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Abstract

In the past decades experiments have found condensed matter systems which could not
be described by the conventional methods of condensed matter theory, these are densely
entangled strange metals. During the same period, the string theory community has de-
veloped the AdS/CFT correspondence, a duality between field theories and gravitational
systems. This duality may be used to understand condensed matter field theory from a
gravitational perspective. It is especially useful for densely entangled quantum matter,
which can be described according to the duality by charged black hole systems of classical
gravity. In this thesis we will consider the Gubser-Rocha black hole of the Einstein-
Maxwell-Dilaton action to describe a metal. To understand charge and heat transport in
these metals, one needs a mechanism to dissipate momentum. This is explicitly imple-
mented by introducing a periodic lattice in the condensed matter system. Using heavy
numerical codes to calculate the gravitational differential equations that are dual to the
metal, we can find the transport properties of our metal. In this metal a linear in T
resistivity is found, which is a famous property of the strange metals. Furthermore we
find empirically a saturation of the conductivity, which could be the instance of Planckian
dissipation and the minimal viscosity of the strange metal.
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Chapter 1
Introduction

Condensed matter physics and quantum gravity seem to be different physical area’s, lo-
cated on the opposite side of the physics ‘landscape’. Physicists are exploring the realms
of quantum gravity, but have not yet settled on a complete and consistent theory. Perhaps
the foremost theory that is being research is string theory. At the same time, condensed
matter physicist are searching for a theory explaining the strange metal behavior discov-
ered in experiments. Motivated by the discovery of high temperature superconductivity
and the efforts of the string theory community, we are discovering that these seemingly
different area’s of physics are related in an unexpected way.

In 1911 in Leiden, Kamerlingh Onnes saw in his experiments that the resistivity of mercury
at 3K is practically zero [1], discovering superconductivity. The first theory successfully
describing this phenomenon is BCS theory [2, 3]. Proposed by Bardeen, Coop and Schri-
effer (BCS) in 1957, they explained that for any attractive potential in a metal, below a
critical temperature Tc the fermions will condensate into pairs, called Cooper pairs. These
pairs have bosonic properties and will be protected by the collective condensate and may
flow without resistance: superconductivity. Superconductors that may be described by
BCS theory are what we call conventional superconductors. These metals typically have
a Tc lower than 30K [4–6], however playing with light elements and high pressures also
higher temperatures can be achieved. For example, metallic hydrogen under high pressure
is expected to have a high Tc according to BCS theory [7], and high Tc of 203K consistent
with BCS theory have been experimentally achieved in hydrogen-based metals [8]. Super-
conductivity which cannot be explained by BCS theory, is referred to as unconventional
superconductivity. In 1986 Bednorz and Müller discovered high temperature supercon-
ductivity in copper-oxides (cuprates) at Tc = 35K [9], which could not be explained by
BCS theory. Up to that moment superconductivity had only been found below 30K,
marking their experiment as among the most important discoveries of the last century
[6]. In the years following, other cuprates and different materials were found to have a
superconducting phase at even higher temperatures.

Classical condensed matter field theory revolves around perturbation theory. The idea is
that the macroscopic state can be described by a short range entanglement (SRE) state:
a state with finite overlap with a state which is a superposition of single particle wave
packets [10, 11]. This state of classical particles is an exact eigenstate of the Hamiltonian
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8 Introduction

Figure 1.1: The linear in T resistivity of a strange metal does not saturate like the resistivity
of a Fermi liquid. Figure retrieved from [11].

and therefore an exact state in our Hilbert space. Dressing this classical ground state by
entanglements in a perturbative manner, we arrive at the so called SRE state. Although
not an exact eigenstate, this state is quite well localized in Hilbert space, due to its finite
overlap with the classical ground state, keeping the perturbation theory convergent.
This however, only works well when the couplings are small, by which we mean small
enough such that the perturbation theory still converges. For large couplings, the per-
turbation theory will diverge and the methods of condensed matter field theory fail to
tackle the problem. BCS theory and the Fermi liquid are results of perturbative con-
densed matter theory. Metals with strong electron interactions can not be described in a
perturbative manner, due to the magnitude of their coupling. Superconductivity arising
in these type of metals will therefore not be of the conventional kind.

The discovery of superconductivity in cuprates, was the discovery of the first strange
metals. Strange metals are metals which cannot described by classical condensed matter
field theory, and they have ‘strange’ or non-classical behavior. High Tc superconductivity
is an example of those behaviors, but these same systems also have different properties at
temperatures above Tc outside the superconducting phase. Another important property
found in strange metals is the linear in temperature resistivity ρ ∼ T , see Figure 1.1. The
Fermi liquid has ρ ∼ T 2 at very low temperatures where the resistivity is dominated by
electron scattering. As the temperature rises, the electron-phonon interactions become
more important and the resistivity becomes approximately ρ ∼ T . However as the tem-
perature rises more and the resistivity increases, the mean-free path which the electrons
travel will become of the order of the lattice spacing. We run into the Mott-Ioffe-Regel
limit: the resistivity will saturate. Strange metals however do not experience such a sat-
uration. Above the superconducting phase, they experience a linear in T resistivity, up
to temperatures where the metal becomes unstable and melts.

The strange behavior is believed to be related to quantum criticality. A quantum phase
transition can happen at zero temperature, creating a sense of order in the system. Such
transitions are characterized by universality and scale invariance. But even at non-zero
temperatures, the system knows about the quantum critical point and can characterize

8
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Figure 1.2: Phase diagram of cuprates. Above the quantum critical point, we see the quantum
critical wedge of the strange metal phase. Figure retreived from [12].

the strange metals phase. This is the famous quantum critical wedge which can be seen
in Figure 1.2.

In 1997 Maldacena discovered that field theories may be described by a gravitational the-
ory in one higher dimension: the AdS/CFT correspondence [13]. This result from string
theory offers a new approach for condensed matter physics. The discovery appears to
be especially useful for the strongly coupled strange metals, where charged black holes
can be used to describe finite temperature and finite density strange metals, which is
currently the topic of interest in the Leiden Quantum Matter Theory Group. To ac-
count for charge and heat transport in metals, a lattice must be introduced in the metal.
Introducing a lattice however makes the equations of the black hole system even more
complicated and computational efforts are needed to do the calculations. This thesis
will be the natural follow up on the theses of Sam Arend [14] and Martijn Janse [15].
They considered transport in Einstein-Maxwell theory with a Reissner-Nordström (RN)
black hole, including magnetic fields. RN is known to produce some nonphysical results
such as zero-temperature entropy. To go from this phenomenological system to a more
physical representable system one must add a dilaton field. This solves the zero tempera-
ture entropy and is called Einstein-Maxwell-Dilaton (EMD) theory. In this thesis we will
consider the Gubser-Rocha (GR) black hole in EMD, however without magnetic field, as
including the dilaton field will increase computational difficulty.

After going over some classical condensed matter physics in Chapter 2, the correspondence
and its application to finite temperatures and densities will be explained in Chapter 3. In
Chapter 4 the application of the correspondence to condensed matter is discussed. Then
the setup for the calculations is set out in Chapter 5, of which the results are presented
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10 Introduction

in Chapter 6. The thesis will be concluded with a discussion in chapter 7.

10
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Chapter 2
Condensed Matter Physics

Condensed matter physics attempts to explain the physical properties of matter. Metals
are of specific interest, as they may transport heat and electricity. In this chapter we will
introduce some basic concepts of condensed matter physics. Section 2.1 starts off with the
basics of transport responses. Drude theory is a model for transport based on momentum
relaxation as explained in Section 2.2. This is followed by a short description of the
Fermi liquid in Section 2.3, a model for conventional metals. Condensed matter systems
are generally hard to described. Nevertheless condensed matter theory has a successful
approach in providing descriptions of many metals. In Section 2.4 it is explained from a
quantum information viewpoint why this is the case and also how this approach limited.

