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Supervisor Mathematics : dr. R. de Jong

Leiden, The Netherlands, June 28, 2022





Homotopy and magnetic monopoles

A. Colling

Huygens-Kamerlingh Onnes Laboratory, Leiden University
P.O. Box 9500, 2300 RA Leiden, The Netherlands

June 28, 2022

Abstract

This thesis studies magnetic monopoles and their relation to homotopy theory. Magnetic
monopoles can appear as topological defects in certain gauge theories extending the

Standard Model. The existence and stability of these defects is strongly related to homotopy
theory. We classify topological defects using homotopy groups and show that monopoles

are expected to exist in many theories based on this classification. We discuss how to assign
a magnetic charge to defects using a topological interpretation of this charge. Lastly, we

present an example where new phenomena emerge in the topological description of defects
due to a nontrivial π1-action on the homotopy groups.
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Chapter 1
Introduction

For a long time people have speculated about the existence of magnetic monopoles, particles
carrying a net magnetic charge. Magnetic poles appear to always come in pairs: a north and
a south pole. Cutting a magnet in half does not isolate the poles. Rather, it results in two
new magnets, both with a north and south pole. In fact, one of Maxwell’s equations states
that the magnetic field B satisfies ∇ · B = 0. This implies that the magnetic flux through any
closed surface is zero and that isolated magnetic charges are impossible.

Nevertheless, magnetic monopoles have been extensively studied for various reasons. Their
existence would make the Maxwell equations completely symmetric under the interchange
of the electric and magnetic fields. Moreover, in 1931 Dirac showed that the existence of a
single magnetic monopole would imply that electric charge is quantised [9], providing an
attractive explanation for the quantisation of electric charge observed in nature. Interest in
monopoles was renewed in 1974 when Gerard ’t Hooft [18] and Alexander Polyakov [28]
showed that magnetic monopole solutions exist as topological defects in certain theories ex-
tending the Standard Model.

Topological defects are solutions of a system of partial differential equations of nonzero en-
ergy that are stable for topological reasons, because it is not possible to continuously deform
them into a ground state. They can be classified using homotopy theory, which is a branch
of mathematics that studies continuous deformations of maps between topological spaces.
Defects are known to form in phase transitions in condensed matter systems. Examples in-
clude the trapping of a magnetic field in flux lines in superconductors and the formation of
domain walls in ferromagnets.

This thesis focuses on topological defects in gauge theories that might have formed in phase
transitions in the early universe. We are particularly interested in monopole solutions and
their relation to homotopy theory. None of the treated results are new. The purpose of this
thesis is to give a mathematically rigorous account of the subject. In particular, Proposi-
tions A.2 and B.4 contain proofs supporting statements in the physics literature of which we
have not encountered the details.

We draw attention to the fact that quite a lot of theory from both mathematics and physics
is used in this thesis. From the mathematical perspective, we apply elements of homotopy
theory and differential geometry, including homotopy groups, Lie groups and connections.
From the physical standpoint we use classical field theory and gauge theory to describe our
models. We will do our best to guide the reader through all of these subjects.
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8 Introduction

We begin in section 2 by providing the intuition behind topological defects. Some exam-
ples are presented in the language of field theory. We discuss defects in the abelian Higgs
model [27] and introduce the Georgi-Glashow model [11]. We also illustrate the formation
of defects in the early universe through the Kibble mechanism [20]. In section 3 homotopy
groups are defined. These are groups containing the topological information of a space rel-
evant for the study of defects. The long exact sequence of homotopy groups is our most
important tool to calculate these groups. We apply this sequence to the Hopf fibration and
Lie group actions.

Subsequently we turn to gauge theory in section 4 and construct the Yang-Mills-Higgs La-
grangian [44]. Gauge fields need to be added to our models in more than one space dimen-
sion to ensure that the energy of the defects remains finite. In gauge theory, interactions are
modelled using fields that have unphysical degrees of freedom in the sense that different
field configurations correspond to the same physical state. This redundancy in the mathe-
matical description is called gauge symmetry. Mathematically, the fields in our models are
given by sections of principal fibre bundles and their associated vector bundles. Different
sections of the same bundle correspond to different field configurations describing the same
physical state and are related by a gauge transformation.

We present a slightly simplified version of this formalism without introducing associated
vector bundles, as this is not required for our discussion. Moreover, we consider gauge trans-
formations defined on strict subsets of spacetime. These transformations are called local. If
the domain is all of spacetime the transformation is global, see Definition 4.4. This should not
be confused with the more usual definition in the physics literature where a global transfor-
mation refers to a transformation that does not depend on the location in spacetime.

Armed with the theory of sections 3 and 4 we return to topological defects in section 5.
The Higgs mechanism [17] is described as it plays an important role in the formation of
defects. The defects are classified using homotopy theory. It is shown that many Grand
Unified Theories predict the formation of monopoles carrying a topological charge in the early
universe. In section 6 we study magnetic monopoles, starting with the Dirac monopole and
its relation to the Hopf fibration. We show that the topological charge of monopole defects
can in some cases naturally be identified with a magnetic charge. This correspondence is
worked out explicitly for the ’t Hooft-Polyakov monopole.

In section 7 we consider a model where the classification using homotopy groups is more
involved. This complication arises because the homotopy groups come with a basepoint
that is not necessarily fixed in the defect configurations. We encounter this situation for
topological spaces that have a nontrivial π1-action on the homotopy groups. In our example
we can interpret the π1-action physically as the influence of Alice strings [37] on monopoles
winding around them. Relevant homotopical constructions and background information on
Lie groups, Lie group actions and connections can be found in Appendices A and B.

8
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Chapter 2
Topological defect models

We introduce the simplest models describing different types of topological defects from the
physical perspective. The kink and the vortex are discussed, as well as the abelian Higgs
model and the Georgi-Glashow model. Moreover, we illustrate the Kibble mechanism using
these models. The purpose of this section is to explain the intuition behind the defects and
hint at the connection between defects and magnetic fields. We return to most of the models
in later sections, where we analyse them in detail using the theory developed there.

2.1 Field theory

To describe topological defects we need to introduce the formalism of classical field theory.
In field theory, particles and their interactions are modelled using fields. Examples are grav-
itational potentials or electric and magnetic fields. Mathematically, a field is a smooth map
defined on all of spacetime M. We will assume there is no gravity. We can then view spacetime
as M = R4, where the first coordinate corresponds to time and the other three to space.

We employ fundamental units (h̄ = c = 1) and use the metric signature (+,−,−,−), see
Definition 4.1. Throughout, Greek indices refer to space and time and (in three space dimen-
sions) take values µ, ν, λ, ρ = 0, 1, 2, 3. Latin indices from the middle of the alphabet refer to
space and take values i, j, k = 1, 2, 3. This subsection is based on [39].

The simplest example of a field is a real scalar field φ : M → R. A model contains a La-
grangian density L, which is a scalar function constructed from φ and its derivatives. For our
scalar field, the Lagrangian might look like

L = ∂µ φ∂µ φ − 1
2 m2φ2 = 1

2 (∂0φ)2 −
3

∑
i=1

1
2 (∂i φ)

2 − 1
2 m2φ2 . (2.1)

In this equation m is a constant, ∂0φ is the time derivative and ∂i φ the space derivatives
(i = 1, 2, 3). The Lagrangian is also written in relativistic notation (see section 4.1), where
summation over the repeated index µ = 0, 1, 2, 3 is implied. The way fields evolve is dic-
tated by the field equations, which are derived by requiring that the field extremises the action
S =

∫
d4x L. For a Lagrangian describing a scalar field φ, the field equation reads

Version of June 28, 2022– Created June 28, 2022 - 12:44
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10 Topological defect models

∂L
∂φ

−
3

∑
µ=0

∂µ
∂L

∂(∂µ φ)
= 0 . (2.2)

The quantity

E =
∫

d3x
(

∂L
∂∂0φ

∂0φ −L
)

(2.3)

is conserved if the Lagrangian does not depend explicitly on time and is identified with the
energy (or Hamiltonian) of the field. For our Lagrangian (2.1) the energy is

E =
∫

d3x

(
1
2 (∂0φ)2 +

3

∑
i=1

1
2 (∂i φ)

2 + 1
2 m2φ2

)
. (2.4)

Moreover, using (2.2) we obtain the Klein-Gordon equation as equation of motion:

(□+ m2)φ = 0 , (2.5)

where □ = ∂2
0 − ∑3

i=1 ∂2
i is the d’Alembert operator. For m = 0 this reduces to the wave

equation. The general solution of (2.5) can be found using standard techniques from Fourier
analysis and is a real superposition of solutions of the form φk = Akeiωkt−ik·x with (complex)
amplitude Ak, frequency ωk and Fourier wave vector k satisfying ω2

k = |k|2 +m2. If we view
φk as the wave function of a particle with energy E = ωk and momentum p = k we find the
relation E2 = p2 + m2. This is the relativistic formula for the energy of a particle of mass m.
For this reason we call m the mass of the field φ.

2.2 The kink

We now turn to models admitting topological defect solutions. For our first example we
work in one space dimension and follow section 6 of [8]. The Lagrangian is given by

L = 1
2 ∂µ φ∂µ φ − U(φ) = 1

2 (∂0φ)2 − 1
2 (∂1φ)2 − U(φ) . (2.6)

In this equation φ : R2 → R is a real scalar field in one space dimension and U is the potential
given by U(φ) = λ

2 (φ2 − a2)2, where λ and a are positive constants. We will always set the
minimum of the potential to zero, which is possible in the absence of gravity. The energy
reads

E =
∫

dx
( 1

2 (∂0φ)2 + 1
2 (∂1φ)2 + U(φ)

)
. (2.7)

Note that the Lagrangian is invariant under the transformation φ 7→ −φ. The energy is also
invariant, and whenever φ is a solution of the field equation −φ is as well. This is called a
global symmetry of the model with symmetry group Z2.

The ground states or vacuum states are the solutions that minimise the energy (2.7). In this
model there are two ground states where φ is constant and equal to a or −a. The ground
states get interchanged under the transformation φ 7→ −φ and hence are not invariant under

10
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2.2 The kink 11

the symmetry. For this reason, if all the energy is taken out of the system and the field φ
decays into a ground state we say that the symmetry is spontaneously broken. Spontaneous
symmetry breaking plays an important role in the formation of topological defects, as is
explained in section 2.5.

We will search for time-independent solutions of finite energy different from the ground
states. For any finite energy configuration, it is necessary in order for the energy integral to
converge that φ tends to a zero of U as x tends to plus or minus infinity. Hence, we could for
example look for finite energy solutions by requiring that φ tends to a as x → ∞ and to −a
as x → −∞. Indeed, an explicit solution of the time-independent field equation ∂2

1φ = ∂U
∂φ

with these boundary conditions is

φ = a tanh(a
√

λx) . (2.8)

Figure 2.1: The kink solution given by equation (2.8).

This solution is called the kink and is shown in Figure 2.1. The energy of the kink is con-
centrated around x = 0 in a region with size of order (a

√
λ)−1. The total energy can be

calculated from (2.7), giving E = 4
3 a3

√
λ. It is intuitively clear that the kink solution is stable:

for it to decay to a ground state we would have to “pull down” the entire right branch of the
solution to the value φ = −a or push the left branch up to a, which costs an infinite amount
of energy. We can also view the kink as a solution in three space dimensions that does not
depend on the y and z coordinates. In this case the kink has nonzero energy density con-
centrated in a plane and is called a domain wall. The domain wall has finite energy per unit
area.

The fundamental reason for the existence of the kink is that the set of minima of the potential
M = U−1(0) = {±a} is not connected. This set M is called the vacuum manifold*. Any finite
energy solution φ defines a mapping φ∞ from two points at ∞ and −∞ to M that cannot
change over time while keeping the energy finite. For the ground states this associated map
φ∞ sends both points at infinity to the same element of M. If a solution has a different
associated map (as is the case for the kink), it can never decay into a ground state. In this case
the solution is stable and traps energy in a finite region of space where the field interpolates
between a and −a. This is an example of a topological defect. The topological aspect is
analysed in more detail in section 5.2.

*We show in section 5.1 that under certain assumptions M is always a manifold, as the name suggests.
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12 Topological defect models

2.3 The vortex

For the second example of a topological defect we consider a model in two space dimensions
as presented in [35]. The model contains a complex scalar field φ : R3 → C in the Lagrangian

L = (∂µ φ)∗∂µ φ − U(φ) = (∂0φ)∗∂0φ −
2

∑
i=1

(∂i φ)
∗∂i φ − U(φ) . (2.9)

In this equation ∗ denotes complex conjugation. The potential U(φ) = 1
4 λ(φ∗φ − v2)2 is

called the Mexican hat potential (see Figure 2.2) with positive constants λ and v.

Re(φ)

Im(φ)

U

Figure 2.2: The Mexican Hat potential U. The minima of U form a circle of radius v. This
figure is adapted from [46].

The energy is given by

E =
∫

d2x

(
(∂0φ)∗∂0φ +

2

∑
i=1

(∂i φ)
∗∂i φ + U(φ)

)
. (2.10)

Note that this model contains a global symmetry consisting of rotations in the complex plane:
the Lagrangian is invariant under the substitution φ 7→ eiα φ for α ∈ R. The symmetry group
is U(1) (see Example B.3). A ground state is a state of zero energy where φ is constant and
equal to an element of the vacuum manifold M = U−1(0), which is a circle in the complex
plane of radius v. Such a ground state is only invariant under the trivial rotation (over zero
degrees) and hence breaks the symmetry. We will represent elements of M using arrows, i.e.
the element veiθ ∈ M corresponds to an arrow of size v making an angle θ with the positive
real axis.

For a finite energy solution it is necessary that φ tends to a zero of U in every direction in
space. Just like for the kink, we can attempt to create a configuration different from a ground
state by assigning different elements of M to different directions in space. We will consider a
configuration at a constant time where the field points radially outward in all directions, i.e.
φ(r, θ) = veiθ in polar coordinates for large values of r (see Figure 2.3). In order for the field
to be continuous we then must have φ = 0 somewhere in the center of the configuration,
resulting in a nonzero localised energy density.

It should be noted that this configuration does not actually have finite energy: the depen-
dence of φ on the polar angle θ results in a contribution to the derivatives that goes as 1/r.
Since the derivatives enter squared in the energy, we obtain terms proportional to 1/r2 in
the energy density which make the energy integral diverge logarithmically. We will sidestep
this problem for now and solve it in section 2.4 by including a gauge field in the model.

12
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2.4 Defect models in gauge theories 13

Figure 2.3: A defect configuration of φ. Far away from the origin the field takes values in M
and points radially outward. In the center of the configuration (grey area) φ leaves the set
M and becomes equal to zero somewhere in the middle to preserve continuity.

A solution that looks like Figure 2.3 can be found by solving the field equations (numerically)
with this configuration as initial condition. Since the energy stays finite as time evolves, on
a very large circle in space the field φ will at any time induce a map φ∞ taking values in M.
For the initial configuration the map φ∞ points radially outward in all directions. It is not
possible to continuously deform this configuration while keeping the energy finite such that
the map φ∞ becomes constant. This statement is related to the topology of M and will be
made precise later in this thesis. It follows that the solution cannot decay into a ground state
(because then φ∞ would be constant) and hence is stable. We have found another example
of a topological defect.

This solution is called a vortex. Viewed as a solution in three space dimensions with no
dependence on the third coordinate, it becomes a cosmic string with an energy density con-
centrated on a line and (if we include a gauge field) finite energy per unit length.

2.4 Defect models in gauge theories

In gauge theories it is possible to assign a finite energy to configurations like the vortex in
Figure 2.3. We show how this works for a vortex in the abelian Higgs model following [35].
In addition to the complex scalar field φ the model now contains a gauge field A. In two space
dimensions, this can be viewed in this model as a triplet of real scalar fields (A0, A1, A2). The
field strength F encodes the kinetic and gradient energy of the gauge field. It has 9 components
(3 of which are independent) given by Fµν = ∂µ Aν − ∂ν Aµ with µ, ν = 0, 1, 2. The ordinary
derivative ∂µ φ is replaced by the covariant derivative Dµ φ = ∂µ φ − ieAµ φ, where e is a real
constant describing the strength of the interaction between A and φ. The Lagrangian (2.9)
and energy (2.10) now read

L = − 1
4 FµνFµν + (Dµ φ)∗Dµ φ − U(φ) (2.11)

=
2

∑
i=1

1
2 F2

0i − 1
2 F2

12 + (D0φ)∗D0φ −
2

∑
i=1

(Di φ)
∗Di φ − U(φ) . (2.12)

E =
∫

d2x

(
2

∑
i=1

1
2 F2

0i +
1
2 F2

12 + (D0φ)∗D0φ +
2

∑
i=1

(Di φ)
∗Di φ + U(φ)

)
. (2.13)

Version of June 28, 2022– Created June 28, 2022 - 12:44

13



14 Topological defect models

We will construct a configuration for which A0 = 0 (this gets rid of some of the redundancy
in the mathematical description mentioned in the introduction). Just like before, in a finite
energy configuration φ has to tend to an element of the vacuum manifold M far away from
the origin in any direction. We accomplish this by requiring that in polar coordinates (r, θ)
for large values of r the field φ has the form

φ(r, θ) = vexp(i f (θ)) , (2.14)

where f is a smooth real-valued function. Note that a necessary condition for φ to be single-
valued is that f (2π) − f (0) = 2πn for some integer n. We will see later that this integer
characterises the relevant topological properties of φ. The space derivatives of (2.14) are

∂j φ = i∂j f (θ)vexp(i f (θ)) (2.15)

for j = 1, 2. The integral over these derivatives squared generally diverges. However, the
quantity that enters the energy integral (2.13) is now not the ordinary derivative but the
covariant derivative Dj φ = ∂j φ − ieAj φ. If we set our gauge field equal to Aj = e−1∂j f (θ) at
large distances, we obtain Dj φ = 0. Moreover, we find Fµν = 0 and D0φ = 0 if we choose
our initial configuration such that ∂0φ = 0. It follows that all the terms in (2.13) are zero
outside of the core of the defect and hence that the energy is finite. A vortex solution is again
obtained by solving the field equations with this initial condition.

We note that the requirement for the energy to be finite forces the gauge field to be nonzero.
If we view the vortex as a cosmic string in three space dimensions with an extra component
A3 of the gauge field that is equal to zero, we can identify the spatial part (A1, A2, A3) of A
with minus the magnetic vector potential A (see section 4.2). The magnetic field B is defined
as the curl of the vector potential: B = ∇ × A. By Stokes’ theorem, the magnetic flux Ψ
through the plane where the third space coordinate is zero then equals

Ψ =
∫∫

B · ds =
∮

A · dl =
1
e

∫ 2π

0
−∇ f (θ) · Rθ̂dθ (2.16)

= −1
e

∫ 2π

0
∂θ f (θ)dθ = −1

e
( f (2π)− f (0)) = −2πn

e
, (2.17)

where the line integral is taken over a large circle of radius R in the plane and ∂θ denotes the
derivative with respect to θ. We find that the string carries a quantised magnetic flux given
by the integer n. The configuration in Figure 2.3 corresponds to the map f (θ) = θ and hence
has magnetic flux Ψ = − 2π

e .

