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Abstract

Different models of dark matter can be distinguished through the amount of free
streaming they exhibit. A consequence of free streaming is the suppression of small-
scale cosmic structure, which in turn could be detected through the Ly-α forest, a series
of absorption features in quasar spectra. This thesis considers how peculiar velocities
in the intergalactic medium, the gas that produces the absorption of the Ly-α forest,
influence the flux power spectrum (FPS) of the Ly-α forest. We do this by calculat-
ing the FPS from high-resolution hydrodynamical simulations, performed using the
SWIFT code, while taking into account peculiar velocities or ignoring them; it is shown
that at large scales, peculiar velocities may introduce a Gaussian cutoff to the FPS. A
model that relates the spatial scale corresponding to this cutoff to the density, thermal
state and peculiar velocity dispersion of the intergalactic medium is proposed and
tested at redshifts 4.0 ≤ z ≤ 6.0. It is found to be acceptable at 4.0 ≤ z ≤ 5.5, al-
though only the average dependence on the peculiar velocity dispersion is correctly
described; at z = 6.0, the proposed model can be rejected. The main venue for extend-
ing the research done here is thought to be the development of a model that describes
the influence of peculiar velocities on smaller scales as well.
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Chapter 1
Introduction

One of the crucial components of modern cosmology is the existence of ‘dark matter’,
a substance that – as of yet – has only been observed to interact with the baryonic
component of the universe (i.e. hadrons and charged leptons) through gravity. The
observations indicating the existence of dark matter are diverse:

• The rotational speeds of spiral galaxies and the velocity dispersions of dwarf
galaxies exceed the predictions based on their visible matter distributions [1, 2].

• The X-ray emission from intergalactic gas in clusters suggests that the source
of gravity that is responsible for establishing hydrostatic equilibrium is much
stronger than can be inferred from visible gas [3].

• Gravitational lensing by galaxies is much stronger than expected based on their
visible contents [4].

• If galaxies grew from the density concentrations that produced the anisotropy in
the cosmic microwave background, there would not have been enough time to
produce the galaxies we see today (see the end of section 2.3.2).

To explain these discrepancies between the visible mass and the mass inferred on
the basis of gravitational effects, a plethora of models have been proposed, ranging
from primordial black holes [5] to sterile neutrinos [6, 7] and modifications to gravity
[8]. However, observations like the Bullet Cluster, in which the matter distribution
as mapped through gravitational lensing is significantly displaced from the baryonic
distribution as traced by X-ray emission [9] pose a significant problem to modified
gravity. A combination of observations also virtually excludes compact objects such
as primordial black holes as explanation [10]. Because of this, most current work fo-
cuses on explaining these observations as being due to dark matter in the form of a
new particle, an extension to the Standard Model of particle physics. Such dark mat-
ter is currently estimated to constitute some 80% of the matter contents of the universe
(the rest being baryonic), or a quarter of the total energy contents (with baryons con-
stituting some 5% and dark energy the remainder) [11].
However, the Standard Model can be extended in many ways, and a bewildering va-
riety of models have been proposed. Empirically constraining any property of dark
matter particles – e.g. their mass, interaction strength, spin et cetera – could help in
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8 Introduction

distinguishing between these models; one such property is the ‘free-streaming length’.
Free streaming is a phenomenon that arises in the large scale structure (LSS) of the uni-
verse because relativistic particles cannot be bound gravitationally1, which means that
they can diffuse out of density concentrations, thereby erasing inhomogeneity. The
scale on which the dark matter density field is smoothed by free streaming is called
the free-streaming length λfs; it is set by the initial velocity distribution of the dark
matter particles and the subsequent evolution of this distribution [12]. Measuring λfs
would thus constrain the initial velocity distribution of dark matter.
The free-streaming length has interesting consequences for the LSS, which arises through
the growth of small initial perturbations in the density field [13]. As free streaming
erases inhomogeneity, structures in the LSS on scales smaller than λfs will be sup-
pressed, which allows us to classify dark matter candidates into three general classes:

1. Cold dark matter (CDM) has a negligible λfs and thus allows structures to form
on practically all scales. Since CDM does not exhibit significant free streaming,
its constituent particles never move at relativistic speeds.

2. Warm dark matter (WDM) has small but cosmologically relevant λfs (i.e. smaller
than or roughly at galactic scales [12]). In general, WDM particles move rela-
tivistically until some time well before the end of the radiation epoch.

3. Hot dark matter (HDM) has large λfs (i.e. larger than galactic scales). HDM
would suppress the formation of galaxy-sized structures, which means that it
can be excluded on observational grounds [14].

It might thus be possible to determine whether dark matter is warm or cold by study-
ing the dark matter distribution in the universe and comparing it to the CDM predic-
tion; suppression of small-scale structure could then indicate WDM. A possible way
of doing this would be to study the distribution of neutral hydrogen, which generally
follows the dark matter distribution, through the Ly-α forest.
The Ly-α forest consists of a series of absorption features in the spectra of distant
quasars, due to Ly-α absorption by the neutral hydrogen of the intergalactic medium
(IGM) [15]. The redshift of these features depends on the distance to the absorber and
the line widths depend on the size of the intervening gas structures, making it possible
to reconstruct the mass distribution along the line of sight (see e.g. [16], [17] or [18]).
A complication to this scheme is that pressure in baryonic matter can mimic the free
streaming of WDM [19]: small-scale perturbations in the baryonic density are gen-
erally stable against collapse due to their internal pressure and thus cannot grow,
making them relatively suppressed. Additionally, thermal broadening of the lines of
the observed Ly-α spectrum [20] might be wrongly interpreted as the suppression of
small-scale features of the spectrum. Finally, peculiar velocities deform the matter dis-
tribution inferred from redshifts relative to the true distribution.
A way to circumvent the problems posed by the pressure and thermal effects is to
realise that whereas the effect of free streaming is essentially imprinted on the initial
conditions of the density field, thermal effects depend strongly on the thermal history
of the IGM and thus have a different redshift dependence [21]. It might thus not be
the existence of small-scale suppression in the Ly-α forest but its redshift dependence
that constrains the properties of WDM.

1Only in extreme cases, such as for black holes, is this possible. The LSS does not consist of such
strong gravitational fields.
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For this scheme to work, an understanding of the redshift dependence of as many
influences on the Ly-α forest as possible is required. This thesis will focus on the dis-
tortions introduced by peculiar velocities in the IGM, by extracting the Ly-α forest
from simulations, varying whether or not we account for peculiar velocities, and then
quantifying the influence of these peculiar velocities.
Chapter 2 introduces the necessary cosmological background, namely the description
and evolution of the large scale structure. Then, chapter 3 describes the Ly-α forest
in more detail and proposes a characteristic spatial scale on which peculiar velocities
influence the Ly-α forest. Chapter 4 briefly introduces the SWIFT code, a fast hydro-
dynamical simulation code used to produce the high-resolution simulations we use in
this thesis, before describing the tools used for our analysis. Using these tools, chap-
ter 5 presents our results. A discussion and summary of our findings is provided in
chapter 6.
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Chapter 2
The large scale structure of the universe

In this chapter, the relevant theoretical background will be introduced, starting with
some general cosmological considerations. A formalism for describing the large scale
structure (LSS) of the universe will then be introduced, after which the evolution of
the LSS can be described in a Newtonian framework. Corrections and extensions due
to relativistic effects will be briefly stated at the end. Far more extensive treatments of
the topics presented here can be found in for example [13], [22] or [23]; see for example
[24] or [25] for more cosmological background.

2.1 Cosmological background

Modern cosmology typically starts from the assumption that the universe is homoge-
neous and isotropic on large scales (see for example [25] and [24]). This also holds for
any curvature of the universe, limiting the possible geometries to just the Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) metric [24]:

ds2 = c2dt2 − a2(t)
(

dr2

1 − κr2 + r2dθ2 + r2 sin2 θdϕ2
)

. (2.1)

Here, κ ∈ {+1, 0,−1} describes the curvature of the universe, allowing for uniform
negatively curved, flat or positively curved geometries. Current observations are con-
sistent with κ = 0 [26]. The coordinates (r, θ, ϕ) are called comoving coordinates; it is
to observers with constant comoving coordinates, called fundamental observers, that
the universe appears homogeneous and isotropic. The physical distance between fun-
damental observers scales with a(t), the scale factor, and hence comoving coordinates
scaled with a(t) are known as proper coordinates. Hereafter, spatial vectors will be
written as x in comoving coordinates and as r = a(t)x in proper coordinates.
An immediate consequence of this description is Hubble’s law, which relates ∂r

∂t = ṙ to
r itself for two fundamental observers:

ṙ(t) = ȧ(t)x = H(t)r(t) , (2.2)

Where the Hubble parameter H(t) is defined as

H(t) ≡ ȧ(t)
a(t)

. (2.3)
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12 The large scale structure of the universe

The present-day value of H(t) is denoted H0, but since it is relatively uncertain, re-
sults derived from it are often parametrised in terms of h = H0

100 km s−1 Mpc−1 . Current

measurements indicate h ∼ 0.7 [11, 27], corresponding to an expanding universe.
This expansion stretches the wavelength of light as it travels cosmological distances,
an effect known as the cosmological redshift. The redshift z is defined as

1 + z ≡ λobs

λem
, (2.4)

With λem the wavelength at emission and λobs at observation. If the expansion of the
universe is the only cause of the redshift, the wavelength will grow proportionally to
the scale factor, and we can relate the redshift to the scale factor:

1 + z =
λobs

λem
=

a(t0)

a(t)
, (2.5)

Assuming that the light was emitted at time t and is observed at time t0, usually taken
to be the present. If the expansion of the universe is monotonic (i.e. ȧ never changes
sign), the scale factor and, by the above expression, the redshift can both be used as
proxy for time by fixing t0.
To do this, the evolution of the scale factor must be found, which can be done by relat-
ing (2.1) to the contents of the universe through the field equation of general relativity.
Under the restriction of homogeneity and isotropy, the energy contents of the universe
can be modelled as a perfect fluid (a medium with homogeneous density ρ and uni-
form, isotropic pressure p), allowing one to derive the Friedmann equations from the
temporal and spatial parts of the field equation [24, 28]:(

ȧ
a

)2

=
8πG

3
ρ − κc2

a2 +
Λc2

3
, (2.6)

ä
a
= − 4πG

3

(
ρ +

3p
c2

)
+

Λc2

3
. (2.7)

Here, ρc2 is the energy per unit proper volume, p is the pressure and Λ is the cosmolog-
ical constant. According to (2.7), a positive Λ can lead to an accelerated expansion, and
current observations are consistent with Λ > 0 [11, 29]. Finally, since (2.6) and (2.7) do
not depend on the absolute value of a for a flat universe, we usually set a(t0) = 1.
Besides Λ, two other contributions to the energy contents of the universe can be dis-
tinguished:

• Matter: a non-relativistic component, with an energy density dominated by the
rest energy density; examples are baryons, cold dark matter (CDM) and warm
dark matter (WDM) that has become non-relativistic. The energy density de-
pends on the rest energy and number density of the constituent particles; the
former is constant while the latter is inversely proportional to the volume, and
hence ρm ∝ a−3.

• Radiation: a relativistic component, with an energy density dominated by the
momentum of the constituent particles; examples are photons and relativistic
neutrinos. Their energy density depends on both the number density of con-
stituent particles and their momentum. This momentum depends inversely on
the wavelength, which as time progresses is stretched by a factor a, so the energy
density of radiation evolves as ρrc2 ∝ a−4.

12
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2.1 Cosmological background 13

Customarily, densities are not quoted directly but in terms of the density parameter
Ω, the ratio between the current energy density and the critical energy density

ρcritc2 =
3H2

0
8πG

c2 . (2.8)

This is the total density (including the contribution from Λ) such that κ = 0 in (2.6).
Observations indicate that [11]

ΩΛ = 0.6889 ± 0.0056 ;
Ωm = 0.3111 ± 0.0056 .

Radiation exists mostly in the form of the cosmic microwave background (CMB),
which is nearly uniform blackbody radiation with a temperature of 2.72548± 0.00057 K
[30], and relativistic neutrinos; it contributes negligibly to the present total energy den-
sity. The energy density of the universe is therefore currently dominated by the cos-
mological constant. However, while Λ is constant, ρm was larger in the past; equality
occurred when

1 + z =

(
ΩΛ

Ωm

)1/3

≡ 1 + zΛm . (2.9)

Thus, light with cosmological redshift greater than zΛm was emitted when the energy
density in matter was greater than that in Λ. Using the values from [11], this equality
occurred around zΛm = 0.3034 ± 0.0086. Analogously, the energy density of radiation
decays faster than that of matter, and so the early universe was dominated by radia-
tion; the redshift of matter-radiation equality is zmr ∼ 3.2 × 103 [22]. Between zmr and
zΛm, the energy density of the universe was approximately dominated by matter.
The history of the universe might thus be divided into epochs in which a single com-
ponent dominates its evolution, which significantly simplifies attempts to solve (2.6)
for a(t). A very relevant model is a flat matter-dominated universe; as we saw ear-
lier, this is a reasonable approximation for the actual universe over a wide range of
redshifts. In such a universe, we have κ = 0, ρ ∝ a−3 and Λ ≈ 0 and (2.6) yields

a(t) =
(

t
t0

)2/3

, (2.10)

Assuming a(t0) = 1 and realising that H0 > 0 implies ȧ > 0. From (2.10) it can be seen
that

H =
2
3t

=
H0

a3/2 = H0(1 + z)3/2 . (2.11)

By similarly solving (2.6) in a radiation-dominated universe, it may be found that

a(t) =
(

t
t0

)1/2

; (2.12)

H(t) =
1
2t

. (2.13)
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14 The large scale structure of the universe

2.2 Describing the large scale structure

In reality, the universe is not perfectly homogeneous and isotropic. Galaxy surveys
like the Sloan Digital Sky Survey [31] and the 2dF Galaxy Redshift Survey [32, 33]
reveal that galaxies are not uniformly distributed through space, instead forming a
structure known as the ‘cosmic web’ [34], although the universe becomes increasingly
homogeneous on extremely large scales. In order to understand the implications of
this large-scale structure (LSS), it is first necessary to be able to describe it.
The simplest way to describe the density field in the universe is to specify it at every
point at any given time by giving ρ(r, t). However, since the evolution of the back-
ground density is well-understood through (2.6) and (2.7) it is often more useful to
think of inhomogeneities as perturbations to the background density. In that case, the
density field can be described with the density contrast δ(r, t), the relative deviation
from the average density at a given point and time:

ρ(r, t) = ρ0(t) (1 + δ(r, t)) , (2.14)

With ρ0(t) the average density. By this definition, ⟨δ⟩ = 0, where ⟨·⟩ denotes a volume
average over a sufficiently large volume.
Current theories place the origin of the LSS in quantum fluctuations in the very early
universe, which were then stretched to macroscopic scales by inflation [22]. Hence, the
perturbations would be expected to be initiated randomly, so that much of the relevant
physics is encoded not in the density field itself, but in its statistical properties. One of
the ways these can be described is through the two-point correlation function ξ of the
density contrast, which measures the degree to which the density contrast at different
points correlates and is defined as

