
Machine learning-based noise reduction for quantifying current
fluctuations
Steenbergen, Jasper

Citation
Steenbergen, J. (2022). Machine learning-based noise reduction for quantifying current
fluctuations.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3444040

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3444040

Machine learning-based noise
reduction for quantifying current

fluctuations

THESIS

submitted in partial fulfillment of the
requirements for the degree of

BACHELOR OF SCIENCE
in

PHYSICS

Author : J.C. Steenbergen
Student ID : 2352753
Supervisor : PhD student

W.O. Tromp
Second corrector : Prof.dr.

S.F. Portegies Zwart

Leiden, The Netherlands, July 23, 2022

Machine learning-based noise
reduction for quantifying current

fluctuations

J.C. Steenbergen

Huygens-Kamerlingh Onnes Laboratory, Leiden University
P.O. Box 9500, 2300 RA Leiden, The Netherlands

July 23, 2022

Abstract

In this research, a machine learning approach to noise characterisation is
presented. Specifically, the possibility of using a denoising autoencoder
to quantify shot noise in scanning tunnelling microscopy measurements is
explored. First it is shown that a neural network can be used to denoise an
artificial dataset of time traces with Gaussian noise added to it. In a later
stage, a signal generator in combination with a resonator circuit is used to
measure noisy time traces in the MHz spectral regime. In this setting, the
neural network is tested on its noise sensitivity. From this it is calculated
that this particular neural network does not have the required sensitivity
to reproduce regular noise measurements in high frequency STM, falling
one order of magnitude short. As a first trial, this opens the door to further
investigations in using neural networks to quantify shot noise.

Contents

1 Introduction 7

2 Theory 9
2.1 Neural networks: the basics 9

2.1.1 The learning process 10
2.1.2 Neural network architectures 12

2.2 Shot noise and its significance in STM measurements 13
2.2.1 Cooper-pairs in Josephson junctions and shot noise

doubling 15
2.2.2 Other noise sources in STM 15
2.2.3 High frequency noise scanning tunnelling microscopy

(NSTM) 16

3 Methods 19
3.1 Neural network architecture, learning processes and train-

ing data 19
3.1.1 The denoising autoencoder 19
3.1.2 Supervised learning 19
3.1.3 Self-supervised learning 21
3.1.4 Generating data, splitting the data and cross-validation 21

3.2 Modelling a high frequency STM setup 23

4 Results 25
4.1 Hyperparameter search 25
4.2 Performance on artificial dataset 25
4.3 Benchmark on a STM model 26

4.3.1 Circuit analysis 26
4.3.2 Testing the neural network on physical data 28

Version of July 23, 2022– Created July 23, 2022 - 13:25

5

6 CONTENTS

5 Discussion 31
5.1 The neural network and its simulation on artificial data 31

5.1.1 Remarks regarding the neural network parameters
and architecture 31

5.1.2 Remark about the method of measuring neural net-
work performance 32

5.1.3 Performance results on artificial dataset 32
5.2 The neural network in combination with physical system 33

5.2.1 The STM-model circuit 33
5.2.2 Performance neural network on circuit data 34

6 Conclusions and outlook 35

7 Appendix 37

6

Version of July 23, 2022– Created July 23, 2022 - 13:25

Chapter 1
Introduction

Machine learning and, in particular, artificial neural networks have be-
come more and more prominent within science. The algorithms used by
such systems are able to create predictive models by learning from data.
Doing so, they have become a new tool for scientists in a range of technical
fields. A milestone in AI-based science was reached when DeepMind’s Al-
phaFold announced it had achieved highly accurate protein structure pre-
dictions, making unprecedented progress on the famous protein-folding
problem [11]. Within (particle) physics, ML-based approaches have a long
and productive history in accelerator experiments, where they play an
important role in event and particle identification and energy estimation.
Within astronomy and cosmology, different challenges are now being tack-
led by AI systems such as photometric redshift estimation, image analysis
and feature extraction [1]. In particular, ML techniques have proven use-
ful in the problem of image reconstruction. In image reconstruction, the
goal is to reconstruct an image from a incomplete or noisy image. The first
results of using artificial neural networks in medical image reconstruction
(e.g. MRI, CT-scans) have been shown in the 1990’s. As data acquisition
and computing power have increased, such techniques have become in-
creasingly more successful [9]. Within astronomy, image reconstruction
has always posed a challenge as (i) astronomical images are a convolution
of the observed object and what is called a point-spread-function (PSF)
and (ii) noise from photon sources and telescope sensors pollute the im-
age [8]. Neural networks and as of more recent, convolutional neural net-
works are now being increasingly more used for this task. An example of
astronomical image reconstruction with such a neural network for Hubble
deep-field images is shown in figure 1.1 [10]. Motivated by these promis-
ing examples, the goal of this research is to create a ML-based approach

Version of July 23, 2022– Created July 23, 2022 - 13:25

7

8 Introduction

Figure 1.1: Example of image reconstruction for modified images from the Hub-
ble Space Telescope eXtreme Deep Field (Illingworth et al. 2013) using a neural
network. The original signal (left) is turned into a noisy image (middle) by apply-
ing artificial, Gaussian noise. The neural network reconstructs the original signal
from this noisy image (right). Adopted from [10].

