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Chapter 1
Introduction

In 1967, Roger Penrose introduced twistor theory [25, 28], with the aim of finding a way to unify
general relativity and quantum mechanics. It is a well-known fact that the local, deterministic
force of gravity is incompatible with the stochastic decay of the quantum wave function. Since
both quantum mechanics and general relativity have had great successes in predicting differ-
ent physical phenomena, but are mutually incompatible, it is suggested that both theories are
fundamentally flawed. Penrose’s idea was to construct twistor space as the complex manifold
from which the laws of physics originate, with space-time being a secondary object determined
entirely by twistor space. If one could then find a way of unifying general relativity and quantum
mechanics in twistor space, one has found a way to unify the theories in regular space-time.

The theory of twistors is built upon the spinor formalism introduced by Élie Cartan, where the
symmetry groups SO+(p, q) of a pseudo-Riemannian vector space of signature (p, q) are doubly
covered by their spin groups Spin+(p, q). Via representations of the Clifford algebra one can then
regard transformations of real coordinates using complex coordinates.

For 1+3-dimensional Minkowski space, the spin group Spin+(1, 3) acts on two pairs of two-
dimensional complex vectors. The tangent bundle of a general 1+3-dimensional manifold M can
then, under a few assumptions, be seen as consisting of two independent (left- and right-handed)
spinor bundles, taking complex vector values. This structure can be considered as being more
fundamental than the real structure on M .

For spaces that are conformally Minkowski, twistor space T is a 4 complex-dimensional subspace
of the set of spinor fields, where the Klein correspondence can be used to associate lines in
the projectivisation PT with points in complexified compactified Minkowski space CM•. The
philosophy behind twistor theory is to consider twistor space as given, and to see physical space
as a derived object. Quantum effects are then supposed to originate from twistor space and
manifest themselves in physical space. Twistor theory suggests a deep connection between space-
time curvature and the quantum mechanical commutation relations.

In this theses, we will explore some of the powerful tools that twistor theory brings to the table.
In particular, we will see how twistor theory is able to describe conformally flat space-times with
great ease, allowing an elegant way to describe conformal infinities and singularities. We will
also see how the complex-valuedness of twistors is used to encode properties of physical fields
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6 1. Introduction

in cohomology groups. We will, however, also encounter some of the major shortcomings of
twistor theory; we will find that twistor theory can not be obviously adapted to space-times with
arbitrary curvature, something which has thus far precluded the theory from describing quantum
gravity in a satisfying way.

One of the aims of this thesis is to rigorously build up twistor theory from the spinor formal-
ism. Some prior knowledge of quantum mechanics, general relativity, basic abstract algebra and
differential geometry is assumed.

In Chapter 2, some basic notions from differential geometry, which will be used throughout
the thesis, are discussed. In Chapter 3, we will use Clifford algebras to define the spin groups
of pseudo-Riemannian vector spaces, leading to a description of constant spinors. Combining
these notions, we will use Chapter 4 to develop some of the basic tools for using spinor fields.
First we will formalise the abstract index tensor algebra, extensively used in physics, after which
connections on associated vector bundles will be discussed. These concepts will then be combined
to define the spin structure on the tangent bundle.

Chapter 5 will further develop the theory of spinors, now for 1+3-dimensional manifolds. This
will eventually lead to a description of the Einstein equations in spinorial terms.

From Chapter 6 onwards, we will be concerned with twistor space. We will first discuss conformal
rescalings and construct twistor space from the conformally invariant twistor equation. After
this, the Klein correspondence between twistor space and Minkowski space will be discussed.
Chapter 7 will subsequently treat the twistorial description of other spaces which are conformally
Minkowski, in particular focusing on (anti-)de Sitter space and Friedmann-Robertson-Walker
cosmological models.

Finally, in Chapter 8, we will discuss some interesting non-linear features of twistor theory. The
Penrose transform for massless free fields and the non-linear graviton construction for anti-self-
dual space-times are treated. The final paragraph deals with the quantisation of twistors and
the potential role of this in palatial twistor theory, which aims to describe arbitrary solutions to
the Einstein equations in twistorial terms.



Chapter 2
Preliminaries on manifolds and bundles

This chapter is aimed at providing some standard results in differential geometry which will be
used throughout this work, but which are not typically treated in an undergraduate course. The
discussion here is loosely based on [11, 21]. The claims made in this chapter are generally not
hard to prove, and proofs can be found in these references.

Our main goal in this chapter will be, beyond providing basic definitions of (co)tangent bundles
and derivatives, to introduce the notions of Lie groups and associated vector bundles. The
symmetry groups of pseudo-Riemannian vector spaces and their associated spin groups will turn
out to be examples of such Lie groups. Lie groups allow us, given a vector bundle and a right-
action of a Lie group on the underlying base manifold, to define associated vector bundles. We
will give a construction of the tangent bundle as an associated vector bundle, which in Chapter
4 will be used for defining the notion of the covariant derivative. The spinor bundle, which we
will introduce in that chapter, will also be an example of an associated vector bundle.

Throughout this and all subsequent chapters, when referring to a manifold, we mean a C∞

differentiable manifold. Similarly, any smooth function is to mean a C∞ function.

2.1 Basic concepts

In this paragraph, we briefly outline some of the basic concepts of differential geometry that will
be used throughout this work, with the goal of fixing the notation used. We take M to be an
arbitrary n-dimensional manifold.

We denote the set of smooth scalar functions on M by C∞(M), consisting of all smooth
functions

f : M → R.

Given a second manifold N , the set C∞(M,N) similarly denotes the set of all smooth functions
from M to N .

Given a vector bundle π : E →M , we denote the set of smooth sections of this bundle by Γ(E).

An important bundle structure is that of the tangent bundle of M , denoted by TM , which we
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8 2. Preliminaries on manifolds and bundles

define by

TM =
⊔
p∈M

TpM,

where TpM is the n-dimensional vector space of derivations at p. This set has a canonical
projection map and with the usual manifold structure gives a vector bundle over M .

Elements of Γ(TM) are called vector fields on M , which can equivalently be seen as the space
of derivations

X : C∞(M)→ C∞(M),

satisfying the Leibniz rule, i.e., for all f, g ∈ C∞(M) we have that

X(fg) = fX(g) + gX(f),

where the multiplication is point-wise. We write Xp for the vector field X evaluated at the point
p ∈M . The set Γ(TM) is often denoted by X(M).

Similarly, we have the cotangent bundle T ∗M , given by

T ∗M =
⊔
p∈M

T ∗pM,

where T ∗pM is the vector space dual of TpM . The space of sections Γ(T ∗M) can alternatively be
characterized by the set of C∞(M)-linear functions

f : X(M)→ C∞(M),

and is also denoted by Ω1(M), called the set of differential 1-forms on M.

Physical fields will almost always be sections of tensor products of the tangent and cotangent
bundle, collectively called tensor fields. Take the example of a magnetic field; at any point on the
manifold, the strength and direction of the magnetic field is given by a smooth section of TM . We
will develop the theory of such tensor fields in Paragraph 4.1, where we also introduce the abstract
index formalism, which will make computations with these objects much more convenient.

Similar as to how smooth functions can take values in a manifold, differential 1-forms can take
values in an arbitrary vector space V . We define the set of differential 1-forms on M with
values in V, Ω1(M,V ), as the set of C∞(M)-linear maps

f : X(M)→ C∞(M,V ).

Another important notion is the commutator of two vector fields X, Y ∈ Γ(TM), which is
defined by

[X,Y ]f = (X ◦ Y )(f)− (Y ◦X)(f) (2.1)

for all f ∈ C∞(M).

We know, given some function with a real domain and codomain, how to define the derivative of
this function. In a similar vein, we want to define a concept of differentiation of smooth functions
between manifolds and smooth scalar functions on a manifold. For this, we consider the following
two similar, but slightly different, definitions:
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Definition 2.1.1. Let M,N be manifolds and F : M → N a smooth map. Then for every point
p ∈M , given Xp ∈ TpM and f ∈ C∞(M), we define the derivative of F in p by

(dF )p : TpM → TF (p)N

(dF )p(Xp)(f) = Xp(f ◦ F ).

This map is well defined. This induces a map

dF : Γ(TM)→ Γ(TN)

(dF (X))p = (dF )p(Xp)

called the differential of F .

Definition 2.1.2. Let M be a manifold and f ∈ C∞(M). Then we define the differential of
f by

df : X(M)→ C∞(M)

X 7→ X(f).

Note that df ∈ Ω1(M). The operator d satisfies the Leibniz rule

d(fg) = fd(g) + fd(g).

Since the notation is very similar to that Definition 2.1.1, one must be careful no to confuse the
two, although from context it is often clear which differential operator is meant.

Given a chart (U, φ) of M , a C∞(U)-basis of X(U) is given by the differentials{
∂

∂xi

}
i≤n

, (2.2)

where the xi denote the coordinate functions of φ.

Similarly, a C∞(U)-basis of Ω1(U) is given by

{dxi}i≤n. (2.3)

2.2 Lie groups and algebras

This paragraph focuses on Lie groups, manifolds that are endowed with a smooth group structure.
These groups will be used to define associated vector bundles in the next paragraph. We will
also discuss a closely related notion, namely that of Lie algebras, which will be defined as the
tangent space of a Lie group at the unit element. Lie algebras will have a role in the definition
of the covariant derivative on an associated vector bundle.

Definition 2.2.1. A manifold G endowed with a group structure ◦ such that the maps

◦ : G×G→ G : (g, h) 7→ g ◦ h,
−1 : G→ G : g 7→ g−1

are smooth is called a Lie group. As usual, we often write gh instead of g ◦ h.

Given two Lie groups G, H we say that a map

φ : G→ H

is a Lie group homomorphism if it is a smooth group homomorphism.
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We also have a notion of Lie subgroups:

Definition 2.2.2. An embedded Lie subgroup of G is defined as the image of a group homo-
morphism

φ : H → G

that is homeomorphic onto its image, where H is a Lie group and φ is an immersion, i.e., dhφ is
injective for all h ∈ H. In this case, we say φ is a Lie group embedding.

A very important theorem due to Cartan [6, pp. 22–24] states the following:

Theorem 2.2.3 (Cartan). Let G be a Lie group and H ⊂ G a subgroup of G. Then H is an
embedded Lie subgroup of G if and only if H is closed in G.

Since a Lie group is a group, it acts on itself in a smooth way. The following three maps, which
are induced by this action, will be used in the future, so we will briefly define them here:

Definition 2.2.4. Let h ∈ G. We define the left, right, and conjugation actions of h on G
by

lh : G→ G : g 7→ hg,

rh : G→ G : g 7→ gh,

ch : G→ G : g 7→ hgh−1,

respectively. The conjugation action is a Lie group homomorphisms.

An important family of Lie groups, which we will see frequently in our upcoming discussions, are
matrix groups, which are defined as the closed subgroups of the so-called general linear groups.
In fact, the symmetry groups of pseudo-Riemannian vector space which we will encounter in the
next chapter, and even some of the spin groups, are of this form.

Definition 2.2.5. Let K be a field and n ≥ 1. We define the general linear group of dimension
n over K by

GL(n,K) := {A ∈ Mat(n× n,K) : detA 6= 0}.

When V is an n-dimensional K-vector space, we also write

GL(V ) := {A ∈ End(V ) : detA 6= 0} ∼= GL(n,K).

Proposition 2.2.6. For n ≥ 1 and K = R or K = C, we have that GL(n,K) is a Lie group of
dimension n2.

Proof. GL(n,K) has a well-defined group structure, where multiplication and inversion of ma-
trices are given by polynomial maps in the entries. Hence, these maps are smooth. Since
GL(n,K) = det−1(K \ {0}), where

det : Mat(n× n) ∼= Kn
2

→ K

is the smooth determinant map, we see that GL(n,K) is an open subset of Mat(n×n) and hence
a smooth manifold of dimension n2.

Now that we know some basic results about Lie groups, we are in a position to define the Lie
algebra associated to such a Lie group.
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Definition 2.2.7. Let G be a Lie group. We then define its Lie algebra by

g = TeG,

where e ∈ G is the unit element. The Lie algebra has a natural structure of an algebra, with
multiplication given by the commutator bracket of Equation (2.1) in the unit element.

Note that a Lie algebra is not necessarily associative, since, in general, the commutator bracket
need not be associative.

Given two Lie algebras g, h, with multiplication given by the commutator brackets [ , ]g, [ , ]h,
we say that a map

ψ : g→ h

is a Lie algebra homomorphism if for all Xe, Ye ∈ g the relation

ψ([Xe, Ye]g) = [ψ(Xe), ψ(Ye)]h

holds.

Since the Lie algebra can be identified with the tangent space at the unit element, a Lie group
homomorphism φ : G→ H defines a Lie algebra homomorphism induced by the differential dφ.
For simplicity, we write

φ∗ := (dφ)e : g→ h.

This map is called the push-forward of φ.

Push-forwards of Lie group homomorphisms allow us to define a useful operator:

Definition 2.2.8. Let G be a group and g its Lie algebra. We define the adjoint representa-
tion by

Ad : G→ Aut(g)

g 7→ (cg)∗,

where cg is the conjugation action of g on G. Ad defines a representation on g.

We can also let a Lie group G act on a manifold M , giving us a notion of a fundamental vector
field. This definition will turn out to be useful in our definition of a connection in Chapter 4.

Definition 2.2.9. Let G be a Lie group with associated Lie algebra g and M a manifold. Let
X ∈ g and p ∈M . Suppose G acts smoothly on M via a right action. Consider the smooth orbit
map

φp : G→M

g 7→ pg.

The fundamental vector field X̃ ∈ Γ(TM) of X is then defined by

X̃p = (dφp)e(X). (2.4)

The mountain of definitions in this paragraph briefly outline the structure of Lie groups and
algebras. The additional structure provided by these objects will be important for some of the
concepts that we will introduce later in this thesis, including the associated vector bundles of
the next paragraph.
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2.3 Principal and associated vector bundles

In this paragraph, we will discuss some additional bundle structures on manifolds, ultimately
constructing a way of simultaneously having a vector bundle structure, alongside a Lie group
action on a manifold. This will be used in Chapter 4 to define the notion of spin structures and
the concept of a connection.

Definition 2.3.1. Let G be a Lie group, P and M manifolds and π : P → M a smooth
surjection. Suppose G acts smoothly on P via a right-action. We say that P is a principal
G-bundle when the following properties are satisfied:

1. For all x ∈M there exists a neighbourhood Ux 3 x of M such that π−1(Ux) is homeomor-
phic to Ux ×G in a G-equivariant way. In other words, there exists a homeomorphism

φ : π−1(Ux)→ Ux ×G,

satisfying, for all g ∈ G and p ∈ π−1(Ux) that

φ(pg) = φ(p)g,

where the Lie group action on Ux ×G is defined by

(y, a)g = (y, ag),

for all y ∈ Ux and a, g ∈ G. Such a pair (Ux, φ) is called a bundle chart.

2. For all g ∈ G and x ∈M we have that

gPx = Px,

and that the map
G→ Px

g 7→ pg

is a homeomorphism for all p ∈ Px. In other words, G preserves the fibres of the bundle
and acts freely and transitively on them.

We also have a notion of maps between principal bundles:

Definition 2.3.2. Let π : P → M be a principal G-bundle and π′ : P ′ → M be a principal
G′-bundle. Let φ : G→ G′ be a Lie group homomorphism. We define a bundle morphism H
to be a map

H : P → P ′,

satisfying, for all p ∈ P and g ∈ G, the relations

H(pg) = H(p)φ(g),

π(p) = (π′ ◦H)(p).

When φ is a Lie group embedding, we say that H is a G-reduction of P ′, and we say that the
image of H is a sub-bundle of P ′.

An important example of a principal bundle is the frame bundle. Given an n-dimensional
manifold M , we consider the Lie group GL(n,R) and the set

Fr(M) :=
⊔
p∈M

Fr(M)p,
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where
Fr(M)p = {real bases for TpM}.

This set is provided with the canonical choice of projection map. The group GL(n,R) acts freely
and transitively on the fibres in an obvious way, namely by right-multiplication of a vector with
a matrix, i.e.,

(e1, . . . , en) ·A = (e1, . . . , en)A,

for some A ∈ GL(n,R). The set Fr(M) can then be given a bundle structure; given a chart (U, φ)
of M , we consider the map

φ̃−1 : U ×GL(n,R)→ Fr(U)

(p,A) 7→

((
∂

∂xi

∣∣∣
p

)
i≤n

A, p

)
,

which is a G-equivariant isomorphism, providing a bundle chart for Fr(M). The induced topology
provides Fr(M) with a smooth manifold structure and defines a bundle over M .

We want to combine the concept of a principal vector bundle with that of a vector bundle. For
this we first need the following result:

Proposition 2.3.3. Let π : P → M be a principal G-bundle and V a K-vector space. Let
ρ : G→ GL(V ) be a representation of G. Then the map

φ : P × V ×G→ P × V
(p, v, g) 7→ (p, v)g := (pg, ρ(g)−1v)

defines a free right action on P × V and is closed.

In particular, the set
P ×ρ V := (P × V )/G

can be given a smooth manifold structure such that the quotient map

P × V → P ×ρ V

is a submersion.

Proof. A proof can be found in [11, p. 239].

Theorem 2.3.4. Let π : P → M be a principal G-bundle and V a K-vector space. Let
ρ : G→ GL(V ) be a representation of G. Then P ×ρ V has the structure of a vector bundle
with well-defined projection map

π′ : P ×ρ V →M

[p, v] 7→ π(p).

The fibres of this bundle are isomorphic to V . We call this bundle the associated vector
bundle of P to ρ.

Proof. The projection map is well-defined since G acts on the fibres, hence

π′(pg) = π′(p)
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for all p ∈ P , g ∈ G.

Let (Ux, φ) be a bundle chart for P , defined by

φ(p) = (π(p), σ(p)).

Then the map

ψ :
(
π−1(Ux)

)
×ρ V → U × V

[p, v] 7→ (π(p), ρ(σ(p))v)

is a well-defined smooth map, since the quotient map P × V → P ×ρ V is a submersion, and it
can be verified that it has a smooth inverse. Hence, it provides a vector bundle chart for P ×ρ V ,
with fibres isomorphic to V .

Now that we have properly defined the notion of an associated vector bundle, we can see how
we can give the tangent bundle of Paragraph 2.1 such a structure. To achieve this, we return to
the frame bundle of an n-dimensional manifold M . We consider the defining representation

GL(n,R)→ Aut(Rn)

A 7→ (x 7→ Ax).

Then the map
H : Fr(M)×ρ R

n → TM

[(ei)i≤n, p, (xi)i≤n] 7→

(
n∑
i=0

eixi, p

)
gives a well-defined bundle isomorphism. Hence we have

Fr(M)×ρ R
n ∼= TM, (2.5)

so we have provided TM with the structure of an associated vector bundle. This will turn out
to be of great use in Paragraph 4.2, where the associated vector bundle structure will give rise
to the definition of a connection.



Chapter 3
The construction of spinors

This chapter will be dedicated to introducing the spinor formalism for pseudo-Riemannian vector
spaces. Roughly speaking, the idea behind the spinor formalism is to regard transformations of
real vectors as transformations of (pairs of) complex vectors, called spinors. In order to obtain
this correspondence, we will need to go through a number of steps.

First, in Paragraph 3.1, we will introduce the notion of a pseudo-Riemannian vector space, which
is a finite dimensional real vector space endowed with a non-degenerate symmetric bilinear form
of arbitrary signature. We will then construct the symmetry groups of this space, which will be
the groups consisting of linear transformations keeping the symmetric bilinear form invariant.
We will further specialise these symmetry groups, in order for them to also preserve orientation
and time-orientation.

Subsequently, in Paragraph 3.2, we will define the Clifford algebra associated to these spaces.
These Clifford algebras can be seen as encoding the geometry of the pseudo-Riemannian spaces.
In Paragraph 3.3 we will introduce the gamma matrices, which will allow us to characterise the
Clifford algebras. In particular, it turns out that the complex Clifford algebra can be seen as a
matrix algebra acting on complex spaces.

In Paragraph 3.4, we will construct distinguished subsets of the Clifford algebra, called the
spin groups. Under some conditions, these spin groups doubly cover the symmetry groups of a
pseudo-Riemannian vector space, and thus can be seen as giving ‘more fundamental’ transfor-
mations of the pseudo-Riemannian vector space. In Paragraph 3.5, we combine this with the
classifications of the complex Clifford algebras to construct the spinor representation, which will
show that transformations of real coordinates can be covered by the more fundamental spinor
transformations of complex coordinates. These complex coordinates will be called spinors.

We will see, for even-dimensional spaces, that the spinor representation consists of two irreducible
representations, elements of which will be called right- and left-handed spinors. We will further
explore what the spinor representation looks like in 1+3-dimensional Minkowski space.

We will extend the spinor formalism in Chapter 4, where we will consider spinor fields, which will
allow us to regard the real tensor fields on the tangent bundle as consisting of complex vector-
valued spinor fields. The spinor formalism is one of the most important elements of twistor
theory, as a twistor will be seen in Chapter 6 to be a certain kind of spinor field.

15
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The approach we take in this chapter is a combination of [4, 11, 20] and [30, Appendix]. Through-
out this chapter, we take K to be the field R or C.

3.1 Pseudo-Riemannian vector spaces

We are used to considering spaces endowed with a positive semi-definite inner product. However,
to describe the structure of space-time, we must also be able to deal with negative distances. A
basic example of this is 4-dimensional Minkowski space M, consisting of one temporal dimension
and three spatial dimensions. This dimensionality is believed to be the same as the one of the
universe we currently reside in.

We set the speed of light c to be equal to 1. In Minkowski space, the ‘distance’ between two
points (t, x, y, z) and (t′, x′, y′, z′) is given by

(t− t′)2 − (x− x′)2 − (y − y′)2 − (z − z′)2,

so that the null cone, the points at a distance of 0 from the origin, are precisely the points that
light can reach, given it passes through the origin.

In order for us to describe these types of spaces, we will lay out the basics of so-called pseudo-
Riemannian spaces and describe some of their symmetry groups.

Definition 3.1.1. Let V be a K-vector space. A map q : V × V → K is called a symmetric
bilinear form if q is symmetric and K-bilinear.

The map q is called non-degenerate if for all v ∈ V there exists some w ∈ V such that

q(v, w) 6= 0.

Henceforth, we will only be considering non-degenerate symmetric bilinear forms.

In the physical case, we will mostly be interested in real vector spaces Rp,q of dimension n = p+q,
endowed with the symmetric bilinear form η defined on a standard basis {ei}i≥1 of Rp,q by

η(ei, ej) =

{
δij , i ≤ p,
−δij , p < i ≤ p+ q,

(3.1)

where δij is the standard Kronecker delta. Such a space is called a pseudo-Riemannian vector
space.

Note that η is non-degenerate. We say that this bilinear form η has signature (p, q), which we
can also write as

sg(η) = (

p times︷ ︸︸ ︷
+, . . . ,+,

q times︷ ︸︸ ︷
−, . . . ,−).

In this notation, the standard 4-dimensional Minkowski space M we considered a moment ago is
the vector space R1,3, with corresponding symmetric bilinear form of signature (+−−−).

For the complex vector space Cn, we can choose a basis {ei}i≥1 and set

η(ei, ej) = δij . (3.2)

With these two examples we have in fact described all possibilities of finite dimensional K-vector
spaces endowed with a (non-degenerate) symmetric bilinear form:



3.1 Pseudo-Riemannian vector spaces 17

Proposition 3.1.2. A non-degenerate symmetric bilinear form q on a finite dimensional R- or
C-vector space can be obtained from one of the bilinear forms η of Equations (3.1), (3.2) through a
change of basis. Consequently, any non-degenerate symmetric R-bilinear form has a well-defined
signature.

Proof. This follows immediately from applying an adapted Gram-Schmidt algorithm. We can
see that in the case of C we have only one non-degenerate bilinear form, since if q(ej , ej) = −1,

we can set e′j = iej , yielding q(e′j , e
′
j) = 1.

A basis of Rp,q or Cn satisfying Equation (3.1) or (3.2), respectively, is called an orthonormal
basis. A basis {ei} only satisfying q(ei, ej) = 0 for i 6= j is called orthogonal. Note the similarity
with an orthonormal basis in a regular inner product space, only here we do not require the ‘inner
product’ q to satisfy q(v, v) ≥ 0 for all v ∈ V .

Similar to the regular case of inner products, we can define the symmetry groups preserving
orthogonality or orthonormality.

Definition 3.1.3. Let (V, q) be a K-vector space endowed with a symmetric bilinear form. We
define the orthogonal group of (V, q) by

O(V, q) = {A ∈ GL(V ) : q(Av,Aw) = q(v, w) for all v, w ∈ V }.

The special orthogonal group of (V, q) is then defined by

SO(V, q) = {A ∈ O(V, q) : detA = 1}.

For V = Rp,q, we will only consider the bilinear form η of Equation (3.1), and accordingly write
O(p, q) := O(Rp,q, η) and SO(p, q) := SO(Rp,q, η).

Note that with respect to the standard basis we can alternatively write

O(p, q) =

{
A ∈ GL(p+ q) : AT

(
Ip 0
0 −Iq

)
A =

(
Ip 0
0 −Iq

)}
.

Taking determinants on both sides of the equations defining A ∈ O(p, q), we immediately find
that detA = ±1.

Consequently, these groups are closed subgroups of GL(V ), so that by Theorem 2.2.3 they can
be given the structure of embedded Lie subgroups of GL(V ).

Definition 3.1.4. Let A ∈ O(p, q). Writing A =

(
A11 A12

A21 A22

)
with respect to the standard

basis, where

A11 ∈ Mat(p× p,R),

A12 ∈ Mat(p× q,R),

A21 ∈ Mat(q × p,R),

A22 ∈ Mat(q × q,R),

we define the time-orientation τ(A) of A to be ±1 whenever ±detA11 > 0, and the space-
orientation σ(A) of A to be ±1 whenever ±detA22 > 0.
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Note that by definition of O(p, q) we cannot have that detA11 = 0 or detA22 = 0, so any
A ∈ O(p, q) has a well-defined time- and space-orientation.

With this notion, we can define the following two groups:

Definition 3.1.5. The orthochronous Lorentz group of signature (p, q) is defined by

O+(p, q) = {A ∈ O(p, q) : τ(A) = 1}.
The special orthochronous Lorentz group of signature (p, q) is defined by

SO+(p, q) = SO(p, q) ∩O+(p, q).

Note that these sets are again embedded Lie subgroups of GL(V ).

For Minkowski space, we only had one time coordinate, so requiring time-orientability is to
say that we do not consider transformations which reverse the direction of time. Physically,
this is quite desirable, as in nature there is evidence for time having a canonical direction, as
demonstrated by e.g. the second law of thermodynamics. However, this unfortunately precludes
the possibility of time-travel.

Another desirable property of SO+(p, q) is that it is a connected component of O(p, q).

Proposition 3.1.6. Let p, q ≥ 0. The group SO+(p, q) is the connected component of the identity
in O(p, q).

Proof. First we must show that there is no connected component of O(p, q) strictly containing
SO+(p, q). Suppose there exists some A ∈ O(p, q) \ SO+(p, q) sharing a connected subset X
with SO+(p, q). Then either detA = −1 or detA11 < 0. However, since there are no elements
B ∈ O(p, q) with detB = 0 or detB11 = 0, one of the sets

X|− := {B ∈ X : detB = −1},
X|<0 := {B ∈ X : detB11 < 0},

is non-empty and open by the continuity of the determinant and disjoint with SO+(p, q). Hence
X is not connected, giving a contradiction.

Note we have that I ∈ SO+(p, q). Now we must show that SO+(p, q) is connected. Suppose
A,B ∈ SO+(p, q). Consider the path

γ : [0, 1]→ SO+(p, q)

t 7→ At+B(t− 1).

Let t ∈ [0, 1]. By R-linearity of q we see that, for all v, w ∈ Rp,q

q ((At+B(t− 1))v, (At+B(t− 1))w) = q(v, w).

Additionally, by linearity of the determinant, we find

det(At+B(t− 1)) = tdetA+ (1− t) detB = 1,

det(At+B(t− 1))11 = tdetA11 + (1− t) detB11 > 0.

We can hence conclude by that γ is well defined, so γ is a path connecting A and B, so we find
that SO+(p, q) is connected.