In three space dimensions we can have defects with energy concentrated in a point, which are
called monopoles. The simplest model admitting monopole solutions is the Georgi-Glashow
model discussed in section 6.4. This model contains a field φ whose values can be seen
as vectors in R3. The gauge field components Aµ are also three-dimensional vectors, and
the covariant derivative is Dµ φ = ∂µ φ + eAµ × φ. In this equation × is the cross product.
The field strength now has an extra term: Fµν = ∂µ Aν − ∂ν Aµ + eAµ × Aν. The model has
Lagrangian and energy

14
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2.4 Defect models in gauge theories 15

L = − 1
4 FµνFµν + 1

2 (Dµ φ)(Dµ φ)− U(φ) (2.18)

=
3

∑
i=1

1
2 F2

0i −
3

∑
i,j=1

1
4 F2

ij +
1
2 (D0φ)2 −

3

∑
i=1

1
2 (Di φ)

2 − U(φ) , (2.19)

E =
∫

d3x

(
3

∑
i=1

1
2 F2

0i +
3

∑
i,j=1

1
4 F2

ij +
1
2 (D0φ)2 + 1

2

3

∑
i=1

(Di φ)
2 + U(φ)

)
, (2.20)

where all multiplications of vectors are performed using the standard inner product on R3.
The potential U(φ) = 1

4 λ(φ2 − v2)2 is a generalisation of the Mexican hat potential. The set
of minima M of U forms a sphere of radius v. Just like in our other models, in a finite energy
configuration φ tends to an element of M in any direction in space and hence induces a
map φ∞ from a very large sphere in space to M. We can again find a defect configuration
by requiring that φ∞ points radially outward (Figure 2.4), because in that case φ∞ cannot be
deformed into a constant map. This is called the hedgehog configuration. Near the origin the
field φ leaves the set M and traps energy in the form of a monopole.

Figure 2.4: The hedgehog configuration of the field φ in the Georgi-Glashow model. The
figure is taken from [45].

In order for the energy to be finite the covariant derivatives Dµ φ have to go to zero fast
enough far away from the origin. To accomplish this, the gauge field has to be nonzero to
cancel the contribution from the partial derivatives ∂µ φ. By identifying a part of the gauge
field with the electromagnetic potential, we deduce in section 6.4 that this configuration car-
ries a magnetic charge and hence can be called a magnetic monopole. The magnetic charge
is quantised and directly related to the topological properties of φ.

We note that just like for vortices, monopoles can also exist in models with a global symme-
try (i.e. without gauge fields). For such solutions the energy integral diverges linearly. In
practice however, the integral is cut off by approximately the distance to the nearest anti-
monopole (e.g. a solution that looks like Figure 2.4 with all the arrows pointing inward). In
this thesis we focus on defects in gauge theories, because we need the gauge field to assign a
magnetic field to the monopoles. See [42, Sect. 14.5] for a discussion of global monopoles.
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16 Topological defect models

2.5 The Kibble mechanism

The way in which topological defects form in the early universe is described by the Kibble
mechanism, first formulated in 1976 by Tom Kibble. We illustrate the mechanism using the
vortex described above following [33].

The idea is as follows. In the earliest moments of the universe the temperature was very high
and there was a lot of energy available. The symmetry of the system was unbroken and the
field φ was zero everywhere. As the universe cooled down, the system was losing energy.
At some point a phase transition occurred and the field decayed to a ground state in which
the symmetry is broken. We say that φ obtains an orientation (given by the chosen ground
state).

Since information cannot travel faster than the speed of light, distant points cannot commu-
nicate during the transition. All orientations are equally likely because of the symmetry and
hence distant points receive (in general) different orientations. It follows that the field will
be uniform on domains of size at most ξ given by the distance that light can travel during
the phase transition. We call ξ the correlation length. The field interpolates smoothly where
the domains meet.

In some cases (depending on the topology of the vacuum manifold M) it is possible that the
field interpolates in such a way that we obtain a configuration that is topologically nontrivial.
An example of this for the vortex configuration is shown in Figure 2.5. For the kink, this
situation occurs if the field decays to the ground state φ = a on one side of the universe and
to φ = −a on the other side. In order for the field to remain continuous, it is necessary for it
to leave the set M somewhere in the space enclosed by these regions, resulting in a nonzero
energy density in a finite region of space: a topological defect.

Figure 2.5: An illustration of the Kibble mechanism for the vortex. The field is uniform at
distances less than the correlation length ξ (grey regions) and interpolates smoothly where
these regions meet, creating the vortex configuration of Figure 2.3. Energy is trapped in the
middle.

By estimating the correlation length ξ and the probability that the configuration of the field is
topologically nontrivial, the number density of defects can be estimated. These calculations
show that topological defects form whenever it is (topologically) possible [20]. In this case,
since the defects are stable, some of them are expected to still be around today. The defects
are remnants of the broken symmetry and hence could provide us with precious information
about the early universe. This prospect, together with the connection to topology, forms the
motivation for the study of topological defects and magnetic monopoles in the subsequent
sections.

16
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Chapter 3
Homotopy theory

The topological information of a space relevant for the study of topological defects is stored
in its homotopy groups. In this section we define these groups and introduce the long exact
sequence of homotopy groups following chapter 4 of [16]. We discuss some examples and
we apply the long exact sequence to Lie group actions in section 3.3.

Some remarks on the notation: by a space X we mean a topological space and every map
between spaces is required to be continuous. We write In for the n-dimensional unit cube
[0, 1]n and denote its boundary, the subspace of points with at least one coordinate equal to
0 or 1, by ∂In. For spaces A, B, X, Y with A ⊆ X and B ⊆ Y, we write f : (X, A) → (Y, B)
for a map f : X → Y satisfying f (A) ⊂ B. If A (or B) contains only one element x0, we write
(X, x0) instead of (X, {x0}).

3.1 Homotopy groups

Homotopy theory deals with the question when two maps can be continuously deformed
into each other. We formalise what we mean by continuous deformations as follows.

Definition 3.1. Let X be a space with basepoint x0 ∈ X. We say that two maps
f , g : (In, ∂In) → (X, x0) are homotopic if there exists a map Γ : (In × I, ∂In × I) → (X, x0)
satisfying Γ(x, 0) = f (x) and Γ(x, 1) = g(x) for all x ∈ In.

We call the map Γ the homotopy between f and g. The notion of being homotopic defines
an equivalence relation, and the equivalence classes under this relation are called homotopy
classes. We do not want to distinguish between homotopic maps, so we are only interested
in the homotopy classes.

Definition 3.2. Let X be a space with basepoint x0 ∈ X. We define the n-th homotopy group
πn(X, x0) to be the set of homotopy classes of maps (In, ∂In) → (X, x0). For n > 0, the
operation

( f ⊙ g)(s1, . . . , sn) =

{
f (2s1, s2, . . . , sn) , s1 ∈ [0, 1

2 ]

g(2s1 − 1, s2, . . . , sn) , s1 ∈ [ 1
2 , 1]

is well-defined on homotopy classes and makes πn(X, x0) into a group. The unit element is
the class of the constant map sending In to x0, and the inverse of [ f ] ∈ πn(X, x0) is the class
of the map f−1(s1, s2, . . . , sn) = f (1 − s1, s2, . . . , sn).
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18 Homotopy theory

For n = 0 we set I0 = {0} and ∂I0 = ∅. The definitions above then imply that π0(X, x0) can
be identified with the set of path components of X. There is no natural way to define a group
structure on this set. Taking n = 1, we recover the definition of the fundamental group.

A map (In, ∂In) → (X, x0) is the same as a map from the quotient In/∂In (obtained by identi-
fying all the points of ∂In) to X sending the point s0 = ∂In/∂In to x0. We have In/∂In ∼= Sn for
n > 0, where Sn is the n-dimensional unit sphere Sn = {x ∈ Rn+1 | ∥x∥ = 1}. For all n ≥ 0
we find that we can view representatives of elements of πn(X, x0) as maps (Sn, s0) → (X, x0).
From this viewpoint homotopies are maps of the form Γ : (Sn × I, {s0} × I) → (X, x0).

Just like for the fundamental group, a map φ : (X, x0) → (Y, y0) between pointed spaces
induces a map φ∗ : πn(X, x0) → πn(Y, y0) defined by φ∗([ f ]) = [φ ◦ f ]. It can be verified that
φ∗ is a group homomorphism for n > 0. Moreover, the induced maps satisfy the functorial
properties (φ ◦ ψ)∗ = φ∗ ◦ ψ∗ and (idX)∗ = idπn(X). If φ is a homotopy equivalence, the
induced map φ∗ is an isomorphism: see Lemma A.1 in the appendix for a proof.

Lemma 3.1. Let X be a contractible space and x0 ∈ X. Then πn(X, x0) = 0 for all n.

Proof. Since X is contractible, there exists a homotopy equivalence from X to a one point
space {∗}. The induced map on πn is an isomorphism by Lemma A.1, which is only possible
if πn(X, x0) = 0 since the homotopy groups of {∗} are trivial.

Homotopy groups behave nicely with respect to products.

Lemma 3.2. Let I be an index set and Xi a space with basepoint xi ∈ Xi for all i ∈ I. Then there are
isomorphisms πn(∏i∈I Xi, (xi)i∈I)

∼→ ∏i∈I πn(Xi, xi) for all n.

Proof. A map (In, ∂In) → (∏i∈I Xi, (xi)i∈I) is the same thing as a collection of maps
(In, ∂In) → (Xi, xi) for all i ∈ I. This correspondence is well-defined on homotopy classes
because a homotopy (In × I, ∂In × I) → (∏i∈I Xi, (xi)i∈I) is also the same as a homotopy
(In × I, ∂In × I) → (Xi, xi) for all i.

In general computing homotopy groups is quite involved. This becomes apparent when
considering the homotopy groups πi(Sn) of spheres. Note that we are leaving out the base-
point in our notation for path-connected spaces: see Appendix A.1 for details. The simplest
example is the fundamental group of the circle π1(S1), which is isomorphic to Z. An iso-
morphism can be constructed by associating a winding number n ∈ Z to any loop γ : I → S1

in the following way [23, p.224].

We view S1 as the unit circle in C and consider the universal covering map p : R → S1

defined by p(t) = e2πit. Given a loop γ : I → S1 there exists a lift γ̃ : I → R of γ satisfying
γ = p ◦ γ̃. Since γ(0) = γ(1) we must have e2πiγ̃(0) = e2πiγ̃(1), i.e. γ̃(1)− γ̃(0) ∈ Z. The
integer n = γ̃(1)− γ̃(0) is independent of the choice of lift and representative of [γ] ∈ π1(S1)
and is the winding number of γ. In particular, if γ̃(t) = nt we find the following.

Lemma 3.3. Let n ∈ Z. The winding number of the loop γ : I → S1 given by γ(t) = e2πint is n.

If we view a loop as a map f : S1 → S1, the associated winding number is given by the
winding number of the loop γ(t) = f (e2πit). The map π1(S1) → Z sending [γ] to the
winding number of γ is an isomorphism.

We can in fact construct isomorphisms πn(Sn)
∼→ Z for all n ≥ 1.

Theorem 3.1. For all n ≥ 1 we have πn(Sn) ∼= Z , generated by the identity map idSn .

18
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3.2 Fibre bundles 19

Proof. For n = 1 we indeed have π1(S1) ∼= Z, and the identity map idS1 is a generator
because it corresponds to the loop γ(t) = e2πit, which has winding number 1 by Lemma 3.3.
Given a map f : Sn → Sn we define the suspension S f : Sn+1 → Sn+1 of f to be the map
that leaves the north and south poles (0, 0, . . . ,±1) invariant and applies f on each subspace
Sn where the last coordinate xn+1 is constant and satisfies −1 < xn+1 < 1. It can be shown
that the suspension map S : πn(Sn) → πn+1(Sn+1) is well-defined on homotopy classes
and induces an isomorphism πn(Sn) ∼= πn+1(Sn+1) [16, Cor. 4.25]. By induction we find
πn(Sn) ∼= Z for all n, and because SidSn = idSn+1 the identity map generates πn(Sn).

The groups πi(Sn) with i < n are also known:

Theorem 3.2. For i < n we have πi(Sn) = 0.

Proof. Given a map f : Si → Sn with i < n, it is a nontrivial fact that it is possible to continu-
ously deform f such that it is not surjective [16, Thm. 4.8]. We can then take a point p ∈ Sn

outside the image of f and view f as a map Si → Sn \ {p}. The space Sn \ {p} is homeomor-
phic to Rn through stereographic projection and hence contractible. By Lemma 3.1 it follows
that f : Si → Sn \ {p} is homotopic to a constant map, and so [ f ] = 0 in πi(Sn).

The complexity of the homotopy groups of spheres lies in the groups πi(Sn) for i > n > 1.
These groups turn out to be very difficult to compute, and over the years a lot of effort has
been put into their calculation. Even though a lot of patterns have been discovered, a lot
of them are still unknown. Using the theory of fibre bundles in section 3.2 we will find the
homotopy groups πi(S1) and π3(S2). Heavier machinery than discussed in this thesis is
required to go further.

3.2 Fibre bundles

To introduce our main tool for the calculation of homotopy groups, the long exact sequence,
we need to study fibre bundles.

Definition 3.3. A fibre bundle with total space E, base space B and fibre F is a tuple (E, p, B, F)
where p : E → B is a map such that each point of B has a neighborhood U for which there is
a homeomorphism h : p−1(U)

∼→ U × F such that the following diagram commutes.

p−1U U × F

U

h

p proj1

Here proj1 is the projection on the first coordinate. The map h is called a local trivialisation.

The definition above can be interpreted as stating that the map p locally over B looks like a
projection U × F → U. In particular, p is surjective and each fibre p−1(b) is homeomorphic
to F. We will often write a fibre bundle as F → E

p→ B.

Example 3.1. The simplest example of a fibre bundle is the trivial bundle F → B × F → B,
where the map p is the projection on the first coordinate: we can take U = B and h = id in
the definition. A more interesting example is a covering map p : E → B with B connected.
In this case every point of B has a neighborhood U such that p restricts to a homeomorphism
p−1U ∼→ U × J, where J is some index set (if B is not connected the set J can depend on the
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point of B). It follows that a covering map over a connected base space is a fibre bundle with
discrete fibre.

Example 3.2. Consider the complex projective line CP1 consisting of all lines through the
origin in C2. By viewing S3 as the unit sphere in C2, we can identify CP1 with the quotient
space of S3 under the equivalence relation (z1, z2) ∼ λ(z1, z2) for λ in the unit circle S1 of C.
The map p : S3 → CP1 sending a point (z1, z2) to its equivalence class [z1 : z2] then has fibres
homeomorphic to S1 and defines a fibre bundle. Indeed, for i = 1, 2 consider the open sets
Ui = {[z1 : z2] ∈ CP1 | zi ̸= 0} and the trivialisations

hi : p−1(Ui) → Ui × S1 , (z1, z2) 7→ ([z1 : z2], zi|zi|−1) . (3.1)

It is clear that the hi are homeomorphisms and they determine commuting diagrams as in
Definition 3.3. For (z1, z2) ∈ S3, direct computations give h−1

i ([z1 : z2], λ) = λ|zi|z−1
i (z1, z2).

Observe that the base space CP1 is homeomorphic to the one point compactification C∪ {∞}
of C through the map [z1 : z2] 7→ z1/z2 (this fraction is ∞ if z2 = 0). Moreover, we can
construct a homeomorphism S2 ∼→ C ∪ {∞} by sending the north pole to ∞ and mapping
the rest of the sphere onto C using the stereographic projection. It follows that we have
found a fibre bundle S1 → S3 → S2 consisting of only spheres, called the Hopf bundle or Hopf
fibration.

The Hopf bundle is important in both physics and mathematics. It allows us to calculate
some homotopy groups of spheres (see Example 3.4) and forms the topological structure of
the Dirac monopole, as explained in section 6.2. There are only three more fibre bundles
consisting of only spheres, which are obtained by replacing C by one of the other normed
real division algebras R, H or O in the above.

The reason why we are interested in fibre bundles is the following theorem [16, Thm. 4.41].

Theorem 3.3. (Long exact sequence of homotopy groups) Let F → E
p→ B be a fibre bundle

with basepoints b0 ∈ B, e0 ∈ p−1(b0). Identify F with the fibre p−1(b0) and let i : (F, e0) → (E, e0)
be the inclusion. Then if B is path-connected, there is a long exact sequence

· · · → πn(F, e0)
i∗→ πn(E, e0)

p∗→ πn(B, b0)
δ→ πn−1(F, e0) → · · · → π0(E, e0) → 0 . (3.2)

Note that the sequence is not really exact at the end because π0 is not a group, but exactness
still holds in the sense that the image of one map equals the kernel of the next. The connecting
homomorphism δ : πn(B, b0) → πn−1(F, e0) is not so simple to define because it is not induced
by a map B → F. Its construction is given in Appendix A.2.

Example 3.3. Let p : E → B be a covering map over a path-connected base space. We have
seen in Example 3.1 that p induces a fibre bundle J → E

p→ B with discrete fibre J. We
have πn(J, e0) = 0 for n > 0 and so the long exact sequence shows that p∗ : πn(E, e0)

∼→
πn(B, b0) is an isomorphism for n > 1. In addition, if E is path-connected we find a short
exact sequence

0 → π1(E, e0)
p∗→ π1(B, b0)

δ→ π0(J, e0) → 0 . (3.3)

We see that p∗ : π1(E, e0) → π1(B, b0) is injective. Comparing with the construction of δ in
the appendix it can also be deduced that J = π0(J, e0) can be identified with the set of cosets
of p∗π1(E, e0) in π1(B, b0) via pathlifting, as we did in our definition of the winding number.

20
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3.3 Homotopy groups of compact Lie groups 21

Corollary 3.1. πn(S1) = 0 for n > 1.

Proof. The map p∗ : πn(R) → πn(S1) induced by the covering map p : R → S1 is an
isomorphism for n > 1, and the homotopy groups of R are trivial by Lemma 3.1.

Example 3.4. Applying the long exact sequence to the Hopf bundle S1 → S3 p→ S2 gives

· · · → πn(S1)
i∗→ πn(S3)

p∗→ πn(S2)
δ→ πn−1(S1) → . . . (3.4)

For n ≥ 3 we have πn(S1) = πn−1(S1) = 0 by Corollary 3.1 and so πn(S3) ∼= πn(S2). In
particular, Theorem 3.1 with n = 3 gives

Corollary 3.2. π3(S2) is isomorphic to Z and is generated by the Hopf map p : S3 → S2.

3.3 Homotopy groups of compact Lie groups

In physics the spaces of interest are often acted upon by a compact and connected Lie group G.
The homotopy groups of G can provide important information in these situations and there-
fore are worth studying. The necessary prior knowledge on Lie groups can be found in
Appendix B.

We begin with a result on the second homotopy group of a compact connected Lie group.

Theorem 3.4. The second homotopy group π2(G) of a compact connected Lie group G is trivial.

Note that we can leave out the assumption that G is connected by Lemma A.2. The proof of
this theorem is beyond the scope of this thesis and can be found in [5, Prop. V.7.5]. We can
however verify the theorem explicitly for some matrix groups using the long exact sequence.
Proposition 3.1 indicates the type of exact sequence we consider. The reader is advised to
read Examples B.12 and B.13 in the appendix.

Proposition 3.1. Let G be a compact connected Lie group acting from the left on a manifold M. Let
p ∈ M and let Op and Gp denote the orbit and the stabiliser of p respectively. Then there is a long
exact sequence

· · · → πn(Gp) → πn(G) → πn(Op) → πn−1(Gp) → · · · → π0(Gp) → 0 . (3.5)

Proof. By Lemma B.2 there is a fibre bundle Gp → G → G/Gp, and the quotient G/Gp is
diffeomorphic to Op by Proposition B.3. The result now follows from the exact sequence (3.2).

