misclassification is identified and the type assignment is proved incorrect, a new 
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label is given and a reclassification takes place. In Hörr et al. (2014) different ML 

methods are applied in a sequence of phases aiming to define a new typology for a 

pottery assemblage, while in this thesis the supervised and unsupervised methods 

are applied in a comparative way, aiming to analyse and assess an already 

established classification. 

The dataset used by Hörr et al. (2014) consisted of 599 pottery vessels from the 

Lusatian Culture (1400-800 BC) cemetery of Kötitz, Germany. The vessels 

measurements were obtained automatically through 3D scanning (that way 

avoiding inaccuracies) and thirty-five features were initially selected, including 

categorical information, absolute and relative measurements. Among the features 

that were considered more important by the algorithms are the relative 

measurements, but also categorical ones like shape and number of attachments. 

Here the difference is significant, since the categorical feature additional_elem 

(additional elements) used in this thesis is not among the most important because 

these elements appear only in a few samples.  

Among the several algorithms used by Hörr et al. (2014), some are the same or 

equivalent to the ones used in this thesis: Majority Voter, Logistic Regression, 

Random Forest, k-Nearest Neighbors, and C4.5 decision tree classifier. The 

typology development process after several refinements defined nineteen primary 

vessel types, and new instances were correctly classified with a probability of up 

to 95%. One interesting aspect is that the absolute size of the vessels was not 

taken into consideration for type definitions. The cultural uniformity and the 

quality of vessels in the assemblage contributed for the high level of prediction 

rate. In the same way that this thesis, some types were considered more difficult to 

classify and others had lower performance rates because of the low quantity of 

samples. 

Classification based on ceramic chemical composition 

In the second example study, Charalambous et al. (2016) apply ML algorithms to 

identify classes of utilitarian pottery from the Early/Middle Bronze Age Cyprus 

(c. 2400-1700 BC), but use chemical composition of ceramics as the basic data for 

classification. In this case the research focus is to identify degrees of similarity 

between types based on their chemical profiles, and address aspects of ceramic 

production and distribution.  
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The dataset used by Charalambous et al. (2016) includes 177 ceramic samples 

from eight different sites across the island, while the features are mineralogical 

and chemical characterisations (such as MgO and Al2O3), obtained from ED-XRF 

analysis. The methodology includes the application of supervised learning 

algorithms k-Nearest Neighbors, C4.5 decision tree classifier and LVQ (Learning 

Vector Quantisation). The reported results are the classification maximum 

accuracies (%) of 79.4 (KNN), 77.2 (C4.5) and 65.2 (LVQ). Some of the most 

useful results were obtained through the analysis of the confusion matrices, which 

indicated previously unidentified relationship between certain classes/fabrics of 

ceramic (Charalambous et al., 2016, p. 470). 

One of the issues mentioned in the research is the small (for ML purposes) 

number of samples compared to the high number of classes (36). To overcome 

this limitation, the technique of bootstrapping with replacement was applied to 

generate the datasets of 177 samples (Charalambous et al., 2016, p. 467-8). This 

technique allows taking the samples as if it were a population and randomly 

selecting new samples from it several times (Drennan, 2009, p. 136). The dataset 

characteristics and the choice of parameters are possible causes for the lower 

performance of LVQ, which is considered a more complex algorithm, when 

compared to the other two (Charalambous et al., 2016, p. 470). Another issue in 

the research is related to the number of classes with only one member, which were 

included in the dataset nevertheless. It is not clear if the bootstrapping solved this 

issue or how the classification algorithms dealt with this limitation, since one of 

the principles of supervised learning is the division of the dataset in training and 

test parts, and samples of one class must be present in both datasets in order to 

train the model and assess the classification results. 

Classification based on pottery decoration 

This last example study, by Pawlowicz and Downum (2021), will be more briefly 

commented regarding their methods since it applies CNNs (Convolutional Neural 

Networks), which are a more complex category of ML, known also as Deep 

Learning, nevertheless there are other aspects in their study that are relevant for 

this thesis. Pawlowicz and Downum (2021) present an approach to typology using 

digital images of decorated pottery shards from the Tusayan White Ware tradition 

(c. AD 825-1300) from Arizona, USA. 
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According to Pawlowicz and Downum (2021, p. 1-2), one of the issues related to 

pottery classification is the ability of the analyst to apply consistent and accurate 

criteria. In some cases, specific classification systems are applied, for instance the 

‘ware-type-variety’ system used in the archaeology of the North-American 

Southwest. ‘Ware’ is the broader category, which is based on both technology and 

decoration features, and it is further subdivided into types and varieties. Between 

seven and nine types of Tusayan White Ware are recognised, depending on the 

criteria used, but they broadly reflect different time periods (Pawlowicz & 

Downum, 2021).  