ξ (R) = ⟨δ (r, t) δ (r + R, t)⟩ . (2.15)

The angular brackets in principle denote an ensemble average, i.e. an average over the
outcomes of all possible realisations of the random process that created the initial per-
turbations. Because only a single realisation is available for observation, we assume
ergodicity, meaning that an ensemble average can be approximated by a volume av-
erage [13]; we will not explicitly distinguish between ensemble and volume averages.
Because the universe is homogeneous and isotropic on very large scales, the statistical
properties of the density field are as well, implying that ξ is independent of the choice
for r and the direction of R. ξ can be related to the variance σ2 in δ:

σ2(t) = ⟨δ2(r, t)⟩ − ⟨δ(r, t)⟩2

= ξ(0) . (2.16)

Additionally we may consider the density field not in real space but in Fourier space.
If the universe is flat, plane waves form a complete basis and any field can be written
as a superposition of them. Therefore, define the fourier transform and its inverse as

δk(t) =
∫

V
δ(r, t)e−ik·rd3r ; (2.17)

δ(r, t) =
∫

R3
δk(t)eik·r d3k

(2π)3 , (2.18)

14
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2.2 Describing the large scale structure 15

With V a volume over which the universe is assumed to be periodic and k the (proper)
wave vector; ⟨δ⟩ = 0 implies that ⟨δk⟩ = 0 as well. ξ can now be written in terms of
the fourier components δk (suppressing the time dependence for the sake of clarity):

ξ(R) = ⟨δ(r)δ(r + R)⟩

=
1
V

∫
V

∫
R3

∫
R3

δkδk′eik·reik′·(r+R) d3k
(2π)3

d3k′

(2π)3 d3r

=
∫

R3

1
V

|δk|2 e−ik·R d3k
(2π)3 . (2.19)

Here, the following identities have been used:

1
(2π)3

∫
V

ei(k+k′)·rd3r = δD (k + k′) ; (2.20)

δ−k = δ∗k , (2.21)

With δD the Dirac delta distribution; both of these can be proven using the definition
of the Fourier transform. δk can in principle vary between different realisations of the
universe, but ξ should not, so it is necessary to introduce another (ensemble) average:

ξ(R) =
∫

R3

1
V
⟨|δk|2⟩e−ik·R d3k

(2π)3 . (2.22)

It is clear that ξ is the fourier transform of a quantity known as the power spectrum P:

P(k) = P(|k|) = 1
V
⟨|δk|2⟩ , (2.23)

Where the first equality holds due to the isotropy of the universe. Finally, note that

σ2(t) = ξ(0)

=
∫

R3
P(k)

d3k
(2π)3

=
∫ ∞

0

k3

2π2 P(k)
dk
k

≡
∫ ∞

0
∆2(k)

dk
k

, (2.24)

So the dimensionless power spectrum ∆2(k) = k3P(k)
2π2 describes the contribution of

fourier modes in a logarithmic bin of k to the variance in δ.
In the next section it will be shown that the evolution of δ can initially be described
using a linear differential equation. The principle of superposition then implies that all
fourier components δk evolve independently and according to the same law, and hence
we can separate the time evolution of the power spectrum from its k-dependence.
Furthermore, it might be possible to predict the power spectrum Pi(k) as produced
by the initial mechanism which introduced inhomogeneities in the density field. This
allows us to write the power spectrum as

P(k, t) = Pi(k)T2(k)D2(t) . (2.25)

Here, D(t) is the growth factor describing by how much a perturbation has grown at
time t relative to some initial time ti after which the time-evolution can be separated
from its k-dependence; due to relativistic effects, ti must be the moment (in the matter
epoch) at which the largest mode of interest has a wavelength on the scale on which
Newtonian gravity is a good approximation to general relativity [22]. The transfer
function T(k) describes the evolution between the moment Pi(k) was set and ti.

Version of July 8, 2022– Created July 8, 2022 - 21:51
15



16 The large scale structure of the universe

2.3 The evolution of the large scale structure

The LSS that can be described by the formalism in section 2.2 is not static but evolves
as gravity attempts to concentrate matter in high-density regions. If we consider scales
much bigger than the mean free path of particles in the universe, the contents of the
universe can be modelled as a self-gravitating fluid. On scales much smaller than the
horizon distance1, causality is essentially instantaneous and so in a matter-dominated
universe2, general relativity reduces to Newtonian gravity on such small scales. The
condition of matter dominance is satisfied for a large range of redshifts, making the
Newtonian treatment relevant for most observationally interesting redshifts.
The Newtonian system of equations describing a self-gravitating fluid consists of the
continuity equation, describing conservation of mass, the Euler equation, describing
the force on a fluid element, and the Poisson equation, describing gravity:

∂ρ

∂t
+∇ · (vρ) = 0 ; (2.26)

∂v
∂t

+ (v · ∇) v = −1
ρ
∇p −∇Φ ; (2.27)

∇2Φ = 4πGρ . (2.28)

All spatial derivatives are with respect to proper coordinates and the partial time
derivative is evaluated at a fixed proper position; v is the (proper) velocity field of
the fluid and Φ is the gravitational potential. Finally, this system must be closed by an
equation of state p = p(ρ) relating the pressure p to the density ρ.
Since gravity is an attractive force, it will tend to enhance contrasts in the density field.
Any inhomogeneities in the present-day density field are thus expected to have grown
from small primordial perturbations, suggesting that the initial stages of structure for-
mation may be described using linear perturbation theory applied to (2.26)-(2.28). All
quantities should then be written as their value in a completely homogeneous and
isotropic universe, denoted by a subscript 0, and a small perturbation:

ρ(r, t) = ρ0(t) (1 + δ(r, t)) ;
v(r, t) = v0(r, t) + u(r, t) ;
Φ(r, t) = Φ0(r, t) + Ψ(r, t) .

The equation of state p = p(ρ) may be expanded around ρ0 to find p0 = p(ρ0) and

δp(r, t) =
∂p
∂ρ

ρ0δ(r, t) = v2
s ρ0δ(r, t) , (2.29)

Where v2
s = ∂p

∂ρ is the speed of sound squared. v0 can be identified with the Hubble
flow H(t)r, since both are present even in a completely homogeneous and isotropic
universe. u can then be expressed in terms of the comoving coordinates and a(t):

v = ṙ
v0 + u = H(t)r + aẋ

u = aẋ . (2.30)

1The horizon distance, which may be approximated as the Hubble length LH = c/H, is the size of
the causally connected universe.

2Matter dominance is required because Newtonian gravity neglects the gravitational influence of
pressure, which is significant for radiation and dark energy.

16
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2.3 The evolution of the large scale structure 17

The general scheme is now to insert the perturbed quantities into (2.26)-(2.28) and
keep only terms up to linear order in the perturbations. For example, (2.26) becomes(

∂ρ0

∂t
+∇ · (v0ρ0)

)
(1 + δ) + ρ0

∂δ

∂t
+ ρ0v0 · ∇δ +∇ · ρ0u = 0 . (2.31)

For vanishing perturbations, only the first term in brackets remains. However, the per-
turbations do not change the background quantities, so these first terms must always
vanish. Since ρ0 is homogeneous, it has vanishing spatial derivatives:

ρ0
∂δ

∂t
+ ρ0v0 · ∇δ + ρ0∇ · u = 0

dδ

dt
= −∇ · u , (2.32)

Where d
dt ≡ ∂

∂t + v0 · ∇ is the total (or Lagrangian) time derivative for a fundamental
observer. The Euler and Poisson equations (2.27) and (2.28) can be treated similarly:
write all quantities as a background and a perturbation, cancel the pure background
terms since they must equal for vanishing perturbations and discard terms that are of
higher than linear order in the perturbations. Furthermore, note that if v0 = H(t)r it
can be straightforwardly shown that

(u · ∇) v0 = H(t)u . (2.33)

(2.27) and (2.28) now linearise to
du
dt

+ H(t)u = − v2
s∇δ −∇Ψ ; (2.34)

∇2Ψ = 4πGρ0δ . (2.35)

In principle, (2.32), (2.35) and (2.34) form a complete description of the linear stages
of structure formation. However, they are more conveniently written in comoving
instead of proper coordinates. In comoving coordinates, an observer moving with the
Hubble flow v0 is stationary, and hence d

dt →
∂
∂t , a partial time derivative evaluated at

constant comoving coordinates. Also, note that

∇ =
∂

∂r
=

1
a(t)

∂

∂x
. (2.36)

Redefining ∇ = ∂
∂x thus means that ∇ → 1

a∇. Furthermore, recall that u = aẋ so

u̇ = ȧẋ + aẍ = H(t)aẋ + aẍ . (2.37)

The system of linear equations describing the linear stage of structure formation in
comoving coordinates thus becomes

δ̇ = −∇ · ẋ ; (2.38)

ẍ + 2H(t)ẋ = − v2
s

a2∇δ − 1
a2∇Ψ ; (2.39)

∇2Ψ = 4πGa2ρ0δ , (2.40)

With the dot now denoting a partial time derivative at fixed comoving coordinates.
Combining the time derivative of (2.38) with (2.40) and the divergence of (2.39), we
obtain the central equation in the description of the Newtonian evolution of the LSS:

δ̈ + 2H(t)δ̇ − v2
s

a2∇
2δ = 4πGρ0δ . (2.41)
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18 The large scale structure of the universe

2.3.1 The influence of pressure: the Jeans and filtering scales

Equation (2.41) can be solved for various cosmological models. A first and unrealistic
example would be the case of a static universe, with H(t) = 0 and a(t) constant. We
can take the Fourier transform of (2.41) by noting that for the comoving gradient of a
function f , we have

[∇ f ]k =

[
∂

∂x

∫
R3

fkeik·ax d3k
(2π)3

]
k
= iak fk . (2.42)

Thus, taking the fourier transform of (2.41) and making the ansatz δk ∝ eiωt yields

−ω2 + v2
s k2 = 4πGρ0 . (2.43)

The ansatz now corresponds to a perturbation oscillating with constant amplitude if
ω ∈ R; such perturbations are stable against collapse. However, if ω is complex, the
amplitude of δ changes exponentially with time; if a growing mode is present, the per-
turbation will collapse and form a non-linear structure which is no longer adequately
described by linear perturbation theory. The boundary between these two cases can
be drawn at ω2 = 0, such that

v2
s k2

J = 4πGρ0

λJ =
2π

k J
=

√
πv2

s
Gρ0

. (2.44)

λJ is known as the Jeans scale. Perturbations with smaller wavelengths (k > k J) are
supported against gravitational collapse by pressure, while perturbations on larger
scales (k < k J) can overcome their internal pressure and collapse.
In reality, the universe expands, which alters the evolution of a plane wave through
the H-dependent term in (2.41); this alters the actual scale on which a perturbation
can support itself against collapse. Furthermore, we will see that the temperature of
the IGM can change significantly during the history of the universe. This is relevant
because the temperature, through vs, partially determines the value of k J and so a sig-
nificant and rapid change in temperature translates to a significant and rapid change
in k J . However, since gas can’t rearrange itself arbitrarily fast, perturbations that sud-
denly find themselves with k < k J don’t collapse immediately. Each of these reasons
(the alteration of a plane wave by the expansion of the universe and the finite response
time to a change in temperature) imply that a better estimate of the wavenumber above
which perturbations are stable against collapse is the filtering scale kF from [35]:

1
k2

F(a)
= 3a

∫ a

0

1
a′2k2

J(a′)

(
1 −

(
a′

a

)1/2
)

da′ . (2.45)

Note that to derive this expression from the one given in [35], it was assumed that
Ωm = 1, which is appropriate for our current treatment.

2.3.2 The matter-dominated universe

As a more realistic model, we might consider a dark matter dominated universe. A
universe completely dominated by matter has (2.10) as scale factor, (2.11) as Hubble

18
Version of July 8, 2022– Created July 8, 2022 - 21:51



2.3 The evolution of the large scale structure 19

parameter and because the universe is spatially flat, ρ0(t0) = ρcrit from (2.8), so that

ρ0(t) =
ρ0(t0)

a3(t)
=

1
6πGt2 . (2.46)

We can model dark matter as only interacting gravitationally, so it must have zero
pressure. Combining this density with (2.11) and (2.41) then yields

δ̈ +
4
3t

δ̇ =
2

3t2 δ . (2.47)

If we make the ansatz that δ ∝ tα, we find α = 2
3 or α = −1; the decaying mode

cannot have been important since structure has grown from small initial perturbations.
Therefore, in a dark matter dominated universe perturbations evolve as

δ(r, a) ∝ a . (2.48)

In this particular model, the growth factor from (2.25) therefore is D(t) = a(t)/a(ti).
In an even more realistic model, baryons are also accounted for. Baryons only interact
with dark matter gravitationally and hence in (2.26)-(2.28) only (2.28) is not applicable
to each component (baryons or dark matter) individually. Therefore (2.41) holds for
every component individually as long as we replace the right hand side by a sum over
the components, and the correct form of (2.41) for baryons in a universe containing
both dark matter (subscript dm) and baryons (subscript b) is a system of equations:

δ̈dm + 2H(t)δ̇dm = 4πGρ0 ( fbδb + fdmδdm) ; (2.49)

δ̈b + 2H(t)δ̇b −
v2

s
a2∇

2δb = 4πGρ0 ( fbδb + fdmδdm) , (2.50)

With fi the fractional contribution of the respective components to the total average
density (so fb + fdm = 1). In the limit fb → 0, (2.49) reduces to (2.47) with solution
(2.48). On the other hand, taking the Fourier transform of (2.50) in this limit yields

δ̈b, k + 2H(t)δ̇b, k = 4πGρ0 fdmδdm, k − v2
s k2δb, k . (2.51)

For large scales, k → 0 and the right hand side of this equation becomes identical to
that of (2.49) in the limit fb → 0, while the form of the left hand side is identical to
that of (2.49). Therefore, on large scales, baryons follow the dark matter distribution,
while their distributions differ on small scales where pressure is relevant. [35] shows
that the effect of this pressure can be accurately described as

δb, k

δdm, k
∝ e

− k2

k2
F . (2.52)

The effect of the pressure is thus to suppress δb, k for k > kF, which is sensible in the
light of the discussion from section 2.3.1. This cutoff persists into the power spectrum,
which depends on the squared amplitude of the Fourier components:

Pb(k, t)
Pdm(k, t)

=
∆2

b(k, t)
∆2

dm(k, t)
∝ e

− 2k2

k2
F . (2.53)

Since kF takes on a finite value for all realistic thermal histories, we expect the power
spectrum to always contain this so-called pressure cutoff.
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20 The large scale structure of the universe

In fact, (2.48) produces an apparent contradiction between observations. At last scat-
tering of the CMB at zrec ∼ 1000, radiation is still tightly coupled to the baryons, and
hence CMB temperature anisotropies of δT/T ∼ 10−5 [11] imply similar baryonic den-
sity contrasts δb ∼ 10−5. If these perturbations then grew as implied by (2.48)3 their
amplitude would have grown by a factor a−1(trec) = 1 + zrec ∼ 1000, resulting in per-
turbations with δb ∼ 10−2. This is still well within the linear regime, and thus directly
contradicts the abundance of highly nonlinear structures we can observe today. The
solution to this contradiction lies in the fact that dark matter does not interact elec-
tromagnetically, and hence it already forms structures before the onset of the matter
epoch [22]. Once the baryons decouple from the CMB, they can simply move into the
dark matter potential wells, temporarily evolving much faster than (2.48) implies.