The symmetry groups defined here will be essential for defining the notion of spinors, as we will
see in the next few paragraphs. Especially the connectedness properties of SO+(p, q) will prove
to be very important.
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3.2 The Clifford algebra

In order to define the concept of spinors, we need to generalise the geometry of the pseudo-
Riemannian spaces. We will see that, provided a vector space V and a symmetric bilinear form
q, we can construct the Clifford algebra, Cl(V, q), which will serve this purpose. The spin groups
we will define in Paragraph 3.4 will turn out to be subsets of the Clifford algebra.

Ultimately, the Clifford algebra will serve as the mediator between the real symmetry groups of
pseudo-Riemannian spaces and the complex spin representations. In this way, the definition and
classification of the Clifford algebra will be a big step in the construction of the spinor formalism,
one of the major work horses of twistor theory.

Definition 3.2.1. Let (V, q) be a K-vector space endowed with a symmetric bilinear form. The
Clifford algebra of (V, q) is an associative algebra Cl(V, q) with a linear map γ : V → Cl(V, q)
satisfying

1. The Clifford relation ; for all v, w ∈ V , we have that

γ(v)γ(w) + γ(w)γ(v) = −2q(v, w).

2. The universal property ; if A is an associative algebra with a linear map δ : V → A
satisfying

δ(v)δ(w) + δ(w)δ(v) = −2q(v, w)

for all v, w ∈ V , then there exists a unique homomorphism

φ : Cl(V, q)→ A

such that
φ ◦ γ = δ,

i.e., the following diagram commutes:

V Cl(V, q)

A

γ

δ
∃! φ

Note we have that γ(v)2 = −q(v, v) for all v ∈ V , so if we see q(v, v) as representing the ‘length’
of v, we can see γ as the ‘square root’ of −q. For this reason, the Clifford algebra is seen as
representing the ‘square root’ of the underlying geometry.

We refer to the Clifford algebra in Definition 3.2.1, even though it is not yet clear that the Clifford
algebra is in any sense unique, or even exists. We shall justify this language now.

Theorem 3.2.2 (Existence of Clifford algebras). Let V be a finite dimensional K-vector
space with associated symmetric bilinear form q. Let

T (V ) =
⊕
k≥0

V ⊗k

denote the tensor algebra of V , and let I(V ) be the ideal generated by

{v ⊗ v + q(v, v) : v ∈ V }.

Then T (V )/I(V ), endowed with the multiplication a · b = a ⊗ b and the canonical inclusion
γ : V → T (V )/I(V ) defines a Clifford algebra of (V, q).
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Proof. Note that T (V )/I(V ) is clearly a K-vector space. Suppose a, b ∈ T (V )/I(V ) and v ∈ V .
Then

(a+ v ⊗ v + q(v, v)1) · b = (a+ v ⊗ v + q(v, v)1)⊗ b
= a⊗ b+ v ⊗ v ⊗ b+ q(v, v)1⊗ b
= a⊗ b− q(v, v)1⊗ b+ q(v, v)1⊗ b
= a⊗ b = a · b.

A similar manipulation can be done with b, showing that the multiplication on T (V )/I(V ) is
well defined.

Further note that for all x ∈ V we have that

γ2(x) = x⊗ x = −q(x, x),

hence for all v, w ∈ V we get

−2q(v, w) = −q(v + w, v + w) + q(v, v) +Q(w,w)

= γ2(v + w)− γ2(v)− γ2(w)

= γ2(v) + γ(v)γ(w) + γ(w)γ(v) + γ2(w)− γ2(v)− γ2(w)

= γ(v)γ(w) + γ(w)γ(v),

so the Clifford relation is satisfied. Furthermore, since V generates T (V ), we have that γ(V )
generates T (V )/I(V ) multiplicatively.

Finally, suppose A is an associative algebra and δ : V → A is a linear map satisfying the Clifford
relation. This map canonically extends to the tensor algebra by applying δ to each component
and mapping δ(a ⊗ b) to δ(a) · δ(b) in A. Call this extended map δ̃. Note by construction, we
have

I(V ) ⊂ ker δ̃

so the quotient induces a map φ : T (V )/I(V ) → A as required. Uniqueness follows from the
fact that δ = φ ◦ γ and the fact that T (V )/I(V ) is generated by γ(V ), with φ being determined
entirely by δ on γ(V ) ∼= V .

Now that we have shown the Clifford algebra exists, we still need to determine in which way it
is unique.

Proposition 3.2.3 (Uniqueness of Clifford algebras). If (Cl(V, q), γ), (Cl′(V, q), γ′) are two
Clifford algebras of (V, q), there exists a unique algebra isomorphism between them.

Proof. Consider the following commutative diagrams obtained from the universal property

V Cl(V, q) V Cl(V, q) V Cl’(V, q)

Cl(V, q) Cl’(V, q) Cl(V, q)

γ

γ
∃! ψ

γ

γ
′

∃! φ
γ

γ
′

∃! φ′

By the first diagram, there exists a unique homomorphism ψ such that

γ = ψ ◦ γ,

and since idCl(V,q) satisfies this, we must have ψ = idCl(V,q). From the second diagram, we find
that there is a unique homomorphism φ such that

γ′ = φ ◦ γ,
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and from the third we find

γ = φ′ ◦ γ′.

Combining these two, we get

γ = φ′ ◦ φ ◦ γ,

so the first diagram yields φ′ ◦ φ = idCl(V,q) and by symmetry φ ◦ φ′ = idCl
′
(V,q).

Hence Cl(V, q) ∼= Cl′(V, q) via φ, and the uniqueness of the isomorphism follows from the unique-
ness requirement of the universal property.

We now see that the Clifford algebra of (V, q) is given by T (V )/I(V ), which we saw was generated
multiplicatively by γ(V ). In what follows, we shall often leave γ implicit, and write elements of
Cl(V, q) as

ab · · · d := γ(a)γ(b) · · · γ(d)

for some a, b, . . . , d ∈ V .

We can subdivide the Clifford algebra even further:

Definition 3.2.4. Let

T 0(V ) =
⊕
k≥0

V ⊗2k, T 1(V ) =
⊕
k≥0

V ⊗(2k+1)

denote the even and odd part of the tensor algebra of V , respectively. Define

Cl0(V, q) := T 0(V )/(I(V ) ∩ T 0(V )),

Cl1(V, q) := T 1(V )/(I(V ) ∩ T 1(V )),

to be the even and odd part of the Clifford algebra, respectively.

One can easily verify that

Cl(V, q) = Cl0(V, q)⊕ Cl1(V, q)

and that Cl0(V, q) is a sub-algebra of Cl(V, q), generated by products a1 · · · a2n for ai ∈ V and
n ∈ Z>0. Using the unique identification of Cl(V, q) with T (V )/I(V ), we further obtain the
following results:

Theorem 3.2.5. For any K-vector space V and associated symmetric bilinear form q, Cl(V, q)
is naturally isomorphic as a vector space to the exterior algebra Λ∗V of V

Proof. It can easily be shown that the map

φ : Λ∗V → Cl(V, q)

v1 ∧ · · · ∧ vi 7→ v1 · · · vi

is a K-isomorphism of vector spaces (see [20, pp. 10–11]).

Corollary 3.2.6. Suppose dimk V = n. As vector spaces, we have

dimk Cl(V, q) = 2n,

dimk Cl0(V, q) = dimk Cl1(V, q) = 2n−1.
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Proof. The first part follows from Theorem 3.2.5. The second part follows from realising that
Clj(V, q) is the (−1)j eigenspace of the algebra endomorphism Cl(V, q)→ Cl(V, q) : v 7→ −v.

Returning to the standard R- and C-vector spaces from Paragraph 3.1, we can consider the
following ‘standard’ Clifford algebras in which we will be most interested moving forward.

Definition 3.2.7. The standard Clifford algebras are defined as follows:

1. For V = Rp,q and q = η as in Equation (3.1), we define Cl(p, q) := Cl(V, q).

2. For V = Cn and q = η as in Equation (3.2), we define Cl(n) := Cl(V, q).

Even when working with the real pseudo-Riemannian spaces, we will want to consider the clas-
sification of the complex Clifford algebra. Thankfully, we can consider the real Clifford algebras
as subalgebras of the complex Clifford algebras in the following sense:

Lemma 3.2.8. For all p, q ≥ 0 there exists an algebra isomorphism such that

Cl(p, q)⊗R C ∼= Cl(p+ q).

Proof. By considering Cp+q as Rp+q ⊗R C, we can consider the map

δ : Cp,q → Cl(p, q)⊗R C
x⊗ z 7→ γ(x)⊗ z,

where x ∈ Rp+q, z ∈ C, and γ is the embedding Rp,q ↪→ Cl(p, q). By considering the multiplica-
tion on Cl(p, q)⊗R C induced by multiplication on Cl(p, q) we get that for all x⊗ z ∈ Cp+q

δ(x⊗ z)2 = x · x⊗ z2 = −η(x, x)z2

= −q(x⊗ z, x⊗ z),

where η is the standard bilinear product on Rp,q and q the standard bilinear product on Cp+q.
Since the image of δ multiplicatively spans Cl(p, q)⊗R C and the δ satisfies the Clifford relation,
we find, by virtue of Cl(p+ q) and Cl(p, q)⊗R C having the same C-dimension, that
Cl(p, q)⊗R C ∼= Cl(p+ q) by the uniqueness of the Clifford algebra.

In the next paragraphs, we will classify the Clifford algebras in a more practical way, without
involving the somewhat abstract tensor algebra T (V ). We will then use the result obtained above
to regard the real Clifford algebras as subalgebras of the corresponding complex Clifford algebras
in a concrete way.

3.3 Gamma matrices

In the previous paragraph, we constructed the Clifford algebra in the general case using a rather
abstract construction. However, a more appropriate way is to regard the Clifford algebras as
matrix algebras, by considering representations on vector spaces. To this end, we will introduce
the gamma matrices. These will hint at how we can classify the Clifford algebra in terms of
matrix algebras, which will turn out to be more functional than the abstract definition given in
the previous paragraph. From this classification, it will also be clear why the spinor formalism
is most useful when dealing with spaces of even dimension.
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Definition 3.3.1. Let V = Rp,q be an n-dimensional R-vector space with standard bilinear form
η with basis {ei}i≤n. Let W be an m-dimensional K-vector space. Consider a representation
ρ : Cl(p, q)→ End(W ). For i ≤ n, we define the gamma-matrices by

γi = ρ(ei).

Note that by the Clifford relation we have that γiγj +γjγi = −2η(ei, ej)Im for all i, j ≤ n, where
Im is the m×m identity matrix.

For even-dimensional spaces, we can define a special operator, whose eigenspaces will correspond
with left-handed and right-handed spinors.

Definition 3.3.2. For p+ q = n = 2k, where k ∈ Z>0, we define the chirality operator by

Γ := −i3k+tγ1 · · · γn.

Note that we only defined chirality operators corresponding to pseudo-Riemannian vector spaces
of even dimension, and not for odd dimensions. As it will turn out, this is because only in the
even-dimensional case, the spinors, which we will define shortly, can be split up into two disjoint
classes of right-handed and left-handed spinors, whereas such a distinction is not possible for
odd dimensional spaces.

For this reason, some of our upcoming definitions and results will only consider the even-
dimensional situation. Thankfully, this obstruction is no big hurdle for our discussion of twistor
theory, since our universe has four dimensions.

We can use γ-matrices to explicitly compute Clifford algebras. We will illustrate this procedure
for Cl(1, 3). The Pauli matrices σk are defined by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.3)

For the standard Minkowski space M = R1,3 with standard bilinear form η we can consider the
chiral representation ρ : Cl(1, 3)→ End(C4) given by the gamma-matrices

γ1 =

(
0 iI2
iI2 0

)
, γk =

(
0 iσk−1

−iσk−1 0

)
for k ∈ {2, 3, 4}.

We can verify that
γiγj + γjγi = −2η(ei, ej)I4

for all i, j ≤ 4, and that these gamma-matrices induce a faithful representation on C4. As such,
we can see Cl(1, 3) as the 16 real-dimensional vector space generated by products of the γi’s.

Using Definition 3.3.2, we can calculate the chirality operator to be given by

Γ =

(
I2 0
0 −I2

)
.

We end this paragraph by giving two particularly important results concerning the classification
of the standard Clifford algebras. Proofs can be found in [4, Chs. 6–7], following a similar
approach to the one illustrated above.
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Theorem 3.3.3. For even n, let N = 2n/2. Then the complex Clifford algebras satisfy

Cl(n) ∼= End(CN ),

Cl0(n) ∼= End(CN/2)⊕ End(CN/2).

For odd n, let N = 2(n−1)/2. Then the complex Clifford algebras satisfy

Cl(n) ∼= End(CN )⊕ End(CN ),

Cl0(n) ∼= End(CN ).

Theorem 3.3.4. For the real Clifford algebras Cl(p, q) and Cl0(p, q), we set ρ = p − q and
n = p+ q. Then the structure of the real Clifford algebras is given in Table 3.3.5.

ρ mod 8 N N ′ Cl(p, q) Cl0(p, q)

0 2n/2 2(n−2)/2 End(RN ) End(RN
′

)⊕ End(RN
′

)

1 2(n−1)/2 2(n−1)/2 End(CN ) End(RN
′

)

2 2(n−2)/2 2(n−2)/2 End(HN ) End(CN
′

)

3 2(n−3)/2 2(n−3)/2 End(HN )⊕ End(HN ) End(HN
′

)

4 2(n−2)/2 2(n−4)/2 End(HN ) End(HN
′

)⊕ End(HN
′

)

5 2(n−1)/2 2(n−3)/2 End(CN ) End(HN
′

)

6 2n/2 2(n−2)/2 End(RN ) End(CN
′

)

7 2(n−1)/2 2(n−1)/2 End(RN )⊕ End(RN ) End(RN
′

)

Table 3.3.5: Classification of the real Clifford algebras.

Here H denotes the algebra of quaternions.

In practice, we will only use the classification of the complex Clifford algebras. Spinors will then
be the complex vectors on which the Clifford algebra acts, in the sense of Theorem 3.3.3.

3.4 Spin groups

Now that we have defined and classified the Clifford algebras, we can consider specific subgroups
of the Clifford algebras which we can study in conjunction with the symmetry groups defined
in Paragraph 3.1. These groups will be called the spin groups. These groups will, under special
circumstances, be the double covers of the symmetry groups discussed in Paragraph 3.1, in the
sense that they are Lie groups that via a 2-to-1 covering map provide a universal cover, preserving
the group structure. The spin groups can then be regarded as providing ‘deeper’ symmetries of
the underlying pseudo-Riemannian spaces.

Definition 3.4.1. Let (Rp,q, η) be the standard pseudo-Riemannian vector space and bilinear
form of Equation (3.1). We then define the following subsets:

Sp,q+ = {v ∈ Rp,q : η(v, v) = 1},
Sp,q− = {v ∈ Rp,q : η(v, v) = −1},
Sp,q± = {v ∈ Rp,q : η(v, v) = ±1}.



3.4 Spin groups 25

We further define the pin group Pin(p, q), the spin group Spin(p, q) and the orthochronous
spin group Spin+(p, q) by

Pin(p, q) = {v1v2 · · · vs : vi ∈ S
p,q
± , s ≥ 0},

Spin(p, q) = {v1v2 · · · v2s : vi ∈ S
p,q
± , s ≥ 0},

Spin+(p, q) = {v1v2 · · · v2sw1w2 · · ·w2t : vi ∈ S
p,q
+ , wi ∈ S

p,q
− , s, t ≥ 0}.

Proposition 3.4.2. The sets Pin(p, q), Spin(p, q) and Spin + (p, q) are subgroups of Cl×(p, q).

Proof. We will only show this for the group Pin(p, q), the other cases follow analogously. Note
that Pin(p, q) is endowed with an associative multiplication from the Clifford algebra, and is
clearly closed under this multiplication. It remains to be shown that Pin(p, q) is closed under
taking inverses.

Note, given some v ∈ Sp,q± , we have that

η(v, v) = ±1 =⇒ v−1 = ∓v,

so given
u = v1 · · · vn ∈ Pin(p, q),

for v1, . . . , vn ∈ S
p,q
± , we find that

u−1 = (−1)kvn · · · v1 ∈ Pin(p, q),

where k = 0 if an even number of the vi are in Sp,q+ and k = 1 otherwise.

It is not a priori clear why we are interested in these groups. However, we can embed these
groups in the complex Clifford algebras, which via the classification Theorem 3.3.3 provides us
with canonical complex representations of these groups. First though, we will want to see how
the pin and (orthochronous) spin groups relate to the symmetry groups of pseudo-Riemannian
spaces.

To make this more precise, we first need to consider the following well-known algebraic theorem:

Theorem 3.4.3 (Cartan-Dieudonné). For all p, q ≥ 0, consider the standard bilinear form
η on Rp,q. Suppose n = p + q. We define a reflection through the hyperplane orthogonal to
v ∈ Rp,q as a map

ρv : Rp,q → Rp,q

w 7→ w − 2
η(v, w)

η(v, v)
v,

provided that v is not null, i.e., η(v, v) 6= 0.

We have that ρv ∈ O(p, q). Conversely, every element of O(p, q) can be written as a product of
at most 2n such reflections through planes orthogonal to elements in Sp,q± .

Proof. For a proof in a more general case, see [7, pp. 10–12].

We can use this theorem to associate elements in the pin group with rotations of the orthogonal
group.
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Definition 3.4.4. For all p, q ≥ 0 we define the map

R : Pin(p, q)× Rp,q → Rp,q

(v, x) 7→ sgn(v) · v · x · v−1.

where for u = v1 · · · vr with vi ∈ S
p,q
± we have that

sgn(u) =

{
1, u ∈ Spin(p, q),

−1, otherwise,

and · denotes the multiplication in Cl(p, q).

Theorem 3.4.5. For all p, q ≥ 0 we have the following:

1. The map R of Definition 3.4.4 is well-defined.

2. For all v ∈ Sp,q± , we have that the map Rv := R(v, ) : Rp,q → Rp,q is a reflection through
the hyperplane orthogonal to v.

3. The map
λ : Pin(p, q)→ O(p, q)

v 7→ Rv

is a well-defined surjective continuous group homomorphism.

4. We have that λ(v) ∈ SO(p, q) if and only if v ∈ Spin(p, q).

5. We have that λ(v) ∈ SO+(p, q) if and only if v ∈ Spin+(p, q).

Proof. For any v ∈ Sp,q± we have η(v, v) = ±1, so v−1 = ∓1 by the Clifford relation. As such, we
obtain for all x ∈ Rp,q that R(v, x) = ±v · x · v.

If x is orthogonal to v, we get that η(x, v) = 0, so that x · v = −v · x by the Clifford relation, so
R(v, x) = ±η(v, v)x = x.

For x parallel to v, we write x = xvv, for xv ∈ R so that

±v · x · v = ±v · xvv · v = ±xvv · −η(v, v) = −x.

By linearity of R(v, ) we then find that R(v, ) is a reflection to the hyperplane v⊥.

For arbitrary w = v1 · · · vj ∈ Pin(p, q) we find that

Rw = R(w, ) = R(v1, ) ◦ · · · ◦R(vj , ),

so R(w, ) is well-defined and a combination of reflections through planes. Combining this with
Cartan-Dieudonné, we find that the map λ is well-defined and surjective. This proves points 1,
2 and 3.

For points 4 and 5, we can write the matrices associated to Rv. Then simply taking determinants
gives the desired result.

We can now show that the induced map λ has kernel {±1}.
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Lemma 3.4.6. Let λ be the map of Theorem 3.4.5(3). Then λ, along with the restricted homo-
morphisms

λ|Spin(p,q) : Spin(p, q)→ SO(p, q),

λ|
Spin

+
(p,q)

: Spin+(p, q)→ SO+(p, q),

have kernel Z/2Z.

Proof. We clearly have λ(±1) = I. Now suppose v ∈ Pin(p, q) such that λ(v) = I. Then clearly
v ∈ Spin+(s, t) since I ∈ SO+(s, t), using Theorem 3.4.5(5).

We hence find for all u ∈ Rp,q that λ(v)(u) = v · u · v−1 = u. Multiplying both sides with u on
the right and v on the left, we obtain

u · v · u = −η(u, u)v.

Suppose v /∈ R. We then write v = aei1 · · · ei2k where the ej are distinct basis elements of Rs,t,
k ≥ 1 and a ∈ R. Note we used that v ∈ Spin(p, q). Substituting this in the expression obtained
above, substituting u for ei2k , we find

ei2k · aei1 · · · ei2k · ei2k = −η(ei2k , ei2k) · aei1 · · · ei2k
=⇒ −η(ei2k , ei2k)ei2k · aei1 · · · ei2k−1

= −η(ei2k , ei2k) · aei1 · · · ei2k .

Using the cyclical identity eiej = −ejei for i 6= j following from the Clifford relation on the left
hand site of this expression 2k − 1 times to get the ei2k all the way on the right, we obtain

η(ei2k , ei2k)aei1 · · · ei2k−1
· ei2k = −η(ei2k , ei2k) · aei1 · · · ei2k ,

so, comparing the two sides, we find a = 0, giving a contradiction. Hence u ∈ R, and since
λ(a)(v) = |a|2v for a ∈ R and v ∈ Rs,t, we find u = ±1 as required.

One can give the groups Spin(p, q) and Spin+(p, q) the structure of embedded Lie subgroups of
Cl×(p, q), so that the maps of Lemma 3.4.6 are double covers of Lie groups. The most natural
way of showing this is by giving an equivalent construction of these groups. This construction
can be found in [1].

Finally, we complete this line of reasoning by showing that Spin+(p, q) is indeed the double cover
of SO+(p, q) in the sense that it is in fact the topological universal cover of this group, assuming
some conditions on the dimension.

Proposition 3.4.7. For n ≥ 3 the homomorphisms from Lemma 3.4.6 given by

λ : Spin+(0, n)→ SO+(0, n),

λ : Spin+(1, n)→ SO+(1, n),
(3.6)

are universal covers.

Proof. This follows from the fact that the mentioned spin groups are connected, and that the
fundamental groups of the mentioned symmetry groups are Z/2Z, in combination with Lemma
3.4.6. For a detailed computation of the fundamental group, refer to [3, pp. 58–59].
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In particular, the second map of Proposition 3.4.7 will be of great use to us moving forward.
Summarising the results of this paragraph, we found that the group Spin+(p, q), under special
circumstances, doubly covers the group SO+(p, q) and that the covering map is in fact a Lie
group homomorphism. As such, we have a very natural way to regard transformations of the real
coordinates of pseudo-Riemannian space as coming from the ‘more fundamental’ transformations
of Spin+(p, q). It is interesting to note that M is the space of smallest non-Riemannian dimension
satisfying Proposition 3.4.7.

3.5 The spinor representation

We can now finally combine the discussions of the previous paragraphs to define spinors at a
point. We will only be looking at pseudo-Riemannian vector spaces Rp,q of even dimension
n = p + q, since only in this case the even complexified Clifford algebra Cl0(p + q) is a direct

sum of two matrix algebras over the complex numbers. As in Theorem 3.3.3, we take N = 2n/2.

We will combine the classification of the complex Clifford algebra of Paragraph 3.3 and the
double covering of SO+(p, q) by Spin+(p, q) of Paragraph 3.4 to see what we mean by complex
spin transformations.

Definition 3.5.1. Let p, q ≥ 0, and n = p+ q even. We consider the map

κ : Cl(p+ q)→ End(∆n)

induced from the unique isomorphism of Theorem 3.3.3, where ∆n = CN as in Theorem 3.3.3.
By considering Cl(p, q) as a subset of Cl(p + q) via Lemma 3.2.8 and the orthochronous spin
group Spin+(p, q) as a subset of Cl×(p, q), we obtain, by restricting κ, the spin representation

κ+ : Spin+(p, q)→ GL(∆n). (3.7)

The set ∆n will be referred to as the set of constant Dirac spinors. Since κ is an isomorphism,
we have that κ+ is injective.

We now see that transformations of SO+(p, q) correspond with particular transformations of
complex numbers obtained from the spin representation. These transformations will be called
spin transformations.

The main advantage of the spinor representation for even dimensions is that it is reducible; by
the classification of complex Clifford algebras, we have that

Cl0(p, q) ∼= End(∆+
n )⊕ End(∆−n ),

where ∆±n ∼= CN/2 as in Theorem 3.3.3. As such, the spin representation is reducible, in the
following sense:

Proposition 3.5.2. Let Γ be the chirality operator for the spin representation (cf. Definition
3.3.2). Then the spaces ∆±n correspond with the ±1 eigenspaces of Γ.

Proof. Note Γ2 = 1 by definition, so the eigenvalues of Γ are ±1. It is then easy to show that
the eigenspaces of Γ are invariant under the γ-matrices of the spin representation.

As a result, we can regard the map κ+ as a map

κ+ : Spin+(p, q)→ GL(∆+
n )⊕GL(∆−n ).
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We will now specialise to the specific case of M = R1,3. In this case, we call the elements of ∆+
n

the left-handed Weyl spinors, which we will denote by γA ∈ ∆+
n , and the elements of ∆−n the

right-handed Weyl spinors, denoted by ψA
′

∈ ∆−n . Alternatively, we will write ∆±n = S±.
Note that both S+ and S− are two-dimensional complex vector spaces.

Any Dirac spinor χa ∈ ∆n can then be written as a combination of a left- and a right-handed
Weyl spinor. We will write this as

χa = φAψA
′

.

The motivation for this notation, along with the significance of the indices A, A′ and a will be
discussed in Paragraph 4.1, where we will not only consider constant spinors, but also the notion
of spinor fields.

In the case of 4-dimensional Minkowski space, we have the following identification of the spin
group:

Theorem 3.5.3. Let xa = (x0, x1, x2, x3) ∈ R1,3. We consider the correspondence

R1,3 → Herm(2,C)

xa 7→ xµσµ =
1√
2

(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
:= xAA

′

,

where σµ are the Pauli matrices of Equation (3.3) and σ0 = I2.

We also consider the map
φ : SL(2,C)× R1,3 → R1,3

(M,x) 7→MxAA
′

M†.

The induced map M 7→ φ(M, ) induces a transformation of SO+(1, 3). The hence obtained map
ψ : SL(2,C)→ SO+(1, 3) is surjective, with kernel Z/2Z.

Then, since SL(2,C) is simply connected, we have that Spin+(1, 3) ∼= SL(2,C).

Proof. One can show that the induced map ψ is given by

ψ :

(
a b
c d

)
7→

1

2


aā+ bb̄+ cc̄+ dd̄ ab̄+ bā+ cd̄+ dc̄ i(ab̄− bā+ cd̄− dc̄) aā− bb̄+ cc̄− dd̄
ac̄+ cā+ bd̄+ db̄ ad̄+ dā+ bc̄+ cb̄ i(ad̄− dā+ bc̄− cb̄) ac̄+ cā− bd̄− db̄
i(cā− ac̄+ db̄− bd̄) i(dā− ad̄+ cb̄− bc̄) ad̄+ dā− bc̄− cb̄ i(cā− ac̄+ bd̄− db̄)
aā+ bb̄− cc̄− dd̄ ab̄+ bā− cd̄− dc̄ i(ab̄− bā+ dc̄− cd̄) aā− bb̄− cc̄+ dd̄

 .

We can readily verify that ψ(M) = I4 ⇐⇒ M = ±I2 and that ψ is surjective.

We will call xAA
′

the spin-vector or spinor of xa. The association of real coordinates with
complex spinors gives us direct way to translate a real vector into a (sum of) tensor products of
left-handed and right-handed constant spinors. Further note that the length of the vector xa,

corresponds with taking the determinant of the spin-vector xAA
′

as a matrix. More precisely,
we have that

η(xa, xa) = 2 det(xAA
′

). (3.8)
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We can define some simple operations on the space of spinors:

Definition 3.5.4. Let κ, µ, ν ∈ S+, and λ ∈ C. Let {0, 1} denote a complex basis for S+. We
define the following operations on S+:

1. Scalar multiplication is a map C× S+ → S+ given by

λ(κ0, κ1) = (λκ0, λκ1).

2. Addition is a map S+ × S+ → S+ given by

(κ0, κ1) + (µ0, µ1) = (κ0 + µ0, κ1 + µ1).

3. The symplectic product is a map 〈·, ·〉 : S+ × S+ → S+ satisfying

〈κ, µ〉 = −〈µ, κ〉,
λ〈κ, µ〉 = 〈λκ, µ〉,

〈κ+ ν, µ〉 = 〈κ, µ〉+ 〈ν, µ〉,

i.e., the symplectic product is a skew C-bilinear map. Note that this does not correspond
with the regular definition of an inner product.