2.1 Transport

If a physical quantity sources a physical current, it can be described by linear response
theory. In the Fourier domain the relationship between the source and current is captured
by a Green’s function called the response function (or sometimes susceptibility in physical
context). An electrical current is sourced by an electric field. The relationship between

electric current J⃗ and electric field E⃗ ∼ −∇µ is famously known as Ohm’s law J⃗ = σE⃗,
where the response function σ is known as the electric conductivity. However considering
metals, we can also consider a heat current Q. A temperature gradient ∇T in a metal
may cause heat transport and thus source the heat current. This is captured by the
thermal conductivity κ̄ as Q = −κ̄∇T . Considering the particles carrying charge may
also carry entropy, they may also cause a heat current. For that reason an electric field
may also source heat currents and temperature gradients may cause electrical currents.
These effects are captured by the thermo-electric conductivities α and ᾱ as(

J⃗

Q⃗

)
=

(
σ αT
ᾱT κ̄T

)(
E⃗

−∇T
T

)
. (2.1)

Due to the Onsager reciprocal relations, the the heat current induced by an electric field
should be equal to the electrical current induced by the temperature gradient: α = ᾱ [16].

Version of June 30, 2022– Created June 30, 2022 - 14:02
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12 Condensed Matter Physics

In this thesis we will consider two more directly related quantities,

σQ=0 = σ − αTᾱ

κ̄
, (2.2)

κ = κ̄− αTᾱ

σ
. (2.3)

Here σQ=0 is the electric conductivity at zero heat current. Consider a system with charge
conjugation symmetry, for example a metal with an equal amount of positive and negative
charges. If we apply an electric field, all positive charge carriers will move in the direc-
tion of the field, while the negative cariers will travel in opposite direction. The currents
caused by both the negative and positive carriers will result in an electric current in the
same direction. If these charge carriers also carry entropy, we will have two opposing heat
currents canceling each other out. The result is a system in which the electric current can
exist without macroscopic heat transport: the electrical current has completely decoupled
from the total momentum. However not all metals have charge conjugation symmetry.
Nevertheless, we can come up with an alternative system that includes both neutral and
positive charge carriers. If we then turn on an electric field, the positive charges will
start moving. In addition a temperature gradient is turned on, slowing down the positive
charges and accelerating the neutral carriers in such a way that the thermal transport
of the two cancel each other. We will not have macroscopic heat transport, but we will
have charge transport. From (2.1) we find that this happens if ∇T = ᾱT

κ̄
E⃗, which results

in J⃗ =
(
σ − αTᾱ

κ̄

)
E⃗ = σQ=0E⃗. Analogously, κ is the thermal transport at zero electric

current. We can come up with analogous example for thermal transport without electri-
cal currents. We should then find a heat current which slow the charged particles to a
halt, such that the resulting system has no charge transport. There is however no simple
interpretation for this in system with charge conjugation symmetry.

2.2 Drude Theory

Drude theory is a simple model to describe the conductive properties of metals, as can
be found in any undergraduate textbook on condensed matter or solid state physics (e.g.
[17]). Despite the simplifications and approximations taken by Drude theory, the model
achieves a powerful description of electron transport. The model considers momentum
carrying the electric currents. This can easily be understood from the particle viewpoint.
Take classical electrons losing momentum due to scattering, characterized by the scat-
tering time τ . The response of the electrons due to electric and magnetic fields must
also be taken into account. This yields the following effective equation for the electron
momentum:

dp

dt
= −e(E+

p×B

m
)− p

τ
, (2.4)

where p = ⟨p(t)⟩. This is the starting point of Drude theory. Consider the linear response
and substitute j = −nev = −ne p

m
, where n is the electron density. For B = 0 one simply

finds

j(ω) = σ(ω)E(ω) =
ω2
p

1
τ
− iω

E , (2.5)

12

Version of June 30, 2022– Created June 30, 2022 - 14:02



2.3 Fermi Liquid 13

where ω2
p = e2n

m
is the plasmon frequency. However we also wish to include the magnetic

field, thereby promoting σ to a matrix. Consider the case where the magnetic field is
perpendicular to the electric field. Taking the magnetic field in the z-direction, B = Bz ẑ
and the electric field in the x,y-plane, E = Exx̂+Eyŷ. By defining the cyclotron frequency
as ωc =

eBx

m
, these equations can be rewritten in the form

dPx

dt
+

1

τ
Px = eEx + ωcPy

dPy

dt
+

1

τ
Py = eEy − ωcPx .

However if we allow for a difference in the longitudinal an transversal scattering, we will
find the more general equations:

dPx,L

dt
+

1

τL
Px,L = eEx ,

dPy,L

dt
+

1

τL
Py,L = eEy ,

dPx,T

dt
+

1

τT
Px,T = ωcPy ,

dPy,T

dt
+

1

τT
Py,T = ωcPx .

where Px/y = Px/y,L + Px/y,T . Now we consider again an oscillating field E(t) = Ee−iωt,
we find for the conductivity

σxx =
ω2
p(

1
τL

− iω
)(

1 + ω2
c(

1
τT

−iω
)2

)

=
ω2
p(

1
τL

− iω
)(

1 +
(

σxy

σxx

)2) ,

σxy = σxx
ωc

1
τT

− iω
,

where we emphasize that τL and τT need not to be equal. As we can see from (2.4) and
(2.5), the particle viewpoint is not necessary, only the coupling between momentum and
electric currents matters.

2.3 Fermi Liquid

Drude theory only describes currents due to momentum relaxation in metals and does not
take into account some basic principles of quantum theory, such as the Pauli exclusion
principle. Normal metals are best described in condensed matter field theory by the Fermi
Liquid. To understand the Fermi liquid, one must start out with the Fermi gas. The Fermi
gas is a gas of non-interacting fermions in an infinite d-dimensional square well. In the
ground state of the Fermi gas, the fermions occupy all states below the Fermi energy, or
similarly all states below the momentum space Fermi surface at k = kF :

|Ψ⟩ =
kF∏
k=0

c†k |vac⟩ , (2.6)

Version of June 30, 2022– Created June 30, 2022 - 14:02
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14 Condensed Matter Physics

where c†k is of course the fermion creation operator. Since fermions obey Fermi-Dirac
statistics, one can derive the thermodynamic quantities for a large Fermi gas in thermal
equilibrium. A Fermi liquid also takes into account weak fermion-fermion interactions.
The Fermi liquid is equivalent to a Fermi gas of quasiparticles, where the quasiparticles
have effective properties (such as effective mass and effective charge) to account for the
fermion-fermion interactions. The important scale for the properties in the Fermi liquid
is the Fermi energy EF , the Fermi liquid is therefore not a quantum critical system, since
the IR of a quantum critical system has no knowledge of any scale. The scattering time of
the Fermi liquid quasi-particles is τ ≃ EF

kBT
τℏ ∼ T−2. Therefore the resistivity will scale as

ρ ∼ T 2, in the low temperature regime where particle scattering dominates. Furthermore,
the Fermi liquid has a Sommerfeld entropy S ∼ kBT

EF
.

2.4 Where Condensed Matter Field Theory Fails

Given the Hamiltonian of a system of N particles, the eigenstates will be of the form

|Ψ⟩ =
2N∑
i=0

ai |ψi⟩ , (2.7)

where the upper limit of the summation is 2N , since this is the dimension of the Hilbert
space of N qubits. We see that this is of exponential complexity. The type of problems
that one can solve within a reasonable computation time are of polynomial complexity.
The exponential complexity of (2.7) is beyond polynomial complexity, meaning that we
can typically not solve this for large N.