Based on a dataset of 2,407 pottery shards, Pawlowicz and Downum (2021, p. 6-

8) present the precision, recall and F1-Score separated by types, where the F1-

Score varies from 0.394 to 0.899 (average of 0.825 among eight types). They 

compare these results to the ones provided by four pottery experts, which resulted 

in overall accuracies (all types included) between 0.736 and 0.869, based on a 

consensus dataset (the benchmark). Pawlowicz and Downum (2021, p. 6) point 

out that the accuracy achieved by a deep learning model might be limited by the 

accuracy of the type labels used to train the model.  

The traditional Tusayan White Ware typology system still prevails despite its 

limitations and after a new attribute-based classification system was proposed. 

This alternative system was successfully used in correlation with tree-rings to 

predict site dates with promising results but, despite being more precise, it 

requires more effort to codify attributes and was not widely adopted by the 

archaeology community (Pawlowicz & Downum, 2021, p. 3-5). This case 

exemplifies an additional challenge for the application of ML in archaeology, 

since alternative systems based on more up-to-date concepts could result in higher 

performance when submitted to ML algorithms. 
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6 CONCLUSION  

 
This research developed a ML model to classify archaeological pottery 

assemblages. Supervised and unsupervised learning methods and algorithms were 

integrated to concepts of quantitative classification of artefacts, and applied to a 

dataset of vessels of nine different shape classes from the Bronze Age 

Northeastern Syria. The importance of distinct types of features for the definition 

of artefact classes was identified, and the model performance in classification was 

evaluated through ML metrics. Alternatives classifications provided by clustering 

analysis were also provided and compared to the original dataset classification. 

Based on the research results and the discussion presented in the previous 

chapters, it is possible to return to the research question and the three sub-

questions defined in the introduction chapter. The main research question was 

defined as ‘Which are the benefits and limitations of a machine learning 

classification model for pottery assemblages’? The following paragraphs first 

provide the answers to the sub-questions. 

Which are the minimum features required to provide a basic classification, and 

which are additional features that could improve it?  

The categorical features in the research dataset were represented by vessel 

characteristics such as rim orientations and profiles, base types and additional 

elements (handles, lugs and spouts). The continuous features were represented by 

absolute and relative vessel measurements. Based on the results provided by the 

DT classifier and the differences between the first and second training sessions 

(when some features were excluded), it is clear that the relative measurements, 

especially the H-Bd (total Height / Belly diameter ratio), which represents the 

overall vessel shape, and Bd-Nd (Belly diameter / Neck diameter ratio), which 

identifies the vessel shape between the belly and the neck, were more relevant for 

the assemblage classification. After these features come the absolute 

measurements, especially the base diameter and the neck diameter. Among the 

categorical features, the rim profile was the most relevant. Because of scikit-learn 

requirements, the categorical features had to be converted in a numerical 

codification and this resulted in the individual elements of rim profiles and other 

categorical features to be used, instead of the feature as a unit. That way, the 
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specific rim_profile[7] (round-folded outside), which is the third most common in 

the dataset, was considered the most relevant profile for shape identification. 

The demonstrated importance of certain specific features is valid for the 

assemblage used in this research, other assemblages could result in different 

features having more or less importance. Nevertheless, the overall importance of 

the relative measurements for identification of vessel shapes certainly applies to 

other assemblages as well. All continuous features were used in the second 

training session, after the removal of less relevant features and, while all the 

categorical features (as a unit, not individually) were used, their importance score 

was lower than the continuous features scores. The importance of categorical 

features would likely increase if the additional elements were present in a larger 

number of samples. Other characteristics of the assemblage and scikit-learn 

restrictions also should be taken into consideration, as it is the case of features 

with NA (null) values in part of the samples. The base diameter and the relative 

measurement Bd-BaD (Belly diameter / Base diameter ratio) fall into this case, 

and the replacement of null values with zero or other calculated value has the 

potential to influence in the classification results since they impact on the vessel 

shape identification.  

To conclude this question, an observation about the importance of data quality. 

An incorrect value for one feature in one sample causes the distortion in the 

interpretation of the vessel shape and, if this type of error occurs in a significant 

number of samples, the training of the ML model will be affected and 

consequently the performance of the model in the identification and classification 

of new samples. 

To what extent can this model replicate classifications made by experts? 

The ML model created using the supervised learning Voting Classifier algorithm 

provided the highest scores in accuracy (0.87) and F1-Score (0.86) metrics, based 

on a dataset with 496 samples of pottery vessels. From this dataset, ¾ of the 

samples were used to train the model and ¼ to test and validate it. This means that 

the model correctly classified 87% of the samples in the validation dataset, 

consisting of 124 samples. Other algorithms (Logistic Regression and SVC) 

provided performances close to VC algorithm. The individual scores for each 

shape class vary from 0.50 to 0.96, with five out of nine classes returning a score 
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equal or higher than 0.80 (six out of nine if all algorithms are considered). For the 

C class, the lower score (0.50) is likely related to the low number of samples and 

the shape similarity with the E class, which has the largest number of samples. 