to noise characterisation in current measurements. We are interested in
current fluctuations in scanning tunnelling microscopy (STM) measure-
ments, as the noise in such measurements can reveal a lot about under-
lying physics. Specifically, shot noise is of key importance as it tells us
something about the charge carriers and what processes are at play. We
will see in section 2.2 how shot noise measurements allow us to identify
Cooper pairs in superconducting junctions and how currently shot noise
is extracted. In this research a neural network is trained to quantify noise
in current time traces, using both generated data and real data from an
elementary model of a high frequency (MHz) STM setup.
The outline will be as follows: we start with a theory chapter that includes
a general outline of neural networks and a description of shot noise and
its applications to quantum processes in scanning tunnelling junctions. In
chapter 3 the neural network architecture that is used and the different
learning processes involved are discussed in more detail. In addition, the
experimental setup that is used to model a STM is described. In chapter
4 the neural networks performance on an artificial dataset and on circuit
measurements is presented, including an analysis of the used resonator
circuit. The following chapters will discuss the results in more detail and
present its conclusions, also giving an outlook for future endeavours.

8

Version of July 23, 2022– Created July 23, 2022 - 13:25

Chapter 2
Theory

We start with a description of neural networks: what they are and what
they try to do and how they learn. A bit of mathematics is needed but
we do not go into too great detail. After the treatment on neural network
we turn our attention to the physics side of things. Shot noise will be dis-
cussed as well as other noise sources in STM setups. We will also give
an example of how shot noise can reveal physical properties of the sys-
tem and conclude with a brief description of how currently shot noise is
extracted from spectral density measurements in a high frequency STM
setup.

2.1 Neural networks: the basics

In general, neural networks are algorithms that, by learning from data,
build one big function fθ that predicts the output y from an input x; the
prediction being fθ(x). Input and output are vectors, thus the natural
language for neural networks is linear algebra. In general, x ⊂ Rd0 and
y ⊂ Rd where d0 and d are the input and output dimension respectively.
We denote a dataset consisting of n input, output tuples S = {xi, yi}n

i=1.
The neural network takes the input vector x and manipulates it into an
output prediction fθ(x) by applying successive matrix multiplication. Af-
ter a matrix multiplication, the resulting vector (which we will call a layer)
feeds its components through a function σ (the activation function) after
adding a bias vector b. The output the first layer l = 1 is determined
by matrix W[0] and bias b[0] (indexing the matrices and biases from 0 by
convention [14]):

f [1]θ (x) = σ ◦ (W[0]x + b[0]) (2.1)

Version of July 23, 2022– Created July 23, 2022 - 13:25

9

10 Theory

Where ◦ indicates entry wise operation (i.e. every component is ran
through the function σ). Instead of x we might as well have written f [0]θ (x)
as this is just the input vector. We can now define fθ for a neural network
with L layers by recursion. The output at the first layer is a vector that is
in turn the input to the next layer. In general, we can write for layer l:

f [l]θ (x) = σ ◦ (W[l−1] f [l−1]
θ (x) + b[l−1]) 1 ≤ l ≤ L − 1 (2.2)

Thus, for a neural network of layer size L: fθ(x) = f [L]θ (x). Zooming in
on a single node (a component of a layer) can be more illuminating to see
how its value is determined (figure 2.3). Basically we take a weighted sum
of the components of the previous layer:

f [l]θ,j(x) = σ ◦
(m

∑
i

w[l−1]
i f [l−1]

θ,i (x) + b[l−1]
)

(2.3)

With w[l−1]
i = W [l−1]

ji , the i-th component of the j-th row of W[l−1].
The bias, b is a vector with all its components the same value b shifting

the output of the activation function either in the positive or negative di-
rection. In figure 2.1 a simple example of a neural network is shown. The
activation function σ(x) that characterises a layer can take many differ-
ent forms, depending on the type of learning problem the neural network
tries to solve. The type of problem that we are trying to solve here is im-
age reconstruction, which is a type of regression and for this task ReLU
activation functions in its hidden layers are most often used. Two other
examples of activation functions are given in figure 2.2.

2.1.1 The learning process

For each layer of size m there is an associated m× n matrix that transforms
the layer before of size n. The components of these matrices determine the
connection strength between nodes. With the goal of predicting a desired
output from a given input in mind, the task of a neural network is to find
the optimal weights and biases transforming the input vector in the de-
sired output. This process is called learning and forms the core of the ma-
chine learning. All the weights and of the matrices and biases associated
with the layers combined parameterise the function fθ:

θ = {W[0], W[1], · · · , W[L−1], b[0], b[1], · · · , b[L−1]} (2.4)

The learning is done by training the neural network on a training set. This
generally is a large dataset with of inputs and desired outcomes. In the

10

Version of July 23, 2022– Created July 23, 2022 - 13:25

2.1 Neural networks: the basics 11

Figure 2.1: A schematic overview of a simple neural network consisting of 2 hid-
den layers of size 4, going from an input vector of size 3 to a single output value.
The arrows between each node show how the connections between the nodes.
Credit: Arden Dertat [6].

4 2 0 2 4
x

0

1

2

3

4

f(x
)

f(x) = max{0, x}

4 2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

f(x
)

f(x) = (1 e x) 1

4 2 0 2 4
x

1.0

0.5

0.0

0.5

1.0

f(x
)

f(x) = tanh(x)

Figure 2.2: Three examples of activation functions. From left to right: rectified
linear unit (ReLU), sigmoid, hyperbolic tangent. Note the differences in range:
ReLU has range [0, ∞), the sigmoid (0, 1) and tanh x (−1, 1). As data is usually
normalised between 0-1, the sigmoid activation function is often used in the out-
put layer.