The reason why there is nevertheless a successful description of many condensed matter
systems, is that they are of a special type. These systems have a ground state dominated
by a classical state, which can perturbatively be dressed up by quantum entanglements:
[10, 11]

|Ψ0⟩ = A
∣∣∣ψclassical

0

〉
+
∑
i

ai |ψi⟩ . (2.8)

Here A ≫ ai and only some ai are non-zero. We refer to such wave functions as Short
Range Entanglement (SRE) tensor product states. The classical state is a simple tensor
product, for example a product of single particle states. The unentangled classical ground
state gets dressed up with entanglements in a perturbative manner. Due to the finite
overlap of the ground state with the classical state, this state stays well localized in
some degree of freedom (e.g. location or momentum) in the Hilbert state. This keeps
the perturbation theory convergent and therefore of polynomial order. Examples are the
Fermi Liquid and the BCS ground state. For the Fermi liquid, the Fermi gas (2.6) works
as an anchor, keeping the full state well localized in Hilbert space. Particles as we know
them are described as excitations of the vacuum. The vacuum is described by quantum
numbers associated with the conserved quantities of the system. A particle excitation
is just a different set of these quantum numbers, such that this state is well localized in
Hilbert space. This means that particles as we know them require the system to be of
the SRE form (2.8). For this reason we may refer to the non-SRE many body entangled
physics as unparticle physics. [18]

14
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2.4 Where Condensed Matter Field Theory Fails 15

There is yet another type of state for which condensed matter physicists have found a
successful description: stoquastic systems. Under the right conditions, the ground state of
a strongly interacting quantum critical state can be mapped onto an equivalent problem
in classical statistics. The path integral formulation of the condensed matter system
should first be wick rotated to an Euclidean path integral with imaginary time. This
path integral can then be mapped onto the partition sum of a classical system at critical
temperature. Then, using classical statistical physics, one can describe the quantum phase
transition by a classical thermal phase transition. Since the quantum problem is in such a
case equivalent to a statistical problem, the phrase ‘stoquastic’ is used, referring to both
sides of this equivalence: quantum criticality and stochastic. However, as stated, this only
works under specific conditions. Due to antisymmetrization for fermions, these conditions
are generally not satisfied. This is known as the fermion sign problem. For a review of
this problem, the reader is referred to [11] section IV.

Unless the system can be described by a SRE product state (2.8), or can be approached
with the stoquastic method, it is beyond polynomial order (it is NP-hard). We have no
understanding of how this quantum supreme matter works. One will need a quantum
computer to attack this problem. Typical condensed matter systems have a particle
number larger than the Avogadro constant ∼ 1023−24 and quantum computers with similar
numbers of qubits are necessary. The current state of the art quantum computers have
∼ 102 qubits and there are promises of ∼ 103 qubits [19]. We are still far from reaching
the quantum supremacy necessary to compute these systems of exponential complexity.
Another approach is required, and the AdS/CFT correspondence might provide us with
one.

Version of June 30, 2022– Created June 30, 2022 - 14:02
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Chapter 3
The AdS/CFT Correspondence

The AdS/CFT correspondence offers a new approach for condensed matter physics where
the conventional methods fail. Section 3.1 starts off with a short discussion of the holo-
graphic principle, which preceded the correspondence. In Section 3.2 the conformal field
theory (CFT) side of the correspondence is discussed, followed by Section 3.3 discussing
the Anti-de Sitter (AdS) space side. The mathematical machinery to connect both sides
of the correspondence is called ‘The Dictionary’ and is discussed in Section 3.4. In Sec-
tion 3.5 it is discussed how the correspondence is especially useful for strongly coupled
quantum supreme matter; exactly those systems for which conventional condensed matter
methods fail. Section 3.6 and Section 3.7 explain how the correspondence is actually a
geometrization of the renormalization group flow, and how this viewpoint enables us to
make the correspondence more general. Finally in Section 3.8 we discuss how black holes
are needed to model the duality of condensed matter systems.

3.1 The Holographic Principle

The AdS/CFT correspondence is preceded by several physical discoveries, motivating and
guiding the path towards the formulation of the correspondence. Perhaps the most famous
one is the black hole entropy. From thermodynamic considerations, one might expect that
the number of micro-states of a system is proportional to the volume of the system, and
that therefore the entropy of a black hole grows proportional to its’ volume. However
the entropy of a black hole scales proportional to its’ surface area, as was discovered and
formulated by Bekenstein and Hawking [20, 21].

Motivated by the Bekenstein-Hawking entropy and the black hole information paradox,
it was found that the maximum amount of information that can be contained in a system
is proportional to its surface area. The latter statement, formulated by ’t Hooft and
Susskind [22, 23], is referred to as the holographic principle: the physical system living
in d dimensions is encoded for by the information on its’ (d − 1)-dimensional boundary,
just like a hologram is a three-dimensional projection of information on a two-dimensional
plate.1

1The effort of the scientific community is characterized as an ongoing discussion between Leonard
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18 The AdS/CFT Correspondence

The foremost instance of the holographic principle is the AdS/CFT correspondence, dis-
covered by Maldacena in 1997 [13]. The AdS/CFT correspondence is the conjecture of
a duality between a conformal field theory (CFT) and a quantumgravitational theory in
an Anti-de Sitter (AdS) space in one dimension higher. To get an understanding of the
correspondence, we must first know what a conformal field theory and an AdS space is.
The correspondence was originally formulated from a string theory starting point. This
is referred to as the top-down approach, as opposed to the bottom-up viewpoint that we
take.

3.2 Conformal Field Theory

A conformal field theory is a field theory which enjoys conformal invariance, invariance
under conformal transformations. A conformal transformation is an angle-preserving
coordinate-transformation:

xµ → x′µ,

gρσ → g′ρσ, g′ρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= Λ(x)gµν .

This includes translations, rotations (or Lorentz transformations), dilations (scaling trans-
formations) and special conformal transformation.

The behavior of fields under conformal transformations give interesting properties, such as
the conformal dimension. This is easiest explained for scalar fields, but can be generalized
to other types of fields as well. A field is called a primary field if under a conformal
transformation z → f(z), it transforms as

ϕ(z) → ϕ′(z) =

(
∂f

∂z

)∆

ϕ(f(z)) .

It is said to have conformal dimension ∆. Another interesting property which can be
derived for conformal field theories is that the energy-momentum tensor is traceless: T µ

µ =
0.

Field theories, in d+1 dimensions, are often described by a Lagrangian. To the Lagrangian
of such a theory we can add sources J and their corresponding operators O:

L = LCFT +

ˆ
dxd+1JO .

We can now calculate the CFT partition function in terms of the generator functional for
the correlation functions as

ZCFT = eW (J) =
〈
e
´
dxd+1JO

〉
CFT

. (3.1)

This object is useful for calculating the n-points functions, which are calculated by taking
the n-th functional derivative of W (J) at zero source:

⟨ O...O︸ ︷︷ ︸
n

⟩ = δnW

δJn

∣∣∣∣
J=0

. (3.2)

Susskind and Stephen Hawking, see the popular science book [24] for an entertaining story and a popular
introduction on the topic.

18
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3.3 Anti-de Sitter Space-Time 19

(a) Circle Limit III by M.C. Escher (1959) (b) Circle Limit IV by M.C. Escher (1960)

Figure 3.1: Eschers’ Circle Limit artworks of hyperbolic planes, representing AdS space.

3.3 Anti-de Sitter Space-Time

Anti-de Sitter space-time is an exact solution to the Einstein equations for a maximally
symmetric empty universe with negative curvature. Similarly the exact solution for
positive curvature is the de Sitter space-time and the zero curvature solution is just a
Minkowski space-time. It is interesting to note cosmological observations show that our
universe has a positive curvature, however we will not use the AdS space-time as cos-
mological model, but rather as a model for the macroscopic quantum entanglement in
metals. The AdS metric is given by

ds2 =
L2

z2
(
ηµνdx

µdxν + dz2
)
, (3.3)

where ηµν is the Minkowski metric and L is the radius of the AdS space-time. Here z is
the radial coordinate such that z → 0 is at spatial infinity, also called the boundary, and
z → ∞ is at the center of space. An interesting property of AdS space is that trajectories
along null geodesics can reach the boundary in finite time. In this way, the bulk (the
centre of the AdS space and the volume around it) and boundary can ‘talk’ to each other.
See Figure 3.1 for a representation of AdS space by the artwork of M.C. Escher.

3.4 The Dictionary

The correspondence is precisely described by what we call the dictionary or the GKPW
rule [25, 26]. It states that the partition function of the CFT in d+1 dimension is equal to
the partition function of the quantum gravitational theory in d+ 2 dimensions evaluated
at the boundary (r → ∞), where the boundary field ϕ(x, r → ∞) is equal to the source
J(x):

ZCFT = Zgrav.

∣∣
ϕ(x,r→∞)=J(x)

.

We will rename J(x) → ϕ0(x), such that we can use ϕ(x, r → ∞) = ϕ0(x). The GKPW
rule can then be formulated as〈

e
´
dxd+1ϕ0(x)O(x)

〉
CFT

= eSbulk(ϕ(x,r))
∣∣∣
ϕ(x,r→∞)=ϕ0(x)

. (3.4)
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20 The AdS/CFT Correspondence

Dictionary dualities
Field Theory Gravitational System

Partition function, Zfield Partition function, Zgrav.