These are just some of the particularities that should be considered in the answer 

to this question, nevertheless it is reasonable to say that, based on the overall 

results, the ML model can replicate classifications made by experts with an 

accuracy of at least 80% in ⅔ of the cases. 

There are other issues that could potentially influence these results, either in a 

positive or negative way. The first one is related to the quality of the dataset and 

the benchmark provided by the experts. The Arcane database proved to be an 

excellent source of information on pottery assemblages, providing most of the 

data required to creating the research dataset, which was complemented by some 

specific additional measurements. If the original classifications made by experts 

are consistent, the training part of the supervised learning process will be 

successful and the ML model performance will be satisfactory in the prediction of 

new samples’ classes. Only a few minor problems were detected regarding the 

dataset, related to data input errors and potentially different criteria applied in the 

classification of assemblages of different archaeological sites. The second issue is 

related to the first: the more homogeneous the assemblage, the greater the 

probability of better performance in the classification. The choice of using more 

than one site was made with a trade-off in mind, the need of a minimal amount of 

good quality samples to make ML viable versus the homogeneity of the 

assemblage. 

Finally, the choice of ML algorithms, their parameters and supporting methods 

(encoding, imputing of missing values) affect the likelihood of achieving better 

results. It was fundamental to test different algorithms, parameters variations and 

different dataset configurations in order to find the best possible combination. 

Which other kinds or levels of classification that might be archaeologically 

relevant can the model suggest? 

This is probably the most challenging of the sub-questions, as the answer cannot 

be compared or measured against existing information, but depends on defining 

new potential classification structures. The method that was initially associated 

with this question is unsupervised learning, however, the results of supervised 
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learning also contributed to it. The grouping of vessels in shape classes is the 

main classification system developed in the Arcane project and one of the 

foundations for developing the ML model, but there are also secondary systems 

such as the grouping in open, closed and miscellaneous shapes and, in some cases, 

the identification of subclasses in an unstructured way (e.g., cup/mugs and 

beakers in the G class). Some classes share more similarities with each other (e.g., 

jars, pots, and diverse classes of bowls). These secondary classification systems 

were useful in the answer to this question. 

The first proposed classification structure (Figure 5.5) is based on supervised 

learning methods. The main criteria to group the shape classes were the results 

from the confusion matrices, classes were considered closer to each other when 

they were related through misclassifications, and also the results from the 

Decision Tree classifier, which seem in accordance with the concepts of open and 

closed shapes groups. The E class can be subdivided into two sub-classes, here 

they received generic names E1 and E2, but one of them is clearly composed of 

deeper bowls. Three classes, P, R and T were joined in one super class, named 

‘Jars’. The ‘T – Flask/Bottle’ class can be considered a type of jar with the most 

restricted neck. As commented in the previous chapter, this illustration does not 

aim to show a complete taxonomic structure with all possible sub-classes and 

super classes; this could be a theme for future research.  

The second proposed structure (Figure 5.6) is based on unsupervised learning 

methods. The first clear difference is the absence of the open and closed groups, 

since the clustering methods work based on the bottom-up principle, and there are 

no target classes (and consequently no super classes) that can be used to compare 

the results. In the case of the bowls and the P-T classes the coincidence between 

classification and clustering is stronger, while in the other cases there is no 

obvious relation between these two methods. The association of clusters with the 

shape classes was made in an exploratory way, using different algorithms and 

different number of clusters, and the observation in the supervised learning results 

regarding the completeness of the structure is also valid here. One of the main 

difficulties is to find meaningful names for the clusters (or super classes) that join 

the K-P-T and H-N-R classes, for that reason only a generic graphic 

representation is shown. 
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Based on the answers and comments to the sub-questions it is now possible to 

return to the main research question: 

Which are the benefits and limitations of a machine learning classification model 

for pottery assemblages?  

1) The benefits of a ML classification model for pottery assemblages include: 

• The identification of features that have greater relevance for the definition of 

shape classes. This includes categorical (qualitative) and continuous (absolute 

and relative measurements) features. 

• The identification of shape classes that have greater similarity to each other. 

This contributes to the elaboration of classification structures such as 

taxonomic trees and to the understanding of potential relationships among 

artefacts. A classification structure is fundamental to allow for the 

development of typologies and to address questions about the peoples and 

cultures that produced the artefacts. 

