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1 INTRODUCTION

1.1 Overview

Artefact classification has been an important pcacsince the beginnings of
archaeology, with the definition of the Three-agstem by Thomsen in the early
19" century (Graslund, 2009, p. 17-30) and many oéichievements such as the
application of typology for the definition of preforic chronologies in Egypt
(Figure 1.1) and the American Southwest in theyead" century (O'Brien &
Lyman, 1999, p. 32-56, p. 84-137). Classificatienai constant in archaeology,
from a simple separation of artefacts in an exéamatccording to the raw
material to the basis for formulating complex reskajuestions involving human

social and cultural systems (Read, 2007, p. 19-20).

Since the introduction of statistical analysis aodhputers in archaeology in the
1950s, the study of artefact classification evoleedsiderably (Wilcock, 1999),
culminating with recent applications of machineriflag concepts and methods.

.

/]

Figure 1.1 — Genealogies of some forms of pottegmf
Predynastic Egypt (Petrie, 1899, Fig. 3).



Machine Learning (henceforth: ML) uses specific mels to create models that
can identify potential patterns in data, initiafliting the model to the observed
data and then using the built model to predict @slfrom new sets of data
(VanderPlas, 2017). ML concepts were introducedhm late 1950s and early
1960s in areas such as neural network modellinggamde programming, since
then the discipline of machine learning has beeso@ated with different

paradigms and concepts along its history, amongnibst relevant is pattern
recognition (Carbonell et al., 1983, p. 14-6), whis one of the bases of
classification. ML uses data and standard algostlta®s its basic mechanism in
contrast to earlier computational approaches tmorre human knowledge, such
as the extensively programmed expert systems fneni980s (Alpaydin, 2016, p.
50-2). Figure 1.2 shows a basic comparison betwentraditional system

development and the ML approaches. A ML model lifisstable parameters that
receive different values (data), and makes usdgafrithms that can optimise a
performance criterion defined for the data throaghepetitive and incremental
process (Alpaydin, 2016, p. 24-5). ML is now prasa a number of applications
such as spam filters, detection of diseases bas@dayge analysis, and prediction
of customer behaviour (Alpaydin, 2016, p. 16-72%4; Géron, 2019, p. 301-40).

Information
system
T Yes

Analyse the w Wik rules Validate rules
problem
h

F
No

4

-
! T Yes

h 4
Analyse the p| Train ML »| Validate model
problem algorthms
Y

F
No

Figure 1.2 — Comparison of simplified diagrams fortraditional
systems development approach (A) and a Machinenirgam@pproach
(B). After Géron (2019, Figure 1-1, Figure 1-2).
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Applications of ML in archaeology started to be lmhed in the 1990s (Barcelo,
1995), consolidated in the 2000s (Barceld et @002 van der Maaten et al.,
2007), and have increased significantly in the pdstade (Davis, 2020).
Publications now include a variety of themes sugld@tection of archaeological
features in the landscape (Lambers et al., 2018n@ar et al., 2020), information
retrieval from archaeological reports (Brandsealgt2019) and identification of
ceramics through photos of shards (Anichini et2021). In the specific case of
artefact classification, works such as Horr et(2aD14) and MacLeod (2018)

demonstrate the potential and viability of ML metho

The remaining of this introduction chapter presesume fundamental concepts
for the entire thesis such as the research aimyesoand research questions and
briefly presents topics that will be further dey®d in subsequent chapters: the

dataset and methods used in the ML classificatiodeh

1.2 Research aim and questions

The aim of this research is to develop a ML modeklassify archaeological
pottery assemblages. There are three main motine®lgjectives associated with

this aim.

The first motive is to provide a tool to assist pottery expertgheir decisions
while performing the task of vessel classificatiofhe efficacy of a ML
classification model depends on many factors sushthe data quality and
guantity, and the adaptation of the model to certdiaracteristics of the input
data (Géron, 2019, p. 607-732). An automated dlea8on model will not
replace an expert but can give suggestions on bgwoceed, and help to identify
some mistakes that may occur during data input sicldigitising errors. For
instance, if a vessel of large dimensions and ha@bmetric capacity is classified
as a beaker due to some code input error, thefataisn suggested by the model
might alert the expert of such occurrence.

The human brain is well equipped for pattern redogm (Alpaydin, 2016, p. 20-
4) and can perform some tasks and identify detiadls cannot be easily matched
by computer systems, even more so when the acctedutxperience of experts

in classification of pottery or other types of #atds is added. On the other hand,
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a ML model may identify patterns that would be lefinoticed by traditional
analysis. The efforts provided by traditional as#)jclassification and a ML
proposed classification would be complementary #mel sum of results an
optimal alternative (Verschoof-van der Vaart & Laard 2021).

The second motive is the possibility to provide standard methods of
classification, which have clearly defined critesiaggested by the classification
model. If there was no concordance between two orenexperts regarding a
certain classification within an assemblage, theraative suggested by the model
might help to achieve a final decision. When maritig standard methods it is
important to make clear that there is no geneealdsird that might be applied to
all sorts of assemblages. We refer here to standatbods that are possible to be
applied to assemblages that share common chasdicigrisuch as specific
archaeological sites or cultures. A model that wasated for one specific
assemblage would probably have to be adapted fmedyowork for a culturally
distinct assemblage, depending on the artefactactaistics, and dataset

attributes and organisation.

The third motive is that, beyond the analysis and classificatiomef artefact
assemblages, it is also possible to perform a melysis on previously classified
collections in accordance with new perspectives ajpgroaches, to investigate
new research questions or after new data becona@alae on the collection. The
remaining parts of this section define the maineaesh question and sub-
guestions, which specify the research aim and tigsc

Which are the benefits and limitations of a macHe®ning classification model

for pottery assemblages?

To answer the main research question in a moretated way, a set of sub-

guestions was defined:

1) Which are the minimum features required to pieva basic classification, and
which are additional features that could impro®e it

2) To what extent can this model replicate clasaifons made by experts?

3) Which other kinds or levels of classificationgie subclasses, groups) that

might be archaeologically relevant can the modggest?

12



The fist two sub-questions will be addressed thinosigpervised ML methods, the
third sub-question will be addressed through unsiged ML methods as briefly
explained in the next section. The tefeature, referred to in the first research
sub-question, has different meanings in archaeolagg ML. Section 2.1.2
presents these and other definitions of terms us#ds research, for clarification
purposes the meaning in the context of ML is the ased through this research.

A relevant note on the scope of this research:ptioposed ML model will be

prepared to process information on pottery vessads, necessarily complete
vessels (which may be uncommon in most archaea@bgissemblages), but
vessels that have a minimum number of parts or aneagents that are significant
for shape identification. Associated with the firssearch sub-question (minimum
required features for classification) is the issofe amount and quality of

information available considering all features aadlies for one specific vessel,
and how this can affect the model results. The ihodéhis research therefore

does not include the processing of smaller vesags [guch as pottery shards.

1.3 Methodology

This section provides a summary of the data andhodstused to develop the ML

classification model, which are described in maetad in Chapter 3.

1.3.1 Dataset

The source database for the dataset used in #eaneh is the Project ARCANE -
Associated Regional Chronologies for the AncienaiNEast and the Eastern
Mediterranean in the Third Millennium BC (Arcan€)1®), which records more

than 8200 pottery objects from 168 archaeologitess

Samples from four sites from the Arcane databadleb&iused to train the ML
model and to test/validate it. The research datmsebmposed of 496 vessels
from the Tell Brak, Tell Beydar, Tell Leilan and IT8arri archaeological sites
located in northeast Syria; more information on sites is presented in Section
3.1.1. The pottery assemblage ranges from c. 300®50 BC, the Bronze Age

period in the Near East. The assemblage is composstly from vessels types
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associated with domestic and storage contexts sschars, pots, bowls and
beakers. A small proportion of vessels types is@ated with funerary or ritual

contexts.

Figure 1.3 — Selection of pottery vessels from Baydar (JZ002) and
Tell Barri (JZ007): (1) Bowl -JZ002_P092 (2) Shallow bowl -
JZ002_P620 (3) Open pot -JZ002_P605 (4) Jar (wide neck) -
JZ002_P081 (5) Closed pot (high) 3z002_P805Closed pot (squat) -
Jz002_P8o&nd Cup/Beaker 3Z002_P807 (6) Juglet -JZ007_P028(7)
Jar (restricted neck) 3z002_P084 (8) Flask -Jz002_P618 Images at
different scales. After Arcane (2016).

Figure 1.3 shows a selection of some pottery frbasé sites that belong to the
dataset used in this research, more information ibmstrations of the vessel

shapes are presented in Section 3.1.2.

The Arcane pottery database was selected becawdstaofequirements and also
because it is an important reference for the amlbgg of the region, presenting a
classification method that is shared by all sitesl @bjects contained in the

database. ML models need both quantity and qualitydata (representative
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samples, relevant features) in order to identifggide patterns (Géron, 2019, p.
22-6), and for this specific research it was negsdso use a dataset with
distinctive types of features (described in detaiChapter 3.1), belonging from
both the categorical (vessel qualitative charasties) and the continuous (vessel

measurements) types.

1.3.2 Machine learning methods and algorithms

One criterion to distinguish the ML methods is adoag to the amount and type
of the model supervision during training (Géron] 20p. 340-456):

» Supervised: the training dataset used by the dlgos includes the expected
solutions (or labels). In the thesis research dives, this means to assign

new vessels to pre-defined classes.

* Unsupervised: the training dataset does not incltie expected results
(unlabeled data). In the thesis research objectitds means the model seeks
to identify potential classes based on vessel feat(automatic grouping of
similar objects).

There are approaches that refer also to semi-sispdrmethods (Section 2.2.3).
In addition to the basic methods of learning, ihéxessary also to select methods
for specific tasks such as splitting of the dataeetture encoding and imputing of
missing values, which are detailed in Chapter Bif&rmation about the software

used in this research is provided in Chapter 3.2.

Algorithms from the scikit-learn library (Scikit,021a) were used to build the
model. A brief explanation about each algorithnpiisvided in Chapters 3.3 and
3.4. The algorithms are divided in supervised andupervised learning. The
algorithms belonging to the supervised learningugrare divided according to
their main function: classification and regressiom. this research only

classification algorithms are used. Six algorithnese selected for classification,
and two algorithms for clustering, either to congo#re results among them or to

complement each other.
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1.4 Thesis structure

Following this Introduction chapter, this sectiomiefly describes the thesis
structure through its chapters. Chapter 2 — ‘Bamlkigd and Context’ presents
relevant concepts, methods and previous works i #neas of artefact
classification, including quantitative methods, avil. Chapter 3 — ‘Data and
Methods’ details the dataset that was briefly pmesg in this introduction,

including information about vessel shapes and &zature used in the ML model,
and details the methods and algorithms appliedhto dataset. Chapter 4 —
‘Results’ presents the results of applying the méthand algorithms to the
dataset, in both supervised and unsupervised fearrapproaches. The
classification resulting from the ML model is comg to the classification made
by the experts and the relevance of each vessalréean the ML model is

evaluated. Chapter 5 — ‘Discussion’ interprets thsults obtained from the
application of the ML model in the dataset and ubses the model benefits,
issues and limitations. Chapter 6 — ‘Conclusionégents the answer to the
research questions and possibilities of furtheeassh in the area of artefact

classification through machine learning.
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2 BACKGROUND AND CONTEXT

This chapter presents relevant concepts, methadipm@vious works in the areas
of artefact classification and ML, which form theeoretical framework of the

research.

2.1 Artefact classification

There are many approaches to archaeological atsetassification (Dunnell,

1971; Orton et al., 1993, p. 152-65; Read, 200¢eR1987, p. 274-88; Santacreu
et al., 2017). The main focus of this chapter issessel shape and form since the
research questions are related to this aspectttdrposessels, nevertheless there
are other relevant aspects and concepts that #agedeto vessel shape and
classification that are presented. Some methodstenithiques used for pottery
classification can also be applied to other clasdemtefacts that have a certain

level of symmetry like some lithic tools (Read, ZRO

Formal ——— Pottery —_— Interpretative — Interpretative
descriptions classification tools perspectives

(e.g. form-based
analysis) l / \

e g
Qualitative Quantitative Intuitive/Objective Variability Technological Chrono-cultural
(e.9, geometrie, (e.g. metrical - symmetry/Shape/Size Approach Approach
topological) mathematical) Theorical/Practical Isomarphism/Skeuomorphism [multidimensional)
....... Fossil Index
Paradigmatic/Taxonomic Agency Seriation
Ceramic Homology
Polythetic/Monothetic Habitus Functionalist
------------------ Hydridization Approach
Class
Type Symbolic Product
Variety Approach Specialization
Etc, —
Identity
Style

Figure 2.1 — Diagram of the main analytical lewel&pproach pottery form
and classification according to Santacreu et &172. Levels 1 and 2 are
within the objectives of this research. The origideagram includes also
Level 5, related to Fractal patterns and Homologxtrinsic analysis
between technology and remaining social sphereftgr Santacreu et al.
(2017, Figure 12.1).
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Figure 2.1, a diagram showing the main analytieaéls to approach this subject,
is a convenient summary and starting point forrdmaining of the chapter. The
most relevant levels for this research are Levedsd 2 (approached in Sections
2.1.1to 2.1.4), however Levels 3 and 4 are equallyvant since they are related
to interpretation and practical applications ofsléication, which is the final goal

of this systematic method of arrangement (Dunr&f 11 p. 43).

2.1.1 Concepts of vessel form, shape and function

According to Read (2007, p. 97-103) there are foomceptually independent
operations or stages involved in the productiopattery objects, which include
the definition of: 1) the material properties frane which the object is made, for
instance type of clay, tempering material, firiegtiniques; 2) the object form and
techniques of production such as coiling or whaetwn and inclusion of
additional elements such as handles or spoutshé&)stirface treatment (e.g.
smoothing, polishing); and 4) the decoration (egising, painting), if any. The
second stage, related to the object form, is thia foaus of this research and the
basic criteria used for the pottery assemblagessification. A similar approach
is presented by Rouse (1960), where he includededfirition of potential types
based on the artefacts resulting from the operation stages of production
(Figure 2.2).

ALATERIAL )

Figure 2.2 — Analytical procedure for making arté$aand definition of
potential types (Rouse, 1960, Fig. 1).
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Formally, the concepts of form and shape are disthmowever it seems the terms
are used as synonyms across many publicationciaanlogy. According to the
Getty Art & Architecture Thesaurus (Getty, 2004att®, 2004b), shape is an
attribute or component of form, more like an ouwlior contour and, with
additional characteristics included, a shape caorbe a form. An example where
the terms are aligned with these definitions isshelet al. (2017), who define
‘form’ as a combination of size and shape. Forghoses of this research there
will be no formal differentiation between thesentsr ‘shape’ will be used more
frequently since it is the term used by the Arcprigect to define the classes of

vessels (the shape classes).

Rice (1987, p. 215-7) approaches the descriptioncéssification of vessel forms
based on two basic systems, one is use-orientedhendther one is based on
solid geometry. The use-oriented systems are baisadferred use of the vessel
according to diverse criteria such as vessel sa)s of measurements (e.g.,
height vs. diameter), presence of functional attamfts (handles, spouts),
complemented by information provided by ethnogrepstudies and historical
documents (Rice, 1987, p. 215). The systems basedotid geometry use a
combination of solid shapes, surfaces and sectbtisese shapes to describe the

vessel, some use numerical codes to identify thpesh(Rice, 1987, p. 219-21).

Albeit rigorous and useful in some specific circtamees, these geometry-based
systems are not practical enough to replace thee neonpirical use-oriented
systems, even if these may present some inconsisgseand incompatibilities
when used among different archaeological assemblagbe vessel shape
terminology based on these systems is not starsdat@ind the diversity of terms
in different languages, and even within the samguage (when different terms
are used to define the same shape, or when oneigeunsed to define different

shapes), make the definitions of shape class inggé€Rice, 1987, p. 215).

Use-oriented classifications in archaeology areuemtly based on ratios of
height to maximum diameter and kind or size oficeif(Figure 2.3), but may use
also the presence of functional attachments likedles or spouts (Rice, 1987, p.
215-6). The Arcane project adopted a similar systerdefine the vessel shapes

used in this research (Chapter 3.1).
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Figure 2.3 — Shape categories based on vesselrimpoas a ratio of
height to diameter and types of neck/orifice. (&tqy (b) dish; (c)
bowl; (d) bowl; (e) vase; (f) jar; (g) neckless farvase; (h¥lorero or
jar; (i) jar. Rice (1987, Figure 7.4).

Sometimes the use of functional categories sucstaage, cooking and serving
are added to the shape class (e.g. storage jakingopot) and albeit useful for
expanding a classification system based only opesh#& can make assumptions
on vessel use that are not always clear (Rice,,198211-2). Other information
like the context of finds, residue analysis and thechanical and technical
properties of the ceramic are important for thenigbn of vessel function (Hunt,
2017; Rice, 1987, p. 224-43).

Such diversity and sometimes inconsistency in \Yesbape definitions in
archaeology may cause some difficulties for ML moeh and algorithms, the

results must take this into account and this isglldoe addressed in Chapter 5.

2.1.2 Attributes, variables and features

The concept of ‘characteristics or traits that banobserved in an object’ (Read,
2007, p. 110) is of fundamental importance to disjeefinition and the formation

of classes of objects. This concept may have skverms associated to it,
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sometimes used as synonyms (Bruce et al., 202Q2). but there are some

differences among them that will be briefly desedb
Attribute and variable

According to Dunnell (1971, p. 49-50), attributetig ‘smallest qualitatively
distinct unit involved in classification’. After flaing the field of classification
(e.g., archaeological artefacts) and the scale, (@sgemblage of pottery vessels),
the next step is the identification of the attrémithat will become the potential
criteria for classification (Dunnell, 1971, p. 40)5There is a relation between the
number of dimensions of attributes and the potentienber of classes derived
from them, leading to issues like lumping or spigtof attributes (Dunnell, 1971,
p. 50). The color category ‘brown’, the temper gatry ‘grit’ and the height
category ‘10.5’ applied to a vessel sample are @kasrof attributes according to
this definition (Dunnell, 1971, p. 51; Read, 2007,110-13). In ML, an attribute
is equivalent to a data type, (e.g., ‘color’), iutan also be considered a synonym
of feature (Géron, 2019, p. 8).

A variable is a category for attribute values, iftstance color, temper and height
are variables that may be associated with pottessels, each variable have its
own set of possible attribute values. Variables meyqualitative (e.g., color) or

quantitative (e.g., height), also referred to aggarical or numeric respectively

(Bruce et al., 2020, p. 9-10; Read, 2007, p. 36-910-3, p. 243-6).

Feature

This term is commonly used in both archaeology &hHd but with different
meanings. In data science and ML, features are tespdedict target values and
for this reason a set of features is also callediptors (Bruce et al., 2020, p. 13;
Géron, 2019, p. 8). A feature can also be consideitter a synonym for attribute
(e,g., ‘color’) or an attribute plus its value (e.golor = brown’) depending on the
context (Géron, 2019, p. 8). In archaeology, feattan be defined as a ‘separate
archaeological unit that is not recorded as a &irac a layer, or an isolated
artifact’ (Kipfer, 2000, p. 186), such as walls,ahbs and storage pits. The
meaning of feature as predictors, the elements tseuredict targets by ML
algorithms, is the one used through this reseanh, also used to refer to the

characteristics or traits that can be observed iolgect (Chapters 3.1 and 3.3).
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2.1.3 Approaches for artefact grouping

There are distinct approaches for artefact grougBaytolini, 2017, p. 658-60;
Read, 2007, p. 27-8), one of these divides theratives in two methods (Figure
2.4): top down associated with classification (and supervisedni@ag in ML),
andbottom up associated with clustering (and unsupervisediergj. According
to Read (2007, p. 64, p. 135-8), groups must kermally coherent and externally
isolated’, meaning that members must be clearintiied as belonging to one
specific group and not to others. Figure 2.4 isd#ig into two domains, ideational
(without objective existence) and phenomenologifallowing concepts from
Dunell (1971). One important detail is the questidrout a possible equivalence
between two types of classes, explicit or impligityolved in the grouping

processes; this issue is addressed in Chapter 5.

Explicit Equivalence? Implicit

Class 4——p  Class
A

Ideational
Domain

Class
Membership
Inference

T
/  Similarity
\\H Group _-’

] Simim
\‘-EIE)PP."' Grouping by

Similarity

Phenomenological
Domain

Collection of Collection of
Entities Entities
"Top Down” Methods ‘Bottom up’ Methods

Figure 2.4 — Two approaches for artefact groupit@p down,
associated with classification, and bottom up, @ssed with
clustering (Read, 2007, Figure 1.1).

2.1.4 Classification strategies

There are several classification strategies, osgahiaccording to different
approaches to the question. Level 2 in Figure 2the analytical level related to
this subject (Santacreu et al., 2017, p. 183-5).
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Intuitive vs. objective

Based on the applied level of formalism. The eadigproaches to classification
are considered more intuitive since they were @efimainly on the analysts’
perceptions of the differences and similarities@namic assemblages such as in
Krieger (1944) and Rouse (1960), while the objectapproaches are mainly
defined on analytical and/or statistical methodsn8 of the earlier examples are
those from Kroeber (1940) and Spaulding (1953),dbjective later became the
dominant approach in archaeology (Read, 2007, p-8l®antacreu et al., 2017,
p. 183-4). Read (2007, p. 67-70, p. 107-8) drawention to a reversion to the
subjective approach in the work of Adams and Adéh®91), which emphasizes
the human capacity of patterning identification émel importance of intuition on
the identification of types.

Theoretical vs. practical/functional or emic vdcet

Based on different ontologies. Theoretical or eat@ssifications are based on the
empirical characteristics and conceptual systemth@fobject producers, either
tangible or intangible. Attributes used in the slsation have cultural saliency,

they carry important cultural and historical measiiRead, 2007, p. 39-42, p. 69-
73; Santacreu et al., 2017, p. 184-5). Functionatio classifications are based on
the conceptual systems and technical criteria @fatimalyst who is attempting the
classification. There is an understanding thattdreninology and classificatory

criteria used by object producers may be too compte be perceived and

replicated by foreigners (Read, 2007, p. 39-48973; Santacreu et al., 2017, p.
184-5).

Paradigmatic vs. taxonomic

Based on how the attributes are considered. Inntaxec classifications not all
the attributes are considered to be of equal inaped for all pottery being
classified, and must be used in a sequential aaciahical order according to
different criteria to define the classes. Somesgdasnay miss an entire attribute,
for instance ‘surface treatment’. Taxonomic clasatfons are usually represented
in a hierarchical branching diagram as in Figurg @unnell, 1971, p. 70-6;
Read, 2007, p. 81-3, p. 113-14, p. 241-2; Santaeteal., 2017, p. 184). In

paradigmatic classifications the classes are defiyeeach possible combination
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of attributes, without hierarchy among the attrésutlt is possible that some
combination does not apply to some samples in ldgEs de.g. some do not have
any surface treatment), but the attribute is a8kd to define the class (Dunnell,
1971, p. 76-84; Read, 2007, p. 81-3, p. 113-124f-2; Santacreu et al., 2017, p.
184).

Entities
A B CDEVFGHTI1 ] KL
Attributes 1 X X X X X X
or 2 X X X X X X -
artefacts 31 X X X X X X M::::Lt:othenc
i XX KX XX REoHR.
s X X X X X X
6 X X - x = =
7 - X X - - X ) o
8 X - X X X X Eﬂg‘p}‘““
9 = N o= XX s
16 X = X = ¥X
X Present
Absent

Figure 2.5 — Example of monothetic and polythetioups of entities
(classes) and attributes or artefacts. Clarke (1Bifg 3).

Concepts similar to paradigmatic and taxonomic @okytheticand monothetic
which are based on the degree of shared attrithd¢eseen objects in a class
(Figure 2.5). In monothetic classifications an abjis a member of a class if it
presents all attributes that compose the clasdewhpolythetic classifications an
object is a member of a class if it presents agafft number of attributes from a
set of possible attributes that compose the cBsgdlini, 2017, p. 658-60; Read,
2007, p. 134-5).

2.1.5 Applications of classification: typology asefiation

Classification of pottery vessels based on shapridamental for starting to
answer a number of questions related to vesseltiumcplace of origin or

chronology, but in archaeology the more informatiavailable the better,
therefore definition of shape classes must be whangossible complemented by
other specific techniques: residue analysis foermeihing contents and uses,
ceramic petrography to identify vessel provenarstegatigraphy and absolute

dating methods like TL for vessel chronology (Rit887, p. 224-43, p. 435-46).
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When such additional information is not availaldbape can be of fundamental

importance as in the case of the sequencing ofyRestic Egypt by Petrie (1899).

Petrie did not have stratigraphic information téph@m to define a chronological

sequence for the period before the firsts Egyptimmasties (c. 3200 BC) since
superposition of graves or burials was rarely fouhdn he used the grouping of
similar vessel types according to their form ange#tlecoration (Figure 2.6)

(Midant-Reynes, 2000).
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Figure 2.6 — Representative types of pottery oeEsesuccessive
stages in Predynastic Egypt known as Nagada pefite:

numbers represent the sequence dates, and thealdities

represent the vessel types that link one stagéndonext one.
Petrie (1899, Fig. 1).

The proportion of each group found in around 908vgs and the presence of
specific types linked one stage to the next onacipy them in chronological
order divided in seven stages and sub-stages (MRlaynes, 2000; Petrie, 1899).

One of the key elements identified by Petrie tardethe sequence dating was the
vessel handles, which seemed functional in eavkssels and gradually became
less functional and more decorative as it can ba sesome vessels in the left in

Figure 2.6 (O'Brien & Lyman, 1999, p. 87). Addit@nelements such as vessel

25



handles and spouts may be relevant to identify efessape classes and are

included in the dataset as categorical featurexlgsined in Chapter 3.1.
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Figure 2.7 — Frequency seriation of six assemblggels) using five
artefact classes (1-5). After O’'Brien and LymanQ20Figure 2).