Example 3.5. Consider the action of SU(n) on Cn by matrix-vector multiplication. The vector
e1 = (1, 0, 0, . . . ) has orbit S2n−1, while the stabiliser is diffeomorphic to SU(n − 1). We find
an exact sequence

· · · → πi+1(S2n−1) → πi(SU(n − 1)) → πi(SU(n)) → πi(S2n−1) → . . . (3.6)

Theorem 3.2 implies that πi+1(S2n−1) = πi(S2n−1) = 0 for i = 2 and n ≥ 3, so the ex-
act sequence gives π2(SU(n − 1)) ∼= π2(SU(n)). Recall from Example B.4 that SU(2) is
diffeomorphic to S3, implying that π2(SU(2)) = 0. An easy inductive argument now gives
π2(SU(n)) = 0 for all n ≥ 2. Similarly, taking i = 1 it follows that SU(n) is simply connected.
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Example 3.6. The arguments in Example 3.5 can be adapted to the action of SO(n) on Rn

with orbit Sn−1 and stabiliser SO(n − 1). For the case n = 3 we need the fact that there is a
two-sheeted covering p : SU(2) → SO(3), see [34, Prop 2.12A]. From Example 3.3 and the
results π1(SU(2)) = π2(SU(2)) = 0 we then find π1(SO(3)) = Z2 and π2(SO(3)) = 0.
Moreover, we can apply the long exact sequence (3.5) and deduce that πi(SO(n − 1)) is iso-
morphic to πi(SO(n)) for i = 1, 2 and n ≥ 4. By induction, this implies π1(SO(n)) = Z2 and
π2(SO(n)) = 0 for all n ≥ 3. For n = 2 we have SO(2) ∼= U(1) ∼= S1 by Example B.3. This
means that SO(2) and U(1) have fundamental group Z and trivial higher homotopy groups
(Corollary 3.1).

The order of the fundamental group of Lie groups is related to the notion of being semisim-
ple, defined in Definition B.5.

Theorem 3.5. Let G be a compact, connected and semisimple Lie group. Then π1(G) is finite.

For the proof we again refer to [5, V.7.13]. Note that the semisimple groups SU(n ≥ 2) and
SO(n ≥ 3) indeed have finite fundamental groups, while SO(2) and U(1) are not semisimple
and have an infinite fundamental group.

22
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Chapter 4
Gauge theory

Gauge theory is used to describe forces in relativistic quantum systems. The formalism con-
tains a redundancy in the mathematical description characterised by a gauge group G. Using
the gauge group we can define gauge transformations that act on the fields, and the physi-
cal states correspond to the orbits of this action. For this reason any physical observable
is required to be invariant under gauge transformations. In this section we follow [10, 15]
to construct a gauge invariant Lagrangian, the Yang-Mills-Higgs Lagrangian, which is the
central object in the physical models discussed in this thesis. Subsequently, we show how
to formulate electromagnetism in the language of gauge theory. The relevant notions from
differential geometry are covered in Appendix B.

From now on repeated indices always imply summation. This summation is over the values
0, 1, 2, 3 for Greek indices µ, ν, λ, ρ and over 1, 2, 3 for Latin indices i, j, k from the middle of
the alphabet.

4.1 Yang-Mills-Higgs Lagrangian

The terms of the Lagrangian are required to be Lorentz invariant, meaning that they do not
depend on the choice of inertial frame. For background on Lorentz transformations and
special relativity we refer the reader to chapter 12 of [13]. Lorentz invariant terms can be
constructed with the metric tensor. Using the standard basis eµ on spacetime M = R4 we
define the corresponding coordinate vector fields ∂µ = ∂

∂xµ ∈ X(M) and covector fields
dxµ ∈ Ω1(M).

Definition 4.1. The Minkowski metric tensor η is the symmetric nondegenerate (0,2) tensor
field on M given by

η = ηµνdxµ ⊗ dxν = dx0 ⊗ dx0 − dx1 ⊗ dx1 − dx2 ⊗ dx2 − dx3 ⊗ dx3 . (4.1)

The metric tensor gives an isomorphism TM → T∗M between the tangent and cotangent
bundles that can be used to raise and lower indices of tensor fields as explained in section 13
of [24]. For example, if A = Aµdxµ and F = Fµνdxµ ⊗ dxν are tensor fields, we have

Aµ = ηµν Aν and Fµν = ηµρηνλFρλ . (4.2)
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In this equation ηµν are the components of the inverse metric, which are equal to ηµν for the
Minkowski metric. Scalars of the form Aµ Aµ or FµνFµν obtained by tensor contraction are
Lorentz invariant and can appear in the Lagrangian. Note that the Lagrangians in section 2
indeed contain terms of this form.

We fix a gauge group G, which is a compact connected Lie group G of dimension n describing
the gauge symmetry of the model. To simplify our discussion, we will assume in this section
that G is a matrix group that is either simple or equal to U(1). Let Ã ∈ Ω1(P, g) be a gauge
field on a principal G-bundle π : P → M (see Definition B.11). Because M is contractible,
every principal bundle over M is trivial and it is always possible to choose a global section
s : M → P [15, Cor. 4.2.9]. In the following we assume this has always been done, so that
we can view our gauge field as a g-valued 1-form A ∈ Ω1(M, g) on spacetime given by the
pullback A = s∗ Ã. The gauge field has components Aµ = A(∂µ) ∈ C∞(M, g). These are
smooth maps on M with values in the Lie algebra g.

We can use the gauge field and the Lie bracket [·, ·]g on g to define a 2-form [A, A] ∈ Ω2(M, g)
by [A, A](X, Y) = [A(X), A(Y)]g for vector fields X, Y ∈ X(M).

Definition 4.2. Let A ∈ Ω1(M, g) be a gauge field. The field strength F ∈ Ω2(M, g) is given
by

F = dA + [A, A] . (4.3)

In this equation d is the exterior derivative. The components Fµν = F(∂µ, ∂ν) satisfy

Fµν = ∂µ Aν − ∂ν Aµ + [Aµ, Aν]g . (4.4)

In addition to the gauge field with corresponding field strength, our model contains a Higgs
field Φ ∈ C∞(M, V), where V is a finite dimensional real or complex vector space forming a
representation of G given by ρ : G → GL(V). We refer to V as the Higgs vector space or field
space. Note that Φ is not (necessarily) the same as the Higgs field in the Standard Model, but
it plays an analogous role in the process of symmetry breaking described in section 5.1. To
simplify notation, for g ∈ G and v ∈ V we will write gv instead of ρ(g)(v).

Definition 4.3. The Higgs potential U is a smooth map U ∈ C∞(V, R) that has minimal value
Umin = 0 and is G-invariant, i.e. U(v) = U(gv) for all g ∈ G and v ∈ V.

The Higgs potential evaluated at Φ can be integrated over all of space to find the poten-
tial energy of a configuration of the Higgs field. The energy, like all physical properties, is
required to reflect the gauge symmetry described by G. For this reason, the Higgs poten-
tial needs to be G-invariant. In general, all physical observables have to be invariant under
gauge transformations.

Definition 4.4. Let W ⊂ M be open. A gauge transformation is a smooth map g : W → G. The
gauge transformation is global if W = M and local otherwise.

A gauge transformation g : W → G acts on the gauge field A and Higgs field Φ, which
transform as

A 7→ g · A · g−1 + g · dg−1 , (4.5)
Φ 7→ gΦ . (4.6)

24
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4.1 Yang-Mills-Higgs Lagrangian 25

In equation (4.5) the dot · denotes matrix multiplication and dg−1 is the differential of each
matrix entry of g−1 : W → G. Note that the first term is just the action of the adjoint repre-
sentation of G. For the second term, dg−1 can be seen as taking values in Tg−1 G, which land
in TeG = g after left multiplication with g. In (4.6) we suppressed the map ρ in the notation.
In components, equation (4.5) reads

Aµ 7→ g · Aµ · g−1 + g · ∂µg−1 . (4.7)

It can be verified that under this transformation the field strength transforms as

F 7→ g · F · g−1 . (4.8)

Field configurations that can be transformed into each other using a global gauge trans-
formation are gauge equivalent. The physical states can be viewed as the set of equivalence
classes under the relation of being gauge equivalent. A choice of a representative of an equiv-
alence class is called a gauge. Physical observables do not depend on the choice of gauge: they
are gauge invariant. It can be shown that choosing a different global section s : M → P results
in a gauge equivalent configuration of A [15, Thm. 5.4.2]. A gauge can in fact be identified
with the choice of a section s. Local gauge transformations will be considered in section 6 in
a situation where it is not possible to choose a global section.

The Lagrangian also needs to contain terms involving the derivatives of Φ to account for
the kinetic and gradient energy of the Higgs field. The usual derivative ∂µΦ transforms as
∂µΦ 7→ g∂µΦ + (∂µg)Φ. We want to get rid of the second term, so that the derivative of Φ
transforms just like Φ. For this we need a new definition of the derivative.

Definition 4.5. The covariant derivative is the map D : C∞(M, V) → Ω1(M, V) given for
Φ ∈ C∞(M, V) and X ∈ X(M) by

DXΦ = D(Φ)(X) = dΦ(X) + ρ∗(A(X))Φ . (4.9)

In this equation ρ∗ is the representation of g induced by ρ.

We will again suppress the map ρ∗ in our notation. The covariant derivative in components
DµΦ = D∂µ

Φ then reads

DµΦ = ∂µΦ + AµΦ . (4.10)

The second term is chosen such that the covariant derivative transforms just like Φ (i.e.
DµΦ 7→ gDµΦ). Formula (4.9) is derived using a notion of parallel transport defined by
the gauge field Ã. Just like for the exterior derivative, this construction can be generalised to
a map Ωk(M, V) → Ωk+1(M, V), see section 5.12 in [15].

In order to define our Lagrangian, we choose a G-invariant inner product ⟨·, ·⟩V on V and
an Ad-invariant inner product ⟨·, ·⟩g on g (which exist by Theorem B.2 since G is compact).
Lastly, we introduce a coupling constant e ∈ R describing the strength of the interactions of
the fields. Our assumption that G is simple or U(1) ensures that there is only one coupling
constant (see Example B.11).
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26 Gauge theory

Definition 4.6. The Yang-Mills-Higgs Lagrangian L[A, Φ] ∈ C∞(M, R) is given by

L[A, Φ] = − 1
4e2 ⟨Fµν, Fµν⟩g + 1

2 ⟨DµΦ, DµΦ⟩V − U(Φ) . (4.11)

The prefactor 1
2 of the covariant derivative term is omitted if V is a complex vector space. We

choose an orthonormal basis {ta}n
a=1 of g and introduce structure constants fabc ∈ R such that

[ta, tb] = fabctc. We can expand Aµ and Fµν in this basis as Aµ = eAa
µta and Fµν = eFa

µνta. The
components are then related by

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + e fabc Ab

µ Ac
ν . (4.12)

The fields A1
µ, . . . , An

µ describe n gauge bosons, which are particles that act as force carriers.
The field strength encodes the kinetic and gradient energy of the gauge bosons. We can
re-express the Lagrangian as follows:

L[A, Φ] = − 1
4 Fa

µνFaµν + 1
2 ⟨DµΦ, DµΦ⟩V − U(Φ) . (4.13)

The Lagrangian is gauge invariant, Lorentz invariant and contains all the information of
the model. Just like for the Klein-Gordon Lagrangian (2.1) the appearance of terms that are
quadratic in the fields (e.g. a term proportional to ⟨Φ, Φ⟩V) are interpreted by saying that the
field Φ is massive. Terms of higher order in the fields correspond to interactions. The field
equations are again derived by requiring the action S =

∫
d4x L to be extremal. The energy

of a field configuration also follows from the Lagrangian. It is given by a gauge invariant
version of Equation 2.3 (see [39, Sect. 5.7]) and can be calculated using

E[A, Φ] =
∫

d3x
(

1
2 Fa

0iF
a
0i +

1
4 Fa

ijF
a
ij +

1
2 ⟨D0Φ, D0Φ⟩V + 1

2 ⟨DiΦ, DiΦ⟩V + U(Φ)
)

. (4.14)

Recall that there is a summation over a and the spatial indices i, j = 1, 2, 3 in this equation.

4.2 Electromagnetism

The gauge group of electromagnetism is G = U(1). We choose an inner product on u(1)
given by ⟨u, v⟩u(1) = −uv and pick the orthonormal basis {−i}. This basis can be used to
view Aµ as a map M → R , i.e. the corresponding u(1)-valued gauge field is −ieAµ. The
real valued gauge field Aµ describes the photon (the gauge boson of electromagnetism) and
is called the electromagnetic four potential. The coupling constant e can be interpreted as (a
dimensionless version of) the elementary electric charge. Because G is abelian, the adjoint
representation is trivial and hence Aµ transforms under a gauge transformation g as

Aµ 7→ Aµ +
i
e

g∂µg−1 . (4.15)

If g = exp(ieα) with α a smooth real valued function, the transformation becomes

Aµ 7→ Aµ + ∂µα . (4.16)
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The electric potential A0 and magnetic vector potential A are given by Aµ = (A0, A) and the
electric and magnetic fields can be computed using

E = −∇A0 − ∂0A , (4.17)
B = ∇× A . (4.18)

The expression for the field strength simplifies to Fµν = ∂µ Aν − ∂ν Aµ since the bracket [·, ·]u(1)
is zero. Moreover, F is gauge invariant because G is abelian. The components of F can be
expressed in matrix form as

Fµν =


0 E1 E2 E3

−E1 0 −B3 B2
−E2 B3 0 −B1
−E3 −B2 B1 0

 . (4.19)

In this equation E = (E1, E2, E3) is the electric field and B = (B1, B2, B3) is the magnetic field.
We see that

Ei = F0i , (4.20)

Bi = − 1
2 ε ijkFjk , (4.21)

where ε ijk denotes the three-dimensional Levi-Civita symbol. This symbol equals zero if
any index is repeated and equals the sign of the permutation (1, 2, 3) 7→ (i, j, k) otherwise.
Because F is gauge invariant, from (4.20) and (4.21) it follows that the electromagnetic fields
are gauge invariant as well.

We set the vacuum permittivity ε0 and vacuum permeability µ0 equal to 1. In the absence of
any other fields, the Lagrangian of electromagnetism then reads

L = − 1
4 FµνFµν = 1

2 (|E|
2 − |B|2) . (4.22)

Requiring the action to be extremal leads to the field equations ∂µFµν = 0, which are equiv-
alent to Maxwell equations 1 and 4 in vacuum. The other two Maxwell equations can be
stated as ∂µFνλ + ∂νFλµ + ∂λFµν = 0. This identity is automatically satisfied by the definition
of F. The energy reduces to

E =
∫

d3x
( 1

2 F0iF0i +
1
4 FijFij

)
=
∫

d3x 1
2 (|E|

2 + |B|2) . (4.23)

To add a complex scalar field Φ of charge q = ne with n ∈ Z to the model, we choose the
representation ρ : U(1) → GL(C) ∼= C∗ given by ρ(g) = gn. Under a gauge transformation
g = exp(ieα) the field then transforms as Φ 7→ exp(iqα)Φ. We see that the phase of Φ can
be gauge transformed into any function and therefore has no physical meaning. If n ̸= 0 the
covariant derivative DΦ contains interaction terms between Φ and the gauge field A.
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Chapter 5
Topological defects in gauge theories

In some gauge theories the minima of the potential are not invariant under the entire gauge
group G. For global symmetries we referred to this situation in section 2 by saying that the
symmetry is spontaneously broken. We will use the same terminology for gauge theories
and talk about spontaneous symmetry breaking of a gauge symmetry. It is however strictly
speaking not possible to break a gauge symmetry: the group G represents a mathematical
redundancy that is still present after the “symmetry breaking”. Nevertheless, the formation
of topological defects described in section 2.5 can also occur in spontaneously broken gauge
theories. The Standard Model and Grand Unified Theories extending the Standard Model
are based on such theories.

We first discuss the Higgs mechanism, which occurs during the breaking of a gauge symme-
try and is used to explain the mass of gauge bosons in the Standard Model. This mechanism
helps us to define the electromagnetic field of monopole defects in section 6. Subsequently,
we classify topological defect solutions of finite energy in a general setting using homotopy
groups. It is shown that monopoles are expected to exist in many Grand Unified Theories
based on this classification.

5.1 Symmetry breaking and the Higgs mechanism

Gauge symmetry generally requires gauge bosons to be massless, because terms propor-
tional to Aa

µ Aaµ in the Lagrangian are not gauge invariant. However, if the gauge field inter-
acts with a Higgs field it can acquire mass through the Higgs mechanism during symmetry
breaking. We introduce this mechanism by way of an example following [35] and [15].

For the example, we consider the abelian Higgs model introduced in section 2.4. Recall that
the model contains a complex scalar field Φ : M → C (which we now call the Higgs field)
in the Mexican hat potential of Figure 2.2. The model has gauge group G = U(1), and as
in section 4.2 we view the gauge field as a map Aµ : M → R by choosing the basis {−i} of
u(1). The covariant derivative has components DµΦ = ∂µΦ − ieAµΦ and the field strength
is Fµν = ∂µ Aµ − ∂ν Aµ. The Lagrangian and energy are equal to

L = − 1
4 FµνFµν + (DµΦ)∗DµΦ − 1

4 λ(Φ∗Φ − v2)2 , (5.1)

E =
∫

d3x
( 1

2 F0iF0i +
1
4 FijFij + (D0Φ)∗D0Φ + (DiΦ)∗DiΦ + 1

4 λ(Φ∗Φ − v2)2) . (5.2)
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We again remind the reader that there is a summation in (5.2) over the spacial indices i and
j. The Higgs field transforms in the fundamental representation (corresponding to a charge
q = e), i.e. after a gauge transformation g the transformed field gΦ is given by pointwise
multiplication of g and Φ, and similarly for AµΦ.

We are interested in configurations of minimal energy, for which we need the following def-
initions. Note that our definitions apply to any theory with a Yang-Mills-Higgs Lagrangian
which is invariant under a compact and connected gauge group G. The terminology is in-
herited from global symmetry breaking.

Definition 5.1. The vacuum manifold M is the set of all minima of the Higgs potential
U ∈ C∞(V, R), i.e. M = {w ∈ V | U(w) = 0}. Elements of M are vacuum vectors.

We will make two important assumptions about the vacuum manifold M:

1. Because the potential U is gauge invariant, we can restrict the action of G on V to M.
We will assume that G acts transitively on M, i.e. given w ∈ M all zeros of U are
of the form gw for some g ∈ G. This means that there is no accidental degeneracy or
additional symmetry in the model. In particular, M ⊂ V is an orbit of the G-action on
V and therefore a compact and connected embedded submanifold by Proposition B.3.

2. We assume that M is n-simple for n = 1, 2 (see Definition A.1). Proposition A.1 then
implies that we can drop the basepoint condition on maps and homotopies. Recall that
sufficient conditions for this to hold are that M is simply connected or a topological
group. A situation where M is not n-simple is analysed in section 7.

Definition 5.2. A vacuum state is an equivalence class (under global gauge transformations)
of a pair (Φ(v), A(v)) consisting of a Higgs field and a gauge field that minimise the energy.
That is: the corresponding field strength F(v) and covariant derivative DΦ(v) vanish and the
value of Φ(v) is in the vacuum manifold at every point of spacetime M.

Since the energy is gauge invariant, the definition above does not depend on the choice of
representative (Φ(v), A(v)). A gauge for the vacuum state is called a pure gauge. There always
exists a pure gauge where A(v) equals zero and Φ(v) is constant [15, Prop. 8.1.5], called a
vacuum gauge. Because G acts transitively on M, it follows that the vacuum state is unique.

In the abelian Higgs model, the vacuum manifold is a circle of radius v in the complex plane
and G = U(1) acts transitively on M. A vacuum gauge is given by A(v) ≡ 0 and Φ(v) ≡ v.
The vacuum vector v is not invariant under the G-action. Hence, analogous to a global
symmetry, if the system loses energy and decays into the vacuum state we say that the gauge
symmetry is broken to the subgroup of G that fixes the vacuum vector v.

Definition 5.3. Let w ∈ M be a vacuum vector. The unbroken subgroup H is the stabiliser sub-
group Gw ⊂ G of w. If H ⊊ G, we say that the gauge symmetry of the system is spontaneously
broken.

The unbroken group H is a Lie subgroup of G and by Proposition B.3 the manifold M is
diffeomorphic to G/H. Although the explicit embedding of H in G depends on the choice of
vacuum vector, the group H is independent of this choice up to isomorphism. In the abelian
Higgs model H is trivial and hence M is diffeomorphic to G = U(1). In particular, M is a
topological group and the second assumption about the vacuum manifold is satisfied.