In the same way, we can define scalar multiplication, addition and the inner product on S−.

The anti-symmetry of the symplectic product is a logical consequence of Equation (3.8), since,
whereas the bilinear form η is symmetric, the determinant is skew under interchange of rows or
columns. This skewness will also be a result of the anti-symmetry of the epsilon spinors, which
we will encounter in Theorem 3.5.6, which will be used later for raising and lowering spinor
indices.

In the Minkowski spinor characterisation, we get the spinor representation

κ+ : SL(2,C)→ GL(S+)⊕GL(S−),

which, under the isomorphism of Theorem 3.5.3 and the identification of the even complex
Clifford algebra of Theorem 3.3.3 can be verified to act on the reduced spaces S± via

κ+
+ : SL(2,C)→ GL(S+)

M 7→ (ψA 7→MψA)

and
κ+
− : SL(2,C)→ GL(S+)

M 7→ (ψA
′

7→ M̄ψA
′

).
(3.9)

As such, we can regard elements of S− as complex conjugates of elements of S+ and vice versa.

Additionally, we can consider the dual representations associated to the spin representation:

Definition 3.5.5. We define the dual spaces of S+ and S− to be S+ and S−, respectively. We
denote elements of S+ by φA and elements of S− by φA′
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The same notational conventions apply for the indices of dual spinors as for regular spinors.

We can now consider the dual representations induced by the spinor representation κ+:

κ∗++ : SL(2,C)→ GL(S+)

M 7→ (ψA 7→ ψAM
−1)

and
κ∗+− : SL(2,C)→ GL(S−)

M 7→ (ψA′ 7→ ψA′M̄
−1).

We obtain the following association between the regular and dual Weyl spinors:

Theorem 3.5.6. We define ε to be the linear map corresponding to the matrix

(
0 1
−1 0

)
in the

standard basis. The maps

εAB : ψA 7→ ψB :=
(
ψA
)T

ε,

εA′B′ : ψA
′

7→ ψB′ :=
(
ψA
′)T

ε,

define isomorphisms of the representations κ+
+ and κ∗++ , and κ+

− and κ∗+− , respectively. These
maps will be called the epsilon spinors.

Proof. SL(2,C)-equivariance of the map εAB follows from the fact that for all M ∈ SL(2,C) the
identity

MT εM = ε

holds. Hence for all ψA ∈ S+, M ∈ SL(2,C) we have that

εAB

(
κ+

+(M)
(
ψA
))

= εAB(MψA)

= (ψA)TMT ε

= (ψA)T εM−1

= εAB(ψA)M−1 = κ∗++ (M)
(
εAB

(
ψA
))

.

We can then define an inverse

εBA : ψB 7→ ψA := (ψB)
T
ε,

which can similarly be shown to be SL(2,C)-equivariant. Hence εAB is an isomorphism of
representations.

Similar reasoning shows that εA′B′ is also an isomorphism of representations.

We will take the ε-spinors defined in the previous theorem as the operators which will lower
indices. Furthermore, it can be seen that the map {·, ·} : S+ × S+ → C defined by

(ψB , φA) 7→ εAB

(
ψB
)
φA = ψAφ

A

defines a symplectic product consistent with Definition 3.5.4 on S+. We will discuss this further
in Paragraph 5.1.
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To briefly summarise some of the results given in this paragraph, we give the following commu-
tative diagram

S+ S+

S− S−
where the horizontal arrows correspond with the epsilon spinors given in Theorem 3.5.6, and the
dotted vertical lines correspond with complex conjugation.



Chapter 4
Spin structures

This chapter is dedicated to three seemingly unrelated topics, which will turn out be essential
in the forthcoming discussion of spinor fields, which will be the building blocks of the theory of
twistors developed in later chapters.

In Paragraph 4.1, we will introduce the so-called abstract index tensor algebra, which is able to
describe both tensor and spinor fields with great efficiency, using indices describing global objects.
This description of fields will turn out to be invaluable for our computational purposes.

Paragraph 4.2 introduces connections on associated vector bundles. The notion of a connection
allows us to talk about differentiation of vector fields in the direction of another vector field. The
associated differential operator will be called a covariant derivative. We will define and construct
a particular type of covariant derivative, called the Levi-Civita derivative, which we will take as
defining a canonical connection on a manifold. This concept will prove to be very important, as
the defining twistor equation of Chapter 6 will be a differential equation using this Levi-Civita
derivative.

In the final paragraph of this section, we can finally discuss the notion of the spinor bundle.
This bundle structure can be regarded as giving, at a point, a tangent structure of Weyl spinors,
instead of real vectors. We do this by considering the local vector space structure of the tangent
space as that of a pseudo-Riemannian vector space, which, using the double covering of the
orthochronous symmetry group by the spin group, allows us to regard the real coordinates of the
tangent space as complex coordinates. We can also use this spin structure to uniquely lift the
Levi-Civita connection to define differentiation of spinor fields, which are in themselves sections
of the spinor bundle.

4.1 Abstract index tensor algebra

In this paragraph, we will discuss and construct a useful formalism that will be used extensively
in the discussion of tensor and spinor fields, called the abstract index formalism. This formalism
gives a very functional way of doing computations with tensor fields without explicit reference
to the underlying charts or bases. Throughout this paragraph, we take M to be some fixed
manifold of dimension n. We will follow the conventions of [29].

33
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Definition 4.1.1. Let M be a manifold. By T (Fraktur T), we will denote the commutative
ring C∞(M), the ring of smooth real scalar functions on M .

Similarly, the commutative ring C∞(M,C) of smooth complex scalar functions on M is denoted
by S (Fraktur S).

Additionally, we define the T-module

T• = X(M)

of vector fields. By S• we will denote the S-module of spinor fields, which will be defined in
Paragraph 4.3.

Furthermore, we define a countably infinite labelling set

L = {α, β, . . . , α0, . . . , α1, . . . }

of abstract labels.

Finally, for some α ∈ L , we define
Tα = T• × {α},
Sα = S• × {α}.

These can then be canonically identified as T- and S-modules isomorphic to T• and S•, respec-
tively.

In the forthcoming discussion, the behaviour of T• and S• will be very similar, so for simplicity,
we will only discuss T, with results for S following analogously. Although our choice of notation
might seem confusing at first, it will be useful for distinguishing between vector fields and spinor
fields, which will be very important in the next chapter.

Definition 4.1.2. Let α ∈ L . Elements of Tα are called contravariant tensors or tensors
of valence [ 1

0 ].

We define the dual of Tα by

Tα = HomT(Tα,T),

where HomT(Tα,T) is the module of T-linear maps from Tα to T. Elements of Tα are called
covariant tensors or tensors of valence [ 0

1 ].

Note that Tα is canonically isomorphic to the dual T• of T•. For notational simplicity, we will
henceforth write QαA

α := Qα(Aα) for an element Qα ∈ Tα acting on an element Aα ∈ Tα. Note
that T• ∼= Ω1(M), as defined in Paragraph 2.1.

The abstract indices of L mostly serve an administrative purpose. The goal of these indices is
to denote different copies of the same modules. We want to be able to add together elements
within Tα and Tβ separately, but we cannot add together elements of Tα with elements of Tβ .
In a sense, this labelling is arbitrary; if we have some equation

Qα(Aα +Bα) = WαC
α,

we can equally well write

Qβ(Aβ +Bβ) = WβC
β ,

for some β ∈ L , without changing the veracity of the expression.

We are now in a position to define multi-valence tensor fields.



4.1 Abstract index tensor algebra 35

Definition 4.1.3. Let {α, . . . , γ} and {λ, . . . , ν} be two disjoint subsets of L of cardinality p
and q, respectively.

A tensor field Aα...γλ...ν of valence [ pq ] is an element of an abstract tensor product of T-modules,
called Tα...γλ...ν , which is given by

Tα...γλ...ν := Tα ⊗ · · · ⊗ Tγ︸ ︷︷ ︸
p occurrences

⊗Tλ ⊗ · · · ⊗ Tν︸ ︷︷ ︸
q occurrences

.

As a result, the tensor field Aα...γλ...ν can be canonically identified with an element in

Γ(TM⊗p ⊗ T ∗M⊗q).

Note that Tα...γλ...ν is again a T-module. In particular, we can regard T as the space of valence [ 0
0 ]

tensors.

In general, we will denote an element of Tα...γλ...ν using the same indices as those of the module.
For example, the tensor field Xα

β will be an element of Tαβ .

For some, a more familiar way to regard the tensor field Aα...γλ...ν of Definition 4.1.3 is as a T-
multilinear map

Aα...γλ...ν : Tα × · · · × Tγ︸ ︷︷ ︸
p occurrences

×Tλ × · · · × Tν︸ ︷︷ ︸
q occurrences

→ T, (4.1)

with the space of all such maps denoted by Tα...γλ...ν . It turns out that these two identifications of
tensor fields are equivalent in our case, a property called total reflexivity. When we are dealing
with finite-dimensional vector fields, this correspondence is immediate, since we can identify the
dual of the vector space with the vector space itself.

However, in our case, this equivalence is not at all obvious, since it relies on the module T• being
sufficiently ‘nice’. It turns out that the existence of a partition of unity on the manifold M is
the ‘niceness’ property we are looking for. For a proof that this implies total reflexivity, refer to
[29, pp. 98-102].

Since the tensor (and spinor) fields we will be dealing with in this thesis will always come from
sections of bundles, we will use the interpretation of tensor fields in the sense of Definition 4.1.3
and Equation (4.1) interchangeably.

In Definition 4.1.3, we use the tensor product of the T-modules. However, when we are tensoring
elements of modules Tα and Tβ with different labelling indices, we can, without ambiguity, write

AαBβ := Aα ⊗Bβ . (4.2)

This allows us to multiply together tensors of arbitrary valence [ pq ] and [ st ], giving us a tensor
of valence

[ p+s
q+t

]
. However, we do need to ensure that the labelling sets of the corresponding

tensors are disjoint; if they are not, we can make them disjoint by choosing a new labelling set
for one of the tensors.

Using the correspondence between Definition 4.1.3 and Equation (4.1), we can now unambigu-
ously define the following operations:

Definition 4.1.4. Suppose Tα...γ... and Tλ...ν... are tensor spaces of valence [ pq ] and [ st ], respectively.
Suppose their labelling sets are disjoint.



36 4. Spin structures

1. Addition is a map Tα...γ... × T
α...
γ... → Tα...γ... mapping two tensors to their sum as a tensor

product. Addition is associative.

2. Outer multiplication is a map Tα...γ...×T
λ...
ν... → Tα...λ...γ...ν... mapping two tensors to their tensor

product in the sense of Equation (4.2).

Since the modules Tα...γ... and Tλ...ν... have disjoint labelling sets, we can regard this form of
multiplication to be commutative, by presupposing some fixed order in which the tensor
product is taken. Multiplication is associative.

3. (φ,ψ)-contraction is a T-multilinear map Tα...βφγ...δψ → Tα...βγ...δ defined on tensors by

Dα · · ·GβHφJγ · · ·KδLψ 7→
(
HηLη

)
Dα · · ·GβJγ · · ·Kδ,

where we consider the tensors to be multilinear maps in the sense of Equation (4.1).

Evaluation of a tensor Aα...γλ...ν in a tensor Bγ may then be regarded as first doing outer multipli-
cation, resulting in the tensor Aα...γλ...νBδ, and subsequently performing (γ, δ)-contraction. Outer
multiplication followed with contraction is often called transvection.

We do need to ensure that when we are doing outer multiplication of tensors, no two labels may
appear more than once as either a subscript or a superscript. For example, the expression

Aαβγ Bγβδ + Cαδ

is perfectly well defined, since we can first do outer multiplication of the two tensors on the left
with disjoint labelling sets, perform two contractions, after which we perform addition. However,
the expression

AαBαC
α

is not well defined, since in general

Aα(BαC
α) 6= (AαBα)Cα.

We will now briefly discuss how we can describe a tensor field if we have some (local) basis of Tα.
Suppose that (U, φ) is a chart for M . Let f ∈ T be some map, satisfying U = {p ∈M : f(p) 6= 0}.
Then we define an equivalence relation ∼ on Tα...γλ...ν by

Aα...γλ...ν ∼ B
α...γ
λ...ν ⇐⇒ fAα...γλ...ν = fBα...γλ...ν .

We denote
Tα···γλ...ν (f) := Tα···γλ...ν (U) := Tα···γλ...ν / ∼ .

Note in particular that Tα(f) ∼= Γ(TU) and Tα(f) ∼= Γ(T ∗U). Note these are free T-modules,
with a basis given by Equations (2.2) and (2.3), respectively.

We can now let the bold index α denote the basis corresponding to U , and write

δα = (δ1, . . . , δn) =

(
∂

∂x1 , . . . ,
∂

∂xn

)
(4.5)

and
δα = (δ1, . . . , δn) =

(
dx1, . . . ,dxn

)
.
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The elements associated with δα and δα in Tα(f) and Tα(f), respectively, will be denoted by
δαα and δαα . These are both arrays of length n, corresponding with the n-valuedness of the bold
index, and are defined, respectively, as the basis and dual basis of Tα(f).

So, the difference between bold indices and regular indices is that bold indices have a relation
to some concrete basis, but regular indices have no particular relation to a basis. Consequently,
V α is an array of elements of T, which in combination with a basis gives a tensor, whereas the
element V α gives the entirety of the tensor.

In particular, on the open set U , we have that

V α = V αδαα,

where the Einstein summation convention is used over the repeated bold index.

To make some of the forthcoming notation more tractable, we can consider compound indices
of the labelling sets. When we have two disjoint index sets {α, . . . , γ} and {λ, . . . , ν}, we can

introduce the compound index A = α . . . γλ∗ . . . ν∗, and denote Tα...γλ...ν = TA, where the stars
denote which indices occur in the bottom.

So, if we have, for example, two compound indices A = αβλ∗ and B = θφ∗χ∗, we have that

AAB = Aαβ θ
λ φχ, (4.6)

where staggering of indices is now necessary to allow for consistent composition of composite in-
dices. We will tacitly assume that when two different composite indices are used, their underlying
index sets are disjoint.

We will see later, in Paragraph 4.3, that the index a of a real tensors in Ta can be seen as a
composite index of the two spinor indices A and A′.

Consequently, just as we had the equivalence between the notions of Definition 4.1.3 and Equation
(4.1), we obtain the following, more general, result:

Theorem 4.1.5. Let A, . . . C,D be disjoint composite indices. Then the set of T-linear maps

TA × · · · × TC → TD

is canonically isomorphic to TDA...C.

A useful example of tensors we now obtain is the Kronecker delta, defined by

δβα : (Aα, Bβ) 7→ AβB
β = AαB

α, (4.7)

which is an element of Tαβ , alternatively defined by δβαA
α = Aβ , so this map is given by the

canonical isomorphism between Tα and Tβ .

Another important example is the epsilon spinor εAB of Paragraph 3.5, which turns out to be
an element of SAB , justifying our use of indices in its definition.

We finish this paragraph by discussing symmetry and anti-symmetry of tensors.

Definition 4.1.6. Let AAB...DE ∈ TAB...DE be a tensor, where B . . .D denote m distinct indices.
Denote by Sm the symmetry group of order m! acting on the index set {B, . . . ,D}, and let
ε : Sm → {±1} be the sign map on Sm.
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1. We define the symmetrisation of AAB...DE in the indices B . . .D to be

AA(B...D)E =
1

m!

∑
σ∈Sm

AAσ(B)...σ(D)E .

2. We define the anti-symmetrisation of AAB...DE in the indices B . . .D to be

AA[B...D]E =
1

m!

∑
σ∈Sm

ε(σ)AAσ(B)...σ(D)E .

Similarly we can define (anti-)symmetrisation operations on sets of dual indices.

Note, since regular and dual indices do not mix, we can first perform (anti-)symmetrisation oper-
ations on regular indices and then on dual indices; or vice versa. Note that (anti-)symmetrisation
on disjoint sets of indices commutes.

We can use these operations to define a notion of (anti-)symmetric tensors.

Definition 4.1.7. Let AA...C ∈ TA...C be a tensor. We say that AA...C is

1. symmetric if AA...C = A(A...C).

2. anti-symmetric or skew if AA...C = A[A...C].

We similarly define (anti-)symmetric dual tensors.

We list, without proof, the following properties of (anti-)symmetrisation:

Proposition 4.1.8. Let A...... and B...... be arbitrary tensors. Then the following expressions hold:

A...ab... = A...(ab)... +A...[ab]....

A...(a...(b...c)...d)... = A...(a...b...c...d)....

A...[a...[b...c]...d]... = A...[a...b...c...d]....

A...(a...[b...c]...d)... = A...[a...(b...c)...d]... = 0.

A
(ab)

A[ab] = A
[ab]

A(ab) = 0.

These properties hold equally well when applied to upper indices.

The notation introduced in this paragraph may seem confusing and obtuse at first, but it turns
out to be a necessary evil to cover the abstract index formalism here. The notion of a ‘tensor’
looks very different when employed by a mathematician or by a physicist. Physicists like to see
tensors as linear maps or arrays, simply summing over repeated indices to perform computations,
whereas a mathematician views a tensor as an element of a tensor product. However, these two
viewpoints are in fact equivalent, using the formalism introduced here.

We would like to preserve the computational power of the physicists’ concept of tensors, as we will
have to do many calculations involving indices, while also keeping the mathematician’s definition
of tensors in mind. This will be especially important in Paragraph 4.3, where we would like to
see real tensor fields as tensor products of complex spinor fields.
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4.2 Connections

In this paragraph, our aim will be to define connections on associated vector bundles. A connec-
tion will serve to define extra structure on the bundle, so we can speak of derivatives of smooth
sections of this associated vector bundle. As usual, we let M be an n-dimensional manifold and
p, q ≥ 0 be such that n = p+ q.

Along the way, we will also define the notion of pseudo-Riemannian metrics, and we will introduce
another way of considering the tangent bundle as an associated vector bundle, by using the Lie
group SO+(p, q) instead of GL(n,R). Ultimately, we will combine all these concepts to define the
Levi-Civita covariant derivative, which will satisfy some desirable properties. This derivative will
turn out to be unique. Moving forward, this derivative will be the canonical choice of derivative
on the tangent bundle.

Definition 4.2.1. Let G→ P →M be a principal G-bundle, with projection map π : P →M .
For any x ∈M and Px = π−1(x) with p ∈ Px, we define the vertical tangent space at p to be

Vp = ker(dπ)p.

The space

V =
⊔
p∈P

Vp

is called the vertical tangent bundle of P .

A horizontal tangent space at p ∈ P is a space Hp ⊂ TpP such that TpP = Vp ⊕ Hp. We
similarly define the horizontal vector bundle H.

We can interpret the horizontal tangent spaces as the ‘level sets’ of the bundle.

A simple example is the trivial principal bundle G → M × G → M . Here, the vertical tangent
spaces are given by V(x,g) = TgG. We can then choose horizontal tangent spaces to be given by
H(x,g) = TxM .

This choice for horizontal tangent spaces is known as the flat connection.

Definition 4.2.2. Let G→ P →M be a principal G-bundle. A connection on this bundle is
a map A ∈ Ω1(P, g) satisfying the following properties:

1. A ◦ (drg) = Ad
g
−1 ◦A for all g ∈ G

2. A(X̃) = X for all X ∈ g, where X̃ is defined as in Equation (2.4).

Note for every p ∈ P we hence obtain a map Ap : TpP → g.

There is a correspondence between the notion of a connection and the notion of horizontal
bundles, as given in the theorem below:

Theorem 4.2.3. Let π : P →M be a principal G-bundle. Then the following hold:

1. Let H be a horizontal vector bundle on P . Then the map A defined by

Ap(X̃p + Yp) = X

for all X ∈ g, Yp ∈ Hp, defines a connection on P .
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2. Let A be a connection on P . Then

Hp = kerAp

defines a horizontal vector bundle on P .

Proof. Refer to [11, pp. 262–263].

It turns out that, having defined a connection on our bundle, this will give rise to our desired
notion of differentiation. To construct a derivative, we will first have to define parallel transport
of a curve.

Definition 4.2.4. Let π : P → M be a principal G-bundle, with a connection defined by the
horizontal bundle H.

Consider a smooth curve γ : [0, 1] → M . A smooth curve γ∗ : [0, 1] → P is called a lift of γ if
the following properties are satisfied.

1. The equality π ◦ γ∗ = γ holds.

2. For all t ∈ (0, 1) we have that
d

dt

∣∣∣
t=0

γ∗(t) ∈ Hγ
∗
(t).

Theorem 4.2.5. Let γ : [0, 1]→M be a smooth curve and p ∈ π−1(γ(0)). Given a connection,
there exists a unique lift γ∗p of γ in the sense of Definition 4.2.4, such that γ∗(0) = p.

Proof. From the local triviality of P , there exists some δ that locally satisfies Property 1 of
Definition 4.2.4. We can then find a function g such that γ∗(t) = δ(t)g(t) by solving a differential
equation. This solution turns out to be unique. For further details, refer to [11, p. 287].

Using these tools, we can straightforwardly define parallel transport:

Definition 4.2.6. Suppose π : P →M is a principal G-bundle. Let γ : [0, 1]→M be a smooth
curve in M . We define parallel transport in P with respect to the connection A as a map

ΠA
γ : Pγ(0) → Pγ(1)

p 7→ γ∗p(1),

where γ∗p is the lifted curve of Theorem 4.2.5.

Parallel transport can be seen as taking a curve on M , lifting it to a point p ∈ P , and seeing
where this new curve ends, provided that the curve ‘travels’ along the horizontal tangent bundle.

We will need slightly more structure on our bundle to connect the notion of parallel transport to
the concept of a covariant derivative. This structure will turn out to that of an associated vector
bundle, which we covered in Paragraph 2.3. From here on out, we will consider a principal bundle
G → P → M and a representation ρ : G → GL(V ), where V is a finite dimensional K-vector
space (with K = R or C). We will then consider the associated vector bundle E = V ×ρ P (cf.
Thm. 2.3.4). We then obtain the following:
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Theorem 4.2.7. We can define parallel transport on the associated vector bundle E as the map

ΠE,A
γ : Eγ(0) → Eγ(1)

[p, v] 7→ [ΠA
γ (p), v].

This is a well-defined linear isomorphism.

Using this concept of parallel transport, we can finally define the covariant derivative on an
associated vector bundle. From here on out, we assume Φ ∈ Γ(E) to be some section of the
associated bundle, and p ∈M a point. Let Xp ∈ TpM be an element of the tangent space at p.

We consider a curve γ : (−ε, ε)→M , with ε sufficiently small, satisfying

γ(0) = p,

d

dt

∣∣∣
t=0

γ′(t) = Xp.

Then for all t ∈ (−ε, ε), we can parallel transport Φ(γ(t)) ∈ Eγ(t) back to Ep along the lift γ∗Φ(p),
giving us an element of Ep given by

ψΦ
γ (t) :=

(
ΠE,A
γt

)−1

(Φ(γ(t))) ∈ Ep,

where γt is the curve obtained by restricting γ to [t, 0] for t ≤ 0 or [0, t] for t > 0. Note that the

map ψΦ
γ is smooth.

Definition 4.2.8. Let Φ, p, γ and ψΦ
γ be as above and A a connection on E. Then we define the

covariant derivative by

D(Φ, p, γ, A) =
d

dt

∣∣∣
t=0

ψΦ
γ (t).

Note that D(Φ, x, γ, A) ∈ TΦ(p)Ep.

An interpretation of the covariant derivative is to which extent the section Φ varies from a
‘constant’ section along a path γ, where a ‘constant’ section has tangents which lie entirely in a
horizontal vector space. This procedure is visualised in Figure 4.1.

E

π

M
•
p

γ

•
Φ(p)

Φ(γ)
Φ̃(γ)

Φ(p)

D(Φ, p, γ, A)

Ep

•

Ep

Figure 4.1: On the left, an associated bundle π : E → M is shown, where π projects on the manifold
M , shown in red. Copies of M lie horizontally above M , whereas the fibres Ex protrude vertically. A
curve γ with γ(0) = p is lifted to E, after which the curve is parallel transported back to Ep.
On the left, one more dimension of Ep is shown, where D(Φ, γ, p, A) is now given by the tangent vector
of the parallelly transported curve in Φ(p).

It is now not difficult to prove the following result:
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Proposition 4.2.9. The covariant derivate D(Φ, p, γ, A) does not depend on the parametrization

of γ, but only on d
dt

∣∣∣
t=0

γ(t) = Xp.

As such, we can regard the covariant derivative as a map that, given a section Φ ∈ Γ(E) and
a vector field X ∈ X(M), returns a section, which at every point p ∈ M gives a value of the
derivative of the section Φ along the direction of X. To make this more concrete, we can consider
the following definition:

Definition 4.2.10. Let Φ ∈ Γ(E) be a smooth section, and X ∈ Γ(TM). Let p ∈ M and γ be
a curve with γ(0) = p and γ′(0) = Xp as above. Let A be a connection on E. The covariant
derivative can alternatively be defined as a smooth map

∇A : Γ(E)× Γ(TM)→ Γ(E)

∇A(Φ, X)(p) = D(Φ, p, γ, A).
(4.8)

Equivalently, we can describe ∇A as a map

∇A : Γ(E)→ Γ(T ∗M ⊗ E)

Φ 7→ ∇A(Φ, ).
(4.9)

Often the connection A is implicit, and we simply write ∇A = ∇.

The covariant derivative has some useful, and desirable, properties:

Proposition 4.2.11. The map ∇ as in (4.8) is R-linear in both entries. For all X ∈ Γ(TM)
and f ∈ T we have that

∇(Φ, fX) = f∇(Φ, X).

Furthermore, the map ∇ as in (4.9) satisfies the Leibniz rule, i.e.,

∇(fΦ) = f∇Φ + df ⊗ Φ.

Proof. The proof of K-linearity and linearity in T with respect to the second coordinate follow
immediately from the definition of the covariant derivative. The final point is not so easy to
show with our definition of a covariant derivative. An equivalent, but slightly different definition
of the covariant derivative is stated in [19, p. 114], from which the Leibniz rule immediately
follows.

Conversely, it can be shown that any operator ∇̃ with the properties of Proposition 4.2.11 defines
a unique connection (cf. [17, p. 36]).

We will now look specifically at the tangent bundle as an associated vector bundle, as discussed
in Paragraph 2.3. In this case, using the notation of Paragraph 4.1, the covariant derivative is a
map

∇ : Tb → Tb•,

or, if we also give an index to the covariant derivative, ensuring that the indices at the bottom
and at the top correspond within expressions containing the covariant derivative, we write

∇a : Tb → Tba.

Note however, that the covariant derivative is not a T-linear map, so in particular, it is not an
element of Ta, as this notation may suggest.
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We would like to extend the covariant derivative to a map that takes on values in arbitrary
valence [ pq ] tensors, subject to a Leibniz rule as in Proposition 4.2.11. For a valence [ 0

0 ] tensor,
the construction is obvious; we simply let

∇a : T→ Ta

f 7→ (df)a,

where (df)a is the element in Ta associated with df in T• = Γ(T ∗M) (cf. Defs. 2.1.2, 4.1.2). The
Leibniz rule of Proposition 4.2.11 can then be rewritten as

∇a(fAb) = Ab∇af + f∇aA
b.

For elements of Tb, the Leibniz rule suggests the following form for the covariant derivative:

∇a(AbB
b) = Ab∇aB

b + (∇aAb)B
b

=⇒ (∇aAb)B
b = ∇a(AbB

b)−Ab∇aB
b,

which uniquely defines the covariant derivative ∇aAb.

For general valence [ pq ] tensors, we can apply a similar algorithm, giving the following expression:

(∇aT
b...d
l...n )Bb · · ·DdL

l · · ·Nn =∇a(T b...dl...nBb · · ·DdL
l · · ·Nn)

− T b...dl...n (∇aBb) · · ·DdL
l · · ·Nn − . . .

− T b...dl...nBb · · ·DdL
l · · · (∇aN

n).

(4.10)

Then, by construction, these covariant derivatives all satisfy the properties of Proposition 4.2.11,
and commute with index substitutes and contractions not involving the index a of ∇a. We can
now regard the covariant derivative as a collection of maps TB → TBa , and which particular one
we are using follows from context.

As it turns out, there will always be a canonical choice of covariant derivative on the tangent
bundle, namely the Levi-Civita derivative, which will turn out to be torsion-free and metric
invariant. For this, we first need to introduce the notion of directional derivatives.