• An increase in the quality of the artefact classification process carried out by 

experts, assisting in the revision of data input errors, the identification of 

potential misclassifications, and facilitating an agreement in the case of 

divergent opinions. 

• The suggestion of new potential grouping of artefacts that were not previously 

considered through traditional classification criteria. 

2) The limitations  of a ML classification model for pottery assemblages include: 

• The dataset has requirements regarding the relationship between the number 

of samples and the number of different target classes. Classes represented by 

few samples can make the training process difficult and consequently affect 

the prediction performance. 

• The dataset should include samples that are homogeneous in their 

archaeological contexts, derived from culturally and chronologically related 

sites or assemblages. 

• The samples, in the case of identification of pottery vessel shapes, should have 

a minimum level of completeness that allows basic measurements to be taken, 
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and the identification of certain categorical features (rim profiles, base types) 

and potential additional elements (handles, spouts). 

• Vessels images are not mandatory but can be very useful in validating 

classification results. 

 

To conclude, a note on future research, in addition to the possibilities already 

mentioned in the discussion chapter and in this conclusion. 

The ML model based on supervised learning created for this research has the 

potential to be improved through the application of techniques such as feature 

extraction (to provide additional information about features importance), and 

through minor adjustments in the dataset (e.g., the checking and correction of 

certain samples measurements, and a possible revaluation of some samples’ 

classes), and consequent retraining of the model. Such a task would require the 

participation of experts for validating the results provided by the model and 

suggesting the adjustments, but in turn it would allow completing a cycle of 

problem analysis, model training and validation, and increasing knowledge in 

archaeology. A further possibility would be to work on unclassified assemblages, 

using ML models as a complementary tool from the beginning of the 

classification process by experts. 
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ABSTRACT 

 
Artefact classification is one of the main themes and an important practice since 

the beginnings of archaeology, while machine learning (ML) became one of the 

most efficient approaches to increase our knowledge in a number of disciplines. 

This thesis describes a ML model developed for the classification of pottery 

assemblages, identifying its benefits and limitations, focusing on the importance 

of artefacts features for the identification of vessel shape classes, and to what 

extent this kind of knowledge can be used to replicate classifications made by 

experts. The research also analyses different classes structures based on the ML 

model.  

The research dataset was based on an assemblage of pottery vessels representing 

nine shape classes and four archaeological sites from the Bronze Age 

Northeastern Syria, made available by the Arcane project. The classification 

methodology was based on principles of quantitative archaeology, using vessel 

measurements and categorical features, implemented by supervised and 

unsupervised learning ML algorithms and supporting methods from the scikit-

learn and SciPy libraries. The Anaconda platform, the Jupyter notebook 

environment and ImageJ for image processing complete the main software used 

through the research. 

The research results indicate benefits and limitations in the application of ML 

models in the classification of pottery assemblages. The limitations are especially 

related to number of samples versus target classes, the homogeneity of the vessels 

context in the dataset, and the quality of data available for the samples. The results 

suggest that a ML model can be useful to experts, assisting in the identification of 

the most relevant artefact features and similarities among classes of artefacts, as 

well possible misclassifications, ultimately providing new insights into the 

classification of pottery assemblages in archaeology. 
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APPENDICES 

 
APPENDIX A.1 – K-MEANS RESULTS (2-3 CLUSTERS) 
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APPENDIX A.2 – K-MEANS RESULTS (5 CLUSTERS) 
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APPENDIX A.3 – K-MEANS RESULTS (8 CLUSTERS) 
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APPENDIX B.1 – VESSEL TYPES OF THE ‘H – OPEN POT’ SHAPE CLASS 
 

Different types of vessels of the ‘H – Open pot’ shape class separated according to the 
Decision Tree Classifier criteria. Features: H-Bd = total Height / Belly diameter ratio; 
Bd-Nd = Belly diameter / Neck diameter ratio; belly_diam = Belly diameter. Vessels: 1 = 
JZ001_P258; 2 = JZ004_P092; 3 = JZ001_P049; 4 = JZ001_P010. Images at different 
scales. After Arcane (2016). 
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APPENDIX C.1 – INSTRUCTIONS TO ACCESS THE ML SCRIPTS AND DATASET 
 
The files available for download in the Zenodo repository are the Jupyter 

notebooks created to run one supervised learning session (Section 4.1.3) and the 

clustering analysis (Section 4.2.1), and the research dataset. 

To access the scripts and the dataset: 

https://doi.org/10.5281/zenodo.6368357 

 

 

 
The dataset includes the features used in the second training session and the clustering 
analysis with k-Means, it does not include the features used in the first training session. 
The first nine features in the dataset were obtained/adapted from the ARCANE database, 
other features were created for this research. Dataset source: ARCANE Project (Arcane, 
2016). Figure: files in Zenodo repository (Zenodo, 2013). 

 