Stress-energy tensor, T µν Metric/graviton field, gµν
Current, Jµ Gauge field, Aµ

Scalar operator, O(x) Scalar field, ϕ(x)
Entropy, s Area of black hole horizon, A

Table 3.1: Some dictionary dualities.[27, 28]

Identifying the field operators with the bulk fields can be done by use of symmetries.
One of the characteristics of the duality is that it is a global-local duality: A global
symmetry in the field theory corresponds to a gauge symmetry in the bulk. The boundary
operator will have the same quantum number as the bulk field, for example a scalar
operator corresponds to a scalar field. Many corresponding operators and fields have
been identified, for example the metric or graviton field gµν is dual to the stress-energy
tensor T µν and the U(1) current operator Jµ is dual to Maxwell field Aµ, see also Table 3.1.
A sourced Lagrangian could look like:

L = LCFT +

ˆ
dxd+1√g

(
gµνT

µν + AµJ
µ + ...

)
.

3.5 The Duality

The power in the use of this duality, for the purposes of this thesis, lies in the fact
that the duality is a weak-strong duality. In order to use general relativity instead of a
full quantum-gravity, we need weak gravitational coupling. The gravitational coupling
constant G corresponds to the planck length G ∼ ℓp up to some constants. The Planck
length is the typical length for quantum-gravity fluctuations, and in order to avoid them
we require L ≫ ℓp. Also to get classical gravity as a limit from the proper top-down
approach from string theory, we require a purtubative string theory which is only reliable
for small string coupling L ≫ ℓs, where ℓs is the string length. The dictionary tells us
that these limits correspond to NgCFT = λ ≫ 1 and N ≫ 1, where N is the number
of degrees of freedom in the boundary and gCFT is the CFT coupling constant. λ is
called the ’t Hooft coupling and is the effective coupling constant for the large N CFT’s,
characterizing strongly interacting many body entanglement. We thus see that large ’t
Hooft coupling and the large N limit correspond to classical gravity where the quantum
effects can be neglected. There is no need to involve the whole mathematical machinery
of string theory and this makes the correspondence extremely powerful for application
in condensed matter. Where the conventional condensed matter approach fails, namely
for strong interacting many body entanglement, the gravitational theory reduces to it’s
weakest form: Einstein’s general relativity; here we see the essence of the weak-strong
duality. In this sense we will try to describe metals with strong correlations by black
holes, using classical Einstein gravity and perturbation theory.

20
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3.6 Renormalization Group (GR=RG) 21

Figure 3.2: Geometrization of the RG flow. Figure retrieved from [29].

3.6 Renormalization Group (GR=RG)

From the CFT point of view, we may ask what the physical meaning of this extra radial
dimension is. As it turns out, this extra dimensions encodes the RG flow of the system.
The renormalization of the energy scale is described by differential equations. These are
the beta functions and explain how the coupling constants tranform under scale transfor-
mations depending on the energy scale µ,

β(g, µ) = µ
∂g

∂µ
. (3.5)

One can put the space-times of the field theory at different µ next to each other in a new
dimension, which is parameterized by a coördinate r which is set equal to the energy scale
µ. The RG flow is now geometrized in this new extra dimension, see Figure 3.2. This
geometrization however depends on two factors. First of all the metric must be invariant
under conformal transformations. The second is that under scale transformations xµ →
λxµ, the energy must scale as r → 1

λ
r. This results is the AdS metric:

ds2 =
r2

L2
ηµνdx

µdxν +
L2

r2
dr2 , (3.6)

where r is the radial direction, xµ the space-time directions orthogonal to r and L is the
AdS radius. The boundary lies at r → ∞, and is referred to as the UV, while r → 0
is referred to as the IR. In other words, the deep interior of the AdS space encodes the
macroscopic scales of the field theory. A reparametrization z = L2

r
gives us

ds2 =
L2

z2
(
ηµνdx

µdxν + dz2
)
, (3.7)

where now z → 0 denotes the boundary and the UV, while z → ∞ is the IR. This
is exactly (3.3). We thus see that general relativity (GR) is a geometrization of the
renormalization group (RG) flow, which can be summarized in the “equation”: GR=RG
(note that in the rest of this thesis GR will be the abbreviation for ‘Gubser-Rocha’).

The concept of the RG flow is that physical systems depend locally on the energy scale µ.
By course graining, we integrate out the high energy UV physics, which is irrelevant at
the IR low energies. As can be seen from (3.5), a fixed point in the RG flow corresponds
to β(g, µ) = 0. At a fixed point, the system does not depend on the energy scale anymore
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22 The AdS/CFT Correspondence

and scale invariance is implied. By introducing operators in our theory, we can deform
the scale (or conformal) invariance and thereby alter the RG flow. Depending on the
conformal dimension ∆, the RG flow might flow away from a UV fixed point towards a
IR fixed point, meaning that the IR is independent of the UV. This independence of the
high energy details can then be recognized as universality.

3.7 Gauge/Gravity duality

Although CFT’s are powerful to describe systems with scale invariance, for application
in condensed matter one requires finite temperature and finite density, which introduce
energy scales, breaking the conformal symmetry. With the intuition of the geometrization
of the RG flow, we can understand that by altering the boundary we get a different RG flow
resulting in a different the bulk geometry. This generalization of the correspondence can
be called the Gauge/Gravity duality. We can still use the dictionary since the gravitational
problem only needs to be asymptotically AdS in the boundary/UV. For this reason we
can have a more general gravitational system than pure AdS, for example black holes
in an AdS background. Adding a black hole in the AdS bulk gives rise to a black hole
temperature and entropy, which dualizes to finite temperature in the boundary. Following
the duality between the 4-current in the boundary and the Maxwell field in the bulk, we
find that by giving the black hole a charge, we get a finite density system in the boundary.

3.8 Black Holes

So the idea is to put a charged black hole in the bulk, such that the boundary field
theory describes finite density and finite temperature. A solution to the Einstein-Maxwell
equation is the Reissner-Nordström (RN) black hole. It has a finite mass, finite charge and
has two horizons. This black hole can achieve both finite temperature and finite density.
In an extremal RN black hole the two horizons coincide and the surface gravity vanishes.
The result is that the horizon with a finite area has no Hawking radiation and therefore
no temperature. This black hole describes a metal with zero temperature entropy, which
is thermodynamically not allowed. This can be solved by adding a dilaton field, these
types of fields are very common in string theory. From the top-down approach of string
theory one never acquires a RN black hole in 3 + 1 space-time dimensions. String theory
is formulated in more space-time dimensions and one has to ‘roll up’ or compactify those
extra dimensions. The result of the compactification is that there is an additional dilaton
field. In the resulting Einstein-Maxwell-Dilaton (EMD) theory, the zero temperature
entropy is avoided. This will be the theory used in this thesis. The EMD background
black hole solution, provided by Gubser and Rocha [30] will be used (see Section 5.1.2).

22
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Chapter 4
Condensed Matter Theory for Holographic
Strange Metals

This chapter aims to provide a better understanding of the strange metal and how hologra-
phy will offer a better understanding of these metals. Section 4.1 discusses local quantum
criticality in strange metals. It discusses a general metric useful to describe a general
class of metals including the quantum critical ones. To be able to talk about transport
properties, one needs a mechanism to dissipate momentum. Section 4.2 explains how a
lattice will do this. Then Section 4.3 and Section 4.4 discuss some important properties
that govern the holographic metals and account for the behavior in quantum supreme
matter. In Section 4.5 it is explained that these results are only valid within a certain
regime and that the transport properties scale differently outside this regime. Limits on
these holographic properties may cause a saturation in the length over which the momen-
tum can dissipate as discussed in Section 4.6. The chapter is concluded with Section 4.7
providing equations for the transport coefficients.