The technique used by Petrie in Egypt is definedplagletic or contextual
seriation by O’Brien and Lyman (1999, p. 84-91,141-14), in contrast with
occurrence seriation and frequency seriation astedeby Kroeber and further
developed by Ford in the USA. The main differenserelated to the use of
quantitative information (relative abundance) asded with vessel features such
as decoration and colors in different assemblaged,in the case of frequency
seriation can be represented in graphs like thdtldsaip’ frequency curves
(Figure 2.7), which are based on artefact classdsleeir frequency of occurrence

on each assemblage (O'Brien & Lyman, 1999, p. 121-5

A typology is associated with some question or esptinterest about an artefact
assemblage such as function, decoration, morphplogychronology, or a
combination of more than one aspect (O'Brien & Lyim2003, p. 23-4). A
typology goes one step further in relation to dafacsdion; it is possible to create a
classification of pottery vessels based on shapewithout defining a further
goal, this can be defined later by a typology. Tialso Santacreu’s et al. (2017)
approach, which is summarised in Figure 2.1; thet two analytical levels to
study pottery form and classification are relateddrmal descriptions of form
(qualitative or quantitative) and the classificatitself, which can be of various
aspects (e.g., intuitive or objective, paradigmatictaxonomic). The next two

levels are related to interpretation in variousetypf approaches (technological,
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symbolic, chrono-cultural or functionalist), whiahe based on specific typologies
(Santacreu et al., 2017).

To conclude this section, ceramic seriation remansimportant source of
information about chronology besides the increasapglication of scientific
dating techniques (Lipo et al., 2015; Peeples &8hher, 2012; Porcic, 2013).

2.1.6 Quantitative classification

The method developed by Read (2007) for classifinabf archaeological

assemblages is associated to the concepts of taieseaticlassification, recursive
division and numerical taxonomy (Dunnell, 197198-102; Read, 2007, p. 127-
8, p. 199-240).
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Figure 2.8 — Taxonomic structure of the method tmexr by Read (2007) for
the classification of artefact assemblages, in ¢émmple pottery vessels from
the late Neolithic site of Niederwil, SwitzerlanQualitative (categorical)

features are highlighted in purple and quantitate&tures (basic and relative
measurements) in blue; the two basic shapes ahdidfited in green. A, B, C =

Belly shapes (convergent); DR = Decorated rim; SBmooth rim; S = Small;

M = Medium; L = Large. After Read (2007, Figure 3.2
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The method of recursive division starts with theentification of potential
qualitative (categorical) features that have caltgalience in an assemblage and
then use one of these features, or variables il R&207) terminology, to divide
the vessels in groups. In the example shown inrBiguB, this feature is the vessel
handle, or more precisely, the number of handleg @ 2). The method suggests
starting with qualitative features if possible bexa these can be identified on
individual artefacts without the need to identifgtierns in the entire assemblage;
these patterns are better identified in subgrodtgs an initial division is made
(Read, 2007, 214-15).

After the first division based on the handle feaiwne of these groups (the one
without handles) is now divided based on a quaédeature, the ‘Total Height
/ Belly Diameter’ ratio (more information on thesges of features is presented
in Section 3.1.8), which represents the overallsgeshape, and identifies two
main groups of vessels: ‘Squat shape’ and ‘Urn shaphe method then
continues subdividing the groups according to neatdres (qualitative or
guantitative) until no more subgroups can be idiewti The resulting groups can
be seen in the last levels of the taxonomic strectiigure 2.19). Some examples
of these final classes are a ‘large Urn shape Vvesderound belly and decorated

rim’, and a ‘small Squat shape vessel with smowth r

2.2 Machine learning

As briefly commented in the introduction, one oé tmain characteristics of ML

systems is that they use data and standard algwitto reproduce human
knowledge in contrast to extensively programmedesgys (Alpaydin, 2016, p.

50-2). There still is need of some coding and ustdeding of basic data science
concepts but it is a more straightforward appro#ithn creating an entire

knowledge system from scratch. The main challeinggade choosing among the
several alternatives of existing algorithms andlibst alternatives of parameters
for each of them; the choices will depend on theeaech questions and the
characteristics of the dataset. One of the maira@idges of ML systems is
flexibility: if the pattern in the data changesist not necessary to rewrite the

system'’s rules, the changes are mostly associatddta, like updating the target
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labels. The application of ML has been increasmgnany areas of knowledge,
including archaeology and cultural heritage (Bick@021; Fiorucci et al., 2020).

In this Chapter some of the main applications @sthareas are summarised.

ML systems can be classified based on severatieritgccording to the amount of
human supervision during training, or whether ty&tem can learn incrementally
through online data, or how they generalise, thnoirgstance-based or model-
based learning (Géron, 2019, p. 7-17). Here théndistypes of ML systems

based on the amount of human supervision are ypde#cribed.

2.2.1 Supervised learning

In supervised learning systems the objective ipreglict a certain outcome (the
target) from a given input (the features, the sasiphttributes). During the
training sessions the algorithms receive both typesnformation from the
dataset, target labels and features (the traingtyy &igure 2.9), in order to
identify potential patterns and associations betwdgem (Géron, 2019, p. 7-8;
Muller & Guido, 2017, p. 27). The next step is taka predictions based on the
same features from new, unknown data (the tediaidin set) and the
information obtained during the training sessidfigijre 2.10).

2 22422229

Figure 2.9 — Example of training dataset for clicsaion. After Scikit
(2021Db).
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Figure 2.10 — Example of classification: identifioa of digits based on
handwritten samples. After Scikit (2021b).
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There are two main types of supervised learningralgns, which deal with
classification or regression problems (Géron, 2@19-8; Muller & Guido, 2017,
p. 27).

In classification the goal is to predict a clasbela(the target) from a set of
predefined values, which can be binary or multiplelues. The binary
classification is exemplified by the spam filtessym: an email is either a spam or
not. In the multiclass classification more than nlasses form the target set, as in
the system that identifies digits from 0 to 9 basedchandwritten samples (Muller
& Guido, 2017, p. 27; VanderPlas, 2017).

In regression the goal is to predict a continuouser (the target), for instance
the approximate value of a house in a certain regp@sed on information like
house median age, humber of rooms and locality. vidhee predicted could be
any value within a predefined range (e.g., $200008999,999) (Géron, 2019, p.
8-9, 36; Muller & Guido, 2017, p. 27).

2.2.2 Unsupervised learning

In unsupervised learning systems there is no knowtput or target labels,
knowledge must be extracted only by using inpuaditcan be more difficult to

analyse the results, especially in the case ofterig algorithms, and for this
reason this type of system is used in a more eafuor way when compared to
supervised learning systems (Géron, 2019, p. Miler & Guido, 2017, p. 133-

4).

Figure 2.11 — Example of clustering based on tiggsddataset; the X
marks the centroids of each cluster. After SciRdZ1c).
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Clustering is one of the most common types of uestged learning methods,
other common types are the preprocessing and gcaligorithms, used for
preparing the data for supervised learning algor#i{Muller & Guido, 2017, p.

134-42). Clustering algorithms divide the datas&t groups (clusters), aiming to
create clusters where samples are similar witlgluster and different from other
clusters (Muller & Guido, 2017, p. 169). There anany types of clustering
algorithms, among them two are commonly used: kiMdeand Hierarchical

Clustering.

An example of the application of k-Means is shownFigure 2.11, the same
handwritten digits dataset used for classificatiorsupervised learning now is
used without target labels, as a result the algoricreates clusters with the most
similar samples together. In this example the tasudasier to interpret because
the total number of digits (from 0 to 9) is knowmadvance, so the number of
clusters is equivalent. In the case of Hierarchichlstering there is no initial

parameter used for clustering criteria but theeeumeful tools for analysis like the

dendrogram, described in Section 3.4.2.

2.2.3 Semi-supervised learning

It is an intermediate learning method where thea datpartially labeled. Most
samples are unlabeled as in the unsupervised tgaméthods, but some samples
which can be labeled are used to better identiéystmape of the data distribution
and generalise to new samples (Géron, 2019, p31&dikit, 2021d). Examples
of semi-supervised learning are applications oftphidentification, after the
algorithm groups photos of the same person (anpamsised learning process),
the labeling of one of each person by the usenasigh to propagate the label for
other photos that belong to the same group (Gé&6a9, p. 12-13). Another

example comes from Horr et al. (2014), which is omnted in Chapter 5.3.

2.2.4 Applications in archaeology

This section presents examples of applications bfiMarchaeology and cultural
heritage, grouped by the main subject of the rebeam several levels:

landscape, object/assemblage, ceramic materiats,caronology. Some of the
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methods mentioned here involve artificial neuraltwwoeks such as CNNs
(Convolutional Neural Networks): these belong tespecific category of ML
models inspired by networks of biological neuroalso associated to the Deep
Learning concept, which involves the performindasge and highly complex ML
tasks (Géron, 2019, p. 279, p. 289).

Landscape archaeology, automated object deteatenotely sensed data

Barberena et al. (2021) approach the human palgoggeloy and migrations in the
Southern Andes between AD 800 and 1400 based ontistm isotopes analysis,
the Random Forest regression algorithm and GlSysisafor construction of an
isoscape (geological map of isotope distributidn)the area of archaeological
survey, Lambers et al. (2019) integrate citizeersoe with the automated object
detection in remotely sensed data based on CNNgenerate and validate the
detection of archaeological objects (barrows, abter&ilns, Celtic fields) in the
Netherlands. Verschoof-van der Vaart and Lambed21Pgive continuity to the
previous approach of archaeological survey thramhutomated object detection
model (WODAN - Workflow for Object Detection of Archaeology ithe
Netherlands) and manual analysis in a way that bwthods complement each
other. Orengo and Garcia-Molsosa (2019) presentaaiomated system for
detection of pottery shards in the landscape basedan EE platform ML
algorithm and high-resolution drone imagery, anér@o et al. (2020) present an
automated system for detection of archaeologicalmde (Indus settlements from
c. 3300 to 1500 BC) in Pakistan and the classiboabf satellite data using the

Random Forest algorithm.
Identification of ceramic shapes through image sgal

Makridis and Daras (2012) present a technique tdomatic classification of
archaeological shards using k-Nearest Neighbordeatdre selection algorithms,
where a representative shard of each class is asedeference for the
classification of the remaining ones through coland texture features. Anichini
et al. (2021) and Gualandi et al. (2021) presen¢ tArchAIDE, a
system/application for collection and automaticoggdtion of pottery through
photos based on two complementary ML tools, oneesebn the shard
profile/outline and the other on decorative feaduddlfiez Jarefio et al. (2021)
make use of synthetic data (replicated featuréseobriginal objects) as a strategy
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to make the Arch-I-Scan system viable for clasatfan of Roman Fine Ware
pottery, as datasets with limited size may cau$fecudliies for training of ML

algorithms. MacLeod (2018) deals with the quantitat assessment of
groups/types of North American Paleoindian projeqtoints through analyses of
digital images and 3D scans using geometric mor@toendata analysis and ML
methods like PCA and Naive Bayes. Pawlowicz and mow (2021) present the
application of CNNs on images of decorated cerarac typology and

classification of Tusayan White Ware from Northeaszona, USA.
Geochemical analysis of soil, ceramic chemical cositppn and petrography

Oonk and Spijker (2015) present a supervised MLr@gpgh to geochemical
predictive modeling based on multi-element XRF Itssérom archaeological
features and background soils in the NetherlanogyudL algorithms (k-Nearest
Neighbors, Support Vector Machines) and artificimeural networks.
Charalambous et al. (2016) present a method fasifieation of archaeological
ceramics from the Early/Middle Bronze Age Cyprusotigh their chemical
elements using ML algorithms (k-Nearest Neighb®wsgision Trees - C4.5) and
the Learning Vector Quantisation (LVQ) method. Makbva et al. (2019) apply
clustering algorithms (k-Means, DBSCAN and Hieraah Clustering) to group
ceramic and glass artefacts based on their chencicalpositions, obtained
through XRF analysis. Lyons (2021) uses CNNs fdomatically recognise and
classify ceramic fabrics from Honduras (AD 1000-8%Based on thin section

samples.
Chronology

To conclude the examples of application of ML irchaeology, Klassen et al.
(2018) present semi-supervised ML approaches (Mealtiegression analysis and
Graph-based SSL) for predicting the chronology emples from medieval
Angkor, Cambodia. The prediction is based on asgataf temples with known
architectural elements and artefacts that are ased reference to estimate the

date of most of other temples that are of unknowmiogl.
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3 DATA AND METHODS

This chapter provides detailed information on tla¢adet and ML methods and
algorithms used in this research, which were lyipflesented in Chapter 1. The
methodology can be summarised as the applicationswbervised and

unsupervised ML methods and quantitative classiibaconcepts to a pottery

assemblage dataset.

3.1 Dataset

This presentation of the dataset starts with armodhiction to the archaeological
sites, assemblages and vessel shapes that fotargfe¢ classes of the ML model,
followed by an overview of the dataset and desonst of the features used to

predict the target classes.

3.1.1 Archaeological sites and assemblages

This section provides information on the four amblagical sites that provided
the pottery assemblages for this research. Thescstdeting with ‘JZ’ follow the
Arcane project nomenclature for the sites locatethe Jezirah region in Syria,
the ancient Upper Mesopotamia region (Arcane, 20M6¢ location of the sites in
the Khabur River plain, between the Tigris and Huphrates, is shown in Figure
3.1. The information about phases and periods,gimeborigin/manufacture and
contexts/functional categories correspond to tingpsas that were selected for the
research dataset and do not represent the entifesgmples for that sites in the

Arcane database.

JZ001 - Tell Brak

One of the largest ancient cities in Upper Mesapaa Brak (ancient Nagar)
started to develop around 6000 BC as a small swdtie in the late 5th
millennium BC (Late ‘Ubaid/ Late Chalcolithic 1 peds) it became one of the
earliest cities in the Near East (Oates, 2005; Belk, 2013).
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Figure 3.1 — Location of the archaeological siteshie Khabur River plain,
Northeastern Syria (Upper Mesopotamia), which plegli the pottery
samples (dataset) for this research: Tell Beydal, Brak, Tell Leilan and
Tell Barri. After Ol (2021).

In the 3rd millennium BC it was the dominant city this part of Upper
Mesopotamia, a strategic position in the KhabureRivalley made Nagar an
important connection among Anatolia, the Levant aidsopotamia (Oates,
2005). The city was destroyed around 2300 BC atet kbuilt as a centre for
provincial administration under the Akkadian kingudo During the second
millennium BC Nagar was under the rule of the Miiskingdom, and the Middle
Assyrian period is the latest surviving occupatwnthe main tell (Oates, 2005;
Tell Brak, 2013).

Dataset informationPhases and periods: from c. 3000 to 1950 BC. WMostl
phases L (pre Akkadian) and N (post-Akkadian/ Hun)j some phases H (post-
Uruk/ pre Ninevite 5) and M (Akkadian) or undefinedProbable
origin/manufacture: mostly local, some undefinedntéxts/functional categories:
mostly domestic (tableware, storage or food proogys a few ritual or

unspecified (Arcane, 2016). Number of samples: (3400).
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JZ002 - Tell Beydar

The occupation of Tell Beydar | (ancient Nabadartstl c. 2900 BC and its
greatest extension lasted until c. 2600 BC whenldher city was abandoned.
From this period until c. 2340 BC, the urban setdat remained in the upper city
when the its main structures were abandoned, redube local to a village until

it was no longer occupied around 2100 BC (Prus$3R0rhe period between c.
2340 and c. 2000 BC was marked by urban settlenoeists in the Jezirah region,
during this last period of occupation the villagemained under the Akkadian
control, and it was only briefly reoccupied agawridg the Hellenistic period

(Pruss, 2013). Around the site of Tell Beydar |theo settlement known as Tell
Beydar Il developed during the Mitanni period (dtt century BC) and rebuilt
under the Neo-Assyrian period (Tell Beydar, 20126)s specific site and period
are not represented in the pottery dataset.

Dataset informationPhases and periods: mostly Illb, some 1Va, alleWla, or
IVb (c. 2775 to 2200 BC). Probable origin/manufaetu local.
Contexts/functional categories: mostly domesticorégje, tableware, food
processing, cosmetic), a few ritual, burial or wwsfied (Arcane, 2016). Number
of samples: 133 (27%).

JZ004 - Tell Leilan

The initial occupation of Tell Leilan is recordedrohg the late northern ‘Ubaid
period, and continued through the Uruk period until3200 BC, when the
settlement started to decline (Weiss, 2013). Arog6680 BC a new phase of
expansion started with the construction of monuidemalls and public buildings,
until its decline c. 2200 BC under the Akkadiarer(lWeiss, 2013). After near two
centuries of abandonment, the city redevelopednadmorite capital (Shubat-
Enlil) c. 1950 BC. Its final ancient occupation wasder the Mitanni rule during
the 15th century BC (Weiss, 2013).

According to Weiss (2013, p. 109-10), the declim¢hie urban occupation in the
Khabu River plains during a period of around 30@rge c. 2200 to 1900 BC
(which affected also other cities like Tell Brakdahell Beydar), might have been
triggered by an abrupt decline in precipitation amwbling event known from

paleoclimate proxy records.
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Dataset informationPhases and periods: EJ Il and EJ II/lll (c. 280500 BC).
Probable origin/manufacture: local. Contexts/fumadil categories: domestic
(storage, food processing) and burial (Arcane, 20lNaimber of samples: 69
(14%).

JZ007 - Tell Barri

The initial occupation of Tell Barri (ancient Kah&t recorded from the end of the
4th millennium BC with relevant phases of occupatiuring the 3rd millennium

BC and the Middle Assyrian period, after the dexl important urban centres in
the region such as Tell Brak and Tell Leilan (Paler2019). After the collapse of
the Assyrian empire, Tell Barri had a shorter rdcof occupation under the
Achaemenid period and later nearly two centuriesoofupation during the

Hellenistic period, and records of occupation amndd under the Parthian,
Roman and Sasanian rules until the 4th century R&lefmo, 2019).

Dataset informationPhases and periods: strata 37, 39, 41 (EJ IWlI&J IV, c.

2650 to 2170 BC). Probable origin/manufacture: lloand imported.

Contexts/functional categories: tableware and biAscane, 2016). Number of
samples: 24 (5%).

3.1.2 Vessel shape

In the Arcane database the ‘shape class’ featumivided in two parts, one
containing a code varying from ‘A’ to ‘Z° and thether one containing a
description of the vessel shape. In some casesreéliff shape descriptions are
assigned to vessels belonging to the same shapsg, ¢ta instance the sample
JZ001 _P916 (T class) has ‘Bottle’ as shape desmmiptwhereas sample
JZ001_P925 (same T class) has ‘Flask’ instead. lanotases are the G class,
which has samples described either as ‘BeakerCop/Mug’, and the K class,
which has samples described either as ‘Jug/Tanlardluglet’. It is the shape
code that is used as the label for classificatiod aot the shape description,
therefore this is not an issue, but the descripti@y provide information about
possible sub divisions in a class, as it will benaeented in the discussion section.

The shapes are divided in three groups: open shapesed shapes and

miscellaneous shapes. In this research the shagebdlong to the miscellaneous
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group and some of the open and closed shapesatibenused, see Section 3.1.9
for details on sample selection criteria. Tablel3ts all the shape classes defined

by the Arcane project and the ones used in theares.

Group Shape Shape Description # of

Class samples

A Plaque 1

B Dish/Plate, Platter, Pan 1

C Shallow Bowl 10

< ‘é D Large Bowl 3

o @ E Bowl 182

o » F Deep Bowl 7

G Cup/Mug, Beaker 96

H Open Pot 20

J Vat 2

K Jug/Tankard, Juglet 22

M Closed Pot (rounded, squat) 9

23 N Closed Pot (high) 34

25 P Jar (wide neck) 88

o6 R Jar (restricted neck) 32

S Pithos 4

T Flask, Bottle 12

” L Lamp -

3 \Y, Anthropomorphic or zoomorphic -
293 vessel

sS& W Composite vessel 4

§ 0 X Vessel with horizontal axis -

= Y Vessel without rotation axis -

Z Stand, Andiron 7

496

Table 3.1 — List of shape classes defined by treade project (Arcane
2016) and number of pre-selected samples from dloe $ites. The
classes used in this research are marked in bold.

The following specifications of open and closed pgha&lasses present in the
Arcane project were based on information providgd Oh Meijer (personal
communication, February 17, 2021). Some image elesngre shown for the
classes used in the research dataset. The dimenspmtified for each shape
(diameters, height) serve as a general referemtemay not be strictly followed,

therefore these dimensions alone cannot be usgthtacterise a shape class.

Open shapes:
A - Plague

» Diameter is 12 or more times the vessel height

B - Dish, Plate, Platter, Pan

» Diameter is between 6 and 12 times the vessel heigh
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C - Shallow Bowl

Examples:
£ - ; N - ~
| - //
JZ001_P406 JZ001_P939 JZ007_P062

Figure 3.2 — Examples of vessels from the ‘C —IBhaBowl’ shape class.
Images at different scales. After Arcane (2016).

» Diameter is between 3 and 6 times the vessel height

e  Maximum diameter is 30 cm

D - Large Bowl
» Diameter is between 3 and 6 times the vessel height
» Diameter is greater than 30 cm

E - Bowl

Examples:

7 ———

v,
/
/
."r'
/
o

JZ001_PO15 JZ001_P046 JZ002_P028

Figure 3.3 — Examples of vessels from the ‘E —Bashlape class. Images
at different scales. After Arcane (2016).

» Diameter is between 1.5 and 3 times the vessehheig
* Maximum diameter is 30 cm

* Maximum height is 20 cm

F - Deep Bowl
» Diameter is between 1.5 and 3 times the vessehheig
» Diameter is greater than 30 cm

* Shares some characteristics with class ‘J — Vat’
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G - Cup/Mug, Beaker

Examples:

/

JZ001_P110 JZ004_P403

JZ004_P079

Figure 3.4 — Examples of vessels from the ‘G — Glyg/Beaker’ shape

class. Images at different scales. After Arcand §20

» Diameter is up to 1.5 times the vessel height
* Maximum diameter is 30 cm
e Maximum height is 20 cm

H - Open Pot

Examples:

JZ001_PO73 JZ001_P087

JZ001_P252

Figure 3.5 — Examples of vessels from the ‘H — Opeti shape class.

Images at different scales. After Arcane (2016).

» Diameter is up to 1.5 times the vessel height

* Height is greater than 20 cm

J - Vat
» Diameter is up to 1.5 times the vessel height

* Height is greater than 20 cm

» Shares some characteristics with class ‘F - Deep’'Bo
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Closed shapes:

K - Jug/Tankard, Juglet

Examples:

™

JZ001_PO0O08

JZ004_P084

JZ007_P029

Figure 3.6 — Examples of vessels from the ‘K — Tagkard/Juglet’ shape

class. Images at different scales. After Arcand 20

* Maximum height is 35 cm (15 cm for Juglet)

*  Minimum diameter is between 20% and 60% of the kwaxn diameter

M - Closed Pot (rounded, squat)

* Maximum height is 70 cm

» Height is less than or equal to maximum diameter

« Minimum diameter is between 60% and 80% of the Maxn diameter

N - Closed Pot (high)

Examples:

JZ001_PO0O0O1

JZ001_P043

JZ002_P072

Figure 3.7 — Examples of vessels from the ‘N — €tbPot (high)’ shape

class. Images at different scales. After Arcand 620

* Maximum height is 70 cm

* Height is greater than or equal to maximum diameter

« Minimum diameter is between 60% and 80% of the Mhaxn diameter

41



P - Jar (wide neck)

Examples:

/ |/

JZ001_P260 JZ001_P923 JZ004_P036

Figure 3.8 — Examples of vessels from the ‘P —(dade neck)’ shape
class. Images at different scales. After Arcand 620

* Height is between 35 and 70 cm
e Minimum diameter is between 40% and 60% of the Maxn diameter
R - Jar (restricted neck)

Examples:

L_//
JZ001_P272 JZ002_P105 JZ7002_216

Figure 3.9 — Examples of vessels from the ‘R -(dstricted neck)’ shape
class. Images at different scales. After Arcand 20

* Height is between 35 and 70 cm
«  Minimum diameter is between 20% and 40% of the Mhaxn diameter

S - Pithos
* Height is greater than 70 cm

*« Minimum diameter is between 20% and 80% of the Mhaxn diameter
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T — Flask, Bottle

Examples:

JZ001_P925 JZ002_P603 JZ002_P618

Figure 3.10 — Examples of vessels from the ‘T slkRottle’ shape class.
Images at different scales. After Arcane (2016).

e Minimum diameter is up to 20% of the Maximum diaearet

* Maximum height is 15 cm for Flask

3.1.3 Dataset overview

Table 3.2 shows the summary information for theaskit used to train and
test/validate the ML model. The detailed explamatfor all features and the
values associated with some of the features suchnma®rientation and base
typology are presented in the next sections.

Features are divided in two broad types, accorttirtheir scale of measurements:
categorical [cat] and continuous [con]. Categorfeatures have a limited number
of qualitative and mutually exclusive possible ames, the analyst or expert
defines their possible contents (Fletcher & Lock0Z p. 1-5; VanPool &
Leonard, 2011, p. 5-11) during the database spatibn for instance, or they
may be defined by some predetermined rule (the chdee Vessel ID feature).
The ‘nominal’ is the only categorical subtype usedthe dataset. Continuous
features are quantitative, they may represent redheinterval (a sequence with
fixed distances) or fixed distances with a datume(f zero) point (Fletcher &
Lock, 2005, p. 1-5), which is the case of all contius features in the dataset used
in this research. The continuous features in thasah represent either vessel

measurements (cm or litres) or ratio between measents.
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# | Feature Name Type Description
1 Vessel ID [cat] Unique identification of the vessel composed by site code and
sequence number
2 Shape class [cat] Shape of the vessel e.g. Jar, Bowl, Open pot, Closed pot
represented by letters from Ato Z
3 Rim orientation [cat] Orientation of vessel rim e.g. vertical, out-turned, in-turned,
codified as A, B, C, D or E
4 Rim profile [cat] Profile of the vessel rim, codified from 00 to 22
5 Base typology [cat] Shape of the vessel base e.g. flat, pointed, rounded, codified
from 00 to 15
6 Miniature vessel [cat] Indicates whether the vessel is a miniature form of a vessel
shape. N = No; Y = Yes
7 Additional [cat] Indicates whether the vessel has any handle, lug or spout as
elements an additional element. H = Handle(s); L = Lug(s); S = Spout;
N = No elements
8 Total Height [con]  Total height of the vessel (cm)
9 Diameter at [con] Diameter at vessel opening (cm)
opening (Rim diameter)
10 | Minimum [con]  Minimum vessel diameter (cm)
diameter
11 | Maximum [con] Maximum vessel diameter (cm)
diameter
12 | Base diameter [con] Diameter of the vessel base (cm)
13 | Capacity [con]  Vessel capacity (litres)
14 | Neck diameter [con] Diameter of the vessel neck (cm)
15 | Belly diameter [con] Diameter of the vessel belly (cm)
16 | Neck height [con] Height from vessel base to neck (cm)
17 | Belly height [con]  Height from vessel base to belly (cm)
18 | H-Bd [con]  Total Height / Belly diameter ratio
19 | Bd-Rd [con] Belly diameter / Rim diameter ratio
20 | Bd-Nd [con] Belly diameter / Neck diameter ratio
21 | H-Bh [con]  Total Height / Belly height ratio
22 | H-Nh [con]  Total Height / Neck height ratio
23 | Bd-BaD [con] Belly diameter / Base diameter ratio

Table 3.2 — Vessel features used in the ML modetailed information for each
feature is provided in the following sections. Tgpe[cat]=categorical;
[con]=continuous.