Definition 4.2.12. Let Xa ∈ Ta. We define the directional covariant derivative in the
direction Xa to be the map given by

Xa∇a := ∇
X

: TB → TB

AB 7→ Xa∇aA
B.

The second concept that we will need is that of a pseudo-Riemannian metric. This concept is
not just important for constructing the Levi-Civita derivative, but will be of vital importance
for much of our discussions in the upcoming chapters.

Definition 4.2.13. A pseudo-Riemannian metric on a manifold M is a valence [ 0
2 ] tensor

gab ∈ Tab such that at every point of M , gab induces a non-degenerate symmetric bilinear form.
We say the signature (p, q) of gab is the signature (p, q) of the induced bilinear form



44 4. Spin structures

Note, by continuity, that any pseudo-Riemannian metric has a well-defined signature. Fur-
thermore, since up to local basis transformations on the tangent bundle, any non-degenerate
symmetric bilinear form is of the standard form η as in Equation (3.1), we can identify TxM
with Rp,q for all x ∈M .

Using this metric, we can define a notion of an ‘inner product’ between tensor fields Xa, Y a ∈ Ta,
by setting

XaY
a = gbaX

bY a = XagabY
b = XaYa ∈ T.

More particularly, we see that in general

Xa = gabX
b,

so that gab can be regarded as the canonical isomorphism between Tb and Ta. By gab : Ta → Tb

we denote the inverse of gab, which we use to get that

Xb = gcbgacX
a,

so that
δba = gcbgac,

where δba is the Kronecker delta of Equation (4.7). In particular,

gabgab = gabg
ab = n,

where n is the dimension of the manifold M .

For Minkowski space M, we have an obvious flat choice for the metric. Given the coordinate
functions (t, x, y, z), we can set

gab = dtadtb − dxadxb − dyadyb − dzadzb (4.11)

where dta is the element in Ta associated with dt in Ω1(M), following the notation of Equation
(2.3) (cf. Eq. (A.1)).

As the final puzzle piece, we will consider another construction of the tangent bundle as an asso-
ciated vector bundle, using the more prohibitive orthochronous symmetry Lie group SO+(p, q),
which we discussed extensively in Chapter 3.

Definition 4.2.14. Let x ∈M , with associated bilinear form η on TxM of signature (p, q). Let
{ei(x)}i≤n be an orthonormal basis of TxM with respect to η. Then the orthochronous frame
bundle is the set

SO+(M) :=
⊔
x∈M

{
(ei(x))i≤nA : A ∈ SO+(p, q)

}
. (4.12)

We have a canonical projection map π
SO

+ : SO+(M)→M . If ρ
SO

+ is the defining representation

of SO+(p, q) on Rp,q, then, similar as to in Equation (2.5), we have that

TM ∼= SO+(M)×ρ
SO

+
SO+(p, q)

if and only if there exists a SO+(p, q)-reduction of the principal tangent bundle (cf. Def. 2.3.2).
If this is the case, M is called orthochronous. From here on out, all manifolds M we will
investigate will be assumed to be orthochronous, as a ‘reasonable’ physical condition.
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When we are talking about a covariant derivative on the manifold M with metric gab, we dis-
tinctly mean a covariant derivative on the associated vector bundle induced by the orthochronous
symmetry group.

We are now in a position to define, and prove the existence of, the type of covariant derivative
on this bundle that we are interested in:

Theorem 4.2.15 (Fundamental theorem of Riemannian Geometry). Let M be a manifold
and gab a pseudo-Riemannian metric. Then there exists a unique covariant derivative ∇c on TM
called the Levi-Civita derivative, such that

1. ∇c is torsion-free, i.e., for all tensor fields Xα, Y α ∈ T•, we have that

∇
X
Y α −∇

Y
Xα − [X,Y ]α = 0, (4.13)

where [X,Y ]α is the commutator of Equation (2.1).

2. ∇c is metric-invariant, the metric tensor gab satisfies

∇cgab = 0.

Proof. Let Xa, Y a, Za be arbitrary valence [ 1
0 ] tensors. Note we can rewrite Equation (4.10) as

∇c(gabY
aZb) = (∇cgab)Y

aZb + gab(∇cY
a)Zb + gabY

a(∇Zb).

Since ∇cgab = 0, and transvecting with Xa, we obtain the following expression:

Xcd(gabY
aZb)c = gab

(
∇
X
Y a
)
Zb + gabY

a
(
∇
X
Zb
)
.

This computation can be repeated, permuting X, Y and Z, giving us the following expression:

Xcd(gabY
aZb)c + Y cd(gabX

aZb)c − Z
cd(gabX

aY b)c

=
(
gab

(
∇
X
Y a
)
Zb + gabY

a
(
∇
X
Zb
))

+
(
gab

(
∇
Y
Xa
)
Zb + gabX

a
(
∇
Y
Zb
))

−
(
gab

(
∇
Z
Xa
)
Y b + gabX

a
(
∇
Z
Y b
))

= gab

(
2∇
X
Y a + [Y,Z]a

)
Zb + gab[X,Z]aY b + gab[Y,Z]aXb,

where the final equality from the torsion-free property. Using the T-linearity of gab, we then find

2gab

(
∇
X
Y a
)
Zb =Xcd(gabY

aZb)c + Y cd(gabX
aZb)c − Z

cd(gabX
aY b)c

− gab[X,Z]aY b − gab[Y,Z]aXb − gab[Y,X]aZb,
(4.14)

so since gab is non-degenerate and Xa and Za are arbitrary, this uniquely defines ∇cY
a if it

exists. By further calculation it can be shown that the covariant derivative induced by (4.14) is
metric-invariant and torsion-free, completing the proof.

The Levi-Civita derivative we have defined in this paragraph will be our go-to choice for a
differential operator moving forward. This operator will allow us to define the curvature tensor
in Paragraph 5.4, which will tell us something about the flatness of the spaces we are dealing
with. The twistor equation, which will define twistor space for conformally flat spaces, will be
a differential equation involving the Levi-Civita derivative. In short, this derivative will be of
much utility for us in the future.
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4.3 The spinor bundle

We will now combine the theory of Chapters 2 and 3 and the previous two paragraphs to define a
spin structure on an orthochronous manifold M with pseudo-Riemannian metric gab of signature
(p, q). The spin structure will allow us to extend the spinor formalism of Chapter 3 to tensor
fields, allowing us to regard real tensor fields on M as consisting of complex spinor fields, which
will be defined as sections of the spinor bundle.

We will also encounter the highly-consequential Geroch’s theorem, which will give us a necessary
and sufficient condition for a non-compact signature (1, 3) manifold to be spin.

Definition 4.3.1. Let M be an orthochronous manifold with a pseudo-Riemannian metric
gab of signature (p, q). A spin structure on M is defined as a principal Spin+(p, q)-bundle
π

Sp
+ : Spin+(M)→M , alongside a double cover

Λ+ : Spin+(M)→ SO+(M),

such that the following diagram commutes:

Spin+(p, q)× Spin+(M) Spin+(M)

SO+(p, q)× SO+(M) SO+(M)

M

λ
+×Λ

+
Λ

+

π
Sp

+

π
SO

+

where λ+ is the map of Equation (3.6) (also see Eq. (4.12)), and the horizontal arrows denote
the projection maps.

We define Spin+(M) to be the spinor manifold of M . We call the manifold M spin if there
exists a spin structure on M .

It turns out that a spin structure exists on a manifold if and only if its second Stiefel-Whitney
class vanishes, denoted by w2(M) = 0. For details about the Stiefel-Whitney class, refer to [23,
p. 50]. A proof of this statement can be found in [3, pp. 70–81]. We will not use this result in
detail, instead simply assuming that the manifolds we are dealing with are spin.

A very particular case of spin manifolds, which will be of great interest to us moving forward,
comes from the following result by Robert Geroch [10]:

Theorem 4.3.2 (Geroch). Let M be an orthochronous non-compact 4-dimensional manifold
with metric gab of signature (1, 3).

Then M is spin if and only if there exist four global vector fields (T a, Xa, Y a, Za) of the or-
thochronous tangent bundle of M , such that at every point in M , (T a, Xa, Y a, Za) forms an
orthonormal basis for the induced symmetric bilinear form of gab.

Such a set of vector fields is called a Minkowski tetrad.

This is quite a remarkable result, since if we assume that M is non-compact and spin, this
means that the vector bundle admits a trivial structure. Instead of having to deal with local
bases of the module T•, we can now consider a global basis, which will make many computa-
tions much more straightforward. Another interesting detail is that this theorem only holds for
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this particular choice of dimension and signature, since its proof relies heavily on the fact that
Spin+(1, 3) ∼= SL(2,C), which we showed in Theorem 3.5.3.

If we take the existence of a Minkowski tetrad to be a reasonable physical assumption, this is
equivalent to requiring a spin structure as a reasonable physical assumption. When dealing with
manifolds of this metric, we will henceforth assume that the conditions of Geroch’s theorem hold.

Given a spin manifold Spin+(M) on a manifold M , we can define a spinor bundle on M . Just
as the spin manifold is the equivalent of the frame bundle in spinor terms, the spinor bundle will
be the spinor analogue of the tangent bundle.

Definition 4.3.3. Let Spin+(p, q)→ Spin+(M)→M be a spin structure on M . Let

κ+ : Spin+(p, q)→ GL(∆n)

denote the spinor representation (cf. Eq. (3.7)).

The associated vector bundle
S(M) := Spin+(M)×

κ
+ ∆n

is called the spinor bundle.

Similar to in Proposition 3.5.2, when p + q = n is even, the spinor bundle is a direct sum of a
left-handed and right-handed spinor bundle, each defined by

S±(M) = Spin+(M)×
κ
+ ∆±n .

We have now finally reached one of our first major goals; defining the spinor bundle. Sections
of the spinor bundle will be the spinor fields, which we have been talking about so much. These
spinor fields will have the structure of S-modules, recalling that we defined that

S = C∞(M,C).

Just as we discussed for tensor fields in Paragraph 4.1, the modules of spinor fields are also totally
reflexive. We will employ similar labelling conventions as in Paragraph 4.1 for spinor fields.

We denote sections of the spinor bundle with lowercase Latin indices, i.e.,

Γ(S(M)) ∼= Sa.

These indices are also called world-tensor indices. Elements of Sa are called spinor fields,
or just spinors. We can define multi-valence spinors in the obvious way, following Definition
4.1.3.

When p + q = n is even, we denote sections of the left- and right-handed spinor bundle with
unprimed uppercase Latin and primed uppercase Latin indices, respectively, i.e.,

Γ(S+(M)) ∼= SA.

Γ(S−(M)) ∼= SA
′

.
(4.15)

These indices are also called spinor indices. Elements of these sets are called left- and right-
handed spinor fields, respectively, or just spinors.

Note we have that Sa ∼= SA ⊗SA
′

, so we can regard a as the composite index a = AA′.
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As such, we can regard a left-handed spinor ψA ∈ SA as a smooth function, giving at every point

of the manifold a left-handed Weyl-spinor, whereas a right-handed spinor φA
′

∈ SA
′

returns a
right-handed Weyl-spinor at every point. Using the identification of real vectors with complex

spinors, any real tensor field Xa can be regarded as an element of Sa = SA ⊗SA
′

.

The general space of valence [ r s
u t ] spinor fields is the space

SA...CA
′
...D

′

L...NL
′
...M

′ := SA...C
L...N ⊗SA

′
...D

′

L
′
...M

′ ,

where we have r upper unprimed indices, u lower unprimed indices, s upper primed indices and
t lower primed indices. Ultimately, this construction allows us to identify any tensor field of
arbitrary valence [ st ] as consisting of spinor fields of valence [ s st t ].

We conclude this paragraph by defining a specific covariant derivative on the spinor bundles
induced by the Levi-Civita covariant derivative, called the spin covariant derivative.

Proposition 4.3.4. Suppose M is spin, with spin structure given by Λ+ : Spin+(M)→ SO+(M)
Let ALC denote the connection corresponding to the Levi-Civita derivative on the orthochronous
tangent bundle. Then the map

ASpin := (dλ+)−1 ◦ (ALC ◦ dΛ+) (4.16)

defines a connection on Spin+(M).

Proof. We need to check the conditions of Definition 4.2.2. In order to check the first property,
let g ∈ Spin+(p, q) and X an element of the tangent space of Spin+(M). We then have that

ASpin(rg∗X) = (dλ+)−1 ◦ (ALC(dΛ+drgX))

= (dλ+)−1 ◦ (ALC(dr
λ
+

(g)
dΛ+X))

= (dλ+)−1 ◦Ad
λ
+

(g)
−1 ◦ dλ+ ◦ASpin(X)

= Ad
g
−1 ◦ASpin(X),

where we used Equation (4.16), Definitions 2.2.8, 4.2.2(1) and the properties of the spin structure
(cf. Def. 4.3.1).

The second property follows immediately from Definition 4.2.2(2).

Definition 4.3.5. The covariant derivative associated with the connection ASpin on the spinor
bundle is called the spin covariant derivative. Provided that our underlying manifold M is
even-dimensional, we denote the spin covariant derivative by ∇AA′ . Adjusting the discussion of
Paragraph 4.2, this map can be uniquely extended to a collection of maps

∇AA′ : SB → SBAA′ ,

where B is a composite index consisting of uppercase Latin spinor indices (cf. Eq. (4.15)) not
involving A or A′.

All these maps then satisfy, with needed adjustments, the S-linearity and Leibniz rule of Propo-
sition 4.2.11.
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In this paragraph, we have obtained one of this thesis’ most important results: the identification
of tensor fields with spinor fields, provided that our underlying manifold is spin. Not only have
we given a way in which we can regard a tensor field as being ‘covered’ by a complex spinor
field, we also saw how, for even-dimensional manifolds, these spinor fields split up in left- and
right-handed spinor fields, just as how Dirac spinors split in left- and right-handed Weyl spinors.
We also lifted the Levi-Civita covariant derivative of Theorem 4.2.15 to the spinor bundle, so we
got a notion of derivatives of spinors.

In the next chapter, we will look at special properties of these spinors for 4-dimensional spaces
of signature (1, 3), assuming that the conditions of Geroch’s theorem hold. It will turn out that
spinors have far more structure than tensors, which make them very attractive to work with.
Ultimately, in Chapter 6, we can then define twistors as the right-handed spinor fields satisfying
the twistor equation.





Chapter 5
Two-spinor calculus

In the previous chapter, we defined a deeper structure on the tangent space of M ; the spin
structure. From our construction, it was clear that any real tensor in Ta...cl...n corresponds to some
spinor in Sa...c

l...n . In particular, when the dimension of the underlying manifold M is even, such

a tensor should correspond to some spinor in SAA
′
...CC

′

LL
′
...NN

′ .

In the subsequent discussion, we will only consider non-compact 4-dimensional manifolds M with
a pseudo-Riemannian metric gab of signature (+−−−), which we will further assume to be spin.
In other words, we assume that the conditions of Geroch’s theorem hold. Although some of our
results will also hold for general spin manifolds of even dimension, most will be particular to
these specific conditions.

When we are talking about such manifolds, any spinor splits into a left-handed and right-handed
spinor part, whose values will be 2-complex dimensional. As such, these spinors are collectively
called two-spinors.

In Paragraph 5.1, we will discuss some important basic properties of two-spinors, in particular
touching upon spinor dyads, which will be bases for the module of spinor fields, and the epsilon
spinors, which serve the role of the metric gab in raising and lowering spinor indices. A remarkable
property of these epsilon spinors is that they are unique in this signature. We will use these
properties in Paragraph 5.2 to give an algorithm for translating any 1-valent and 2-valent tensor
field into its spinor components.

In Paragraph 5.3, we will treat a geometrical interpretation of constant 1-valent spinor fields on
Minkowski space, which we will use extensively when discussing the twistor Klein correspondence
in Chapter 6. Finally, in Paragraph 5.4, we will use our definition of the Levi-Civita derivative
and the theory developed in the rest of this chapter to derive the Riemann curvature tensor,
which will allow us to state the Einstein equations and describe them using spinor fields.

5.1 Basic properties

As we saw in Equation (3.9), elements of S+ could be regarded as complex conjugates of elements
of S−, and vice versa. We can take this reasoning further to apply general to spinor fields, i.e.,

51
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we have that SA = SA
′

and SA
′

= SA.

As such, for any arbitrary κA ∈ SA, we have that

κA := κA
′

∈ SA
′

and for ωA
′

∈ SA
′

, we have that

ωA
′

:= ωA ∈ SA.

Complex conjugation must also match the other properties of complex conjugation on C4, so for
any λ, µ ∈ S, κA, χA ∈ SA we have

λκA + µχA = λκ
A
′

+ µχA
′

(5.1)

and of course, these rules need to hold for arbitrary valence
[ p s
q t

]
spinors, i.e.,

ξA...BC
′
...D

′

E...FG
′
...H

′ = ξ
A
′
...B
′
C...D

E
′
...F
′
G...H .

Similar to how we had a metric gab on M to lower tensor indices, we have a similar concept
called epsilon spinors, for lowering spinor indices, as we already saw in Theorem 3.5.6.

Definition 5.1.1. The epsilon spinor is a skew-symmetric tensor εAB ∈ SAB .

We define the dual of κA to be
κB = κAεAB ,

so εAB is the canonical isomorphism between SA and SB . We call its inverse εAB , such that

κA = εABκB .

Furthermore, we define the normalisation of εAB to be such that

εABε
AB = 2,

which uniquely defines εAB . Similarly, we can define εA′B′ and εA
′
B
′

.

This definition matches with the one encountered in Paragraph 3.5; to make this more precise,
we first need to introduce the concept of a spinor dyad :

Definition 5.1.2. A set {oA, ιA} ⊂ SA is called a spinor dyad if any spinor κA can be written
as

κA = κ0oA + κ1ιA, (5.2)

with κ0, κ1 ∈ S and
oAι

A = 1. (5.3)

A dual dyad is defined similarly.

In other words, a spinor dyad is a basis for the module of spinor fields, satisfying a sort of
‘orthogonality condition’, provided by Equation (5.3). It turns out that in the specific case of
a non-compact 4-dimensional space-time M of signature (1, 3), the existence of a global spinor
dyad is equivalent with M being spin, similar to the result of Theorem 4.3.2 [10]. Since we
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assumed the conditions of Geroch’s theorem to hold, we will henceforth assume that we can
always construct such a global spinor dyad.

By the skewness of εAB , it immediately follows that

oAo
A = ιAι

A = 0.

As such, we find that

κ0 = ιAκA, κ0 = oAκ
A.

Note that the description in a spinor dyad yields that

ωAκ
A = ω0κ1 − ω1κ0.

We can set the ‘Kronecker delta’ symbols with respect to this spinor dyad to be (cf. Eq. (4.5))

ε A0 = oA, ε A1 = ιA, ε AA = (ε A0 , ε A1 ),

so with respect to the spinor basis {o, ι} we get that

εAB = εABε
A

A ε B
B =

(
0 1
−1 0

)
, (5.4)

which, unsurprisingly, is exactly the same matrix ε describing the isomorphism between S+ and
S+ in Theorem 3.5.6. This justifies our use of the term ‘dual’ that we used in the definition of
the ε-spinor.

Similarly, we can write the ‘Kronecker delta’ for the isomorphism between SA and SB as

δ BA := ε BA = εACε
CB = −εCAε

BC = −εBA.

Note that we need to be careful regarding the position of indices (cf. Eq. (4.6)) due to the
skewness of εAB ; in general we have that

χABCE = −χA B
C E ,

a property sometimes referred to as the spinor see-saw. (B and C are regular spinor indices, A
and E are composite indices).

As the spinor system SA is two dimensional, the epsilon spinor εAB is, up to scaling, unique, by
virtue of its being skew. So, since we require εABε

AB = 2, we see that εAB is actually unique; a
result that only holds in a 4-dimensional space-time of signature (1, 3).

Of particular interest are the following two simple results, which follow directly from the prop-
erties described above:

Proposition 5.1.3. For any φFAB ∈ SAB we have that

φFAB − φFBA = φ C
FC εAB .
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Proof. Note for all τA, ωA, κA ∈ SA we have that

τAω
AκB + ωAκ

AτB + κAτ
AωB = 3 εCAτ

(AκBωC)

= 3 ε[CA]τ
(AκBωC) = 0,

by skewness of εCA and Proposition 4.1.8(5).

We can rewrite the left-hand side of this equation as

(εABε
D
C + εBCε

D
A + εCAε

D
B )τAωBκC = 0,

so since this holds for all τA, ωA, κA ∈ SA, we get

εABε
D
C + εBCε

D
A + εCAε

D
B = 0. (5.5)

Now transvecting with εEC and using the spinor see-saw, we obtain

ε EB ε DA − ε
E
A ε DB = εABε

ED, (5.6)

which, when transvected with φFED, yields the wanted expression.

Proposition 5.1.4. Let φA, χA ∈ SA. Then the following are equivalent:

1. φAχ
A = 0.

2. φA = λχA for some λ ∈ S.

Proof. This follows immediately by writing φA and χA in terms of a spinor dyad.

These two results will be used a lot when analysing tensorial equations in spinorial terms. They
are again particular to our choice of dimension and signature, and they give a lot more structure
to spinors than we would have with ordinary tensor fields. Ultimately, this is one of the great
powers of the spinor formalism, many expressions become much nicer to deal with.

5.2 Association between spinors and tensors

In this paragraph, our aim will be to explicitly describe the relationship between real tensors,

i.e. elements of Ta...cd...f , and complex spinors; i.e. elements of SA...BC
′
...E
′

F...GH
′
...I
′ .

In the previous paragraph, we saw that complex conjugation carries a spinor of SA into SA
′

.

Since complex conjugation must leave real tensors invariant, we must have that Ta ⊆ Sa := SAA
′

(The ⊆ only means an injection of modules here).

So, we require that for all χa...b... ∈ Ta...b... that

χa...b... = χa...b... (5.7)

From this observation follows the following important theorem:

Theorem 5.2.1. Suppose M satisfies the conditions of Geroch’s theorem (see 4.3.2); i.e., M
is non-compact and spin, such that there exists a globally defined Minkowski tetrad and spinor
dyad. Then the set of all χa...b... ∈ Sa...

b... satisfying Equation (5.7) can be canonically identified with
Ta...b... .
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Proof. We will show that this holds for Ta, the general case then follows. Define

Re(Sa) := {χAA
′

∈ Sa : χAA
′

= χAA
′

}.

Note that Equation (5.1) gives us that

Sa = Re(Sa)⊕ iRe(Sa). (5.8)

Note that both Re(Sa) and iRe(Sa) have the structure of a T-module.

By the existence of the spin structure, and the reasoning above, there exists some (canonical)
T-injection

φ : Ta ↪→ Re(Sa),

stemming from the commutative diagram of Definition 4.3.1.

We have that Sa is a free S-module of dimension 4, since it is of the form SA ⊗ SA
′

, each
component being generated by a spinor dyad. Hence, since a free S module of rank m is a free
T module of rank 2m, by

S = T⊕ iT,

we have that Re(Sa) is a T-module of rank 4 by Equation (5.8), but since Ta is a free 4-
dimensional T-module generated by a Minkowski tetrad, we find that by existence of the injection
φ that

Ta ∼= Re(Sa)

as required.

From here on out, we will simply write that Ta...c... = Re(Sa...
c... ). We can make the isomorphism be-

tween these two modules more explicit, so we can transfer between tensor and spinor descriptions
at will.

For this, we first ‘define’ the real tensors

gab = εABεA′B′ ,

gab = εABεA
′
B
′

,

g b
a = gacg

cb.

(5.9)

Note that the following equations hold:

gabg
ab = 4, g b

a = δba, gab = gba,

so gab has the same properties as the metric defined in Paragraph 4.2.

Furthermore, following [29, p. 119], we can define a tetrad of spinors by

la = oAoA
′

, na = ιAιA
′

, ma = oAιA
′

, ma = ma. (5.10)

It can easily be verified that these form a basis for Sa, so this tetrad can be taken as the basis
in the proof of Theorem 5.2.1.
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We can then define the real tensor fields

ta =
1√
2

(la + na), xa =
1√
2

(ma +ma)

ya =
i√
2

(ma −ma), za =
1√
2

(la − na).

Now using gab as in (5.9) to raise and lower indices, we find that (ta, xa, ya, za) forms a Minkowski
tetrad relative to the metric gab. As such, we see that, given a spinor dyad, we can reconstruct
a Minkowski tetrad and the metric gab, using the uniqueness of the epsilon spinors.

Taking the inverse of the relations of Equation (5.10), we can write any real tensor

Ba = B0ta +B1xa +B2ya +B3za

in spinor coordinates with respect to the dyad {oA, ιA} as

BAA
′

=

(
B00

′

B01
′

B10
′

B11
′

)
=

1√
2

(
B0 +B3 B1 + iB2

B1 − iB2 B0 −B3

)
, (5.11)

which, unsurprisingly, is the same identification as for spinors at a point described in Theorem
3.5.3.

Now, using the correspondence between gab and εAB and Proposition 5.1.4, we obtain the fol-
lowing result:

Proposition 5.2.2. A real tensor field Ba is null if and only if

Ba = qκAκA
′

for some κA ∈ SA and q ∈ T.

Proof. Let Ba ∈ Ta be a real tensor field. Decomposing Ba in spinors, we obtain

Ba =

n∑
i=0

µAi ω
A
′

i ,

where i is not a spinor index, but the index over which we are summing. Using the reality of
Ba, this reduces to

Ba =

n∑
i=0

µAi µ
A
′

i .

Note that Ba is null if and only if

gabB
aBb = 0 ⇐⇒

∑
i,j

µA,iµ
A
j µA′,iµ

A
′

j = 0.

This reduces to ∑
i,j

|µA,iµ
A
j |

2 = 0,

where | · |2 denotes the complex norm map. By Proposition 5.1.4, this equation holds if and only

if µAi = λijµ
A
j for all i, j ≤ n and some λij ∈ S. Combining this with the reality of Ba, the

claim immediately follows.
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We now know how to convert valence [ 1
0 ] tensors to valence [ 1 1

0 0 ] spinors, and vice versa. By
simply lowering indices, we also get a construction for dual tensors of valence [ 0

1 ]. We will now
illustrate an algorithm to convert general tensors with two indices to spinors of a more tractable
form.

Consider a symmetric tensor Cab = Cba ∈ Tab. Note we can write, using spinor indices, that

CAA′BB′ =
1

2
(CABA′B′ + CABB′A′) +

1

2
(CBAB′A′ − CABB′A′),

so twice applying Proposition 5.1.3 to the second pair of parentheses, we obtain

CAA′BB′ = ĈABA′B′ +
1

4
εABεA′B′C

DD
′

DD
′ ,

where

Ĉab :=
1

2
(CABA′B′ + CABB′A′) = C(AB)(A

′
B
′
) = Cab −

1

4
C a
a gab

is called the trace-free part of Cab (note we have C d
d = 0 by Prop. 5.1.3).

Going one step further, we also have the trace-reversal of Cab, given by

̂̂Cab = Cab −
1

2
C c
c gab, (5.13)

which satisfies
̂̂
C a
a = −C a

a .

Similarly, we can factor skew 2-index tensors. For this, we first need to define a specific tensor:

Definition 5.2.3. The completely skew e-tensor is given by

eabcd = iεACεBDεA′D′εB′C′ − iεADεBCεA′C′εB′D′ ,

and satisfies
eabcd = e[abcd], eabcde

abcd = −24. (5.14)

Similar to how εAB is unique, since a spinor basis has 2 elements, Equation (5.14) uniquely
defines eabcd, since a Minkowski tetrad has 4 elements.

Now let Dab = −Dba ∈ Sab be an arbitrary skew valence [ 0
2 ] spinor. Similar to above, we can

write

DAA
′
BB
′ =

1

2
(DABA

′
B
′ −DABB

′
A
′) +

1

2
(DABB

′
A
′ −DBAB

′
A
′),

which, using Proposition 5.1.3 on each of the parentheses yields

DAA
′
BB
′ = φABεA′B′ + ψA′B′εAB , (5.15)

where

φAB :=
1

2
D C

′

ABC
′ , ψA′B′ :=

1

2
D C
C A

′
B
′ ,

are both symmetric.

If we further require that Dab ∈ Tab, we get φAB = ψA′B′ . As such, we see that any symmetric
spinor in SAB uniquely determines a skew tensor in Tab and vice-versa.

We now define the notion of dualisation of real tensors of valence [ 0
2 ]:
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Definition 5.2.4. The dual of Gab ∈ Tab is defined by

∗Gab =
1

2
eabcdG

cd.