2.3.3 Peculiar velocities

Considering (2.38), peculiar velocities play a central role in the formation of structure
as they carry the matter that accretes into structures. Since only this concentrating
function is relevant for structure formation, a solenoidal velocity field with ∇ · u = 0
does not cause perturbations to the density, pressure or potential and so these kinds of
fields are usually neglected4. u is thus assumed to be, at least initially, a conservative
field. If the matter has negligible initial peculiar velocities, u must be gravitationally
induced and hence a function of the gravitational acceleration:

u = F(t)g = −F(t)
∂Ψ
∂r

= −F(t)
a(t)

∇Ψ = aẋ , (2.54)

For some universal function F(t). Combining this with (2.38) and (2.40) yields

F(t) =
δ̇

4πGρ0δ
. (2.55)

Since we assume the linear regime, we may also relate u to the initial state of the
universe. Recall that the growth factor D(t) was defined as the factor by which any
Fourier component δk has grown since ti < t, so that

δ(x, t) = D(t)δ(x, ti) , (2.56)

With the potential perturbation as a function of comoving position to remove ambigu-
ity with regard to the time derivative. By considering how the right hand side of (2.40)
relates to the conditions at time ti, it may be shown that

Ψ(x, t) =
a(ti)

a(t)
D(t)Ψ(x, ti) . (2.57)

By combining this with (2.55) and (2.56) we can obtain the peculiar velocities as

u = − Ḋ(t)
4πGρ0(ti)

a(t)
a2(ti)

∇Ψ(x, ti) = −2ȧ(t)a(t)
3H2

0
∇Ψ(x, ti) , (2.58)

3In reality, baryons remain strongly coupled to the CMB until z ∼ 100 [23], which suppresses the
growth of baryonic perturbations.

4Furthermore, since they represent rotations in the cosmic medium, we can consider a volume el-
ement of mass m performing such a rotation with characteristic radius l and rotation speed uT . Its
angular momentum is then L ∼ mluT , and since L and m are conserved and l ∝ a(t), uT must decay
[22], further cementing its irrelevance.
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2.3 The evolution of the large scale structure 21

Where the last equality used the fact that we assumed a flat matter-dominated uni-
verse, so that ρ0(t) = ρcrita−3(t) and D(t) = a(t)/a(ti). (2.58) implies that u grows
with time and is directed towards maxima in the density.

2.3.4 Warm dark matter free streaming

A final effect we can describe is free streaming by WDM. This effect occurs because
WDM, while relativistic, cannot be gravitationally bound. If the primordial velocities
of WDM are isotropically distributed there will be more particles moving out of a den-
sity concentration than moving into it; such a concentration will thus smooth out over
time. Free streaming doesn’t significantly affect large-scale structures because WDM
cannot move substantially out of such a structure during its (relatively brief) relativis-
tic stage, but small-scale structures may be significantly suppressed. Free streaming
thus introduces another cutoff to the power spectrum, with a cutoff scale known as
the free streaming length λfs. A rigorous treatment such as presented in [22] yields a
cutoff scale similar to (2.44), with v2

s replaced by ⟨ 1
u2 ⟩−1, a typical5 intrinsic (i.e. not

gravitationally-induced) speed squared. A more intuitive scale is the free streaming
horizon λfsh, the maximum proper distance a WDM particle will typically travel [12].
If a WDM particle has proper speed v(t) = a(t) dx

dt , then

λfsh(t) = a(t)
∫ λfsh/a(t)

0
dx = a(t)

∫ t

0

v(t′)
a(t′)

dt′ . (2.59)

If the WDM is completely relativistic until some time tnr in the radiation epoch and
then becomes essentially stationary, (2.59) may be evaluated using (2.12), yielding

λfsh(t) =
2
3

a(tnr)ctnra(t) . (2.60)

This is of course a strongly simplified picture, but it is a general principle that λfsh
is set during the radiation epoch (WDM becomes non-relativistic during this epoch)
and then barely evolves save scaling with a(t) [12]. Any difference between WDM
and CDM is thus not primarily in their initial power spectrum or evolution in the
matter epoch, but in their transfer function in the form of a suppression of small scale
structures.

5To be precise: averaged with the phase space density as weight.
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Chapter 3
The Ly-α forest

As was indicated in section 2.3.4, it is in principle possible to discriminate between
cold and warm dark matter (CDM and WDM) through the power spectrum of the
LSS because WDM suppresses structures on scales smaller than λfsh by free stream-
ing. Therefore, it is of considerable interest to determine the power spectrum at these
small scales. Often, galaxies are used to trace the cosmic density field, with surveys
such as [31] and [32] mapping the position and redshift of many thousands of galaxies.
There are however several drawbacks to galaxies as density tracers. For example, they
have a galaxy-type dependent bias for denser environments [13, 14], they are highly
nonlinear structures that may deviate from the linear structure, and intergalactic dis-
tances are of the order ∼ Mpc, while λ f s may be as small as ∼ 0.1h−1 Mpc at z = 0 [7].
A more promising approach to reconstruct the small scale power spectrum is through
the Ly-α forest: a series of absorption features in quasar spectra due to Ly-α absorption
by neutral hydrogen in the intergalactic medium (IGM) [15]. Since the redshift of these
absorption features depends on the distance to the absorbing structures (considering
(2.4) and the fact that t0 − t is set by the distance due to the finite speed of light), the
Ly-α forest might share statistical properties with the cosmic density field.
In this chapter, the IGM, the source of the Ly-α forest, will be introduced first. Sub-
sequently, an expression for the absorption spectrum produced by the IGM will be
derived, after which section 3.3 will give a brief description of the relation between
the Ly-α forest and the power spectrum P(k) of dark matter. Finally, a phenomeno-
logical expression for the scale on which peculiar velocities impact the FPS will be
proposed. Much of the material presented here is based on [36] and [23].

3.1 The ionisation state of the intergalactic medium

The IGM consists of all gas between galaxies, which is mostly hydrogen and helium,
although it has a detectable metallicity [37, 38]. Following recombination, this gas
was mostly neutral; it was this fact that allowed the cosmic microwave background to
propagate freely. As structures grew, they eventually collapsed into nonlinear struc-
tures such as Population III-stars, galaxies and quasars, and due to the ionising radia-
tion these objects produce, the IGM was re-ionised [23]. This also significantly raised
the temperature of the IGM [39]. Since the Ly-α transition has a relatively large cross
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24 The Ly-α forest

section, a very low density of neutral hydrogen suffices for complete absorption of the
Ly-α line. As a result, a neutral hydrogen fraction of just 10−6 may already be enough
to create a spectral region of complete absorption in the spectrum of a quasar, known
as a Gunn-Peterson trough [40]. The fact that such a trough only arises in spectra of
quasars with z ≳ 6 [41] indicates that re-ionisation was almost complete, and that the
current IGM consists mainly of ionised hydrogen.
To describe the ionisation state of the IGM, we typically assume dynamical ionisation
equilibrium, in which the rates of ionisation and recombination are equal. The rate
Rab of a reaction between any two particle species a and b can be written as

Rab = ⟨vrelσab⟩nanb . (3.1)

Here, vrel is the relative speed between particles of species a and b, σab is the cross
section of the reaction (which may depend on vrel), and na and nb are the respective
number densities.
There are two main venues of ionisation: collisional ionisation and photo-ionisation.
Since the rate of the former rapidly decreases for temperatures below T ∼ 13.6 eV/kB ∼
105 K, we focus on the latter. For a given radiation field, the energy density u(ν) in a
frequency range [ν, ν + dν] is [42]

u(ν) =
4π J(ν)

c
, (3.2)

Where J(ν) is the average intensity. The number density nγ(ν) of photons within this
frequency range is thus u(ν) divided by hν, the energy of a single photon, and the
number density of potentially ionising photons is nγ integrated above the ionisation
threshold frequency νi. Since the relative speed between an photon and a hydrogen
atom is always c and the ionisation cross section σi is frequency-dependent, (3.1) yields
a rate of photo-ionisation of neutral hydrogen of

Rphoto =
∫ ∞

νi

σi(ν)c
4π J(ν)

hνc
dν nHI ≡ ΓHInHI . (3.3)

For hydrogen hνi = 13.6 eV, and nHI is the neutral hydrogen number density. Both
Rphoto (with units cm−3 s−1) and ΓHI (with units s−1) may be referred to as the photo-
ionisation rate, so we will quote the symbol wherever necessary.
Recombination on the other hand can only happen collisionally. Thus, for number
densities ne and nHII of electrons and protons respectively and an interaction cross
section σrec, (3.1) yields a recombination rate of

Rrec = ⟨σrecvrel⟩nenHII = αHII(T)nenHII . (3.4)

Again, both Rrec (with units cm−3 s−1) and αHII (with units cm3 s−1) may be referred
to as the recombination rate; αHII depends on the temperature because vrel is set by the
thermal velocities in the gas (and σrec is set by vrel). Approximately, αHII ∝ T−0.7 [23].
The rate of change in nHI is now set by the difference between the recombination rate
Rrec, which produces more neutral hydrogen, and Rphoto, which destroys it. The as-
sumption of ionisation equilibrium thus demands that

dnHI

dt
= 0

αHII(T)nenHII − ΓHInHI = 0

nHI =
αHII(T)

ΓHI
nenHII . (3.5)
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3.2 The optical depth of the Ly-α forest 25

This can be further simplified by assuming that the hydrogen is almost completely
ionised, hence ne ≈ nHII ≈ nH, the total hydrogen density1:

nHI =
αHII

ΓHI
n2

H . (3.6)

ΓHI directly depends on the ionising radiation background and thus has to be mod-
elled numerically (as proposed in for example [39]). αHII can be expressed as a function
of the IGM temperature [43]. In turn, the IGM temperature T is set by a balance be-
tween adiabatic cooling due to the expansion of the universe, changes in particle abun-
dances and heating by radiation. Together, these processes produce a temperature-
density relation [43] that can be parameterised as a power law (with δ the contrast in
the baryonic density):

T = T0 (1 + δ)γ−1 . (3.7)

T0 and γ evolve with redshift, as the universe is initially heated to a uniform temper-
ature during re-ionisation and then cools most rapidly in the least dense regions.

3.2 The optical depth of the Ly-α forest

In order to use the Ly-α forest as a cosmological probe, it is necessary to relate the
observed spectrum to the properties of the IGM. This can be done using the equation
for radiative transport:

dIν

dr
= jν − αν Iν . (3.8)

Here, Iν is the intensity in units of power per unit area, frequency and solid angle, r
is the proper distance, jν is the emission coefficient describing the power the medium
emits per unit volume, frequency and solid angle, and αν is the absorption coefficient
giving the fraction of absorbed intensity per unit proper length [42]. Due to the high
ionisation degree and low density, emission from the IGM is usually neglected. The
resulting differential equation can then be immediately solved to yield

Iν = I0
ν e−τ(ν) . (3.9)

Here, I0
ν is the initial quasar spectrum and the optical depth τ(ν) is the integral of αν

over the entire line of sight. What is typically done is that Iν is divided by a calculated
quasar spectrum I0

ν to obtain the transmission or flux F, a process known as ‘contin-
uum fitting’. The advantage of using F is that we may now characterise the entire
spectrum with a single parameter:

F(ν) = e−τ(ν) . (3.10)

Hence, calculating the optical depth is the central aim of this section.
Assuming that the absorption is due to neutral hydrogen with number density nHI
and Ly-α absorption cross section σ(ν), the optical depth may be written as

τ(ν) =
∫

nHI(r)σ(ν)dr . (3.11)

1Helium may also be ionised. This slightly increases ne, but is often ignored because of the lower
number density of helium and the higher ionisation energy.
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26 The Ly-α forest

However, the frequency in the integral can, in the current context, not be the same as
the one at which τ is evaluated due to the cosmological redshift: according to (2.5),
light is redshifted as it travels by the expansion of the universe. Thus, light that has
frequency ν on observation had a higher frequency at some distance r. To account for
this, we might use the redshift as a proxy for distance in the following way:

dr = cdt

=
c

H(t)
1
a

da
dt

dt

=
c

H(a)
da
a

=
cdz

H(z) (1 + z)
, (3.12)

Where the definition of H in (2.3), (2.5) with a(t0) = 1 and the fact that the proper
speed of light is always c were used. Thus, to every distance r we may assign a redshift
z, and light that is observed at frequency ν had a frequency ν′ at distance r such that

ν =
ν′

1 + z
, (3.13)

Where z is the redshift associated with distance r. It is at rest frame frequency ν′ that
the IGM at distance r, or redshift z, produces absorption that is observed at frequency
ν, and hence (3.11) may be combined with (3.12) and (3.13) to yield [40]

τ(ν) =
∫

nHI(z)σ ((1 + z) ν)
cdz

H(z)(1 + z)
. (3.14)

So far, it has been implicitly assumed that the redshift is entirely cosmological in origin.
In reality, the IGM has peculiar velocities both on large scales as described in section
2.3.3 and due to thermal motion of the gas; both cause an additional Doppler shift.
We can incorporate the thermal motion by broadening the interaction cross section.
The absorption cross section of a single particle may be described as

σ(ν) = σ0ϕ (ν − να) , (3.15)

Where ϕ(ν) is the line profile and integrates to 1 over all frequencies, σ0 is an ampli-
tude, and να is the rest frame Ly-α frequency. Quantum mechanics then shows [42]
that in CGS units

σ0 =
πe2

mec
f12 , (3.16)

Where f12 = 0.416 is the oscillator strength of the Ly-α transition.
If we now consider a cloud of gas at temperature T > 0, absorption by individual
atoms yields a single total cross section. Due to the nonzero temperature, the atoms
have a thermal velocity v in the radial direction (i.e. along the line of sight), so that
although the cross section in their individual rest frames is always given by (3.15), the
cross section they contribute to the total cross section of the cloud is centred around a
Doppler shifted Ly-α frequency ν′α, with

ν′α =
(

1 − v
c

)
να , (3.17)
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3.2 The optical depth of the Ly-α forest 27

Assuming that v ≪ c and that v > 0 corresponds to a redshift. The total cross sec-
tion produced by the cloud is thus the sum of individual contributions (3.15), centred
at frequencies shifted according to (3.17) and weighted by the distribution function
f (v)dv which describes the fraction of atoms with radial speed in the range [v, v + dv]:

σtot(ν) =
∫ ∞

−∞
σ0ϕ

(
ν −

(
1 − v

c

)
ν0

)
f (v)dv . (3.18)

Additionally, we may account for any peculiar velocity of the cloud by shifting the
distribution function by the radial peculiar velocity u of the cloud, so f (v) → f (v −
u). To evaluate this expression, we neglect natural and collisional broadening, so the
intrinsic line profile is ϕ (ν − να) = δ(ν − να), a delta function:

σtot (ν) = σ0

∫ ∞

−∞
δ
(

ν −
(

1 − v
c

)
να

)
f (v − u)dv

= σ0

∫ ∞

−∞

c
να

δ

(
v −

(
1 − ν

να

)
c
)

f (v − u)dv

= σ0λα f
((

1 − ν

να

)
c − u

)
, (3.19)

Where λα = c
να

is the rest frame Ly-α wavelength. To finalise this expression, we
assume that the IGM is in thermodynamic equilibrium, and hence f (v) is the one-
dimensional Maxwell-Boltzmann distribution, so that

σtot (ν) =
σ0λα√

πbT
exp

(
−
(

1 − ν

να
− u

c

)2( c
bT

)2
)

. (3.20)

bT is the thermal velocity defined as

b2
T ≡ 2kBT

mHI
, (3.21)

with mHI the mass of a hydrogen atom. (3.20) may then be substituted for σ in (3.14)
to find the actual optical depth; note that both bT and u will be z-dependent.