The features are also divided in six groups (séedrby bold lines in Table 3.2),
according to their origin (if provided by the Ar@andatabase or created
specifically for the model) and purpose. Featur€\fdssel ID) has the purpose to
uniquely identify each site and sample vessel aesdhot have any influence in
the classification. Feature #2 (Shape class) isntoemation that will be used to
evaluate the model (the target). In the supervidebe of the research, the model
will attempt to assign the vessels to one of themedefined shapes; in the
unsupervised phase the model will suggest potengal classes or sub-classes

based on the vessel features.
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Features #3 to #23 will be used as informationtifier classification model. The
third group (features #3 to #7) is formed by categb features that are provided
by the Arcane database. The fourth group (featéBedo #13) is formed by
features of continuous values, the vessel measutertieat are provided by the
database.

The last two groups include features that werepmovided by the database but
can be either approximately measured based on theery illustrations or
calculated from basic measurements. These featugastrements were
considered relevant for shape determination (Hbal.e2014; Orton et al., 1993,
p. 152-65; Read, 2007). The fifth group (features4 ##0 #17) includes
measurements, and the sixth group (features #1&2®) includes ratios

calculated from basic measurements.

The Arcane database provides a number of vesderésabesides the ones shown
in Table 3.2, however these will not be used indlassification model: probable
origin/manufacture (local or non-local), functionahtegory (e.g. domestic,
storage, ritual), fabric (ware quality, hardnesglusions), firing and building
techniques, surface treatments, marks and decoratibeit some of these are
relevant information for identification of vessalnttion and, in the case of
decoration, for typology and relative dating, theguld not contribute to the
identification of vessel shape, which is the maference for the classification

model and the focus of this research.

Some categorical features (rim orientation, rimfipgoand base typology) have
NA (null) values for some samples in the originat&ne database. Since scikit-
learn ML algorithms do not process features with Whues (Scikit, 2021dahese
values were replaced by codes meaning ‘Undefinedhée research dataset as

explained in the next sections.

3.1.4 Rim orientation and profile

Information about rims in the Arcane database aweded in two features:

orientation and profile.
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a) Orientation

There are three types of rim orientation in theaesh dataset (Figure 3.11, Table
3.3), ‘B - Out-turned’ being the most common (pras@ 79% of the samples).
The code ‘E — Undefined’ was created for this reseaeplacing the NA values
from the Arcane dataset because the scikit-leagorithms require that
categorical data have no null (NA) values when giganeprocessing encoders
such a®OneHotEncode(Scikit, 2021e; Scikit, 2021f).

Type Description # of
samples

A Vertical 60
B Out-turned 390
C In-turned 43
D Asymmetrical -
E Undefined 3
496

Table 3.3 — List of rim orientations defined by tAecane project
(Arcane 2016). Only the first three types are pmese the research
dataset; the type ‘E’ — Undefined’ was createdefglace the NA values
from the Arcane dataset.

Vertical Out-turned In-turned

Figure 3.11 — Examples of the three types of rirargation in the dataset.
After Arcane (2016) imagesz001_P004, JZ001_P003, JZ001_P046.

b) Profile

The two most common rim profiles are ‘01 — Thinnadd ‘03 — Rounded’ (Table
3.4). Among the profiles that are folded, the algdiolded is the prevailing type.
The code ‘00 — Undefined’ was created for this aede replacing the NA values
from the Arcane dataset for the same reason desciitr the rim orientation

feature.
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Type Description # of

samples
01 Thinned 146
02 Squared 39
03 Rounded 125
04 Thickened 26
05 Bevelled outside 4
06 Bevelled inside 3
07 Round-folded outside 62
08 Round-folded inside -
09 Horizontal folded outside 38
10 Horizontal folded inside -
11 Thin-folded outside 15
12 Thin-folded inside -
13 Square/flat-folded outside 10
14 Square/flat-folded inside -
15 Angular-folded outside 10
16 Angular-folded inside -
17 Moulded outside 8
18 Moulded inside
19 Gutter outside -
20 Gutter inside -
21 Hammer -
22 Hammer moulded -
00 Undefined 10
496

Table 3.4 — List of rim profiles defined by the Are project (Arcane
2016). Some types are not present in the reseatealsat, and some rim
profiles are undefined.

3.1.5 Base typology

Type Description # of
samples

01 Pointed 47
02 Rounded 155
03 Flattened 58
04 Flat 136
05 Concave 12
06 Disk 31
07 Disk concave 10
08 Ring -
09 Ring high 18
10 Pedestal 5
11 Ring folded -
12 Ring protruding -
13 Ring added -
14 Button -
15 Stump 5
00 Undefined 19
496

Table 3.5 — List of base types defined by the Aecaroject (Arcane
2016). Some types are not present in the reseatdseat, and some
samples do not have a base preserved (undefined).

47



Among the several base types found in the datdiset,types are the most
common: ‘01 — Pointed’, ‘02 — Rounded’, ‘03 — Hateéd’, ‘04 — Flat’ and '06 —
Disk’ (Figure 3.12, Table 3.5). The type ‘00 — Ufided’ was created for this
research replacing the NA values from the Arcanesd#d for the same reason

/

Pointed Rounded

|\

Flattened Flat

N

Disk

described for the rim orientation feature.

Figure 3.12 — The five most common base types éndataset, together
they are present in 85% of the samples. After Aec§2016) images:
Jz001_P209, JZ001_P009, JZ001_P014, JZ001_P005 anti M

Depending on the vessel shape, especially for rnaseéd vessels, it can be
difficult to distinguish the base from the sidetloé vessel (Rice, 1987, p. 212-4).
Some samples with pointed or rounded base types loav values (less than 1
cm) indicating a very small base or even a zeraejalvhile vessels with similar
shapes have greater values for the base diametere Samples have the base

missing, in these cases the base diameter is et@asINA.

The base diameter is one of the key measuremests$ tosidentify the vessel
shape (Section 3.1.8), and if different criteria ased for similar shapes it may
affect the performance of ML algorithms. This isssaliscussed in Chapter 5.
When the base diameter has a zero value, thewveelateasurement Bd-BaD

(Belly diameter / Base diameter ratio) is equah®belly diameter.
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3.1.6 Miniature vessels

Some vessels are marked as miniatures in the Adtatadase. There are only 17
samples of this type in the research dataset, geignto six different shape
classes, the ‘E — Bowl’ is the most common one withsamples, followed by ‘G
— Cup/Mug’ with three samples. In the dataset nudsiiniature vessels have
relatively small height (from 2.4 to 5.8 cm), smaglening diameter (from 2.0 to
8.3 cm) and low capacity (from 0.02 to 0.22 litrés)t no explicit criteria were

found for classifying vessels as miniatures.

Some miniature vessels have distinct charactesjsiiat in general it seems that
there are not enough differences from other vessgitthén the same shape classes
that would justify classifying the miniatures adfelient classes. A particularly

interesting case is the shallow bowl JZ002_P113¢hvhas an opening diameter
equal to 8 cm, and it is very similar to vessel QZ@P126, classified as a bowl
(opening diameter equal to 11.8 cm), and not masdsed miniature. Both vessels

have a peculiar shape and come from different.sites

The use of this feature in the research is relatedhe investigation of the
relevance of the size of vessels in the definiabtheir shape classes.

3.1.7 Additional elements

Some vessels may have additional elements, indke of the research dataset

these can be handles, lugs or spouts (Table 3)6rd-B.13).

N

JZ002_P622 JZ004_P084 JZ001_P307
Figure 3.13 — Examples of vessels with additiodaments. Images at

different scales. Left: Jug with handles; centeig With spout; right: Jar
(wide neck) with lugs. After Arcane (2016).
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The types are adapted and summarised from the Arpeoject database, which
includes more details such as the position (uppeddle or lower part of the
vessel body, or in the vessel rim), quantity andrdation (vertical/horizontal) of
these elements. Since there are only 16 vessdlhdéva additional elements in
the research dataset (around 3% of the sampldy)tf@most basic information
(element type) was kept in order to not add unrssggscomplexity to the ML

model.

Type Description # of
samples

H Handle(s) 1
L Lug(s) 9
S Spout 6
N Without additional elements 480
496

Table 3.6 — List of additional elements that mayppesent in some
vessels.

3.1.8 Vessel measurements

There are three types of vessel measurements os#ulsiresearch: i) original
measurements from the Arcane project databasedultional measurements,
based on vessel drawings from the Arcane project;ig relative measurements,

which are calculated on the basis of the othertfyges of measurements.

Arcane measurements

* Height (cm)

e DO - Diameter at Opening (cm)

* D min - Minimum Diameter (cm)
* D max - Maximum Diameter (cm)
e D base - Diameter at Base (cm)

» Capacity (litres)
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Additional measurements

These measurements (Figure 3.14) are based on(Re@d) and apply mostly to
closed shapes because they are based on the wndamck and belly vessel
parts (many open shapes vessels do not have trete @early defined),
nevertheless the method was adapted to includetlads@pen shape vessels as
explained in the next paragraphs.
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Figure 3.14 — Vessel basic measurements. After R2@d7, Figure
8.14). (1) total height; (2) rim diameter; (4) nadikmeter; (5) height to
neck; (6) belly diameter; (7) height to belly; ®se diameter. In this
research the capacity in litres replaces the aigmeasurement (3)
square root of cross sectional area.

* Vessel height (cm)
* Rim diameter (cm)
¢ Neck diameter (cm)
* Height to Neck (cm)
* Belly diameter (cm)
* Height to Belly (cm)

» Base diameter (cm)
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For this research purposes, three of these seversumamments (in italic) are
exactly the same (vessel height, base diameterpquivalent (diameter at
opening/rim diameter) as three of the Arcane measents. The other four
measurements were obtained based on the vessehgsaavailable in the Arcane
project using the ImageJ software, some of theawidgs are shown in Sections
3.1.2 and 4.2.ZThe combination of the six Arcane measurements thigise four

additional measurements resulted in the ten bas@sorements listed in Table
3.2. The relative measurements, which are obtaihexligh the basic ones, are

described in the next section.

Many samples from the open shape group, espedallyls and some types of
beakers, do not have a neck or do not have nei#kyr nor neck, such as the
examples in Figure 3.15. In this case, these shdpest fit exactly in the method
proposed by Read (2007) and used in this reseassertheless there are some

alternatives to characterise the vessel partsatoary (Rice 1987, p. 211-22).

JZ001_PO065 JZ001_P004 JZ001_PO015

Figure 3.15 — Examples of open shape vessels witheck: beaker
(left), and without neck and belly: shallow bowlefter) and bowl
(right). Images at different scales. After ArcagéX6).

The alternatives for this research were to use:

* Vessel height in place of the height to neck mezment (Figure 3.14) in the
case of vessels without neck;

* Vessel height in place of both the height to neckl deight to belly
measurements in the case of vessels without netkelly;

» Diameter at opening (rim diameter) in place ofrieek and belly diameters.

The measurements neck diameter and belly diametezr( with ImageJ) are, for
closed shapes vessels, in most cases coinciddnth@tmeasurements minimum

diameter and maximum diameter from the Arcane @a®bThe equivalence
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between neck diameter and minimum diameter measumsnis 96% in average,
and between belly diameter and maximum diamet889$ in average, for closed
shapes in the research dataset. The neck diametér belly diameter
measurements are preferred in the relative measmtsnformulas because of the
significant number of minimum diameter and maximdiameter measurements
which are missing (have NA values) in the Arcan@base, and also to keep the

original formulas proposed by Read (2007) as shiowwhe next section.

Relative Measurements

Since the neck diameter and belly diameter measnenitaken with ImageJ) are
used in the relative measurements calculations, db®er most relevant
measurements (taken from the Arcane database)esghthdiameter at opening
and diameter at base. Both height and diametepening are recorded for all
samples used in the research dataset. Diametasati® missing for a number of
samples mainly because the vessel base is notrpedsdn these cases the
formula Bd-BaD (Belly diameter / Base diameterapis recorded as NA (not
available) in the research dataset. When ‘Diamatdrase’ is zero, the Bd-BaD

value is equal to the belly diameter.

These following measurements are based on Read7)2@0similar use of

measurement-based classifications is mentionedtom@t al. (1993, p. 155-8).

Figure 3.16 — Vessel relative measurements: (Ayalveessel shape
based on the total Height / Belly diameter ratiB) (pper portion,

based on the Belly diameter / Rim diameter ratf®) Qeck portion,

based on the Belly diameter / Neck diameter ratid the relative

location of the neck in the vessel height; (D) lowertion, based on the
Belly diameter / Base diameter ratio. After Read0@2, Figure 8.15).
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Overall shape:

» Total Height / Belly diameter ratio (Figure 3.16:A)

Upper portion:

» Belly diameter / Rim diameter ratio (Figure 3.16-B)ratio > 1 then the
upper portion is convergent, divergent if ratio erlparallel if ratio = 1.

* Belly diameter / Neck diameter ratio (Figure 3.16-dentifies the vessel
shape located between the belly and the neck.

» Total height / Neck height ratio: relative locatiohthe neck in the vessel
vertical dimension.

Lower portion:

* Belly diameter / Base diameter ratio (Figure 3.0640entifies the vessel
shape located between the belly and the base.

» Total height / Belly height ratio: relative locatiof the belly in the vessel

vertical dimension.

3.1.9 Sample selection

The criteria to select the samples in the Arcaneldese were:

1. They must belong to archaeological sites thatcaiturally related, located in

the same region and within the same broad timegeri

2. They must be enough well preserved so that thieape can be identified
through a minimum of basic measurements and catadofeatures, and

preferably have also images (drawings).

3. They must belong to the open shapes or closmokeshgroups. Shapes from the
miscellaneous shapes group have no measuremenhgiara for defining the
shape classes, have very particular shapes and #nerfew or none samples

among the selected sites (except for the Z class).

4. There must be at least 10 samples of the sHaps among the different sites.
During the dataset split into training and testtqpathe test will have at least tree
samples from any shape class (¥4 of the classdataples, that's 2.5 rounded up
to 3 when using stratified distribution). Clasdeatthave too few samples may be

problematic for pattern recognition by ML algoriterfGéron, 2019, p. 22-6).
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As a result of these selection criteria, the fidataset used in this research is

composed by a total of 496 samples divided in shegpe classes.

3.2 Software

The toolkit used to create the ML model was chdsased on recommendations
from A. Brandsen, researcher in Digital Archaeology the Faculty of
Archaeology, giving preference to Open Source saftw The possibility for
contribution to Open Science practices was alssidered in this research. The
dataset and the Jupyter notebooks created to reirspervised learning training
session (Section 4.1.3) and the clustering analysisk-Means (Section 4.2.1)
are available in the Zenodo repository (Zenodo,3201Instructions on how to

access these resources can be found in Appendix C.1

3.2.1 Machine learning toolkit

* Anacondaa distribution of the Python and R programminggiaages and a
platform for data science and ML applications (Aovata, 2021), allows the
execution of packages and libraries sucls@kit-learn and Jupyterused in
this research. Version: 3-2020.11 (Windows)

» scikit-learn an open source ML library of algorithms for supsed and
unsupervised learning methods such as classificatémd clustering
(Pedregosa et al., 2011; Scikit, 2021a). Versidh: 1

* Jupyter Noteboak an open source, interactive web-based environment
(Jupyter, 2021), used to define the training/tegasets, set parameters and
control the execution of ML algorithms. Versioni @

3.2.2 Additional software

* ImageJd a public domain Java image-processing prograraged, 2021), used
for taking vessels measurements not provided by Aheane database.
Version: 1.53k
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» SciPy an open source library of algorithms for scieatdomputing in Python

(Scipy, 2021a), used for the dendrogram generatersion: 1.8.0

e Spreadsheet for creating the research dataset] loasenformation obtained

from the Arcane database application. The datadetther converted to .CSV

format and loaded into the Jupyter Notebook.

3.3 Supervised learning methods and algorithms

The supervised learning part of this research sethaon classification methods

and algorithms, which are detailed in this Chapgtarting with information about

the dataset structure. The research dataset idedivin four parts: the target

classes are separated from the features used tactdrdse the classes, and the

samples used to train the ML model are separated fine samples used to test it.

3.3.1 Target classes and features

T
2
B
%‘C Features (X)
B
] Lo e el
o o o
] o o
] ] O
Qo0

samples
(train dataset)

samples
(Test dataset)

Figure 3.17 — The dataset divided into four patésget classes vs.
features, train vs. test dataset. After Vanderf2@&7, Figure 5-13).

In scikit-learn the dataset is implemented by arixalf features and samples (by

convention represented X} and a target array (represented)ashe features are
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the columns and the samples are the rows in the atrixm(Figure 3.17)
(VanderPlas, 2017). The features must be numeoritifious or discrete-valued)
in scikit-learn, while the target array may be numer categorical, representing
discrete classes/labels (VanderPlas, 2017), depgrah the type of supervised
learning main problem, regression or classificatiBacause of this scikit-learn
requirement, the categorical features in the rebedataset must be processed

through the encoding method as detailed in Se&i8r3.

3.3.2 Training and test datasets

In addition to the division between target clasaes features, in supervised
learning problems the dataset is divided into trgrand test (or validation) parts
(Figure 3.17). The training set is used to buile ML model, while the test set is
used to assess how the model wiineralise or how well the model works on
unknown data (Muller & Guido, 2017, p. 17). The rabdses the knowledge
provided by the associations between featupgstrin) and target classes
(y_train) in the training set to predict the target clagsethe test set based on its
features X_tesj; the predicted classey_(pred are then compared to the test

target classeg/(tes} to assess the model accuracy.

The dataset is split in the following proportiofowing the scikit-learn default
(Muller & Guido, 2017, p. 17): 75% of the samples ased for training, and 25%
of the samples are used for test/validation ofntloelel. Other proportions such as
80/20 or 70/30 could also have been used. In dodguarantee reproducibility of
the ML sessions and results, the same value forrémelom_state’ parameter
(used by the ‘train_test_split' method) is usedoasrall the algorithms and
training sessions (Muller & Guido, 2017, p. 17-18).

A final important parameter is related to whethiee distribution of samples
during the application of the ‘train_test_split’ thed isstratified or not stratified

In the stratified variation, the distribution ofnsples for each shape class in the
test dataset is proportional to their quantitiestie full dataset; when the
distribution is not stratified, this proportion m®t taken into consideration when

the test dataset is created.

57



3.3.3 Encoding

Scikit-learn ML algorithms do not process categalriteatures directly (Scikit,
2021f). It is necessary to convert them in some enical form before using the
dataset in the training process. There are tworgtzes available in the scikit-
learn library (Géron, 2019, p. 65-7; Miller & Gujd@017, p. 213-24):
OrdinalEncoder and OneHotEncoder. The first metlsadply converts the
categorical values into numeric ones, whereas Otiattoder creates one binary
feature per category (for each sample and categoty,one feature will be equal
to 1 and the others will be equal to 0). The featim orientation is used as an

example in Table 3.7.

(1) OrdinalEncoder:

ORIGINAL DATA ENCODED DATA

Vessel ID Rim orientation  Rim orientation
JZ001_P001 B 2
JZ001_P004 A 1
JZ001 _P037 B 2
JZ001 P038 C 3

(2) OneHotEncoder:

ENCODED DATA

ORIGINAL DATA - - -
Rim orientation

Vessel ID Rim orientation A B C
JZ001_P001 B 0 1 0
JZ001 P004 A 1 0 0
JZ001 P037 B 0 1 0
JZ001 P038 C 0 0 1

Table 3.7 — Examples of results from different Bdiéarn data
encoding methods based on the rim orientation featu

The main issue with the OrdinalEncoder method &t thIL algorithms will
assume that the categories are ordered, and twibyngalues would be more
closely related than distant values (Géron, 201966 Scikit, 2021f). For
instance, the rim orientation ‘A’ (encoded as 1)uldobe considered more related
to ‘B’ (encoded as 2) than to ‘C’ (encoded as J)ial is not true for this specific
feature and the other categorical features indeearch dataset. One disadvantage
of OneHotEncoder is when the feature has a largebeu of possible categories,
resulting in a large number of input features i@ L model, which may create

performance issues during the training sessionsofG2019, 67). Since none of
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the categorical features in the dataset have & lamnber of categories and the
dataset is not large, this is not a problem hergd @@ OneHotEncoder was
selected for the dataset preparation for the Mlortigms. All the categorical
features, except shape class (the model target)eraroded to numerical format
before processing by ML algorithms. The features profile and base typology,
despite being codified as numbers, are also encbeeause of the ordering issue

already mentioned.

Values from categorical features that have very @meurrences in the dataset
(e.g., rim_profile[6] ‘Bevelled inside’ occurs onlthree times) may cause
problems after the dataset is split into train tasld parts. If the test part does not
have any occurrence of the categorical featureev@dinich is present in the train
dataset), scikit-learn algorithms return an errecduse the number of features
between the two datasets parts does not matchsgilpje alternative in case this
situation occurs is to change the ‘random_statefampater used by the
‘train_test_split’ method (Section 3.3.2) and bynsoalgorithms, which causes a

new distribution of samples between the train &stl datasets.

3.3.4 Missing values

Scikit-learn ML algorithms do not process featungth NA (null) values (Scikit,
2021e). In the case of categorical features, ohgigo adopted was to replace the
null values with codes representing ‘undefined’'uesl in the research dataset,
before the processing by ML algorithms (Section§.43.and 3.1.5). In the
remaining (continuous) features, the solution was application of the scikit-
learnimputemethod, which replaces the null values with a chaf alternatives
(the feature mean, median, most frequent or a anhstlue such as zero). In this
research the choice was to replace all the nullesin the continuous features

with zeroes.

3.3.5 Classification algorithms

For the supervised learning part of this reseaiehglassification algorithms were
selected, including two ensemble methods, which kinenthe predictions of

several base algorithms (Scikit, 2021g). The foasebalgorithms follow distinct
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principles for classification, they all have strdrgyand weaknesses and their
performance will depend on the research problemdttaset characteristics (e.qg.,
type and quantity of features, number and qualitgamples), and the types and
values of parameters used (Muller & Guido, 20173]. For some algorithms
there are classification and regression versiorese lonly the classification
versions are considered. The images that illustitagealgorithms are based on
simple models with generic features and classes.dasier to visualise the basic
mechanism of the algorithms through these modetgyumly two features and a

few classes than using more complex models.

k-Nearest Neighbors

‘“ @ training class 0
A ik A training class 1 (]
il * testpred 0
# testpredl

= 3}
bl
£ 2
& o

gl ;#
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_1 Il 1

8 9 10 L1 12
Feature 0

Figure 3.18 — k-Nearest Neighbors algorithm préalict for two classes
and the parameter set to three nearest neighbsies.Miller & Guido
(2017, Figure 2-5).

KNN is the simplest classification algorithm used this research (Miller &
Guido, 2017, p. 36). To make a prediction the affgor finds the closest data
points (the nearest neighbours) in the training Be¢ number of neighbours to be
used (starting with one) can be defined as a paearnrethe algorithm (Muller &
Guido, 2017, p. 36-7). In the example shown in FegB.18 three neighbours are
used to predict the class of new instances (the ahd red stars), in this case a
voting system is used, counting how many class@sréle) and 1 (triangle) the
new instances can be associated, and the instaassigned to the class with the
greatest neighbours count (Miller & Guido, 20173¢-.7).
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Logistic Regression
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Figure 3.19 — Decision boundaries of Logistic Regi@n algorithm
with three classes. The curved lines represenipthbbabilities of the
instances belong to the blue square class. AfteorG@019, Figure 4-
25).

Despite the ‘regression’ on its name, this is &sifecation and not a regression
algorithm (Mdaller & Guido, 2017, p. 58). Logistior(Logit) Regression estimates
the probability that an instance belongs to a paldr class. In its basic form,

binary classification, this algorithm returns tlogiktic (an S-shaped function that
produces a number between 0 and 1) of the resdedon a weighted sum of the
features (Géron, 2019, p. 142-3). In the multickassion, also known as Softmax
or Multinomial Logistic Regression, this algorithcomputes a score of every
class and estimates the probabilities that an nostaébelongs to each class
applying the softmax (normalised exponential) fiorct{Géron, 2019, p. 147-8).

The linear decisions boundaries are accompanigutddyabilities of the instances

belong to each class as shown by the curved Im&sgure 3.19 (Géron, 2019, p.
150-1).

Support Vector Machines — SVM

SVMs include a range of algorithms for linear amh+inear classification and
regression problems. Scikit-learn implementations hinear SVC and SVC
algorithms for classification, and Linear SVR andRSalgorithms for regression
(Scikit, 2021a). In this research the SVC algorittwamich supports both linear
and non-linear (polynomial) variants, and allows thtilisation of several

parameters to control the overfitting or underiigtiof the model (Géron, 2019, p.
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157-8), was selected. The basic concept of SVM isréate a boundary to keep
the training instances from different classes atadi as possible using specific
instances (the support vectors) located on the =dfi¢he classes as reference
(Figure 3.20-A) (Géron, 2019, p. 153-4).