Version of July 23, 2022– Created July 23, 2022 - 13:25

11

12 Theory

Figure 2.3: A single node in a neural network: an input vector of length n is
manipulated into a single output value y1. Each node has its own set of weights
and activation function f . The output y1 in turn is itself a component of an input
vector for another node. Credit: Arden Dertat [6].

learning process, a batch (i.e. a subset) of inputs from the training set is
run through the neural network, returning some outputs. The weights can
have some chosen initial value or be randomised. For each batch of out-
puts the loss is calculated from a loss function that quantifies the difference
between the models output fθ and the desired output y: ℓ(fθ(x), y). Often
in regression problems this is the root mean square error:

ℓ(fθ(x), y) =

√
∑(fθ(x)− y)2

n
(2.5)

and this is the loss function that is used here, but can take other forms
depending on the use of the model. The learning task is to minimise this
loss by changing the weights of the neural network, i.e. finding a local
minimum in the loss function. Simplifying a rather complex process, for
each training batch i the gradient of the loss function is calculated and
subsequently the weights are changed by the negative of that gradient:

θi+1 = θi −∇ℓ(fθi(x), y)) (2.6)

This will move the weights in the most decreasing direction. After enough
iterations, a minimum is achieved and this particular set of weights and
biases makes up the predictive model.

2.1.2 Neural network architectures

In the description of neural networks above, we have considered gen-
eral deep neural networks with arbitrary number of hidden layers and

12

Version of July 23, 2022– Created July 23, 2022 - 13:25

2.2 Shot noise and its significance in STM measurements 13

layer size. In particular, we have only considered feed-forward neural
networks: networks that transform an input consecutively into an out-
put. However, a wide variety of arrangements are possible and signals can
travel in both directions. For example, nodes can be arranged in a circle,
i.e. all nodes are connected directly to each other. A specific type of neu-
ral network with a small hidden layer with symmetric surrounding layers
is called an autoencoder [12] and will be discussed later. In addition to
hidden layers captured by equation 2.3 there are recurrent, convolutional
and memory layers, just to name a few. These layers all have their own
use and can be put into different arrangements. In figure 2.4 an overview
of the most important architectures are shown to illustrate the range of
possibilities for neural networks.

2.2 Shot noise and its significance in STM mea-
surements

In a scanning tunnelling junction, a tunnelling current is generated by elec-
trons flowing between the sample and the tip as a result of a voltage dif-
ference applied to the sample (the bias voltage). As the current is made
up of discrete, uncorrelated electrons, the number of electrons tunnelling
within a time interval follows a Poissonian distribution. This gives rise to
shot noise: a type of white noise (frequency independent) that is charac-
teristic of discrete, random processes like this. For the tunnelling current
I, the shot noise spectrum is given by:

S = 2q|I| (2.7)

where q is the charge of the current carriers: in normal circumstances this
is just the elementary electron charge e. However, in quantum materials
electrons are not necessarily uncorrelated and in some circumstances we
expect to see electrons tunnelling in pairs. This deviation from a purely
Poissonian process is quantified by the normalised noise Sn, defined as:

Sn =
S

2e|I|


> 1, bunching
= 1, Poissonian
< 1 anti-bunching

(2.8)

where S is the measured noise. The normalised noise gives us information
about the way in which electrons tunnel through the junction. Its value

Version of July 23, 2022– Created July 23, 2022 - 13:25

13

14 Theory

Figure 2.4: An overview of the many different neural network architectures [13].
In this research we only work with a very simple neural network architecture:
the denoising autoencoder (third row). There is a wide variety in neural network
architectures: different types of layers, cells and arrangements. A complete de-
scription of each of the presented architectures can be found in the accompanying
paper by Stefan Leijnen and Fjodor van Veen [12]

14

Version of July 23, 2022– Created July 23, 2022 - 13:25

2.2 Shot noise and its significance in STM measurements 15

tells us if electrons are tunnelling randomly, in groups (bunching) or the
reverse (anti-bunching).

2.2.1 Cooper-pairs in Josephson junctions and shot noise
doubling

Without going in too much detail on superconducting scanning tunnelling
microscopy (STM), an important application of noise measurements in this
field is described briefly here. In a standard STM system, a current flow be-
tween tip and sample is induced by a bias voltage on the tip. This current
is present due to the quantum mechanical effect of tunnelling. In super-
conducting STM, both tip and sample are made of superconducting mate-
rials. At temperatures below a certain critical temperature Tc, a supercon-
ductor is described as a condensate of electron pairs called Cooper-pairs
[5]. Cooper pairs are curious particles in their own right: the electrons that
form a pair carry opposite spin and opposite momentum. Because of the
opposite spin of the constituent electrons, Cooper pairs have integer spin
and thus are Bosons. This means that they can condensate into the ground
state: this is what happens in the superconducting regime. The state of a
superconductor can be described by a wavefunction:

Ψ =
√

neiϕ (2.9)

where n is density of Cooper pairs and ϕ is the phase of the condensate.
The combination of superconducting tip and sample creates a so called
Josephson junction: two superconductors separated by an insulator. The
Josephson effect dictates that the tunnelling (super)current is given by:

IS = IC sin ∆ϕ (2.10)

where IC is a maximum supercurrent and ∆ϕ is the phase difference be-
tween the two superconductors. The charge carriers of this supercurrent
are the Cooper-pairs described above and thus carry charge 2e. Referring
to equation 2.7 this means that the shot noise is doubled. This is an ex-
ample to illustrate how complex physical phenomena can be captured by
noise measurements: the main motivation for this research into the appli-
cation of neural networks to noise characterisation.