3.2.1 Velocity coordinates

Spectrographs usually measure spectra as a function of frequency or wavelength, but
their results are often quoted as a function of Doppler velocity. By (3.17), the Doppler
effect can be written as

v = −∆ν

ν
c , (3.22)

Where ∆ν is the change in frequency of light that was emitted at frequency ν by a
source moving at radial speed |v| ≪ c; the minus sign ensures that v > 0 corresponds
to a redshift. Taking the limit of infinitesimally separated frequencies yields

dv = − dν

ν
c

v f = c ln
(ν0

ν

)
, (3.23)
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With v f the ‘frequency velocity’ and ν0 a normalisation frequency. In principle, ν0 can
be chosen freely, but a reasonable choice is often set by another practical consideration,
namely that the optical depth due to the full line of sight is rarely used, but instead τ is
calculated along short segments of the full line of sight (these segments will be referred
to as LOS). This is done because if a long LOS were used, the LSS would evolve during
the time it takes light to traverse the length of the LOS, complicating the way the Ly-α
forest produced by such an LOS relates to the LSS. Since σ is, even when accounting
for thermal broadening, a relatively sharply peaked function, choosing a short LOS
simply corresponds to considering a small segment of the full Ly-α forest.
If the nearest point of an LOS has redshift zLOS, ν0 can be chosen such that Ly-α emis-
sion from this point corresponds to v f = 0:

v f = c ln
(

να

(1 + zLOS) ν

)
. (3.24)

Additionally, if we consider a short LOS, the Hubble parameter does not change much
over the time it takes light to travel the length of the LOS and we may parameterise
the position along the LOS in velocity coordinates vr as well. This may be done by
considering the infinitesimal version of (2.2), combined with (3.12):

dvr = H(zLOS)dr =
cdz

1 + z
, (3.25)

Since H(z) is nearly constant along the LOS. Both equalities may be integrated to yield

vr = H (zLOS) r = c ln
(

1 + z
1 + zLOS

)
. (3.26)

The integration constants were chosen such that a point at the near end of an LOS has
vr = 0 and r = 0. By substituting (3.20) into (3.14), expressing the frequencies and red-
shifts in velocity coordinates using (3.24) and (3.26) and using (3.25) for the coordinate
transformation, we obtain the final expression for the optical depth produced by the
IGM along a given LOS:

τ(v f ) =
∫

LOS

σ0λαnHI(vr)√
πH(zLOS)

exp

(
−
(

1 − e(vr−v f )/c − u
c

)2
(

c
bT

)2
)

dvr

bT
. (3.27)

Note that both u and bT depend on the position along the LOS.

3.3 Relation to the dark matter power spectrum

It is clear from (3.27) that the optical depth depends on the distribution of neutral
hydrogen, which in turn depends on the total hydrogen distribution through (3.6).
Assuming that hydrogen follows the distribution of baryons, the distribution of hy-
drogen can be related to the dark matter power spectrum using (2.53); ultimately, the
statistical properties of the flux F = e−τ are thus set by the large scale dark matter
distribution. This relation is, however, highly non-trivial as several non-linear steps
are required and the flux is fundamentally measured along a one-dimensional line of
sight, whereas the three-dimensional dark matter power spectrum is required to con-
strain WDM models. A certain degree of qualitative understanding may be obtained
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3.3 Relation to the dark matter power spectrum 29

by considering a highly idealised model, in which the IGM has negligible temperature
and peculiar velocities and the baryonic density is very low.
Assuming a stationary IGM allows us to set u = 0 in (3.27) and thus rewrite it to

τ
(
v f
)
=

σ0λα

H (zLOS)

∫
LOS

nHI
(
v f + c ln (1 − y)

) 1√
2πs2

e−
y2

2s2
dy

1 − y
, (3.28)

Where y = 1 − e(vr−v f )/c and s = bT/c
√

2. If we now assume a cold IGM, we can
take the limit bT → 0 and hence s → 0, in which case the Gaussian in the integral
approximates a delta function:

lim
T→0

τ(v f ) =
σ0λα

H (zLOS)

∫
LOS

nHI
(
v f + c ln (1 − y)

)
δ(y)

dy
1 − y

=
σ0λα

H (zLOS)
nHI

(
v f
)
≡

nHI(v f )

n0(zLOS)
. (3.29)

Thus, in a stationary and cold IGM, the optical depth is simply a rescaling of the neu-
tral hydrogen density by a reference density n0 = H(zLOS)

σ0λα
. At z = 0, combining (3.16)

with H0 = 67.66 km/s/Mpc [11] yields n0 ≈ 1.77 × 10−5 m−3. If we assume that
τ(v f ) ≪ 1 (due to nHI ≪ n0), the flux F can be directly related to nHI:

F(v f ) = e−τ(v f ) ≈ 1 − τ(v f ) = 1 −
nHI

(
v f
)

n0 (zLOS)
. (3.30)

We can now define, analogously to the density contrast, the flux contrast as

δF(v f ) =
F(v f )

⟨F⟩ − 1 , (3.31)

Where the average is calculated over many LOS at the same redshift. Thus, we can
relate the flux contrast to the density contrast in the neutral hydrogen as

δF(v f ) =
1 − nHI(v f )

n0(zLOS)

1 − ⟨nHI⟩
n0(zLOS)

− 1

≈ ⟨nHI⟩
n0 (zLOS)

⟨nHI⟩ − nHI(v f )

⟨nHI⟩

= − ⟨nHI⟩
n0 (zLOS)

δHI , (3.32)

Where ⟨nHI⟩ is the average neutral hydrogen density along the LOS and δHI is the
neutral hydrogen density contrast. We may now define the one-dimensional Fourier
transform as

δF(kv) =
∫ VLOS

0
δF(v)e−ikvvdv , (3.33)

Where the LOS has length VLOS when expressed in velocity coordinates. Additionally,
we may define the flux power spectrum (FPS) and the dimensionless FPS (also often
referred to as the FPS) in analogy to (2.23) and (2.24) as

∆2
F(kv) ≡

kv

π
PF(kv) =

kv

π

⟨|δF(kv)|2⟩
VLOS

. (3.34)
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30 The Ly-α forest

Thus, in this model we may relate the FPS and the one-dimensional power spectrum
of neutral hydrogen as

PF(kv) =
⟨nHI⟩2

n2
0 (zLOS)

PHI, 1D(kv) . (3.35)

We may relate this one-dimensional power spectrum to the three dimensional neutral
hydrogen power spectrum using

PHI, 3D(kv) = −2π

kv

dPHI, 1D

dkv
, (3.36)

Which can be proven under the assumption that δHI follows a homogeneous and
isotropic random distribution. If we assume that, due to the low temperature and
hence high recombination rate, all hydrogen is neutral, we thus see that

PH(kv) = −2π

kv

n2
0 (zLOS)

⟨nH⟩2
dPF

dkv
. (3.37)

Finally, (2.53) can then be used to find the dark matter power spectrum.
This treatment is of course unrealistic in several ways: there are peculiar velocity fields
in the IGM (see section 2.3.3), the IGM has a quite significant temperature [19], and fi-
nally the density n0 is low enough that often the assumption nHI ≪ n0 will not hold.
However, several qualitative remarks can be made based on this treatment. For exam-
ple, even in a realistic model a peak nHI will correspond to a peak in the optical depth
(or a dip in the flux), at a frequency corresponding to vr but shifted by the peculiar
velocity. Also, the definitions (3.31) and (3.34) are used to describe the statistical prop-
erties of the Ly-α forest because even if they are difficult to relate quantitatively to the
(dark) matter power spectrum, they share qualitative properties. For example, a cutoff
present in the power spectrum of dark or baryonic matter will produce a similar cutoff
in the FPS.
In short, the FPS differs from the true dark matter power spectrum in several ways:

1. The FPS is measured along a one-dimensional LOS.

2. The flux F and the neutral hydrogen density nHI are non-linearly related.

3. The neutral fraction is temperature-dependent, which by (3.7) means it is density-
dependent.

4. The flux is influenced by thermal broadening and peculiar velocities.

5. There is a pressure cutoff in the FPS relative to the dark matter power spectrum.

Because of these complications, exacerbated by the fact that the thermal history of the
IGM is not very well constrained, it is often impossible to reconstruct the dark matter
power spectrum from the FPS. Instead, modern approaches use numerical methods
to simulate the density field under the assumption of a certain cosmological model,
after which the FPS can be calculated and compared to the observed FPS. This thesis
follows a similar path to assess the influence of peculiar velocities on the FPS, using
simulations and numerical methods introduced in the next chapter.
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3.4 Modelling a characteristic scale for the influence of peculiar velocities 31

3.4 Modelling a characteristic scale for the influence of
peculiar velocities

Motivated by the preceding discussion, which stated that a density feature at position
vr will create a spectral feature at frequency vr − u, we propose that a characteristic
scale ∆v may be associated to the influence of peculiar velocities. To see why this
might be the case, consider an isolated peak in the density. According to (2.58), there
will be a peculiar velocity field associated with this density peak, such that the peculiar
velocity u is directed towards the minimum of the potential, or equivalently through
(2.40) the maximum of the density. Hence, matter that is closer to the observer than the
density peak will produce an absorption feature that is redshifted (since it is moving
towards the density peak and hence away from the observer), while matter that is
beyond the density peak will produce a blueshifted absorption feature. Therefore,
the spectral feature produced by the entire density peak will be more narrow with
peculiar velocities than it would have been without. Since peculiar velocities cannot be
arbitrarily high and very small peculiar velocities have negligible impacts, there may
be some peculiar speed that has both a significant influence and is well-represented in
the peculiar velocity field. This scale then corresponds to ∆v.
In order to obtain a crude model of the dependency of ∆v on the properties of the IGM,
consider a Gaussian density peak in nHI of width σ around some position µ along a
LOS. If we assume a negligible temperature, the optical depth profile without peculiar
velocities will also be a Gaussian due to (3.29). This optical depth can be written as

τ(v f ) =
τ0√
2πσ2

e
−
(

v f −µ

σ

)2

, (3.38)

Where τ0 is related to the average optical depth along the LOS. In fact, based on (3.29),
it may be proportional to the neutral hydrogen density, which in turn is set by (3.6).
Since the flux is exponentially related to the optical depth, all optical depths higher
than some limiting value τlim (for example 5) will produce a negligible flux; the width
of the absorption feature produced by this density peak is thus set by the range of fre-
quencies for which τ(v f ) ≥ τlim. For the Gaussian density peak, the lowest frequency
for which equality occurs is given by

v1 = µ − σ

√√√√2 ln

(
τ0

2τlim
√

2πσ2

)
. (3.39)

As argued before, peculiar velocities narrow down absorption features2; hence, the
addition of peculiar velocities changes σ to σ′ < σ. The magnitude of the difference
depends on the magnitude of the peculiar velocities, and hence the typical difference
depends on the typical peculiar speed which we may characterise with the root mean
square (RMS) peculiar velocity

σu =
√
⟨u2⟩ . (3.40)

2Strictly speaking, peculiar velocities may also change the shape of the absorption feature since the
peculiar velocities depend non-linearly on the density. We will ignore this effect.
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32 The Ly-α forest

σu is also known as the velocity dispersion. Then, to first order we may approximate

σ′ (σu) ≈ σ +
∂σ′

∂σu
σu = σ − Aσu , (3.41)

Where A is some constant factor. Thus, peculiar velocities change v1 to v′1 by modi-
fying σ to σ′; if we neglect the dependence of the logarithm on σ (since it is not only
logarithmic but also taken the square root of, as opposed to the linear dependence of
the prefactor), the result is a shift

∆v = v′1 − v1 ≈ Aσu

√√√√2 ln

(
τ0

2τlim
√

2πσ̃2

)
, (3.42)

With σ′ < σ̃ < σ some effective width. As noted before, τ0 may be proportional
to the typical neutral hydrogen density which can be found through (3.6) at T = T0
and δH = 0. Indeed, inspired by (3.29), we may propose that τ0 is proportional to
the typical optical depth in a completely cold3 and static IGM and summarise all other
dependencies (from τlim, σ̃ and factors depending on the inhomogeneity of the density
field) in a constant parameter B, and hence we can propose

∆v = Aσu

√
2 ln

(
B

⟨nH⟩2

n0(zLOS)

αHII (T0)

ΓHI

)
. (3.43)

Both A and in particular B may be redshift dependent as structure forms and the pecu-
liar velocity field evolves. Note that (3.43) contains no explicit reference to the width
of the density peak; hence, we expect it to be independent of thermal broadening.
The ∆v as defined in (3.43) is thus a typical scale on which peculiar velocities broaden
absorption features in the Ly-α forest. Hence, if there is any systematic impact of these
peculiar velocities on the FPS, we expect it to have ∆v as typical scale.

3Although the recombination rate is still set by T0 > 0.
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Chapter 4
Simulations and methods

As described in the previous chapter, one of the ways in which the flux power spec-
trum of the Ly-α forest (henceforth the FPS) differs from the dark matter power spec-
trum is the influence of peculiar velocity fields. These velocities are irrelevant for the
dark matter power spectrum1, but they influence the FPS because they cause Doppler
shifts in the absorption features that constitute the Ly-α forest. In this thesis we at-
tempted to quantify this influence. To do so, simulations of the cosmic density field
were obtained and used to calculate the FPS while ignoring or incorporating the pe-
culiar velocities.
This chapter will first briefly introduce the simulations used for this investigation and
then describe the numerical methods used to first calculate the FPS and then quantify
the difference between the cases including or neglecting the peculiar velocities.