2.0
~ 15
L
o 1o
o
W
% 03
0.0
0
(B)
15 =
& 7
10 = f}
: i.i .. ..:J Hf
A /,_-f'——il-x_! f A
@ 05 o omgy Ak N | J
5 2] g B W S 4a A
) | ] | A = s
o [ & ]
00 A B ot 4
- = N d a7 AL,
& Y
MY ah oA ".i.‘ 1
—0.5 § 'Y &
);‘ P A
4
-1.0 T T T T T : :
-15 -10 -05 0.0 0.5 10 1.5 20
Feature O

Figure 3.20 — (A) linear and (B) polynomial decrsiboundaries of
SVM algorithms for two classes; (A) shows the suppactors
(outlined circles and squares) for each class. rAGéron (2019,
Figure 5-1, Figure 5-7).

The non-linear classification is an alternative foore complex datasets that
cannot be separated by linear functions, in thé€ @polynomial function is used
(Figure 3.20-B) (Géron, 2019, p. 157-8). SVMs magadh pre-processing (feature
scaling) in case the features are of completeljeint orders of magnitude
(Muller & Guido, 2017, p. 103-4), which is not tease of this research dataset
since the numeric values are mostly in centimetresdefined as a relation

between measurements.
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Decision Tree Classifier

The Decision Tree Classifier algorithm searchesafbpossible tests based on the
dataset features, and defines the test that reswltthe most significant
information to define a boundary between classdss Pprocess is repeated
recursively until some termination criterion is ¢bad, for instance until the tree
reaches a certain depth (Muller & Guido, 2017,3%7Y. If no explicit criterion is
determined, the process continues until the leavegpure(all the instances in a
leaf share the same target classes), which cairlt iesbigher accuracy in the
training set but causes a lower accuracy with unkndata (model overfitting)
(Muller & Guido, 2017, p. 75-7).
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Figure 3.21 — Decision Tree algorithm boundarieoading to different
tree depths. After Géron (2019, Figure 6-2).

The vertical line in Figure 3.21 represents thesiec boundary in the root node
(depth = 0), which separates the yellow circlesfasm the other two classes; at
least one more boundary (depth = 1), representeatidoforizontal dotted line, is
necessary to separate the green triangle and tleedgjuare classes, and if the
depth parameter is set to 2, an additional boundadefined (Géron, 2019, p.
177). It is possible to notice that some instanaes left outside the class
boundaries and therefore associated with the wotegses (misclassification) in

this example.
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Shape has 3

sides?
TFV \I:alse
Class = & All angles
Triangle equal to 90° ?
Tru;/ \I;alse
Class= W Class = ¢
Square Diamond

Figure 3.22 — Example of simple decision tree basethree geometric
shapes.

Depending on the features used to characteris¢athet classes (the geometric
shapes in the example of Figure 3.22) and therieritessed by the algorithm to
identify them, the classification can be more @slaccurate. The shag is a
square according to the geometric definition (aljlas equal to 90°), but because
of its rotated position it could be misclassified a diamond if a non-exact

criterion was used.

The Classification and Regression Tré@ART) algorithm implemented in scikit-
learn always produces binary trees, where nonfledés have two children based
on True/False questions using a single featureaahdeshold value (Géron, 2019,
p. 177-8). Itis possible to observe some simiegibetween this classifier and the
taxonomic structure presented in Section 2.1.6.€5ofrthe main differences are
that the algorithm implemented in the scikit-ledibrary uses only quantitative
features (the qualitative features must be conderte a quantitative
representation) and makes only binary tests (whetieefeature is less or equal
than, or greater than a certain value).

3.3.6 Ensemble methods

Ensemble methods aggregate the results from a groppedictors (classifiers or
regressors), aiming to obtain an overall improvedgrmance than provided by
individual predictors (Géron, 2019, p. 189-90). KBdearn provides several

implementations of ensemble methods, divided in gwaups:averaging methods
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andboosting methoddn averaging methods the ensemble applies theageeof
several independent predictors resulting in a fweiance reduction, while in
boosting methods the ensemble applies severalgboeslisequentially, reducing
the bias based on the results provided by the gregeredictor (Scikit, 2021g).
For this research two ensembles of the averagirthadenere selected: Random

Forest Classifier and Voting Classifier.

Random Forest Classifier

The Random Forest Classifier is a special typecoaftdirap aggregating method
(shortened tdagging that uses the Decision Tree Classifier as the hasning
algorithm. The bagging method uses the same digorfor several predictions
using different random subsets of the training (&#ron, 2019, p. 192-7). The
ensemble aggregates the predictions from all trgisubsets and then associates
the class with the most frequent prediction to w mestance, that way reducing
the variance when compared to an algorithm traordg on the original training
set (Géron, 2019, p. 192-3). An additional chartie of the Random Forest is
that it searches for the best feature among a mansidbset of features when
splitting a node in the decision tree (Géron, 2@19,96).

In summary, while the Decision Tree algorithm getes one tree based on the
training set, Random Forest returns the tree with hlest performance among

several alternative trees.

Voting Classifier

f’r\ Ensemble's prediction

1 S {e.g.. majority vote)
f ~ N
™ (’r N o
\1) x1 L _/, Predictions
Decision Diverse
%} Svc KNN EUJ e (%J predictors
. L% b
Logistic
Regression

% New instance

Figure 3.23 — Voting Classifier mechanism. After@€(2019, Figure
7-2).
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A Voting Classifier aggregates the predictions miedse independent classifiers
such as Logistic Regression, SVC and KNN, and @ssscan instance to the
class that gets the majority of votes (Géron, 2(1989).

In the example shown in Figure 3.23, class ‘1’ he nsemble’s prediction
because it received the votes from three algorithwiisle class ‘2’ received the
vote from only one. This basic system is caltedd voting a variation of it that
gives more weight to highly confident votes (highelass probability) is called
soft voting (Géron, 2019, p. 192). Depending on the typeshef ¢lassifiers
involved (the more diverse algorithms the better)l ahe results provided by
them, the Voting Classifier is capable to providagher performance than all the
individual classifiers (Géron, 2019, p. 189-91).

3.3.7 Grid search and cross-validation

Grid search (parameters selection) and cross-vaidare two techniques used to
evaluate, fine-tune and improve the ML model (Geaoi9, p. 73-77; Miller &
Guido, 2017, p. 270-79), summarised in Figure 3 Pdugh the scikit-learn
implementation GridSearchCV (Scikit, 2021h) it i®spible to apply both
techniques as a single method that behaves likiassiter (Muller & Guido,
2017, p. 272-4).

Parameters f Dataset 1

Cross-validation |[#4— Training data Test data

! l

Best parameters — Retrained model

L Final evaluation &

Figure 3.24 — Overview of grid search (parametelsction) and cross-
validation workflow. After Muller and Guido (201Figure 5-7) and
Scikit (2021i).
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This method is applied in the third training sesgiSection 4.1.4), this is a way to
verify that the best possible combinations of paters were applied during the

previous training session.

In cross-validationthe dataset is split in several different ways$aad of a unique
split into training and test sets, resulting in tiplé models being trained (Muller
& Guido, 2017, p. 258). In th&-fold cross-validation method, the dataset is
partitioned intok parts (folds), where most folds are used as theitigaset and
the remaining ones as the test set, and the medrmance is evaluated in this
configuration. In the next iterations (defined Ihe tparametek) the folds are
changed, the model is trained again and, at theoérile process, an average
performance is obtained (Muller & Guido, 2017, P8P

Grid searchis a technique used to test several possible gwtibns of the
parameters used in the algorithms in order to ifletite optimal combination, the
one that produces the higher model performance.ifsiance, two important
parameters in SVC algorithm argamma (kernel bandwidth) andC
(regularisation); if each parameter receives siffedint values, there are 36
possible combinations (Muller & Guido, 2017, p. PR67The parameter
requirements are specific for different algorithmdew parameters are mandatory
while most are optional, and some parameters hdweaaer range of values than
others. The grid search technique facilitates treuation of a higher number of

parameters alternatives (Mller & Guido, 2017, §7)2

3.3.8 Feature importance

Decision Tree algorithms and some ensemble methaded on decision trees
such as Random Forest have a useful resource #ips o summarise and
interpret the tree mechanism, tleature importancg@roperty. This property rates
how important or informative each feature is fag ttecision making process that
builds the tree, using a proportional value betw8effeature not used) and 1
(feature perfectly predicts the target), the valofesach feature are added together
resulting in 1 for the complete tree (Mller & Gajd017, p. 79). Features with a

low rate are not necessarily uninformative, it deappen that more than one
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feature codifies similar information and the algfom uses only one of them
(Muller & Guido, 2017, p. 79).

The feature importance is relevant also for feasgkection, the utilisation of
those features that contribute the most to increéaseML model performance
without adding unnecessary complexity to it.

3.3.9 Confusion matrix

The confusion matrixis one of the most effective resources to evaluh&e
performance of a classifier algorithm: it countse thoccurrences of
misclassifications by the model, the times theanses of a certain class are
classified as another class (Géron, 2019, p. 9@ghEow represents an actual
class, while each column represents a predictess;cthetrue positivesandtrue
negativesclassifications are shown in the main diagong (&t to bottom right),
while false positivesandfalse negativesre shown outside the diagonal (Géron,

2019, p. 90-1). These terms are described below:

* TP = True Positives: instances of class ‘C’ correcthssified as class ‘C’
(value in the diagonal in the class row)

* FP = False Positives: instances that do not belondass ‘C’ incorrectly
classified as class ‘C’ (values in the class columutside the diagonal)

* FN = False Negatives: instances of class ‘C’ incdlyeclassified as a
class different from ‘C’ (values in the class routside the diagonal)

* TN = True Negatives: instances that do not belongldes ‘C’ correctly
classified as a class different from ‘C’ (all oth@iues in the diagonal)

Classifiedas > | @ ¢ A
B Square 15 3
‘ Diamond 2 20
A Triangle - - 10

Table 3.8 — Example of confusion matrix based oedlsimple
geometric shapes.
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Table 3.8 shows an example of confusion matrix ¢hasethree simple geometric
shapes with 50 instances in total. The class ‘Sjimeas 15 TP (true positives) and
three FN (false negatives), misclassified as ‘Diadipthese are visualised in the
‘Square’ row; the FP (false positives) for clasgjudre’ are visualised in the
‘Square’ column: two ‘Diamond’ instances are misslfied as ‘Square’. The
class ‘Square’ has also 30 TN (true negatives). Glass ‘Triangle’ has all

instances correctly classified: 10 TP (true posgjv

3.3.10 Accuracy and other metrics

This section presents some of the most common Mtriesefor classification
models, based on the confusion matrix counts de=trn the previous section:
TP = True Positivesi-P = False Positive$;N = False Negatives, aniN = True
Negatives.

TP+ TN
Accuracy =
TP+TN+ FP+ FN
TP
Precision =——
TP+ FP
TP
Recall =————
TP+ FN
Precision - Recall
F.=2

& "Precision + Recall

Figure 3.25 — Common ML metrics for classificatiorodels. After
Muller and Guido (2017, p. 289-90).

Accuracyis the number of correct classifications made l®y model divided by
the number of instances used in the model, whiggigl to the sum of all entries
in the confusion matrix (Muller & Guido, 2017, p8&9). This is therefore a

metric used for the entire set, it is not used sigady for a class.

Precisionmeasures how many instances associated to aadassly belong to
that class (Mdller & Guido, 2017, p. 289).

69



Recall also known as sensitivity or true positive ramegasures how many
instances of a class are actually associated taldss (Miller & Guido, 2017, p.
289).

The F;-Scoreis the harmonic mean of precision and recall,dfoge it shows a
balanced result of the classification model sinkerd is usually a trade-off
between optimising precision and recall; decidifgolr metric is more important
depends on the research objectives (Géron, 20F4,-6; Muller & Guido, 2017,
p. 289-90). For this research, both metrics aresidened equally important,
therefore the FScore is used as the reference metric for thesetam the results
chapter, in addition to accuracy as an overall imefthe F-Score can be also

calculated for the entire set.

The following is an example of metrics calculation class ‘Square’ based on the

confusion matrix in Table 3.8:

TP=15TN=30;FP=2; FN =3
Accuracy (model) =(15+36)(15+30+2 + 3) =45 50 =0.90
Precision (class) = 15(15 + 3) = 0.83

Recall (class) =15 (15 + 2) = 0.88

F, (class) = 2 (0.83% 0.88)+ (0.83 + 0.88) = 0.85

Other metrics provided by scikit-learn and usethensummary of results (Section
4.1.1) are thenacroaverage anwveightedaverage. The macro average calculates
the score giving equal weight to all classes, wthikeweighted average calculates
the score based on the class support (the numbestainces that belong to the
class) (Muller & Guido, 2017, p. 304-5).

3.3.11 Training sessions procedure

The first two supervised learning sessions follbis procedure.

The third training session performs the same st&pdo #8, in step #9 the
difference is that the technique of grid searchwitoss-validation is applied for

each base algorithm (ensembles excluded) and $iep Bot executed.
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Procedure for Supervised Learning sessions

. Start Anaconda navigator
. Launch Jupyter Notebook
. Import Python and scikit-learn libraries
. Load the dataset (.csv file)
. Check dataset structure and summaries
. Define variables and parameters used throughetssan
. Prepare the dataset:
7.1 Separate dataset into target classes and features
7.2 Split dataset into training (75%) and test (25%tpdets
8. Apply features transformations:
8.1 Encoding of categorical features
8.2 Imputing in continuous features with NA (missinglues
9. For each one of the ML algorithms:
9.1 Create a model instance
9.2 Fit the model with training data
9.3 Predict the results with test data
9.4 Print algorithm accuracy and metrics
9.5 Print confusion matrix
9.6 For Decision Tree Classifier execute these adtitisteps:
i. Generate a decision tree in graphic format
ii. Generate a decision tree in text format
iii. Print feature importance values
iv. Plot feature importance graphics
10.Record the results and end session

~NoO ok, WNPE

3.4 Unsupervised Learning Methods and Algorithms

This unsupervised learning part of this researdiasged on the clustering method,
represented by two algorithms: k-Means and HieraathClustering. For

unsupervised learning there are no comparable ecadtrithose used in supervised
learning that allow to assess how well the clus@respond to an element of
reference (the equivalent of the target classesupervised learning), the best
alternative is to analyse the clusters manuallyl@ii& Guido, 2017, p. 196), and

in a complementary way to perform analyses on redygarts of the dataset

through the dendrogram.
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3.4.1 Clustering algorithms

k-Means

This algorithm is based on the identification aister centers, which are located
as a mean of the instances associated to the rslu3two steps are performed
iteratively until no modifications to the clustexnse identified: i) the assignment of
instances to the closest cluster center, and @) récalculating of the center
(Muller & Guido, 2017, p. 170-1). The number ofstiers to be used is defined as
a parameterk) of the algorithm, and the optimal results wilpbéad on the dataset
characteristics. Figure 3.26 shows the same instaassociated to two and five
clusters, in this example two clusters do not segmugh to identify all the
potential groups and, while five clusters might fpan better than two, an
alternative of three clusters could also have lmmssidered. k-Means may result
in lower performances when the clusters have diffeddensities or have non-
spherical shapes (Miller & Guido, 2017, p. 175-83).

15

5.0

25

00

12 -10 -8 6 -4 -2 D 12 -0 -8 6 -4 -2 D

Figure 3.26 — k-Means cluster assignments basd@ortlusters (left)
and five clusters (right). Miller and Guido (20Efgure 3-26).

The main objectives of clustering and classificatere equivalent: to associate
similar instances in groups (either clusters oss#a) according to their features
where each instance receives a label, howevereirtdle of clustering the labels
do not have a pre-defined meaning, there is norgrdwth which to compare the
results (Muller & Guido, 2017, p. 173). In additjan the k-Means algorithm the
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analyst must define the number of clusters as anpetier and evaluate which one

provides the most meaningful results.

Hierarchical Clustering

Hierarchical clustering is a type of agglomeratolastering, where one of the
iterative steps, the assignment of instances tosdet, is similar to the k-Means
algorithm, but the next step consist in the mergihithe two most similar clusters
based on one of three methods, implemented bytdeddn: ward, average or
complete (Géron, 2019, p. 258; Miiller & Guido, 20f7183-88). The difference
among the methods is how they measure cluster asityil the ward method

considers the least variance within all clustdisaverageconsiders the smallest
average distance between all clusters instances ttecompleteor maximum

method considers the smallest maximum distancedaestvall clusters instances
(Muller & Guido, 2017, p. 183-4). Figure 3.27 shoavsexample of a hierarchical

clustering based on the agglomerative clusterintpotke

Figure 3.27 — Agglomerative clustering. After Miilend Guido (2017,
Figure 3-35).

3.4.2 Dendrogram

Scikit-learn provides an algorithm for hierarchichlistering, the Agglomerative
Clustering, but it does not provide a method fonagating a dendrogram, which
is the best tool to visualise the grouping of @ust(Mdller & Guido, 2017, p.

185-88), the alternative used in this researchasdendrogram algorithm from the
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SciPy library (Scipy, 2021b). Figure 3.28 shows demdrogram version of the
hierarchical clustering shown in Figure 3.27. Atlfier difference between the k-
Means algorithm and hierarchical clustering is that latter does not require the

information of the number of clusters as a paramete

———————————————————————————————— two clusters

e B (na i (it three clusters

Cluster diztance

1 4 3 2 8 5 0 11 10 7 6B 9
Sample index

Figure 3.28 — Dendrogram of the agglomerative elisgy. Miller and
Guido (2017, Figure 3-36).

3.4.3 Silhouette score

When the number of pre-defined clusters is too kfoalone particular dataset,
the clusters that would be better separated erfebing merged and, on the other
hand, when the number is too large some clusterg b inappropriately
separated (Géron, 2019, p. 245). Hilbouette scorés a metric that provides a
starting point for the analysis of clusters, thioube identification of the range
that may provide the optimal number of clusterdsThethod measures the mean
distances among instances in the same cluster lenanean distances to the
instances of the next closest cluster. The scorgesafrom —1 to 1, if the values
are closer to 1 then the instances are strongateteto their own clusters and far
from other clusters (Géron, 2019, p. 245-8).
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4 RESULTS

The results of the training sessions are presesgdrately for supervised and
unsupervised learning. An integrated summary basedhe shape classes is
presented next, and results from both approacleesosnpared in Chapter 5.

4.1 Supervised learning

The supervised learning process was divided iretessions, each session was

subdivided in two variations:

» First session uses the complete set of features described apeh 3.1 and

the six algorithms described in Section 3.3.5.

* Second sessianthe features miniature, min_diam (minimum diamete
max_diam (maximum diameter) and capacity were ranpusing the same

six algorithms.

* Third session uses the same dataset of the second sessiontheitigrid

search and cross-validation methods (Section 3.3.7)

The variation within each session is related totiwiiethe distribution of samples
during the application of the ‘train_test_split’ thed is stratified or not stratified.
Table 4.1 shows the difference between the twocamhres.

Test dataset (25%)
Shape Full e Not
clasps dataset Stratified stratified
C 10 3 1
E 182 46 47
G 96 24 22
H 20 5 7
K 22 5 4
N 34 8 8
P 88 22 21
R 32 8 10
T 12 3 4
TOTAL 496 124 124

Table 4.1. Differences between the stratified anmst n
stratified distribution of samples in the test data
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The results presented in the training sessionsadsays from the stratified

variation since this is the one that provided tastloverall results.

4.1.1 Summary of results

The summaries of results for supervised learniegpaesented in three tables and
one figure. Table 4.2 is a summary by shape claséds-Scores of the five
algorithms that achieved the highest overall pentorces ¥ 0.80) in both
accuracy (Acc) and FScore (k). Table 4.3 is a summary of feature importance
averages from Decision Tree Classifier algorithng @able 4.4 is a summary of
accuracy, precision, recall and-&core metrics for all algorithms and training

sessions.

The highest scores taking into account all sessi@re provided by the ensemble
Voting Classifier (Acc = 0.87,,/~ 0.86), closely followed by Logistic Regression
and SVC (Acc = 0.86, /= 0.86). The algorithm with the lowest scores kas
Nearest Neighbors (Acc = 0.77, £ 0.74). The Decision Tree Classifier (Acc =
0.81, F = 0.81) and the ensemble Random Forest (Acc =, (F83= 0.81)

provided intermediate scores.

Shape class - Fi-Score
Logit SVC DT RF VC
C  Shallow bowl 0:50  0:50 peXe[]
E Bowl 092 094 0.95
G Cup/Mug or Beaker 0.90 0.84 HeAH
H Open pot
K Jug/Tankard or Juglet 0.73 0.60 0.60
N Closed pot (high) (YA 0.50 0.55 0.61
P Jar (wide neck) 0.73 0.81 | 0.80
R  Jar (restricted neck) 0.82 0.63 0.62 0.82]0.75
T Flask or Bottle 0.67 0.67 0.63
Weighted average 086 086 081 0.81 0.86

Table 4.2 — Summary of ¥scores of five algorithms, second training
session with stratified distribution, highlightitige best results for each
shape class. Logit = Logistic Regression; SVC = pdup Vector
Machine for Classification; DT = Decision Tree Gdiger; RF =
Random Forest Classifier; VC = Voting ClassifiengA= Average.
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Feature Description Occur-  Average

rences importance
H-Bd Height / Belly diameter ratio 5 0.368
Bd-Nd Belly diameter / Neck diameter ratio 5 0.218
base_diam Base diameter 5 0.096
neck_diam Neck diameter 4 0.064
Bd-Rd Belly diameter / Rim diameter ratio 5 0.047
belly_height Belly height 5 0.045
rim_profile[7] Rim rounded-folded outside 4 0.041
belly _diam Belly diameter 4 0.038
H-Nh Height / Neck height ratio 5 0.033
height Vessel height 4 0.022
base_type[2] Rounded base 5 0.019
Bd-BaD Belly diameter / Base diameter ratio 5 0.016
additional_elem[S]  Spout(s) 3 0.015
neck_height Neck height 1 0.014
rim_orient[B] Out-turned rim 1 0.012
H-Bh Height / Belly height ratio 4 0.012
additional_elem[N]  No additional element 1 0.011
base_type[1] Pointed base 2 0.009
opening_diam Opening/rim diameter 3 0.009
rim_profile[3] Rounded rim 4 0.008
rim_profile[1] Thinned rim 2 0.006
base_type[4] Flat base 1 0.006

Table 4.3 — Feature importance in Decision Treessifi@r algorithm, average
value based on the second training session usiegdffferent combinations of
parameters max_depth and min_samples_leaf: (5-1, 6-2, 6-4, 7-1).
Occurrencesgndicate in how many combinations the feature apge

Feature importance summary

1 H-Bd

1 Bd-Nd
: 1 base_diam ;
e neck_diam

e Bd-Rd '

E=———— helly_height .

— rifny profilef7] .

e hellly_diam
= H-fh

=== height!

== hase_type[2]
== Bd-Bal;

== additional_elem[3]
== neck_height

== rim_oriert[B]

== H-Bh

== additional_elem[N]
= base_type[1]

=3 opening_diam

=3 rim_profile[3]

= rim_profile[1]

= base typeb]

0.25 0.3

0 0.05 0 0.15 0.2 0.35 0.4

Figure 4.1 — Feature importance in Decision TreasSifier algorithm,
average value based on the second training sessimg five different
combinations of parameters max_depth and min_samplsf: (5-1, 6-1, 6-2,
6-4, 7-1). Based on data from Table 4.3.
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. Training  Accu- Precision Recall Fi1-Score
Algorithm session racy M W M W M W
1.1 0.71 056 070 049 071 050 0.69
1.2 0.75 061 075 053 075 053 0.73
21 0.73 049 072 049 073 047 071
KNN 2.2 0.77 0.59 0.74 0.55 0.77 0.54 0.74
3.1 0.69 0.49 0.69 0.48 0.69 0.46 0.68
3.2 0.75 0.59 0.73 0.55 0.75 0.55 0.73
11 0.80 0.70 0.80 0.64 0.80 0.66 0.79
1.2 0.80 0.78 0.80 0.69 0.80 0.72 0.79
. 21 0.84 075 085 0.67 084 069 0.83
Logtt 2.2 0.86 086 088 076 086 078 0.86
3.1 0.83 0.76 0.85 0.69 0.83 0.71 0.83
3.2 0.86 0.86 0.88 0.76 0.86 0.78 0.86
11 0.81 0.67 0.80 0.65 0.81 0.66 0.80
1.2 0.83 0.73 0.83 0.75 0.83 0.73 0.83
2.1 0.79 0.75 0.81 0.73 0.79 0.71 0.79
Sve 2.2 0.86 0.86 0.87 0.75 0.86 0.77 0.86
31 0.78 067 080 063 078 063 0.78
3.2 0.86 086 087 075 086 077 086
11 0.77 0.65 0.79 0.63 0.77 0.63 0.78
1.2 0.80 0.69 0.81 0.60 0.80 0.61 0.79
2.1 0.79 0.67 0.81 0.65 0.79 0.65 0.79
DT 2.2 0.81 0.72 0.82 0.65 0.81 0.66 0.81
3.1 0.77 0.66 0.79 0.63 0.77 0.63 0.78
3.2 0.78 0.65 0.80 0.64 0.78 0.63 0.78
1.1 0.80 071 082 059 080 062 0.79
RF 1.2 0.84 0.76 084 065 0.84 067 082
a 2.1 0.81 0.74 0.84 0.63 0.81 0.66 0.81
g 2.2 0.83 0.76 0.83 0.64 0.83 0.67 0.81
@ 11 0.82 0.71 0.84 0.67 0.82 0.68 0.82
L|CJ VG 1.2 0.84 0.87 0.84 0.70 0.84 0.75 0.83
2.1 0.83 0.72 0.84 0.69 0.83 0.69 0.83
2.2 0.87 0.85 0.88 0.75 0.87 0.77 0.86

Table 4.4. Summary of training sessions’ results.

Algorithms KNN = k-Nearest Neighbors; Logit = Logistic Regs@n; SVC =
Support Vector Machine for Classification; DT = [on Tree Classifier; RF
= Random Forest Classifier; VC = Voting Classifig¢¥hen more than one
parameter was used, the result which achievedrdetay accuracy is shown.
Training sessios: the best results for each algorithm are higidigh

Metrics M = Macro average; W = Weighted average.

Support(quantity of samples in the test dataset) = 124lidraining sessions.