In quantum field theory small perturbations of the fields around the vacuum state corre-
spond to particles. Let us consider perturbations in the vacuum gauge (A(v), Φ(v)) ≡ (0, v)
described by Aµ and Φ = v + χ + iθ, where χ and θ are (small) real scalar fields. Inserting
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5.1 Symmetry breaking and the Higgs mechanism 31

the perturbations into the Lagrangian (5.1), neglecting terms of higher than quadratic order
in the fields and their derivatives, we obtain

L(2) = − 1
4 FµνFµν + ∂µχ∂µχ + e2v2 (Aµ − 1

ev ∂µθ
) (

Aµ − 1
ev ∂µθ

)
− λv2χ2 . (5.3)

Only the derivatives of θ appear in the Lagrangian, implying that θ is a massless field. The
reason for this is that θ corresponds to a perturbation tangent to M. Since the potential U
attains its minimum on all of M, it follows using a Taylor expansion that it is zero up to
second order in θ (see [15, Thm. 8.1.15] for a proof in the general case). This means that
the field θ only enters (5.3) through the covariant derivative, which up to second order only
contains the derivatives of θ.

A massless field corresponding to perturbations tangent to M is called a Nambu-Goldstone
field [12]. If the broken symmetry were global, there would be no gauge field and the Nambu-
Goldstone field θ would contribute a term ∂µθ∂µθ to the Lagrangian (5.3). In this case the cor-
responding massless particle would be observable. However, for broken gauge symmetries
the Nambu-Goldstone fields are not observed. In fact, the field θ can be made to disappear
from the Lagrangian (5.3) using the transformation g = exp(−iθ/v), showing that it is not
physical in gauge theories. A gauge where all Nambu-Goldstone fields disappear is called a
unitary gauge. In such a gauge we have

L(2) = − 1
4 FµνFµν + ∂µχ∂µχ + e2v2Aµ Aµ − λv2χ2 . (5.4)

We see that the field χ describing a perturbation orthogonal to M and the gauge field are
massive. To find their masses, we need to compare the field equations to the Klein-Gordon
equation (2.5). Extremising the action leads to the equation (2.2) for χ and Aµ, which in the
unitary gauge read

(□+ λv2)χ = 0 , (5.5)

∂µFµν + 2e2v2Aν = 0 . (5.6)

From (5.5) we see that the field χ has mass mχ =
√

λv. Equation (5.6) requires a bit more
work: we have ∂ν∂µFµν = 0 by the antisymmetry of Fµν, so differentiating (5.6) we obtain
∂ν Aν = 0. Writing out the term ∂µFµν in the equation of motion and using this equality yields
(□+ 2e2v2)Aν = 0. Hence, the gauge field has mass mA =

√
2ev. We say the gauge boson

has acquired mass by “absorbing” the Nambu-Goldstone field. This is the Higgs mechanism.

The general case is covered in section 6 of [35] and in section 8 of [15] from a more math-
ematical perspective. We choose a vacuum gauge where A(v) is zero and Φ(v) is constant
and equal to a vacuum vector Φ0. If the gauge group G and the unbroken group H have di-
mensions n and k respectively, we can find a suitable orthonormal basis t1, . . . , tn of g where
t1, . . . , tk form a basis of the Lie algebra h of H. The generators of h are called the unbroken
generators. By Lemma B.1 they satisfy tiΦ0 = 0 (1 ≤ i ≤ k). The associated gauge bosons
remain massless*.

*Note that the unbroken part of the gauge field satisfies DµΦ = 0. This implies Dµ(DνΦ)− Dν(DµΦ) = 0,
which reduces to FµνΦ = 0. This equation can be used to find the massless components in any gauge.
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32 Topological defects in gauge theories

Each of the broken generators tk+1, . . . , tn corresponds to a perturbation tangent to M and
hence would give rise to a Nambu-Goldstone field. These fields get “absorbed” by the cor-
responding gauge bosons, which become massive. In addition, a massive scalar field ap-
pears for each perturbation orthogonal to M (with respect to the inner product Re⟨·, ·⟩V on
TΦ0V ∼= V).

The Higgs mechanism is used to explain why the gauge bosons W+, W− and Z0 of the weak
interaction have mass. In this model, the electroweak interaction is spontaneously broken into
the weak interaction and electromagnetism at energies below the electroweak scale (around
246 GeV). The electroweak gauge group is SU(2) × U(1), which is broken down to a sub-
group U(1)em describing electromagnetism. The resulting massive gauge bosons correspond
to the gauge bosons of the weak interaction, while the massless gauge boson is identified
with the photon. The model correctly predicts the masses and other properties of the W±

and Z0 bosons. The massive particle corresponding to the perturbation orthogonal to M,
the Higgs boson, was discovered in 2012 at CERN [6].

5.2 Topological classification of defects

In theories with spontaneous symmetry breaking, topological defects can exist depending
on the homotopy groups of the vacuum manifold M = U−1(0). Examples include the kink
and the vortex described in section 2. We now turn to a general description of defects in
gauge theories following [8] and [3]. The considerations are done at a fixed time, and hence
the explicit time dependence of the fields is dropped. We begin by analysing the situation
in three space dimensions. Consider a general theory with a compact and connected gauge
group G and Lagrangian (4.13), where the Higgs potential is such that symmetry breaking
occurs with unbroken group H ⊊ G. We are looking for topological defect configurations
for which the energy (4.14) is finite. To simplify the problem, we fix a gauge to get rid of the
unphysical degrees of freedom. It is always possible to make a gauge transformation such
that A0 = 0 [8]. The energy then reads

E =
∫

d3x
(

1
2 (∂0Aa

i )(∂0Aa
i ) +

1
4 Fa

ijF
a
ij +

1
2 ⟨∂0Φ, ∂0Φ⟩V + 1

2 ⟨DiΦ, DiΦ⟩V + U(Φ)
)

. (5.7)

We still have the freedom to make time-independent gauge transformations, since these do
not change A0 (see Equation 4.7). This freedom can be used to transform to a radial gauge in
which the radial component Ar = A( ∂

∂r ) is zero for r ≥ 1 [8]. Note that we have to exclude
a small region around the origin because the radial component is not defined at the origin.
Since all the terms in (5.7) are nonnegative, we obtain the following inequality in spherical
coordinates:

E ≥
∫ ∞

1

∫ π

0

∫ 2π

0
r2 sin(θ)dϕdθdr

( 1
2 ⟨DrΦ, DrΦ⟩V + U(Φ)

)
(5.8)

=
∫ ∞

1

∫ π

0

∫ 2π

0
sin(θ)dϕdθdr

( 1
2 ⟨r∂rΦ, r∂rΦ⟩V + r2U(Φ)

)
. (5.9)

In particular, if the energy is to be finite it is necessary for the radial integral to converge that
the integrand tends to zero as r → ∞ in any direction n ∈ S2:
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lim
r→∞

r∂rΦ(rn) = 0 , (5.10)

lim
r→∞

r2U(Φ(rn)) = 0 . (5.11)

To meet requirement (5.10) we will assume that limr→∞ Φ(rn) exists. From (5.11) it then
follows that the limit must be an element of M. Hence, to any finite energy configuration
we can associate an asymptotic function Φ∞ : S2 → M given by

Φ∞(n) = lim
r→∞

Φ(rn) . (5.12)

We will assume that this limit is attained in any direction at a finite radius, so that Φ∞ is equal
to Φ restricted to a large sphere centered at the origin (this is generally true up to a negligible
error). The map Φ∞ is then continuous and defines an element [Φ∞] ∈ π2(M) of the second
homotopy group of the vacuum manifold (recall the assumption that M is 2-simple). Since
time evolution is continuous and keeps the energy finite, it induces a continuous deformation
of Φ∞ and hence the homotopy class [Φ∞] does not change over time.

In order for this homotopy class to be physically interesting, it needs to be verified that it
does not change under global gauge transformations. This is the content of the following
lemma, adapted from section 6.3 in [8].

Lemma 5.1. Let Φ and Φ′ be gauge equivalent field configurations of finite energy such that the
associated mappings Φ∞ and Φ′

∞ exist. Then Φ∞ and Φ′
∞ are homotopic.

Proof. Let g : M → G be a gauge transformation such that Φ′(x) = g(x)Φ(x). On a very
large sphere of radius r we then find Φ′

∞(n) = g(rn)Φ∞(n) for all n ∈ S2. Consider the map
Γ1 : S2 × [0, 1] → M given by Γ1(n, s) = g(srn)Φ∞(n). This map defines a homotopy from
g(0)Φ∞ to Φ′

∞. Moreover, since G is connected there exists a path γ from the unit element
e ∈ G to g(0). This path induces the homotopy Γ2(n, s) = γ(s)Φ∞(n) from Φ∞ to g(0)Φ∞. It
follows that Φ and Φ′ are homotopic through the homotopies Γ1 and Γ2.

We find that the class [Φ∞] ∈ π2(M) is a conserved physical property of a finite energy
configuration. We will refer to it as the topological charge of Φ. The topological charge can
correspond to a physical observable, like a magnetic charge (see section 6). If the topolog-
ical charge is nontrivial, the field Φ cannot decay into the vacuum state since the vacuum
state corresponds to a constant map Φ and hence to the trivial homotopy class. In this case
Φ describes a topological defect configuration. If Φ takes values in M in all of space, we
can define a homotopy from Φ∞ to a constant map by restricting Φ to smaller and smaller
spheres. Hence, for defect configurations the map Φ has to leave M somewhere near the
origin. This results in a nonzero localised energy density of the defect.

Next, we show how to construct topological defects of finite energy if π2(M) ̸= 0. We
will again be working in the gauge A0 = 0 and find a field configuration such that each of
the terms in (5.7) gives a finite contribution to the energy. Let Ψ∞ : S2 → M be a smooth
representative of a nontrivial homotopy class of π2(M). The existence of such a map follows
from the Whitney approximation theorem [24, Thm. 6.26]. We can then choose a Higgs field
of the form Φ(rn) = f (r)Ψ∞(n), where f : [0, ∞) → [0, 1] is a smooth function that is equal
to zero in a neighborhood of 0 and equal to 1 for r ≥ 1. It follows that Φ is smooth and its
associated asymptotic function is Ψ∞.
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Since Φ(rn) lies in the vacuum manifold for r > 1, the partial derivatives ∂iΦ(rn) are tangent
to M. Because G acts transitively on M, at any point rn we can find an element Ai(rn) ∈ g
such that

DiΦ(rn) = ∂iΦ(rn) + Ai(rn)Φ(rn) = 0 , (5.13)

i.e. the gauge field cancels an infinitesimal change in Φ. This follows from the fact that the
map g → Tf (rn)M sending X to XΦ(rn) is surjective: the kernel has dimension equal to
dim H = dim G − dim M by Lemma B.1, and therefore the image has dimension dim M.
We show in Proposition B.4 using an Ehresmann connection that it is possible to choose an
element Ai(rn) satisfying (5.13) at every point with r > 1 in a smooth way.

The construction of Proposition B.4 gives us a gauge field such that the fourth term of the
energy (5.7) is zero outside of a bounded region and hence gives a finite contribution. More-
over, since Φ(rn) = Φ(n) for r ≥ 1 the derivatives ∂iΦ(rn) fall off like 1/r as r → ∞ (this
follows directly from the expression for the gradient ∇Φ in spherical coordinates). Together
with equation (5.13), we find that the gauge field also goes like 1/r as r → ∞. The field
strength then goes like 1/r2, and its square like 1/r4. This means that the field strength goes
to zero fast enough for the integral over the second term in (5.7) to converge. Note that this
does not work in higher dimensions.

The term U(Φ) is zero for r ≥ 1, so the only contributions to the energy that are left are
the terms involving the time derivatives ∂0Φ and ∂0Aa

i . However, these time derivatives
form an independent set of data, and we can even choose our initial conditions such that
∂0Φ = ∂0 Aa

i = 0. It follows that we have found a finite energy configuration with associated
nontrivial homotopy class [Ψ∞]. A corresponding topological defect can be found by solving
the field equations numerically with the configuration (Φ, A) as initial condition. We see that
topological defects exist whenever π2(M) ̸= 0.

The arguments in this section can be generalised to d ≤ 3 space dimensions by considering
maps from Sd−1 into M. The defects in d = 3 dimensions discussed above are monopoles.
They are pointlike and have finite energy. For d = 2 we obtain vortices classified by π1(M).
Viewed as solutions in three space dimensions that are independent of one of the space coor-
dinates, these are cosmic strings that have their energy concentrated on a line and have finite
energy per unit length. In d = 1 space dimension the relevant set is π0(M). The defects
correspond to two-dimensional domain walls of finite energy per unit area. Note that M is
always connected in the gauge theories considered in this thesis, so this kind of defect can
only occur in models with a global symmetry.

Example 5.1. The kink covered in section 2.2 is a topological defect in d = 1 space dimen-
sion in a model with a global Z2 symmetry. It has vacuum manifold M = {±a} and the
kink solution φ (equation 2.8) defines a mapping φ∞ : S0 → M belonging to the nontrivial
homotopy class of π0(M) ∼= Z2 because it sends the two elements of S0 to different path
components of M.

Example 5.2. The abelian Higgs model discussed in sections 2.4 and 5.1 has vacuum man-
ifold M ∼= S1, and since π1(M) ∼= Z we were able to construct vortex configurations in
this model. Our configurations had an asymptotic Higgs field Φ∞ : S1 → M of the form
Φ∞(θ) = vexp(i f (θ)). From Lemma 3.3 it follows that the winding number n of Φ∞ is given
by 2πn = f (2π)− f (0). This winding number is the topological charge of Φ, and we have
seen in section 2.4 that this integer determines the magnetic flux of the defect.

34
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Example 5.3. The Georgi-Glashow model introduced in section 2.4 has vacuum manifold
M ∼= S2. We have π2(S2) ∼= Z, and therefore this model admits monopole solutions. The
hedgehog configuration of Figure 2.4 corresponds to the identity map S2 → S2 ∼= M. Theo-
rem 3.1 implies that the corresponding monopole has topological charge 1.

5.3 Monopoles in Grand Unified Theories

We have seen that topological defect solutions exist in a theory where symmetry breaking
occurs in such a way that πn(M) ̸= 0 for some n ≤ 2. Moreover, such solutions are always
formed in this case through the Kibble mechanism. For the electroweak symmetry breaking
in the Standard Model, the vacuum manifold M ∼= (SU(2) × U(1))/U(1)em is a 3-sphere.
Since πn(S3) = 0 for n ≤ 2 by Theorem 3.2, no topological defects are formed.

However, topological defects are a general prediction of Grand Unified Theories (GUTs).
These are models that try to unify all three gauge interactions (electromagnetism, weak force
and strong force) into a simple compact connected gauge group G at very high energies
(around 1015 GeV), so that all interactions are described by a single coupling constant e. This
symmetry group G is then broken down to the symmetry group H = SU(3)× SU(2)× U(1)
of the Standard Model, and even further to SU(3)× U(1)em through electroweak symmetry
breaking. We will show following [3] that monopoles are generally predicted by GUTs, even
if the gauge group is only semisimple.

Since the gauge boson of electromagnetism (the photon) is massless, the corresponding U(1)
gauge group must be unbroken in nature. For this reason, the unbroken group H during the
symmetry breaking of G contains a factor U(1), and hence by Lemma 3.2 the fundamental
group π1(H) contains a factor Z. Moreover, by Proposition 3.1 there is an exact sequence
(recall the assumption that G acts transitively on M)

· · · → π2(G) → π2(M) → π1(H) → π1(G) → . . . (5.14)

Theorem 3.4 gives π2(G) = 0, so we have π2(M) ∼= ker(π1(H) → π1(G)). Using the fact
that G is semisimple, Theorem 3.5 implies that this kernel is nontrivial (and even infinite)
because π1(G) is finite and π1(H) is not. We see that π2(M) ̸= 0, i.e. monopole solutions
exist in (many) GUTs. Since the solutions are stable, the monopoles are expected to still be
around today.

So why have these monopoles never been observed? One possible explanation is that they
simply were never formed, for example because the early universe is not described by a GUT
or because the unification temperature was never reached. The other possibility is that they
do exist but we have not found them (yet). This option is problematic, because calculations
show that the monopoles formed in the early universe would dominate the energy density
of the universe today [30]. This is known as the monopole problem. An elegant solution to
this problem could be provided by cosmic inflation [14]. Inflation refers to a period of time
shortly after the monopole formation during which the universe expanded at an exponential
rate, diluting the monopole density to an acceptable level. Besides the monopole problem,
cosmic inflation could also solve two other major problems in cosmology: the horizon and
flatness problems.
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Chapter 6
Magnetic monopoles

The monopoles constructed in section 5.2 carry a topological charge given by the homotopy
class of the map Φ∞. In this section we discuss in what sense this topological charge is mag-
netic. We review the Dirac monopole and its connection to homotopy theory. This leads to
a topological interpretation of magnetic charge, and in section 6.3 it is shown that in some
gauge theories the topological charge of monopole solutions is magnetic in this sense. Sec-
tion 6.4 covers the ’t Hooft-Polyakov monopole, which is an example of a topological defect
with a magnetic charge.

6.1 Dirac’s quantisation condition

We follow the approach by Wu and Yang [43] as treated in [31] and [7] to describe the Dirac
monopole. In this subsection, we consider vector potentials A = (A1, A2, A3) defined on
open subsets W of R3. The signature of the three dimensional metric is (+,+,+), i.e. the
corresponding gauge field is given by A = −ieAidxi = −ieAidxi ∈ Ω1(W, u(1)).

The electric field E of an electric charge q positioned at the origin is defined on R3 \ {0} and
given by E = q

4πr2 r̂, where r̂ is a unit vector in the radial direction. Similarly, we can consider
the magnetic field

B =
g
r2 r̂ . (6.1)

For this field the magnetic flux through a sphere around the origin is 4πg. We call g, the
magnetic flux divided by 4π, the magnetic charge contained inside the sphere. Objects car-
rying a nonzero magnetic charge are magnetic monopoles. There exists no vector potential
A defined on R3 \ {0} describing (6.1): if B = ∇× A the magnetic flux through a sphere
around the origin would be zero by Stokes’ theorem instead of 4πg. However, it is possible
to define vector potentials locally on the upper and lower regions of space

WU = {(r, ϕ, θ) ∈ R3 \ {0} | θ < 3
4 π} , (6.2)

WL = {(r, ϕ, θ) ∈ R3 \ {0} | θ > 1
4 π} , (6.3)
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by

AU =
g(1 − cos θ)

r sin θ
ϕ̂ , (6.4)

AL = − g(1 + cos θ)

r sin θ
ϕ̂ . (6.5)

AU and AL are defined to be zero for θ = 0 and θ = π respectively. The magnetic field given
by these potentials reduces to (6.1). The corresponding u(1)-valued 1-forms are

AU = −ieg(1 − cos θ)dϕ , (6.6)

AL = ieg(1 + cos θ)dϕ . (6.7)

For the two vector potentials to describe the same physics, they must be related by a gauge
transformation on WU ∩ WL. Indeed, for Ω = exp(i2egϕ) we find

AU − AL = −2iegdϕ = ΩdΩ−1 . (6.8)

Under this gauge transformation, a complex scalar field Φ of charge e transforms in the
fundamental representation as Φ 7→ ΩΦ. In order for the transformed field to be single
valued, we must require that Ω(ϕ = 2π) = Ω(ϕ = 0). This leads to the Dirac quantisation
condition

2eg ∈ Z . (6.9)

It follows that magnetic charge is quantised. Conversely, if a single magnetic monopole of
charge g exists, we find that all electric charges must be multiples of 1

2g . Hence magnetic
monopoles provide an attractive explanation for the quantisation of electric charge observed
in nature.