2.2.2 Other noise sources in STM

Shot noise being the noise source of main interest, there are other noise
sources to keep in mind. In the lower frequency range, up to ∼ 1 kHz,

Version of July 23, 2022– Created July 23, 2022 - 13:25

15

16 Theory

flickering and mechanical noise are dominant, both inversely proportional
to frequency. This flicker 1/f noise is present in all active and most passive
electric components [4]. Furthermore, there is thermal noise present across
the whole spectrum (thus also a source of white noise). For example, the
noise spectrum for the current across a resistance R is given by:

SI(f) =
4kBT

R
(2.11)

where kB is Boltzmann’s constant and T the temperature. The thermal
noise can be distinguished from shot noise as its independent of current.
That means; if we measure the noise at zero current we find the thermal
noise and increasing the current from there we measure shot noise. Also,
note from equation 2.11 that thermal noise ∝ T and can be minimised
by decreasing T. This is done in ultra low temperature cryostats where
temperatures ∼ 4K are met. From these considerations, it is easy to see
why high frequency measurements can be beneficial: the 1/f and mechan-
ical noise contributions are increasingly less significant to the thermal and
shot noise.

2.2.3 High frequency noise scanning tunnelling microscopy
(NSTM)

We now describe briefly the process of noise scanning tunnelling microscopy,
as it performed in a high frequency STM setup from the Milan Allan re-
search group at LION [2]. A bias voltage over the STM junction generates
a tunnelling current. This current is then manipulated in three steps. First,
the current signal is separated into high and low frequency components.
The low frequency component is used for feedback: keeping the tip and
sample at fixed distance. The high frequency part then goes through a
resonator tank circuit, where the current is converted into a voltage at a
resonance frequency of around 3 MHz. This voltage signal, peaked at this
resonance frequency, is converted to a current and amplified by a high
electron mobility transistor (HEMT) and amplified further by a 40dB am-
plifier. This signal is used for power spectral density measurements, from
which shot noise can be extracted. A detailed calculation [5], specific to
the resonator circuit used in this particular setup shows that the current
noise is given by:

SI(I, ω) = 2q∗ I coth
(

q∗V
2kBT

)
+

4kBT∣∣Zres(ω)
∣∣ + Samp (2.12)

16

Version of July 23, 2022– Created July 23, 2022 - 13:25

2.2 Shot noise and its significance in STM measurements 17

Figure 2.5: Noise measurements taken at a random location in an Au sample
using the setup described above [2]. The dashed line indicates purely Poissonian
shot noise. The vertical axis measures the integrated noise power as function of
current.

where q∗ is the effective charge carrier, V the bias voltage applied to the
tip, Zres the resonator impedance and Samp the amplifier noise. The par-
ticular form of equation 2.12 is not of concern here, but note that it con-
sists of three components: a current-dependent, shot noise part (compare
with equation 2.7), a thermal part (compare with equation 2.11) and the
amplifier noise. The shot noise vanishes at zero current, so subtracting
SI(I = 0) then gives us the shot noise part only. Again, we can extract
the carrier charge q∗ from the shot noise. In figure 2.5 an example of shot
noise measurements using the setup as described above on a Au sample.

Version of July 23, 2022– Created July 23, 2022 - 13:25

17

Chapter 3
Methods

3.1 Neural network architecture, learning processes
and training data

3.1.1 The denoising autoencoder

The type of neural network that is used in this research is an autoencoder.
This neural network has a specific layer structure: it consists of an en-
coder, that transforms the input through a number of hidden layers into a
substantially smaller sized layer called the code, and a decoder that trans-
forms the code into an output of the same size as the input. The code is
also referred to as the latent space. A simple visual representation of an
autoencoder is given in figure 3.1. Autoencoders are often used for de-
noising images. The autoencoder essentially learns to compress the image
into a more elementary representation (the code or latent space) and by
doing so it can take a image with noise, transform it to a reduced repre-
sentation and decode that into an image with reduced noise. This process
is shown schematically for 2D images in figure 3.2. Using the output of the
denoising autoencoder, we can calculate the noise present in a signal: we
can calculate the signal that is filtered out (input - output) and determine
its standard deviation. This gives us the neural networks estimation of the
noise level in the original signal.

3.1.2 Supervised learning

Neural networks can be trained using training data that has a clear desired
output for each input vector. This type of training is called supervised

Version of July 23, 2022– Created July 23, 2022 - 13:25

19

20 Methods

Figure 3.1: An example of a basic autoencoder structure. Here, both encoder and
decoder consist of two hidden layers, transforming the input vector to a smaller
sized code layer that is in turn decoded into an output of the same size as the
input. In general, there can be any number of hidden layers and layer size may
vary. Credit: Arden Dertat [7].