The following sections detail the results of thertmg sessions, which are shown
through confusion matrices and other informatioeaffire importance and
decision tree for DT algorithm), for those algomith that achieved the highest

performances, in both Accuracy (Acc) and3eore (k).
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4.1.2 First training session

In the first training session the algorithms VotiGtpssifier (Acc = 0.84, F=
0.83), Random Forest (Acc = 0.84, ¥ 0.82) and SVC (Acc = 0.83;E 0.83)
provided the highest scores. Table 4.5 shows thusmn matrix for the Random
Forest algorithm and Figure 4.2 shows the featarportance for continuous
features in the Decision Tree Classifier. The Ramd#f@rest performance was the
only case an algorithm in the first session progtidenigher score compared to the

second or third sessions, the reasons for thisvilmlraare unclear.

Random Forest

Classifiedas 2 [C E G H K N P R T| F
C Shallow bowl - 3 - - - - - - -1]0.00
E Bowl - 43 3 - - - - - -10.93
G Cup/Mug or Beaker - - 24 - - - - - -1l1091
H  Open pot - - 1 3 - 1 - - - 1075
K Jug/Tankard or Juglet - - i - 4 - - - -1089
N  Closed pot (high) - - - - - 4 4 - -1057
P Jar (wide neck) - - - - - 1 212 - -]081
R  Jar (restricted neck) - - - - - - 4 3 1]055
T  Flask or Bottle - - - - - - 1 - 2]0.67

Table 4.5 — Confusion matrix resulting from the Bam Forest
algorithm, which provided the highest scores infitst training session
with stratified distribution, together with Votir@lassifier and SVC.

Correct classifications = 104

Total classifications = 124

General accuracy = 0.84

Fi-Score, weighted average = 0.82

The shape classes with the highest scores>(B.80) are ‘E - Bowl', ‘G —
Cup/Mug’, ‘K — Jug/Tankard’ and ‘P — Jar (wide ngchn that order. The class
with the lowest score is ‘C — Shallow bowl’, thegl samples of this class were
misclassified as ‘E — Bowl’, resulting in an unuksseore of 0.00. The Decision
Tree Classifier (Acc = 0.80,;F= 0.79) used nearly all the continuous features to
build the decision tree (Figure 4.2), with the etaen of min_diam (minimum

diameter) and opening_diam (diameter at openingRdHtotal Height / Belly
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diameter ratio) and Bd-Nd (Belly diameter / Neclrdeter ratio) are the features

with highest importance.

Bd-Bal
H-MNh

H-Bh

Bid-MNd
Bd-Rd

H-Bd
betly_height
neck_height
belly_diam
neck_diam
capacity
base_diam
max_diam
man_diam
opening diam

ight T T T T T T T
000 0.05 0.10 015 020 0.25 030 035

Feature importance

Feature

a’ I

Figure 4.2 — Feature importance of continuous festin the Decision
Tree Classifier, first training session, using pagters max_depth = 6
and min_samples_leaf = 1.

The next training session will be analysed in naetail since it provided the best

results among all sessions.

4.1.3 Second training session

In the second training session the algorithms \¢p@hassifier (Acc = 0.87, /=
0.86), Logistic Regression (Acc = 0.86, £ 0.86) and SVC (Acc = 0.86,F
0.86) provided the best results. Tables 4.6 to 4lfws the confusion matrix for

these algorithms and also for the Random ForesDaegsion Tree Classifier.

One modification in the dataset was made for treorse training section, the

removing of four features: one categorical (mini@juand three continuous
(min_diam, max_diam, capacity). The reason for thegification was to reduce

the dataset complexity, allowing the ML algorithtosfocus on the most relevant
features (Géron, 2019, p. 26-7). These specifigimoous features were chosen
because there is some overlap among them and tlasumeenents obtained
through the Arcane images (neck diam, belly diaetknheight, belly height),

these were preferred over the original Arcane nreasents because of the
absence of NA values and also because these meesuscare used in the
formulas of the relative measurements. The featge®ved have low values of
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feature importance: miniature = 0, min_diam = Oxntham = 0.025, capacity =
0.014, in a scale from 0 to 1 (Figure 4.2), and hage high amount of NA values
(min_diam = 253, max_diam = 131, in a total of 4€&mples), which can

potentially influence the results as commentedhediscussion chapter.

These modifications resulted in increasing accesaaompared to the first
training session for all algorithms (Table 4.4)ttwthe exception of Random
Forest with stratified distribution, which slighttiecreased from 0.84 to 0.83.

Logistic Regression

Classifiedas 2 [C E G H K N P R T| F
C Shallow bowl 1 2 0.50
E Bowl 43 3 0.93
G Cup/Mug or Beaker 24 0.92
H  Open pot 1 4 0.89
K Jug/Tankard or Juglet 5 0.77
N  Closed pot (high) 4 4 0.67
P Jar (wide neck) 1 2 17 1 11|0.77
R  Jar (restricted neck) 1 7 0.88
T  Flask or Bottle 1 2 | 0.67

Table 4.6 — Confusion matrix resulting from the Istig Regression
algorithm, which provided the second highest scareshe second
training session with stratified distribution, ttiger with the SVC
algorithm.

Correct classifications = 107

Total classifications = 124

General accuracy = 0.86

F1-Score, weighted average = 0.86

The individual results from the Logistic Regressimd SVC are very similar
(Tables 4.6 and 4.7). The three shape classesthathighest scores {E& 0.80)
are ‘E - Bowl’, ‘G — Cup/Mug/Beaker’, ‘H — Open ppin that order. The class
with the lowest score is ‘C — Shallow bowl’, twotbke three samples of this class
‘E — Bowl.

algorithms are the results from the ‘P — Jar (wiéek) and ‘R — Jar (restricted

were misclassified as The main diffecen between the two

neck)’ classes. While both classes resulted in figle 0.80) and similar scores
in SVC, the result for the R class was consideraieger than the P class in the

case of Logistic Regression.
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SvC

Classifiedas> |C E G H K N P R T| F
C Shallow bowl 1 2 - - - - - - -1050
E Bowl - .43 3 - - - - - -1092
G Cup/Mug or Beaker -1 238 - - - - - -109
H  Open pot - - - 4 1 - - - -10.89
K Jug/Tankard or Juglet - - i - 4 - - - -1073
N  Closed pot (high) - - - - - 4 4 - -1067
P Jar (wide neck) -1 - - - -.19 1 1]084
R  Jar (restricted neck) - - - -1 - - 7 -1082
T Flask or Bottle - - - - - - - 1 2]067

Table 4.7 — Confusion matrix resulting from the S¥Igorithm, which
provided the second highest scores in the secamirtg session with
stratified distribution, together with the Logisiegression algorithm.

Correct classifications = 107

Total classifications = 124

General accuracy = 0.86

F1-Score, weighted average = 0.86

Voting Classifier

Classifiedas> |C E G H K N P R T|[ F
C Shallow bowl 1 2 - - - - - - -1050
E Bowl -45 1 - - - - - -1096
G Cup/Mug or Beaker - - 24 - - - - - -1092
H  Open pot - - 1 4 - - - - -10.89
K Jug/Tankard or Juglet - - i - 4 - - - -1067
N  Closed pot (high) - - - -1 4 3 - -]067
P Jar (wide neck) -1 1 - 1 - 17 1 1]081
R  Jar (restricted neck) - - - -1 - - 7 -1082
T Flask or Bottle - - - - - - - 1 2]067

Table 4.8 — Confusion matrix resulting from the Mgt Classifier
algorithm, which provided the highest scores in #eeond training
session with stratified distribution.

Correct classifications = 108

Total classifications = 124

General accuracy = 0.87

F1-Score, weighted average = 0.86
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The Voting Classifier (VC) algorithm achieved thighest scores considering all
the training sessions (Table 4.8), albeit with aimum difference from Logistic
Regression and SVC. These results are coherenttiagtialgorithm mechanism
explained in Section 3.3.6. From the nine shapssels, five resulted in high(E
0.80) scores, with three classes near or above U8 independent classifiers
used as parameters for VC were Logistic Regress8¥(, Decision Tree
Classifier and KNN, using the ‘hard’ voting var@ii Other combinations of
classifiers and variations were tested, but thes@turned the highest scores.

Random Forest

Classifiedas 2> [C E G H K N P R T| F
C Shallow bowl 3 0.00
E Bowl 4 2 0.95
G Cup/Mug or Beaker 24 0.92
H  Open pot 1 0.89
K Jug/Tankard or Juglet 1 3 1 0.60
N  Closed pot (high) 5 0.55
P Jar (wide neck) 2 19 1 0.73
R  Jar (restricted neck) - - - - - - 4 4 0.62
T  Flask or Bottle - - - - - - 1 - 2]o0.80

Table 4.9 — Confusion matrix resulting from the Bam Forest
algorithm in the second training session with #teat distribution.

Correct classifications = 103

Total classifications = 124

General accuracy = 0.83

Fi1-Score, weighted average = 0.81

The Random Forest Classifier achieved a middleeaqegformance (Table 4.9) if
compared against other algorithms. It performeghdly better than the Decision
Tree Classifier (Table 4.10), but worse than itsnoseore in the first training
session (Table 4.5). When compared to the DT, it lsa noted that the RF
concentrated the misclassifications in fewer st@d@gses, for instance the N class
in RF was misclassified as the P class only, wiseneahe DT the N class was
misclassified as four other classes; similar resafe visible in the P and R shape
classes.
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Decision Tree

Classifiedas> |C E G H K N P R T| F
C Shallow bowl 1 2 - - - - - - -1050
E Bowl - 4 2 - - - - - -1094
G Cup/Mug or Beaker - 2 22 1 - - - - -1084
H  Open pot - - 1 4 - - - - -10.73
K Jug/Tankard or Juglet - - 1 - 3 - 1 0.60
N  Closed pot (high) - - -1 1 3 2 1 0.50
P Jar (wide neck) - - 1 - - 1 18 1 1]0.86
R Jar (restricted neck) - - - -1 - 6 1]0.63
T Flask or Bottle - - - - - - 2 1033

Table 4.10 — Confusion matrix resulting from thecB®n Tree
algorithm in the second training session with #teat distribution.

Correct classifications = 101

Total classifications = 124

General accuracy = 0.81

Fi-Score, weighted average = 0.81

Despite not being among those with the best oveeslliits, the Decision Tree
Classifier is one of the most important algorithinsthis research because it
provides a range of useful information based onvikealisation of the decision
tree and the importance of the features used itetits that generate the tree. This
information can be used for the improvement of da¢aset and the final ML

model.

k-Nearest Neighbors

This algorithm achieved its highest performancegh@ second training session
(Acc = 0.77, £ = 0.74). KNN was the only algorithm that did naheved a
minimum score of 0.80 in accuracy or$core, and for that reason its results are
not analysed in detail. It was already commentexliithe KNN being known as

a simpler ML algorithm but that does not mean ih@ efficient and should be
excluded from other studies, its usefulness wipadel on the research problems,
and its performance on the characteristics of ttas#t (this is true for other ML
algorithms as well). For instance, KNN was impottas a parameter for the VC
classifier, and its performance was superior tewotivo algorithms as described
in a related research case (Chapter 5.3).
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Figure 4.3 — Feature importance in the Decisiore Ttassifier, second
training session, using
min_samples_leaf = 1. Top and middle images: caiegjofeatures;
bottom image: continuous features.

the parameters max_depth6 =and
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The feature importance is a very useful resouraetterstand how the features of
the dataset contribute to the identification of st@pe classes. It is clear in the
graph in Figure 4.3 that the two most relevantuestt are H-Bd (total Height /
Belly diameter ratio), with more than one thirdtbé total score in the Decision
Tree Classifier, and Bd-Nd (Belly diameter / Nedkrdeter ratio), with around
one fifth of the total score. Together, these teattires represent almost 60% of
the total score for the classifier, however thésatiion of other features is also of

importance as will be described in the analysithefdecision tree.

Parameters Results
max_ rs:':nm_ples # of Accuracy
depth | — | features
eaf
4 1 7 0.73
4 2 7 0.73
5 1 11 0.78
5 2 11 0.78
5 3 11 0.77
6 1 19 0.81
6 2 16 0.77
6 3 15 0.77
6 4 16 0.78
7 1 19 0.81
7 2 17 0.75
7 3 15 0.76
8 1 23 0.78
8 2 19 0.73

Table 4.11 — Summary of important features and
accuracies for different combinations of parametens
Decision Tree Classifier, second training sessibine
max_depth and min_samples_leaf combination used in
this research (6-1) is the one that returns thdndsg
accuracy and at the same time it is less complax th
other combinations with similar score (such as.7-1)

The results for the Decision Tree Classifier weesdal on a combination of
different parameters (Table 4.11). This combinattso reflects how the features
are used, as can be seen in Figure 4.4 comparé&igtwe 4.3 (bottom). The

algorithm variation with parameter max_depth = Bsusess features than the
variation with max_depth = 6, however the accuradgpwer because not enough
tests were done to correctly associate the clagséhs as many samples as

possible.
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Figure 4.4 — Feature importance of continuous featun the
Decision Tree Classifier, second training sessising parameters
max_depth=5 and min_samples_leaf =1.

Since the combination of parameters max_depth admin_samples_leaf = 1
was the best result for the Decision Tree Clagsifieis specific decision tree

generated by the algorithm will be analysed in saistion.

H-Bd <= 0.775
samples = 372
value =[7, 136, 72, 15, 17, 26, 66, 24, 9]
class=E
True False
H-Nh <=1.075 Bck-Nd <= 1.41

samples = 155 samples = 217
value =[7,125,18,1,2,0,2,0,0] value =[0, 11, 54, 14, 15, 26, 64, 24, 9]

class =E class=P

V \alse Tw/ \alse

H-Bd <= 0.335 Bd-BaD <= 3.0 belly_diam <= 18.21 Bd-Nd <= 1.615
samples = 147 samples = 8 samples =86 samples = 131
value = [6, 125,16, 0,0, 0,0, 0, 0] value =[1,0,2,1,2,0,2,0,0] value =[0, 11,54, 13,1, 3, 3,0, 1] value =[0, 0, 0, 1, 14, 23, 61, 24, 8]
class=E class =G class=G class =P
’ ¥ [l b S % s X
4 A + [N 4 LN # Y
¢ \ s . + Y ’ *
i < Bon S 4 \ ’ Y
P [y F; \\ l' a4 X A

Figure 4.5 — Root node and first two levels of thee generated by the
Decision Tree Classifier algorithm in the secondining session. The
complete tree with six levels (max_depth = 6) isveh in text format in

Figures 4.6 and 4.7.
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- HBd <= 0.77

|__

| |--- H-Nh <= 1.07

| | |--- HBd <=0.34

| | | | --- base_diam <= 5.25

| | | | [--- class: C (5/5 = 100%
| | | | --- base_diam> 5.25

[ [ [ [ [--- class: E (2/2 = 100%
| [ |--- HBd > 0.34

| | | |--- HBd <= 0.67

[ [ | | | --- Bd-BaD <= 12.07

[ I | | | |--- HBh<=2.08

[ 1 1 1 1 | |---class: E (104/ 108 = 96%
| | | | [ |--- HBh > 2.08

[ 1 1 1 | | |---class: E (2/4 = 50%
[ [ | | | --- Bd-BaD > 12.07

[ | | | | |---class: G (1/1 = 100%
l I | |--- HBd > 0.67

| | | | |--- rimprofile[7] <= 0.50

l I | | | |---rimprofile[3] <= 0.50

| [ [ [ [ [ [--- class: E (15/18 = 83%
| | | | | |---rimprofile[3] > 0.50

[ o o | | | |---class: G (4/6 = 67%
| | | | |--- rimprofile[7] > 0.50

[ | o | | |---class: G (3/3 = 100%
[ |--- BN > 1,07

| | |--- Bd-BaD <= 3.00

| | | ]--- HNh <= 1.12

[ [ | | |--- class: G (2/2 = 100%
| | | [--- HNn > 1.12

[ [ | | | --- base_type[4] <= 0.50

| | | | | [--- class: K (2/2 = 100%
| | | | | --- base_type[4] > 0.50

| [ | | | | --- opening_diam <= 14. 60

[ 1 | | | | |---class: C (1/1 = 100%
| | [ [ [ | --- opening_diam> 14.60

[ o o I | I [|---class: H (1/1 = 100%
| | |--- Bd-BaD > 3.00

Il | | |--- class: P (2/2 = 100%

Figure 4.6 — First half (H-Bd 0.77) of the decision tree in text format,
second training session. The numbers in bracketsv she positive
identifications and the total amount of samplesoimed in the test.
100% means the leaf is pure (all samples belotigg@ame class). The
lines in red show a limitation of the algorithmeticlass is the same
regardless the test result. The first two leveltheftree are represented
graphically in Figure 4.5.

This tree achieves an accuracy of 0.90 based onrdireng dataset, and when
applied to the test dataset the accuracy decréase81. This issue is related to
the concept of generalisation: a ML model is baittraining data and the goal is
to maximise the accuracy in the test/validatioradathich is previously unknown
to the model, that way the model will have an optimerformance when dealing
with new, unknown data. The ML model based on tleeiflon Tree Classifier
can achieve an accuracy of 1.00 (100%) in theitrgidlataset if the algorithm
does not receive any pruning parameter such asdegih or min_samples_|leaf,
however that way it becomes too complex and toeiipeand behaves poorly

when faced with unknown data.
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--- HBd > 0.77

--- Bd-Nd <= 1.41

--- belly_diam<= 18.21
--- base_diam <= 5.85

--- base_diam> 5.85
--- height <= 7.55

|

|  |--- HBd <= 0.81

| | |--- HBd <= 0.80

| | | |--- class: G (6/8 = 75%
| | |--- HBd > 0.80

| | | |--- class: E (3/3 = 1009
| |--- HBd > 0.81

| | | --- height <= 12.50

| | | |--- class: G (43/44 = 98%
| | |--- height > 12.50

| | | |--- class: G (2/5 = 409
I

[

| | |--- class: E (6/6 = 100%
| |--- height > 7.55

| | |--- class: G (3/3 = 1009

I
I
I
I
|
I
I
|
I
I
I
I
I
| belly_diam> 18.21

| --- neck_di am <= 16.50

| |--- class: P (2/2 = 100%
| --- neck_diam> 16.50

| --- opening_diam <= 15. 90

| |--- class: N (1/1 = 1009
| --- opening_diam> 15.90

| --- rimprofile[l] <= 0.50

|

|

I

| |--- class: H (12/13 = 92%

|--- rimprofile[1] > 0.50

| |--- class: N (1/1 = 1009
--- Bd-Nd > 1.41

--- Bd-Nd <= 1.62
--- base_diam <= 6. 20
--- base_type[2] <= 0.50

I

[

| | |--- HBh <= 2.06

| | | |--- class: P (3/3 = 100%

| | |--- HBh > 2.06

| | | |--- class: H (1/2 = 509

| | --- base_type[2] > 0.50

| | |--- class: N (5/5 = 100%

| --- base_diam> 6.20

| |--- class: N (11/11 = 1009

--- Bd-Nd > 1.62
--- base_diam <= 0.25
--- belly_height <= 3.82
--- neck_diam<= 3.76

I

[

| | |--- class: T (7/7 = 1009
| | --- neck_diam> 3.76

| | |--- class: K (1/2 = 50%
|--- belly_height > 3.82

| |--- HBd <= 0.98

| | |--- class: K (7/9 = 789

| |--- HBd > 0.98

| | |--- class: R (12/18 = 67%

--- Bd-Rd <= 2.45
--- additional _elen[S] <= 0.50

I

| |--- class: P (52/60 = 87%
|--- additional _elenfS] > 0.50

| |--- class: K (2/3 = 679
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[
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| |--- class: P (2/2 = 100%
| --- neck_height > 19.37

| |--- class: R (9/9 = 1009

Figure 4.7 — Second half (H-Bd > 0.77) of the dedistree in text
format, second training session. The numbers ictketa show the
positive identifications and the total amount afnpées involved in the
test. 100% means the leaf is pure (all samplesgelo the same class).
The lines in red show a limitation in the algorithiime class is the same
regardless the test result. The first two leveltheftree are represented
graphically in Figure 4.5.
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A decision tree is generated based on the traidatgset (in this case, n_samples
= 372 in the first level, or 75% of the full datgsehe algorithm then uses this
decision tree to predict the classes in the testséd The number of samples in
each class (training dataset) is shown in the &aline (Figure 4.5). In this
example they are [7, 136, 72, 15, 17, 26, 66, 24c@responding to the classes
[C, E, G, H, K, N, P, R, T]. The class with the st number of samples on the
node is shown as the reference class (they ardHe ittee root, and E and P in the
first level). The values for the complete tree sttewn in Figures 4.6 and 4.7. The
tree can be broadly divided in four parts, whicke amalysed in the next
paragraphs. Only the analysis of the top levels soie specific tests in the
lowest levels are described, enough to explaiidgie behind the algorithm, the
concepts of open/closed shapes and the relevaribe téatures.

The root level split — H-Bd feature

The algorithm uses the H-Bd feature (total HeigBtelly diameter ratio) as the
first test (H-Bd< 0.77), and uses the result (true or false) ta #pd tree in two
parts. All samples from the ‘C — Shallow bowl’ daand the majority of the
samples (125 out of 136) of the ‘E — Bowl' classrevplaced in the left branch.
Nearly all (64 out of 66) of the ‘P — Jar’ and ‘KJdg/Juglet’ (15 out of 17), and
all samples from the N, R and T classes were plaonethe right branch,
completing the set of closed shapes group. Mostpkesmof other classes that
belong to the open shapes group (‘G — Cup/Mug/Beaa ‘H — Open pot’)
were also placed in the right branch, but thespeshare going to be dealt later in

the decision tree.

The H-Bd (Fig. 3.16-A) is the most important featuo differentiate the two
broad groups of classes, open and closed shapmssrafio identifies the overall
vessel shape, values much greater than 1.00 iediiglher or closed shapes such
as jars, and values much lower than 1.00 indicadenor open shapes such as the
majority of bowls, but there are shapes that aoserl to the 1.00 ratio such as
beakers and open/closed pots. The algorithm thecepds with the next tests to

refine the association of samples to the shapsedas
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First level split (right branch) — Bd-Nd feature

The test using the Bd-Nd feature (Belly diamet&tetk diameter ratio) (Figure
4.7) further differentiates the two broad groupslakses, open shapes and closed
shapes. As the ratio gets closer to 1.00 the shHagesme more of the open type
(Figure 3.16-C), since some open shape samplesasuigcbwlIs and beakers do not
have bellies or necks (Figure 3.15) and both h&xeesame measurements for
these vessel parts, which are equal to the rimiogetiameter. In this case, the
samples where the Bd-Nd ratio is greater than Wik associated to the closed
shapes, whereas the remaining ones (gtio41), from the E, G and H classes,

were associated to the open shapes group.

There still remained samples from the closed grouthe ‘open’ branch of the
tree. The belly_diam (belly diameter) feature, vathalue of 18.21 cm, was used
to identify most of them, separating samples ofEhend G classes from samples
of the H, N and P classes. After further divisiamsl utilisation of other features
for testing, eight samples from the closed shapegpyremained in the final level
of the tree in this branch. As a final result, tligh level ‘open’ branches can be
identified, one with E and G samples and one witkarhples (Figure 4.8), with
residual closed shape samples. The residual sampddecated in leaves that are
not 100% pure, as shown in Figures 4.6 and 4.7.

samples
CE,G misc ¥ K,N,P,R,T
6,125,16 8 14,23,61,24,8

i residual sample:

H(1)
residual samples: residual samples:
H(1),P(1),T(1) K(1),N(3),P(2)

Figure 4.8 — Summary of the tree generated by tkeidibn Tree
Classifier algorithm. The number of samples in thet (372) is from
the training dataset (75% of the total), the nursherder each shape
class represent the amount of samples of that riassch node.
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In the ‘closed’ branch of the tree (Bd-Nd > 1.4dfere all the closed shapes are
present, only one sample of the open shapes, ofHhe Open pot’ class,

remained.
First level split (left branch) — H-Nh feature

After the first (root) split, which placed all Cadls, most of E class (125/136), part
of G class (18/72) and a few samples from othepehian the left branch of the
tree, a test using the H-Nh (total Height / Necigh® ratio was used to further
differentiate the samples (Figure 4.6). This meament indicates the relative
location of the neck in the vessel vertical dimengiSection 3.1.8). Samples with
H-Nh < 1.075 included all E class in this branch, andrigeal C (6/7) and G
(16/18) classes. In the right branch eight samfiles the C, G, H, K and P
classes remained (Figure 4.8, ‘miscellaneous’)s Ipossible to consider these
samples as more atypical members of their clagda@s. specific test (H-Nh
1.075) was less decisive on separating the classe® the majority of samples in
this branch had already been identified in the ipre/test (H-Bak 0.775), this is
suggested also by the value of H-Nh in the feainmgortance graphic (Figure
4.3), which is in the average only. Usually thetdees that are either used in the
top levels of the tree or used in a number of diifé tests are considered of

higher importance, but this is not exactly the cagk H-Nh.
Other tests with continuous features

The H-Bd (total Height / Belly diameter ratio) fae¢ was used in five other tests
in different levels beside the root level splitingsdifferent values to differentiate

between C and E, between E and G and between IR atasses.

Some continuous features beyond the ones usee itophlevels of the tree were

considered of higher importance by the DecisioreTalassifier (Figure 4.3).

The Bd-Rd (Belly diameter / Rim diameter, Figur&3B) identifies the shape of
the upper portion of the vessel: it is convergéttte ratio is > 1, divergent if ratio
< 1 or parallel if ratio = 1. This feature was usedeparate samples of the K and
P classes from samples of the R class, which hasra restricted neck and a
smaller opening/rim diameter. In these cases theyadl convergent, but the

algorithm used the ratio = 2.445 as the referendgantify the shapes.

92



The features base_diam (base diameter) and bediy ¢belly diameter) had the
third and fourth higher scores respectively (Figdr8). The test belly diama
18.21 was used in the second level of the treeht(riyanch, Figure 4.7) to
separate samples of the E and G classes from saumiptee H, N and P classes.
Three different tests with base_diam were usedséparation of samples of the N
class from other closed shapes, the separatioraraples of the P class from
samples of the K, R and T classes (Figure 4.7),thadseparation of C and E
classes (Figure 4.6).