We say that Gab is

1. anti-self-dual if
∗Gab = −iGab.

2. self-dual if
∗Gab = iGab.

(The terminology dual is different from the dual we have encountered thus far, namely (Gab)
∗ =

Gab. Unfortunately, both terms share the same name, but from context it will clear which one
we mean.) Note, in general, we have that ∗∗Gab = −Gab.

When we are dealing with 4-valent tensors, we also write

∗Habcd =
1

2
eabefH

ef
cd, H∗abcd =

1

2
ecdefH

ef
ab . (5.16)

This notation is slightly non-standard, but we will need to use it in the Paragraph 5.4.

Returning to the decomposition of (5.15), we find that

∗Gab = −iφABεA′B′ + iψA′B′εAB .

So, we have that
−Gab := φABεA′B′ ,

+Gab := ψA′B′εAB

are anti-self-dual and self-dual, respectively, so the decomposition of (5.15) gives us a decompo-
sition of Gab in a anti-self-dual and self-dual part, i.e.,

Gab = −Gab + +Gab.

Now, since by Proposition 4.1.8(1), any tensor Aab ∈ Tab can be decomposed in a symmetric and
skew part, we can use the procedures outlined above to decompose any real tensor of valence [ 0

2 ]
in a sum of products of epsilon-spinors and symmetric spinors. By raising indices, we can extend
this programme to arbitrary tensors with 2 indices.

In fact, we can use these steps to translate any arbitrary valence tensor into sums of products
of epsilon spinors and symmetric spinors, but for the purposes we have in mind, the procedure
outlined above is sufficient. See [29, p. 153] for the algorithm in full.

5.3 The geometry of spinors

In this paragraph, we will briefly shift our focus from an arbitrary manifoldM , satisfying Geroch’s
theorem, to the specific case of flat Minkowski space. We will discuss a geometrical interpretation
of Equation (5.11) and Proposition 5.2.2, by giving an association between constant spinors and
so-called null flags in Minkowski space. We will use this description extensively when discussing
twistor theory in Chapter 6.
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This construction presented here can be seen as the first little step in giving the twistor Klein
correspondence, to which much of the latter part of Chapter 6 will be dedicated. Since the
construction presented here does not yet require the definition of a twistor, this is a natural
point to treat this geometry of spinors.

When we have a Minkowski tetrad (ta, xa, ya, za), we can associate the point r = (r0, r1, r2, r3)
of Minkowski space with the (constant) field

Ra = r0ta + r1xa + r2ya + r3za.

Supposing that Ra is future-null, i.e., that gabR
aRb = 0 and r0 > 0, we have by Proposition

5.2.2 and the constancy of Ra that there exists some constant spinor κA such that

Ra = κAκA
′

We can take q = 1 in Proposition 5.2.2 since Ra is constant and future-pointing. Thus, any
constant spinor determines a unique future pointing null vector. We call the vector Ra the
flagpole of κA.

Note, however, that different spinors may have the same flagpole; we have the gauge freedom of
multiplying κA with an arbitrary phase factor, keeping the flagpole constant.

To sidestep this issue, we define a (constant) symmetric tensor

P ab = κAκBεA
′
B
′

+ κA
′

κB
′

εAB .

Now if φA is some constant spinor such that φA, κA constitute a spinor dyad, i.e. (cf. Def. 5.1.2),

κAφ
A = 1, (5.17)

we find, using Equation (5.4), that

P ab = RaSb − SaRb,

where

Sa = κAφ
A
′

+ φAκA
′

is a real constant tensor, which is orthogonal to Ra and has length SaSa = −2.

Note we now have the freedom to add complex multiples of κA to φA without changing the
validity of Equation (5.17), and we have the following relation for some λ ∈ C:

φA 7→ φA + λκA =⇒ Sa 7→ Sa + 2 Re(λ)Ra,

so the set of all possible Sa’s forms a line parallel to Ra in the Minkowski vector space. The
plane spanned by this line and Ra is called the flag plane of κA. The flag of κA is defined to
be the set containing both the flag plane and the flagpole.

Note that the map κA 7→ eiθκ rotates the flag plane through an angle of 2θ about Ra, so we now
have a 2-to-1 correspondence between spinors and flags, since a rotation through π in spin space
leaves the flag invariant, also in accordance with Proposition 3.4.7.

In Figure 5.1, the results of this paragraph are briefly summarised, showing what a null flag
corresponding to a spinor looks like in 1+2 dimensional Minkowski space.
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Ra

Sa

Sa + λRanull cone

flag pole

flag plane

Figure 5.1: Geometric representation of a constant spinor κ
A

with flagpole R
a

and flag plane spanned
by S

a
. The flagpole lies on the null cone at the origin, the flag plane rotates about R

a
with an angle 2θ

as the phase of κ
A

is changed by an angle θ.

5.4 Curvature and the Einstein equations

In this paragraph, we will further examine the spin covariant derivative of Paragraph 4.3. In
particular, one of our goals will be to define the Riemann curvature tensor, which will tell us
something about the flatness of the manifold M . Using this notion, we can formulate the Einstein
equations, and describe them in spinor form. For the translation of the Einstein equations in
spinor form, we follow [29, Chapter 4].

Our description of the Einstein equations will turn out to give conditions for when we can apply
twistor theory to a space-time manifold, either using the procedures of Chapter 7 for conformally
Minkowski spaces, or using the non-linear graviton construction of Paragraph 8.2 for patch-wise
conformally flat spaces.

Recall that for the Levi-Civita derivative, we had the condition of metricity ; i.e., we have that
(following Thm. 4.2.15)

∇agbc = 0.

As such, we see that index raising or lowering commutes with taking the derivative, in other
words,

∇aX
...
c... = ∇agbcX

b...
... = gbc∇aX

b...
... +Xb...

... ∇agbc = gbc∇aX
b...
... , (5.18)

so we can unambiguously define

∇a := gab∇b.

We can show that a similar property holds for the epsilon spinors:

Proposition 5.4.1. Let ∇AA′ denote the spinor covariant derivative. We then have

∇AA′εBC = 0.

Proof. For all φB , ψC we have that

(∇AA′εBC)φBψC = ∇AA′(εBCφ
BψC)− εBCφ

B∇AA′ψ
C − εBCψ

C∇AA′φ
B
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by the Leibniz rule (cf. Eq. (4.10)). We now transvect this equation with 2εB′C′χ
B
′

ξC
′

for some

χB
′

, ξC
′

and substitute the following three identities coming from the Leibniz rule

2εB′C′χ
B
′

ξC
′

∇AA′ = εB′C′χ
B
′

∇AA′(ψ
CξC

′

) + εB′C′ξ
C
′

∇AA′(ψ
CχB

′

)

− ψC∇AA′(εB′C′χ
B
′

ξC
′

),

ψCξC
′

∇AA′(φ
BχB

′

) + φBχB
′

∇AA′(ψ
CξC

′

)

= ∇AA′(φ
BψCχB

′

ξC
′

) = ψCχD
′

∇AA′(φ
BξC

′

) + φBξC
′

∇AA′(ψ
CχB

′

),

∇AA′(φ
BψCχB

′

ξC
′

εBCεB′C′)− εBCεB′C′∇AA′(φ
BψCχB

′

ξC
′

)

= φBψCχB
′

ξC
′

∇AA′(εBCεB′C′)

= φBψCχB
′

ξC
′

∇AA′(gbc) = 0,

where the second to last equality follows from gbc = εBCεB′C′ and the final equality follows from
metricity of the derivative.

We hence obtain
2εB′C′χ

B
′

ξC
′

(∇AA′εBC)φBψC = 0,

whence, since φB , ψC , χB
′

, ξC
′

are arbitrary, we get

∇AA′εBC = 0,

as required.

A very desirable property of the ‘metricity’ of the spin covariant derivative is that raising and
lowering spinor indices, similar to Equation (5.18), commutes with taking the spin covariant
derivative. Consequently, we can again, unambiguously, define

∇AA
′

:= εABεA
′
B
′

∇BB′ , ∇AB′ := εAB∇BB′ , ∇A
′

B := εA
′
B
′

∇BB′ .

We will use these identities at length when discussing twistors in the next chapter.

Next, we will derive the curvature tensor, using which we can state the Einstein equations in
spinorial terms. We first need to define the commutator of a covariant derivative:

Definition 5.4.2. Let ∇a be a covariant derivative on the orthochronous tangent bundle. Then
the commutator is defined as the map

∆ab := ∇a∇b −∇b∇a : TA → TA[ab].

Note that when we are dealing with the Levi-Civita derivative, which is torsion-free (see Eq.

(4.13)), we have that Xab∆abf = 0 for all Xab ∈ Tab and f ∈ T, so in particular

∆abf = 0.

We can then easily see that the map

R d
abc : Tc → T d

ab

Ac 7→ ∆abA
d

(5.20)
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is a T-linear map, and hence, by Theorem 4.1.5, we have that R d
abc ∈ T d

abc . We call the tensor

Rabcd := gedR
e

abc (5.21)

the Riemann curvature tensor. For Minkowski space M with the Levi-Civita covariant
derivative, where we provide Minkowski space with the flat metric gab of Equation (4.11), we
find by Schwarz’s theorem that

Rabcd = 0. (5.22)

Many of the other tensors and spinors we will derive in the following will also be identically zero
for flat space.

Some tedious computations (see [29, pp. 194, 209]) yield the following (Bianchi-)identities:

Proposition 5.4.3. Let Rabcd be the Riemann curvature tensor. Then the following four iden-
tities hold:

1. The first Bianchi identity:

Rabcd +Rbcad +Rcabd = 0.

2. The second Bianchi identity:
∇[aRbc]de = 0.

3. Interchange symmetry:
Rabcd = Rcdab.

4. Skew-symmetry:
Rabcd = R[ab][cd].

We will now use the machinery introduced at the end of Paragraph 5.2 to give a twistor description
of the Riemann curvature tensor.

From the anti-symmetry in ab and cd we obtain, using the decomposition of Equation (5.15) and
the reality of Rabcd that

Rabcd = RAA′BB′CC′DD′ = XABCDεA′B′εC′D′ + ΦABC′D′εA′B′εCD

+XA
′
B
′
C
′
D
′εABεCD + ΦA′B′CDεABεC′D′ ,

(5.23)

where

XABCD =
1

4
R E

′
F
′

AE
′
B CF

′
D , ΦABC′D′ =

1

4
R E

′
F

AE
′
B FC

′
D
′

are called the curvature spinors. Note that these two spinors are symmetric in AB and CD
or AB and C ′D′, respectively. We call the spinor ΦABC′D′ the Ricci spinor.

By the interchange symmetry (Prop. 5.4.3(3)), we find

XABCD = XCDAB , ΦABC′D′ = ΦABC′D′ , (5.24)

so in particular, we have that Φab is real, whereas the symmetry of ΦABC′D′ in AB and C ′D′,
combined with Proposition 5.1.3 gives that

Φab = Φ(ab), Φ a
a = 0,
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and the symmetry of XABCD implies that

X A
A(BC) = 0.

We can now observe that Proposition 5.4.3(1) is equivalent to

R∗ bc
ab = 0,

where the star is to mean dualisation on the last two indices in the sense of Equation (5.16).
Writing this out in full, one can verify that we hence obtain

X B
AB CεA′C′ = X

B
′

A
′
B
′
C
′εAC ,

which, after raising C and C ′ and performing (C,A) and (C ′, A′)-contraction, yields

X AB
AB = X A

′
B
′

A
′
B
′ .

We can now introduce a very important real quantity, given by

Λ :=
1

6
X AB
AB = Λ. (5.25)

We further introduce the Ricci tensor, given by

Rab := R c
acb ,

so that Equation (5.23) can be rewritten as

Rab = 6ΛεABεA′B′ − 2ΦABA′B′ = 6Λgab − 2Φab.

We also have a notion of scalar curvature, also called the Ricci scalar, given by

R := R a
a = 24Λ.

Finally, we define the Einstein tensor, given by (cf. Eq. (5.13))

Gab := ̂̂Rab = Rab −
1

2
Rgab = −6ΛεABεA′B′ − 2ΦABA′B′ ,

or, equivalently,
Gac = ∗R∗ b

abc ,

where the star operators, coming from Equation (5.16), denote that we first dualize over the
first two components and then over the second two components of Rabcd, after which raise the d
index and perform (b, d)-contraction. We are now in a position to define the Einstein equations,
which are some of the most important objects of study in general relativity.

Definition 5.4.4. The Einstein equation is defined by

Gab + λgab = −8πGTab, (5.26)

where λ ∈ R is the cosmological constant, Tab is the energy-momentum tensor and G ∈ R
is the gravitational constant.

We say the underlying manifold M is an Einstein manifold when Tab = 0, so that the Einstein
equation becomes

Rab = λgab.
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We can rewrite the Einstein equation for Einstein manifolds in spinor terms as

ΦABA′B′ = 0, Λ =
1

6
λ

and the general Einstein equation as

ΦABA′B′ = 4πG(Tab −
1

4
T c
c gab), Λ =

1

3
πT q

q +
1

6
λ.

We can also further decompose XABCD, namely as follows:

XABCD =
1

3
(XABCD +XACDB +XADBC) +

1

3
(XABCD −XACDB) +

1

3
(XABCD −XADCB)

= X(ABCD) +
1

3
εBCX

E
AE D +

1

3
εBDX

E
AEC ,

where for the second equality, we used the symmetry of XABCD and Equation (5.24) on the first
pair of parentheses, and we used Proposition 5.1.3 on the other pairs of parentheses. Comparing
this expression with Equation (5.25), we obtain

XABCD = ΨABCD + Λ(εACεBD + εADεBC),

where

ΨABCD := X(ABCD) (5.27)

is called the gravitational spinor or Weyl conformal spinor. This spinor will turn out to
be of great importance in twistor theory.

We want to substitute this expression into the decomposition of Rabcd of Equation (5.23). Note
this entails replacing XABCD with ΨABCD + Λ(εACεBD + εADεBC), so, additionally making use
of Equation (5.6), which we derived in the proof of Proposition 5.1.3, and lowering the D and E
components in this expression, we finally obtain the following expression:

Rabcd = RAA′BB′CC′DD′ = ΨABCDεA′B′εC′D′ + ΦABC′D′εA′B′εCD

+ ΨA
′
B
′
C
′
D
′εABεCD + ΦA′B′CDεABεC′D′

+ 2Λ(εACεBDεA′C′εB′D′ − εADεBCεA′D′εB′C′).
(5.28)

We can further simplify this by defining the following tensors:

−Cabcd = ΨABCDεA′B′εC′D′ ,
+Cabcd = ΨA

′
B
′
C
′
D
′εABεCD, (5.29)

Cabcd = −Cabcd + +Cabcd,

Eabcd = ΦABC′D′εA′B′εCD + ΦA′B′CDεABεC′D′ ,

gabcd = εACεBDεA′C′εB′D′ − εADεBCεA′D′εB′C′ ,

where −Cabcd and +Cabcd are anti-self-dual and self-dual, respectively. The tensor Cabcd is also
called the Weyl conformal tensor. This tensor is exactly the part of the curvature tensor
that stays invariant under conformal rescaling (also see Prop. 6.1.3).
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As such, the equation for Rabcd becomes

Rabcd = Cabcd + Eabcd + 2Λgabcd = −Cabcd + +Cabcd + Eabcd + 2Λgabcd.

This relatively simple expressions in spinor terms governing curvature are a result of the fact
that our manifold M has a metric of signature (+−−−). If, for example, we were dealing with
a space of signature (+ +−−), this expression would be far more complicated.

However, this simplicity also has a major disadvantage. The twistor theory we will develop in
the next chapters will only give a meaningful description for spaces where the Weyl tensor is
anti-self-dual, which due to Equation (5.29) is the case only if ΨABCD = 0, which we will see to
mean that the space is conformally flat. We will see why this is the case in Paragraph 8.2.

Since one would like to be able to describe any arbitrary solution to the Einstein equations in
twistorial terms, this obstruction is very undesirable. In fact, in the presence of any mass, or
any other form of energy, the Weyl spinor will almost always be non-zero. This is one of the
major shortcomings of twistor theory, which as of yet remains unresolved. We will look at this
in a little more detail in Paragraph 8.3.





Chapter 6
Twistor space

In the previous few chapters, we have had to introduce a lot of different concepts. In this chapter,
this will finally pay its dividends; we will be able to define twistors, which are the objects we are
most interested in in this thesis.

In Paragraph 6.1, we will first discuss the idea behind conformal rescalings, which alter the
pseudo-Riemannian metric on a manifold M in a specific way. Twistor theory is in its core a
conformal theory; the twistor space related to a Riemannian manifold will remain unchanged
under such a conformal rescaling. We will see this in Paragraph 6.2, where we construct twistor
space for 4-dimensional Minkowski space using the twistor equation, which will turn out to be
conformally invariant. We will show that the solution space of the twistor equation is a 4-complex
dimensional vector space, and we will describe the elements of this space in terms of spinors.

In Paragraph 6.3, we will use the description of the solutions to the twistor equation that we
obtained in the previous paragraph to define some important manipulations of twistors. In
particular, we will define duals and complex conjugates of twistors. We will also define multi-
valent twistors and consider a type of norm on twistor space, called the helicity.

All these notions will then be combined to describe the twistor Klein correspondence. This
correspondence tells us something about how we can reconstruct Minkowski space, given the
structure of twistor space. As such, we can see twistor space as the more fundamental object, with
Minkowski space being derived from it. In Paragraph 6.4, we will first discuss a correspondence
between null twistors and lines in Minkowski space, which we will extend in Paragraph 6.5 to
derive a full correspondence between projective twistor space PT and complexified compactified
Minkowski space CM•.

6.1 Conformal transformations

Before we can discuss the twistor equation and twistor space proper, we must first consider the
concept of conformal rescalings. As usual, we consider a 4-dimensional manifold M satisfying
the conditions of Geroch’s theorem.

Definition 6.1.1. Let M be a manifold with a metric gab of signature (+ − −−) satisfying
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Geroch’s theorem. A conformal rescaling of the metric is a map

gab 7→ ĝab := Ω2gab,

where Ω ∈ T is a strictly positive real scalar function. We call the Ω the conformal transfor-
mation or conformal map associated to the rescaling.

We say that a space M with metric gab is (patch-wise) conformally flat if at every point
p ∈ M , there exists an open neighbourhood Up 3 p and a conformal map Ω such that Ω2gab
constrained to Up is the metric of flat Minkowski space, as defined in Equation (4.11).

We say a space M with metric gab is conformally Minkowski if the neighbourhood Up defined
above can be taken to be the whole of M .

After conformal rescaling of the metric, index raising and lowering will be achieved through
the new metric ĝab. We also want to know what happens when raising and lowering indices of
spinors. Note that by the equation gab = εABεA′B′ , the only logical choice is to choose the map

εAB 7→ ε̂AB := ΩεAB , (6.1)

whence complex conjugation immediately yields

εA′B′ 7→ ε̂A′B′ := ΩεA′B′ .

Additionally, when we have a spinor dyad {oA, ιA}, we want to convert this into another spinor

dyad {ôA, ι̂A}. Since we need to preserve Equation (5.4), we cannot just take oA = ôA and

ιA = ι̂A. We can however make the following (somewhat arbitrary) choice

ôA = Ω−1oA, ι̂A = ιA. (6.2)

Definition 6.1.2. We say a spinor χ...... ∈ S...
... is of conformal weight k if under conformal

rescaling the relation
χ̂...... = Ωkχ......

holds.

Note that by our choice of spinor dyad, some spinor κA ∈ SA can have have conformal weight
0 or −1, but need not have a well-defined conformal weight by the asymmetry in the choice of
spinor dyad. However, any one-index spinor is the sum of two spinors of well-defined conformal
weight. The asymmetry in the scaling of Equation (6.2) is very useful, since if we have some

spinor κA, we can always choose a dyad such that κA has conformal weight 0.

Further note, by Equation (6.1), and supposing κA is of conformal weight 0, we have that

κ̂B = ε̂ABκ̂
A = ΩκB ,

so lowering of spinor indices raises the conformal weight by 1. Conversely, raising of spinor
indices lowers the conformal weight by 1. Similarly, lowering and raising real indices, raises and
lowers the conformal weight by 2, respectively.

We now want to construct a new covariant derivative ∇̂AA′ on the conformally rescaled manifold
that is torsion free and satisfies our stronger version of metricity, i.e.,

∇̂AA′ ε̂AB = 0,
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as stated in Proposition 5.4.1. Such a covariant must exist by Theorem 4.2.15, but we are
interested in how this new covariant derivative relates to the old covariant derivative ∇AA′
under conformal rescaling.

Following our reasoning in Paragraph 5.4, were we defined the curvature tensor, the map given
by

Ξ C
AA
′
B : SB 7→ S C

AA
′

χB 7→ (∇̂AA′ −∇AA′)χ
C

is S-linear, so Ξ C
AA
′
B ∈ S C

AA
′
B (cf. Eq. (5.20), Thm. 4.1.5).

Note by metricity and the Leibniz rule, we have that

0 = (∇̂AA′ −∇AA′)εBC = −Ξ D
AA
′
B εDC + Ξ D

AA
′
B εBD = −ΞAA′BC + ΞAA′CB

=⇒ ΞAA′BC = ΞAA′CB

Vanishing of torsion can be shown to imply, in combination with the previous result, that

ΞA′(ABC) = 0,

so that, using the procedures of Paragraph 5.2, we can write Ξ as a sum of symmetric spinors
multiplied with epsilon spinors:

ΞA′ABC = κAA′εBC + χA′BεAC + ψA′CεAB .

Then applying Equation (5.5) to the final term, giving

ψA′CεAB = ψA′AεCB + ψA′BεAB ,

we obtain
ΞA′ABC = iΠAA

′εBC + ΥA
′
BεAC ,

where ΠAA
′ ,ΥA

′
A can be verified to be real, following [29, p. 217].

However, by metricity of the covariant derivative, we find

0 = ∇̂AA′ ε̂BC = ∇̂AA′(ΩεBC) = εBC(∇AA′Ω− ΩΞ B
AA
′
B )

= εBC(∇AA′Ω− 2iΩΠAA
′ − ΩΥAA

′),

which, by reality of Ω, yields

ΠAA
′ = 0, ∇AA′ log Ω = ΥAA

′ .

As such, we find that by the Leibniz rule, we have in general that

∇̂AA′ψ
B...C

′
...

D...E
′
... = ∇AA′ψ

B...C
′
...

D...E
′
... −ΥDA

′ψB...C
′
...

A...E
′
... − · · · −ΥAE

′ψB...C
′
...

D...A
′
... − . . .

+ ε B
A ΥFA

′ψF...C
′
...

D...E
′
... + · · ·+ ε C

′

A
′ ΥAF

′ψB...F
′
...

D...E
′
... + . . . .

(6.4)

Using the machinery introduced here, it is straightforward, although very tedious, to show that
the Weyl conformal spinor ΨABCD, as defined in Equation (5.27), is conformally invariant (see
[30, pp. 120–121]). In fact, we get the following result:
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Proposition 6.1.3. Let (M, gab) be a space-time of signature (+−−−). Then M is patch-wise
conformally flat if and only if

ΨABCD = 0.

Proof. Since ΨABCD is conformally invariant, it immediately follows that any patch-wise confor-
mally flat space-time satisfies ΨABCD = 0. The proof of the converse uses some of the techniques
of local twistors introduced at the start of Chapter 8. A full proof of this can be found in [30,
pp. 137–139].

6.2 The twistor equation

In this paragraph, we are finally in the position to define twistors. For conformally flat spaces,
twistor space is defined as the solution space to the twistor equation, which will be introduced
here. We will see that the twistor equation is conformally invariant, so if we have some space
that is conformally Minkowski, its twistor space will be the same as that of Minkowski space.
As such, in this paragraph, we will describe the solutions to the twistor equation in Minkowski
space, so that we know what twistor space looks like for all conformally Minkowski spaces. For
conformally flat spaces that are not conformally Minkowski, one must use the non-linear graviton
construction, outlined in Paragraph 8.2.

Definition 6.2.1. The twistor equation is given by

∇(A

A
′ω
B) = 0. (6.5)

Spinors ωB satisfying the twistor equation are called twistors.

The form of the twistor equation might seem arbitrary, but it has some very appealing properties
that we will explore in this chapter. One of its advantages, as previously mentioned, is that the
twistor equation is conformally invariant.

Lemma 6.2.2. The twistor equation is conformally invariant.

Proof. Let ωB be a twistor and Ω a conformal map. In accordance with Equation (6.2), we can

choose a spinor dyad such that ωA is of conformal weight 0. Then, by Equation (6.4), we obtain

∇̂AA′ ω̂
B = ∇AA′ω

B + ε B
A ΥCA

′ωA
′

. (6.6)

Raising the A index and symmetrising over A and B yields

∇̂(A

A
′ ω̂
B) = Ω−1

(
∇(A

A
′ω
B) +

1

2
εABΥCA

′ωA
′

+
1

2
εBAΥCA

′ωA
′
)

= Ω−1∇(A

A
′ω
B),

using the asymmetry of εAB . The Ω−1 term comes from noting that raising of spinor indices
lowers the conformal weight by 1.

As such, we see that

∇̂(A

A
′ ω̂
B) = 0 ⇐⇒ ∇(A

A
′ω
B) = 0,

establishing conformal invariance.



6.2 The twistor equation 71

We will henceforth look at solutions to the twistor equation in flat Minkowski space M = R1,3,
noting that the solution space of the twistor equation will remain the same in all conformally
Minkowski space-times.

As in Paragraph 5.3, we can label points of Minkowski space with constant vector fields. Alter-
natively, we can construct a vector field xa ∈ Ta, which at a point y ∈ M is assigned the vector
y in the tangent space at y. This can be done canonically, since M is a vector space; the tangent
space at any point can be identified with M itself.

Note that this vector field satisfies the equation

∇AA′x
b = g b

a . (6.7)

To solve the twistor equation in flat space, we consider a twistor ωC . We will look at the equation

∇BB′∇
A
A
′ωC = ∇AA′∇

B
B
′ωC ,

resulting from the vanishing of the Riemann curvature tensor (cf. Eq. (5.21), Eq. (5.22)). Com-

bining this with the fact that ωC is a twistor, we obtain by Equation (6.5) that

∇BB′∇
A
A
′ωC = −∇BB′∇

C
A
′ωA

so that ∇BB′∇
A
A
′ωC is skew in AC and BC. Consequently, ∇BB′∇

A
A
′ωC is skew in ABC, so it

must vanish, by the two-valuedness of spinor indices.

As a result, we see that ∇AA′ω
C must be constant, so by skewness in AC must be a constant

multiple of εAC . We hence write

∇AA′ω
C = −iε C

A πA′ (6.9)

for some constant spinor πA′ ∈ S−. The choice for the factor −i is arbitrary, but will turn out
to be convenient later.

Now considering Equation (6.7), we obtain the general solution to the twistor equation in flat
space

ωA = −ixAA
′

πA′ + ω̊A, (6.10)

where ω̊A ∈ S+ is the constant spinor field satisfying

ωA(O) = ω̊A(O). (6.11)

This yields the following result:

Theorem 6.2.3. The solution space of the twistor equation in flat space is called the twistor
space, denoted by T. Twistor space is a 4-dimensional C-vector space.

Proof. From the reasoning above, we see that any solution ωB to the twistor equation is uniquely
determined by two constant spinors ω̊B and πB′ .

Conversely, by direct verification, any spinor ω̃B satisfying

ω̃B = −ixBB
′

π̃B′ + ˚̃ωB

for some π̃B′ ∈ S−, ˚̃ωB ∈ S+ is a solution to the twistor equation. Since both S− and S+ are
two-dimensional complex vector spaces, the result follows.
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We write Tα for the space of spinors in SA satisfying the twistor equation, which is canonically
isomorphic to T. Elements of Tα are denoted by

Zα = (ωA, πA′),

where ωA and πA′ satisfy Equation (6.10). Note that we write twistors using sans-serif uppercase
Latin characters with lowercase Greek indices.

We can then also define
ZA = ωA, ZA′ = πA′ . (6.12)

Given a spinor dyad {oA, ιA}, we can now define the twistor basis given by

δα0 = oA, δα1 = ιA, δα2 = oA′ , δα3 = ιA′ ,

such that
Zα = Zαδαα,

where we have
Z0 = ω0, Z1 = ω1, Z2 = π0

′ = Z0
′ , Z3 = π1

′ = Z1
′ . (6.13)

(The components of ωA and πA′ are defined as in Eq. (5.2)).