Figure 3.2: The denoising power of an autoencoder. A noisy image is created
by adding noise to a clean original of a handwritten number. The autoencoder
encodes the image to a smaller representation and from that the decoder extracts
a less noisy image. Credit: Arden Dertat [7].

20

Version of July 23, 2022– Created July 23, 2022 - 13:25

3.1 Neural network architecture, learning processes and training data 21

learning, where the loss function quantifies the difference between the two
(see section 2.1.1). Within the context of noise suppression, this desired
output is referred to as a ground truth: the input without noise. Evidently,
such data is not accessible for experimental data. In order to create and test
a supervised form of noise suppression, we therefore generate a dataset
with artificial noise. This will be our starting point from which to train a
denoising autoencoder neural network.

3.1.3 Self-supervised learning

The final goal is to learn the autoencoder to suppress noise using only
noisy data. Learning without a certain desired output is called self-supervised
or blind learning. The technique used here is taken from the general frame-
work proposed by Joshua Batson and Loic Royer 2019 [3]. The idea is to
manipulate the original dataset in a specific way, thereby creating a new
input while the original data can be used as ”ground truth” from which
to calculate the loss function. The assumption being that the noise is un-
correlated, the procedure is as follows: at a regular interval input vector
components are assigned the mean value of its neighbours (see figure 3.3).
The original (unchanged) vector now is the desired output. In the learn-
ing process, the model’s outputs are only evaluated at those components
that have been changed. This way, we can achieve self-supervised learn-
ing and filter out the uncorrelated noise: exactly what we want in our
scanning tunnelling junction’s measurements.

3.1.4 Generating data, splitting the data and cross-validation

As discussed above, we need to generate some artificial data in order to
create a set of inputs with a noiseless output. The type of data generated is
intended to mimic that of a signal time trace and can either be a constant
signal, a little skewed or very slightly sinusoidal. To these functions a
Gaussian noise pattern is added with a characteristic amplitude which we
will call the training noise level, which will play an important role later.
As is standard procedure, the data is normalised between 0-1. From the
dataset with such time traces we split the data in three parts: a training
set, a validation set and test set. This is also standard practice in machine
learning: it is insightful to see how the network performs on unseen data
whilst it is learning (validation) and of course when testing a model, the
test data should not contain training data. To give a numeric description
of the type of data: the input dimension is set to 1000, of which there are

Version of July 23, 2022– Created July 23, 2022 - 13:25

21

22 Methods

time

y
sig

na
l

gridsize

original data
y′[i] = y[i 1] + y[i + 1]

2

Figure 3.3: Illustration of the process behind the self-supervised learning used
here. A new dataset is generated from the original by assigning the mean value
of neighbouring datapoints for a set of points in the data spaced evenly (spacing
= gridsize). When training, the loss function is only evaluated at the square data-
points as indicated in this plot.

22

Version of July 23, 2022– Created July 23, 2022 - 13:25

3.2 Modelling a high frequency STM setup 23

10 000 training examples from that a subset of 15% is used for validation.
The test set contains 1000 examples of the same input dimension. Both
the training and test set examples are evenly split in straight lines, skewed
and curved time traces. The noise is added with np.random.normal.

3.2 Modelling a high frequency STM setup

In order to benchmark how well the denoising neural network performs
on real experimental data, it is tested using an elementary model of a typ-
ical high frequency STM setup. The fluctuations in the tunnelling current
are modelled by a signal generator outputting white noise. To move into
the MHz regime, this signal is passed through a resonator circuit with a
characteristic resonance frequency fres ∼ 1 MHz. Using a lock-in amplifier
the filtered signal is moved to DC. Voltage/current time traces are then fed
through the neural network as input in order to characterise the noise in
these time traces I(t). The resonator circuit used here is a parallel LCR cir-
cuit (see fig. 3.4). Its impedance is peaked around a resonance frequency
fres = (2π

√
LC)−1. The current response over R is given by:

IR(ω)/I(ω) = Hres(ω) =
iωL

R − ω2LCR + iωL
(3.1)

We also need to take into account the internal low-pass filter used by the
lock-in amplifier. After the signal is moved from ωres to DC, the lock-in
amplifier applies a low pas filter in order to only measure signals that orig-
inate from frequencies close to ωres. This low-pass filter takes the shape of
a n-th order coupled RC-circuit with -3dB frequency ωRC = (RC)−1:

Hlock−in(ω, n) =
[

1 +
(ω

ωRC

)2
]−n/2

(3.2)

In our measurements we have used a low pass filter in the lock-in of
order 8 at a -3dB frequency of 99.51 Hz. Combining 3.1 (shifted so that
resonance is at DC) and 3.2 gives the total transfer function Htot(ω) =
Hres(ω + ωres)Hlock−in(ω). As the input noise is white noise, the input
noise spectrum S(ω) = S and relates to the total noise via an integral over
the absolute square of the transfer function of the circuit:

σ2 = S
∫ ∆ω

0

∣∣Htot(ω)
∣∣2 dω (3.3)

Version of July 23, 2022– Created July 23, 2022 - 13:25

23

24 Methods

Figure 3.4: The resonance circuit used to measure in the MHz range. The source
of the signal comes from a signal generator and goes through a parallel arrange-
ment of L, C and R components that are ”isolated” using two 10 pF capacitors.

where ∆ω is the measurement bandwidth of in radians (∆ω = 2π∆ f).
The neural network estimates σ2 from current time traces in A2 and equa-
tion 3.3 then gives us the noise spectrum level in A2/Hz. In practice how-
ever, we skip these steps and put the whole transfer function in a fac-
tor that translates the noise amplitude from the signal generator into a
standard deviation in the measured signal on the lock-in. This is done by
measuring the standard deviation at different amplitudes and applying a
linear fit. Also, we do not make current time trace measurements but mea-
sure voltages. After demodulating with the lock-in amplifier we measure
the real part of the demodulated signal.