Note that the integer n = 2eg is equal to the winding number of the gauge transformation
Ω = exp(i2egϕ) restricted to a circle centered at the origin by Lemma 3.3. In general, we can
interpret Ω as an object detecting the magnetic charge [31, Sect. 4.1].

Lemma 6.1. Suppose a magnetic field is given by AU ∈ Ω1(WU , u(1)) and AL ∈ Ω1(WL, u(1)).
Let Ω be a gauge transformation relating AU and AL on WU ∩ WL, i.e.

AU
i = AL

i +
i
e

Ω∂iΩ−1 . (6.10)

Consider a circle S1
R of radius R centered at the origin in the θ = π

2 plane. Then the total magnetic
charge g contained inside the sphere S2

R of radius R centered at the origin is equal to g = n
2e , where n

is the winding number of Ω|S1
R
.

Proof. Let f : I → R be a continuous lift of the loop γ(t) = Ω|S1
R
(ϕ = 2πt) along the covering

map p : R → U(1), i.e. Ω|S1
R
(ϕ = 2πt) = exp(2πi f (t)). Recall that the winding number of

Ω|S1
R

is given by n = f (1)− f (0). Moreover, f is smooth because p is a local diffeomorphism.

38
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Let HU
R , HL

R ⊂ S2
R denote the upper an lower hemispheres. By Stokes’ theorem, the magnetic

flux Ψ through S2
R is

Ψ =
∫∫

S2
R

B · ds =
∫∫

HU
R

(∇× AU) · ds +
∫∫

HL
R

(∇× AL) · ds =
∮

S1
R

AU · dl −
∮

S1
R

AL · dl

=
∮

S1
R

i
e

Ω∇Ω−1 · dl =
i
e

∫ 2π

0
(Ω∇Ω−1)|S1

R
(ϕ) · (Rϕ̂dϕ) =

i
e

∫ 2π

0
(Ω∂ϕΩ−1)|S1

R
(ϕ)dϕ

=
i
e

∫ 1

0
(Ω∂tΩ−1)|S1

R
(ϕ = 2πt)dt =

i
e

∫ 1

0
−2πi∂t f (t)dt =

2π

e
( f (1)− f (0)) =

2πn
e

.

(6.11)

The magnetic charge producing this flux is g = n
2e .

Note that the map Ω|S1
R

changes continuously as we vary R, so the winding number n is con-
stant as a function of R. By considering smaller and smaller circles, we find that the magnetic
charge must be concentrated at the origin and hence the monopole is a point singularity.

6.2 Dirac monopole and the Hopf fibration

The Dirac monopole has a singularity at the location of the monopole and hence is defined
on R3 \ {0}, which is not a contractible space. Therefore, not all principal fibre bundles
over R3 \ {0} have to be trivial, so we can not always choose a global section as we did in
section 4.1. This is exactly what happens with the gauge field describing (6.1): it is given by
a connection on a nontrivial principal U(1)-bundle, and after choosing local sections it takes
the form of (6.6) and (6.7). Because these expressions do not depend on the radial coordinate,
we can view the gauge field as being defined on S2. Under this identification, the gauge field
is the natural connection on the Hopf bundle defined in Example B.15 [25].

Proposition 6.1. The Dirac monopole with magnetic field (6.1) and unit magnetic charge g = 1
2e is

described by the natural connection Ã on the Hopf bundle. Let h1 and h2 be the local trivialisations
and τ : S2 ∼→ CP1 the diffeomorphism defined in Example 3.2. Then after choosing the local sections
sU(x) = h−1

1 (τ(x), 1) and sL(x) = h−1
2 (τ(x), 1) we have AU = s∗U Ã and AL = s∗L Ã, where AL

and AS are given by (6.6) and (6.7).

Proof. The sets Ui = {[z1 : z2] ∈ CP1 | zi ̸= 0} on which the trivialisations are defined
correspond to S2 \ {(0, 0,−1)} for i = 1 and S2 \ {(0, 0, 1)} for i = 2 under τ−1, implying
that sU and sL are well-defined on WU and WL respectively. Note that sU and sL are indeed
local sections, as follows from the fact that the hi are local trivialisations. Let us begin by
computing the map τ. The homeomorphism σ : S2 ∼→ C ∪ {∞} is constructed using the
stereographic projection and sends the north pole to ∞:

σ(x1, x2, x3) =

{
x1+ix2

1−x3 , x3 ̸= 1
∞ , x3 = 1.

(6.12)

Composing with the inverse of µ : CP1 ∼→ C ∪ {∞}, [z1 : z2] 7→ z1

z2 with (z1, z2) ∈ S3 gives

τ(x1, x2, x3) = (µ−1 ◦ σ)(x1, x2, x3) =


[

x1+ix2√
2(1−x3)

: 1−x3√
2(1−x3)

]
, x3 ̸= 1

[1 : 0] , x3 = 1.
(6.13)
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We can now write down an explicit formula for sU and sL using τ and the maps h−1
i given

by h−1
i ([z1 : z2], λ) = λ|zi|(zi)−1(z1, z2). Using spherical coordinates (ϕ, θ) on S2 we obtain

sU(ϕ, θ) = h−1
1 (τ(cos ϕ sin θ, sin ϕ sin θ, cos θ), 1) = (cos θ

2 , sin θ
2 e−iϕ) , (6.14)

sL(ϕ, θ) = h−1
2 (τ(cos ϕ sin θ, sin ϕ sin θ, cos θ), 1) = (cos θ

2 eiϕ, sin θ
2 ) . (6.15)

For (z1, z2) ∈ S3 we view T(z1,z2)S3 as a subspace of C2. The differentials of sU and sL are then
equal to

D(ϕ,θ)sU = (− 1
2 sin θ

2 dθ, 1
2 cos θ

2 e−iϕdθ − i sin θ
2 e−iϕdϕ) , (6.16)

D(ϕ,θ)sL = (− 1
2 sin θ

2 eiϕdθ + i cos θ
2 eiϕdϕ, 1

2 cos θ
2 dθ) . (6.17)

Here (D(ϕ,θ)sU)(v) and (D(ϕ,θ)sL)(v) are given in terms of dθ|(ϕ,θ)(v) and dϕ|(ϕ,θ)(v) for
v ∈ T(ϕ,θ)S2. Finally, we compute the pullbacks of Ã (see equation (B.18)):

AU = s∗U Ã = 1
2 ((cos θ

2 )(−
1
2 sin θ

2 dθ)− (cos θ
2 )(−

1
2 sin θ

2 dθ)

+ (sin θ
2 eiϕ)( 1

2 cos θ
2 e−iϕdθ − i sin θ

2 e−iϕdϕ)− (sin θ
2 e−iϕ)( 1

2 cos θ
2 eiϕdθ + i sin θ

2 eiϕdϕ))

= −i sin2 θ
2 dϕ = − 1

2 i(1 − cos θ)dϕ , (6.18)

AL = s∗L Ã = 1
2 ((cos θ

2 e−iϕ)(− 1
2 sin θ

2 eiϕdθ + i cos θ
2 eiϕdϕ)

− (cos θ
2 eiϕ)(− 1

2 sin θ
2 e−iϕdθ − i cos θ

2 e−iϕdϕ) + (sin θ
2 )(

1
2 cos θ

2 dθ)− (sin θ
2 )(

1
2 cos θ

2 dθ))

= i cos2 θ
2 dϕ = 1

2 i(1 + cos θ)dϕ . (6.19)

Comparing with (6.6) and (6.7) we indeed see that this gauge field describes a Dirac monopole
of unit charge g = 1

2e .

We find that the Hopf bundle provides the principal bundle structure of the Dirac monopole,
showing that the Hopf map S3 → S2 has applications not just in mathematics (e.g. to calcu-
late π3(S2) as in section 3) but also in physics. An overview of other physical applications of
the Hopf bundle can be found in [41].

6.3 Magnetic charge of topological defects

In section 5.3 we have seen that π2(M) is nonzero in many GUTs, and hence there exist field
configurations (Φ, A) describing a monopole defect. In this section we show that in many
situations there is a natural way to assign a magnetic charge to these configurations [31]. We
again work at a constant time and drop the time dependence. We will assume that the gauge
group G is a simply connected compact matrix group and the unbroken group H ∼= U(1)
describes electromagnetism. From the exact sequence (5.14) we then obtain isomorphisms
π2(M) ∼= π1(H) ∼= Z, so we can view the topological charge [Φ∞] ∈ π2(M) of the Higgs
field Φ as an integer n. Note that the topological charge in this sense is only defined up to
sign until we choose an isomorphism π2(M)

∼→ Z. Similarly, every loop in H has a winding
number m ∈ Z defined up to sign.

40
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6.3 Magnetic charge of topological defects 41

We will identify the massless gauge boson corresponding to the unbroken generator of the
Lie algebra h of H with the photon. To calculate the electromagnetic field, we would like to
transform to a unitary gauge where Φ is constant and equal to a vacuum vector Φ0 ∈ M and
embed H into G as the stabiliser of Φ0. However, if n ̸= 0 this cannot be achieved globally
by Lemma 5.1. We can try to transform to a unitary gauge locally far away from the core of
the defect by defining gauge transformations on the sets VU = WU ∩ S2

∞ and VL = WL ∩ S2
∞.

Here WU and WL are given by (6.2) and (6.3) and S2
∞ is a very large sphere around the origin

such that Φ = Φ∞ on this sphere. The domains can always be extended to WU and WL (such
that the transformations are independent of the radial coordinate) to meet the requirement
of Definition 4.4 that the domains are open in R3.

Lemma 6.2. There exist continuous maps gU : VU → G and gL : VL → G such that the maps
gUΦ|VU : VU → M and gLΦ|VL : VL → M are constant and equal to Φ0 everywhere.

Proof. Recall from Proposition 3.1 that H → G → M is a fibre bundle, where π : G → M is
defined by π(g) = gΦ0. Since the closures VU and VL are homeomorphic to the closed disk
D2, by the homotopy lifting property (see Definition A.2) we can lift Φ|VU and Φ|VL along π

to maps Φ̃|VU and Φ̃|VL into G (by restricting the lifts on VU and VL). The desired maps are
then given by gU = (Φ̃|VU )−1 and gL = (Φ̃|VL)−1.

We will assume that we can choose the lifts in Lemma (6.2) such that the maps gU and gL

are smooth, making them into local gauge transformations. It is claimed in section 4.3 of [31]
that this is possible, and we will construct smooth maps gU and gL explicitly for the ’t Hooft-
Polyakov monopole in section 6.4.

Let us denote the gauge field after the transformations gU and gL on VU and VL by AU and
AL respectively. In this unitary gauge the Higgs field is constant far away from the origin,
and so the first term in the covariant derivative (4.9) vanishes. In order for the energy to
remain finite, the second term must also (asymptotically) vanish, i.e. AU

µ Φ0 = AL
µΦ0 ≡ 0.

It follows that the gauge field represents a small perturbation taking values in h at large
distances in this gauge and hence describes the electromagnetic field.

On VU ∩ VL the fields AU and AL are related by the gauge transformation Ω = gU(gL)−1.
Since gUΦ = gLΦ ≡ Φ0 on VU ∩ VL we find ΩΦ0 = Φ0, so Ω takes values in the unbroken
subgroup H. On the equator S1

∞ ⊂ S2
∞ we then find ΩAL

µΩ−1 = AL
µ (the adjoint representa-

tion of H on h is trivial because H ∼= U(1) is abelian), so the transformation rule (4.7) reads

AU
µ = AL

µ + Ω∂µΩ−1 . (6.20)

This equation looks very similar to (6.10). Let us choose a generator t1 of h and identify the
t1-component of Aµ with a coupling constant e times the electromagnetic four potential, as
we did in section 4.2 for H = U(1). Just like in Lemma 6.1 we can calculate the magnetic
flux through S2

∞ and find that the magnetic charge of the defect equals (up to sign) m times
a minimal magnetic charge gmin, where m equals the winding number of Ω|S∞

1
: S∞

1 → H.
Hence, we only need to verify that m ̸= 0 in order to conclude that the topological defect
is indeed a magnetic monopole. This follows from the characterisation of the connecting
homomorphism δ : π2(M) → π1(H) given in Proposition A.2.

Proposition 6.2. The winding number m of the gauge transformation Ω|S∞
1

is equal up to sign to
the topological charge n of Higgs field Φ.
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Proof. Note that (gU)−1 and (gL)−1 are lifts of Φ along π : G → M, π(g) = gΦ0. Recall from
Proposition B.3 that π induces a diffeomorphism G/H ∼→ M. Under this diffeomorphism,
the maps (gU)−1 and (gL)−1 correspond to the lifts Ψ+ and Ψ− in Proposition A.2. This
proposition tells us that δ([Φ∞]) = [Ω|S1

∞
], where δ : π2(M) → π1(H) is the connecting

homomorphism. Because π2(G) = π1(G) = 0 the long exact sequence (5.14) gives that δ is
an isomorphism, and the result follows.

We see that the topological charge of the monopole can be identified with the magnetic
charge*. Just like for the Dirac monopole, the magnetic charge is quantised. However, GUT
monopoles are nonsingular in all of space. For the Dirac monopole we found a singularity at
the origin because we cannot continuously change the winding number of the gauge trans-
formation Ω to zero as the radius of S1

∞ decreases. In GUTs Ω can leave the U(1) subgroup
and wander through the larger group G as the radius decreases, which is why we can avoid
the singularity.

More generally, suppose H is any (compact and connected) gauge group. Consider a con-
figuration described by h-valued gauge fields AU on VU and AL on VL. We can define the
magnetic charge enclosed by S2

∞ to be the homotopy class [Ω|S1
∞
] ∈ π1(H), where Ω is a

H-valued gauge transformation relating AU and AL on VU ∩ VL [31, Sect. 4.2]. Note that H
has to be connected for this element to be well-defined: an example where this is not the case
is worked out in section 7. We have seen in Lemma 6.1 that this definition coincides with
our expectation when H = U(1). For any monopole defect created during the breaking of a
simply connected gauge group G to H we find that the topological charge can be identified
with the magnetic charge. If G is not simply connected, every monopole still has a nonzero
magnetic charge: the map δ : π2(M) → π1(H) is still injective because π2(G) = 0.

6.4 ’t Hooft-Polyakov monopole

In this section, we study monopole defects in the Georgi-Glashow model introduced in sec-
tion 2.4. A monopole solution carrying a magnetic charge was found in 1974 by ’t Hooft
[18] and Polyakov [28]. Our approach follows [35] and [10]. The model has gauge group
G = SU(2) and the Higgs field Φ is in the adjoint representation (i.e. the Higgs vector space
is su(2) and G acts on Φ as Φ 7→ gΦg−1, see Example B.9). We choose a basis ta = 1

2i τa
(a = 1, 2, 3) of su(2), where τa are the Pauli matrices given by

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (6.21)

This basis is orthonormal with respect to −2 times the trace, i.e. ⟨A, B⟩g = −2Tr(AB). The
structure constants are given by the Levi-Civita symbol fabc = εabc (see section 4.2).

For any g ∈ SU(2), the linear map Ad(g) : su(2) → su(2), A 7→ gAg−1 preserves the norm
and can hence be seen as an orthogonal transformation, i.e. an element of O(3). Since G is
connected, its image under Ad is connected as well. The image contains Ad(I) = Id and
therefore is part of the connected component SO(3) of O(3). It follows that we can view a
group element g as a rotation in field space. It can be verified that Ad : SU(2) → SO(3)
is surjective and has kernel {±I}, and in fact this map defines the double cover of SO(3)
mentioned in section 3.3.

*Note that we have disregarded the electric charge in the considerations above. It is in fact possible for a
defect to carry both electric and magnetic charge: such configurations are called dyons [38].

42
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6.4 ’t Hooft-Polyakov monopole 43

The field Φ can be described using three real scalar fields Φa such that Φ = Φata, and the
gauge field is expanded in the usual way as Aµ = eAa

µta with coupling constant e. The gauge
field acts on Φ via the commutator [Aµ, Φ]. Hence, the covariant derivative expressed in
components reads

(DµΦ)a = ∂µΦa + eεabc Ab
µΦc . (6.22)

The Lagrangian is equal to

L[A, Φ] = − 1
4 Fa

µνFaµν + 1
2 (DµΦ)a(DµΦ)a − 1

4 λ(ΦaΦa − v2)2 , (6.23)

where λ and v are positive constants. Note that this Lagrangian equals (2.19) if we identify
su(2) with R3 using the chosen basis. The potential leads to symmetry breaking: the vacuum
manifold M is a 2-sphere with radius v in field space. M is simply connected and therefore
n-simple for all n, and G acts transitively on M because any two vacuum vectors are related
by a rotation. We choose Φ0 = vt3 as our vacuum vector. Then t3 is the only generator that
commutes with Φ0 and hence is unbroken. It gives rise to an unbroken subgroup

H = {exp(xt3) | x ∈ R} =

{(
eix 0
0 e−ix

)∣∣∣∣ x ∈ R

}
(6.24)

that is isomorphic to U(1) and consists of elements acting as rotations around the third axis
in field space. Due to the Higgs mechanism two of the gauge bosons acquire a mass m = ev,
while the third one remains massless. In a gauge where Φ ≡ Φ0 the massless component
of the gauge field is A3

µ and we will identify this with the electromagnetic four potential.
Because SU(2) is simply connected, the exact sequence (5.14) gives π2(M) ∼= π1(U(1)) ∼= Z.
Hence, monopole defects exist in this model. The field equations are (see [10])

(
DµFµν

)a
= eεabc(DνΦ)bΦc , (6.25)(

DµDµΦ
)a

= −λ(ΦbΦb − v2)Φa . (6.26)

We will search for monopole solutions that do not depend on time in the gauge A0 = 0,
implying that the Higgs field has no kinetic energy (D0Φ = 0) and by (4.17) that there is no
electric field. Recall that this still leaves us the freedom to make time-independent gauge
transformations. The energy is given by

E[A, Φ] =
∫

d3x
(

1
4 Fa

ijF
a
ij +

1
2 (DiΦ)a(DiΦ)a + 1

4 λ(ΦaΦa − v2)2
)

. (6.27)

The asymptotic Higgs field Φ∞ needs to belong to a nontrivial homotopy class of π2(M),
which we can accomplish using the hedgehog configuration of Figure 2.4. We require that

Φa(rn) = nav as r → ∞ . (6.28)

In this equation na = xa/r is a unit vector pointing in the xa-direction. We have seen in
Example 5.3 that the hedgehog configuration has topological charge n = 1. The partial
derivatives of the field have asymptotics
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∂iΦa(rn) =
1
r
(δa

i − nani)v as r → ∞ , (6.29)

where δa
i is the Kronecker delta function that equals 1 if a = i and zero otherwise. There is no

distinction between ni and ni. Just like in section 5.2, to make sure the energy (6.27) remains
finite the second term of the covariant derivative (6.22) needs to cancel the 1/r2 contribution
of the partial derivatives (6.29). This is achieved with the asymptotics

Aa
i (rn) =

1
er

εaijnj as r → ∞ , (6.30)

as can be verified using (6.22). A solution with the required asymptotics can be found by
solving the field equations numerically with the Ansatz

Φa = navF(r) , (6.31)

Aa
i =

1
er

εaijnjG(r) , (6.32)

where F and G are unknown smooth functions tending to 1 as r → ∞ and to zero as r → 0
fast enough so that the fields are smooth.