4.1 Local Quantum Criticality

In statistical physics, we can describe the transition between two phases of a system with
a phase transition. The transition is controlled by some parameter, for example the tem-
perature. Below some critical temperature TC the system is in an ordered state, while
above TC the system is in the disordered state. Thermodynamic properties in continuous
phase transitions turn out to be described by power-laws, characterized by critical expo-
nents. From renormalization group theory, one finds that the phase transition typically
does not depend on UV properties, but on properties such as dimension and symmetry.
As a result, the critical exponents will be the same for a range of systems with different
microscopic physics, but with same dimension and symmetries. We say that the critical
exponents are universal. The phenomenon of universality is that certain parameters can
be the same for many different physical systems, independent of their microscopic prop-
erties. This independence of the UV can be recognized when looking at the correlation
length. The power-law of the correlation length shows divergence at the critical point, in-
troducing scale invariance and independence of microscopic details. Other than a thermal
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phase transition, one can also have Quantum phase transitions. These happen at zero
temperature, since only at extremely low temperature the quantum fluctuations will take
over from the thermal fluctuations controlling the transition. The control parameter will
then often be the magnetic field, pressure or even doping. The peculiarity of the quantum
critical point is that the physics of the system knows about the quantum critical point,
also further away from the quantum critical point. The result is the famous quantum
critical wedge, for which we refer back to Figure 1.2. At the quantum critical point one
typically not only has scale- but even conformal invariance. Metals may experience a con-
tinuous quantum phase transition to a phase of non-Fermi liquid behavior: the strange
metal phase. Due to the conformal symmetry of the quantum critical point, CFT’s are
an excellent way to describe these systems. This way the AdS/CFT correspondence may
help us to learn about the strange metal phase.

Taking a look back at the stoquastic approach, one used the Euclidean signature where
space and time are on the same footing. Here we had the AdSd+2 metric (3.6)

ds2 = −r2dt2 + r2
d∑

i=1

dx2i +
dr2

r2
, (4.1)

where we chose L = 1. This has Lorentzian scaling

t→ λt , xi → λxi , r → λ−1r , ds→ ds . (4.2)

However with the stoquastic approach one can get an action in which the time direction
is not equivalent to a space direction. This is captured by including the dynamical scaling
exponent z:

ds2 = −r2zdt2 + r2
d∑

i=1

dx2i +
dr2

r2
, (4.3)

which results in Lifshitz scaling

t→ λzt , xi → λxi , r → λ−1r , ds→ ds , (4.4)

where we see how time scales with respect to space. For z = 1 one recovers the isotropic
Euclidean space-time, corresponding to Lorentz invariance. However for other values of
z, one gets z time dimensions in their Euclidean space-time. for z → ∞ space does not
scale, only time does. Therefore we refer to this as local quantum criticality [11]. In
the cuprate strange metals, quantum criticality and thus z → ∞ is realized [31, 32]. We
can also violate the scale invariance of the metric by including the hyperscaling violation
exponent θ [33, 34]. The background metric will look like

ds2 = r−2 θ
d

−r2zdt2 + r2
d∑

i=1

dx2i +
dr2

r2

 , (4.5)

where the scaling is now of the form

t→ λzt , xi → λxi , r → λ−1r , ds→ λ
θ
dds . (4.6)

24
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4.2 Breaking Translation Invariance 25

For θ = 0 hyperscaling is recovered. Only for z = 1, θ = 0 relativistic conformal invariance
is restored. Of course as we alter the bulk geometry, the physics in the boundary should
be altered accordingly. We now find that the entropy scales with the temperature as [35]

s ∼ T
d−θ
z . (4.7)

The hyperscaling exponent θ turns out to describe the number of relevant thermodynamic
degrees of freedom [11]. For the z = 1 Fermi-liquid this is equal to the dimensionality of
the Fermi surface in momentum space which is θ = d−1. We therefore recover the typical
Sommerfeld entropy s ∼ T for the Fermi liquid. The strange metal is also observed to
have a Sommerfeld entropy, but local quantum critical systems have z → ∞ which seems
to imply a zero temperature entropy, which we know exists in the RN holographic metal.
However the proper string theoretical computation of the EMD theory [30] will provide
us with z → ∞, θ → −∞, such that η = −θ

z
= 1, resulting in s ∼ T . This means that the

strange metal cannot be described by a θ = d− 1 dimensional Fermi surface.

4.2 Breaking Translation Invariance

In the homogeneous background, the system enjoys translation invariance. Translation
invariance implies conservation of momentum. As discussed in Chapter 2, in order to
describe physical metals, we wish to dissipate momentum. The starting point of many
descriptions of metals is the crystal structure of the system. A crystal structure results
in umklapp scattering. In umklapp scattering, only crystal momentum is conserved. The
consequence is the Brillouin zones in phase space. Due to the periodicity of the crystal,
all momentum wavevectors outside the first Brillouin zone can equivalently be described
by a wavevector inside the first Brillouin zone. In the spectrum for the one-dimensional
lattice, this can be seen as the dispersion folding into the first Brillouin zone, this can
be seen as a turning over (‘umklapp’) of the dispersion at the boundary of the Brillouin
zone. The system can now dissipate momentum via this umklapp mechanism. This is the
way we will also break translation invariance in the holographic setup. We will explicitly
introduce a periodic potential in the boundary, see Section 5.2. In the unparticle system
there are no quasiparticle decay rates, only the momentum decay. Therefore the resistivity
of the metal is governed by the momentum dissipation due to the lattice.

4.3 Planckian Dissipation and Minimal Viscosity

Measurements have shown that the relaxation times in strange metals is of the order of
the Planckian time τk ∼ τℏ = ℏ

kBT
. This time is the most fundamental time associated

with temperature one can come up with in physics from just dimensional analysis. The
dissipation set by this timescale is ‘Planckian dissipation’ [36]. It is the fastest rate
at which momentum can dissipate and entropy can be produced. This is a result of
the eigenstate thermalization hypothesis, which explains why quantum systems may be
described by stochastics. For an N particle system, unitary time evolution keeps track
of 2N bits. No entropy is produced during the unitary time evolution, but by making
observations, the wave function collapses, information is lost and entropy is produced.
From our classical observational viewpoint we can only observe N bits, and if the time
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evolution is sufficiently long we will always observe an equilibrium state with an associated
temperature T . The more entangled the system is, the more entropy will be produced
upon collapsing the wave function. From the stoquastic approach this is easily understood.
For the scale invariant quantum critical system, the Euclidean time is a circle with radius
ℏ

kBT
. This is the only scale in the otherwise scale invariant system, which becomes the

dissipation time scale when we go back to Lorentzian time. We can compare this with
the Fermi Liquid where there is another time scale: the Fermi energy. The momentum
relaxation time is set by the collision time which is the Planckian time altered by a
factor associated with the Fermi energy scale τc ∼ EF

kBT
τℏ. The Planckian time scale is

conjectured to be the shortest time for momentum relaxation [36], and we expect that
this minimum is reached only for very strongly interacting metals.

Finite temperature holography tells us that the CFT side is described by relativistic
hydrodynamics, where dissipation is governed by the shear viscosity [37]. The viscosity
turns out to be proportional to the area of the Schwarzschild black hole, which also sets
the entropy. The result is a very small viscosity given by

η

s
=

1

4π

ℏ
kB

. (4.8)

This is believed to be a lower bound on the viscosity, also for systems that do not have a
gravitational dual [38]. The minimal viscosity can actually be regarded as a manifestation
of the Planckian dissipation. We will approach this with dimensional analysis. The
hydrodynamic viscosity is given by the free energy f and momentum relaxation time:
η ∼ fτK . Due to the absence of energy scale, the scale invariant system has a free energy
set by the entropy f = sT . Now the Planckian dissipation kicks in, the momentum
relaxation is set by the only relaxation time in the system τK = τℏ. Plugging everything
in we find the minimal viscosity η ∼ sTτℏ = s ℏ

kB
. The minimal viscosity is found to be

obeyed in the quark-gluon plasma [39].

4.4 Linear in T Resistivity.

Due to the unparticle physics, we must work with the collective physical transport prop-
erties instead of those of individual quasiparticles. Therefore we will consider the total
current and total momentum. Note that Drude theory, although easily explained in the
context of particles, does not require particles. Only a way of momentum dissipation is
necessary and Drude theory can still be applied.