6.3 Dual twistors

We start the extension of twistor space by considering dual and multi-valent twistors, similar to
how we defined multi-valent tensors in Paragraph 4.1. However, since twistor space is not the
set of sections of some bundle, we need a slightly different approach, which will be outlined here.

In particular, it will turn out that 2-valent twistors are of great importance, with the infinity
twistor being one example of such a twistor, which we will encounter in Paragraph 7.2.

Definition 6.3.1. The dual twistor space Tα consists of elements µB
′

∈ SB
′

satisfying the
dual twistor equation, given by

∇(A
′

A µB
′
) = 0.

Following similar reasoning as in the previous paragraph, we can alternatively write elements of
Tα as

Wα = (λA, µ
A
′

),

where µA
′

is a solution to the dual twistor equation, and λA ∈ S+ is such that

µA
′

= ixAA
′

λA + µ̊A
′

. (6.14)

where µ̊A
′

is defined similarly as in Equation (6.11).

We define a twistor inner product between Wα = (λA, µ
A
′

) and Zα = (ωA, πA′) by

WαZ
α = λA(O)ωA(O) + µA

′

(O)πA′(O), (6.15)

where O denotes the origin of M.
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We want this notion of twistor inner product to be Poincaré invariant, i.e., independent of the
choice of arbitrary origin. This is indeed the case:

Lemma 6.3.2. The twistor inner product between Wα = (λA, µ
A
′

) and Zα = (ωA, πA′) satisfies

WαZ
α = λA(p)ωA(p) + µA

′

(p)πA′(p),

for all p ∈M

Proof. Note that this is equivalent to showing that at any point of M, we have that

λAω
A + µA

′

πA′ = λAω̊
A + µ̊A

′

πA′ .

since λA, πA′ are constant. Substituting Equations (6.10), (6.14) on the left-hand-side indeed
gives the right-hand-side when written out.

Note that complex conjugation of a solution to the twistor equation yields a solution to the dual
twistor equation and vice versa. We hence get a notion of complex conjugates of twistors defined
as follows:

Definition 6.3.3. The complex conjugate of a twistor Zα = (ωA, πA′) and of a dual twistor

Wα = (λA, µ
A
′

) are defined by

Zα := Zα := (πA, ω
A
′

),

Wα := W
α

:= (µA, λA′),

respectively.

Inspired by Equation (6.12), we see a very simple way to define multi-valence twistors. We will
only look at bitwistors here, twistors with two twistor indices, but generalisations to more twistor
indices is straightforward.

Given two twistors
Xα = (φA, ψA′), Zα = (ωA, πA′),

we can define
Sαβ = XαZβ , (6.16)

by observing that Equation (6.12) should yield

SAB = φAωB , SAB′ = φAπB′ , S B
A
′ = ψA′ω

B , SA′B′ = ψA′πB′ ,

which we can write more concisely as

Sαβ =

(
SAB SAB′

S B
′

A
′ SA′B′

)
=

(
φAωB φAπB′

ψA′ω
B ψA′πB′

)
. (6.17)

Similarly, we can define valence [ 1
1 ] and valence [ 0

2 ] twistors. This construction also works for
twistors of general valence [ pq ], in which case the array of Equation (6.17) would need to be
(p + q)-dimensional, with 2p+q spinor parts. We also allow finite sums of terms of the form of
Equation (6.16).

Similarly to tensors and spinors, the space of general valence [ pq ] twistors is denoted by Tα...βγ...δ ,
following the notation of Definition 4.1.3.
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Using the twistor inner product of Equation (6.15), we can define contraction of multi-valence
tensor in the sense of Definition 4.1.4(3). For example, if we want to contract some twistor Rα
with the twistor Sαβ of Equation (6.16), we can simply set

SαβRα = XαRαZ
β

where XαRα is given by Equation (6.15). The hence obtained twistor will thus be an element of

Tβ .

To find the complex conjugate of a multi-valent twistor, we first write the twistor as a sum of
outer products of valence 1 twistors and dual twistors, and perform complex conjugation on all
these twistors separately.

It turns that, if we require some extra structure, some bitwistors will be uniquely defined by
only one of their spinor parts. We will consider the example of a symmetric twistor. Other
twistors can similarly be shown to be uniquely determined by some of their properties, such as
the infinity twistors of Paragraph 7.2. To show this, Equations (6.18) and (6.19) will turn out
to be essential.

Definition 6.3.4. Given a twistor Rα...βγ...δ ∈ Tα...βγ...δ , the primary part of Rα...βγ...δ is defined to be
the spinor part with all indices upright. Using the notation of Equation (6.17), the primary part

of Rα...βγ...δ is RA...BC
′
...D

′

.

We say that a 2-valent twistor Sαβ is symmetric if it satisfies

Sαβ = Sβα,

and skew if it satisfies
Sαβ = −Sβα.

These definitions give rise to the following result:

Proposition 6.3.5. The following properties hold:

1. A twistor Sαβ is symmetric if and only if its primary part is symmetric.

2. If Sαβ is symmetric, it is uniquely determined by its primary part.

Proof. Note that if Sαβ is symmetric, we immediately get from Equation (6.17) that its primary
part is symmetric. Conversely, suppose

Sαβ =

(
φAB χAB′

ψ B
A
′ ωA′B′

)
,

and let Vα, Wα be two dual twistors. By Lemma 6.3.2, we have that

SαβVαWβ ∈ C.

We hence obtain a system of 4 equations, which by substituting the twistor equations associated
with Vα, Wα gives the general solution

φAB = φ̊AB − ixAA
′

ψ̊ B
A
′ − ixBB

′

χ̊AB′ − ix
BB
′

xAA
′

ω̊A′B′ ,

χAB′ = χ̊AB′ − ix
AA
′

ω̊A′B′ ,

ψ B
A
′ = ψ̊ B

A
′ ,−ixBB

′

ω̊A′B′

ωA′B′ = ω̊A′B′ ,

(6.18)
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which can be re-expressed in differential form by comparison with the twistor equation (6.5). In
particular, the first three equations can be rewritten as

∇CC′φ
AB = −iε BC χAC′ − iε

A
C ψ B

C
′ ,

∇CC′χ
A
B
′ = −iε BC ωA′C′ ,

∇CC′ψ
B

A
′ = −iε AC ωC′B′ .

(6.19)

All these equations hold generally, but if φAB is symmetric, the symmetry of (6.19)(1) requires

that ψ B
A
′ = χBA′ , from which (6.19)(2-3) establish symmetry of ωA′B′ , proving part 1.

Further note that (6.19)(1) then gives

∇CC′φ
CB = −2iψ B

C
′ − iχBC′ ,

∇CC′φ
BC = −iψ B

C
′ − 2iχBC′ ,

whence we can uniquely determine χAB′ , ψ
B

A
′ , and obtain ωA′B′ from (6.19)(3), so φAB uniquely

determines Sαβ , proving part 2.

We finish this paragraph by defining a type of norm on twistor space, called the helicity of a
twistor.

Definition 6.3.6. The helicity of a twistor Zα = (ωA, πA′) is defined by

s :=
1

2
ZαZα =

1

2
(ωAπA + πA′ω

A
′

). (6.20)

We say that Zα is null if s = 0, right-handed if s > 0 and left-handed if s < 0.

We denote by T0, T+ and T− the spaces of null, right-handed and left-handed twistors, respec-
tively.

Lemma 6.3.7. Let Zα be a twistor. Then its helicity is conformally invariant.

Proof. Let Zα = (ωA, πA′) and Ω be a conformal transformation. Suppose without loss of

generality that ωA is of conformal weight 0. By Equations (6.6), (6.9) we obtain

π̂A′ = πA′ + iΥAA
′ωA. (6.21)

We hence obtain

ŝ =
1

2

(
ω̂Aπ̂A + π̂A′ ω̂

A
′
)

=
1

2

(
ωA(πA − iΥAA

′ωA
′

) + (πA′ + iΥAA
′ωA)ωA

′)
=

1

2
(ωAπA + πA′ω

A
′

) = s

using the reality of ΥAA
′ . So, since s = ŝ, we find that the helicity is conformally invariant.

In conclusion, just as twistor space T is unchanged under conformal rescalings, so are the spaces
T0, T+ and T−.



76 6. Twistor space

6.4 Null twistors and space-time points

In this paragraph, we will make the first steps towards making an association between twistors
and Minkowski space. In the previous chapters, we have taken the manifold M to be given, and
derived the spin structure and twistor space associated with it from the geometric description of
M . However, we can also take a different approach. If we see spinor space, or more specifically
twistor space, as given, and more fundamental than space-time points, we should be able to
derive the properties of the underlying space-time from its twistor description.

We will make a first step in this direction, which we shall expand upon in Paragraph 6.5. The
construction here will only apply when we take M = M. We will see some procedures for
describing other space-times in terms of their twistor spaces in Chapter 7.

We consider twistor space T := Tα as in the previous paragraph. We suppose Zα = (ωA, πA′) ∈ T
is a null twistor, i.e., a twistor satisfying ZαZα = 0, following Definition 6.3.6.

In order to make the description in this paragraph work, we must impose some additional con-
ditions on Zα, which will be lifted in the next paragraph. As such, we suppose for now that
πA′ 6= 0, and, without loss of generality, that ω̊A and πA = εABπB are not proportional at the
origin. If they are proportional, we can simply choose another point as origin, since Equation
(6.10) yields

ωAπA = ω̊AπA − ix
AA
′

πAπA′ ,

so, using Proposition 5.1.4, we see that ω̊A and πA are not proportional when we choose the

origin to be a point satisfying xAA
′

πAπA′ 6= 0 with respect to O, which must exist since πA′ 6= 0.

We wish to look for the locus of points in M where ωA = 0. Note from Equation (6.10) we are

hence looking for the points xAA
′

satisfying

ω̊A = ixAA
′

πA′ , (6.22)

so we get one solution given by

xa = (iω̊B
′

πB′)
−1ω̊Aω̊A

′

.

Note this is well-defined, since Proposition 5.1.4 yields that ω̊B
′

πB′ 6= 0 using our assumption of
non-parallelity. In fact, we get that xa is real, since Zα being null yields, using Equation (6.20),
that

ωB
′

πB′ = −ωBπB ,

from which it follows that iω̊B
′

πB′ is real. We call Equation (6.22) the incidence relation.

To find all the other real solutions to ωA = 0, we note that when x̃a and xa are both solutions
to (6.22), that

(xa − x̃a)πA′ = 0,

so by, Proposition 5.1.4, we must have xa − x̃a ∝ πA
′

, so, by reality, we get

xa − x̃a = λπAπA
′

,

for some λ ∈ R. As a result, we find the general solution in M for ωA = 0 to be

xa = (iω̊B
′

πB′)
−1ω̊Aω̊A

′

+ λπAπA
′

. (6.23)
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Recalling the relation between spinors and points in Minkowski space of Paragraph 5.3, we see
that the locus of points in M where ωA = 0 describes a null line in M, whose direction is along
the flagpole of πA and which goes through a point on the flagpole of ω̊A. We denote the null line
in M defined by Zα by Z.

Conversely, any point in Minkowski space P satisfying ωA(P ) ∦ πA lies in the null cone of some
point on the null line described by Zα. So, at an arbitrary point outside of the null line, the
direction of the flagpole of ωA is exactly such that it intersects the null line.

These results are graphically summarised in the Figure 6.1.

Q

O

πA

πA

λω̊A

µωA(Q)

M

null cones

null line Z

Figure 6.1: Construction of the null line Z in M associated with the twistor Z
α

= (ω
A
, π
A
′). The

line intersects the point of the flagpole of λω̊
A

protruding from the origin, and is in the direction of

π
A

. At any point Q where ω
A ∦ πA, this construction yields the same line. Here λ = (iω̊

B
′
π
B
′)

−1
and

µ = (iω
B
′
(Q)π

B
′)

−1
.

It turns out that our description of null lines in terms of twistors only depends on the twistor
Zα up to proportionality. This leads us to the following result:

Lemma 6.4.1. Suppose Xα,Zα are twistors with associated null lines X and Z in M. Then the
following are equivalent:

1. X = Z.

2. Zα = λXα for some λ ∈ C×.

Proof. This follows immediately from Equation (6.23).

As a result, we only need to look at the one-dimensional linear subspace generated by Zα to
construct the null line associated with Zα. Since the projectivisation of a vector space is defined
as the set of one-dimensional linear subspaces, we can alternatively look at the projectivisation
P(T) of twistor space. We can alternatively define P(T) as the set (T \ {0})/ ∼, where the
equivalence relation ∼ is defined by

Zα ∼ Xα ⇐⇒ Zα = λXα for some λ ∈ C×. (6.24)
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We will denote the equivalence class of Zα by [Zα] = [(ωA, πA′)], or, given a spinor dyad, as the

ratio [Zα] = [Z0 : Z1 : Z2 : Z3], in accordance with Equation (6.13).

We will further consider the notion of projective twistor space, alongside the situation where
πA′ = 0 or Zα is not null in the next paragraph.

We see from our construction that when two null lines in Minkowski space intersect, they define
a unique point in M. When two twistors define intersecting null lines, we say they are incident.
By intersect, we mean intersections in the projective sense, which is to say that two parallel lines
can intersect at infinity.

Proposition 6.4.2. Two twistors Xα = (φA, ψA′), Z
α = (ωA, πA′) with different associated null

lines X and Z are incident if and only if

XαZα = ZαXα = 0.

Proof. We label the intersection point of X and Z by the constant field ya. By Equation (6.22),
we then have

iyAA
′

πA′ = ω̊A,

iyAA
′

ψA′ = φ̊A,
(6.25)

where, again, φ̊A is defined as in Equation (6.11). Choosing a spinor dyad {oA, ιA}, we find that
this equation translates to

iyAA
′
(
π0
′ ψ0

′

π1
′ ψ1

′

)
=

(
ω0 φ0

ω1 φ1

)
,

which has a unique solution if and only if(
π0
′ ψ0

′

π1
′ ψ1

′

)
(6.26)

is invertible, i.e., if the directions of X and Z are not parallel.

We first assume that the matrix of (6.26) is not invertible. In this case we have πA′ ‖ ψA′ , so
that X and Z intersect at infinity. We rescale Z such that πA′ = ψA′ , leaving Z unchanged.
Note we then get

ZαXα = ωAψA + πA′φ
A
′

= ωAπA + ψA′φ
A
′

= −πA′ω
A
′

− φAψA
= −ψA′ω

A
′

− φAπA = −XαZα,

where the third equality uses Equation (6.20) and the nullity of Xα and Zα. We hence find
Re(ZαXα) = 0. But since

ZαXα = XαZα,

this means that ZαXα = 0.

We now assume the matrix of Equation (6.26) is invertible, so that ψA′ ∦ πA′ . In this case,
solving Equation (6.25) in the given spinor dyad and converting back to abstract indices we
obtain

ya = − i

πB′ψ
B
′ (ω

AψA
′

− φAπA
′

), (6.27)
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which, using (6.20), is verified to be real if and only if ZαXα = 0. This completes the proof.

In this paragraph, we have derived a correspondence between null lines in Minkowski space and
null twistors satisfying certain properties. We have also found conditions for when two such null
lines intersect in twistorial terms, so we can associate a point of M with a pair of incident null
twistors. The correspondence between M and T can be extended to be much more general, as
we will explore in the next paragraph.

6.5 The twistor Klein correspondence

In projective geometry, there exists a well known correspondence between lines in a 3-dimensional
projective space and points in an associated 5-dimensional projective space, called the Klein cor-
respondence [18]. In this paragraph, we will look at a similar correspondence between projective
twistor space PT and an extension of Minkowski space, called compactified complexified Minkowski
space, denoted by CM•. We can canonically extend the construction of the previous paragraph
to twistors that are not necessarily null.

Throughout this paragraph, we will consider compactified Minkowski space M#, which is topo-
logically of the form S1 × S3. The construction of compactified Minkowski space can be found
in Appendix A.

The basic idea of the twistor Klein correspondence is that we can associate points in projective
twistor space PT with complex null lines in complexified compactified Minkowski CM•, a limited
case of which we have already seen in the previous paragraph. Conversely, points in CM• can
be associated with lines in PT. This correspondence is not necessarily straightforward and uses
much of the setup of the last few paragraphs. However, this is one of the most profound and
beautiful results in twistor theory, connecting the theory of spinor fields with the inherently
abstract world of projective geometry.

Definition 6.5.1. Let V be a C-vector space and D = {d0, . . . , dk} ⊆ Z be a finite set satisfying
1 ≤ d0 < · · · < dk < dimV .

We define the flag manifold of type D with respect to V to be the complex manifold given by

Fd0,··· ,dk(V ) := {(S0, . . . , Sk) : S0 ⊂ · · · ⊂ Sk, Si is a di-dimensional linear subspace of V }.

We will mostly be concerned with the flag manifolds of twistor space, which we will define thusly:

Definition 6.5.2. We define the following flag manifolds of twistor space:

1. Projective twistor space is defined by

PT := F1(T).

2. Complexified compactified Minkowski space is defined by

CM• := F2(T).

3. The correspondence space is defined by

F12 := F1,2(T).



80 6. Twistor space

There then exists a so-called double fibration given by

F12

PT CM•

νµ

(6.28)

where µ and ν are the canonical projection maps.

Note that the definition of PT corresponds with the usual definition of the projectivisation of a
vector space, i.e., PT = P(T), which we discussed in the previous paragraph. As such, we can
label coordinates of PT by the ratio [Zα] = [Z0 : Z1 : Z2 : Z3], where Zα is a twistor.

We can further define the spaces PT0, PT+ and PT− as the spaces of projective twistors that are
null, right-handed, and left-handed, by requiring

[Zα] ∈ PT0 ⇐⇒ Zα ∈ T0,

which is well defined, since for some λ ∈ C× we have that

ZαZα = 0 ⇐⇒ λZαλZα = 0

A similar construction yields PT+ and PT−.

In this definition, CM• is the set of 2-planes in T, which in projective geometry is also defined
as the Grassmannian Gr2(T). Note that elements of CM• are hence determined by two non-
proportional twistors Zα, Xα, with the plane being spanned by these two twistors giving an
element in CM•. We would like to somehow get a connection between CM•, and the more
familiar compactification of Minkowski space, which has been constructed in Appendix A.

Note that M is canonically contained in CM•; if we consider two non-proportional incident null
twistors Xα and Zα whose associated null lines X and Z are non-parallel, we can identify the
2-plane

Y = {βXα + γZα : β, γ ∈ C} ∈ CM•

with the point ya ∈M given by Equation (6.27).

If we do allow parallelity of null lines and drop the condition that πA′ 6= 0 or ψA′ 6= 0 for

Zα = (ωA, πA′) and Xα = (φA, ψA′), the null planes defined through two null twistors in CM•

correspond to either points in M, or points ‘at infinity’, so we get a correspondence between
compactified Minkowski space M# and the subset of CM• defined by

M• := {Y ∈ CM• : Y = {βXα + γZα : β, γ ∈ C}, Xα, Zα ∈ T0}.

For the construction of compactified Minkowski space M#, see Appendix A.

If we now further drop the nullity of Zα and Xα, we see, comparing with Equation (6.23), that an

arbitrary twistor Zα = (ωA, πA′) satisfying πA′ 6= 0 defines a null line in complexified Minkowski
space CM, which is the regular Minkowski space, where we allow the coordinates to be complex
in addition to real. This line is given by

Z =
{

(iω̊B
′

πB′)
−1ω̊Aω̊A

′

+ λπAπA
′

: λ ∈ C
}
, (6.29)
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which hence also describes a line in CM•, namely the line in CM• consisting of the planes in
T containing Zα. This description might be a little confusing, it is important to note here that
planes in T correspond with points in CM•, so lines in T, defined by a single point in PT,
correspond with lines in CM•.

Such a line is called an α-plane (The name plane is a little confusing, since we are talking about
a complex line, but this line is isomorphic to a real plane). One can refer to Figure 6.2 for a
visualisation of the correspondence between PT and CM• in terms of α-planes.

When πA′ = 0, Zα defines a line at infinity in the compactification of complexified Minkowski

CM#, which are also called α-planes. So, given two arbitrary non-proportional twistors Zα, Xα,
these have a unique point of intersection in CM#, which when their α-planes are non-parallel,
is given by the finite point

yAA
′

= − i

πB′ψ
B
′ (ω

AψA
′

− φAπA
′

) ∈ CM (6.30)

or defines a point at infinity when the α-planes are parallel, or when at least one of the α-planes
is at infinity.

Combining all these results, we see that there exists an identification between CM# and CM•

given by

{βXα + γZα} ∈ CM• ↔ (Intersection of the associated α-planes X and Z) ∈ CM#

so that the definition of CM• indeed warrants its name of complexified compactified Minkowski
space.

Similarly, we can regard incidence of dual twistors in CM•. As it turns out, through a very
similar calculation, a dual twistor Wα defines a complex line W in CM•, called a β-plane. We
can alternatively regard Wα as the complex 2-plane W in PT defined by the points [Zα] satisfying

WαZ
α = 0.

Combining all these results and referring back to the fibration of Diagram (6.28), we get the full
correspondence:

Theorem 6.5.3 (The twistor Klein correspondence). Let µ, ν be the projection maps of
Diagram (6.28). Then the following statements hold:

1. The space CM• can be naturally identified with CM#.

2. For all [Zα] ∈ PT we have that

ν ◦ µ−1([Zα]) ⊂ CM•

defines an α-plane in CM•

3. For all yAA
′

∈ CM•, we have that

µ ◦ ν−1(yAA
′

) ⊂ PT

defines a line in PT.
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4. For all 2-planes W ⊂ PT, we have that

ν ◦ µ−1(W) ⊂ CM•

defines a β-plane in CM•.

Figure 6.2 now paints the full picture of the correspondence between PT and CM• (cf. [30,
p. 312]).

line S

•

•

[Xα]

pencil L

[Zα]

[Wα]

[Uα]

line R

•
sa

β-plane
W

α-plane
X

null line L

ra
•

β-plane
U

α-plane
Z

PT CM•

Figure 6.2: Visualisation of the twistor Klein correspondence between PT and CM•
. Twistors corre-

spond to α-planes, dual twistors correspond to β-planes, intersections of dual twistor planes and lines
through PT correspond with points in CM•

. Additionally, a pencil of lines L on a dual twistor corresponds
with a null line L, which we have not discussed here.

We complete this chapter by using the findings above to define a new notion of coordinates on
CM• in twistorial terms, which will prove to be very convenient in the next chapter.

Definition 6.5.4. A non-zero skew valence [ 2
0 ] twistor Rαβ is called simple skew if it is of the

form
Rαβ = XαZβ − ZαXβ ,

where Xα,Zβ are non-proportional.

We define the totally skew twistor εαβγδ to be the unique skew twistor satisfying

εαβγδ = ε[αβγδ], ε0123 = 1.

We can then define the dual of Rαβ to be given by

Rαβ :=
1

2
εαβγδR

γδ, (6.31)

noting that this yields

Rαβ =
1

2
εαβγδRγδ.

From our discussion of the Klein correspondence, it follows that a simple skew twistor, up to
a non-zero complex scalar, uniquely defines a point in CM•. We will see in the next chapter
that this freedom in choosing a scaling will be very useful, and that the choice of scaling of the
simple skew twistors representing points will serve an equivalent role to choosing a metric on a
(conformally Minkowski) space-time.



Chapter 7
Twistor cosmology

In the previous chapter, we looked at the twistor Klein correspondence for Minkowski space. In
this chapter, we will extend this construction to look at twistorial description of other conformally
Minkowski space-times.

In Paragraph 7.1, we will extend the reasoning of Appendix A by considering a second way of
constructing compactified Minkowski space, by embedding it into the light-cone of 6-dimensional
flat space. Via a similar construction we obtain (anti)-de Sitter space, giving us all maximally
symmetric solutions to the Einstein equations. We will connect this construction with the notion
of twistors in Paragraph 7.2, where we define infinity twistors, which can be used for giving the
structure of conformal infinity for these spaces, while also acting as the equivalent of a metric in
the twistor formalism.

Finally, in Paragraph 7.3, we will look at some slightly less neat space-times, namely the
Friedmann-Robertson-Walker space-times, which give simple cosmological solutions to the Ein-
stein equations. We will explore how we can describe these models in twistorial terms, which at
the same time shows how we can extend this to any conformally Minkowski space-time. Along
the way, we will encounter the notion of Bang and Crunch twistors. In particular, we will look at
a matter-dominated universe, and derive the relationship between twistor space and the metric
in this case.

7.1 The Plücker embedding and (anti-)de Sitter space

In Appendix A, the standard construction for compactified Minkowski space M# through con-
formal maps is given. Although the embedding of Minkowski space M in the Einstein cylinder E
gives a direct way of constructing M#, we can consider an alternative construction, which also
yields all the other maximally symmetric 4-dimensional signature (+ − −−) spaces. One can
refer to Appendix A for the description of the conformal infinities adjoined to M.

We will consider the 6-dimensional flat pseudo-Riemannian space R2,4 endowed with a constant
orthonormal hexad (T, V,W,X, Y, Z) of signature (2, 4). Hence, we have a metric of the form

ds2 = dT 2 + dV 2 − dW 2 − dX2 − dY 2 − dZ2. (7.1)
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The null cone of R2,4 is given by the solution space of the homogeneous equation

T 2 + V 2 −W 2 −X2 − Y 2 − Z2 = 0. (7.2)

Since this is a homogeneous expression, it defines a 4-dimensional projective algebraic subvariety
P• of P5 := P(R2,4). We can choose various conic sections of the null cone, which will give us an
embedding of real 4-dimensional spaces into the 5-dimensional projective space P5.

We first consider the intersection of the null cone with the hyperplane defined by

V −W = 1, (7.3)

in which case the induced metric on the intersection is of the form

ds2 = dT 2 − dX2 − dY 2 − dZ2,

which is the metric of Minkowski space. By identifying the Minkowski tetrad (t, x, y, z) with the
coordinates (T,X, Y, Z) of R2,4 on the intersection, we get an identification between M and the
intersection of the hyperspaces defined by Equations (7.2) and (7.3). Noting that the points of
the intersection are defined by

2W + 2 = 2V =
1

2
(1− T 2 +X2 + Y 2 + Z2), (7.4)

it can easily be verified that any element [T : V : W : X : Y : Z] ∈ P• satisfying V 6= W uniquely
identifies a point of the intersection, and can hence be identified with M. The inclusion of M
into P5 hence obtained is called the Plücker embedding.

The remaining points of P•, where V = W , can be identified with the boundary I of M#, as
defined in Appendix A. Note that this clearly defines a compactification of M, since P• is the
projective closure of M. (Refer to [9, Chs. 5 and 12], [16]).

In this description, the point [T : V : W : X : Y : Z] = [0 : 1 : 1 : 0 : 0 : 0] ∈ P• can be identified
with the points ı±, ı0 of Equation (A.3).

In this description, it is somewhat easier to see that M# is conformally related to M. On the
null cone, we can rewrite the metric (7.1) as

ds2 = W 2(d(T/W )2 + d(V/W )2 − d(X/W )2 − d(Y/W )2 − d(Y/W )2),

where the part inside the bracket is independent of the representative of [T : V : W : X : Y : Z].
Then, using Equation (7.4), we can write this as a metric depending on 4 variables, which is
conformally equivalent to the metric of Minkowski space, and hence conformally equivalent to the
metric of Equation (A.2), which is to be expected, since our two constructions of compactified
Minkowski should give the same result.

We can construct even more spaces using this procedure. First we consider the de Sitter space.
Instead of intersecting the null cone in R2,4 with the hyperplane defined by V −W = 1, we now
consider the intersection with the hyperplane defined by

T = Q,

where Q > 0 is a real constant, so that our space is defined by the equation

V 2 −W 2 −X2 − Y 2 − Z2 = −Q2,
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also called the de Sitter sphere. We will denote the manifold associated with the de Sitter
space by dS. Now any point [T : V : W : X : Y : Z] ∈ P• such that T 6= 0 uniquely determines
a point in dS, so the compactification of dS is achieved by adjoining a single time-like point
to dS. Since using similar reasoning as above shows that dS is conformally equivalent to P•,
we find that dS is conformally equivalent to M, so in particular we see that de Sitter space is
conformally flat.