4.1 The SWIFT simulation

The simulations used in this thesis were performed using the SWIFT (SPH With Inter-
dependent Fine-grained Tasking) code, which is extensively described in [44] and at
https://swift.dur.ac.uk/. In short, SWIFT is a simulation code which evolves dis-
crete particles under the influence of gravity and pressure and then uses the particle
distribution to interpolate the hydrodynamical state (i.e. density, pressure and ve-
locity) to cells on a regular grid. This procedure is called Smoothed Particle Hydro-
dynamics, abbreviated to SPH (for a review on this technique, see for example [45]).
Specifically, SWIFT identifies two types of tasks related to the interpolation: calculating
the contribution to the density in a cell by the particles within that cell and calculating
the contribution to the density in a cell by particles in adjacent cells (the cell size is
chosen such that particles can only contribute to the cells adjacent to their own cell).
Crucially, every cell can only be used for a single task at a time, and SWIFT distin-
guishes itself from other codes by explicitly organising the tasks in such a way that
a maximum amount of tasks can be performed in parallel. This speeds up calcula-
tions significantly [44] and thus allows SWIFT to perform high-resolution simulations
relatively quickly.

1Although they are essential for the evolution of this power spectrum, see section 2.3.3.
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34 Simulations and methods

Table 4.1: Cosmological parameters used in SWIFT and literature values for these parameters;
the literature value of the hydrogen mass fraction YH assumes that contributions from elements
other than hydrogen and helium are negligible.

Cosmological parameter SWIFT value Literature value
H0 67.77 km s−1 Mpc−1 67.66 ± 0.42 km s−1 Mpc−1 [11]
Ωm 0.307 0.3111 ± 0.0056 [11]
ΩΛ 0.693 0.6889 ± 0.0056 [11]
Ωb 0.0482519 0.04897 ± 0.00068 [11]
YH 0.7600 0.7564+0.0039

−0.0040 [46]

The simulations used in this thesis were performed in a periodic volume of comoving
size 25 Mpc, with the cosmological parameters given in table 4.1. The spatial resolution
was 1.4 km s−1, and the number of particles was approximately 2503 although the ex-
act number decreased slightly with time (by approximately 5% over the redshift range
considered here). The density field was evolved from redshift z = 12.0 to z = 2.1; here
we used redshifts 4.0 ≤ z ≤ 6.0, with snapshots obtained at redshifts separated by
∆z = 0.5. Within each simulation snapshot, 500 lines of sight (LOS) along one of the
coordinate axes along the entire box length were obtained using the SpecWizard code,
yielding the density contrast of all hydrogen (i.e. both ionised and neutral), pecu-
liar velocities and coordinates in velocity units along the LOS. Furthermore, the SWIFT

code also simulated the coefficients T0 and γ from (3.7).

4.2 Determining the flux power spectrum

The simulation snapshots yielded the density contrast δH in all hydrogen. nH, the total
hydrogen number density, was thus obtained as

nH = YHΩb
3H2

0
8πGmH

(1 + zLOS)
3 (1 + δH) , (4.1)

With YH the mass fraction of hydrogen, G = 6.674 × 10−11 m3 kg−1 s−2 the gravita-
tional constant, zLOS the redshift of the simulation snapshot and mH the mass of a
hydrogen atom2. The temperature was calculated as

T = T0 (1 + δH)
γ−1 . (4.2)

With both the temperature and the total hydrogen density now known, the neutral
hydrogen density could be calculated through (3.6), with models for ΓHI and αHII taken
from [39] and [43], respectively. Finally, since both zLOS and the comoving box size
L = 25 Mpc were known and the length VLOS of the box in velocity units was given,
the Hubble parameter at the snapshot redshift could be calculated as

H(zLOS) =
VLOS

L/(1 + zLOS)
. (4.3)

2Strictly speaking, since hydrogen is mostly ionised, a weighted average of the proton and hydrogen
mass would have been more appropriate. However, because the electron mass is negligible with respect
to the proton mass, any discrepancies caused by the mass difference between a proton and a hydrogen
atom should be negligible as well.
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With this, (3.27) could be evaluated to obtain the optical depth, which was done at
twice the spatial resolution of the LOS to prevent aliasing when taking the Fourier
transform. Furthermore, an additional margin in the evaluated frequencies equal to
7.5% more than the maximum peculiar velocity was taken into account; because the
simulation volume was assumed to be periodic, any optical depth at v f < 0 could be
added to the optical depth at the high-frequency end of the spectrum, and any optical
depth at v f > VLOS could be added to the low-frequency end. (3.27) was evaluated
twice for each LOS; once with the peculiar velocities u as taken from the simulation
snapshot and once with u = 0.
From the optical depths thus calculated, a flux F could be calculated using (3.10), yield-
ing 500 Ly-α forest spectra, one along each LOS. Using (3.31) with the average over all
LOS, the flux was converted to a flux contrast, which was then numerically Fourier
transformed according to (3.33), and finally squared and averaged to obtain the FPS
as in (3.34). Error margins on ∆2

F at each kv were estimated using the variance on the
values of |δF(kv)|2 for the different LOS. Since this assumes that the error on ∆2

F is
dominated by statistical and not systematic errors (such as cosmic variance, in which
a simulation volume is statistically different from the universe as a whole), the calcu-
lated FPS was compared to observations from [47] of the Ly-α FPS to ascertain that
our calculations yielded reasonable results. As these observations do not probe scales
smaller than kv = 0.1 s km−1, the analysis performed in this thesis has been limited
to kv ≤ 0.3 s km−1. Similarly, current observations only accurately probe scales with
∆2

F ≳ 10−3, and hence our analysis has been limited to kv for which ∆2
F(kv) ≥ 10−3 in

both the scenario with and without peculiar velocities.

4.3 Extracting the characteristic scale

As motivated in section 3.4, peculiar velocities tend to make peaks in the optical depth,
and thus through (3.10) absorption features in the flux, more narrow. In the case
that the Ly-α forest is dominated by absorption and therefore only displays several
transmission features, this may equally well be interpreted as a broadening of these
transmission features. That this is a valid interpretation is demonstrated by figure 4.1,
which shows an example Ly-α forest at z = 4.0 and clearly demonstrates transmission
features being broadened (and shifted) due to the peculiar velocities.
We may now draw an analogy to the effect of pressure on the baryonic power spec-
trum, since pressure also broadens structures of baryonic matter with respect to the
underlying dark matter structure. Hence, if the Ly-α forest is dominated by absorp-
tion, we may expect peculiar velocities to introduce a Gaussian cutoff to the FPS in
analogy to (2.53), with cutoff scale k0. Assuming that the peculiar velocities leave the
FPS otherwise unchanged, this Gaussian cutoff should become apparent in a quantity
D defined as

D(kv) =
∆2

F, with u(kv)

∆2
F, without u(kv)

− 1 . (4.4)

D is the fractional deviation between the FPS with peculiar velocities ∆2
F, with u and

without peculiar velocities ∆2
F, without u, chosen such that D < 0 corresponds to a sup-

pression of the FPS. Error margins on D were obtained by propagating the errors on
the respective FPS.
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Figure 4.1: An example of the Ly-α forest at z = 4.0, showing the flux F as a function of fre-
quency v f . The solid orange curve shows the flux when accounting for peculiar velocities,
while the dashed blue one demonstrates the flux when ignoring peculiar velocities. Qualita-
tively, the shapes of the two spectra are similar, but the transmission features in the spectrum
with peculiar velocities appear noticeably shifted (e.g. the tallest peak between 1250 km s−1

and 1500 km s−1) and broadened (e.g. the main feature between 1000 km s−1 and 1250 km s−1).

k0 can be related to the characteristic scale ∆v introduced in (3.43) by supposing that
k0 is the wavenumber with spatial scale ∆v, so that k0 = 2π

∆v and for a Gaussian cutoff

D(kv) = D0 exp

(
−1

2

(
kv∆v

π

)2
)
− 1 , (4.5)

With D0 ∼ 1 an amplitude. (4.5) could then be fitted to the D as calculated from the
FPS using a least-squares fit. In this fitting procedure, the reduced χ2 is defined as

χ2
red(D0, ∆v) =

1
n ∑

i

(
D(kv, i)−Dm (kv, i,D0, ∆v)

σD, i

)2

±
√

2
n

. (4.6)

The summation is done over all relevant data points, indexed i. kv, i are then the kv
of the relevant data points D (kv, i), which have error margins σD, i, and Dm is the
value of D assuming (4.5) and a set of parameters (D0, ∆v). The error is estimated
using the number of degrees of freedom n, equal to the number of points minus the
number of fitted parameters, under the assumption that n ≫ 1. The least-squares fit
then finds parameters that minimise (4.6), and we reject the Gaussian model as a good
description of D if the minimal χ2

red is more than 2σ above 1. A fit that is not rejected
on this criterion is said to pass the χ2-test.
As can be seen from figure 4.2, a Gaussian cutoff can describe D properly at low kv.
However, at high kv there is a clear trend reversal and D increases again, eventually
even indicating that the FPS is enhanced by peculiar velocities (D > 0). We may refer
to this small-scale effect as a ‘recovery effect’, as power is recovered relative to the
suppression by peculiar velocities at low kv. We postpone a discussion of the cause of
this recovery effect to chapter 6, and merely note that to fit a Gaussian to D, a range of
kv in which D is relatively unaffected by the recovery effect had to be used. We defined
this range as all kv that are at most 60% of the kv at which D is minimised, with 60%
chosen as the maximum fraction that still yielded visually acceptable fits.
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Figure 4.2: An example at z = 4.0 of the influence of peculiar velocities on the FPS. This figure
shows D calculated from the FPS at z = 4.0, in turn calculated with the regular, simulated T0,
γ, σu and ⟨nH⟩, the mean total hydrogen number density; D is shown as a solid curve, with
error margins indicated with a shaded region. The dotted part corresponds to the range of kv in
which ∆2

F with or without peculiar velocities is less than the observability limit 10−3. The solid
vertical line is drawn at kv = 2π/σu, the kv corresponding to the peculiar velocity dispersion
at z = 4.0. The dashed curve shows the best fitting Gaussian for the D at values of kv that are
at most 60% of the kv at which D is minimised.

The exact definition of the minimum of D is less straightforward than could be ex-
pected based on figure 4.2, as this figure presents a D that does not stop increasing
once it begins to. However, the strength of the recovery effect varies between different
FPS, and hence it may be that D does not recover but merely stabilises; the absolute
minimum of D may then be noise-induced, such that even a range of kv up to 60% of
the kv of this absolute minimum extends well into the range of kv in which the recov-
ery effect dominates. To prevent this from occurring, we calculated the average D in
the range3 2π

σu
≤ kv ≤ 0.3 s km−1, weighted by the inverse variance of each D. Then,

χ2
red was calculated analogously to (4.6). D was considered constant if this constant fit

had a minimal χ2
red that was at most 0.5σ above 1, since this implied that a constant

fit was not just acceptable but with near certainty optimal4. If D was indeed constant
for 2π

σu
≤ kv ≤ 0.3 s km−1, we defined the minimum of D as the absolute minimum

for kv ≤ 2π
σu

; if it was not constant, the minimum of D was defined as the first local
minimum with respect to at least 30 neighbouring data points.
As mentioned before, a Gaussian cutoff was rejected as a good description of D if the
minimal χ2

red was more than 2σ above 1. By restricting the range of kv used for fitting,
we introduced two new grounds for rejection. Firstly, all fits based on 10 or fewer data
points were rejected, as many curves can be successfully fitted to so little data. Sec-

3The lower limit was chosen to be equal to the kv corresponding to the peculiar velocity dispersion
σu, since figure 4.2 indicates that the recovery effect typically dominates at scales smaller than σu.

4Note that the Gaussian fit was rejected if χ2
red was more than 2σ above 1, while the constant fit was

accepted if χ2
red was less than 0.5σ above 1. The difference is that the Gaussian fit had to be acceptable,

but a constant D was demanded to be nearly optimal.
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ondly, the Gaussian fit was also rejected if the fitted ∆v < 2.09 km s−1, which is equal
to one tenth of the minimum scale probed for kv ≤ 0.3 s km−1. The reasoning behind
this rejection is that such a small cutoff essentially yields a constant Dm within the con-
sidered range of kv and thus cannot be used for a statistically significant determination
of ∆v (indeed, if a cutoff is present at all). A final and separate ground for rejection
was taken to be ⟨F⟩ < 0.005 without peculiar velocities, as this implied that the fit to
D was ultimately based on nearly vanishing amounts of flux, which we deemed to be
too unreliable.
We have used the Python package scipy.optimize to perform the least-squares fit-
ting; error margins on the fitted parameters are extracted from the diagonal of the
estimated covariance matrix.

4.4 Extracting the dependencies of ∆v

In this way, a value of ∆v could be obtained for a given calculation of the FPS. Section
3.4 introduced a model to describe ∆v, namely as a function of the thermal scale T0,
peculiar velocity dispersion σu and average total hydrogen density ⟨nH⟩:

∆v = Aσu

√
2 ln

(
B

⟨nH⟩2

n0(zLOS)

αHII (T0)

ΓHI

)
. (4.7)

To test whether ∆v is properly described by (4.7), ∆v was calculated from the FPS
calculated with different ⟨nH⟩, T0, σu or amounts of thermal broadening, keeping all
other parameters constant at their originally simulated value. For ⟨nH⟩ this meant
multiplying nH as obtained through (4.1) by a constant factor, while T0 could be set
to a different value than simulated and be used consistently afterwards. This means
that varying T0 strictly speaking varied both the ionisation fraction and the degree of
thermal broadening; we will refer to this as the temperature dependency of ∆v. To
rescale σu, all peculiar velocities were multiplied by a constant value as

u = usim
σu

σu, sim
, (4.8)

With usim the simulated peculiar velocities with velocity dispersion σu, sim, and u the
peculiar velocities rescaled to have velocity dispersion σu. Finally, the degree of ther-
mal broadening was varied by using the neutral hydrogen densities as provided by the
simulation (instead of using (3.6)) and then varying T0; this way, T0 only contributed
to the FPS through the thermal broadening in (3.27).
(4.7) could then be fitted to the values of ∆v thus obtained using a least-squares fit by
minimising χ2

red(A, B) calculated in analogy to (4.6). (4.7) could be fitted to ∆v as a
function of ⟨nH⟩ or as a function of T0 independently, yielding independent estimates
of A and B. These were then respectively averaged, weighted by their inverse vari-
ance, to obtain a final estimate of A and B. To judge whether these values, combined
with (4.7), yielded an acceptable description of ∆v, the following reduced χ2 was cal-
culated in analogy to (4.6):

χ2
red =

1
n ∑

i

(
∆vmod(xi)− ∆vsim(xi)

σsim, i

)2

±
√

2
n

. (4.9)
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The summation is over all different values of the independent variable x (which may
be ⟨nH⟩ or T0), ∆vmod is the cutoff scale predicted by (4.7), and ∆vsim is the cutoff scale
from the simulations, with error σsim; n is the number of degrees of freedom, given by
the number of values of ∆v being used for fitting minus the number of fitted parame-
ters. Similarly as in section 4.3, we rejected (4.7) as a model for ∆v if the minimal χ2

red
was more than 2σ above 1; if (4.7) was not rejected on this basis, we say that it has
passed the χ2-test.
The values ∆v for different σu were used to yield an estimate for

C =
∆v
σu

= A

√
2 ln

(
B

⟨nH⟩2

n0(zLOS)

αHII (T0)

ΓHI

)
, (4.10)

For the simulated values of ⟨nH⟩ and T0. This was done by dividing each ∆v by its cor-
responding σu and taking the average of the results, weighted by the inverse variances
on ∆v. The value of C thus obtained could be compared to the one calculated using the
best estimates for A and B to check the consistency of (4.7) as a model. Furthermore,
a χ2

red could be calculated through (4.9), now with x = σu and ∆vmod(x, C) = Cσu.
Again, this fit was rejected if it did not pass the χ2-test. Finally, to judge whether ∆v
is truly independent of thermal broadening, the values of ∆v for different degrees of
thermal broadening were compared to their average, weighted by their inverse vari-
ance. The quality of this fit was then judged based on a χ2-test with the analogous
expression for (4.9), so with ∆vmod the weighted average.
The range of independent variables was set as follows: ⟨nH⟩ was allowed to vary be-
tween the values of (4.1) with zLOS ranging from 2.0 to 7.0; T0 was varied from 500 K
up to 50 000 K and σu was varied from 5 km s−1 up to 100 km s−1.