Strange metals have been experimentally observed to have a linear in temperature re-
sistivity [40]. An explanation was discovered by Davison, Schalm and Zaanen [41]. An
universal mechanism is shown to result in a linear resistivity, for systems that can be
described by hydrodynamics in the IR and that have a minimal viscosity, which are the
properties of our strange metal description. They show that the resistivity will have a
viscous contribution which is proportional to the entropy. The formal discovery comes
from memory matrix calculations, of which the details will remain outside of the scope
of this thesis. But arguments can be made with some simple physical reasoning [18]. We
depart from a hydrodynamical fluid with minimal viscosity and local quantum criticality.
In a system with broken translation invariance, the momentum dissipation rate Γ = τ−1

K

26
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4.5 Outside the Hydrodynamical Regime 27

is characterized by a diffusivity constant and the length scale of the broken translation
invariance ℓη characterizing the shear drag length as

Γ =
D
ℓ2η
. (4.9)

In a relativistic hydrodynamical fluid, the diffusion constant is D = η
E+P , where η is

the viscosity and E and P are the energy and pressure. For a non-relativistic fluid this
becomes η

mn
, where m is the electron mass and n the number density. Now since our

system is strongly interacting, it has a minimal viscosity (4.8). Using η
s
= Aη

ℏ
kB

to allow
for slightly different proportionality factors (still of order unity) this results in

Γ =
ℏ
kB

Aη s

(E + P)ℓ2η
, (4.10)

where we now see that the momentum relaxation rate is proportional to the entropy.
Drude theory tells us that the DC resistivity is given by (2.5),

ρ =
1

ω2
p

Γ . (4.11)

At low temperatures ωp should be independent of temperature. The whole temperature
dependence of the resistivity is therefore set by the temperature dependence of momentum
relaxation rate. We can thus conclude that the resistivity should be proportional to the
entropy. So therefore, in system with Sommerfeld entropy S ∼ T , the resistivity is indeed
proportional to the temperature.

4.5 Outside the Hydrodynamical Regime

Hydrodynamics is the effective description of a system at long times and distances, where
the dynamics are dominated by the long-lived modes and one can ignore the microscopic
details. In the previous sections we used the hydrodynamic description of our metal, but
this does not hold when we go to smaller length scales. The difference between these
regimes has been studied by Iqbal, Liu and Mezei [42]. They show that for length scales
larger than a correlation length ξµ = π√

2
µ−1, the correlations decay exponential. The

results of this is that the system consists of patches of the size of the correlation length
which are only weakly correlated. These patches do not have causal contact in the bulk,
resulting in uncorrelated domains in the boundary. From a macroscopic view we can then
apply hydrodynamics. However, within such a domain the correlations are governed by
power-laws.

The scaling of the conductivity in the holographic metal in this regime can be described.
For the RN metal this was done by Hartnoll and Hofman [43]. However Anantua et al.
[44] consider a more general case for 0 < η < 2, where η is a scaling exponent defined
by s ∝ T η (for RN η = 0 due to the zero temperature entropy and η = 1 for the EMD
metal). The longitudal conductivity of the system is expressed in terms of the retarded
Green’s funcion of the charge,

σ(k) = lim
ω→0

ImGR
JtJt(ω, k)

ω
. (4.12)
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Doing the calculations, Anantua et al. show that for the longitudonal conductivity and
weak lattices one gets

σ ∝ T 2ν−1 ,

ν =
1 + η

2
√
2 + η

√
10 + η + 4(2 + η) (k)2 − 8

√
1 + (2 + η) (k)2 .

(4.13)

This scaling of the conductivity outside the hydrodynamic regime can be checked. This
means that outside the hydro regime ℓη < ξ = π√

2
µ−1 or G >

√
2

π
µ, (4.13) can be fit to

the data of weak lattices.

4.6 Shear Length

The correlation length can be regarded as the shortest length over which the metal expe-
riences shear drag. On smaller scales a different regime is entered, where there is no shear
drag. By making the influence of the lattice stronger, one would expect the length scale
of the shear drag to reach this minimum. putting ℓη = ξµ. From (4.10) and (4.11), we
can conclude that this bounds the resistivity. Increasing the strength of the lattice one
could expect a saturation for the resistivity.

4.7 Transport Coefficients

Using relativistic hydrodynamics and the memory matrix formalism, one can find expres-
sions for the optical conductivities [45, 46]

σ =
n2

E + P
1

Γ− iω
+ σQ ,

α =
ns

E + P
1

Γ− iω
+ αQ ,

κ̄

T
=

s2

E + P
1

Γ− iω
+
κ̄Q
T
,

(4.14)

where all the first terms are of the Drude form, arising from momentum relaxation. Note
that these all differ by the ratio of charge density over entropy density like σDrude =
n
s
αDrude = n2

s2
κ̄Drude

T
. The second terms will be referred to as the incoherent conductivi-

ties1, accounting for charge transport which is decoupled from the total momentum. For
Galilean invariance, it can be shown that σQ = αQ = κ̄Q = 0. However for the relativistic
case, the incoherent contributions can be finite. When translation symmetry is broken,
heat and charge transport may couple and the incoherent contributions will be related as

σ =
n2

E + P
1

Γ− iω
+ σQ ,

α =
ns

E + P
1

Γ− iω
− µ

T
σQ ,

κ̄

T
=

s2

E + P
1

Γ− iω
+
µ2

T 2
σQ .

(4.15)

1As one might not associate coherence with transport properties, this naming is not the most intuitive.
However it comes for the fact that for particles an experimentalist will find coherent excitation in their
spectrum.
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However Davison and Goutéraux [47] tell us that that calculation was incomplete, and
that the proper equations should be

σ =

n2

ϵ+p
+ Γ

(
1− σQ + λµ2

)
+O

(
Γ2, ωΓ, ω2

)
Γ− iω

+ σQ +O(ω,Γ) ,

α =

ns
ϵ+p

+ Γ
(
µ
T
σQ + 4πnλ

)
+O

(
Γ2, ωΓ, ω2

)
Γ− iω

− µ

T
σQ +O(ω,Γ) ,

κ̄

T
=

s2

ϵ+p
+ Γ

(
− µ2

T 2σQ + 4πsλ
)
+O

(
Γ2, ωΓ, ω2

)
Γ− iω

+
µ2

T 2
σQ +O(ω,Γ) ,

(4.16)

where λ is a function depending only of T and µ. To first order in Γ and ω the DC
incoherent contributions cannot be distinguished from the coherent part.
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Chapter 5
The Setup

In this chapter we will first explain the black holes used for the computation in Section 5.1.
Next in Section 5.2 we will explain how an explicit lattice is introduced to break translation
symmetry and allow for momentum dissipation. Finally in Section 5.3 we shortly discuss
the numerical computations.

5.1 Black Holes in AdS space

5.1.1 Reissner-Nordström Black Hole

Condsider the AdS Einstein-Maxwell action:

S =

ˆ
dxd+1

√
−g
(
R− 2Λ− 1

4
FµνF

µν

)
(5.1)

where 2Λ = − (d−1)(d)
L2 . We chose units such that c = e = 1 and 16πG = 1.

Consider the Einstein-Maxwell field equations

∇µF
µν = 0

Rµν −
1

2
Rgµν + Λgµν =

1

2
Tµν ,

Tµν = FµρFν
ρ − 1

4
gµνFρσF

ρσ .

(5.2)

A static solution to the Einstein-Maxwell equations is the Reissner-Nordström metric:

ds2 = − r2

L2

(
−f(r)dt2 + dx2

)
+
L2

r2
dr2

f(r)
=
L2

z2

(
−f̃(z)dt2 + dz2

f̃(z)
+ dx2

)
,

f(r) = 1 +
Q2

r2(d−1)
− M

rd
, f̃(z) = f(r = L2/z) ,

At(r) = µ(1− rd−2
0

rd−2
) = µ(1− zd−2

zd−2
0

) ,

(5.3)

whereM , Q are (proportional to) the total mass and total charge of the black hole and r0,
z0 is the position of the outer horizon. These black holes have two horizons and by looking
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at the Penrose diagrams we can connect infinitely many maximally extended RN metrics.
For the case that the horizons ”overlap” we speak of an extremal RN black hole. However
as noted in Section 3.8, the RN black hole gives a zero temperature entropy, so cannot
give an accurate description of a real physical system and is only phenomenological. The
holographic metal of the RN black hole is discussed in the theses [14, 15]. We will use
some data of this black hole as comparison to our Gubser-Rocha metal.