24

Version of July 23, 2022– Created July 23, 2022 - 13:25

Chapter 4
Results

4.1 Hyperparameter search

A neural networks structural layout is determined by the number of layers
and the sizes of those layers; its performance is determined further by the
choice of activation functions, loss function, number of learning epochs,
training data and some more sophisticated parameters that go into the
learning process. Those include: learning optimiser (which has learning
rate as its own parameter), batch size, weight initialisation and for the
self-supervised learning method that is used here: the gridsize (the spac-
ing between the modified components in the process of creating a separate
dataset). It would be computationally expensive to go over all the possi-
ble combinations of parameters. Instead, we start with a set of parameters
that performs reasonably well and tweak a number of parameters individ-
ually from there. The starting point for our neural network structure and
parameters is taken from an autoencoder used for denoising 2D images.
The results are given in table 4.1 and a plot of a training learning curve is
given in figure 4.1a.

4.2 Performance on artificial dataset

Both neural networks (supervised and self-supervised) are learn from a
training set with a constant input noise level of 0.3. We then measure
the performance a denoising neural network in two ways. The first is the
mean squared error value of the network’s output on the test set and we
vary the standard deviation of the noise. The second measures how accu-
rately the network predicts the noise in the input time traces. The standard

Version of July 23, 2022– Created July 23, 2022 - 13:25

25

26 Results

input dimension 1000
no. of hidden layers 4
size hidden layer 1 128
size hidden layer 2 (code size) 32
size hidden layer 3 128
size hidden layer 4 (output) 1000
total no. of parameters 265480
activation function hidden layers 1-3 ReLU (rectified linear unit)
activation function output layer Sigmoid
optimizer Adam
learning rate 0.00005
loss function mean squared error
no. of epochs 25
batch size 32
gridsize (self-supervised learning) 5

Table 4.1: An overview of all the parameters choices for the denoising neural
network.

deviation in the filtered out signal is calculated, again varying the input
noise. A perfect denoiser would have a one-to-one correspondence which
is indicated by a y = x curve in the plots. Of interest is the point where
the neural network intersects the y-axis. As the amplitude of the fluctua-
tions becomes very small, the neural network at some point is not able to
recognise the noise properly; the value at this intersection will give us the
minimum noise level the neural network can predict. The results of neural
networks trained by both supervision and self-supervision are presented
in figure 4.1. In the appendix, a plot of the different noisy input traces and
the neural networks output is given as well as a learning curve.

4.3 Benchmark on a STM model

4.3.1 Circuit analysis

First we start by analysing the resonance circuit. Using the sweep func-
tion (amplitude = 1V) on the lock-in amplifier, the circuits transfer func-
tion (amplitude, phase) is determined (figure 4.2b). A fit to both curves
yields the characteristic values for the resonator (figure 4.2c). The res-
onance bandwidth ∆ f is the full-width-half-maximum (FWHM) of the
peak. Using the lock-in amplifier, a white noise signal from the genera-

26

Version of July 23, 2022– Created July 23, 2022 - 13:25

4.3 Benchmark on a STM model 27

(a)

0.0 0.2 0.4 0.6 0.8 1.0
input noise factor

0.00

0.05

0.10

0.15

0.20

0.25

RM
SE

trained with supervised learning

(b)

0.0 0.2 0.4 0.6 0.8 1.0
input noise factor

0.05

0.10

0.15

0.20

0.25

RM
SE

trained by selfupervision

(c)

0.00 0.02 0.04 0.06 0.08 0.10
input noise factor

0.00

0.02

0.04

0.06

0.08

0.10

pr
ed

ict
ed

trained with supervised learning
y=x

(d)

0.00 0.02 0.04 0.06 0.08 0.10
input noise factor

0.00

0.02

0.04

0.06

0.08

0.10

pr
ed

ict
ed

trained by selfsupervision
y=x

Figure 4.1: Neural network performance when trained (supervised and self-
supervised) and tested on artificial data. a-b. Varying over the input noise factor
on test data (corresponding to the input σ) the neural networks (trained by both
supervision and self-supervision) root mean square error (RMS) is plotted, at a
training input noise factor of 0.3. A bias towards this noise amplitude is slightly
visible by a minimum at input noise factor ∼ 0.3 in a. c-d. Noise characterisation
by the neural network. The noise estimation of the neural network σdi f f plotted
against the input noise factor. The intersection of the curves indicates the smallest
noise amplitude the neural network is able to detect.

Version of July 23, 2022– Created July 23, 2022 - 13:25

27

28 Results

tor (amplitude = 1V, bandwidth = 10MHz) is measured through the circuit
and its power spectral density around resonance frequency is plotted in
(4.2a).