4.5 Checking the effects of finite resolution

Since the research in this thesis is mainly based on simulations with finite resolution,
numerical artefacts might arise, influencing the FPS in unphysical ways. Since the
simulations used in this thesis have very high spatial resolution and we restricted our
consideration to small values of kv, this was not expected to be a significant effect.
To ascertain the validity of this expectation, we calculated several curves of D (us-
ing the simulated, regular parameters at different redshifts) and then repeated this
calculation but with a lower physical resolution. To achieve this lower resolution, sub-
sequent pairs of data points (i.e. of the peculiar velocity u and the density contrast δH)
were averaged, effectively yielding a simulation with half the resolution of the actual
simulation. Then, the difference between D calculated with the standard resolution
and with the lowered resolution was calculated5; if the effects described here are in-
deed not due to numerical artefacts, this difference should always be insignificantly
different from 0.

5The rationale behind using the difference between different calculations of D instead of the FPS
itself is that the cutoff is fitted to D, which is therefore the most critical data set. Furthermore, we use
the difference instead of the ratio because all D are roughly of the same order of magnitude.
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4.6 Summary of methods

For quick reference, we present a brief summary of the method employed in this thesis
as follows:

1. In a given simulation snapshot, we calculated the optical depths along all LOS
using (3.27), with and without peculiar velocities.

2. Using the optical depths, we calculated the flux (contrast) and converted to the
FPS through (3.34).

3. We calculated D as defined in (4.4) and fit (4.5) to the large-scale range of kv to
obtain ∆v.

4. This was repeated with different ⟨nH⟩, T0, σu, and amounts of thermal broaden-
ing.

5. We fitted (4.7) to the resulting ∆v as function of ⟨nH⟩ and as a function of T0 to
obtain two independent estimates of A and B.

6. To obtain final estimates of A and B, we took the weighted average of their values
as fitted to ∆v as a function of ⟨nH⟩ and as a function of T0. We then judged
whether the model (4.7) was successful using (4.9) and the difference between
the minimal χ2

red and 1, which could not exceed 2σ.

7. We compared the value of C as calculated directly from the dependence of ∆v on
σu through the first equality of (4.10) to the value of C predicted from A and B
through the second equality of (4.10).

8. The directly proportional fit ∆v = Cσu was tested through the analogous expres-
sion of (4.9) and the difference between the minimal χ2

red and 1, which should
not exceed 2σ.

9. We tested the independence of ∆v from thermal broadening by comparing ∆v as
a function of thermal broadening to the average, weighted by the variance; we
rejected independence if a constant ∆v did not pass the χ2-test.

10. This was repeated for redshifts z = 4.0, z = 4.5, z = 5.0, z = 5.5 and z = 6.0.
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Chapter 5
Results

The eventual goal of this thesis is to demonstrate that a small-kv Gaussian cutoff (4.5)
may be an acceptable model for the impact of peculiar velocities, and that the cutoff
scale can be consistently described reasonably well by (3.43). Finally, we intend to find
the redshift dependence of the A and B parameters of (3.43).
To achieve these goals, this chapter will show the results of the methods of chapter
4. We show the dependency of ∆v on ⟨nH⟩, T0, σu and thermal broadening at five
redshifts ranging from z = 4.0 to z = 6.0, explicitly noting why Gaussian fits were re-
jected. After fitting (3.43) to the resulting dependencies of ∆v, the quality of the fit and
the internal consistency of A, B and C (as defined in (4.10)) will be briefly discussed.
Finally, we show how A and B evolve with redshift and consider the relative impor-
tance of the peculiar velocity induced cutoff with regard to the pressure and thermal
broadening cutoffs.
The test for consistency between the simulated flux power spectrum (FPS) and an
empirical measurement of the FPS is performed in appendix A; we note that there is
relatively good agreement. Finally, the test for numerical artefacts is performed in ap-
pendix B; we remark here that there is no indication of any of the effects discussed
here being due to numerical artefacts.

5.1 Overview of figure symbols

In this chapter, we will show the cutoff scale as obtained from both successful and
failed fits of a Gaussian cutoff to D. However, as described in section 4.3, there are
many grounds to reject a Gaussian fit. For convenience and brevity, we provide an
overview of the symbols used in subsequent plots to represent ∆v in accepted Gaus-
sian fits and the various rejected Gaussian fits.

1. Green circles are used to represent ∆v as obtained from successful fits of a Gaus-
sian cutoff to D.

2. Red squares represent ∆v as obtained from fits were rejected because the Gaussian
fit did not pass the χ2-test (i.e. it had χ2

red more than 2σ above 1).

3. Light-blue diamonds represent ∆v from fits that are based on 10 or less data points
and are thus considered unreliable.
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4. Purple crosses represent cases in which no cutoff was detected at all because D
was immediately dominated by the recovery effect.

5. Grey pentagons represent ∆v as obtained from an otherwise successful Gaussian
fit that was excluded from subsequent analysis nonetheless because the Ly-α
forests it was based on had ⟨F⟩ ≤ 0.005 without peculiar velocities.

6. Narrow dark-blue diamonds represent ∆v ≤ 2.09 km s−1, which were rejected be-
cause such a cutoff scale yields a basically constant D at scales kv ≤ 0.3 s km−1.

7. Black pluses represent ∆v as obtained from successful fits of a Gaussian cutoff that
were manually excluded from fitting (3.43) for being clear outliers.

5.2 Redshift z = 4.0

The density and temperature dependencies of ∆v are shown in figures (5.1a) and
(5.1b), respectively. For the vast majority of densities and thermal scales considered
here, peculiar velocities produced a Gaussian cutoff, with the exception of the two low-
est densities with ⟨nH⟩ ≤ 8.105 m−3, i.e. (4.1) evaluated with zLOS = 2.0 or zLOS = 2.5;
these were rejected for being based on too few data points, suggesting that a cutoff is
no longer noticeably present. This can be explained if the density has become so low
that the Ly-α forest is no longer dominated absorption, since absorption features are
not broadened by peculiar velocities.
Furthermore, the cutoff scales at the two highest densities considered here, ⟨nH⟩ ≥
89.711 m−3, were excluded from the data to which (3.43) was fitted. At the highest den-
sity the flux had become too low to produce a reliable cutoff, but at ⟨nH⟩ = 89.711 m−3

the peculiar velocities produced a Gaussian cutoff that could in principle be fitted re-
liably. We excluded it because it clearly deviates from the trend in most lower-density
data points; this deviation may be taken as a clue that (3.43) fails at high densities.
Generally however, ∆v could be fitted rather well by (3.43). This was confirmed by the
χ2

red-values of this model, which were 0.47 ± 0.37 and 0.37 ± 0.35 for the density and
temperature dependence respectively. The values of A and B as fitted from the density
and temperature dependency individually differed 1.7σ and 0.7σ respectively.
The dependence of ∆v on σu is shown in figure 5.2a. A Gaussian cutoff was success-
fully fitted at most σu, except for two high σu (90 km s−1 and 100 km s−1); at these high
σu, the Gaussian fit did not pass the χ2-test. We can also note that a directly propor-
tional fit is a relatively poor description of the dependency of ∆v on σu; indeed, such a
fit has χ2

red = 1.88 ± 0.34 and we can reject it. Interestingly however, C as determined
from the weighted average of ∆v

σu
is C = 0.638 ± 0.014, while the C as predicted from

the final A and B through (4.10) is 0.644 ± 0.027, differing a mere 0.2σ.
Finally, figure 5.2b shows that ∆v did not significantly change with the T0 that is used
for thermal broadening; the weighted average has χ2

red = 0.37 ± 0.39.
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Figure 5.1: Figure 5.1a shows how ∆v depends on ⟨nH⟩ at z = 4.0, figure 5.1b shows how ∆v
depends on T0 at this redshift. The meaning of the symbols is as described in section 5.1; the
solid orange curve represents the final fit of (3.43) to the data (i.e. after averaging A and B),
with the error margin marked as a shaded orange region. The lower panels show the difference
between the realised and modelled cutoff scale. The vertical dashed red lines mark the realistic
⟨nH⟩ and T0 at z = 4.0.
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Figure 5.2: Figure 5.2a shows how ∆v depends on the peculiar velocity dispersion σu at z = 4.0,
while figure 5.2b shows the dependence of ∆v at z = 4.0 on thermal broadening, which is
parameterised by the T0 used to calculate the thermal broadening. The meaning of symbols
is as described in section 5.1, and the orange curve shows the best fit of the respective models
(i.e. proportional dependence in figure 5.2a and no dependence in figure 5.2b), with the error
margins on the modelled cutoff scale presented as a shaded orange region. In figure 5.2a, the
lower frame shows the difference between the realised and modelled cutoff scale.
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5.3 Redshift z = 4.5

At z = 4.5, we should note that in principle the method as described in chapter 4
yields values of A and B that do not allow (3.43) to satisfactorily fit the realised cutoff
scales, as they yield χ2

red = 2.08 ± 0.38 and χ2
red = 2.48 ± 0.35 for the density and tem-

perature dependencies respectively. This is however mostly due to the fact that the A
and B that were fitted to the temperature dependence perform relatively poor; indeed,
using (3.43) as fitted to the density dependence yields an acceptable fit to the temper-
ature dependence as well. This also does not increase the error margins on A and B
by much, as they were already dominated by the fit to the density dependence (the
error on A increases by some 0.0016 or 16.3%, and the error on B increases by 0.0010 or
0.12% with respect to the weighted average values). Because of this, we proceed with
the A and B as fitted to the density dependence.
The dependence of ∆v on ⟨nH⟩ and T0 is shown in figures 5.3a and 5.3b, respectively.
Again, the vast majority of densities and temperatures allowed for a Gaussian cutoff
to be fitted acceptably well, except for the two lowest densities (⟨nH⟩ ≤ 8.105 m−3)
for which there was no noticeable cutoff at all. Furthermore, the ∆v at the two highest
densities (⟨nH⟩ ≥ 89.711 m−3) were excluded because the underlying Ly-α forests had
⟨F⟩ < 0.005; the cutoff scales fitted to the resulting D were, however, consistent with
the prediction of (3.43) based on the other ∆v. Also note in figure 5.3b that almost
all realised ∆v were above the final modelled ∆v, suggesting that a higher value of A
might be more applicable to the temperature dependence; the A as fitted by the den-
sity dependence differs some 2.5σ from the A fitted by the temperature dependence
(for B, this difference is only 1.0σ due to the large error on the value from the tempera-
ture dependence). Nevertheless, the χ2

red of the fit of (3.43) to the density dependence
are 1.14 ± 0.38 and 1.26 ± 0.35 for the density and temperature dependencies respec-
tively and thus we cannot reject (3.43) as fitted to the density dependence of ∆v as a
description of the temperature dependence of ∆v.
As figure 5.4a shows, (4.5) was a good model for D for all σu considered here. How-
ever, the direct proportionality of (3.43) remained a poor description of the depen-
dence of ∆v on σu (χ2

red = 10.16 ± 0.32), with ∆v larger than the directly proportional
model at low σu and smaller at high σu. Again, it is intriguing that the average slope in
figure 5.4a is C = 0.7203 ± 0.0088, whereas (4.10) with A and B as fitted to the density
and temperature dependencies predict C = 0.740 ± 0.043, a difference of 0.4σ.
Finally, figure 5.4b, which shows ∆v as a function of the T0 used for thermal broad-
ening, demonstrates that ∆v does not appear to depend on thermal broadening; the
weighted average has χ2

red = 1.32± 0.45, meaning that we cannot reject independence
of ∆v from thermal broadening.
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Figure 5.3: The same as figure 5.1, now evaluated at z = 4.5 and with the orange curve repre-
senting (3.43) as fitted to the density dependence. Note that in figure 5.3b, most realised ∆v are
above the modelled value but follow the same general curve, suggesting that a higher value of
A might be more applicable.
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Figure 5.4: The same as figure 5.2, now evaluated at z = 4.5. Although there are ∆v for
which the weighted average falls outside their error margin, we still cannot exclude that ∆v is
independent of thermal broadening.
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5.4 Redshift z = 5.0

The density and temperature dependencies of ∆v at z = 5.0 are shown in figures
5.5a and 5.5b respectively. At nearly all ⟨nH⟩ considered here the peculiar velocities
produced a Gaussian cutoff; the exceptions were the two lowest densities ⟨nH⟩ ≤
8.105 m−3, where the cutoff scale was smaller than 2.09 km s−1 and thus not consid-
ered to be detectable for kv ≤ 0.3 s km−1. Also, the ∆v at the two highest densities
⟨nH⟩ ≥ 79.753 m−3 were excluded from the fitting procedure of (3.43) for being based
on Ly-α forests with ⟨F⟩ < 0.005. The same happened to the ∆v at the two lowest T0
(T0 = 500 K and 1000 K). Besides these, the cutoff scales at z = 5.0 agreed to a high
degree with the dependencies predicted from (3.43), with the final fits (i.e. after aver-
aging A and B) yielding χ2

red = 0.14 ± 0.41 and χ2
red = 0.19 ± 0.38; the A and B fitted

to the density and temperature dependencies differ 0.9σ and 0.8σ respectively. Hence,
(3.43) provides an excellent description of ∆v as a function of ⟨nH⟩ and T0 at z = 5.0.
Regarding the dependence of ∆v on σu, which is shown in figure 5.6a, we may re-
mark that it is qualitatively similar to the one at z = 4.5: the realised ∆v were higher
than the proportional model at low σu and lower at high σu, with the directly propor-
tional fit rejected because χ2

red = 8.06 ± 0.32. The average slope in figure 5.6a was
C = 0.7408 ± 0.0086; the one predicted from the fitted A and B through (4.10) was
C = 0.793 ± 0.032, thus differing of 1.6σ.
The independence of ∆v from thermal broadening is less apparent from figure 5.6b,
which shows ∆v as a function of the T0 used for thermal broadening, than it was from
equivalent figures (i.e. figures 5.2b and 5.4b) at lower redshift; still, a ∆v that is inde-
pendent of thermal broadening has χ2

red = 1.69 ± 0.45, so we cannot reject it.
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Figure 5.5: The same as figure 5.1, now evaluated at z = 5.0.
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Figure 5.6: The same as figure 5.2, now evaluated at z = 5.0.