All the continuous features were used in at least st by the Decision Tree
classifier in this parameters configuration (maxypttle= 6 and min_samples_leaf
= 1). In some cases, specific tests in the lowezl$eof the tree were necessary to
identify samples belonging to similar classes on@as that are atypical within
the class, which can not be identified by the mwad tests in the highest levels
of the tree. Some absolute measurements show as@wre in the feature
importance graph but it does not necessarily meay &re not relevant; they are
used indirectly as a base for the relative measemésn This is the case of
open_diam (opening/rim diameter), used in the BdrBiib, neck diam (neck
diameter), used in the Bd-Nd ratio, and heightaftbieight), used in the H-Bd

ratio.
Categorical features

The categorical features used in this research ¢rientation, rim profile, base
typology, miniature vessel and additional elememsie used in a secondary way
by the Decision Tree algorithm when compared tocth@inuous features. In this
parameters configuration (max_depth = 6 and minp&ssnleaf = 1) of the
algorithm, three types of rim profile, two basedgpand one additional element
were used in tests in the lowest levels of the (Fegures 4.6 and 4.7). Despite
their secondary utilisation, in some cases they iaythe only alternative to
identify a vessel shape class. This is the cagbeotest additional_elem[S] 0.5
which means that the test result is true if thered additional element ‘spout’ in
the sample, or the result is false when there isaddgitional element ‘spout’,
according to the encoding method applied (Sectid3R This test is used to
separate samples of the ‘K — Jug/Juglet’ classghvhave spouts, from samples of

the ‘P — Jar (wide neck)’, which are similar in ghabut don’t have these
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elements. In the research dataset, only sampldbeoK and N classes have

spoults.

The base_type feature was used twice by the atgaribase type[2] (rounded)
and base_typel[4] (flat), which are the two most ocan base types in the dataset,
were used to separate samples of the N class fnenPtclass, and to separate
samples of the K class from samples of the C acthbkes, respectively.

The rim_profile feature was used three times by dlgorithm: rim_profile[1]
(thinned), rim_profile[3] (rounded) and rim_profif¢ (rounded-folded outside),
which are the three most common rim profile typeshie dataset, were used to
separate samples of the H class from the N class grofile[1]), and to separate
samples of the E class from the G class (rim_p{&jland [7]).

Decision Tree summary

Figure 4.8 illustrates the summary of the decidi@e analysis. From the four
main branches of the tree, two represent the opapes group, one represents the
closed shapes group and one is composed by sanmges both groups
(miscellaneous). In the closed shapes group (KR,NR and T classes), only one
open shape sample (H class) is present. Only dpegoes (C, E and G) compose
the leftmost of the two open shapes branches, whéether branch (E, G and H)
include eight residual samples from the closed etawoup. Eight samples, four

open and four closed shapes, compose the lasthbfamscellaneous).

The open shapes branch E-G-H was divided in twispre E-G part included 65

samples of E and G classes and three samplesPfadd T classes, while the H
part included 12 samples of H class and other $msed shapes samples,
suggesting some similarity among the H class ardctbsed shapes. This issue

will be discussed in Chapter 5.

4.1.4 Third training session

The main goal of the third and last training sessias to test an alternative
technique that might improve the accuracy results, grid search with cross-
validation. This technique was applied in all algons with the exception of the

ensemble group.
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Two algorithms returned the highest scores: LagRegression (Acc = 0.86; E
0.86) and SVC (Acc = 0.86,,F= 0.86). These results and also the confusion
matrices are equal to those from the second tris@ssion (Tables 4.6 and 4.7).
It was expected that the confusion matrices wohlasslightly different results
when compared to the second training session becalushe cross-validation
mechanism of the GridSearchCV method, explainesieiction 3.3.7.

Algorithm Fixed Parameter values returned Best parameter values
9 parameters by GridSearchCV (2" training session)
KNN n_neighbors =3 n_neighbors =4
. solver = ‘sag’, C =0.01, .

Logit max_iter = 1000 penalty = ‘none’ Same as GridSearchCV

SvC C= 0'1_‘ g.amm,a = 'scale’, Same as GridSearchCV
kernel =linear
max_depth = 6, max_depth = 6,

DT ; _ ; _
min_samples_leaf =4 min_samples_leaf = 1

Table 4.12 — List of parameters used in the Grid3&2V method, with
the values returned by the method and the onesptbatded the best
performances in the second training sessAdgorithms KNN = K-
Nearest Neighbors; Logit = Logistic Regression; S¥Support Vector
Machine for Classification; DT = Decision Tree Gldigr.

Table 4.12 shows the parameter values returneteoynethod and the values that
provided the best performances in the second tgisession. Since this method
uses different combinations of the training and desasets (the parameter was set
to five different combinations) it was unlikely théhe same combination of
training/test datasets used in the second sessiouldwbe repeated here,
nevertheless the results suggest that. In additiba, possibility that some
unidentified problem occurred in the applicationtbé method by the author

cannot be ruled out.

The grid search part of the GridSearchCV method veay useful despite this
issue with the cross-validation. The parameters\iesie considered the best ones
by the method were tested in the second trainisgiee script, following the
method’s cyclic workflow (Figure 3.24) and the Lsiit Regression and SVC
algorithms’ performance increased. On the otherdh#re parameter values
suggested by GridSearchCV provided a lower perfoneafor k-Nearest
Neighbors and Decision Tree Classifier when conmpéoethe values used in the

second training session (Table 4.4).
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Under the column ‘Fixed parameters’, two parametieas were tested a number
of times through the GridSearchCV method are shawey always appeared
among the best results, therefore they were fixedhe Logistic Regression
parameter’s list and were not tested anymore utiteiGridSearchCV method.
There are a number of other parameter options é¢kaones presented in Table
4.12, and other combinations not shown here watedelt is beyond the scope of
this research to provide more detailed informataralgorithms’ parameters, this
is available in the scikit-learn documentation. Tbigiective here is to draw
attention to this important aspect of ML and inticthe resources available that

help to arrive at the best possible solution.

A final observation about the kernel = ‘linear’ pareter in SVC algorithm. Other

options beside the linear were tested, includirgy gblynomial, but resulted in

lower scores. This suggests that linear functioogkvbest for the dataset used in
this research, this is consistent with the resfritsn Logistic Regression, an

algorithm based on linear functions (Miller & Gui@®17, p. 46-69).

4.2 Unsupervised learning

The results of the unsupervised training sessioagpeesented separately for k-

Means and Hierarchical Clustering.

4.2.1 Clustering with k-Means

As commented in Chapter 3.4 the best alternativenterpret unsupervised
learning results is the manual analysis of thetehgs which is done in tables 4.13
to 4.16 and through the dendrogram (Figure 4.10e d@endrogram is a very
useful tool however the number of samples mustirbgeld in order to allow a

visual analysis.

The silhouette scores provided a starting point determining the optimal

number of clusters, but the number of clusters dnatmeaningful for the analysis
limited its practical application. Figure 4.9 shotte scores for three different
versions of the dataset. The first version is thledataset with 496 samples, the

second version is a reduced dataset with 10% ofaneples obtained using the
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scikit-learn ‘train_test_splitt method with stra¢ifi sampling, and the third
version is a reduced dataset with five to six saspif each shape class, resulting
in 50 samples. In the third version the samplesewandomly selected; for the
shape classes with greater number of samples (B, Gl and R), six samples
were selected, and for the remaining shape clafisessamples were selected.

The third version was used also for analysis indégredrogram.

Silhouette scores

—+4—Full dataset (4396)
—mi—10% dataset (50}
—#—5-6 samples per class

Score

Clusters

Figure 4.9 — Silhouette scores for three diffenegrsions of the
research dataset, based on the k-Means algorittariull dataset
with 496 samples; reduced dataset with 10% of tpdes
(proportional number of shape classes); reduceasdatvith five
to six samples of each shape class (50 samplesif). t

Results in the silhouette scores look better whenriumber of clusters is low
(two or three) because the samples are less dexsp@soss clusters, but these
numbers of clusters are less useful for the armalysbove three clusters the
silhouette score vary according to the versionhef dataset used, in general the
full dataset and the 10% dataset versions perfaremore similar way. Despite
the silhouette scores, the more useful range tdysmdhe research dataset in
search of meaningful clusters is between four axndlasters, above that number

the samples become too dispersed across the sluster

The results based on four and six clusters areptes here, and the other clusters
created for this research (2, 3, 5 and 8 clustens)oe consulted in Appendix A.
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Clusters

Shape 0 1 2 3 Total
C 3 7 10

E 56 1 125 182
G 75 21 96
H 1 13 2 4 20

K 15 2 5 22

N 10 16 1 7 34

P 56 22 1 9 88

R 8 19 5 32

T 12 12
Total | 236 73 162 25 496

Table 4.13 — Summary of samples divided into fdusters (0-3) and the
corresponding shape classes, based on the k-Mé&gorghan. Cells in grey
indicate the prevailing cluster for each shapes;leslls in light blue indicate
significant amounts of samples associated to sergralusters.

Clusters

Shape 0 1 2 3 4 5 Total
C 7 3 10

E 124 1 56 1 182
G 22 72 2 96
H 1 9 4 6 20

K 1 14 7 22

N 1 10 5 8 10 34

P 8 9 42 29 88

R 12 5 7 8 32

T 11 1 12
Total | 156 40 4 19 213 64 496

Table 4.14 — Summary of samples divided into sixsirs (0-5) and the
corresponding shape classes, based on the k-Mé&rgtan. Cells in grey
indicate the prevailing cluster for each shapesgleslls in light blue indicate
significant amounts of samples associated to sesgraiusters; shape N has
two prevailing clusters.

(A) (B)

Clusters Clusters

Shape | 0 1 2 3 4 5 | Total Shape | 0 1 2 3 4 5 | Total
C 1 1 C 5 5

E 1 16 1 18 E 1 5 6
G 2 8 10 G 4 2 6
H 1 1 2 H 1 2 2 5

K 1 1 2 K 4 1 5

N 1 3 4 N 1 3 2 6

P 6 2 1 9 P 4 2 6

R 1 2 3 R 1 2 2 1 6

T 1 1 T 5 5
Total {13 28 1 5 2 1 50 Total (20 7 2 7 13 1 50

Table 4.15 — Summary of samples divided into simstrs (0-5) and the
corresponding shape classes, based on the k-M&gor#tan. Table (A): reduced
dataset with 10% of the samples; Table (B): redutzddset with 5 to 6 samples of
each shape class. Cells in grey indicate the giegailuster for each shape class,
cells in light blue indicate significant amountssaimples associated to secondary
clusters or no prevailing cluster. In the more beéd division of (B) is easier to
visualise a general trend equivalent to the fulhdat (Tables 4.13 and 4.14).
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Both Tables 4.13 and 4.14 show a similar distriouf the shape classes across
the clusters. The arrangement of clusters groupsngority of samples of shapes
‘C — Shallow bowl" and ‘E — Bowl’ into one clusteshapes ‘H — Open pot’ and
‘R — Jar (restricted neck)’ into a second clustadt &5 — Cup/Mug/Beaker’, ‘K —
Jug/Juglet’, ‘P — Jar (wide neck)’ and ‘T — Flasttie’ into a third cluster. Shape
‘N — Closed pot (high)’ is more clearly associatedhe same cluster as H and R
in the four clusters version (Table 4.13), butagsociation among these shapes
can also be seen in the six clusters version (Tdld). In the four clusters
version, the fourth cluster (#3) is formed mainjyresidual samples of the shape
classes. In the six clusters version, four clustacentrate the majority of
samples and two clusters (#2 and #3) are formegsigual samples, but even in

this version the division in three main clustersisble.

Distribution across 6 clusters

(496 samples)

Shape | Main 2" 3¢ g Rdi?l- Total
C 0.30 1.00
E 0.31 0.01 1.00
G 0.23 0.02 1.00
H 0.30 0.20 0.05 1.00
K 0.32 0.05 1.00
N 029 0.24 0.15 0.03 1.00
P 0.33 0.10 0.09 1.00
R 0.25 0.22 0.16 1.00
T (OX7a 0.08 1.00

Table 4.16 — Distribution of shape classes acressclusters based on
table 4.14. Shape T is the most uniform, with 920&amples in the

same cluster, followed by G and C. Shapes C, EndGskaare divided

into two clusters, one of them being the prevailime. The shapes H,
N, P and R are distributed across three or fowstets.

Table 4.16 shows the distribution of the shapeselasacross the six clusters
version (Table 4.14). Apart from shape ‘T — Flagki®’ which has 92% of its

samples associated to one cluster, the other stlapges show a distribution of
samples in at least two and, in some cases, thireuoclusters. Shapes C, E, G
and K are divided basically into two clusters (wighw residual samples), one of
them being the prevailing cluster. Shapes H, Nn& R are distributed across

three or four clusters.
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The second version of the dataset (10% of the smsndlable 4.15-A), shows
fewer meaningful associations most likely becalsesgmall amount of samples
for some shape classes; four shapes have onlyrame@samples and this limits
the utility of the results. The most visible asstions are the grouping of classes
P and T (cluster #0), classes C, E and G (clugtea#d classes N and R (cluster
#3). One relevant aspect here is the associatimngrshapes of the open group
(cluster #1) and among shapes of the closed grolystérs #0 and #3). The
shapes that are not clearly associated to oneesktigroups, H and K, are the

shapes that share most characteristics of bottpgr@@pen and close).

This reduced version was intended to be used indémedrogram analysis,

however because of the issue of sample distribu#idhird version of the dataset,
with five to six samples for each shape class, araated (Table 4.15-B). This

version shows a similar pattern in the groupingsbipe classes to the one
presented by the full dataset with six clustersaAsatter of clarification there is

no direct relation in the cluster numberings (#3#8 or #0 to #5) between the
different versions of the dataset, or differentstém numbers within the same
dataset; for instance, cluster #0 in Table 4.18hés equivalent of cluster #4 in

Table 4.14, and cluster #0 in Table 4.14 is thevedent of cluster #4 in Table

4.15-B.

In Table 4.15-B the shapes G, K, P and T form atelulike in Table 4.13, and

shapes C and E form a second clear cluster. Twer alasters are less clearly
formed: cluster #1 includes shapes H, N and R,ciumter #3 includes shapes N,
P, R and a residual sample of E shape. The refdtips among these shapes will

be analysed in detail through the dendrogram.

4.2.2 Hierarchical Clustering

The Hierarchical Clustering algorithm using the Wénkage method, based on
the dataset version with 5 to 6 samples of eactsclgenerated the dendrogram
shown in Figure 4.10. In this algorithm the numbgclusters is not informed by

the analyst, the level of detail is higher and ipossible to identify sub-clusters in

addition to the main clusters provided by the k-Rgalgorithm.
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An important observation is necessary at this palespite the fact that shape
classes have been used as a way to assess tlie oésllistering algorithms, both
k-Means and Hierarchical Clustering results (thestdrs) are independent of
shape classes, the results are based only on oatdgand continuous features
present in the research dataset, and the propasseérs in fact indicate different
criteria to shape classification which might benot related to the original shape
classes associated to the samples. It is necesbargfore to consider the
possibility that other patterns of grouping exisybnd the ones provided by the

experts and supervised learning algorithms.

200

150

Cluster distance

100 q

IIT 1LY
Y | IO 1112

Figure 4.10 — Dendrogram from the Hierarchical @tiag algorithm
based on five to six samples of each shape classaR numbers identify
the main clusters and sub-clusters. The numbeosvible bars identify the
individual samples (Sample index), each samplssecated to one shape
class represented by letters. The red and greem liielow the letters
indicate whether the class belongs to the opern) (nedlosed (green) shape
groups.
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In Figure 4.10 all the 50 samples used in the amalsre shown in the bottom
(lowest level) of the graph. It is possible to itignfour main clusters (indicated

in Roman numerals) and corresponding sub-cluskegsire 4.11 shows the top-
level clusters only, here it is visible the unbakah distribution of samples across
the main clusters: cluster Il includes more thalh ¢tfathe samples, and cluster IV

includes only 3 samples.

The clustering patterns become clearer when theckisiters are analysed, but
even in this level some unidentifiable patterns my@ewhen the hierarchical
clustering is taken into consideration. The clugi&tance, measured in the
vertical axis in the graph, indicates how close tékation among clusters is.
According to this information, clusters 1.1 and2llare more closely related than
clusters Ill.1 and II1.2 for instance. However, whapplying the criteria of open
vs. closed shapes (shown in red and green linesviible shape classes in Figure
4.10), clusters 11.1 and 1.2 do not seem to hdneedloser relation between them,
since cluster II.1 is formed by closed shapes &2dbly open shapes, except for
one sample (#13). On the other hand, clustersid2lal seem to be more closely
related because they contain only closed shapesth&nexample is cluster 1.4,
which can be related to its neighbour clusters &ir@l 111.1 by the presence of
open shapes. In the case of cluster 1.3, the poesef two samples of the ‘K —
Jug/Juglet’ shape, which is the closed shape dldsethe open shape group,
reinforces this observation. Figures 4.12 to 4llifstrate the samples that belong

to each cluster.

200

150

11 v

100 A

Cluster distance

(8) (27} (12) (3)

Number of points {samples)

Figure 4.11 — Same dendrogram from Figure 4.10 sigpthe four top-
level clusters only.
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There are similarities and differences in the nssdtom the Hierarchical
Clustering and the k-Means algorithms. Comparirgdhta from Tables 4.13 to
4.15 with the dendrogram in Figure 4.10, it is ewvidthe grouping of shape
classes C and E, and P and T. Depending on thmnekthe dataset used in the
k-Means algorithm (represented by Tables 4.13 1%)4.the G class is joined
either to the C-E group or to the P-T group. Indeadrogram, samples of the G
class are all associated to the open shapes getusiefs 1.2, 11.3 — partial, and
[1.4). Samples of the H class are clearly assoditdesamples of N and R classes
in Table 4.13 and also in the dendrogram (cludté@nd IV), but samples of H
class do not follow a clear pattern in other varsiof k-Means algorithm (Tables
4.14 and 4.15). Samples of the K class are assdctatthe P-T group in two of
the three versions of the k-Means algorithm (Tallelst and 4.15-B) but are
divided into three clusters in the dendrogrami(l, &nd 11.3), which includes both
open and closed shapes. Shapes of the N and Reglass associated in the
dendrogram (cluters Ill and IV) but are clearly asated in k-Means clusters
only in Table 4.15-A.

The criteria of open vs. closed shapes as defiyethd Arcane project is being
applied here for cluster analysis but, as it wasmoented previously in this
chapter, this is not the only criteria and it issgible that another unidentified
patterns of similarity among clusters exists. Thetrset of figures (Figure 4.12 to
Figure 4.15) illustrates the samples included endendrogram (Figure 4.10). The
figures are divided basically according to the fhigh level clusters (I to V),

with cluster Il divided in two figures and clustdtsand 1V included in the same
figure. Through these associations of shapes aadsdmples illustrations it is

possible to identify some patterns that are nardletables or graphs.
Cluster |

The main characteristic of the first associationsbépe classes (Figure 4.12),
which includes clusters 1.1 and 1.2, is the predwnce of closed shapes, except
for one sample of the ‘H — Open pot’ class. Two gla® from the ‘T —
Flask/Bottle’ class, which are clearly differenbrin those included in cluster II.1
(Figure 4.13) are included here, as well half & #amples of the ‘P — Jar (wide

neck)’ class. The other samples of the P clasdigiged in different clusters.

103



) s i i e
;’/3‘;/ ..\:1 ‘ |
L

4 (H) 42 (K) 36 (R)
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24 (T) 25 (T) 5(P) 32 (P)

Figure 4.12 — Samples belonging to cluster .1 lahdcomplete dendrogram is
shown in Figure 4.10). The number indicates theptamandom number (from
0 to 49) and the letter in brackets indicate th@a shape class. First row:
JZ001_P010, JZ002_P622, JZ002_P204 and JZ004_P883ond row:
JZ001_P916, JZ001_P930, JZ001_P011 and JZ002_maages at different
scales. After Arcane (2016).

Clusters Il.1 and 11.2

The second association of shape classes (Figusg iiddudes cluster 11.1 and I1.2
and it is characterised by the differences betvikem. In cluster I11.1 all samples
belong to the closed shapes group, with a predoromaf samples of the ‘T —
Flask/Bottle’ and ‘K — Jug/Juglet’ classes. In ¢dudl.2 there is a predominance
of open shapes, especially the majority of the daspof the ‘G -

Cup/Mug/Beaker’ class. One sample from the ‘P — (dde neck) class is

included here (#13). This sample is an uncommoresgmtative of this class and,

despite being a closed shape, it has similaritiés some samples of the G class.

It seems clear that the samples from cluster He2vasually closer to the samples
from clusters 11.3 and 11.4 (Figure 4.14) than teetsamples in cluster 1.1,
whereas the Hierarchical Clustering algorithm jdirtee clusters II.1 and 1I.2
first, and then joined them to clusters 1.3 and lIater (Figure 4.10). It is likely

that the algorithm recognised an unidentified patteetween the two clusters,
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without using the open/closed shapes criteria, thgt hypothesis that the
agglomerative clustering technique was inefficienthis case cannot be ruled

out.

40 (T) 43 (T)

— =" N\ ._./:
\ & i
S Ty Ny
| II ki

47 (K) 29 (R) 39 (T)

o(N) 10 (P)
12 (Ej 3g ©)
22 (C) 13 (P) 23 (G)

Figure 4.13 — Samples belonging to cluster 1.1 Bri&d(complete dendrogram
is shown in Figure 4.10). The number indicates sample random number
(from 0 to 49) and the letter in brackets indicite sample shape class. First
row: JZ007_P001, JZ001_P947, JZ002_P603, JZ002_RA6d81Z002_P624;
second row: JZ0O1 P0O0O1, JZ001 P0O08 and JZ001 P®BiBJ row:
JZ001_P119, JZ004_PO053, JzZ001 P192, JZ002_P602;rthfourow:
JZ001_P485, JZ001 P182 and JZ001 P492. Imagedfatedt scales. After
Arcane (2016).
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Figure 4.14 — Samples belonging to clusters 113 lhd (complete dendrogram
is shown in Figure 4.10). The number indicates shmple random number
(from 0O to 49) and the letter in brackets indictite sample shape class. First
row: JZ007_P012, JZ007_P026, JZ001_P024 and JZ@9®b;Becond row:
JZ002_P243, JzZ001_P0O04 and JZ001_P939; third ro&001 P0OO05,
JZ001_P942 and JZ002_P693; fourth row: JZ001_P2%2 #002_P621.
Images at different scales. After Arcane (2016).

Clusters 1.3 and 11.4

The third association of shape classes (Figure) Avildich includes clusters 1.3
and 11.4, is composed mostly by samples of the ggmpes group, including the
almost totality of samples of the ‘C — Shallow boamnd ‘E — Bowl’ classes, and
the two remaining samples of the ‘G — Cup/Mug/Beakkass. Two samples of
the ‘K — Jug/Juglet’, a closed shape, are includdtlis association. The fact that

samples of this class that have a higher H-Bd raée joined with closed shapes
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(cluster 11.1) and those with a lower ratio werengd with open shapes will be

commented in the next Chapter.

il v

1012

iL . y &
15 (H) 30 (E)
= 7 =Yl L
| :
. : : I""'?}. | i
11 (N) 34 (R) 8 (N) 31 (N) 9(R)
o g ] 'f
19 (R) 26 (N) 35 (N) 7 (H) 16 (P)
33 (R) 17 (H) 18 (H)

Figure 4.15 — Samples belonging to clusters Il Bh{complete dendrogram is
shown in Figure 4.10). The number indicates theptamandom number (from
0 to 49) and the letter in brackets indicate thempa shape class. First row:
JZ001_P203 and JZ002_P060; second row: JZ001 P0Z802 P101,
JZ001_P052, Jz002_P068 and JZ001_PO0O72; third ro&001 P283,
JZ001_P932, Jz002_P203, JZ001_P051 and JZO001_P@iirth row:
JZ002_P084, JZ001_P252 and JZ001_P273. Imagedfertedt scales. After
Arcane (2016).
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Clusters Il and IV

The predominance of closed shapes, mainly samgdléheo'N — Closed pot
(high)’ and ‘R — Jar (restricted neck)’ classesarelaterises the fourth association
of shapes, represented by the clusters Il andHgufe 4.15). The presence of
one sample of the ‘P — Jar (wide neck)’ class accmaturally here, apparently
unusual is the presence of four samples (froma tdtfive) of the ‘H — Open pot’
class. There may be an explanation for this asgogjavhich will be discussed in
the next Chapter. A final sample (#30) that couddcbnsidered an outlier in this
association is a member of the ‘E — Bowl’ classe Tiain difference between this
one and other common samples of the E class iprémence of lugs, this is the
only sample in the class that has this additioleahent.

4.3 Summary of results by shape

This summary aims to provide an overview of theultessfrom both supervised
(classification) and unsupervised (clustering) md&focused on the individual
shape classes. Each set of information (Figureésahtl 4.17) is divided into three
parts: i) a generic illustration of the shape ¢lagsa summary of metrics for
supervised learning, indicating the score of the YMbte Classifier), the
algorithm with the best overall results, and thghlst score considering all
algorithms; iii) the relationship among the shafssses, taking both approaches

(classification and clustering) into consideration.

In the third part the symbole/o indicate whether the relationship between two
shape classes is stronge) r weaker ¢), or the cell is left blank if there is no
clear relationship. For classification, the criedre the results provided by the
confusion matrices in the second training sess&ectfon 4.1.3). If among the
algorithms five or more misclassifications occur éme particular shape, then the
relationship between the shapes is stronger. tethee two to four occurrences,
the relationship is weaker. For clustering, théecia are the results provided by
the k-Means (Tables 4.13 to 4.15) and Hierarchitastering (Figure 4.10). If the
shapes are part of the same cluster in 4-5 reghksyelationship among the
shapes is stronger. If the shapes are part ofahe <luster in 2-3 results, the

relationship is weaker.
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4.3.1 Open shapes

¢

Shallow bowl

d

Bowl

q

Cup/Mug or Beaker

£

Open pot

Figure 4.16 — Summary of results: open shapes. émagawn after Arcane (2016)

Classification

Total samples 10 Relation to other shapes
Test samples 3 Shape Classif. Clust.
F1-Score - VC 0.50 E [ J [ J
F1-Score - highest | 0.50 G O
Classification Relation to other shapes
Total samples 182 Shape  Classif. Clust.
Test samples 46 C o [ J
F1-Score - VC 0.96 G L J O
F1-Score - highest | 0.96 P O

Relation to other shapes
Classification Shape Classif. Clust.
Total samples 96 C O
Test samples 24 E (] O
F.-Score - VC 0.92 H [ J
F1-Score - highest | 0.92 K O [

P ©)

T @)
Classification Relation to other shapes
Total samples 20 Shape Classif. Clust.
Test samples 5 G [ J
F1-Score - VC 0.89 N [ J
F1-Score - highest | 0.89 R {

samples: JZ001_P939, JZ001_P015, JZ001_P110 a8d JZ087.