To find the magnetic charge, we could proceed as in the previous section by transforming
locally to a unitary gauge where Φ ≡ Φ0 and then calculating the flux through a very large
sphere as in Lemma 6.1. However, a more efficient method is to define the electromagnetic
field strength Fµν in such a way that it reduces to ∂µ A3

ν − ∂ν A3
µ far from the origin in the

unitary gauge Φ ≡ Φ0, where the electromagnetic field is described by A3
µ. Inside the core

of the monopole the SU(2) symmetry is unbroken and there is no unambiguous notion of a
magnetic field. Therefore, there are many possible definitions of Fµν that lead to completely
different magnetic fields in the core. Far away from the origin all these definitions agree.
One possibility is

Fµν = − 2
ev

Tr(Fµν · Φ) =
1
v

Fa
µνΦa , (6.33)

where the dot denotes matrix multiplication. If Φ ≡ Φ0 we have Fµν = F3
µν, which indeed

equals ∂µ A3
ν − ∂ν A3

µ far from the origin because the massive fields A2
µ and A1

µ are (almost)
zero there (as follows from DµΦ = 0). Moreover, the field equation (6.25) reduces to the
Maxwell equations ∂µFµν = 0 in this region. Since the expression (6.33) is gauge invariant,
we can compute the magnetic field at large distances in any gauge using

Bi = −1
2

ε ijkFjk . (6.34)

Filling in (6.28) and (6.30) into (6.33) and (6.34) we find

Bi =
1

er2 ni . (6.35)
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6.4 ’t Hooft-Polyakov monopole 45

Comparing with (6.1) we see that the monopole has magnetic charge g = 1
e , which is twice

the minimal charge allowed by the Dirac quantisation condition (6.9). In this model the
possible magnetic charges for a topological defect are n

e with n ∈ Z because the solution we
found has topological charge n = 1.

We can verify the results of Lemma 6.2 and Proposition 6.2 explicitly for our example by
computing the gauge transformation Ω. A straightforward calculation shows that the func-
tions

gU(ϕ, θ) = exp(ϕt3) exp(−θt2) exp(−ϕt3) , (6.36)

gL(ϕ, θ) = 2t2 exp(ϕt3) exp((π − θ)t2) exp(−ϕt3) . (6.37)

take values in G and transform Φ∞ into Φ0 = vt3. Note that gU and gL are ill-defined for
θ = π and θ = 0 respectively: this is unavoidable by Lemma 5.1. The maps gU and gL

are indeed smooth, as was assumed in section 6.3. On the equator S1 where θ = π
2 the

transformation Ω = gU(gL)−1 is given by

Ω|S1(ϕ) = gU(gL)−1(θ = π
2 ) = −exp(2ϕt3) =

(
−e−iϕ 0

0 −eiϕ

)
. (6.38)

We see that Ω|S1 takes values in H and even gives a homeomorphism S1 ∼→ H. The induced
map (Ω|S1)∗ : π1(S1) → π1(H) therefore is an isomorphism and sends [idS1 ] to [Ω|S1 ]. It
follows that Ω|S1 has winding number m = ±1, which is consistent with Proposition 6.2
since Φ∞ has topological charge n = 1.
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Chapter 7
Monopoles and Alice strings

Up until this point we assumed that the vacuum manifold M is n-simple for n = 1, 2, mean-
ing that we can drop the basepoint condition on maps and homotopies. In this section we
consider a model where M is not 2-simple and the unbroken group is not connected. Such a
model necessarily satisfies π1(M) ̸= 0, implying the existence of cosmic string solutions. It
is shown that these strings can change the sign of both the topological and magnetic charges
of monopoles in the model. The strings act as a “mirror” on the monopoles and are therefore
called Alice strings, after the main character in the novel Through the looking glass by Lewis
Carroll in 1871. They were first studied in 1982 by Schwarz [37]. It is worth mentioning that
the material covered in Appendix A.1 may aid the reading of this section.

7.1 [Sn, X] versus πn(X)

In the previous sections we have identified the n-th homotopy group πn(X) of a topological
space X with the set [Sn, X]. This set consists of the homotopy classes of maps Sn → X,
where the homotopies are maps Sn × [0, 1] → X without any basepoint requirement. This
identification is not always justified, as we will show with an example (see [22]). Let X be the
space obtained from R2 by taking out two points and choose a basepoint x0 ∈ X. Consider
the loops γ, γ′ : (S1, s0) → (X, x0) shown in Figure 7.1.

(a) (b)

Figure 7.1: Two loops γ, γ′ ∈ π1(X, x0). The red dots represent the two holes in the space X.

The loops γ and γ′ are homotopic in [S1, X]: we can simply move the basepoint x0 around
the bottom red hole and deform γ into γ′. If we require that the basepoint x0 remains fixed,
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48 Monopoles and Alice strings

however, the maps γ and γ′ are not homotopic. We see that [γ] = [γ′] in [S1, X], but not
in π1(X, x0). It is shown in Proposition A.1 that in this case the loops γ and γ′ are in the
same orbit of the π1-action on π1(X, x0). Indeed, if we denote by α a loop based at x0
winding counter-clockwise around the bottom hole it can be verified that γ′ is homotopic
to α ⊙ γ ⊙ α−1 in π1(X, x0). We will work out the details in a similar example in section 7.3.

An example of a space that is not 2-simple (i.e. for which [S2, X] ̸= π2(X)) is the real projec-
tive plane X = RP2. This is defined as the space obtained from S2 by identifying antipodal
points. Neglecting the basepoint when working with π2(RP2) can lead to contradictions, as
we will show following [4].

Let α : S2 → S2 be the antipodal map. We argue in Example A.3 that this map is homotopic
to a representative of −1 in π2(S2) ∼= Z, and so the induced map α∗ : π2(S2) → π2(S2) is
given by multiplication by −1. Moreover, the quotient map p : S2 → RP2 is a two-sheeted
covering map, and it fits into a commutative diagram

S2 S2

RP2

α

p p

However, the induced diagram

π2(S2) π2(S2)

π2(RP2)

α∗

p∗ p∗

does not commute: the map p∗ is an isomorphism by Example 3.3 and so p∗(1) ̸= p∗(−1).
This seems to contradict the functorial properties of π2. The problem here is that π2 is not
a functor on the category of topological spaces, but on the category of pointed topological
spaces. In particular, the map α does not preserve the basepoint of S2.

From the fact that there is a double cover S2 → RP2 we can deduce that π2(RP2) = Z and
π1(RP2) = Z2. The nontrivial element of π1(RP2) acts on π2(RP2) by changing the sign
(see Example A.3). Proposition A.1 shows that the set [S2, RP2] is the orbit space Z/Z2 of
this action, which is the set of integers modulo their sign. Since the π1-action is nontrivial,
we find that there is a difference between [S2, RP2] and π2(RP2). If we replace the homotopy
groups π2(S2) and π2(RP2) by [S2, S2] and [S2, RP2] in the diagram above, we obtain

[S2, S2] [S2, S2]

[S2, RP2]

α∗

p∗ p∗

The map p∗ now corresponds to the quotient map Z → Z/Z2 and is no longer bijective.
We therefore do not encounter the paradox from the previous diagram. For example, the
identity map idS2 and α are not homotopic in [S2, S2], but their images under p∗ are equal.
We will show how the distinction between [S2, RP2] and π2(RP2) affects the classification of
monopoles in a model with vacuum manifold M ∼= RP2.

48
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7.2 The model 49

7.2 The model

The following account is based on [29] and [32]. We consider a model with gauge group
G = SO(3) and a Higgs field Φ taking values in the 5-dimensional representation V of G
consisting of real symmetric traceless 3 × 3 matrices. A group element g acts on Φ by con-
jugation gΦg−1. The model also contains a so(3)-valued gauge field A. We choose the basis
(ta)ij = εaji (with a = 1, 2, 3) of so(3):

t1 =

0 0 0
0 0 −1
0 1 0

 , t2 =

 0 0 1
0 0 0
−1 0 0

 , t3 =

0 −1 0
1 0 0
0 0 0

 . (7.1)

This basis is orthonormal with respect to − 1
2 times the trace. We expand Aµ in the basis as

Aµ = eAa
µta. The gauge field acts on the Higgs field via the commutator of matrices [Aµ, Φ].

It is possible to choose a Higgs potential U : V → R such that the zeros of U are of the form

M =
{

v(I − 3nnT)
∣∣∣ n ∈ S2

}
. (7.2)

In this equation nT is the transpose of the unit vector n, v is a positive constant and I is the
identity matrix. See [29] for the construction of a suitable potential. Consider the surjective
map p : S2 → M given by p(n) = v(I − 3nnT). This map satisfies p(n) = p(n′) if and only
if n = ±n′ and induces a homeomorphism RP2 ∼→ M. In particular, M is not 2-simple.

Note that for any g ∈ G the transformed field gΦg−1 = I − 3(gn)(gn)T is again a zero of
U. Moreover, G acts transitively on the vacuum manifold M because any unit vector n is
obtained by a suitable rotation g. Let us choose the vacuum vector

Φ0 = I − 3e3eT
3 =

1 0 0
0 1 0
0 0 −2

 . (7.3)

The unbroken group H consists of all group elements h that leave the matrix e3eT
3 invariant.

This implies he3 = ±e3. It follows that H consists of all rotations around the third axis, as
well as all of these rotations composed with an element Ω ∈ G that sends e3 to −e3. An
example of such an element is

Ω =

1 0 0
0 −1 0
0 0 −1

 . (7.4)

By considering the action of H on the plane x3 = 0 in R3, we find that Ω acts as a reflection
in the x1-axis and we deduce that H is isomorphic to O(2). In particular, H is not connected:
the component He connected to the identity is isomorphic to SO(2). The generator t3 of g
commutes with Φ0 and hence is unbroken. Since the Lie algebra h of H is one-dimensional,
it is generated by t3.

The homotopy groups of M are π1(M) = Z2 and π2(M) = Z. Therefore, both monopoles
and strings exist in this model. Any monopole solution has an asymptotic Higgs field
Φ∞ : S2 → M. The map Φ∞ does not have to satisfy any basepoint condition, so we cannot
unambiguously define the topological charge as an element of π2(M). We can only assign
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50 Monopoles and Alice strings

the class [Φ∞] ∈ [S2,M] to the monopole. This leads to a different classification of monopole
solutions because [S2,M] ∼= Z/Z2. Note that this classification does not affect the criterion
for the existence of monopoles. The trivial homotopy class of π2(M) always forms an orbit
under the π1-action, i.e. we have [S2,M] ̸= 0 whenever π2(M) ̸= 0.

We can also attempt to assign a magnetic charge to the monopole defects by identifying the
massless t3-component A3

µ of the gauge field with the electromagnetic four potential in the
unitary gauge Φ = Φ0. However, this definition of magnetic charge is not gauge invariant
in this model because H is not connected. If we apply the gauge transformation Ω ∈ H \ He,
the Higgs field is unchanged but the t3 component of A changes sign since Ωt3Ω−1 = −t3.
It follows that a monopole can be gauge transformed into an antimonopole, a monopole
with the opposite magnetic charge. It is however possible to distinguish between a pair of
monopoles and a monopole-antimonopole pair by bringing them together and observing
whether they annihilate or not. The relative charge between two monopoles is still well-
defined.

7.3 Alice strings

Since π1(M) = Z2 there are also cosmic strings in the model, which we have ignored until
now. The strings can affect both the topological and magnetic charge of defects, as we will
show in this section following [32, 42]. We treat the topological and magnetic charges sepa-
rately because the results of section 6.3 do not apply in this model where M is not 2-simple
and H is not connected.

A string configuration Φ has to induce a nontrivial map Φ∞ : S1 → M far away from the
origin. Consider the fibre bundle {±1} → S2 p→ M ∼= RP2. A loop γ in M is nontrivial
if and only if its image under the connecting homomorphism δ : π1(M) → π0({±1}) is
nonzero. This happens exactly when a lift γ̃ : I → S2 of γ along the map p : S2 → M
satisfies γ̃(1) = −γ̃(0) (see Appendix A.2). We can therefore construct a noncontractible
loop by letting γ̃ be a path in S2 from the north to the south pole and setting γ = p ◦ γ̃. This
gives us the string configuration shown in Figure 7.2.

Figure 7.2: The asymptotic Higgs field Φ∞ : S1 → M ∼= RP2. The arrows represent unit
vectors in S2, which become elements of M after identifying arrows pointing in opposite
directions. The arrows describe a path from the north to the south pole in S2. This induces a
noncontractible loop in M.

As an explicit formula for the asymptotic Higgs field Φ∞ we can take

Φ∞(θ) = exp(θt1/2)Φ0 exp(−θt1/2) . (7.5)

50
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7.3 Alice strings 51

Indeed, a lift of the loop γ(s) = Φ∞(θ = 2πs) is γ̃(s) = exp(πt1s)e3, which is a path from
the north to the south pole. Note that the vacuum vector Φ0 gets transformed by the gauge
transformation g(θ) = exp(θt1/2) as we go around the string. The unbroken generator has
to annihilate the vacuum vector and hence is also transformed by g(θ). In particular, after
winding around the string once the unbroken generator becomes g(2π)t3g(2π)−1. Since the
path γ̃(s) = g(θ = 2πs)e3 ends at −e3, the transformation g(2π) has to be in the component
of H disconnected from the identity. A calculation shows that g(2π) equals the transforma-
tion Ω given by (7.4), which is indeed not in He.

It follows that g(2π)t3g(2π)−1 = −t3, i.e. the electromagnetic field changes sign. We obtain
the gauge invariant statement that a monopole that winds once around a string becomes an
antimonopole. The same happens to electrically charged particles. This is why the string is
called an Alice string. As mentioned earlier, this process can have observable consequences
in the presence of a second monopole. Whether two monopoles annihilate or not can depend
on the number of times they wind around the string while moving towards each other.

Alice strings have a similar effect on the topological charge of monopoles. The following
arguments are based on [22]. Let us again consider a situation where a monopole and a
string coexist at a fixed time. Let X ⊂ R3 be the region outside the cores of the defects where
the Higgs field takes values in M. The space X is topologically equivalent to R3 minus a
line and a point not on that line. We choose a basepoint x0 ∈ X and consider two maps
α, α′ : (S2, s0) → (X, x0) enclosing the monopole as shown in Figure 7.3. We also define γ to
be a loop based at x0 winding around the string, see Figure 7.3(a).

(a) (b) (c)

Figure 7.3: The maps γ, α and α′ into X. The red dot and line represent the monopole and
string respectively.

Note that α and α′ are homotopic in [S2, X] by rotating the basepoint around the string. If we
keep the basepoint fixed, however, the maps α and α′ cannot be deformed into each other.
We see that X is another example of a space that is not 2-simple. Proposition A.1 implies
that α and α′ are in the same orbit of the π1-action on π2(X, x0). In fact, we will show that
[α′] = [γα] in π2(X, x0).

Viewed as a map (I2, ∂I2) → (X, x0), the map γα is constructed as in Figure A.1. Let us
temporarily reparametrise the square as I2 = [−1, 1]2. The map γα is then constant on each
subspace Kr = {(s1, s2) ∈ I2 | max{|si|} = r} for r ≥ 1

2 . Hence, γα induces a map from the
quotient space Q obtained from I2 by identifying all the points on Kr for all r ≥ 1

2 . This map
sends the point q0 corresponding to ∂I2 = K1 to x0. Under this identification, the map γα is
shown in Figure 7.4.
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52 Monopoles and Alice strings

(a) (b)

Figure 7.4: (a): The quotient space Q obtained from I2 by identifying points on Kr for r ≥ 1
2 .

The region max{|si|} ≤ 1
2 becomes a sphere, and the points s0 and q0 correspond to K 1

2
and

K1 respectively. (b): The image of γα : (Q, q0) → (X, x0). Both s0 and q0 get mapped to the
basepoint x0.

We now construct a basepoint-preserving homotopy Γ from α′ to γα as follows. For each
t ∈ I let αt : (S2, s0) → (X, γ(t)) be a map with image a deformed sphere based at γ(t)
enclosing the monopole (without winding around the string). We take α0 = α′ and α1 = α.
Let γt be the loop γ restricted to the interval [0, t]. The homotopy Γ is now given at time t by
Γt = γtαt. Viewing the domain of γtαt as Q, the homotopy is visualised in Figure 7.5.

(a) (b) (c)

Figure 7.5: The homotopy Γt from α′ to γα for three values of t. The basepoint of αt winds
around the string, but γtαt is always based at x0. The map γtαt is viewed as a map of the
form (Q, q0) → (X, x0).

It follows that [α′] = [γα]. Suppose we define the topological charge of the monopole to
be the element [Φ ◦ α] ∈ π2(M, Φ(x0)) ∼= Z. Note that this charge depends on both α and
the isomorphism π2(M, Φ(x0)) ∼= Z. We now transport the monopole counter-clockwise
around the string and deform α (preserving the basepoint) such that it encloses the monopole
at any time. The map Φ ◦ α is then continuously deformed into Φ ◦ α′. We have seen that
Φ ◦ α and Φ ◦ α′ are related by the action of Φ ◦ γ, which is a nontrivial loop in M. We find
[Φ ◦ α] = −[Φ ◦ α′] in π2(M, Φ(x0)).

Just like for the magnetic charge, the sign of the topological charge flips as the monopole
winds around the string. Note that this last statement does not depend on any of the choices
we made while defining the topological charge. The topological influence of a string on a
monopole winding around it is the physical manifestation of the π1-action on π2(M).

52
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Chapter 8
Outlook

We have seen in the previous sections how to classify defects using homotopy groups by
assigning a topological charge to them. This topological charge is an element of a homotopy
group πn(M) of the vacuum manifold, and whenever this group is nontrivial the model
contains topological defects. We used this criterion to show that many Grand Unified Theo-
ries predict monopoles. Subsequently, we introduced a magnetic charge for monopoles and
showed how to interpret this as an element of π1(H) in a model with gauge group H. The
link between the topological and magnetic charges is provided by the long exact sequence of
homotopy groups, and in particular the connecting homomorphism δ : π2(M) → π1(H).

Most of these results were derived under the assumptions that M is n-simple for n = 1, 2 and
H is connected. We considered a model in section 7 where this is not the case and our defi-
nitions of topological and magnetic charge are ambiguous. In addition, the model contained
Alice strings that can change the topological and magnetic charge of a monopole. Mathe-
matically, we can describe this phenomenon for the topological charge using the π1-action
on the homotopy groups. An interesting next step would be to generalise these observations
to obtain a topological classification of monopoles suitable for any model.

One possible approach is to use Abe homotopy groups [1]. The n-th Abe homotopy group
κn(X, x0) of a space (X, x0) is isomorphic to the semidirect product πn(X, x0)⋊ π1(X, x0),
where the product is defined using the π1-action on πn. The group κ2 therefore encodes the
influence of strings on monopoles. In [21] it is shown how to use the conjugacy classes of
κn to classify topological defects. Using this approach, the possible topological charges of
a monopole in the model of section 7 are reduced from Z to Z2 by the influence of strings.
Only the value of the charge modulo 2 is retained.

The same result is obtained using the orbit group of Trebin [40]. This group is defined as
πn(X, x0)/Dn, where Dn is the normal subgroup generated by (γα)⊙ α−1 for γ ∈ π1(X, x0)
and α ∈ πn(X, x0). For X = RP2 we indeed find D2 ∼= 2Z and π2(X, x0)/D2 ∼= Z2. Trebin
interpreted this result as follows: a monopole of even charge can split into two monopoles
of half this charge, which annihilate after transporting one of them around the string.

Recently a description has been proposed that retains more information than just the value
of the topological charge modulo 2 [2]. The vacuum manifold M is replaced by a covering
space M̃ with a trivial π1-action on the homotopy groups. The topological charge can then
unambiguously be defined in π2(M̃). Moreover, defects are classified using [X,M], where
X ⊂ R3 is the region outside of the cores of the defects.
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54 Outlook

We have not encountered a generalisation of the correspondence between topological and
magnetic charge found in Proposition 6.2 to the case where M is not (necessarily) 2-simple
and H is not connected. Based on the similarities in the behaviour of these charges in the
model of section 7, this could be interesting to investigate further.

54
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Appendix A
Supporting homotopical constructions

We discuss the importance of the basepoint in the definition of the homotopy group, leading
to the notion of an n-simple space that becomes particularly relevant in section 7. More-
over, the connecting homomorphism δ in the long exact sequence of homotopy groups is
constructed. This construction is specialised for fibre bundles involving Lie groups.