5.5 Redshift z = 5.5

In figure 5.7a, the dependence of ∆v on ⟨nH⟩ at z = 5.5 is shown. The only densities
that did not allow for a convincing Gaussian cutoff due to peculiar velocities are the
two lowest ⟨nH⟩ ≤ 8.105 m−3, either because the fitted cutoff scale was smaller than
2.09 km s−1 or because the Gaussian fit was based on too few data points. Otherwise,
the dependency of ∆v on ⟨nH⟩ is described relatively well by (3.43).
Figure 5.7b shows how ∆v changes with T0. At very low temperatures T0 ≤ 3000 K,
the neutral hydrogen density is so high (because nHI ∝ αHII and approximately αHII ∝
T−0.7) that the Ly-α forest has ⟨F⟩ < 0.005, leading to a rejection of the cutoff induced
by peculiar velocities. Subsequently, there is a break in the trend as ∆v suddenly in-
creases at T0 = 30× 103 K and then starts to decrease with increasing T0 again. Because
of this break in the general trend, we decided to exclude all ∆v at T0 ≥ 30 000 K when
fitting (3.43) to ∆v as a function of T0. This decision was further justified because A
and B, when fitted to the density dependence of ∆v, provided a satisfactory descrip-
tion of ∆v at low temperatures, while the high-temperature realised values of ∆v were
systematically higher than predicted based on the fit of (3.43) to the density depen-
dence of ∆v.
To further justify this exclusion, we considered qualitative differences between D at
T0 < 30 000 K and T0 ≥ 30 000 K. As an example, figure 5.8 compares D at T0 =
25× 103 K and at T0 = 40× 103 K. From this figure, it is clear that raising the tempera-
ture modified D, but instead of cutting off at a larger scale as the least-squares fit indi-
cated, D should cut off at smaller scales for T0 = 40 × 103 K than for T0 = 25 × 103 K.
The reason that the fitted cutoff at the former temperature occurred at a larger scale
than at the latter is, based on figure 5.8b which is representative for all T0 ≥ 30× 103 K,
that the recovery effect caused the minimum in D to be less well defined at high tem-
peratures. As a result, the kv at which D was minimised can experience a sudden
decrease with rising temperature as one mainly noise-dominated minimum is raised
above another one with increasing T0. In figure 5.8, this is actually visible: in figure
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5.8a, the minimum occurs at a kv well above 2π
σu

, while in figure 5.8b the minimum
occurs at a kv below 2π

σu
. This sudden decrease in range of kv to which (4.5) is fitted

caused the fit to err on the side of a large ∆v. As the temperature increases further,
the kv at which the minimum occurs does not make another such jump and thus ∆v
evolves according to (3.43) again, explaining why the excluded ∆v appear on a similar
but translated curve in figure 5.7b.
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Figure 5.7: The same as figure 5.1, now evaluated at z = 5.5.
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Figure 5.8: Figure 5.8a shows D (the solid curve) as a function of kv at z = 5.5 with thermal
scale T0 = 25× 103 K, while figure 5.8b shows D at the same redshift but with T0 = 40× 103 K.
The dashed curves are the best fitting Gaussian cutoffs at low kv, the solid vertical line marks
the scale kv = 2π/σu and the dotted part of the curve representing D marks scales for which
either or both ∆2

F with and without peculiar velocities is less than 10−3.

After excluding the cutoff scales at T0 ≥ 30 × 103 K, the weighted averages of A and
B were completely dominated by the values fitted to the density dependence of ∆v,
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which we consider to be reasonable as it is based on much more data points than were
accepted for the temperature dependence of ∆v. The density and temperature depen-
dencies of ∆v had χ2

red = 1.36 ± 0.37 and 0.20 ± 0.50 respectively.
Finally, figures 5.9 and 5.9b show how ∆v depended on σu and thermal broaden-
ing. Again, the behaviour of ∆v as a function of σu couldn’t be described adequately
through a direct proportionality (χ2

red = 6.63 ± 0.34); instead, ∆v was larger than such
a proportionality would predict at small σu and smaller at large σu. The average slope
C = 0.7860 ± 0.0080 differed a mere 0.3σ from the value as calculated from A and B,
which was 0.800± 0.046. As figure 5.9b demonstrates, ∆v did not depend significantly
on the T0 used for thermal broadening (χ2

red = 1.13 ± 0.45).
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Figure 5.9: The same as figure 5.2, now evaluated at z = 5.5.

5.6 Redshift z = 6.0

Figure 5.10a shows the dependence of ∆v on the density at z = 6.0, and a Gaussian
cutoff is a reasonable description of the influence of peculiar velocities on the FPS for a
considerable range of densities. At the lowest densities ⟨nH⟩ ≤ 8.105 m−3, a Gaussian
cutoff (4.5) was rejected because it was either a poor description of D (did not pass the
χ2-test) or because such a cutoff was absent. At high densities ⟨nH⟩ ≥ 64.842 m−3, the
cutoff was excluded from the data used for fitting because ⟨F⟩ in the Ly-α forest was
too low. Note that this happened at lower densities than at lower redshifts; this can be
understood through (2.48), which states that density perturbations grow proportion-
ally to the scale factor. Hence, at large redshifts we expect the density field to be more
homogeneous than at low redshifts; this means that voids are closer to the cosmic av-
erage density, and thus that a modest density already causes voids to be dense enough
to nearly completely block Ly-α transmission.
Figure 5.10b shows the dependence of ∆v on T0. As can be seen, temperatures T0 ≤
12.5× 103 K yielded Ly-α forests with ⟨F⟩ < 0.005. This happened for higher tempera-
tures than at lower redshifts, which can be understood by recalling that approximately,
αHII ∝ T−0.7; through (3.6), a low temperature thus leads to a high neutral hydrogen
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density. Similarly to our earlier argument, even a modest neutral hydrogen density
will allow voids to nearly completely absorb Ly-α radiation at these high redshifts,
because the density field is more homogeneous than at low redshift.
For T0 > 12.5× 103 K, ∆v varied far more erratically; because of this erratic behaviour,
A and B as fitted to the density and temperature dependence could not be reconciled
(they differed 4.6σ and 1.7σ respectively). Indeed, fitting (3.43) to the density and tem-
perature dependencies individually yielded χ2

red = 3.48 ± 0.50 and χ2
red = 3.14 ± 0.43

respectively, indicating that (3.43) can no longer accurately describe the dependencies
of ∆v at z = 6.0. To give an idea of the severity of this failure, figure 5.10 shows the
best fit of (3.43) to the density and temperature dependence of ∆v individually.
When calculating ∆v as a function of σu, it was noted that for all σu considered here,
the FPS was based on Ly-α forests with ⟨F⟩ < 0.005. However, as evidenced by ∆v
at high densities in figure 5.3a, a ∆v based on Ly-α forests with ⟨F⟩ slightly below the
(essentially arbitrary) flux limit imposed here can sometimes still be adequately de-
scribed within the framework of (3.43). Since the ⟨F⟩ of the Ly-α forests upon which
∆v is based is only slightly below 0.005 for the simulated T0 and ⟨nH⟩ (it is roughly
0.0037), it was decided to temporarily suspend the requirement on ⟨F⟩ so that the de-
pendence of ∆v on σu could be analysed. As can be seen from figure 5.11a, there was
again no direct proportionality (χ2

red = 6.64 ± 0.32). Furthermore, the average slope
of C = 0.7264 ± 0.0087 differs some 1.7σ from the slope predicted from the density
dependence (0.854 ± 0.073) and 2.4σ from the slope predicted from the temperature
dependence (0.97 ± 0.10); these relatively large discrepancies (when compared to the
agreement at lower redshift) should not come as a surprise, as the fits to the density
and temperature dependence were rejected.
Finally, figure 5.11b shows how ∆v varied with the T0 used for thermal broadening.
The data as shown has χ2

red = 1.62 ± 0.45 and thus cannot be rejected as being inde-
pendent of thermal broadening.
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Figure 5.10: The same as figure 5.1, now evaluated at z = 6.0. Note that the orange curves
shown here represent (3.43), fitted to the respective dependencies of ∆v; this was done because
(3.43) does not describe ∆v accurately in either case.
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Figure 5.11: The same as figure 5.2, now evaluated at z = 6.0. Note that to produce figure
5.11a, the rejection based on a low ⟨F⟩ was temporarily suspended; had this not been done, all
fits in figure 5.11a would have been rejected for being based on Ly-α forests with ⟨F⟩ ≤ 0.005.

5.7 The redshift dependence of A and B

The preceding has established that (4.5) is typically a good model for D at low kv and
that furthermore (3.43) is a reasonable description of the dependence of ∆v on ⟨nH⟩,
T0, and, on average, σu, for z ≤ 5.5. We may now consider the redshift dependence
of A and B. This dependence is shown in figures 5.12a and 5.12b respectively. The
simplest assumption we might make for the redshift dependence of A and B is that
there is none; to test this assumption, we may subject the weighted averages of A
and B across different redshifts to the χ2-test. For A, the analogue of (4.9) yielded
χ2

red = 12.44 ± 0.82, while for B it yielded χ2
red = 2.53 ± 0.82. Although we cannot

justify the assumption n ≫ 1 that lead to the error margin on χ2
red anymore (since

n = 3), the χ2
red for A was so far away from 1 that we concluded that it is redshift

dependent. For B, the situation is less clear-cut as it had χ2
red relatively close to 1,

hence we cannot reject the notion of a constant B based on the data presented here.
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Figure 5.12: The redshift dependence of the A (figure 5.12a) and B (figure 5.12b) parameters
from (3.43) for z ≤ 5.5. The fitted parameters are shown as purple circles connected by solid
lines; their average, weighted by the inverse variance, is shown as a horizontal dashed orange
line, with its error margin shown as a shaded orange region. Note that A and B at z = 4.5
were based on the fit of (3.43) to the density dependence of ∆v only. Also note the significantly
different vertical axes.

5.8 The redshift dependence of ∆v

Finally, we considered how ∆v changed with redshift under the simulated conditions,
and how this compared to the characteristic scales on which thermal broadening and
pressure broadening influence the FPS (assuming a temperature T0). The result of
this comparison can be seen in figure 5.13, which shows ∆v at various redshifts for
the simulated conditions together with bT as defined in (3.21) and the spatial scale
vF = 2π

kF
H(zLOS) corresponding to the filtering scale kF as defined in (2.45) and thus

a characteristic scale of pressure broadening. The only Gaussian fit to D that could
possibly be unrealistic was the fit at z = 6.0, as ⟨F⟩ < 0.005 at this redshift.
In general, the peculiar velocities induce a cutoff in the FPS at a significantly larger
scale than thermal broadening or pressure broadening (which is parametrised by kF),
indicating that the total cutoff in the FPS should be dominated by ∆v instead of bT or
vF. However, as figure 5.14 shows, the FPS mostly retains the general shape of the FPS
without peculiar velocities. The reason for this apparent discrepancy is the recovery
effect, which nullifies the impact of peculiar velocities at high kv.
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Figure 5.13: The realistic redshift evolution of several cutoff scales. In the symbols of section
5.1, the cutoff scale due to peculiar velocities is shown; the solid orange curve shows the ther-
mal broadening scale (3.21) at T = T0; and finally the light blue line with filled circles shows
the filtering scale H(zLOS) · 2π/kF, as calculated from (2.45) with the simulated thermal history
and the assumption that the IGM is an ideal gas with T = 0 for z > 12.0 and T = T0 otherwise.
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Figure 5.14: The FPS with and without peculiar velocities at z = 4.0, calculated with the sim-
ulated thermal parameters and density. The solid curve represents the FPS calculated while
taking peculiar velocities into account, while the dashed curve shows the FPS calculated with-
out peculiar velocities. Shaded regions indicate the error margins.
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Chapter 6
Discussion

This thesis set out with the goal of quantifying the impact of peculiar velocities on the
flux power spectrum (FPS) of the Ly-α forest. The eventual application of this is to
use the Ly-α forest to learn about the large-scale structure (LSS) of the universe, and
hence we first introduced a treatment of the description and evolution of the LSS in
its linear stages in chapter 2. Subsequently, in chapter 3, we introduced an important
baryonic component of the LSS, the intergalactic medium (IGM), considering its ioni-
sation state and its optical depth to Ly-α radiation. Chapter 3 ended with the central
proposal of this thesis, namely equation (3.43), which defines a characteristic scale ∆v
on which peculiar velocities impact the FPS. It proposes a direct proportionality of ∆v
to the dispersion in the peculiar velocities, and a dependence on the square root of the
logarithm of, among others, the average hydrogen density and the recombination rate,
while also implying independence of ∆v from thermal broadening.
Chapter 4 then introduced the methods employed to test this model. It very briefly
described the simulations used in this thesis and how the FPS was extracted from
them. After this, it proposed an analogy between the pressure broadening of bary-
onic structures relative to the underlying dark matter distribution and the broadening
of transmission features in the Ly-α forest due to peculiar velocities, which tend to
concentrate the optical depth in high peaks. Based on this analogy, it proposed that
peculiar velocities could introduce a Gaussian cutoff at spatial scale ∆v to the FPS of an
absorption-dominated Ly-α forest. This cutoff should then be visible in the relative de-
viation D between the FPS calculated with and without peculiar velocities. However,
it immediately became clear that a Gaussian cutoff was not an appropriate description
of D over the entire range of kv considered here, owing to an effect we dubbed the
recovery effect. We worked around this effect by limiting the range of kv to which we
fitted (4.5), to exclude scales on which the recovery effect dominates.
Equipped with the methods from chapter 4, we then proceeded in chapter 5 to present
their results. We found that the Gaussian cutoff model yields acceptable results for a
wide range of densities, temperature scales, peculiar velocity dispersions and amounts
of thermal broadening at nearly all redshifts considered here. It was even demon-
strated that at least for redshifts 4.0 ≤ z ≤ 5.5, (3.43) provided an acceptable descrip-
tion of the dependence of ∆v on the mean hydrogen density and T0, and independence
of ∆v from the amount of thermal broadening could not be excluded. Although the
dependence of ∆v on σu was more complex than predicted by (3.43), it still correctly
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predicted the average ratio between ∆v and σu.
Even so, the dependencies of ∆v at z = 6.0 proved to be more complex and (3.43) had
to be rejected as a model for ∆v; indeed, even the Gaussian cutoff (4.5) did not apply as
consistently as it did at lower redshift. We explained this as being due to the higher de-
gree of homogeneity at such a high redshift. Hence, a small neutral hydrogen density
could render even relative voids nearly opaque to Ly-α radiation as they are already
much closer to the cosmic average density. The only prediction of (3.43) that could not
be rejected at z = 6.0 was the independence of ∆v from thermal broadening.