4.3.2 Closed shapes

C

Jug/Tankard or Juglet

©

Closed pot (high)

Classification

Relation to other shapes

Shape Classif. Clust.
G ©) [ )
P [ [
R [ @)
T [ )

Relation to other shapes

Total samples 22
Test samples 5
F1-Score - VC 0.67
F1-Score - highest | 0.89
Classification

Total samples 34
Test samples 8
F.-Score - VC 0.67
F1-Score - highest | 0.67
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Relation to other shapes

Classification Shape Classif. Clust.
Total samples 88 E O
Test samples 22 G O
F,-Score - VC 0.81 K o o
F1-Score - highest | 0.86 N [ J O
) R [ J @)
Jar (wide neck) T ° °

Relation to other shapes

Classification Shape Classif. Clust.
Total samples 32 H [ J
Test samples 8 K [ J O
F1-Score - VC 0.82 N ([
F1-Score - highest | 0.88 P [ O
T [ ] O

Jar (restricted neck)

Relation to other shapes

Classification Shape Classif. Clust.
Total samples 12 G O
Test samples 3 K [
F,-Score - VC 0.67 P [ J o
F1-Score - highest | 0.80 R (] O

Flask/Bottle

Figure 4.17 - Summary of results: closed shapeagé®s drawn after Arcane (2016)
samples: JZ001_P008, JZ001_P001, JZ001_P923, JRQ@2 and JZ002_P618.
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5 DiscussION

The research results based on the supervised a@ougenvised approaches will be
assessed with a focus on the main themes direetgted to the research
questions, on general issues of the applicatidvlofn archaeology, and how the

research results compare to selected related studie

5.1 Main themes

5.1.1 Artefact features

The Decision Tree Classifier (DT) was not amongalgorithms with the higher

performance, nevertheless it was very useful feramhalysis of results through the
generated decision tree and the relevance of tweires used in the tree. The
analysis of the decision tree, either in graphidextual form, makes easier to
understand the criteria used by the algorithm Hfier ¢lassification and, based on
this information, the traditional classification ynae evaluated and provide new
insights into the applied methods. Despite theuf@atmportance being a property
of algorithms based on decision trees like DT andd®m Forest, the information
provided by them can be used to improve the datssatwhole and consequently

improve the results of other algorithms.

As summarised in Table 4.3 and Figure 4.1, the nmogbrtant features are two
relative measurements, H-Bd (Total Height / Bellgndeter ratio) and Bd-Nd
(Belly diameter / Neck diameter ratio), followed two absolute measurements,
base diameter and neck diameter. The most relevatggorical feature is
rim_profile[7] (round-folded outside), and the nexte is base_type[2] (rounded
base). If all categorical features were consideredindividually, but as a unit,
without the division created by the OneHotEncodethad, they would have the
following average importance based on Table 418: profile = 0.055, base_type
= 0.034, additional_elem = 0.026, and rim_orie®&12. The rim_profile feature
would be the B in importance, and the base type thd".1Whese are just
estimative, the actual values would only be rewkdfethe encoder had not

processed these features.
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The identification of the most relevant artefactiees and how these contribute
for the identification of vessel shape is one @ $trengths of ML. The following
case, based on the tree generated by the DT dgodtiring the second training
session (Section 4.1.3), illustrates at the samme tihe importance of feature
definitions and the exactness of the data useditd the ML model.
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Figure 5.1 — Vessel measurements used by the Decisee classifier
in the root (H-Bd< 0.775) and first level (Bd-N& 1.41) tests. Left:
shape proportions that separated the majority aflddrom other

shapes; Right: proportions that separated the majoir closed shapes
samples from the open shapes. H = total Height=Hklly diameter;

Nd = Neck diameter; Rd = Rim/opening diameter; BaDBase

diameter.

Figure 5.1 illustrates the vessel measurements mgéae Decision Tree classifier
in the root (H-Bdk 0.775) and first level (Bd-Ng 1.41) tests. Both tests applied
the relative measurements defined in Section 3Th& left image shows the
shape proportions that separated the majority (32%@ — Bowls’ samples from
other shapes in the training part of the datasée Tight image shows the
proportions that separated the majority (91%) otetl shapes samples from the

open shapes samples in the training part of thesdat

The samples of the ‘E — Bowl’ class were separatidtwo initial branches, and

then further divided in the deeper level branclessgdescribed in Section 4.1.3.
The focus here is the first division, especiallg 8eparated branch that included
the minority of E class samples. Figure 5.2 illatds the samples that were
included into this branch by the DT classifier, @thirepresent bowls that are

deeper than the more common bowl types.
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JZ001_P022 JZ001_P173

JZ002_P112 JZ002_P692 JZ004_PO05 JZ004_P0O13
JZ004_P032 JZ004_P0O34 JZ004_P0O35

Figure 5.2 — Samples of ‘E — Bowl’ shape class thexte classified in a
separated branch by the Decision Tree classifiect{& 4.1.3), under
the condition H-Bd > 0.775. The highlighted samgi&002_P067,
which originally would not match this condition, svancluded in this
branch by the algorithm because of a measurement iarthe Arcane
database. Images at different scales. After Ar¢2026).

The sample JZ002_P067 (highlighted in Figure 5.2% wcluded in this selection

by the DT algorithm because an error in the Aradaitabase measurements. After
analysing these results, the vessel was measuregdgth ImageJ using the scale
provided in the original Arcane image. It was pbksito conclude that its height

(6.0 cm) and other measurements are correct, hovtbeediameter at opening

was recorded as 5.70 cm, when the correct measntesheuld be around 11.0

cm. The diameter at opening is used in the relati@surement H-Bd in the

place of belly diameter when the vessel has noy @il neck, as explained in

Section 3.1.8. As a consequence of this error, div@pe recognised by the

algorithm did not reflect the original shape of thessel.

The next issue is related to NA (null) values iatéges, in this case the base_diam
(base diameter) feature, extending to the Bd-Ba&llyRliameter / Base diameter
ratio) feature. Both features have a number of $esnpith NA values (89 in 496
samples). As commented in Section 3.3.4, scikitAl@gorithms does not process
NA values and these must be converted to zero leeratalculated value. This

may not be a big problem for those vessels thaé lrapointed or small base in
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relation to the body, e.g., the samples startinty Wiz004' in Figure 5.2, but for
vessels with larger proportional bases, the veskape can be distorted and

consequently being misclassified by the algorithms.

Alternatives to this issue could be the non-utiiea of these features in the ML
model (as it was done with min_diam and max_diaterathe first training
session), or the removal of samples that have NAegafor these features. It was
decided to keep these features and samples imebézmarch because completely
preserved pottery vessels in archaeology are velgtrare, the most usual is the
preservation of certain parts of the vessel, whithrsome cases can lead to
identification of missing parts and the ‘visualieat of the complete vessel shape
based on its measurements (Orton et al. 1993, {80Y.6The occurrence of
incomplete samples is important to assist in tlemtification of potential issues
and limitations in the ML model, in order to develichniques that may improve

the results taking these limitations into consitlera

5.1.2 Shape classes

Some shape classes may be more complicated tafeltemn others, apart from
the sample size of the class. It is for instaneecidise of ‘N — Closed pot (high)’,
which has a sample size greater than other shapsed (H, K and R) but returned
lower scores than these classes. In the secomihiyagession (Tables 4.6 to 4.10),
nearly half of the samples of the N class were Iassified as ‘P — Jar (wide
neck)’ or other shapes. The N shape is also thewatte greatest dispersal in
clustering (Table 4.16, almost equally divided itiicee clusters), followed by the

‘R — Jar (restricted neck)’ class.

The class ‘G — Cup/Mug/Beaker’ has samples withiant differences among
each other (Figures 3.4 and 4.13), especially dégguthe base type, nevertheless
it is one of the shape classes with higher scaredassification (0.92), and it is
divided basically into only two clusters (Table &).1A similar comment can be
made about the class ‘K — Jug/Juglet’, a high se@orelassification (0.89) and
only two basic clusters. Some of the differencethan case of samples of the K
class are related to the presence of additionahexiés, especially spouts, which

were correctly identified by the Decision Tree aition (Figure 4.7).
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From the five samples of the ‘H — Open pot’ classspnt in the dendrogram
(Figure 4.10), four are associated with clustepgagented by closed shapes. One
sample of the H class is associated with samplehefK, P, R and T classes
(Figure 4.12), while other three H samples are @asasl with samples of the N
and R classes (Figure 4.15). The decision treergiatein the second training
session (Figure 4.8) also indicates a proximityMeen the H class and those of
the closed shape group, however the closer shapkdocording to supervised
learning in general is the ‘G — Cup/Mug/Beaker’ssldFigure 4.17). These results
suggest that the H class can be considered a thydass, having characteristics
from both open and closed groups. From the opepeshthe most evident is the
wider opening/rim diameter, and from the closedpsisathe presence of a neck
and the rim profile/orientation.

Types of 'H - Open pot'

\ L \ \\|
,, | ;
/x / /
L 3 __/’/ _,//
1 2 3 4
{(15) (2) (1) 2)

(number of samples)

Figure 5.3 — Types of ‘H — Open pot’ shape clasdentified through
analysis of the tree generated by the Decision Glassifier.Vessels1
= JZ001_P258; 2 = JZ004_P092; 3 = JZ001_P049; 2091 P010.
Images at different scales. After Arcane (2016).

The Decision Tree classifier can also be usefuhendefinition of potential sub-
classes/types, or in the identification of outliéasypical class members). Figure
5.3 shows four types of vessels of the H class, Appendix B.1 shows the
structure that identified these types based on [Ofie classifier. The tree
mechanism is the same from the original decisiee {fFigures 4.5 to 4.7), the
difference is the focus in just one shape classotider difference is that the
original tree used only the 15 samples that aré¢ giathe training dataset, in

Figure 5.3 and in the appendix all 20 samples efHhclass are considered. The
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vessel type #1 is the most common type of the Kscia the dataset, 15 samples
of this type have at the same time H-Bd > 0.77 N8k 1.41 and belly_diam >
18.21. Other 5 vessels have at least one featatehts different values from
these parameters defined by the algorithm: types#horter, type #3 has a more
restricted neck and type #4 has narrower belly dtemwhen compared to the
average vessels of the H class. This is a simglilassification, a more complete
one would also apply categorical features (rim ifgfdrientation, base type) to
refine it. The tests applied by the DT classifising these features and values
were created to process all shape classes in tasafain the case of a dataset
where only samples of H class were used, it is iplesshat different criteria

would be applied.

According to the specifications in Section 3.1 main difference between jugs
and juglets is the vessel height (up to 15 cmugigts). From the five samples of
the K class included in the dendrogram, four afndd as juglets in the Arcane
database. Three samples are associated with dbspés (Figures 4.12 and 4.13)
and two are associated with open shapes, clos#retoG — Cup/Mug/Beaker’
class (Figure 4.14). It is possible to identifytttize two samples associated with
open shapes have a lower H-Bd ratio compared totther three, but there is no
relation between this information and the divislmetween jug and juglet, since
three juglets were associated to the closed shaygsh have a higher H-Bd ratio.
It would be necessary to expand this analysis goeater number of samples in
order to identify a clearer pattern for the K clasad the criteria used by the
clustering algorithms to group its samples. Furtiae, the presence of additional
elements should be considered since only sampl€saofd N classes have spouts,

and the only sample with handles in the datasejug (Figure 4.12, sample #42).

The ‘P — Jar (wide neck)’ class is peculiar in $kase that it produced high scores
(up to 0.86) but at the same time it was the dlaasproduced the most variety in
misclassifications (Table 5.1), with three to foelated shapes in average, five in
the case of Voting Classifier. The positive sid¢haf results is probably due to the
high number of samples (the third highest in theaskt), an opposite situation
when compared to the C and T classes. In termsusfetr analysis, the P shape
was divided into four clusters, but only two are frevailing ones, with 81% of
samples (Table 4.16).
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During the development of this research it waspustsible to access the complete
Arcane project documentation, which is availablepimted volumes (Arcane,
2016b). For this reason there is limited informatatout potential criteria used in
the assemblages classification and how the veaselassociated to shape classes,
beyond the general guidance presented in SectioB. I hese specifications work
as a general reference and may not necessariligbmusly followed since the

final definition of shape classes may be a subjeatiatter.

Taking this limitation into consideration, one exmhtion for associations
described in the previous paragraphs may be retatéite concepts of open and
closed shapes and how the shape classes are défipethciple, two possibilities
can be considered regarding the process of defihi@yessel shape class, which
are also related to the top down and bottom upagmbres described in Section
2.1.3. The first alternative is broadly classifyiagessel as either open or closed
(or some of the other groups listed in Table 3ahyg then comes the decision of
what specific class the vessel belongs to. Themkaiternative is to directly
define the vessel shape class, and it is then atikcaily defined as belonging to
either the open or closed group.

The criteria for defining the shape classes arferdint for open and closed shapes
(Section 3.1.2). In the case of open shapes, bHuthrelation between vessel
diameter and vessel height, and the absolute diainaetd height, are used as
reference. For closed shapes, the relation betéeeminimum and the maximum
vessel diameter, and the absolute height are @&sece there are different criteria
for both groups and these criteria are not mutuatliusive, there is an overlap in
the classification criteria between the two grodpsorder to avoid this problem,
it would be necessary to define first whether asgkbelongs to the open or close
group, and then apply the classification critevi@éfine the shape class under one

of these groups.

Finally, the possibility of misclassifications cadsby occasional data input errors
must be considered. In one specific case, idedtdigring the sample selection in
the Arcane database, the vessel JZ001 P175, addssi$ a beaker (G class),
clearly does not belong to this class, accordinpéovessel measurements (height
of 95 cm and capacity of 298 litres) and illustati it could be classified as a

large storage jar (possibly a ‘S — Pythos’?).
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Voting Classifier

Classifiedas> |C E G H K N P R T| F
C Shallow bowl 1 2 - - - - - - -1050
E Bowl -45 1 - - - - - -1096
G Cup/Mug or Beaker - - 24 - - - - - -1092
H  Open pot - - 1 4 - - - - -10.89
K Jug/Tankard or Juglet - - 1 4 - - - -1067
N  Closed pot (high) - 1 4 3 - 0.67
P Jar (wide neck) -1 1 1 - 17 1 10381
R  Jar (restricted neck) - i - - 7 -1082
T Flask or Bootle - - - - - - -1 2]067

Table 5.1 — Confusion matrix resulting from the Mgt Classifier
algorithm (reproduced from Table 4.8), with somescatassifications
highlighted in blue. The sample highlighted in gyaris JZ004_P064
vessel (Figure 5.4).

Figure 5.4 — JZ004_P064, vessel of the ‘P — Jatgwiieck)’
class misclassified as ‘E — Bowl'. After Arcane 1&).

This sample was not included in the research dabtesmause it would just provide
wrong information for the training of ML algorithmB an error like this was not

identified during the sampling selection procesd anML model processes a
problematic sample, the results provided by toalshsas the confusion matrix
(e.g., an association between two completely distotasses) would raise the
attention of the analyst for a potential mistakdhe dataset. This is one of the

benefits of using ML in pottery classification.

This issue can also be exemplified through the usiah matrix provided by the
Voting Classifier algorithm (Table 4.8), and repuodd here (Table 5.1). A
characteristic of ML algorithms that achieved tlghlest scores in this research is
to produce misclassifications of shapes that avseclto the original shape. The
misclassifications are mostly adjacent or neah&rhain diagonal, shown in pale

blue in Table 5.1. Because of the shape classemathsastics, it is more
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reasonable to expect samples of the C class nssfatalsas E class, or samples of
the N class misclassified as P class than, foamt&, samples of the C class
misclassified as T class. The cell highlighted nange in Table 5.1 shows a
sample of the ‘P — Jar (wide neck) class miscfesbias a sample of the ‘E —
Bowl’' class. These classes are not close to eacér.offter a more detailed

analysis on this particular case, the sample wastiited as the JZ004_P064

vessel.

This vessel (Figure 5.4) looks like an uncommon imemof the P class, it is
possible to identify similarities in the vessel podith some samples of the E
class, and it was interpreted that way by the V@ atier ML algorithms. This
vessel is also similar to some samples of the ‘Bug/Juglet’ class (e.g., sample
#49 in Figure 4.14), the main difference is in base type. It is not possible to
know if this was a misclassification in the Arcat@abase, this vessel was not
originally classified as a bowl likely because eftain details beyond the basic
shape, like the neck and the rim profile. In thiartigular case, the vessel
measurements and the categorical features weremmtgh to identify it as a
sample of the P class (or other class, in the chaa original misclassification in
the Arcane database). In any case, the analysteeotonfusion matrix result

would draw the analyst’s attention to a revisiothie classification of the sample.

5.1.3 Classification and clustering

A ML model can be used as a tool to assist pog&perts in their decision while
performing the task of vessel classification. e gupervised learning approach,
the overall performance of 0.87 in accuracy acldelg the Voting Classifier
algorithm indicates that ML may produce results tten be useful to the expert,
and it is theoretically possible that a more batahdataset, with a more uniform
distribution of shape classes, could provide highesults. This could be a

guestion for future research.

The benefits of using unsupervised learning metlaodsot so clear initially, as it
is the case of supervised learning, mostly becthese is no straightforward way
to assess the results since there are no targsesléao be compared. On the other

hand, clustering methods such as k-Means and Idiecal Clustering have the
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benefit to create clusters, which can become pialeciisses, based on different
criteria and therefore providing new insights intiee pottery assemblage.
Clustering methods also allow a new analysis onipusly classified collections

in accordance with new perspectives and approaches.basic classification

criteria used in this research, dividing the shalpeses mainly in open and closed
shapes, was only followed partially by the clustgralgorithms. This cannot be
considered a problem, on the contrary, becauseobttee goals of unsupervised

learning is to identify possible new patterns agldtronships among artefacts.

Groups of artefacts (either classes or clustergyildhbe internally coherent and
externally isolated (Read, 2007, p. 64, p. 135&)d the groups should be
precisely defined to allow the classification toééernally reproduced (Orton et
al., 1993, p. 152). Members (the samples in thasaéd}t must be clearly identified
as belonging to one group and not to others. leotjme this may not be easily
achieved, as the results from ML algorithms shoamfles from the same shape
class are split into two or more clusters, and fagssfications occur in all shape
classes, with different degrees of precision/redddivertheless, it is possible to

identify patterns in the grouping of shape classes.

Five shapes clearly relate to each other in tefn®ih classes and clusters, based
on the results: C-E, K-P and P-T. Some shape dagds®v stronger relations with
other classes in terms of classification: E-G, GNP, P-R and R-T, while other
shape classes show stronger relations with otlasses$ in terms of clustering: G-
K, H-N, H-R, K-T and N-R.

The creation of a complete taxonomic structure tfus assemblage like the
example shown in Figure 2.8 is beyond the scophisfresearch, nevertheless it
is possible to provide some examples of structhesed on the results from both
supervised and unsupervised learning. The expeoa® fthe Arcane project
somehow created a specialisation for some shapsedas commented in Section
3.1.2, it is the case of the G class, divided im@as described as ‘Cup/Mug’ or
‘Beaker’, the K class, divided in ‘Jug/Tankard’‘duglet’, and the T class divided
in ‘Flask’ or ‘Bottle’. In these cases the sizetbé vessel usually indicates the
differences in the description, but the shape dfh&starget) is the same, therefore

there is no way for ML algorithms to recognise difference between them.
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The taxonomic structures presented here are valithe assemblage used in this
research only, and do not represent other archgiealcsites or cultures recorded
in the Arcane database, for this reason ‘Reseasénablage’ is on the top of the
structures. In addition, not all potential subotsssr super classes are shown in

these structures.

Research
assemblage
QOpen /\ Closed
shapes shapes
Bowls G H N K Jars

c E P R T

(wide (restr. (bottle)
/\ neck) neck)
E1 E2

Figure 5.5 — Possible hierarchy of classes (taxénostructure)
based on supervised learning algorithms results. Shallow bowl;
E = Bowl; G = Cup/Mug/Beaker; H = Open pot; K = [liuglet; N =
Closed pot (high); P = Jar (wide neck); R = Jasfficted neck); T
= Flask/Bottle.

Through supervised learning results it is possibladentify a closer relation
among certain shape classes, especially C-E iogba shapes group, and P-R-T
in the closed shapes group. These shape classkbk lm@yrouped to form two
super classes, Bowls and Jars (Figure 5.5).

The ‘T — Flask/Bottle’ class could be considerespacial case of the ‘Jars’ class,
since the main differences between members of ttlass and those of the P and
R classes is the more restricted neck, and therlbeight in the case of flasks. On
the opposite way, the E class could be separatédarsubclasses, as identified
by the Decision Tree classifier. The bowls with igher H-Bd (total Height /

Belly diameter) relation could compose one of thegleclasses, not necessarily

based on the H-Bd value greater than 0.775 aseibihtest, but a similar value
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could be used as a reference. This subclass opédedowls would be an

intermediate between the ‘E — Bow!’ and the ‘F -epé&owl’ classes.

Research
assemblage
Bowls

C E G K P T HNR
- “pots.

Figure 5.6 — Possible hierarchy of classes (taxénatnucture)
based on unsupervised learning algorithms resglts. Shallow
bowl; E = Bowl; G = Cup/Mug/Beaker; H = Open pot; K
Jug/Juglet; N = Closed pot (high); P = Jar (wigek); R = Jar
(restricted neck); T = Flask/Bottle. The dottedesnindicate
shape proximities.

Through unsupervised learning results it is alsesfide to identify a closer
relation between C-E shape classes as in the ¢aagervised learning, but the
clustering analysis revealed different groupingshie case of the closed shapes
group (Figure 5.6). One group is the cluster resgifrom the K-P-T classes (with
the possible inclusion of the G class), and theeotine is the cluster resulting
from the H-N-R classes. This cluster has the pagdtyiof including the H class,
an open shape class, together with two closed sh&pand R. The criteria used
in the Arcane project to separate the classes @m @nd closed groups (which is
based partially on the relation between belly amtkndiameters) was not
followed by the clustering algorithms. It is eadieridentify a similarity between
the H and N shapes, since both are described &s;‘gomust be also observed
the Arcane project division of closed pots in twasses, ‘N — Closed pot (high)’
and ‘M — Closed pot (squat)’, which is not usedtlis research because the

motives explained in Section 3.1.9.

The relation of both shapes, H and N, with the ‘Baf (restricted neck)’, is more
complex to identify through the information prowteby the clustering

algorithms, and it would require an individual aysé$ of most samples from these
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classes. It is possible however to identify sonmilarities through the vessels
shown in Figure 4.15, which contains most samples fthe H, N and R classes
selected for the dendrogram. In this figure it ssgble to identify the more
restricted neck of the samples belonging to thed’s¢ and therefore the neck

diameter was probably not among the main criterieréate these clusters.

Based on a visual and exploratory analysis, sinosupervised learning
algorithms do not provide information about the artpnce of features, it is
possible to suggest that the overall vessel shapeesented by the H-Bd feature)
was more decisive in this case, and also the riemtation/profile in a secondary
way. The majority of vessels in Figure 4.15 (exahgdthe ones in the first row,
samples #15 and #30) have a similar overall shaje,an H-Bd range of 0.83 to
1.27 (mean = 1.06), and prevalence of rim profidg{Rounded), 04 (Thickened)
and 09 (Horizontal folded outside). If these vesseke compared with the ones
from Figures 4.13 and 4.14, this idea is reinforé@d the other hand, the vessels
in Figure 4.15 are more similar to those in FigdrE2, which belong to a distant
cluster. One difficulty here is to name the clust@xcept the Bowls), the K-P-T
and the H-N-R clusters do not have a clear termadbald be used to represent all

the shape classes in each cluster.

5.2 Machine learning issues

Dataset context

The results provided by the ML model are valid astfonly for pottery
assemblages that are culturally related in some toahe assemblage used for
this research. The four archaeological sites, smle@mong 168 sites available in
the Arcane dataset, are from the same region (MasthSyria), approximately
from the same period (Third millennium BC) and toatexts of finds are similar
(domestic/storage) for the great majority of thengkes (Section 3.1.1). The
model trained with information about this dataseuld probably not generalise
well for pottery associated with other cultureperiods, but tests should be made

in order to quantify this hypothesis.

The decision to use an assemblage from four diifesges (even if culturally
related) was made in order to provide a minimal ambhoof well-preserved
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samples to allow the training of ML algorithms.idt possible that this choice
contributed to the variation of shapes within dertshape classes and,
consequently, to limit the ML model performancee®ite with greater amount of
samples, Tell Brak, is also the one with greateretirange, however the great
variety in shapes is probably from Tell Leilan,cgrpart of the samples are from
funerary contexts and not from domestic/storagetects as the majority of

samples in the dataset.

In respect to the dataset structure (the featused to obtain the target classes)
and the procedure used in the training sessiongi@Be3.3.11), they are generic
enough and at first they could be used to othezsygd assemblages, therefore the
model could be reutilised with new samples andné&ai with them without

significant modifications.
Benchmark

One of the most relevant aspects observed in theltseis related to how
consistent is the benchmark used to assess theriparice obtained from the
training sessions. The results were assessed iaadlytthrough the confusion
matrices and synthetically through accuracy app@dore metrics, but their utility

is limited by the quality of the benchmark.