5.1.2 Gubser-Rocha Black Hole

As discussed, from string theory one always end up with a dilaton field after compatifying
the ‘extra’ dimensions, which will fix the zero temperature entropy problem. Starting
out with Einstein-Maxwell-Dilaton theory (EMD), we will consider the following action:
[30, 48]

SEMD =
1

2κ2

ˆ
d2
√
−g

(
R− eϕ

4
FµνF

µν − 3

2

(
∂µϕ
)2

+ V (ϕ)

)
, (5.4)

where V (ϕ) = 6
L2 coshϕ and we will set 2κ2 = L2 = 1. An analytical solution to the

resulting equations is

ds2 =
L2

z2

(
−f(z)dt2 + dz2

f(z)
+ g(z)

(
dx2 + dy2

))
,

At(z) = L
√

3Q(1− z)

√
1 +Q

1 +Qz
,

ϕ(z) =
1

2
ln(1 +Qz) ,

f(z) = (1− z)
p(z)

g(z)
, g(z) = (1 +Qz)3/2 ,

p(z) = 1 + (1 + 3Q)z + (1 + 3Q(1 +Q))z2 .

(5.5)

Where z is the same radial coordinate as used before. The horizon is located at z = 0
and due to choice of constants, the black hole horizon is now located at z = 1. We will
refer to this black hole as the Gubser-Rocha (GR) black hole. This is the black hole that
will be used to produce our data.

5.2 Breaking Translations

Momentum conservation is associated with translation symmetry. To introduce momen-
tum relaxation explicitly, we need to break translation invariance. Just like in real metal
the translation symmetry is broken by a lattice, we will introduce a periodic ionic lattice
potential in the boundary

At(z = 0) = µ̄
(
1 + A1 cos (Gxx) + A2 cos (Gyy)

)
(5.6)

The resulting equations of motions will be complicated non-linear PDE’s. To solve these,
computational power is needed.

32
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5.3 Computation

The computations are made by a numerical code written by F. Balm [49]. Large com-
putational power is needed, so the code is run on supercomputers. The supercomputer
ALICE in Leiden and Snellius in Amsterdam have been used to perform the numerics.
The code makes use of finite difference methods to solve the differential equations. For the
RN geometry, an equidistant spacing in the radial direction was used. However this same
spacing did not perform well for the more complicated GR geometry resulting in numer-
ical issues. To solve this a Chebyshev spacing was used. This has a more dense spacing
near the horizon and the boundary and a less dense spacing in between. This should
give better results since the numerical accuracy failed near the horizon and the boundary.
Needing even more accuracy to get physical acceptable thermodynamic quantities, the
density of the Chebyshev spacing was cubed, making the spacing near the horizon and
boundary even more dense.
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Chapter 6
Results

For the presented results, natural units are chosen and all quantities are presented in
dimensionless units. The temperature is in units of µ, the entropy and the density are in
units of µ2, while the energy and pressure are in units of µ3.

First in Section 6.1 the underlying thermodynamics will be presented. In Section 6.2
the linear in T resistivity is presented along with all the thermo-electric conductivities.
Section 6.3 shows the crossover from the hydro regime to the power-law scaling regime,
and also fits the scaling of the electric conductivity.

6.1 Thermodynamics

The thermodynamic quantities can be calculated from the bulk and some are presented
in Figure 6.1. Firstly we notice that the ratio of energy over pressure is E

P = 2 for all
lattice strengths. Since the pressure in the x and y direction are the same Px = Py = P ,
this means that the trace of the stress energy tensor indeed vanishes. This should hold
for conformal invariance. We see that this also holds when the translations are broken
by a lattice. Next we notice that the first law of thermodynamics seems to hold for weak
lattices. The first law of thermodynamics is given by

E + P = Ts+ µn , (6.1)

is obeyed as the homogeneous limit is approached. In the figure, the ratio of the r.h.s and
the l.h.s of (6.1) is plotted, which approaches unity for weaker lattices. However one might
expect a larger deviation based on recent research, see Chapter 7 for a discussion. The
figure also clearly shows a Sommerfeld entropy s ∼ T . And finally the ratio s

n
is included,

since this is the proportionality factor relating the different Drude conductivities.

6.2 Transport

In the boundary the conductivities have been computed and the results are presented in
Figure 6.2 and Figure 6.3. In Figure 6.2 one can observe the famous linear in temperature
resistivity. In Figure 6.3 we see how the different conductivities scale with temperature.
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Figure 6.1: Results of the thermodynamics of the Gubser-Rocha metal. See Section 6.1.
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Figure 6.2: The Gubser-Rocha metal reproduces the famous linear in temperature resistivity.

The left column is the Gubser-Rocha metal, while the right column is the Reissner-
Nordström metal, which is included for comparison. Due to the linear in T resistivity, the
electric conductivity is plotted as σT for Gubser-Rocha, while for RN just as σ due to the
zero-temperature entropy. Since s is linear in T for GR and all Drude conductivities differ
a factor s

n
which is also linear in T as seen in Figure 6.1, we multiple each lower panel

the conductivity with an extra factor 1
T
for visualization of the scaling behavior. For RN

there is of course the zero-temperature entropy, so this column does not get additional
temperature dependent factors. Furthermore, as the lattice strength A increases, the
conductivities seem to saturate. From these conductivities, one can calculate σQ=0 and κ
by (2.2) and (2.3). This transport coefficients characterizing the transport for decoupled
heat and momentum are depicted in figure Figure 6.4.In the homogeneous case these are
very small, but for increasing lattice strength they reach significant values, which can be
seen when comparing their values to Figure 6.3.

6.3 Outside the Hydrodynamic Regime

As discussed in Section 4.5, the resistivity has different scaling regimes depending on the
lattice vector G. To visualize this, the a log-log plot of the resistivity against temperature
is shown in Figure 6.5 for different values of G. For small G or large distances we are
still in the hydro regime. While the G = 0.4µ data seems to be in the hydro regime,
the G = 0.6 clearly shows power-law behavior. However the strong lattice (A=4) loses
this power-law behavior. This is consistent with the prediction from Section 4.5 that for
G >

√
2

π
µ ≈ 0.45µ the resistivity scales as power-laws for weak lattice strength. The

power-law scaling according to (4.13) is fitted in Figure 6.6. The blue dashed line is
the prediction by (4.13), while the red dots are the fitted data point. A good match is
observed for weak lattices.
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Figure 6.3: The scaling in T/µ of the different thermo and electric conductivities. Left is for
the Gubser-Rocha (GR) metal and for comparison the Reissner-Nordström (RN) metal data is
included on the right.
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Figure 6.4: σQ=0 and κ calculated according to (2.2) and (2.3), from the other conductivities.
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Figure 6.5: The resistivity scaling of the GR metal (left) and RN metal (right) for different
values of G. For the weak lattices we see the power-law scaling regime kicking in between
G = 0.4µ and G = 0.6µ.

Figure 6.6: Fitting of (4.13) (blue) to the data (red) for different lattice strengths.
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Chapter 7
Discussion

7.1 Discussion

The first law of thermodynamics E +P = Ts+µn seems to be satisfied for weak lattices,
but starts to deviate for larger lattice strengths. The RN results by S. Arend and M. Janse
have a similar result to this [14]. Since they see less deviation for vanishing temperature,
they suggest that the deviation could be caused by the Ts term, which might need cor-
rections due to the pathological entropy. We however do not have this pathology and the
large deviation and should not necessarily be related to the temperature-entropy term.
Furthermore recent research [50] suggests that the inclusion of a dilation field should add
an additional term to the first law of thermodynamics. One might expect a larger devi-
ation from unity E+P

Ts+µn
then we see in Figure 6.1. This is however still being researched

and depends a lot on the form of the dilaton field.

We have shown that Gubser-Rocha metal with an explicit umklapp potential, experience
a resistivity linear in temperature in the hydrodynamic regime. This is consistent with
the predictions based on hydrodynamic arguments and suggests that this metal could be
a good model for the strange metal which experiences the same temperature scaling of
the resistivity.

If we would assume the different conductivities to be perfectly of the Drude form, the
should only differ by factor n

s
like σDrude = n

s
αDrude = n2

s2
κ̄Drude

T
. Since the entropy is

linear in temperature and the thermodynamics show that s
n
∼ T , the Drude conductivities

should all differ by factors of T . Since we expect the resistivity to be linear in T , we plotted
σT to see constant lines. If all the conductivities are dominated by Drude, this should
mean that α and 1

T
κ̄
T
should also be constant in temperature. Figure 6.3 confirms this

and this would suggest that the conductivities are dominated by Drude. However as can
be found in the thesis of O. Moors[51], a consistent Drude fit has not been found.