The final canonical choice we can make for intersecting the null cone of R2,4, results in the anti-
de Sitter space, which we obtain by intersecting the null cone with the hyperplane satisfying

W = Q,

where Q > 0 is again a real constant. The in R2,4 resulting space is then defined by

T 2 + V 2 −X2 − Y 2 − Z2 = Q2.

which is also called the anti-de Sitter sphere. We will denote this space by AdS. Now, similar
to Minkowski and regular de Sitter space, we obtain P• by adjoining the points satisfying W = 0.
Anti-de Sitter space is again conformally flat.

The three choices we made for slicing the null cones, are, up to real linear transformations of
the coordinates, the only three. Hence, the spaces we obtain out of this construction are the
only ones which can be embedded into a four dimensional projective algebraic variety describing
the null cone of a higher-dimensional flat space. We hence say that these spaces are the only
4-dimensional signature (+ − −−) spaces that are maximally symmetric. The symmetry
group of R2,4 turns out to have a deep connection to twistors, which we will further discuss at
the start of Chapter 8.

The de Sitter space is particularly useful in that it can be used to construct cosmological models
corresponding with arbitrary space-time curvature by choosing appropriate constant-time slic-
ings. The hence obtained Friedmann-Robinson-Walker space-times are then conformally flat.
We will consider these space-times in more detail in Paragraph 7.3.

Finally, note that our description does not change significantly if we allow the coordinates of
R2,4 to take on complex values, instead of only real values. In this case, we have that

P• ∼= CM#,

and we can similarly talk about complexified (anti-)de Sitter space. We have now obtained a

description of CM# which is consistent with our previous discussion of Paragraph 6.5.

7.2 Infinity twistors

We are now in a position to discuss the concept of an infinity twistor, which will be the analogue
of the space-time metric in the twistor formulation.

Definition 7.2.1. Given a conformally flat space-time M , we define the infinity twistor as a
simple skew 2-valence twistor Iαβ , which given a simple skew twistor Rαβ representing a finite
point satisfies

Rαβ Iαβ 6= 0,

and when Rαβ represents an infinite point satisfies

Rαβ Iαβ = 0.
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Furthermore, we define the dual of Iαβ by

Iαβ :=
1

2
εαβγδIγδ. (7.5)

We further require infinity twistors to be real, i.e.,

Iαβ = Iαβ .

First, we will compute the infinity twistor for flat Minkowski space. If we consider two twistors
Zα = (ωA, πA′), X

α = (φA, ψA′) and construct the simple skew twistor

Rαβ = ZαXβ − XαZβ , (7.6)

we obtain, recalling Equations (6.30), (6.31), that

Rαβ = πD′ψ
D
′
(

εAB iy B
′

A

−iyA
′

B − 1
2ε
A
′
B
′

yCC′y
CC
′

)
. (7.7)

If we now consider the twistor

Iαβ =

(
0 0

0 εA
′
B
′

)
(7.8)

(this is indeed a twistor, since it is of the form of (7.6)), we find that

Rαβ Iαβ = 2πA′ψ
A
′

,

which is 0 if and only if the α-planes Z and X are parallel or either of the α-planes are at infinity,
hence Iαβ is an infinity twistor for Minkowski space.

We want to give a description of Iαβ and Rαβ in the coordinates of R2,4 discussed in the previous
paragraph, so we can extend the discussion of infinity twistors to (anti-)de Sitter space.

We now choose some arbitrary spinor dyad {oA, ιA}. Note that by skewness of Rαβ , a (possibly

complex) space-time point yAA
′

is uniquely determined by the ratio[
R01 : R02 : R03 : R12 : R13 : R23

]
=

[
−1

2
yay

a : −iy01
′

: iy00
′

: −iy11
′

: iy10
′

: 1

]
∈ P(C6) (7.9)

(cf. Equations (6.13), (7.7)). Recall that, in accordance with (6.24), this equality holds when the
coordinates of the ratio on the left-hand site are a constant non-zero multiple of the coordinates
of the ratio on the right-hand side. We can pick the standard Minkowski coordinates

y0 = t, y1 = x, y2 = y, y3 = z,

which corresponds to an element in P•, which by Equation (7.4) is given by

[T : V : W : X : Y : Z] =

[
t :

1

2
(1− yay

a) :
1

2
(−1− yay

a) : x : y : z

]
∈ P•. (7.10)

This allows us to express, up to proportionality, elements of the form [T : V : W : X : Y : Z] as
simple skew twistors.
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We need to make an important distinction, so that we can use the infinity twistor as an analogue
for the metric of our space-time. Recall that we defined simple skew twistors in Definition 6.5.4
to represent space-time points. However, these simple skew twistors only represented points in
Minkowski space up to proportionality; if we scale a simple skew twistor a non-zero scalar, the
point it represents is unchanged. Since we want to deduce the distance between two space-time
points by the distance between simple skew twistors, we must distinguish which simple skew
twistors we take to ‘canonically’ represent our space-time points. Our choice will be to take the
simple skew twistors Rαβ which satisfy

Rαβ Iαβ = 2 (7.11)

to be these distinguished twistors, since we will see that this choice results in a very simple form
of the metric. As such, Iαβ can be seen as the object that defines the notion of distance in
twistorial terms.

To make this more concrete, comparing Equations (7.9) and (7.10), and setting X = x, Y = y,
Z = z, T = t, we obtain, using the spinor correspondence of (5.11), that in this particular dyad
we have that

R01 =
1

2
(V +W ), R02 =

1

2

√
2(Y − iX), R03 =

i

2

√
2(T + Z),

R12 =
i

2

√
2(Z − T ), R13 =

1

2

√
2(Y + iX), R23 = V −W,

(7.12)

which can be verified to satisfy
RαβIαβ = 2

whenever V = W + 1 and
RαβIαβ = 0

whenever V = W .

It can then easily be verified that the metric of Minkowski space is given by

ds2 =
1

2
dRαβdRαβ, (7.13)

where we only consider the skew twistors satisfying the scaling relation (7.11) to represent points
of Minkowski space. Recall how we defined Rαβ in Definition 6.5.4. As promised, this form of
the metric is very simple, and the information about the distance between two points is not so
much contained in Equation (7.13), but in (7.11).

We now see, as we discussed at the end of Paragraph 6.5, that the infinity twistor Iαβ plays the
role of the metric in twistor theory, since if we have some (conformally flat) space-time, described

by an infinity twistor Iαβ , the corresponding metric will always be of the form of Equation (7.13).
In essence, the metric (7.13) is fixed, but the choice of the infinity twistor corresponding to the
space actually encodes the information of the metric. If we choose not only to look at the
distinguished twistors satisfying Equation (7.11), the metric would become

ds2 =
1

2
d

(
2Rαβ

RαβIαβ

)
d

(
2Rαβ

RαβIαβ

)
,

which shows the role of the infinity twistor in the metric more explicitly. From this form, it is also
clear why the distance between a finite point and a point at infinity, which satisfies Rαβ Iαβ = 0,
is infinite.
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We can easily extend this description to (anti-)de Sitter space. Recalling from Paragraph 7.1,
we obtain de Sitter space by considering the points of P• satisfying T = 0 as the conformal
boundary of dS. If we choose the same spinor dyad {oA, ιA} as we did for Minkowski space, and
again consider the parametrization (7.12), we find by inversion of the third and fourth equality
in (7.12) that

T =
i

2
(R12 − R03).

If we now set

Iαβ =
i

Q

√
2


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 ,

it follows by direct verification that

RαβIαβ = 2 ⇐⇒ T = Q,

RαβIαβ = 0 ⇐⇒ T = 0,

where we take Rαβ to satisfy (7.12). (Note this twistor is not real, contrary to the requirements,
see Eq. (7.15)).

Similarly, for anti-de Sitter space, this procedure leads to the infinity twistor given by

Iαβ =
1

Q


0 1 0 0
−1 0 0 0
0 0 0 − 1

2
0 0 1

2 0

 .

These infinity twistors are all given with respect to an arbitrary choice of spinor dyad, even
though we would like the description to be coordinate free, as in all of our previous discussions.
In fact, these infinity twistors can alternatively be uniquely identified by the relations

Iαβ I
αβ = 0, Iαβ I

αβ =
2

Q2 , Iαβ I
αβ = − 2

Q2 , (7.14)

for Minkowski space M, de Sitter space dS and anti-de Sitter spaceAdS, respectively. Uniqueness
follows from the simple skewness and reality of the infinity twistors (cf. Def. 7.2.1), where the
proof follows a similar procedure as the one used to prove Proposition 6.3.5.

From this it is clear why these three spaces are the only maximally symmetric flat spaces, since,
by varying Q, they are the only three spaces with constant infinity twistors, so these are the only
three spaces of signature (+−−−) that are entirely isotropic.

As it turns out, the de Sitter space is a solution to the Einstein vacuum equation

Rab = λgab,

which we discussed in Paragraph 5.4, where the cosmological constant is given by

λ =
3

Q2

(see [14, p. 124]).



7.3 Twistors of Friedmann-Robertson-Walker space-times 89

For a negative cosmological constant, the anti-de Sitter space is the solution to the vacuum
equation where the cosmological constant is given by

λ = − 3

Q2 .

As such, by Equation (7.14), we can characterise solutions to the Einstein vacuum equations by
the infinity twistor

Iαβ I
βγ = −λ

6
δ γα ,

or, equivalently

Iαβ =

(
λ
6 εAB 0

0 εA
′
B
′

)
. (7.15)

in an entirely coordinate-free manner. This showcases the great efficiency of the twistor formalism
for providing solutions to this particular form of the Einstein equations.

7.3 Twistors of Friedmann-Robertson-Walker space-times

In this paragraph, we consider some conformally Minkowski cosmological space-time models,
called Friedmann-Robertson-Walker space-times. These are relatively simple models, describing
the evolution of the universe, provided some information about the energy-densities of matter,
radiation, and vacuum. We will follow and fill some of the holes of the discussion found in [30,
Paragraph 9.5]. Along the way, we will have to do some tedious calculations, but the upshot is
that we obtain a more elegant, twistorial, description of the FRW spaces.

The general form of the Friedmann-Robertson-Walker metric is given by (following [12,
p. 387])

ds2 = du2 − a2(u)

[
dr2 + r2dω2

(1 + 1
4kr

2)2

]
, (7.16)

where
dω2 = dθ2 + sin2 θdφ2,

and k = 1, 0, −1 is a parameter denoting whether the underlying manifold M is said to be
closed, flat, or open. The topology of the part of the manifold represented in the brackets in
Equation (7.16) is either a 3-sphere, Euclidean 3-space or Lobachevsky hyperbolic 3-space (see
[8]) in the closed, flat, and open cases, respectively.

Here a ∈ T is called the scale factor, a function only dependent on the u-coordinate of the
manifold, satisfying the Friedmann equations, which follow directly from the Einstein equa-
tions:

ä

a
= −4πG

3
(ρ+ 3p) +

λ

3
,(

ȧ

a

)2

=
8πG

3
ρ− k

a2 +
λ

3
,

(7.17)

(for a derivation, see [5, pp. 332–336]), where λ is the cosmological constant, G is the gravitational
constant of (5.26), ȧ = ∂ua, p ∈ T is the pressure and ρ ∈ T is the energy density, which is given
by

ρ = ρcrit

(
Ωv +

Ωm

a3 +
Ωr

a4

)
,
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where ρcrit is a real constant, and Ωv, Ωm and Ωr denote the relative density of vacuum, mass,
and radiation energy, respectively. All three of these are real constants, satisfying

Ωv + Ωm + Ωr = Ωt

where Ωt > 1 for k = 1, Ωt = 1 for k = 0 and Ωt < 1 for k = −1.

The FRW metrics are conformally equivalent to the metrics given by

ds2 = a(η)2
[
dη2 − dν2 − sin2 νdω2

]
, (k = 1),

ds2 = a(t)2
[
dt2 − dr2 − r2dω2

]
, (k = 0),

ds2 = a(κ)2
[
dκ2 − dµ2 − sinh2 µdω2

]
, (k = −1),

(7.18)

effected by the conformal maps

η =

∫
du

a(u)
, ν = 2 arctan

(
1

2
r

)
, (k = 1),

t =

∫
du

a(u)
, r = r, (k = 0),

κ =

∫
du

a(u)
, µ = 2 arctan

(
1

2
µ

)
, (k = −1).

Note the metric we hence obtain in the brackets for k = 1 is in fact the metric for the Einstein
cylinder E , a region of which we showed to be conformally Minkowski in Appendix A, which
is given by the metric corresponding to k = 0. The third metric, corresponding to k = −1, is
sometimes called the anti-Einstein cylinder, denoted by A .

Full conformal equivalence of the three metrics between the brackets of Equation (7.18) is given
by the relations

t =
sin η

cos η + cos ν
=

sinhκ

coshκ+ coshµ
,

r =
sin ν

cos η + cos ν
=

sinhµ

coshκ+ coshµ
,

tan η =
2t

r2 − t2 + 1
=

sinhκ

coshµ
,

tan ν =
2r

t2 − r2 + 1
=

sinhµ

coshκ
,

tanhκ =
2t

t2 − r2 + 1
=

sin η

cos ν
,

tanhµ =
2r

r2 − t2 + 1
=

sin ν

cos η
,

(7.19)

where the domains of validity are such that these relations remain well-defined.

We will use this long list of expressions in due course to calculate the analogues of the infinity
twistors for some models corresponding to solutions to the Friedmann equations, but we must
note that, contrary to the flat and (anti-)de Sitter models, we can also have singularities in FRW
space-times.



7.3 Twistors of Friedmann-Robertson-Walker space-times 91

If we look at the regions where A and M are conformal to E , we see, following similar reasoning
as the one that led to Figure A.2, that M is conformal to the region of E bounded by

η ± ν = π, (7.20)

and A is conformal to the region bounded by

η ± ν =
π

2
. (7.21)

Showcasing this in a similar way as in Figures A.1, A.2, we obtain Figure 7.1.

M

A

E
η

ν

η + ν = π

η + ν = −π

A

M

E

Figure 7.1: On the left, a section of the Einstein cylinder is shown, with the regions conformal to M and
A embedded in E . On the right, a diagram similar to Figure A.1 is shown, where the regions conformal
to M and A using the conformal coordinates η, ν of E is illustrated.

So, if we have a universe with a constant scale factor, the infinity twistors will correspond to the
conformal boundaries given by Equations (7.20), (7.21).

Before we can start finding solutions to different universe models, we may first consider how the
coordinates for these FRW models correspond to the coordinates in P5 discussed in Paragraph
7.1. By straightforward verification, we find the relations

[T : V ] = [sin η : cos η], (k = 1),

[T : V −W ] = [t : 1], (k = 0),

[T : W ] = [sinκ : − coshκ], (k = −1).

(7.22)

Since the FRW metrics of Equation (7.18) are (partially) conformal to Minkowski space, we
consider the ‘unphysical’ Minkowski metric

dŝ2 = dT 2 − dX2 − dY 2 − dZ2, (7.23)

where the metrics of (7.18) are conformally related by

dŝ2 = Ω2ds2,

for which Equations (7.18) and (7.19) give the conformal rescalings

Ω = ((cos η + cos ν)a(η))−1, (k = 1)

Ω = a(t)−1, (k = 1)

Ω = ((coshκ+ coshµ)a(κ))−1, (k = 1)

(7.24)
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which, comparing to (7.22) and choosing the scaling of points in P• corresponding to (7.10),
gives a description of the FRW space-times in terms of sections of P•, although the sections of
P• resulting in the FRW space-times are no longer hyperplanes.

The exact correspondence between the coordinates is then given by

cos2 η =
V 2

V 2 + T 2 , cos2 ν =
W 2

V 2 + T 2 ,

cosh2 κ =
W 2

W 2 − T 2 , cosh2 µ =
W 2

W 2 − T 2 .

(7.25)

Referring back to Equation (7.12), we can give a simple skew twistor description of the FRW
space-times, where the relevant parameters are related by

T =
i

2

√
2(R12 − R03), V = R01 +

1

2
R23, W = R01 − 1

2
R23. (7.26)

When we have a solution to the Friedmann Equations (7.17), the nature of the scale factor a
might restrict the valid values for the time coordinates η, t, κ of the FRW models of Equation
(7.18). The locus of points in the space time satisfying

a(u) =∞

correspond to the conformal infinities we already discussed, whereas points where

a(u) = 0

correspond with singularities. We accordingly call a past singularity of this type a Big Bang
and a future singularity a Big Crunch.

We set the Hubble constant to be

H0 :=
ȧ(u0)

a(u0)
,

with u0 corresponding to some fixed η0, t0 or κ0, representing the present. We consider a
matter-dominated universe, i.e., a universe where

ρ = ρcrit

Ωm

a3 ,

i.e., Ωm = Ωt. For now, we assume the cosmological constant λ to be 0. We assume the mass
to come from a pressure-less cosmological dust, so we set p = 0 in (7.17)(1). Solving the second
of the Friedmann Equations (7.17)(2), we obtain, by choosing appropriate integration constants,
the following solutions for the scale factor:

a(η) =
Ωt

2H0(Ωt − 1)2/3
(1− cos η), (k = 1)

a(t) =

(
t

t0

)2/3

, (k = 0)

a(κ) =
Ωt

2H0(1− Ωt)
2/3

(coshκ− 1), (k = −1)

(7.27)
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where the freedom in the integration was used to ensure that we have Big Bangs at η = κ = t = 0.
Note that the open and flat models expand indefinitely, and hence have two future conformal
infinities. For the closed model, we see that there is maximum expansion at η = π

2 and a Big
Crunch for η = π.

To specify a twistor to describe these singularities, we consider the concept of a Bang twistor
Bαβ , which is a skew 2-valent twistor which, when Rαβ is a twistor representing a point at the
Big Bang, satisfies

BαβBβγ = δ αγ , BαβR
αβ = 0.

(The dual is defined in the obvious way, cf. Eq. (7.5)). Choosing a spinor dyad so that in P• the
twistors corresponding to Minkowski coordinates have the form (7.12), we see that the Big Bang
(and the Big Crunch of the closed model) correspond to T = 0 (cf. Eq. (7.25)), i.e., in this basis,
the Bang twistor is of the form

Bαβ = i


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 .

In the closed model, we can also define a Crunch twistor Cαβ , satisfying similar relations as
the Bang twistor at the Big Crunch, but from our discussion it is clear that Bαβ = Cαβ .

In order to describe the conformal infinities of the FRW models, we need a slightly different
approach to the one taken for Minkowski and (anti-)de Sitter space in Paragraph 7.2.

For k = 1, this consists of selecting some (not-necessarily real) simple skew 2-valence twistor Iαβ .

For k = 0, we can select a real simple skew 2-valence twistor Iαβ and for k = −1, we select two
real simple skew twistors Iαβ , Jαβ .

For a general FRW solution where λ = 0, by comparison to Figure (7.1), we let these twistors
describe the conformal infinities for M and A , whereas for E , these infinities correspond to
‘virtual’ infinities, which are realised in the matter-dominated solution we have been discussing.
We require the normalisations

Iαβ Iαβ = 2, (k = 1),

IαβJαβ = 2, (k = −1),
(7.28)

where for k = 0 the twistor Iαβ acts as a regular infinity twistor.

Comparing to Equations (7.27), (7.25), (7.26), we see that these conformal infinities must have
a correspondence given by

T − iV =
1

2

√
2 IαβR

αβ , T + iV =
1

2

√
2 IαβR

αβ , (k = 1)

T +W =
1

2

√
2 JαβR

αβ , T −W =
1

2

√
2 IαβR

αβ , (k = 0)

T =
1

4

√
2 BαβR

αβ , V −W =
1

2
IαβR

αβ , (k = −1)

(7.29)

where it is worth noting that in presence of a Big Bang, we have that

Bαβ = Iαβ + I
αβ

(k = 1), Bαβ = Iαβ + Jαβ , (k = −1).
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Clearly, for k = 0, the infinity twistor provided in (7.8) suffices. For the readers interest, the
exact forms of the other infinity twistors in this dyad are given by

Iαβ =
i

4

√
2


0 −2 0 −

√
2

2 0
√

2 0

0 −
√

2 0 −1√
2 0 1 0

 , (k = 1),

Iαβ =
1

4

√
2


0 −2 0 −

√
2

2 0
√

2 0

0 −
√

2 0 −1√
2 0 1 0

 , Jαβ =
1

4

√
2


0 2 0 −

√
2

−2 0
√

2 0

0 −
√

2 0 1√
2 0 −1 0

 , (k = −1),

but this form has no particular meaning, since it is based upon our (somewhat arbitrary) choice
of dyad so that the coordinates of the slicing of P• are in terms of the Plücker embedding of M of
Paragraph 7.1. In fact, all necessary information about these twistors is contained in Equation
(7.28), which alongside the simple-skewness and reality conditions uniquely define these infinity
twistors.

This construction works for arbitrary solutions to the FRW space-times and will describe the
conformal infinities independent of which solution for the Friedmann equations is found. However,
one piece of information is lost, namely the relation between the metric and the infinity twistors.
We conclude this paragraph by briefly discussing how to recover this component of the theory.

Instead of a skew twistor, the scaling is now done by a function I, satisfying

I(Rαβ) = 2

for twistors corresponding to ‘physical points’ (cf. Eq. (7.11)), which for Minkowski, de Sitter,
and anti-de Sitter space corresponds to the linear map Iαβ . Again, we take Minkowski space as
the ‘unphysical’ hatted space, as in (7.23), so that

Iαβ = Î .

Recalling Equation (7.15) and the conformal scaling of the epsilon spinors (cf. Eq. (6.1)), we
must get that

I = ΩÎ . (7.30)

Substituting Equation (7.29) into (7.24) via Equation (7.25) then gives the result. For k = 0,
this is about the most we can do, but for k = ±1, the form of the resulting equation is quite
elegant, so we shall outline their derivations.

We introduce the variables

c2 :=
i

2

√
2 IαβR

αβ , d2 := − i
2

√
2 IαβR

αβ , (k = 1)

c2 :=
1

2

√
2 IαβR

αβ , d2 := −1

2

√
2 JαβR

αβ , (k = −1)

where Iαβ , Jαβ are now the infinity twistors of (7.29). Note by Equations (7.29), (7.22) we obtain

η = −i log(c/d), (k = 1)

κ = log(c/d), (k = −1)
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which, when substituted in (7.24), gives us, via (7.30) that

I(Rαβ) =
2cd

a
(
i
1
2 (3k+3) log(c/d)

) ,
where a is the scale factor. This function now takes the role of the metric; similar as in Paragraph
7.1, the metric of the space-time is now given in twistorial terms by

ds2 =
1

2
dRαβR

αβ ,

where, as in the previous paragraph, the simple skew twistors Rαβ are the distinguished twistors
representing real points satisfying

I(Rαβ) = 2. (7.31)

If we solely consider the matter-dominated universe, as we have done previously, we obtain by
substituting in (7.27) that

I(Rαβ) = −8kH0(Ωt − 1)2/3

Ωt

(
cd

c− d

)2

. (7.32)

where this equality now holds for arbitrary simple skew twistors, contrary to just the twistors
Rαβ satisfying (7.31).

The algorithm for explicitly computing Bang and Crunch twistors for the matter-dominated
model extends to any FRW solution, following similar reasoning as seen here.

Note that the twistorial description of the Friedmann-Robertson-Walker space-times is much
more concise than the regular form; we can describe the entirety of the space using the infinity
twistors, Bang and Crunch twistors and the scaling function, which we derived for the matter
dominated universe as being given by Equation (7.32). All these twistors and functions have
relatively simple coordinate-free forms, which stands in stark contrast with the usual descriptions,
where one always relies on local coordinate systems and transformations are usually given using
hyperbolic or trigonometric expressions.





Chapter 8
Twistors in curved space

In this chapter, we will discuss some of the more interesting aspects of twistor theory in curved
spaces. In the previous chapter, we saw how to describe a number of spaces that were conformally
equivalent to Minkowski space in twistorial terms. However, for general spaces, the translation
to a twistor description is not so obvious.

A naive way to approach this problem would be to consider local twistors. Orthochronous
transformations of the symmetry group SO+(2, 4) of the space R2,4 considered in Paragraph 7.1
keep the linear structures of the light cone invariant and hence induce conformal transformations
of Minkowski space. As it turns out, the group SO+(2, 4) is isomorphic to the path-connected
component of the conformal group C(1, 3) of Minkowski space.

The associated spin group Spin+(2, 4) is isomorphic to SU(2, 2), which is the group leaving the
twistor inner product of Equation (6.15) invariant. In fact, the spin representation of Definition
3.5.1 acts on an 8-dimensional vector space, and the ±1 eigenspaces of the chirality operator
of Proposition 3.5.2 turn out to be isomorphic to the 4-dimensional twistor space Tα and dual
twistor space Tα.

Then, on an arbitrary signature (+−−−) spin manifold, there exists a bundle structure, called
the tractor bundle (see [2]), so that a section of this bundle assigns to any point p ∈ M a

constant twistor Zα = (ωA, πA′) in a smooth way, which under conformal rescaling effected by a
map Ω ∈ T, in accordance with (6.21), is mapped to

Ẑ
α

= (ωA, πA′ + iΥAA
′ωA).

An appropriate form of local twistor transport can be defined on the resulting twistor space,
uniquely determined by the Levi-Civita covariant derivative (see [30, p. 134]).

However, there are a number of problems with this approach. First of all, the resulting twistor
transport is not integrable. Furthermore, this twistorial description assumes we already have
some manifold with certain curvature properties, and tries to derive a twistor space from this.
However, we prefer to take the approach where the twistor description is treated as ‘given’, from
which we can then derive the properties of the underlying space-time. Also, the locality of this
description is a major blockade, the power of the twistor description in Chapters 6 and 7 was
mostly based upon the global nature of twistors.
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In this chapter, we will explore some alternative approaches, some of which turn out to work
quite generally. However, even these descriptions can only deal with fields that are either self-
dual or anti-self-dual, and the resolution to this obstruction is still being investigated as of the
time of writing.

In this chapter, we will take a less rigorous approach and only sketch the ideas behind the
procedures used, since an entirely thorough treatment of these methods would take us too far
astray.

8.1 Sheaf cohomology and the Penrose transform

In this paragraph, we shall explore the Penrose transform, which gives a description of certain
spinor fields in terms of contour integrals of holomorphic functions on twistor space. The ideas
presented here are mainly based on [30, Paragraph 6.10]. The construction here is only for flat
Minkowski space M, but can be generalised to arbitrary conformally Minkowski spaces.

Definition 8.1.1. A spinor φABC...D ∈ SABC...D on Minkowski space M is called a massless
free field if it satisfies

φABC...D = φ(ABC...D),

∇AA
′

φABC...D = 0.

We similarly have massless free fields of the form φA′...D′ ∈ SA
′
...D

′ .

A massless scalar field φ ∈ S satisfies the wave equation

∇AA′∇
AA
′

φ = 0.

We denote the number of indices of φ by the integer n, where we take primed indices to correspond
to positive values of n and unprimed indices to correspond to negative values. We say that n is
the helicity of the massless free field.

Now let r = ra ∈M be an arbitrary point in M and f a homogeneous holomorphic function that
is analytic on a region of T. We will call such a function a twistor wave function. We then
consider the operator, defined on twistors incident with ra (see Eq. (6.22)), given by

ρr : Zα 7→ (irAA
′

πA′ , πA′),

i.e., we evaluate Zα at the origin. Since the origin is arbitrary, we can alternatively regard twistor
wave functions as being holomorphic functions from C4 to C and regard ρr as a function

ρr : f(Zα) 7→ f(irAA
′

πA′ , πA′).

We consider the line R ⊂ PT associated to ra ∈M. We take a twistor wave function f , homoge-
neous of degree −n− 2. Then for n ≥ 0, we set

φA′...D′(r) =

∮
Γ

πA′ . . . πD′ρrf(Zγ)πE′dπ
E
′

(8.1)

and for n < 0, we set

φA...D(r) =

∮
Γ

∂

∂ωA
. . .

∂

∂ωD
ρrf(Zγ)πE′dπ

E
′

. (8.2)
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Here Γ is a closed contour on the projective line R in PT. Note that the integrals are well
defined, since by the homogeneity degree of f , the homogeneity of the integrand is 0, so that the
integrand is well defined on PT, instead of just on T. It can easily be seen that the expression
on the right-hand side of Equations (8.1), (8.2) are symmetric.

The expressions on the right-hand side are indeed massless free fields; for n > 0, we have by

∂

∂rz
ρrf(Zα) =

∂

∂rz
f(irZZ

′

πZ′ , πZ′) = iπZ′ρr
∂f

∂ωZ

that
∂

∂rZZ
′ φA′...D′(r) = i

∮
Γ

πA′ . . . πD′πZ′ρr
∂f

∂ωZ
πE′dπ

E
′

,

which, after raising the Z ′ index and performing (A′, C ′)-contraction yields

∇ A
′

Z φA′...D′(r) = 0,

so that φ... is a massless free field. The cases for n ≤ 0 follow similarly.