As explained in Section 5.1.2, the access to thepteted Arcane project
documentation was not possible, limiting the hypsts about the original
classification process used in the project. Itesarkable that all vessels in the
database (more than 8200 records from 168 site® @lassified under the same
shape classes’ scheme, allowing the comparisoiffefeht sites and periods. It is
possible, however, that different experts wereaasible for defining the vessels’
shape classes in different sites, using slightffedint criteria when classifying
samples for different sites or different contexithim sites. There is a section in
the Arcane pottery database where some informatiimut the users responsible
for specific actions is found: entering and editogfa, scientific validation, and
technical validation (which is software related).the case of the four sites used
in this research, only JZ002 — Beydar has inforomagéibout a scientific validation
task, and the users responsible for entering dataliéferent for each one of the

four sites.
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Even if the four selected sites and their assenaslage reasonable similar among
each other, it is possible to expect some diffezena the classification criteria
applied by the experts, which would impact therdeay process and consequently

the performance during prediction.
Algorithms parameters

Some of the algorithms that provided better resulis DT are less transparent in
their mechanisms (Logistic Regression, SVC) and emsensible to the
combination of input parameters, and in those c#ésesutilisation of the grid
search and cross-validation methods is importafinetune the ML model and
obtain the best possible performance. Albeit gassible to test a combination of
parameters manually in the algorithms, the utilsatof methods such as
GridSearchCV in scikit-learn makes this task eadi#aren when applying this
method it may be necessary to test different patenmeombinations since some
algorithms, especially SVC, have a considerablerrdttive of parameters, and
using a large number of them at the same time rft@ay down the running of
training scripts. This was not a problem in thise@ch particularly, since the
dataset is relatively small, and the longest tine & script to run the

GridSearchCV method was limited to a few minutes.

The DT classifier has some disadvantages when aaapa other ML algorithms
used in this research, among them is the sengitivitsmall variations in the
training data, and unbalanced datasets (certagsetaare dominant in terms of
sample quantity) (Géron, 2019, p. 185-6; ScikiRR Another issue is related to
the necessity to limit the growth of the tree to@idvthe model overfitting, which
means that the model may perform well on the tngindlata but it does not
generalise well for unknown data (e.g., the tesagkt) (Géron, 2019, p. 27-9, p.
180-1; Muller & Guido, 2017, p. 28-30). When the Diassifier is not limited in
depth, it can generate a highly complex tree thaidyces a very high
performance on the training dataset (accuracy eaeqoal to 1.00), but produces
a much lower performance on the test dataset. Afteting the tree growth (in
this research the limit in 5 or 6 levels produdee best results, but that depends
on the dataset characteristics), the generatedb@eed on the training dataset
produced a lower performance but on the other hhadberformance increased

for the test/unknown dataset, which is the goahefML models.
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The issue of overfitting is valid for other algbmts beside DT classifier, how

they will perform on both the training and testasadts is controlled by a series of
parameters, some algorithms requires the use of porfew parameters, while

others requires an optimal combination of severameters to acquire the
maximum performance. For that reason the technodugrid search with cross-

validation was applied in the third training sessi@nother relevant issue related
to parameters is the optional randomness duringtéation of training and test

datasets through the ‘train_test_split’ methods fireferable to use the option for
not generating a random splitting of the train dests datasets each time the
training session runs, that way the samples wilspktted the same way every
time and the results can be reproduced in ordastess and compare them.

5.3 Related research

Some of the studies presented in Section 2.2.4 Aswe similar to those of this
research, one of the differences is related to oaetlwhile others use mainly
visual features and image analysis as a basigldesitication, this research uses
categorical and continuous vessels features totifgdeshape classes. Another
difference is related to the type of artefact: ctatgpor near complete vessels as
in the case of this research, or ceramic shardase of many others. This Section
comments on three studies that have similar goadgply methods that are more
closely related to this thesis, or that raise r@htvssues to it.

Methodology for typology development

Horr et al. (2014) apply a combination of unsupsedi, semi-supervised and
supervised learning methods to create a methoddimgp ML based typology
development in archaeology. The method consistshen application of the
different ML methods in a sequence, starting with @nsupervised phase
(including the definition of features to estimaimitarities between instances),
continuing through a semi-supervised phase (whemelevance of the features is
measured, the most relevant ones are selectedralmipary types are defined),
and finishing with the supervised phase when séwbaasifiers are trained with
the labelled data and new instances are assignedetof the defined types. If a

misclassification is identified and the type assignt is proved incorrect, a new
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label is given and a reclassification takes platéiorr et al. (2014) different ML
methods are applied in a sequence of phases atmihgfine a new typology for a
pottery assemblage, while in this thesis the supedvand unsupervised methods
are applied in a comparative way, aiming to analgee assess an already
established classification.

The dataset used by Horr et al. (2014) consistesbéfpottery vessels from the
Lusatian Culture (1400-800 BC) cemetery of Koéti@ermany. The vessels
measurements were obtained automatically through s8Bnning (that way
avoiding inaccuracies) and thirty-five features evanmitially selected, including
categorical information, absolute and relative mearments. Among the features
that were considered more important by the algosthare the relative
measurements, but also categorical ones like saagenumber of attachments.
Here the difference is significant, since the categl feature additional_elem
(additional elements) used in this thesis is nobrgnthe most important because

these elements appear only in a few samples.

Among the several algorithms used by Horr et 8018, some are the same or
equivalent to the ones used in this thesis: Majovibter, Logistic Regression,
Random Forest, k-Nearest Neighbors, and C4.5 decigiee classifier. The
typology development process after several refimesndefined nineteen primary
vessel types, and new instances were correctlgifitess with a probability of up
to 95%. One interesting aspect is that the absdizte of the vessels was not
taken into consideration for type definitions. Theltural uniformity and the
quality of vessels in the assemblage contributedHe high level of prediction
rate. In the same way that this thesis, some tyees considered more difficult to
classify and others had lower performance rateswser of the low quantity of

samples.
Classification based on ceramic chemical compasitio

In the second example study, Charalambous et @L6(2apply ML algorithms to
identify classes of utilitarian pottery from therkdviddle Bronze Age Cyprus
(c. 2400-1700 BC), but use chemical compositionesbmics as the basic data for
classification. In this case the research focuw iglentify degrees of similarity
between types based on their chemical profiles, addtess aspects of ceramic

production and distribution.
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The dataset used by Charalambous et al. (2016)desl 177 ceramic samples
from eight different sites across the island, while features are mineralogical
and chemical characterisations (such as MgO ap@sflobtained from ED-XRF
analysis. The methodology includes the applicatmi supervised learning
algorithms k-Nearest Neighbors, C4.5 decision tlassifier and LVQ (Learning
Vector Quantisation). The reported results are dthessification maximum
accuracies (%) of 79.4 (KNN), 77.2 (C4.5) and 68.2Q). Some of the most
useful results were obtained through the analyfsiseoconfusion matrices, which
indicated previously unidentified relationship beem certain classes/fabrics of

ceramic (Charalambous et al., 2016, p. 470).

One of the issues mentioned in the research issthall (for ML purposes)

number of samples compared to the high numberasfsek (36). To overcome
this limitation, the technique of bootstrapping lwieplacement was applied to
generate the datasets of 177 samples (Charalangdbals 2016, p. 467-8). This
technique allows taking the samples as if it werpoaulation and randomly

selecting new samples from it several times (Dran2809, p. 136). The dataset
characteristics and the choice of parameters assilje causes for the lower
performance of LVQ, which is considered a more dempmlgorithm, when

compared to the other two (Charalambous et al.62p1470). Another issue in
the research is related to the number of classisomnly one member, which were
included in the dataset nevertheless. It is nardlethe bootstrapping solved this
issue or how the classification algorithms dealihwhis limitation, since one of

the principles of supervised learning is the dossof the dataset in training and
test parts, and samples of one class must be priesboth datasets in order to

train the model and assess the classificationtsesul
Classification based on pottery decoration

This last example study, by Pawlowicz and Downuf2@, will be more briefly
commented regarding their methods since it apasls (Convolutional Neural
Networks), which are a more complex category of Mhpwn also as Deep
Learning, nevertheless there are other aspectsein $tudy that are relevant for
this thesis. Pawlowicz and Downum (2021) preserdproach to typology using
digital images of decorated pottery shards fromTtheayan White Ware tradition
(c. AD 825-1300) from Arizona, USA.
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According to Pawlowicz and Downum (2021, p. 1-3)e @f the issues related to
pottery classification is the ability of the andlys apply consistent and accurate
criteria. In some cases, specific classificatiostemys are applied, for instance the
‘ware-type-variety’ system used in the archaeolagy the North-American
Southwest. ‘Ware’ is the broader category, whichased on both technology and
decoration features, and it is further subdivideo itypes and varieties. Between
seven and nine types of Tusayan White Ware areggnesed, depending on the
criteria used, but they broadly reflect differeminé periods (Pawlowicz &
Downum, 2021).

Based on a dataset of 2,407 pottery shards, Pae#oavid Downum (2021, p. 6-
8) present the precision, recall ang3¢ore separated by types, where the F
Score varies from 0.394 to 0.899 (average of 0.82®ng eight types). They
compare these results to the ones provided bydotiery experts, which resulted
in overall accuracies (all types included) betw@er36 and 0.869, based on a
consensus dataset (the benchmark). Pawlowicz amchidn (2021, p. 6) point
out that the accuracy achieved by a deep learnimdehmight be limited by the
accuracy of the type labels used to train the model

The traditional Tusayan White Ware typology systsiifi prevails despite its
limitations and after a new attribute-based classion system was proposed.
This alternative system was successfully used imetaiion with tree-rings to
predict site dates with promising results but, desjpeing more precise, it
requires more effort to codify attributes and wad widely adopted by the
archaeology community (Pawlowicz & Downum, 2021, $5). This case
exemplifies an additional challenge for the appiara of ML in archaeology,
since alternative systems based on more up-toedaweepts could result in higher

performance when submitted to ML algorithms.
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6 CONCLUSION

This research developed a ML model to classify @aeological pottery
assemblages. Supervised and unsupervised learmtigpds and algorithms were
integrated to concepts of quantitative classifaatof artefacts, and applied to a
dataset of vessels of nine different shape classa®m the Bronze Age
Northeastern Syria. The importance of distinct syp&features for the definition
of artefact classes was identified, and the moddbpmance in classification was
evaluated through ML metrics. Alternatives classifions provided by clustering

analysis were also provided and compared to tlyggnaii dataset classification.

Based on the research results and the discussieseried in the previous
chapters, it is possible to return to the reseayobstion and the three sub-
questions defined in the introduction chapter. Tin@n research question was
defined as ‘Which are the benefits and limitatiools a machine learning
classification model for pottery assemblages’? Tolwing paragraphs first

provide the answers to the sub-questions.

Which are the minimum features required to prowadeasic classification, and
which are additional features that could improve it

The categorical features in the research datase¢ wepresented by vessel
characteristics such as rim orientations and @m®fibase types and additional
elements (handles, lugs and spouts). The continigaisres were represented by
absolute and relative vessel measurements. Bas#tearsults provided by the
DT classifier and the differences between the fsti second training sessions
(when some features were excluded), it is clear ttma relative measurements,
especially the H-Bd (total Height / Belly diamet&tio), which represents the
overall vessel shape, and Bd-Nd (Belly diameteretiNdiameter ratio), which
identifies the vessel shape between the belly aadhéck, were more relevant for
the assemblage classification. After these featumesne the absolute
measurements, especially the base diameter andettie diameter. Among the
categorical features, the rim profile was the nmektvant. Because of scikit-learn
requirements, the categorical features had to hevested in a numerical
codification and this resulted in the individua¢mlents of rim profiles and other

categorical features to be used, instead of theureaas a unit. That way, the
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specific rim_profile[7] (round-folded outside), vehi is the third most common in

the dataset, was considered the most relevanigfofishape identification.

The demonstrated importance of certain specifictufea is valid for the
assemblage used in this research, other assembtagés$ result in different
features having more or less importance. Nevertkele overall importance of
the relative measurements for identification ofsetshapes certainly applies to
other assemblages as well. All continuous featwvese used in the second
training session, after the removal of less relevaatures and, while all the
categorical features (as a unit, not individuall{@re used, their importance score
was lower than the continuous features scores. ifipgrtance of categorical
features would likely increase if the additionaérabents were present in a larger
number of samples. Other characteristics of theeraBlge and scikit-learn
restrictions also should be taken into considenatas it is the case of features
with NA (null) values in part of the samples. Thase diameter and the relative
measurement Bd-BaD (Belly diameter / Base diametio) fall into this case,
and the replacement of null values with zero orepttalculated value has the
potential to influence in the classification resuince they impact on the vessel

shape identification.

To conclude this question, an observation aboutirtiportance of data quality.
An incorrect value for one feature in one samplasea the distortion in the
interpretation of the vessel shape and, if thigtgperror occurs in a significant
number of samples, the training of the ML model |l vwbe affected and
consequently the performance of the model in tleatiication and classification

of new samples.
To what extent can this model replicate classiiozad made by experts?

The ML model created using the supervised learhating Classifier algorithm

provided the highest scores in accuracy (0.87)Rar8core (0.86) metrics, based
on a dataset with 496 samples of pottery vessetsm Rhis dataset, ¥ of the
samples were used to train the model and % tatebvalidate it. This means that
the model correctly classified 87% of the samplesthe validation dataset,
consisting of 124 samples. Other algorithms (Lagiftegression and SVC)
provided performances close to VC algorithm. Theivildual scores for each

shape class vary from 0.50 to 0.96, with five dubioe classes returning a score
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equal or higher than 0.80 (six out of nine if afjaithms are considered). For the
C class, the lower score (0.50) is likely relatedhe low number of samples and
the shape similarity with the E class, which has lrgest number of samples.
These are just some of the particularities thatilshbe considered in the answer
to this question, nevertheless it is reasonablsatp that, based on the overall
results, the ML model can replicate classificationade by experts with an

accuracy of at least 80% #h of the cases.

There are other issues that could potentially erfee these results, either in a
positive or negative way. The first one is relatedhe quality of the dataset and
the benchmark provided by the experts. The Arcaatabdse proved to be an
excellent source of information on pottery assegdxda providing most of the
data required to creating the research datasethwhas complemented by some
specific additional measurements. If the originaksifications made by experts
are consistent, the training part of the supervissmining process will be
successful and the ML model performance will bésgattory in the prediction of
new samples’ classes. Only a few minor problemsewkatected regarding the
dataset, related to data input errors and potgntiéfferent criteria applied in the
classification of assemblages of different archagiohl sites. The second issue is
related to the first: the more homogeneous the nalsisge, the greater the
probability of better performance in the classifica. The choice of using more
than one site was made with a trade-off in mind,rtked of a minimal amount of
good quality samples to make ML viable versus tlmndgeneity of the
assemblage.

Finally, the choice of ML algorithms, their paramet and supporting methods
(encoding, imputing of missing values) affect thelihood of achieving better
results. It was fundamental to test different althons, parameters variations and

different dataset configurations in order to fihe best possible combination.

Which other kinds or levels of classification thaight be archaeologically

relevant can the model suggest?

This is probably the most challenging of the suksqons, as the answer cannot
be compared or measured against existing informabat depends on defining
new potential classification structures. The metkioat was initially associated

with this question is unsupervised learning, howgetee results of supervised
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learning also contributed to it. The grouping ofsels in shape classes is the
main classification system developed in the Arcameject and one of the
foundations for developing the ML model, but thare also secondary systems
such as the grouping in open, closed and miscalleashapes and, in some cases,
the identification of subclasses in an unstructuvealy (e.g., cup/mugs and
beakers in the G class). Some classes share maitargies with each other (e.g.,
jars, pots, and diverse classes of bowls). Thesensiary classification systems

were useful in the answer to this question.

The first proposed classification structure (Fig&.&) is based on supervised
learning methods. The main criteria to group thapghclasses were the results
from the confusion matrices, classes were congidel@ser to each other when
they were related through misclassifications, afgb a&he results from the
Decision Tree classifier, which seem in accordamitle the concepts of open and
closed shapes groups. The E class can be subdivittedwo sub-classes, here
they received generic names E1 and E2, but onbkeon is clearly composed of
deeper bowls. Three classes, P, R and T were jomede super class, hamed
‘Jars’. The ‘T — Flask/Bottle’ class can be consédka type of jar with the most
restricted neck. As commented in the previous d@raphis illustration does not
aim to show a complete taxonomic structure withpalssible sub-classes and

super classes; this could be a theme for futurarek.

The second proposed structure (Figure 5.6) is basednsupervised learning
methods. The first clear difference is the abseriabe open and closed groups,
since the clustering methods work based on th@twetip principle, and there are
no target classes (and consequently no super s)absd can be used to compare
the results. In the case of the bowls and the Ra3ses the coincidence between
classification and clustering is stronger, while tire other cases there is no
obvious relation between these two methods. Thec&son of clusters with the
shape classes was made in an exploratory way, ukffeggent algorithms and
different number of clusters, and the observatiothe supervised learning results
regarding the completeness of the structure is addid here. One of the main
difficulties is to find meaningful names for thausters (or super classes) that join
the K-P-T and H-N-R classes, for that reason onlygeneric graphic

representation is shown.
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Based on the answers and comments to the sub-muestiis now possible to

return to the main research question:

Which are the benefits and limitations of a macHesning classification model
for pottery assemblages?

1) Thebenefitsof a ML classification model for pottery assemlgagnclude:

* The identification of features that have greatéewance for the definition of
shape classes. This includes categorical (quakfatind continuous (absolute

and relative measurements) features.

* The identification of shape classes that have gresmilarity to each other.
This contributes to the elaboration of classificatistructures such as
taxonomic trees and to the understanding of patkenélationships among
artefacts. A classification structure is fundamenta allow for the
development of typologies and to address questatrmit the peoples and

cultures that produced the artefacts.

* An increase in the quality of the artefact clasaifion process carried out by
experts, assisting in the revision of data inpubrst; the identification of
potential misclassifications, and facilitating agreement in the case of

divergent opinions.

* The suggestion of new potential grouping of artesféicat were not previously
considered through traditional classification ¢rée

2) Thelimitations of a ML classification model for pottery assemlaagnclude:

* The dataset has requirements regarding the retdtijprbetween the number
of samples and the number of different target elms€lasses represented by
few samples can make the training process diffianli consequently affect

the prediction performance.

e The dataset should include samples that are homogsn in their
archaeological contexts, derived from culturallyd arhronologically related

sites or assemblages.

* The samples, in the case of identification of pgtieessel shapes, should have

a minimum level of completeness that allows bastasarements to be taken,
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and the identification of certain categorical featu(rim profiles, base types)

and potential additional elements (handles, spouts)

* Vessels images are not mandatory but can be vesjulugn validating

classification results.

To conclude, a note on future research, in additoithe possibilities already
mentioned in the discussion chapter and in thiglesion.

The ML model based on supervised learning creabedhis research has the
potential to be improved through the applicationtethniques such as feature
extraction (to provide additional information abdigatures importance), and
through minor adjustments in the dataset (e.g.,ctiecking and correction of
certain samples measurements, and a possible atieamluof some samples’
classes), and consequent retraining of the modh & task would require the
participation of experts for validating the resufiovided by the model and
suggesting the adjustments, but in turn it wouldvalcompleting a cycle of
problem analysis, model training and validationd ancreasing knowledge in
archaeology. A further possibility would be to wark unclassified assemblages,
using ML models as a complementary tool from thegito@ng of the
classification process by experts.
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ABSTRACT

Artefact classification is one of the main themad an important practice since
the beginnings of archaeology, while machine leayr(ML) became one of the
most efficient approaches to increase our knowladge number of disciplines.
This thesis describes a ML model developed for dlassification of pottery
assemblages, identifying its benefits and limitagiofocusing on the importance
of artefacts features for the identification of selsshape classes, and to what
extent this kind of knowledge can be used to repdicclassifications made by
experts. The research also analyses differentedassuctures based on the ML

model.

The research dataset was based on an assemblpgterf vessels representing
nine shape classes and four archaeological sitemn fthe Bronze Age
Northeastern Syria, made available by the Arcargept. The classification
methodology was based on principles of quantitasixehaeology, using vessel
measurements and categorical features, implemefgd supervised and
unsupervised learning ML algorithms and supportingthods from the scikit-
learn and SciPy libraries. The Anaconda platforine tJupyter notebook
environment and ImageJ for image processing complet main software used

through the research.

The research results indicate benefits and linoitatiin the application of ML
models in the classification of pottery assemblagég limitations are especially
related to number of samples versus target clags=fiomogeneity of the vessels
context in the dataset, and the quality of datalava for the samples. The results
suggest that a ML model can be useful to expeststng in the identification of
the most relevant artefact features and similariimong classes of artefacts, as
well possible misclassifications, ultimately prawvid new insights into the
classification of pottery assemblages in archagolog
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APPENDICES

APPENDIXA.1 —K-MEANS RESULTS(2-3 CLUSTERS

Original dataset

Original dataset reduced (10%)

54 samples each shape

Clusters
Shape| 0 1 Total
C 10 10
E 182 182
G 96 96
H T 13 20
K 22 22
N 19 15 34
P 72 16 88
R 14 18 32
T 12 12
Total | 434 B2 496

Clusters
Shape| 0 1 Total
C 1 1
E 18 18
G 10 10
H 2 2
K 2 2
N 4 4
P 1 B 9
R 1 2 3
T 1 1
Total 4 46 50

Clusters
Shape| 0 1 Total
C ] 5
E B B
G B B
H 1 4 5
K ] 5
N 3 3 B
P 5 1 B
R 2 4 G
I b 5
Total | 38 12 50

Clusters
Shape| 0 1 2 Total
C 10 10
E 176 B 182
G 96 96
H 3 4 13 20
K 20 2 22
N 10 Fd 17 34
P 5T g 22 88
R 8 b 14 32
T 12 12
Total | 392 25 P 496

Clusters
Shape| 0 1 2 Total
C 1 ;i
E 17 1 18
G 10 10
H 1 1 2
K 2 2
N 1 3 4
P g8 1 g
R 1 2 3
T 1 1
Total | 41 2 i 50

Clusters
Shape| 0 1 P Total
C 5 g
E g 1 B
G B G
H 1 2 2 5
K 5 5
N 1 5 B
P 4 =z B
R 2 3 1 G
T 5 5
Total | 34 13 3 50




APPENDIXA.2 —K-MEANS RESULTY(5 CLUSTERS

Original dataset

Original dataset reduced (10%)

546 samples each shape

Clusters
Shape| 0 1 2 3 4 Total
C 3 F 10
E 56 1 1 124 182
G 72 3 21 96
H 4 4 1B 1 20
K 13 a8 1 22
N 5 g 7 13 1 34
P g9 40 3 g 84
R 5 T 8 12 32
T 11 1 12
Total | 23 210 63 45 155 496

Clusters
Shape| 0 1 2 3 4 Total
C 1 1
E 16 1 1 18
G 8 2 10
H 1 1 2
K 1 1 2
N 3 1 4
P 2 1 G g
R 2 1 3
T 1 1
Total | 28 1 7 1 13 50

Clusters
Shape| 0 1 2 3 4 Total
C 5 5
E 1 b G
G b 6
H 2 1 2 5
K g 5
N 2 1 3 B
P 2 4 B
R 1 1 3 1 6
T b 5
Tatal 8 33 2 f 1 50

145




APPENDIXA.3 —K-MEANS RESULTS(8 CLUSTERS

Clusters

Shape| 0 1 2 3 4 5 b 7 Total

C 2 1 7 10

E 40 1 2 119 | 182

G | 59 7 30 96

T H 3 3 8 4 2 20
£ K | 10 2 A0 22
= N 6 5 g 4 10 34
= P | 28 9 16 29 5 1 88
=] R 5 4 8 4 11 32
o T . 1 ; 12
Total | 160 18 38 60 34 4 26 156 | 496

= Clusters
= Shape| 0 1 2 3 4 5 b 7 | Total
o C 1 1
E E 12 4 1 1 18
2 G 7 1 2 10
5 H 1 1 2
= K 1 1 ?
= N 3 1 4
E p 1 1 6 1 g
= R 1 1 1 3
5 .1 1 !

Total | 21 1 4 7 13 1 2 1 50

Clusters

Shape| 0 1 2 3 4 5 i 7 Total
2 C 1 4 5
= E 1 5 §
£ G 3 3 6
E H 1 2 1 1 5
g K 2 1 2 5
= N 1 3 2 6
E p 2 2 2 6
® R 1 2 1 1 1 6
o i) 3 2 5

Total | 13 2 2 3 13 6 1 8 50
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APPENDIXB.1 —VESSEL TYPES OF THEH — OPEN POT SHAPE CLASS

Different types of vessels of the ‘H — Open potagé class separated according to the
Decision Tree Classifier criterideatures H-Bd = total Height / Belly diameter ratio;
Bd-Nd = Belly diameter / Neck diameter ratio; beliyam = Belly diameteiVessels1 =
JZ001_P258; 2 = JZ004_P092; 3 = JZ001_P049; 4 H1149010. Images at different
scales. After Arcane (2016).

| H - Open pot | (20 samples)

H-Bd £ 0.77
(2) (18)
True False
® B
| j)
J
| 7
Bd-Nd = 1.41
(17) (1)
%\ . r'\
) \\
/ ® |
| d//
belly_diam < 18.21
(2) (15)
i .
\ :\
® | ® )
.r/ f
_.// ,//
(15)
Y
®| |
A
| 7




APPENDIXC.1 — NSTRUCTIONS TO ACCESS THML SCRIPTS AND DATASET

The files available for download in the Zenodo &fmy are the Jupyter
notebooks created to run one supervised learnisgjase (Section 4.1.3) and the

clustering analysis (Section 4.2.1), and the retedataset.

To access the scripts and the dataset:
https://doi.org/10.5281/zenodo.6368357

Files (156.7 k) ~
Name Size
pa_ml_classification_1-0-0.ipynb 81.9kB < Download

md5:98748b7a16fa276713ab2def1eal592 @
pa_mi_clustering_1-0-0.ipynb 203 kB & Download
md5:bcSbb872¢2c5ef3be522271947353205 @
pa_ml_dataset 1-0-0.csv 454 kB & Preview || & Download

md5:0651193725503b47bb%ebeabid1 77892 @

The dataset includes the features used in the detaiming session and the clustering
analysis with k-Means, it does not include the dezd used in the first training session.
The first nine features in the dataset were obtHadapted from the ARCANE database,
other features were created for this research.deatource: ARCANE Project (Arcane,
2016). Figure: files in Zenodo repository (Zeno2013).
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