4.3.2 Testing the neural network on physical data

We now train our neural network on physical data; circuit time traces with
varying amplitude. Here the method is slightly different than before: we
can only use the self-supervised learning technique and in this case we
train and test the neural network on the whole dataset, thus already con-
taining different noise levels while training. The results are presented in
figure 4.3.

28

Version of July 23, 2022– Created July 23, 2022 - 13:25

4.3 Benchmark on a STM model 29

(a)

100 50 0 50 100
frequency (kHz)

0.2

0.4

0.6

0.8

1.0

1.2

sp
ec

tra
l d

en
sit

y
V/

H
z

Gaussian fit: = 31.5

(b)

106

frequency (Hz)

10 5

10 4

10 3

10 2

am
pl

itu
de

 (V
)

0

25

50

75

100

125

150

175

ph
as

e
(d

eg
re

e)

(c) curve fit amplitude phase
fres (MHz) 1.714 1.712
∆ f (kHz) 73.8 69.5
Q factor 23.2 24.6
fit error 1.3% 0.16%

Figure 4.2: Analysis of the circuit used to model a high frequency STM setup.a.
Power spectral density measured around resonance frequency, dashed line shows
a Gaussian fit to the data. The Gaussian fit yields σ = 31.5 kHz, corresponding
to a FWHM bandwith of ∆ f = 73.6 kHz. b. Frequency response: amplitude and
phase showing clear resonance curves (amplitude peaked around resonance fre-
quency, phase shift of -180 degrees at resonance) used to determine the resonators
resonance frequency fres, its bandwidth and Q factor. c. Curve fit results. The fit
to the phase frequency response curve yields the best fit, with fit error almost 10
times lower than the amplitude fit.

Version of July 23, 2022– Created July 23, 2022 - 13:25

29

30 Results

0.0 0.2 0.4 0.6 0.8 1.0
actual noise amplitude (V)

0.0

0.2

0.4

0.6

0.8

1.0

NN
 p

re
di

ct
ed

 n
oi

se
 a

m
pl

itu
de

 (V
)

y=x
absolute error on prediction value

0.00 0.02 0.04 0.06 0.08 0.10
0.00

0.02

0.04

0.06

0.08

0.10

min 0.043

Figure 4.3: Neural network (trained by selfsupervision) predicting the noise am-
plitude of the signal generator’s input. The input signal goes through the res-
onator circuit and is measured and demodulated by the lock-in. We see a clear
linear response up to a point ∼ 0.06 V, where the datapoints begin to branch off.
Zooming in on the datapoints at a smaller input noise range (0-0.1 V), we see an
(extrapolated) intersection with the y-axis of 0.043 V. This value sets the minimal
noise level the neural network is able to detect.

30

Version of July 23, 2022– Created July 23, 2022 - 13:25

Chapter 5
Discussion

5.1 The neural network and its simulation on ar-
tificial data

We start our discussion with a few remarks about the neural network itself
and the way it is trained for its performance measurements. This is fol-
lowed by a discussion of the results of the neural networks performance
on the artificial dataset.

5.1.1 Remarks regarding the neural network parameters and
architecture

The neural networks parameter choices as listed in table 4.1 are somewhat
arbitrary. For the most part, very generic choices of activation functions,
optimizer and weight initializer are made with a few tweaks. For example,
the learning rate turned out to be an influential factor: we started from a
more generic rate of 0.001 and increasing it made the neural networks pre-
diction less sensitive (i.e. the intersection with the y-axis in figures 4.1c-d)
and also have increased spread. Lowering it substantially to a value of
0.00005 seemed a good value. This example is illustrative of how most pa-
rameters are chosen: starting from a standard value, experimenting a bit
while keeping other parameters the same. Of course, this is not the most
thorough way to go about selecting parameters. It is, however, more prac-
tical and less time consuming than iterating over possible combinations.
That said, it might be effective to do a full hyperparameter grid-search.
The neural network structure can also be more fine-tuned. The number of
hidden layers and layer size is kept quite low, for two reasons: i) it reduces

Version of July 23, 2022– Created July 23, 2022 - 13:25

31

32 Discussion

training times to < 5 min and ii) to prevent overfitting to the training data
(this happens when the number of nodes is on the order of the total num-
ber of training datapoints). Also, experimenting a bit with an extra hidden
layer did not seem to increase performance. However, there are many pos-
sibilities for the neural network architecture (such as an arrangement of
more, but smaller hidden layers) that can still be tested. While the neural
network used in this research is build only from input, output and hidden
layers, there are also different types of layers (as pointed out in section
2.1.2), that can be experimented with.

5.1.2 Remark about the method of measuring neural net-
work performance

The reason to create the plots given in figure 4.1 is that we want to test
the neural network performance on different input noise levels. However,
there is one subtlety at play: the neural network is trained on a training
dataset with a specific input noise level (referred to as training noise level).
This creates a bias towards noise levels close to this value, as can be seen
in the slight minimum in figure 4.1a around the training noise level of 0.3.
It is interesting to see that training on one noise level generalises quite
well when testing on other noise levels (σ-predictions being accurate on
higher and lower noise levels). Again, this is also time effective as we are
only training the network once per learning method. That said, it might be
interesting to see how these plots would change if the network is trained
on each input noise level separately.