We then note from Figure 6.4 that σQ=0 actually changes a lot when varying A. Meanwhile
κ stays of the same order. We also see that for large A the conductivities are dominated
by the contributions from σQ=0 and κ, while in the almost homogeneous case they are
neglectable. We are still trying to understand the meaning of these two quantities and in
general the incoherent contributions, but we might be on our way. Recently J. Zaanen
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made a claim on universality governing the diffusivity. If thermal diffusivity of quantum
supreme matter is caused by quantum chaos and set by the butterfly velocity, this also
predicts a scaling for κ in temperature. By the Einstein relations, the thermal diffusivity
and κ are related by the specific heat, which when computed results in the scaling κ ∼
T 2. The the momentum diffusivity in quantum supreme matter is set by the minimal
viscosity. Both diffusivities scale the same and the claim is that there is just one universal
diffusivity, governing both thermal and momentum diffusivity. This then results in an
explicit expression for the butterfly velocity and for the thermal conductivity κ. It explains
why κ is very small at low temperatures for the homogeneous GR case. Next one could
relate all incoherent contributions conductivities to this κ, explaining why also these are
small at low temperatures and weak lattices. This is however still a topic of being explored
by the Leiden Quantum Matter Theory Group.

Furthermore the data showed a confirmation of the hydrodynamic regime for G < ξ−1
η .

This makes all the data of the conductivities used for confirmation of the linear in temper-
ature resistivity and the shear length saturation accountable, since that data was retrieved
at G = 0.2µ, clearly in the hydrodynamic regime. Outside the hydrodynamic regime, we
found a confirmation of the power-law regime described by (4.13) for G > ξ−1

η . Mean-
while Figure 6.3 shows a saturation in the conductivities for increasing lattice strength.
Combining these results we find an agreement with the limit of the shear length to the
correlation length for DC transport. This was also found to be true for the RN metal as
found by S. Arend and M. Janse [14, 15]. However, still unpublished results of the optical
conductivities show that this is not yet the full story.

7.2 Beyond This Thesis

As mentioned before, an elaborate analysis of fitting Drude theory to the data of the GR
metal can be found in the thesis of O. Moors [51]. S. Arend and M. Janse looked at DC
transport in the RN metal [14, 15]. They also looked at the dependence of the magnetic
field, which gave rise to transversal conductivities. Including a magnetic field to the GR
metal would be an interesting point of research, which could immediately be compared
to the results from the RN metal.

Another important topic of research is the AC transport. This is currently being inves-
tigated in the Quantum Matter Theory Group in Leiden. Specifically as start has been
made on AC transport with magnetic field in the RN metal by O. Moors [51]. The optical
conductivities for both the RN metal and GR metal at low temperatures is being looked
at by the rest of the research group. This is a rich regime. It is modeled for both an
explicit lattice, like we do, and for weakly broken translation invariance in a perturba-
tive manner. Specifically the optical conductivities of the GR metal with weakly broken
translation symmetry can be found in the thesis of J. Aretz [52].

Furthermore, the influence of the dilaton field to the thermodynamics should be better
understood and also how the lattice affects the thermodynamics. As the current under-
standing of the addition of the dilaton field is developing, data produced by our group can
be used to falsify the developments. The Gubser-Rocha solution for an EMD background
does make constraints on the dilation parameterized by a scalar. Ideally one would want
to do computations for a more general solution, but this might not exist in an analytical
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form. One could then also generate data for other values of z and θ. Such a setup, if
found, would likely be more computationally demanding and the numerical limits will
need to be pushed even more.

One of the goals of the research group is to bring all this theory one day to the lab.
Hopefully the understanding gathered by the efforts of the group will be experimentally
testable on strange metals in the near future.
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[34] B. Goutéraux and E. Kiritsis, Generalized holographic quantum criticality at finite
density, Journal of High Energy Physics 36 1 (2011) [arXiv:1107.2116]. ↑§4.1

[35] L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states
of gauge-gravity duality, Physical Review B 85 035121 (2012) [arXiv:1112.0573].
↑§4.1

[36] J. Zaanen, Why the temperature is high, Nature 430 512 (2004). ↑§4.3

[37] G. Policastro, D.T. Son and A.O. Starinets, Shear Viscosity of Strongly Coupled
N=4 Supersymmetric Yang-Mills Plasma, Physical Review Letters 87 081601
(2001) [arXiv:hep-th/0104066]. ↑§4.3

[38] P.K. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting
quantum field theories from black hole physics, Physical Review Letters 94 111601
(2005) [arXiv:hep-th/0405231]. ↑§4.3

[39] W. Busza, K. Rajagopal and W. van der Schee, Heavy Ion Collisions: The Big
Picture and the Big Questions, Annual Review of Nuclear and Particle Science 68
339 (2018) [arXiv:1802.04801]. ↑§4.3

[40] S. Martin, A.T. Fiory, R.M. Fleming, L.F. Schneemeyer and J.V. Waszczak,
Normal-state transport properties of Bi2+xSr2-yCuO6+δ crystals, Physical Review
B 41 846 (1990). ↑§4.4

[41] R.A. Davison, K. Schalm and J. Zaanen, Holographic duality and the resistivity of
strange metals, Physical Review B 89 245116 (2014) [arXiv:1311.2451]. ↑§4.4

[42] N. Iqbal, H. Liu and M. Mezei, Semi-local quantum liquids, Journal of High Energy
Physics 2012 86 (2012) [arXiv:1105.4621]. ↑§4.5

[43] S.A. Hartnoll and D.M. Hofman, Locally Critical Resistivities from Umklapp
Scattering, Physical Review Letters 108 241601 (2012) [arXiv:1201.3917]. ↑§4.5

Version of June 30, 2022– Created June 30, 2022 - 14:02

49

https://doi.org/10.1155/2010/723105
https://doi.org/10.1155/2010/723105
https://arxiv.org/abs/0909.0518
https://doi.org/10.1103/PhysRevD.81.046001
https://arxiv.org/abs/0911.2898
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1073/PNAS.1721495115
https://doi.org/10.1073/PNAS.1721495115
https://doi.org/10.1007/JHEP11(2010)151
https://doi.org/10.1007/JHEP11(2010)151
https://arxiv.org/abs/1005.4690
https://doi.org/10.1007/JHEP12(2011)036
https://arxiv.org/abs/1107.2116
https://doi.org/10.1103/PhysRevB.85.035121
https://arxiv.org/abs/1112.0573
https://doi.org/10.1038/430512a
https://doi.org/10.1103/PhysRevLett.87.081601
https://doi.org/10.1103/PhysRevLett.87.081601
https://arxiv.org/abs/hep-th/0104066
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevLett.94.111601
https://arxiv.org/abs/hep-th/0405231
https://doi.org/10.1146/ANNUREV-NUCL-101917-020852
https://doi.org/10.1146/ANNUREV-NUCL-101917-020852
https://arxiv.org/abs/1802.04801
https://doi.org/10.1103/PhysRevB.41.846
https://doi.org/10.1103/PhysRevB.41.846
https://doi.org/10.1103/PhysRevB.89.245116
https://arxiv.org/abs/1311.2451
https://doi.org/10.1007/JHEP04(2012)086
https://doi.org/10.1007/JHEP04(2012)086
https://arxiv.org/abs/1105.4621
https://doi.org/10.1103/PhysRevLett.108.241601
https://arxiv.org/abs/1201.3917


50 BIBLIOGRAPHY

[44] R.J. Anantua, S.A. Hartnoll, V.L. Martin and D.M. Ramirez, The Pauli exclusion
principle at strong coupling: holographic matter and momentum space, Journal of
High Energy Physics 104 (2013) [arXiv:1210.1590]. ↑§4.5

[45] S.A. Hartnoll, P.K. Kovtun, M. Müller and S. Sachdev, Theory of the Nernst effect
near quantum phase transitions in condensed matter and in dyonic black holes,
Physical Review B 76 144502 (2007) [arXiv:0706.3215]. ↑§4.7

[46] S. Hartnoll, A. Lucas and S. Sachdev, Holographic Quantum Matter, The MIT
Press, Cambridge (3, 2018), [arXiv:1612.07324]. ↑§4.7
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