In fact, it can be shown that any massless free field can be obtained by such an integral over
a contour in twistor space. This transformation between massless free fields and twistor wave
functions is called the Penrose transform.

In order for the integrals of Equations (8.1), (8.2) to give non-zero solutions, the corresponding
twistor wave functions need to have singularities in appropriate regions of the line R. Since this
is a 1-dimensional complex projective line, being diffeomorphic to the Riemann sphere S2, we
take the contour Γ to be over this Riemann sphere in an appropriate sense. We further assume
that the function f(Zα) can be extended holomorphically to a region of twistors incident with a
region of complexified Minkowski space, defined by

CM+ := {xa − iya ∈ CM : xa, ya ∈M, ya future time-like},

also called the forward tube. It can be shown using Equation (6.27) that these points correspond

to lines lying entirely in the closure of the right-handed projective twistor space PT+. Figure
8.1 shows how we can visualise the singular region S of f and how we can see a contour over a
complex line R as a contour over the Riemann sphere.

S

PT0

PT−

PT+ R

Γ1

R

S

S

Γ2

Figure 8.1: On the left, the domain of singularity S of a twistor wave function f is shown in PT.

A line in projective twistor space R through PT+
intersects the region of singularity. On the right, R

is portrayed by a Riemann sphere, and we integrate over closed contours Γ1, Γ2, avoiding the singular
regions. Note that the contour Γ2 can be continuously deformed to a point, giving a trivial field, whereas
the integral over Γ1 should yield a non-zero massless free field.

Note there is considerable freedom in Γ and f , leaving the resulting massless free field unchanged.
Firstly, Γ can be continuously deformed on the sphere R, as long as no singular regions are crossed.
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Secondly, we can add functions h to f whose singular regions are such that the contour Γ can
be contracted to a point when integrating over h. To find what the ‘truly’ different twistor wave
functions are, we must invoke the language of Čech cohomology. The definitions used here are
slightly non-standard, but suffice for our present purposes.

We consider the complex manifold PT+ and the sheaf O(n) of germs of twisted homogeneous

holomorphic functions of degree n. Let U = {Ui}i∈I be a locally finite cover of PT+. We
consider

F = {f1, f2, . . . , f12, f21, f13, . . . , f123, . . . },
a collection of elements assigned to each of the open sets Ui and their non-empty finite intersec-
tions Ui ∩ · · · ∩ Uj . Here fi...j is a holomorphic homogeneous twistor wave function of degree n
defined on Ui ∩ · · · ∩ Uj , satisfying

fi...j = f[i...j].

We define the k-cochains associated to this F to be the sequences of elements of F having k
lexicographically ordered increasing indices. Hence, we have

0-cochain α = (f1, f2, f3, . . . ),

1-cochain β = (f12, f13, f23, . . . ),

2-cochain γ = (f123, f124, f134, . . . ),

....

We can index elements of a k-cochain by ζij...l, where ij . . . l number k indices and i < j < · · · < l.
In the above, we then have that ζij...l = fij...l.

We then define a coboundary operator ∂ from k-cochains to (k + 1)-cochains defined by

∂α = (f2 − f1, f3 − f1, f3 − f2, . . . ),

∂β = (f12 − f13 + f23, f12 − f14 + f24, . . . ),

∂γ = (f124 − f123 + f234 − f134, . . . ),

...

(∂σ)ij...l =
∑

n∈{i,j,...,l}

(−1)n+1σij...n̂...l.

(here n̂ denotes the omission of the index n). One can then easily verify that ∂2 = 0. Note that
(∂α)12 = f2 − f1 is holomorphic on U1 ∩U2, since f2 and f1 are holomorphic when restricted to
U1 ∩ U2, respectively. Consequently, since we can restrict holomorphic functions in this way, we
see that the coboundary operator is well-defined.

We say that a k-cochain ζ is a cocycle when

∂ζ = 0,

and we say it is a coboundary when there exists some (k − 1)-cocycle η such that

∂η = ζ.

Note that the sets of k-cocycles and k-coboundaries have an abelian group structure. We denote
these groups by Zk(U ,O(n)) and Bk(U ,O(n)), respectively. Note that

Bk(U ,O(n)) ⊂ Zk(U ,O(n)).
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We are now in a position to define the Čech cohomology groups:

Definition 8.1.2. Let U a locally finite cover of PT+. We define the kth Čech cohomology
group subject to U to be the group

Ȟk
U (PT+,O(n)) := Zk(U ,O(n))/Bk(U ,O(n)). (8.3)

Then the general kth Čech cohomology group is defined by taking the direct limit of refine-

ments of covers U of PT+, i.e.,

Ȟk(PT+,O(n)) = lim
U

Ȟk
U (U ,O(n)).

(For details on the direct limit, refer to [13, p. 224]).

We can now regard elements of Ȟ1
(
PT+,O(n)

)
as twistor wave functions. To illustrate this,

we consider a covering of PT+ with 2 open sets U1, U2, such that any projective line R through

PT+ meets U1 ∩ U2, and we consider a twistor wave function f of degree n that is holomorphic
on U1 ∩ U2.

As a result, f defines a 1-cochain β = (f), which satisfies

∂β = 0 =⇒ β ∈ Z1(U ,S).

Note that the freedom we described in choosing f to represent a massless free field, is equivalent
to adding a coboundary (h1 − h2) to f , where h1, h2 are holomorphic homogeneous functions
of degree n defined on U1, U2. But this is exactly the equivalence relation we divided out in
Equation (8.3).

For an arbitrary (locally) finite cover U = {Ui}i, we can similarly define a twistor wave function
that is homogeneous of degree n and holomorphic on the (non-empty) intersections Ui ∩ Uj ,
where we take a branched contour through these intersections. The cocycle condition is then
equivalent to allowing us to ‘glue’ together the functions in triple intersections, so we can deform
the contour in these regions. (Recall that the cocycle condition on the intersection U1 ∩U2 ∩U3

states that

f12 − f13 + f23 = 0,

which can be seen to mean that the function f can be extended holomorphically to the entire
region where covers intersect one another). This situation is sketched for covers with 2 and 3
sets in Figure 8.2.

The machinery introduced here can be used to prove our previous claim that any massless free
field can be obtained via a Penrose transform.

Theorem 8.1.3. There is an equivalence between the group Ȟ1
(
PT+,O(−n− 2)

)
and the set

of massless free fields of helicity n holomorphic on a region of CM+.

Proof. For a full proof, see [15, Ch. 10].
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U1 U2

U2

U1

U1 ∩ U2

Γ

PT+

R

R
U2

U3

U1

U1 ∩ U2

U1 ∩ U3 U2 ∩ U3

U1 ∩ U2 ∩ U3

Γ

Figure 8.2: Left: PT+
is covered by two open sets U1, U2, such that a twistor wave function f is

holomorphic on the intersection of the open sets. We then integrate over a closed contour Γ on the
Riemann sphere R, with Γ contained entirely in U1 ∩ U2.
Right: For a cover with 3 sets, we integrate over a branched contour integral, where the vertices of the
contour can be freely moved in U1∩U2∩U3 and the contour can be deformed homotopically in the other
intersections.

8.2 The non-linear graviton and the googly problem

In the previous paragraph, we considered how linear fields on Minkowski space can be expressed
in twistorial terms. In this paragraph, we will give a procedure to describe non-linear anti-self-
dual gravitational fields using a non-linear analogue of projective twistor space, denoted by PT .
This construction is called the non-linear graviton construction. We will only give an outline of
the construction, since we have not developed the tools to treat this construction rigorously. We
follow some of the reasoning of [26], [32, Chapter 9] and [15, Chapter 12].

As always, we consider a 4-dimensional manifold M with a metric of signature (1, 3) satisfying
the conditions of Geroch’s theorem. In order to give a twistorial description of this manifold, we
want, as in Chapter 6, to get a collection of α-planes at every point, which will play the role of
PT . Suppose p ∈ M is an arbitrary point. Then two tangents of the same α-plane va, wa at p
must be of the form

va = λaπA
′

, wa = µAπA
′

(8.4)

for some (not-necessarily constant) spinor πA
′

(see Equation (6.29)). Locally, we want the α-
plane to span the tangent space to a sub-manifold N of M . Frobenius’ theorem (see [21, p. 496]),
then asserts that

va∇aw
b − wa∇av

b = αvb + βwb

for constants α, β. After substitution of Equation (8.4), we obtain

πA
′

∇aπB′ = ζAπB′ (8.5)

for some ζA. After transvecting with πB
′

πC
′

∇ C
′

A and using the symmetries of the Riemann
curvature tensor and the decomposition in spinor terms (cf. Prop. 5.4.3, Eq. (5.28)), this can be
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seen to be rewritten as
ΨA

′
B
′
C
′
D
′πA

′

πB
′

πC
′

πD
′

= 0,

which by symmetry of ΨA
′
B
′
C
′
D
′ implies

ΨA
′
B
′
C
′
D
′ = 0,

i.e., M must have an anti-self-dual Weyl tensor (see Eq. (5.29)), which means that M is patch-
wise conformally flat by Proposition 6.1.3. For real spaces with metrics of signature (+ + ++)
or (+ + −−) the condition of anti-self-dual Weyl tensor is less restrictive, so one can encode a
larger family of spaces using twistor theory. However, these signatures have other less appealing
properties, in particular, Geroch’s theorem (see Thm. 4.3.2) no longer holds.

Now we want to construct the non-linear twistor space PT in the case of an anti-self-dual Weyl
tensor. Considering a point p ∈M , then given some spinor field ξA′ , the equations

πA
′

(p) = ξA
′

(p), πA
′

∇AA′πB′ = 0 (8.6)

have solutions by virtue of the vanishing of ΨA
′
B
′
C
′
D
′ (note the similarity with Equation (8.5)).

The solutions πA
′

to this equation defines a 2-space

P = {λAπA
′

: λA ∈ SA}

satisfying Frobenius’ theorem. The tangent vectors at p are then of the form λAπA
′

. The α-
planes we thus constructed vary smoothly over M . By considering the dimensionality, we hence
obtain a 3-complex dimensional space PT of α-planes, which we will call the curved projective
twistor space of M .

In general, PT need not be Hausdorff, so it is not even necessarily a manifold. Since it can
be shown that Equation (8.6) is conformally invariant, the construction of PT is conformally
invariant, so it is unsurprising that the spaces in Chapter 7 could all be described in terms of the
regular, flat twistor space PT. In general, we would like to impose some extra structure on PT .

Definition 8.2.1. We say a 4-dimensional complex manifold M is civilised if its curved pro-

jective twistor space PT is homeomorphic to PT \
{

[(ωA, πA′)] : [πA′ ] = [0 : 0]
}

.

We deliberately exclude the twistors representing α-planes at infinity. Note that any conformally
flat manifold M by definition consists of open sets which are conformally equivalent to M, so
any such manifold can be covered by civilised subsets.

Conversely, we want any space PT sufficiently resembling a curved projective twistor space to
define, up to conformal rescaling, a unique anti-self-dual space-time manifold. The sufficient
condition turns out to be that there exists a 4-parameter family of compact holomorphic curves,
each having normal bundle N = O(1) +O(1). We have not discussed what this entails, one can
refer to [32, pp. 436–439] for further details. This gives rise to the following theorem:

Theorem 8.2.2 (Penrose). There is a one-to-one correspondence between

1. the equivalence classes of civilised manifolds (M, gab) with anti-self-dual Weyl tensor modulo
conformal rescalings.

2. 3-dimensional complex manifolds PT homeomorphic to PT \
{

[(ωA, πA′)] : [πA′ ] = [0 : 0]
}

such that there exists a 4-parameter family of compact holomorphic curves, each having
normal bundle N = O(1) +O(1).
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Further structure can be given to PT to ensure that the corresponding manifold M is an Einstein
manifold, i.e., that it gives a solution to the Einstein vacuum equation (cf. Def. (5.4.4))

Rab = λgab.

The precise nature of these conditions and a proof showing equivalence can be found in [15,
pp. 107-109].

Throughout this paragraph, we could alternatively have taken the approach to consider β-planes
in M . This would have turned out to give a description for manifolds with self-dual Weyl tensor,
in a description mirroring that of the dual twistor space. A similar construction exists for de-
scribing (anti-)self-dual solutions to the Yang-Mills field equations, called the Ward construction
[31].

If we are interested in incorporating the entirety of general relativity, we need some way to also
describe solutions to the Einstein equations that do not have anti-self-dual Weyl tensor. Thus
far, there has been no satisfying solution to this problem, which has now stood for over 40 years.
In the literature, this problem is called the googly problem, and it is considered one of the
biggest hurdles for twistor theory. (Googly is a term in cricket, where a ball is thrown in a
left-handed manner, but results in a right-handed spinning ball).

8.3 Quantisation and palatial twistor theory

In this paragraph, we will briefly outline a potential solution to the googly problem. For this,
the twistor space first needs to be quantized in an appropriate way. For our present purposes,
we assume ~ = c = 1. As in the previous two paragraphs, the reasoning here is far from
complete. The purpose here is giving an idea of how quantisation may be introduced in the
twistor formalism, and how this might lead to a description of general curved spaces in twistorial
terms.

In Chapter 6, we saw that a twistor Zα = (ωA, πA′) satisfying

s =
1

2
ZαZα = 0

described a null line in M. As such, we can regard Zα as representing a photon in Minkowski
space. Contrary to how we constructed α-planes in complexified compactified Minkowski space,
we will now consider a construction where general non-null twistors can be considered as massless
particles possessing spin.

Given Zα = (ωA, πA′), we define the two real tensors

pa = πAπA
′

, Mab = iω(AπB)εA
′
B
′

− iω(A
′

πB
′
)εAB , (8.7)

satisfying, by Equation (6.10), the identities

pa ≡ pa(O), Mab − xbpa + xapb ≡Mab(O),

where O ∈M is the origin. Note these are precisely the transformation properties of momentum
and angular momentum. Massless helicity s̃ particles further satisfy (by [24, p. 11])

∗Mabp
b = s̃pa, (8.8)
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which implies (cf. Eq. (8.7))

1

2
(ωBπB + ωB

′

πB′)πAπA′ = s̃pa,

which, comparing to Equation (6.20) yields

s̃ = s,

so that Zα describes a helicity s massless particles, with (angular) momentum given by (8.7).

We want to use this description to consider a twistor Zα and its complex conjugate Zα as non-
commuting operators acting on twistor wave functions. We know, from quantum mechanics, the
canonical commutation relation

pax
b − xbpa = iδ ba ,

which, upon substitution of (8.7) and (6.10) suggests the form for the twistor commutation
relation given by

ZαZβ − ZβZ
α = δ βα . (8.9)

Furthermore, Equation (8.8) can be rewritten as

s =
1

4
(ZαZα + ZαZ

α).

We suppose that the twistor wave functions these operators act on must be holomorphic in Zα.
Then the obvious choice for the operator Zα is given by

Zα : f 7→ Zαf,

and inspired by the quantum mechanical form for the momentum operator

pa : f 7→ −i ∂f
∂xa

,

we make the choice

Zα : f 7→ − ∂f

∂Zα
,

noting that with this choice Equation (8.9) holds. We can see this choice of operators as the
axiom defining the quantisation of twistor theory, just as in quantum mechanics the choice for
momentum operator is an axiom defining the theory.

Since we obtain from Equation (8.9) that

ZαZα − Z
α
Zα = 4,

we can alternatively write the helicity operator as

s = −1

2

(
Zα

∂

∂Zα
+ 2

)
,

from which we see that the eigenstates of s are given by homogeneous holomorphic functions,
where an eigenvalue q corresponds with a function homogeneous of degree 2q − 2.

In these cases, the eigenstates of the helicity operator are precisely the twistor wave functions
discussed in Paragraph 8.1, so if we are only interested in the massless free fields resulting from
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twistor wave functions, we can regard the operators Zα, Zα as acting on the representatives of

the group Ȟ1
(
PT+,O(2q − 2)

)
. In this way, elements of Ȟ1

(
PT+,O(2q − 2)

)
are considered

to be 1-particle wave functions, whereas elements of Ȟk
(
PT+,O(2q − 2)

)
describe systems of k

particles.

The idea behind palatial twistor theory is now to see the twistor structure of Minkowski space
as being modelled by the non-commutative algebra A, being generated by Zα and Zα, while also,
in some sense, allowing infinite combinations of these elements. Then just as we got a curved
twistor space PT for anti-self-dual space-times, we should now, in some way, deform the flat
algebra A to some curved algebra A describing a general curved space.

In this way, one could see the quantisation of twistor space as a requirement for describing curved
spaces, potentially leading to a satisfying theory of quantum gravity. These ideas have not yet
been worked out fully, although some progress is being made with regards to how the deformation
of this algebra should work [22, 27].



Chapter 9
Outlook

In this thesis, we constructed Penrose’s twistor theory from scratch. Along the way, we found
how twistor space is able to encode the physical properties of Minkowski space. This programme
could be extended to give a description of (anti-)de Sitter space using infinity twistors. In Chapter
7, we also saw a procedure to describe Friedmann-Robertson-Walker space-times in twistorial
terms, allowing us to describe asymptotics, such as the Big Bang, in very simple bitwistor forms.
We explicitly calculated the scaling of the metric for a matter dominated cosmological model,
leading to the simple form of Equation (7.32).

In Chapter 8, we discussed some non-linear aspects of twistor theory, such as the powerful
Penrose transform, which is able to describe massless free fields in terms of elements of Čech
cohomology groups. The non-linear graviton construction allowed us to also encode the geometry
of an anti-self-dual solution to the Einstein equations in curved twistor space PT .

Throughout this thesis, we have mostly followed Penrose’s original mission statement of twistor
theory, namely to provide a theory of quantum gravity. We have largely ignored many other
developments in twistor theory, such as the use of the Penrose transform in the analysis of non-
linear differential equations, or the extension to twistor string theory, which is used extensively
for determining scattering amplitudes in particle collision problems.

There is also some mathematical interest in twistor theory for spaces of arbitrary dimension and
signature. Another particularly interesting generalisation is that of ambitwistor theory, which,
contrary to our current twistor formalism, can describe non-anti-self-dual space-times. However,
this theory loses much of the mathematical simplicity of the twistor formalism discussed here.

It is interesting to see whether the twistor quantisation and palatial twistor theory briefly touched
upon in Paragraph 8.3 may lead to a more elegant description of general curved spaces. The
introduction of quantisation is very desirable, since it may hint at a connection between non-
trivial space-time curvature and quantum mechanical effects, suggesting that the introduction of
quantum mechanics in twistor theory is a necessary step to describe arbitrary solutions to the
Einstein equations. Twistor theory might then imply that the cause of the collapse of the wave
function stems from gravitational effects. Although research is still ongoing, it may be of interest
to see whether twistors may eventually lead to a convincing theory of quantum gravity.
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Appendix A
Compactification of flat space

In this appendix, we will consider a way of constructing compactified Minkowski space M#,
which will be used in the twistor Klein correspondence of Chapter 6. The approach taken here
will be to use conformal rescalings of the metric of Minkowski space, after which we adjoin points
representing infinity. In this way, we can consider Minkowski space as being contained in the
Einstein cylinder E . We will follow the construction of [14, Paragraph 5.1].

Given a manifold M with pseudo-Riemannian gab, a conformal map Ω gives rise to a new metric
tensor

ĝab = Ω2gab.

The notions of conformal rescalings are discussed in Paragraph 6.1.

In physics, the metric of Minkowski space is often written

ds2 = dt2 − dx2 − dy2 − dz2, (A.1)

where (ta, xa, ya, za) is a Minkowski tetrad and dt, dx, . . . are the associated basis vectors for
Ta. By re-parametrising Minkowski space in spherical coordinates, this metric becomes

ds2 = dt2 − dr2 − r2(dθ2 + sin2 θdφ2)

at a point parametrised by (t, r, θ, φ). Using this form of the metric will be more appropriate for
performing direct computations than the abstract index approach of Paragraph 4.1.

Further introducing Eddington-Finkelstein-coordinates, defined by u = t − r and v = t + r,
we obtain the metric

ds2 = dudv − 1

4
(v − u)2(dθ2 + sin2 θdφ2),

where Minkowski space corresponds with the region v − u ≥ 0, θ ∈ [0, π), φ ∈ [0, 2π).

We can now introduce the conformal map

Ω = 2(1 + u2)−
1
2 (1 + v2)−

1
2 ,

which yields the conformally scaled metric

dŝ2 = ((1 + u2)(1 + v2))−1(4dudv − (v − u)2)(dθ2 + sin2 θdφ2).
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Note this metric can be analytically extended to the region u, v → ±∞, which can be made more
precise by making the substitutions

p = arctanu, q = arctan v,

with associated metric

dŝ2 = 4dpdq − sin2(p− q)(dθ2 + sin2 θdφ2), (A.2)

where Minkowski space now corresponds to the region 0 ≤ q − p ≤ π, p, q ∈ (−π/2, π/2).

This metric can be extended to the regions where p or q equal ±π/2. Hence, we can adjoin
points representing these regions to Minkowski space, thus obtaining a set of points at infinity,
which we will denote by I . We then define M = M ∪I . The 2-spheres

ı0 =

{
(p, q, θ, φ) ∈M : (p, q) =

(
−1

2
π,

1

2
π

)}
,

ı+ =

{
(p, q, θ, φ) ∈M : (p, q) =

(
1

2
π,

1

2
π

)}
,

ı− =

{
(p, q, θ, φ) ∈M : (p, q) =

(
−1

2
π,−1

2
π

)}
,

(A.3)

are called spatial infinity, future-temporal infinity and past-temporal infinity, respec-
tively. Furthermore, future and past null infinity I + and I − are defined as the portions of
I where q = 1

2π and p = − 1
2π, respectively.

Figure A.1 shows the structure of M using this construction.

•

•

•p− q = 0

q = π
2

p = −π2

ı0

ı+

ı−

I −

I +
M

Figure A.1: The region conformal to M using the coordinates p, q. The dotted lines denote regions of
constant p and q.

An alternative way to regard M is as embedded in the Einstein cylinder E , which we obtain by
considering the entire strip 0 ≤ p−q ≤ π. When we then consider the coordinate transformations

τ = p+ q, ρ = q − p,

giving the metric
dŝ2 = dτ2 − [dρ2 + sin2 ρ(dθ2 + sin2 θdφ2)],
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so the Einstein cylinder has the structure of a product of an infinite line, representing time, with
a 3-sphere, representing space. We can embed the conformally rescaled Minkowski space in this
cylinder, being a patch of the cylinder wrapping around itself, meeting itself in ı0, as illustrated
in Figure A.2.

•

·

ı+

ı−

ı0

M

E

•

•

I +

I −

Figure A.2: A section of the Einstein cylinder E . Every point on the cylinder shown here corresponds
to a 2-sphere. The region conformal to M is shown in red, wrapping around the cylinder, and meeting
itself in the point ı

0
at the back.

We see that the topology of the Einstein cylinder is R × S3. The topology of the region of
Minkowski space conformal to the Einstein cylinder, which lies open in M, is R4. However,
when adding the boundaries I + and I − and the points ı±, ı0, which are topologically not 4-
dimensional, we see that we must make some further identification to ensure that M has the
structure of a manifold.

Inspired by the fact that we can take the patches p, q ∈ (0, π) instead of p, q ∈ (− 1
2π,

1
2π), the

natural choice would be to appropriately identify I + and I − with each other, and consider ı±, ı0

as a single point. This also makes sense physically; any null line with infinite future A ∈ I −

will go through a future point on B ∈ I + uniquely determined by A, so we get a canonical
identification, which turns M into a 4-dimensional manifold called compactified Minkowski
space, denoted by M#, which topologically is of the form

M# = S1 × S3.

This definition of M# is used in Paragraph 6.5; twistors Zα = (ωA, 0) correspond to null lines
lying entirely in the region I , and two twistors Zα and Xα with parallel α-planes Z and X now
intersect somewhere in I .

In Paragraph 7.1, another way of obtaining M# is discussed, by embedding M in the null cone
of a 6-dimensional vector space. The construction discussed there is conformally equivalent to
the construction discussed here, since M# can be embedded in the Einstein cylinder, so these
two construction will lead to the same topology for M#.
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Mémorial des sciences mathématiques. Gauthier-Villars, 1952.

[7] E.-J. Cartan. The theory of spinors. Hermann, Paris, 1966.

[8] H. S. M. Coxeter. Non-Euclidean geometry. Mathematical Association of America, sixth
edition, 1998.

[9] I. V. Dolgachev. Introduction to Algebraic Geometry. University of Michigan, 2013.

[10] R. Geroch. Spinor structure of space-times in general relativity. J. Math. Phys., 9(11):1739–
1744, 1968.

[11] M. J. D. Hamilton. Mathematical Gauge Theory. Springer, 2017.

[12] J. B. Hartle. Gravity: An Introduction to Einstein’s General Relativity. Pearson Education,
new international edition, 2013.

[13] A. Hatcher. Algebraic Topology. Cambridge University Press, 2000.

[14] S. W. Hawking and G. F. R. Ellis. The Large Scale Structure of Space-Time. Cambridge
University Press, 1973.

[15] S. A. Huggett and K. Tod. An Introduction to Twistor Theory. Cambridge University Press,
second edition, 1994.



114 BIBLIOGRAPHY

[16] T. R. Hurd. The projective geometry of simple cosmological models. Pr. R. Soc. A, Math.
Phys. Sci., 397(1813):233–243, 1985.

[17] D. D. Joyce. Compact manifolds with special holonomy. Oxford University Press, 2000.

[18] F. Klein. Zur theorie der liniencomplexe des ersten und zweiten grades. Math. Ann., 2:198–
226, 1870.

[19] S. Kobayashi and K. Nomizu. Foundations of Differential Geometry, volume 1. Wiley, 1996.

[20] H. B. Lawson and M.-L. Michelsohn. Spin Geometry. Princeton Univeristy Press, 1989.

[21] J. Lee. Introduction to Smooth Manifolds. Springer, second edition, 2012.

[22] M. Marcolli and R. Penrose. Gluing Non-commutative Twistor Spaces. Quart. J. Math.
Oxford Ser., 72(1-2):417–454, 2021.

[23] J. Milnor and J. D. Stasheff. Characteristic Classes. (AM-76). Princeton University Press,
2016.

[24] T. Ohlsson. Relativistic Quantum Physics. Cambridge University Press, 2011.

[25] R. Penrose. Twistor algebra. J. Math. Phys., 8(2):345–366, 1967.

[26] R. Penrose. The nonlinear graviton. General Relativity and Gravitation, (7):171–176, 1976.

[27] R. Penrose. Palatial twistor theory and the twistor googly problem. Phil. Trans. R. Soc.,
373, 2015.

[28] R. Penrose and M. A. H. MacCallum. Twistor theory: An approach to the quantisation of
fields and space-time. Physics Reports, 6(4):241–315, 1973.

[29] R. Penrose and W. Rindler. Spinors and Space-Time, volume 1. Cambridge University
Press, 1984.

[30] R. Penrose and W. Rindler. Spinors and Space-Time, volume 2. Cambridge University
Press, 1986.

[31] R. S. Ward. On self-dual gauge fields. Physics Letters A, 61(2):81–82, 1977.

[32] R. S. Ward and R. O. Wells Jr. Twistor Geometry and Field Theory. Cambridge University
Press, 1990.


	Introduction
	Preliminaries on manifolds and bundles
	Basic concepts
	Lie groups and algebras
	Principal and associated vector bundles

	The construction of spinors
	Pseudo-Riemannian vector spaces
	The Clifford algebra
	Gamma matrices
	Spin groups
	The spinor representation

	Spin structures
	Abstract index tensor algebra
	Connections
	The spinor bundle

	Two-spinor calculus
	Basic properties
	Association between spinors and tensors
	The geometry of spinors
	Curvature and the Einstein equations

	Twistor space
	Conformal transformations
	The twistor equation
	Dual twistors
	Null twistors and space-time points
	The twistor Klein correspondence

	Twistor cosmology
	The Plücker embedding and (anti-)de Sitter space
	Infinity twistors
	Twistors of Friedmann-Robertson-Walker space-times

	Twistors in curved space
	Sheaf cohomology and the Penrose transform
	The non-linear graviton and the googly problem
	Quantisation and palatial twistor theory

	Outlook
	Compactification of flat space