6.1 The recovery effect

As mentioned before, (3.43) has been rejected as a description of ∆v at z = 6.0. Another
instance in which (3.43) appeared to fail as a description of ∆v was in the temperature
dependence of ∆v at z = 5.5, where temperatures above 30× 103 K were manually ex-
cluded to reach agreement between the density and temperature dependencies of ∆v,
and in general to allow the latter to be described by (3.43) at all. This exclusion was
justified as an increased temperature lead to a stronger recovery effect, which in turn
artificially caused a sudden decrease in the range of kv used for fitting (4.5). Indeed, it
may be a general fact that the method employed here to select a range of kv to use for
fitting (4.5) suffers from such numerical artefacts. For example, the sudden changes
in ∆v as a function of T0 used for thermal broadening seen at high temperatures at all
redshifts (i.e. in figures 5.2b, 5.4b, 5.6b, 5.9b and 5.11b) all appear associated with a
change of typically 3 to 6 on a total of ∼ 20 − 30 in the number of points used to fit
(4.5); a decrease in the number of points appeared to be associated with a higher ∆v
while an increase seemed associated with a lower ∆v. The erratic behaviour of ∆v at
z = 6.0 may possibly be explained similarly.
To optimise the selection procedure, it would be very advantageous to have a descrip-
tion of the recovery effect; if not at all scales, then at least on the scales probed here.
In this thesis we mainly attempted to properly ignore the recovery effect, but future
research might attempt to provide such a more complete description.
However, we may still consider the origin of this effect. A similar effect was already
described at the beginning of section 3.4, which motivated that peculiar velocities
should make absorption features more narrow and thus would add power to the FPS,
especially at small scales. This cannot, however, be the origin of the recovery effect,
which arises in the FPS of Ly-α forests that are strongly dominated by absorption such
as in figure 4.1. Our hypothesis of the origin of the recovery effect is based on a vi-
sual inspection of spectra like figure 4.1, and especially the frequency range around
v f ≈ 1750 km s−1. Here, we see that the Ly-α forest calculated while accounting for
peculiar velocities displays more small-scale oscillations than the Ly-α forest calcu-
lated without peculiar velocities. This happens because peculiar velocities tend to be
directed away from voids; the optical depth caused by matter in these voids is thus
shifted outside of the frequency range corresponding to their spatial size. Hence, a
small section of the void may become responsible for the transmission pattern of a
sizeable part of the Ly-α forest and most structures in this small section may become
visible, no longer obscured by thermal broadening from denser regions. The addi-
tional small scale structure thus revealed would then be responsible for the recovery
effect. Testing this hypothesis will require further research.
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Finally, we have attempted to describe D in terms of a Gaussian cutoff because we
could motivate such a model through an analogy with pressure effects described by
(2.53). In figure 4.2, the deviation from such a Gaussian cutoff for 0.08 s km−1 ≲ kv ≲
0.1 s km−1 was then interpreted as being due to the onset of the recovery effect. We
cannot, however, be certain that this interpretation is correct without a description
of the recovery effect: this deviation might equally well indicate that D cuts off less
rapidly than a Gaussian cutoff, for example exponentially. We did not consider such
an option since we could not physically motivate it and a Gaussian cutoff was clearly
acceptable, but further investigation is needed to see if there is an even more successful
way of describing D.

6.2 The redshift dependence of the fitted parameters

As (3.43) works reasonably well for 4.0 ≤ z ≤ 5.5, the redshift dependence of A and B
as presented in section 5.7 becomes relevant. Section 5.7 claimed that a constant value
of A could be rejected, while this could not be done for B. This is mildly surprising,
as B should depend on for example the difference between ⟨n2

H⟩ and ⟨nH⟩2, which is
a factor ⟨(1 + δH)

2⟩. Furthermore, B should also depend on the difference between
⟨αHII(T)⟩ and αHII(T0); since approximately αHII(T) ∝ T−0.7, and the temperature
is set by the density through (3.7), this would introduce a factor of approximately
⟨(1 + δH)

0.7(1−γ)⟩. These factors do not cancel in general, and hence we would expect
B to evolve as the density contrast develops over time. Indeed, the fact that a constant
B cannot be ruled out does not imply that B truly is constant, only that the currently
available data is not necessarily inconsistent with a constant B.
In contrast to B, a constant A can already be ruled out by the results presented here.
Considering figure 5.12a, A could evolve non-monotonically with a general trend of
increase over time. However, until a convincing model is formulated for the redshift
dependence of A and B, we must treat them as purely phenomenological parameters.

6.3 The importance of the peculiar velocity cutoff

Astronomers are acutely aware of the distortions to the density field in ‘redshift space’
(i.e. with distances estimated directly from the redshift) with respect to the density
field in ‘real space’ due to peculiar velocities.These distortions have typically been
modelled as inducing a certain amount of bias [13]. There have been studies dedicated
to quantifying the influence of peculiar velocities on statistics used to describe the LSS
(e.g. [48] or [49]); indeed, many observational surveys of the LSS explicitly note how
they approach the distortions introduced by peculiar velocities [17, 32, 33], although
sometimes the main results are also simply presented in redshift space [50] or peculiar
velocities are rendered irrelevant by smoothing the Ly-α forest to a sufficiently high
degree [18]. This serves to illustrate that disentangling the effects of peculiar velocities
from those of thermal or pressure broadening and the underlying matter distribution
is an extremely important issue in observational cosmology.
We note that [48] also found that the non-linear one-dimensional power spectrum cuts
off faster in redshift space than in real space, similarly to the effect we noted here.
However, they remark that this effect strongly depends on the precise form of the fil-
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tering function introduced by peculiar velocities. Here, we have shown that often, this
cutoff is well-modelled by a Gaussian. [48] also does not mention the recovery effect.
We are not aware of earlier work that has explicitly attempted to describe the influ-
ence of peculiar velocities at these high redshifts as a Gaussian cutoff in the FPS, but
such a cutoff may be relevant as it mainly affects the FPS on scales that are regularly
probed with current observations of the Ly-α forest [47]. Furthermore, it depends on
the thermal state of the IGM, which is relatively poorly constrained. This translates
into an uncertainty in the scale on which the cutoff due to thermal broadening occurs,
but as we have shown here, it should also translate into an uncertainty on the scale
on which the cutoff due to peculiar velocities occurs. Indeed, we would expect uncer-
tainties in the photo-ionisation rate to influence the FPS not only through the thermal
broadening scale, but also through the peculiar velocity cutoff scale.
However, we should not overestimate the importance of this Gaussian cutoff either.
In the high kv-range, the influence of peculiar velocities on the FPS can no longer be
described as a Gaussian, but is instead dominated by the recovery effect, for which we
have suggested a hypothesis of its origin but no (phenomenological) model.

6.4 Outlook and further research

The research presented in this thesis can be extended in several aspects. The most ob-
vious one is the recovery effect, which dominates the impact of peculiar velocities at
small scales yet has mostly been ignored so far. A model of this effect could allow a
more accurate extraction of ∆v from D, either because it would allow for a correction
for the recovery effect (thus isolating the Gaussian cutoff) or because ∆v as predicted
by (3.43) might be a characteristic scale for the recovery effect as well. It may also allow
for a more robust answer to the issue of whether (4.5) is truly the best description of D
on small kv. However, a complete model need not be necessary, if a more sophisticated
procedure could be constructed for selecting the range of kv to be used to fit (4.5).
As we mentioned, failure of our procedure to select the optimal range of kv to fit (4.5)
may have been responsible for the overly high ∆v at high temperatures in figure 5.7b,
and possibly for other deviations from (3.43) such as the sudden changes in ∆v as a
function of thermal broadening as well. Correctly determining the optimal range of kv
for fitting (4.5) could thus allow us to more accurately determine whether or not ∆v is
indeed independent of thermal broadening.
Finally, a more accurate model is certainly needed for the dependence of ∆v on σu.
(3.43) saw considerable success in predicting the average ratio ∆v

σu
(at worst, the re-

alised average and the prediction of (3.43) differed 1.6σ), but it was never an accept-
able model for the true dependence of ∆v on σu, in which ∆v gradually varies around
the predicted direct proportionality. A more accurate model might allow us to con-
strain A and B and their redshift evolution more tightly than we have done so far.
The most obvious application of our interpretation of ∆v as defined in (3.43) as a cutoff
scale in a Gaussian cutoff in the FPS is that it allows us to distinguish suppression in
the FPS due to peculiar velocities from suppression due to thermal broadening, pres-
sure broadening and warm dark matter free streaming. Since (3.43) does indeed seem
to correctly describe ∆v at a considerable range of redshifts, more accurate knowledge
of the thermal and dynamical state of the IGM will thus allow us to further isolate the
effect of free streaming, and thus constrain models of dark matter.
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6.5 Summary

1. In this thesis, we gave a brief overview of the physics and mathematics used to
describe the structure and evolution of the large-scale structure of the universe.

2. Subsequently, we introduced a description of the ionisation state of the inter-
galactic medium and derived an expression of its optical depth to Ly-α radiation.

3. We proposed the following model as a description of the scale on which peculiar
velocities impact the Ly-α forest:

∆v = Aσu

√
2 ln

(
B

⟨nH⟩2

n0(zLOS)

αHII (T0)

ΓHI

)
, (6.1)

With σu the dispersion in the peculiar velocities, ⟨nH⟩ the average total hydrogen
density, zLOS the redshift of the line of sight, αHII the recombination rate, T0 the
temperature amplitude used in (3.7) and ΓHI the photo-ionisation rate. n0 =
H(zLOS)

σ0λα
with H the Hubble parameter, σ0 the amplitude of the Ly-α absorption

cross section and λα the Ly-α wavelength is a reference density.

4. Furthermore, we proposed that this scale could be interpreted as the spatial scale
on which peculiar velocities introduce a Gaussian cutoff to the flux power spec-
trum of the Ly-α forest, as long as this Ly-α forest is dominated by absorption
and hence only has a few transmission features.

5. We then tested these models ((6.1) and the Gaussian cutoff model) to the flux
power spectrum as calculated from high-resolution hydrodynamical simulations
for a considerable range of densities ⟨nH⟩, temperatures T0, peculiar velocity
dispersions and amounts of thermal broadening at redshifts 4.0 ≤ z ≤ 6.0. These
tests indicate that a Gaussian cutoff is indeed often an acceptable description of
the influence of peculiar velocities at low kv.

6. They also indicated that the dependence on density and temperature of the cutoff
scale associated with this cutoff could indeed be described relatively well by (6.1)
at redshifts z ≤ 5.5. At redshift z = 6.0, (6.1) could not be acceptably fitted to the
realised ∆v.

7. Our tests also indicated that while (6.1) could correctly predict the average ratio
∆v
σu

, it failed to correctly reproduce the exact dependence of ∆v on σu. The pre-
diction of (6.1) that ∆v should be independent of thermal broadening cannot be
rejected at any of the redshifts considered here.

8. Finally, we considered the redshift dependence of A and B. A appears to signif-
icantly vary with redshift in a non-monotonic way, while we cannot at present
exclude the possibility that B is constant with redshift, although we consider this
to be a consequence of the limited information we currently have on B.

9. The main venue in which the research presented here can be extended is through
a more accurate description of the recovery effect, a phenomenon in which pe-
culiar velocities cause the flux power spectrum to acquire more power on small
scales, which forms the main limitation to the Gaussian cutoff model. Such a
description should yield more accurate determinations of ∆v and provide more
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insight into the matter of the independence of ∆v from thermal broadening or
the possibility of the cutoff being of another form than Gaussian.

10. Another way in which (6.1) can be extended is through a more sophisticated
treatment of the dependence of ∆v on σu, which could possibly constrain the
values of A and B even further.

The model proposed in (6.1) may serve to constrain the cutoff scale induced by pecu-
liar velocities. If this can be combined with cutoff scales due to thermal and pressure
broadening, the small scale suppression due to free streaming may be isolated, and
hence be used to constrain models of dark matter.
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E. Gaztañaga, R. Kehoe, M. Levi, P. Ntelis, N. Palanque-Delabrouille, and G. Tarlé. Op-
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Appendix A
Comparing simulations to observations

To verify that our calculation of the flux power spectrum (FPS) yields reasonable re-
sults, the FPS was determined at redshifts z = 4.0 and z = 4.4 using the standard sim-
ulation parameters, i.e. T0 and γ as simulated and nH as calculated using (4.1). This
FPS was then compared to data from [47]. This comparison is shown in figure A.1;
in general, the simulations match the observations relatively well. The deviation at
z = 4.0 is more significant at small scales, perhaps because the SWIFT simulations used
a slightly too warm thermal history as compared to the true thermal history. In gen-
eral, the maximum difference between the observed and simulated FPS amounted to
4.6σ at z = 4.0 and 1.5σ at z = 4.4; ignoring the two observations at kv ≥ 0.079 s km−1,
which may differ because of the different thermal histories, the maximum difference at
z = 4.0 is 2.7σ. We thus conclude that our calculations do indeed produce reasonable
estimates for the FPS.
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Figure A.1: A comparison between the FPS obtained from the SWIFT simulation and from
observations. The solid orange curve and dashed blue curve show the FPS calculated from the
simulation at z = 4.0 and z = 4.4 respectively; error margins are shown as shaded regions in
the respective colours. The green circles and red squares present the FPS from [47] measured
at z = 4.0 and z = 4.4 respectively. The upper frame directly shows all FPS, whereas the lower
two panels demonstrate the difference between the observed and simulated FPS at z = 4.0 and
z = 4.4 respectively; in general the deviation is not extremely significant.
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Appendix B
Checking the effects of finite resolution

To verify that the impact seen in figure 4.2 is not a numerical artefact, we calculated
D using a simulation with artificially lowered resolution. This lower resolution was
achieved by replacing each subsequent pair of data points on the density contrast and
peculiar velocity along the line of sight (LOS) by their average. This way, we effectively
obtained the data along an LOS as it would have been produced by a simulation of half
the resolution achieved in the actual simulation. Any effect mainly due to a numerical
artefact as a consequence of the finite simulation resolution should respond strongly
to this considerable change in resolution.
Figure B.1 shows the difference between D as calculated with the regular simulations
used in this thesis (‘high resolution’) and as calculated with the lowered resolution
(‘low resolution’) at three different redshifts. This difference is never significant by any
measure; indeed, the largest deviation at a given redshift never exceeds the minimum
error on any deviation at the same redshift, even though these do not have to occur
at the same kv. We conclude that there is no indication that the effects treated in this
thesis are numerical artefacts.
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Figure B.1: The difference between D as defined in (4.4) calculated while using a high-
resolution simulation (i.e. the resolution of the actual simulations used in this thesis) and
using a simulation in which the resolution was artificially lowered by taking the average of
subsequent data points along all LOS. The solid blue line shows this difference at z = 4.0, the
dotted orange line shows the difference at z = 5.0 and the dashed red line shows the difference
at z = 6.0; the shaded regions show the error margins on these differences, and have the same
colour as the corresponding curve. Note that no curve leaves the range defined by the error
margins; the differences are never significant.
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