A.1 Basepoints and homotopy

In physics we naturally encounter maps from Sn to a space X without any basepoint re-
quirement that we want to classify up to homotopy. In this section, we study under what
conditions we can omit the basepoint in the definition of πn(X, x0) following [16].

Let x0, x1 ∈ X and suppose there exists a path γ : I → X from γ(0) = x0 to γ(1) = x1.
Then to any map f : (In, ∂In) → (X, x1) we can associate a map γ f : (In, ∂In) → (X, x0) by
shrinking the domain of f to a concentric cube and inserting γ radially in the cleared space,
see Figure A.1. An explicit formula for this map can be written down as follows [19]. We
temporarily reparametrise the n-cube as In = [−1, 1]n. For s = (s1, . . . , sn) ∈ In we define
m = max{|si|}. The map γ f is then given by

(γ f )(s) =

{
f (2s) , m ≤ 1

2

γ(2(1 − m)) , m ≥ 1
2 .

(A.1)

Figure A.1: The map γ f : (In, ∂In) → (X, x0) in the case n = 2. It is obtained by shrinking
the domain of f to a smaller square and inserting γ radially outside of this square.
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56 Supporting homotopical constructions

It can be shown that this procedure induces an isomorphism βγ : πn(X, x1)
∼→ πn(X, x0)

given by βγ([ f ]) = [γ f ] with inverse βγ−1 (where γ−1 is the inverse path). This implies
that the homotopy groups of a path-connected space do not depend on the basepoint up to
isomorphism, and so we often write πn(X) instead of πn(X, x0) in this case.

The isomorphisms βγ can be used to show that homotopy equivalent spaces have isomorphic
homotopy groups. Recall that a map φ : X → Y is a homotopy equivalence if there exists
a map ψ : Y → X such that ψ ◦ φ is homotopic to idX (through maps X → X) and φ ◦ ψ is
homotopic to idY.

Lemma A.1. Let φ : (X, x0) → (Y, y0) be a homotopy equivalence. Then the induced maps
φ∗ : πn(X, x0)

∼→ πn(Y, y0) are isomorphisms for all n ≥ 0.

Proof. Let ψ : Y → X be such that ψ ◦ φ is homotopic to idX and φ ◦ ψ is homotopic to idY.
For n = 0 we find (ψ ◦ φ)∗ = idπ0(X) and (φ ◦ ψ)∗ = idπ0(Y), implying the result by the
functoriality properties. For n > 0 more care is needed because the homotopy Γ : Y × I → Y
from φ ◦ ψ to idY may not be basepoint-preserving. Let γ : I → Y, γ(t) = Γ(y0, t) and let
γt be the path obtained by restricting γ to the interval [0, t]. We also define Γt : Y → Y
to be Γ|Y×{t}. Given [ f ] ∈ πn(Y, y0) we can consider the basepoint-preserving homotopy
Γ′ : (In × I, ∂In × I) → (Y, φ ◦ ψ(y0)) given by Γ′

t = γt(Γt ◦ f ). Restricting this homotopy
to t = 0 and t = 1, we obtain the equality (φ ◦ ψ)∗([ f ]) = βγ([ f ]). Hence, (φ ◦ ψ)∗ = βγ

is an isomorphism. We similarly find that (ψ ◦ φ)∗ is an isomorphism, and the result again
follows by the functoriality properties.

If we take γ to be a loop with basepoint x0, we obtain an automorphism βγ of πn(X, x0)
sending [ f ] to [γ f ]. It can be verified that this map only depends on the homotopy class
of γ and even defines a group homomorphism π1(X, x0) → Aut(πn(X, x0)), called the
π1-action on πn. Note that for n = 1 this is the action of π1 on itself by inner automorphisms
[ f ] 7→ [γ ⊙ f ⊙ γ−1].

The homotopy group πn(X) of a path-connected space X still contains a reference to the
basepoint, because homotopies are required to be basepoint-preserving (Definition 3.1). The
key to trying to get rid of this basepoint is to use the π1-action [16, Prop. 4A.2]. Let us denote
by [Sn, X] the set of homotopy classes of maps Sn → X, where homotopies are through maps
of the same form.

Proposition A.1. Let X be a path-connected space with basepoint x0 ∈ X. Then there is a canonical
bijection between the orbit space πn(X, x0)/π1(X, x0) of the π1-action on πn and the set [Sn, X].

Proof. Let f : Sn → X and let γ be a path from x0 to f (s0). Then we have [γ f ] ∈ πn(X, x0),
and f is homotopic to γ f in [Sn, X] by enlarging the domain of f in Figure A.1 and restricting
γ to the interval [t, 1] for t ∈ I. This shows that the natural map φ : πn(X, x0) → [Sn, X] is
surjective. If [γ] ∈ π1(X, x0) and [ f ] ∈ πn(X, x0) we similarly find [ f ] = [γ f ] in [Sn, X], so
φ induces a map πn(X, x0)/π1(X, x0) → [Sn, X]. If f , g : (Sn, s0) → (X, x0) are homotopic in
[Sn, X] through Γ : Sn × I → X, then we have [ f ] = [γg] in πn(X, x0) with γ(t) = Γ(s0, t).
The homotopy between f and γg is constructed by viewing Γ as a map In × I → X and
restricting it to a family of n-cubes starting with In ×{0} and ending with In ×{1} ∪ ∂In × I,
all the cubes having the same boundary. It follows that the induced map is injective.

If the π1-action is trivial we find that we can identify πn(X, x0) with [Sn, X], leaving out any
reference to a basepoint. Moreover, in this case there is a canonical isomorphism between
the homotopy groups at different points (in general the isomorphism depends on the chosen
path).
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Definition A.1. A path-connected space X is n-simple (n ≥ 1) if the π1-action on πn(X, x0)
is trivial for all x0 ∈ X.

Note that the π1-action is trivial for some x0 ∈ X if and only if it is trivial for all x0 ∈ X
because X is path-connected.

Example A.1. A simply connected space is obviously n-simple for all n.

Example A.2. Let G be a path-connected topological group. This is a group G that is also
topological space such that the group operation (g, h) 7→ g · h and the inversion map g 7→ g−1

are continuous. Let e ∈ G be the unit element. For [ f ] ∈ πn(G, e) and [γ] ∈ π1(G, e) there is a
homotopy Γ(x, t) = f (x) · γ(t) from f to f satisfying Γ(s0, t) = γ(t). This gives a basepoint-
preserving homotopy from f to γ f as described in the proof of Proposition A.1. It follows
that G is n-simple for all n.

For n = 1, an n-simple space is the same thing as a path-connected space with abelian fun-
damental group because the action is given by inner automorphisms. It follows from Exam-
ple A.2 that the fundamental group of a path-connected topological group is abelian. This is
in fact also true if the group is not path-connected, as follows from the following Lemma [15,
Prop. 1.2.21].

Lemma A.2. Let G be a topological group with unit element e. Then all path components of G are
homeomorphic to the path component Ge of e.

Proof. Let g ∈ G and let Gg be the path component of g. The map Lg : Ge → G given
by Lg(h) = gh has a path-connected image containing g and hence gives a map Ge → Gg.
Similarly, the map Lg−1 : Gg → Ge is well-defined and the inverse of Lg : Ge → Gg. It follows
that Lg is a homeomorphism, and therefore Ge ∼= Gg.

Lemma A.2 implies that we can write πn(G) without specifying the basepoint even if G is
not path-connected. Note that Lie groups are always locally path-connected, so being path-
connected is equivalent to being connected in that case.

Corollary A.1. The fundamental group π1(G) of a topological group G is abelian.

Example A.3. Consider the real projective space RPn obtained by identifying antipodal
points on Sn for n > 1. The quotient map p : Sn → RPn is a two-sheeted covering map,
and because Sn is simply connected we find π1(RPn) = Z2 by Example 3.3. Moreover, the
map p∗ : πn(Sn) → πn(RPn) is an isomorphism and hence Theorem 3.1 gives πn(RPn) ∼= Z.

Note that Sn is simply connected and therefore n-simple. The antipodal map α : Sn → Sn is
not homotopic to the identity map for even n [23, Prop. 13.31], so it must be in the homotopy
class of [Sn, Sn] corresponding to −1 ∈ Z because α is a homeomorphism. This implies that
there exists a homotopy Γ : Sn × I → Sn from α to a map f : (Sn, s0) → (Sn, s0) representing
−1 in πn(Sn). We also find a homotopy p ◦ Γ from p ◦ α = p to p ◦ f . However, since
p∗ is an isomorphism we know that p = p∗[idSn ] represents 1 in πn(RPn) and p ◦ f = p∗[ f ]
represents −1. Hence, the classes 1 and −1 are equal in [Sn, RPn]. It follows that these classes
are in the same orbit of the π1-action, implying that the nontrivial element of π1(RPn) ∼= Z2
acts on πn(RPn) ∼= Z by changing the sign. We see that RPn is not n-simple for even n.
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A.2 The connecting homomorphism

The construction of the connecting homomorphism δ : πn(B, b0) → πn−1(F, e0) for a fibre
bundle F → E

p→ B and the proof of Theorem 3.3 rely on the fact that the map p has the
homotopy lifting property with respect to all disks Dn = {x ∈ Rn | ∥x∥ ≤ 1} [16, Prop. 4.48].

Definition A.2. A map p : E → B has the homotopy lifting property with respect to a space X
if for any homotopy Γ : X × I → B and any lift f̃0 of f0 = Γ|X×{0} (satisfying p ◦ f̃0 = f0)
there exists a homotopy Γ̃ : X × I → E lifting Γ such that Γ̃|X×{0} = f̃0. In other words, the
following diagram commutes:

X E

X × I B

f̃0

X×{0} pΓ̃

Γ

We can now define the connecting homomorphism δ. Our construction is adapted from [26]
to the Sn-viewpoint. Let f : (Sn, s0) → (B, b0) be a representative of [ f ] ∈ πn(B, b0). We
choose our basepoint s0 to be the north pole s0 = (0, 0, . . . , 1). Let q : Dn → Sn be the
map obtained by identifying all points on the boundary ∂Dn and sending them to s0, and let
j : Sn−1 → Dn be the inclusion mapping Sn−1 onto ∂Dn. By the homotopy lifting property,
we can lift f ◦ q to a map f̃ : (Dn, j(s0)) → (E, e0). This follows by viewing the domain of
f ◦ q as Dn−1 × I ∼= Dn and choosing a lift with initial condition e0. Because p ◦ f̃ ◦ j = f ◦ q ◦ j
is constant and equal to b0, the map f̃ ◦ j has image in F = p−1(b0) and can be restricted to
a map r : (Sn−1, s0) → (F, e0). We set δ([ f ]) = [r]. The construction is summarised in the
diagram below.

(Sn−1, s0) (Dn, j(s0)) (Sn, s0)

(F, e0) (E, e0) (B, b0)

j

r

q

f̃ f

i p

See [26] for a proof that δ is a well-defined group homomorphism.

For certain fibre bundles of the form H → G → G/H with G a Lie group and H a closed
subgroup (see Lemma B.2) there exists an alternative description of the map δ. We have not
found the following proof that this description coincides with the definition of δ given above
anywhere in the literature.

Proposition A.2. Let G be a connected Lie group and H a connected closed subgroup such that
G/H is n-simple. Let Φ : Sn → G/H be a map and let Ψ± be lifts of Φ along the quotient map
π : G → G/H on the sets W± = {x ∈ Sn | ±xn+1 ≥ − 1

2}. Define Ω : Sn−1 → H on the
equator xn+1 = 0 by Ω = (Ψ+)−1Ψ−. Then under the identifications [Sn, G/H] = πn(G/H, H)
and [Sn−1, H] = πn−1(H, e) we have δ([Φ]) = [Ω].
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Proof. The existence of Ψ± follows from the homotopy lifting property of π (W± is home-
omorphic to Dn), and Ω takes values in H because Ψ+(x)H = Ψ−(x)H = Φ(x) for all
x ∈ W+ ∩ W− and hence Ω(x)H = H for x ∈ Sn−1. We may assume without loss of gen-
erality that Φ maps the north pole s0 to H: this can be accomplished by replacing Φ by gΦ
for some g ∈ G satisfying g−1H = Φ(s0). Since G is connected, there exists a path γ in G
from e to g. The homotopy Γ(x, t) = γ(t)Φ(x) then shows that [Φ] = [gΦ]. We also have to
multiply the lifts Ψ± by g from the left, which leaves Ω unchanged.

We will construct a lift χ of Φ ◦ q sending j(s0) to the unit element e, where q and j are the
maps introduced during the construction of δ above. Set χ equal to Ψ− ◦ q on the region
Dn

S = {x ∈ Dn | ∥x∥ ≤ 1
2} corresponding to the southern hemisphere under q. On Dn \ Dn

S
we define χ to be Ψ+ ◦ q multiplied from the right by Ω on each shell Sn−1 of constant ∥x∥.
The map χ in the case n = 2 is shown in Figure A.2. Note that the two definitions of χ
coincide on the boundary ∂Dn

S corresponding to the equator. Moreover, χ is a lift of Φ ◦ q
because Ψ± are lifts and Ω takes values in H. On the boundary ∂Dn we have χ = Ψ+(s0)Ω,
which is a product of elements in H. Multiplying χ by an appropriate element h ∈ H from
the right, we obtain a lift satisfying χ(j(s0)) = e.

Figure A.2: The lift χ : Dn → G for n = 2. On D2
S (dark area) it equals Ψ− ◦ q and on

D2 \ D2
S (light area) it is Ψ+ ◦ q multiplied from the right by Θ, given in polar coordinates as

Θ(r, θ) = Ω(θ). On the brown circle ∥x∥ = 1
2 these two maps coincide. The map χ satisfies

the basepoint condition after multiplication by χ(j(s0))−1 ∈ H from the right.

Let r be the map χ ◦ j with codomain restricted to H. From the construction of δ it follows
that δ([Φ]) = [r] = [Ψ+(s0)Ωh]. Because H is connected, there exist paths in H from e to
h and from e to Ψ+(s0). Just like before we can use these paths to construct homotopies
showing that [Ψ+(s0)Ωh] = [Ω], and therefore δ([Φ]) = [Ω].
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Appendix B
Differential geometry

In this section we review the necessary background on Lie groups, Lie group actions and
connections for this thesis. We assume some familiarity with the theory of smooth manifolds
as covered in [24]. The section is based on the first five chapters of [15].

B.1 Lie groups and Lie algebras

Let us begin by defining Lie groups and discussing some examples.

Definition B.1. A Lie group is a group G which is at the same time a smooth manifold so that
the maps G × G → G, (g, h) 7→ g · h and G → G, g 7→ g−1 are smooth.

In other words, Lie groups are groups that have a smooth structure that is compatible with
the group operations. Notions of manifolds and groups such as the dimension or being
abelian naturally carry over to Lie groups.

Example B.1. Let F be a field that is either R or C. The simplest example of a Lie group
is the additive group Fn with the usual smooth structure: addition and multiplication by
−1 are indeed smooth maps. The general linear group GL(n, F) of n × n invertible matrices
over F can also be given the structure of a Lie group by viewing it as the open subset of
Mat(n, F) = Fn2

given by the inverse image of the group of units F∗ under the (smooth)
determinant map Fn2 → F. The group GL(n, F) then inherits a smooth structure from Fn2

,
and it can be verified that matrix multiplication and inversion are smooth maps.

If G is a Lie group, an embedded Lie subgroup of G is a subgroup H such that H is an embedded
submanifold of G. The Closed subgroup theorem characterises embedded Lie subgroups: a
proof can be found in section 1.8 of [15].

Theorem B.1. (Closed subgroup theorem) Let G be a Lie group and suppose H ⊂ G is a subgroup.
Then H is an embedded Lie subgroup if and only if H is closed in G.

In particular, every closed subgroup of a Lie group is again a Lie group. We are particularly
interested in matrix groups, which are closed subgroups of GL(n, F).

Example B.2. The special linear group SL(n, F) ⊂ GL(n, F) consisting of all n × n matrices
over F with determinant 1 is a closed subgroup since it is equal to the inverse image of 1
under the determinant map. We also define the orthogonal and unitary groups
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O(n) = {A ∈ Mat(n, R) | AAT = I} , (B.1)

U(n) = {A ∈ Mat(n, C) | AA† = I} . (B.2)

These are closed subgroups of general linear groups given by the inverse image of I under
the smooth maps Mat(n, R) → Mat(n, R), A 7→ AAT and Mat(n, C) → Mat(n, C), A 7→ A A†

respectively. The special orthogonal and special unitary groups are SO(n) = O(n)∩ SL(n, R)
and SU(n) = U(n) ∩ SL(n, C). By the closed subgroup theorem all of these groups are Lie
groups. The (special) orthogonal and unitary groups are compact for all n ≥ 1. All the matrix
groups defined above are connected except for GL(n, R) and O(n): these groups have two
components separated by the sign of the determinant.

Maps between Lie groups are required to respect both the manifold and group structures.

Definition B.2. Let G and H be Lie groups. A Lie group homomorphism is a map φ : G → H
that is both smooth and a group homomorphism. A Lie group isomorphism is a Lie group
homomorphism that is also a diffeomorphism (and hence a group isomorphism).

Example B.3. The Lie group U(1) consists of all complex numbers of norm 1 and therefore
is equal to the unit circle S1 in C. We can map it into the group SO(2) of rotations in R2 using

φ : U(1) → SO(2) , eiα 7→
(

cos α − sin α
sin α cos α

)
. (B.3)

This map is a Lie group isomorphism.

Example B.4. We have

SU(2) =
{(

x −y
y x

)
∈ Mat(2, C)

∣∣∣∣ x, y ∈ C, |x|2 + |y|2 = 1
}

. (B.4)

Viewing S3 as the unit sphere in C2, it can be checked that the map

φ : S3 → SU(2) , (x, y) 7→
(

x −y
y x

)
(B.5)

is a diffeomorphism. This map becomes a Lie group isomorphism if we give S3 the structure
of a Lie group by viewing it as the set of unit quaternions.

Besides Lie groups, the notion of a Lie algebra is very important for our applications in
physics.

Definition B.3. A vector space V together with a map [·, ·] : V ×V → V is a Lie algebra if [·, ·]
is bilinear, antisymmetric and satisfies the Jacobi identity:

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 (B.6)

for all u, v, w ∈ V. The map [·, ·] is called the Lie bracket.

Example B.5. The real vector space V = R3 with Lie bracket [x, y] = x × y equal to the cross
product is a Lie algebra.
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There is a natural way to make the tangent space TeG at the unit element e of a Lie group
G into a Lie algebra, as described in section 1.5 of [15]. We will denote this Lie algebra as g.
Note that g is a real vector space of dimension equal to the dimension of G. If G is a matrix
group, we can view TeG as a subset of TeGL(n, F) = Mat(n, F), where the last step follows
from the fact that GL(n, F) is open in Mat(n, F). Under this identification, the Lie algebras
of the matrix groups introduced above are as follows [15, Thm. 1.5.22, Thm. 1.5.27].

Proposition B.1. The Lie algebras corresponding to the matrix groups from Example B.2 are

gl(n, F) = Mat(n, F) , (B.7)
sl(n, F) = {A ∈ Mat(n, F) | tr(A) = 0} , (B.8)

o(n) = so(n) = {A ∈ Mat(n, R) | A + AT = 0} , (B.9)

u(n) = {A ∈ Mat(n, C) | A + A† = 0} , (B.10)

su(n) = {A ∈ Mat(n, C) | A + A† = 0, tr(A) = 0} . (B.11)

The Lie bracket is given by the commutator of matrices [A, B] = AB − BA.

Just like for Lie groups, we can consider maps between Lie algebras.

Definition B.4. Let (V, [·, ·]V) and (W, [·, ·]W) be Lie algebras over the same field. A Lie
algebra homomorphism is a linear map ψ : V → W satisfying [ψ(u), ψ(v)]W = ψ([u, v]V) for all
u, v ∈ V.

Example B.6. Let G and H be Lie groups and φ : G → H a Lie group homomorphism. Then
the differential De φ : g → h at the unit element e ∈ G is a Lie algebra homomorphism [15,
Thm. 1.5.18]. We write φ∗ for this induced homomorphism.

For any Lie group G there is a smooth map exp : g → G sending 0 to e and satisfying

exp((x + y)X) = exp(xX)exp(yX) and exp(−X) = (exp(X))−1 (B.12)

for all x, y ∈ R and X ∈ g, called the exponential map (see section 1.7 in [15]). Another
important property is that the tangent vector to the curve γ(t) = exp(tX) at the identity is
X. We can characterise this map for matrix groups:

Proposition B.2. If G is a matrix group, the exponential map exp : g → G is given by

exp(A) =
∞

∑
k=0

1
k!

Ak . (B.13)

This series converges for any matrix A ∈ Mat(n, F).

Example B.7. For G = U(1) we find from Proposition B.1 that u(1) = iR. The exponential
map exp: u(1) → U(1) sends ix to eix and hence is equal to the complex exponential map
iR → S1. In particular, this map is surjective and a local diffeomorphism.

In some of our applications in gauge theory, Lie groups are required to be (semi)simple. This
notion becomes relevant when considering representations of Lie groups (see section B.2).
We define an ideal of a Lie algebra (V, [·, ·]) to be a subspace W ⊂ V such that [v, w] ∈ W for
all v ∈ V and w ∈ W. We call (V, [·, ·]) abelian if the bracket [·, ·] is zero.
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Definition B.5. A Lie algebra (V, [·, ·]) is simple if it is nonabelian has no nontrivial ideals
(different from 0 and V). A semisimple Lie algebra is a Lie algebra with no nonzero abelian
ideals. A connected Lie group G is (semi)simple if its Lie algebra g is (semi)simple.

Note that any simple Lie algebra is also semisimple. Moreover, a (finite) product of semisim-
ple Lie groups is again semisimple. The groups SU(n ≥ 2) and SO(n ≥ 3) are simple except
for SO(4), which is only semisimple. SO(2) and U(n) are not (semi)simple for any n ≥ 1.

B.2 Lie group representations and actions

In this section we study Lie group actions starting with representations, which are linear
actions on vector spaces. From now on, any vector space V is a finite dimensional real or
complex vector space equipped with the standard smooth structure defined in [24, Ex. 1.24].
We can use this smooth structure to make the group GL(V) of linear automorphisms of V
into a Lie group, just like we did for V = Fn. The tangent space TeGL(V) can then be
identified with the vector space End(V) of linear endomorphisms of V. Note that we view
End(V) as a real vector space even if V is complex.

Definition B.6. Let G be a Lie group and V a vector space. A representation of G on V is a Lie
group homomorphism ρ : G → GL(V).

Example B.8. Any matrix subgroup of GL(n, F) has a representation on Fn given by matrix
multiplication on column vectors from the left. This is called a fundamental representation.

Example B.9. Let G be a Lie group and g ∈ G. The conjugation map cg : G → G, h 7→ ghg−1

is a Lie group isomorphism (with inverse cg−1), so the induced map (cg)∗ : g → g is also an
isomorphism. The map Ad : G → GL(g) sending g to (cg)∗ is a Lie group homomorphism
and defines the adjoint representation of G on g. For matrix groups, the adjoint representation
is given by Ad(A)(B) = ABA−1 for matrices A ∈ G and B ∈ g. If G is abelian, the adjoint
representation is trivial.

We can also define representations of real Lie algebras:

Definition B.7. Let g be a real Lie algebra and V a vector space. A representation of g on V is
a Lie algebra homomorphism ψ : g → End(V).

Example B.10. If ρ : G → GL(V) is a representation of a Lie group G, the differential
ρ∗ : g → End(V) is a representation of g. If ρ is a fundamental representation, then ρ∗(A)
is again given by multiplication by A on column vectors. If V = g and ρ = Ad is the ad-
joint representation, it can be shown [15, Thm. 2.1.52] that the induced representation is
Ad∗(X)(Y) = [X, Y] for X, Y ∈ g.

In gauge theory Lie groups are required to be compact because G-invariant inner products
on a representation V are needed to build the theory. The existence of such inner products is
guaranteed for compact groups by the following theorem [15, Thm. 2.1.39].

Theorem B.2. Let G be a compact Lie group and ρ : G → GL(V) a representation. Then there exists
a G-invariant inner product ⟨·, ·⟩V on V, i.e. ⟨ρ(g)(v), ρ(g)(w)⟩V = ⟨v, w⟩V for all v, w ∈ V and
g ∈ G.

Example B.11. If G is one of the compact matrix groups in Example B.2 and ρ = Ad is the
adjoint representation of G, an Ad-invariant inner product on g is ⟨A, B⟩g = −Tr(AB). The
Ad-invariance follows from the cyclicity of the trace. If in addition G is simple, this is the
only Ad-invariant inner product up to multiplication by a positive constant. For semisimple
Lie groups a choice of an Ad-invariant inner product is determined by a number of positive
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constants, called coupling constants [15, Thm. 2.5.3, Thm. 2.5.4]. These coupling constants
describe the strength of interactions in gauge theories.

We now turn to general actions of Lie groups on a manifold M.

Definition B.8. Let G be a Lie group and M a smooth manifold. A smooth left action of G on
M is a smooth map ϕ : G×M → M, (g, p) 7→ g · p satisfying e · p = p and g · (h · p) = gh · p
for all g, h ∈ G and p ∈ M.

We similarly define smooth right actions. Smooth Lie group actions are a special case of
regular group actions, and so notions defined for regular group actions still make sense. For
a left action ϕ and any p ∈ M the orbit map ϕp : G → M, g 7→ g · p is smooth. The stabiliser
Gp = {g ∈ G | g · p = p} of p is a closed subgroup of G given by the inverse image of {p}
under ϕp and hence a Lie subgroup by Theorem B.1.

Example B.12. If ρ : G → GL(V) is a representation, then ϕ : G×V → V, (g, v) 7→ ρ(g)(v) is
a smooth left action. If G is a (special) orthogonal or unitary group and ρ is the fundamental
representation, the action preserves the norm and hence can be restricted to the unit sphere.
This gives us transitive actions of SO(n) and O(n) on Sn−1 and of SU(n) and U(n) on S2n−1.
For SU(n), the stabiliser of e1 = (1, 0, 0, . . . ) consists of matrices of the form

(
1 0
0 SU(n − 1)

)
∼= SU(n − 1) . (B.14)

Analogous results hold for O(n), SO(n) and U(n).

We have the following useful description of the Lie algebra of a stabiliser Gp.

Lemma B.1. Let ϕ be a smooth left action of a Lie group G on a manifold M and let ϕp : G → M
be the orbit map of p ∈ M. The kernel of the differential Deϕp : g → TpM is the Lie algebra gp of
the stabiliser Gp.

Proof. If X ∈ gp we have exp(tX) ∈ Gp for all t ∈ R and so exp(tX) · p = p. We see that
Deϕp(X) equals the velocity vector of a constant curve, which is zero. Hence X ∈ ker(Deϕp).
The other inclusion is proven in [15, Prop. 3.2.10].

It is well-known for regular actions of a group G on a set X that there exists a bijection
between the set of cosets G/Gx of the stabiliser of x ∈ X and the orbit Ox of x. We want to
adjust this statement to the smooth setting, for which we need the following theorem. This
is a nontrivial result given as Corollary 3.7.35 in [15].

Theorem B.3. Let G be a Lie group and H a closed subgroup. Then there exists a unique smooth
structure on the quotient G/H such that the quotient map π : G → G/H is a smooth submersion.
The dimension of G/H is dim G − dim H.

Recall that a submersion is a smooth map f : M → N such that for all p ∈ M the differential
Dp f : Tp M → Tf (p)N is surjective. Similarly, f is an immersion if Dp f is injective for all
p ∈ M.

Proposition B.3. Let ϕ be a smooth left action of a Lie group G on a manifold M and fix a point
p ∈ M. The map f : G/Gp → M, [g] 7→ g · p is an injective immersion whose image is the
orbit Op = {g · p | g ∈ G}. If G is compact, then the orbit Op is an embedded submanifold of M
diffeomorphic to G/Gp.
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Proof. From g · p = h · p ⇐⇒ g−1h ∈ Gp it easily follows that f is well-defined and
injective with image Op. If G is compact, then so is G/Gp and hence f is a continuous map
from a compact space into a Hausdorff space. It follows that f is closed and restricts to a
homeomorphism G/Gp

∼→ Op. It remains to be shown that f is an immersion, which is
proven in [15, Thm. 3.8.8].

Example B.13. Consider the action of SU(n) on Cn defined in Example B.12. The unit sphere
S2n−1 forms an orbit of the action and the stabiliser of e1 is isomorphic to SU(n − 1). By
Proposition B.3 we find SU(n)/SU(n − 1) ∼= S2n−1. Analogous results hold for O(n), SO(n)
and U(n).

B.3 Connections

Connections are defined on principal fibre bundles, which are fibre bundles that are com-
patible with a Lie group action. First of all, we can adjust the definition of a fibre bundle
(Definition 3.3) to the smooth setting by requiring that the spaces E, B, F are manifolds, p
is smooth and the trivialisations h are diffeomorphisms. We then define a principal fibre
bundle as follows.

Definition B.9. Let G be a Lie group acting from the right on a manifold P. A fibre bundle
G → P π→ M (in the smooth setting) is a principal G-bundle if

1. G preserves the fibres and acts freely and transitively on them, i.e. for all x ∈ M and
p ∈ π−1(x) the map G → π−1(x), g 7→ p · g is a well-defined bijection.

2. The local trivialisations h : π−1(U)
∼→ U × G satisfy h(p · g) = h(p) · g, where g acts on

U × G by (x, a) · g = (x, ag).

The fibres π−1(x) for x ∈ M are embedded submanifolds of P diffeomorphic to G. A section
of a principal bundle is a smooth map s : U → P satisfying π ◦ s = idU , where U ⊂ M is
open. The section is global if U = M and local otherwise. A principal bundle admitting a
global section is called trivial.

Example B.14. Consider the Hopf bundle S1 → S3 π→ CP1 from Example 3.2. This is also
a fibre bundle in the smooth setting, and if we identify S1 with the Lie group U(1) there is
a smooth right action S3 × U(1) → S3, ((z1, z2), λ) 7→ (z1λ, z2λ) given by complex multipli-
cation. This action restricts to a free and transitive action on the fibres. The trivialisations hi
satisfy

hi((z1, z2) · λ) =

(
[z1λ : z2λ],

ziλ

|ziλ|

)
=

(
[z1 : z2],

ziλ

|zi|

)
= hi(z1, z2) · λ (B.15)

for λ ∈ U(1) and (z1, z2) ∈ S3. It follows that the Hopf bundle is a principal U(1)-bundle.

If G is a Lie group and H is a closed subgroup, then H acts on G by right multiplication. This
yields an important example of a principal bundle.

Lemma B.2. Let G be a Lie group, H a closed subgroup and π : G → G/H the quotient map. Then
H → G π→ G/H is a principal H-bundle.
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Proof. Note that H acts freely and transitively on each fibre gH. Since π is a surjective sub-
mersion, around each point of G/H there exists a neighborhood U and a smooth local section
s : U → G [15, Lem. 3.7.4]. We define ϕ : π−1(U) → U × H, g 7→ ([g], s([g])−1g). Note that
s([g])−1g is indeed an element of H because s([g])H = gH. The map ϕ is a diffeomorphism
with inverse ϕ−1([g], h) = s([g])h. The composition proj1 ◦ ϕ obviously equals π on π−1(U),
so ϕ is a local trivialisation. The second requirement of Definition B.9 is also satisfied since
ϕ(gh) = ([g], s([g])−1gh) = ([g], s([g])−1g) · h.

The infinitesimal behaviour of the action of G on the total space P can be described using
fundamental vector fields.

Definition B.10. Let G be a Lie group acting from the right on a manifold M. For X ∈ g, the
fundamental vector field X# ∈ X(M) associated to X is defined by

X#
p = (Deϕp)(X) =

d
dt

∣∣∣∣
t=0

(p · exp(tX)) , (B.16)

where ϕp is the orbit map of p ∈ M.

The last ingredient we need to define connections is the notion of vector valued differential
forms. Let V be a finite dimensional real vector space (with the standard smooth structure)
and M a smooth manifold. We denote the set of smooth maps from M to V by C∞(M, V).
Similarly, we define the set Ωk(M, V) of V-valued k-forms on M: this can be viewed as the
set Γ∞((M × V)⊗R ΛkT∗M) of smooth sections of the tensor product of the trivial bundle
M × V with the k-th exterior power of the cotangent bundle of M. Equivalently, a k-form
ω with values in V is an alternating map X(M)× · · · × X(M) → C∞(M, V) taking k vector
fields as input that is multilinear over C∞(M, R), i.e.

ω(X1, . . . , f · Xi + g · Y, . . . , Xk) = f · ω(X1, . . . , Xk) + g · ω(X1, . . . , Xi−1, Y, . . . , Xk) (B.17)

for X1, . . . , Xk, Y ∈ X(M) and f , g ∈ C∞(M, R), where · is defined pointwise. The set
Ωk(M, V) can be identified with Ωk(M) ⊗R V, where Ωk(M) = Ωk(M, R) is the set of all
ordinary k-forms on M. We can also define Ωk(M, V) for complex vector spaces by view-
ing V as real vector space. Operations like the pullback or exterior derivative of a k-form
naturally extend to V-valued forms.

We now turn to connections. A connection allows us to compare fibres of principal bundles
G → P → M over nearby points. In particular, a connection is used in section 4.1 to define
the covariant derivative. Let Rg : P → P be the map given by Rg(p) = p · g for g ∈ G.

Definition B.11. A connection or gauge field on a principal G-bundle G → P π→ M is a g-
valued 1-form Ã ∈ Ω1(P, g) on P satisfying

1. R∗
g Ã = Ad(g−1) ◦ Ã for all g ∈ G, where R∗

g Ã is the pullback of Ã by Rg.

2. Ã(X#) = X identically on P for all X ∈ g, where X# is the fundamental vector field
associated to X.
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Example B.15. We will construct a connection on the Hopf bundle U(1) → S3 → S2. By
viewing S3 as the unit sphere in C2, the tangent space T(z1,z2)S

3 at the point (z1, z2) ∈ S3

becomes a subspace of T(z1,z2)C
2 ∼= C2. Consider the 1-forms αi, αi ∈ Ω1(S3, C) for i = 1, 2

given by αi,(z1,z2)(x1, x2) = xi and αi,(z1,z2)(x1, x2) = xi for (x1, x2) ∈ T(z1,z2)S
3 ⊂ C2. We define

a 1-form Ã on S3 by

Ã(z1,z2) =
1
2 (z1α1 − z1α1 + z2α2 − z2α2) . (B.18)

Note that we are writing αi instead of αi,(z1,z2) to simplify notation. The 1-form Ã takes values
in iR = u(1) because the complex conjugate of (B.18) is −Ã(z1,z2). It is shown in [15, Prop.
5.2.4] that Ã is a connection. We call it the natural connection on the Hopf bundle.

A connection gives us a decomposition of the tangent space TpP at a point p into a “vertical”
and “horizontal” subspace. The vertical subspace Vp is the tangent space of the fibre of π(x)
at p, which equals the kernel of Dpπ. A horizontal subspace is a subspace Hp such that
TpP = Vp ⊕ Hp. A connection defines a horizontal subspace for all p ∈ P by Hp = ker Ãp.
This choice of a horizontal direction in TpP varies smoothly with p and is compatible with
the action of G. In fact, it can be shown that specifying a family of horizontal tangent spaces
in the following way is equivalent to giving a connection Ã [15, Thm. 5.2.2].

Definition B.12. Let G → P π→ M be a principal G-bundle. A subbundle H of TP consisting
of horizontal tangent spaces is an Ehresmann connection if DpRg(Hp) = Hp·g for p ∈ P, g ∈ G.

We have the following result on the existence of (Ehresmann) connections [36, Prop. 1.3.7].

Theorem B.4. Every principal fibre bundle admits an Ehresmann connection.

We will use Ehresmann connections to prove a result supporting claims made in section 5.2.
Let G be a compact Lie group and ρ : G → GL(V) a representation. Let M ⊂ V be an orbit of
the G-action induced by ρ (see Example B.12). For r > 0 we write Ur = {x ∈ Rn | ∥x∥ > r}
with closure Ur. Suppose f : Rn → V is a smooth map such that f (U1) ⊂ M. Let ei be the
i-th standard basis vector of Rn and let ∂i f denote the derivative of f in direction ei.

Proposition B.4. Let ε > 1. There exists a smooth map Ai : Rn → g such that

∂i f (x) + ρ∗(Ai(x))( f (x)) = 0 (B.19)

for all x ∈ Uε, where ρ∗ is the representation of g induced by ρ.

Proof. Let v ∈ M and let Gv ⊂ G be the stabiliser of v under the G-action. Recall from
Lemma B.2 that Gv → G → G/Gv is a principal bundle, and Proposition B.3 implies that
π : G → M given by π(g) = ρ(g)(v) induces a diffeomorphism G/Gv

∼→ M. We find
that Gv → G π→ M is a principal Gv-bundle. By Theorem B.4 there exists an Ehresmann
connection H on this bundle. That is, we have a subspace Hg of TgG that is complementary
to the kernel of Dgπ and has dimension dim G −dim Gv = dim M for all g ∈ G. This means
that Dgπ restricts to an isomorphism Hg → Tπ(g)M. We restrict the differential of π to H.

Let x ∈ U1. Because the bundle is locally trivial, there exists an open neighborhood W ⊂ M
of f (x) such that there is a local trivialisation ϕ : π−1W → W × Gv. This gives us a local
section s(p) = ϕ−1(p, e) of π. Let K = U1 ∩ f−1W. Note that for all x ∈ K the vector ∂i f (x)
is tangent to M. Since Ds◦ f (x)π (restricted to Hs◦ f (x)) is an isomorphism, there is a smooth
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map q : K → H such that q(x) ∈ Hs◦ f (x) and (Ds◦ f (x)π)(q(x)) = −∂i f (x). Let Rg : G → G be
the map given by multiplication by g ∈ G from the right. We define Ai on K by

Ai(x) = (Ds◦ f (x)R(s◦ f (x))−1)(q(x)) . (B.20)

Note that Ai takes values in TeG = g. We claim that this definition does not depend on
the choice of trivialisation ϕ and satisfies (B.19). Let ψ be another trivialisation around f (x)
and s′(p) = ψ−1(p, e) the associated section. Then there exists an element h ∈ Gv such that
s′( f (x)) = s( f (x))h. We have the following commutative diagram:

Hs◦ f (x) Hs′◦ f (x)

Tf (x)M

Ds◦ f (x)Rh

Ds◦ f (x)π Ds′◦ f (x)π

Let us write u = s( f (x)). The diagram shows that

DuhR(uh)−1 ◦ (Duhπ)−1 = DuhR(uh)−1 ◦
(

Duπ ◦ (DuRh)
−1
)−1

= DuRu−1 ◦ (Duπ)−1 , (B.21)

implying the first claim. For the second claim we note that

ρ∗(Ai(x))( f (x)) = De(π ◦ Ru)(Ai(x)) = De(π ◦ Ru) ◦ (DuRu−1)(q(x)) (B.22)
= (Duπ)(q(x)) = −∂i f (x) . (B.23)

It follows that we have found a map Ai : U1 → g with the required properties. It is shown in
[24, Lem. 2.26] that the restriction Ai|Uε

can be extended to a smooth map Ai : Rn → g.
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