5.1.3 Performance results on artificial dataset

As might be expected, the neural network trained with supervised learn-
ing outperforms its self-supervised counterpart in both tests. It has a con-
sistently lower RMSE across all input noise levels, and its standard devi-
ation predictions follow the input noise factor more closely and branches
of at a lower input noise. The intersection with the y-axis in figures 4.1(c-
d) is lower for the supervised neural network, giving a lower errorbar
on σ-predictions as well as being the more sensitive denoiser. That said,
the neural network trained with self-supervision still performs quite well,
when you keep in mind that it has never seen any ground truths in the
training process and denoises input signals solely by its masking tech-
nique as described in section 3.1.3.
Two things to point out about error margins (indicated by the shaded re-

32

Version of July 23, 2022– Created July 23, 2022 - 13:25

5.2 The neural network in combination with physical system 33

gions in figure 4.1): i) the error margins on the RMSE plots (figure 4.1a-b)
grow linearly with the input noise for input noise levels > training level
and remain constant for lower levels. This indicates that the relative error
is constant for levels > training level and starts to increase for lower levels.
ii) In the σ-prediction plots (figure 4.1c-d) we see that the (absolute) error
margins increase for small input noise factors close to the branching-off
point.

5.2 The neural network in combination with phys-
ical system

We now turn to our discussion of the physical application of our neural
network. First we discuss the quality of the used resonator circuit and
how well it matches that of a high frequency STM setup, followed by a
discussion of the neural network performance on circuit data, concluded
by a discussion on the possibility of using this neural network for detect-
ing shot noise.

5.2.1 The STM-model circuit

The circuit used in this research (figure 3.4) is at best a toy-model of the
experimental setup with which high frequency STM measurements are
made as described in section 2.2.3. The quality factor of the circuit used
here of ∼ 24 is far below the Q = 600 of the mentioned setup [2]. There are
a number of reasons for this:

1. the circuit design of course is different alltogether

2. the circuit is not shielded from external electric fields interfering with
the circuits electronics

3. the circuit is not at low temperature, which means the thermal noise
is two orders of magnitude higher

4. the circuits components are soldered onto each other via their con-
necting wires, not onto a printed circuit board. These wires also have
self inductance that interfere with the circuit.

That being said, the goal of this research is not to design a high frequency
amplifier system for STM measurements, but to test a denoising neural
networks performance on time traces somewhat resembling those from

Version of July 23, 2022– Created July 23, 2022 - 13:25

33

34 Discussion

a high frequency STM setup. For those purposes, the resonator circuits
qualtity factor of 24 is high enough to measure time traces in a spectral
region around the resonance frequency of 1.71 MHz.

5.2.2 Performance neural network on circuit data

The neural network performs in quite a similar manner to physical time
traces as it does on the artificial dataset. Its noise amplitude-predictions
scale linearly with the actual noise amplitude as they should, as expected
branching off at a certain point when its denoising sensitivity limit is reached
(figure 4.3). One thing to point out is that the predictions at levels above
the branching-off point are consistently a bit below the actual value, which
indicates that there is some systemic error in the neural networks predic-
tions. Another unexpected result is that the absolute errors on the predic-
tions grow linearly; the relative error more or less constant. We do not
see a clear increase in relative errors with smaller noise amplitudes, some-
thing that we did see in the simulation.
The minimum error on predictions, as indicated by the arrow in figure
4.3 serves as a detection limit: lower input noise amplitudes are not de-
tectable. Given that the maximum input noise amplitude is 1V, we get a
minimum relative noise sensitivity of 4%. This a bit higher than the re-
sult on the artificial dataset, where this level was just above 0.02 for the
self-supervised neural network. This might be explained by the fact that
in that case there are more generated training samples for the neural net-
work to learn on.
We now give a back-of-the-envolope calculation to see if this neural net-
work can be used to detect shot noise in the setup described in section
2.2.3. For this purpose, we take a closer look at the shot noise measure-
ment presented in figure 2.5. We see a zero-current measurement with
an integrated noise power of 3.78 × 10−9 V2. We know our neural net-
work has a relative sensitivity of 4%. This means that in this context, the
neural network can distinguish integrated noise power values differing
by 0.04×3.78×10−9 V2 = 0.15 × 10−9 V2. Looking at figure 2.5, we see that
this level of sensitivity is not quite enough to reproduce the same plot. The
level of sensitivity falls short to ∼ 1 order of magnitude. One might still
be able to detect shot noise when measuring at bigger intervals of current,
say steps of 500 pA, but that might not be an option.

34

Version of July 23, 2022– Created July 23, 2022 - 13:25

Chapter 6
Conclusions and outlook

From the results we conclude the following points:

1. Proof of concept: neural networks, specifically denoising autoen-
coders are capable of characterising noise in noisy time-traces. The
σ-predictions of the neural network scale with the noise present in
the signal.

2. In the simulation, we have seen that supervised and self-supervised
neural networks perform in a similar manner. The supervised per-
forms better, measured both in RMSE and σ-prediction sensitivity.

3. Time traces from a physical system can be used to train a neural net-
work by self-supervision. The results are very similar to simulated
data; given that there is less training data, the slightly lesser perfor-
mance is to be expected.

4. The neural network is not yet capable to reproduce regular shot noise
measurements. Its sensitivity falls short about 1 order of magnitude.

We point out the following challenges/ideas for further endeavours in this
field:

1. The main challenge is to modify the neural networks architecture
(amount of layers, types of layers and layer sizes) and parameters in
order to improve its sensitivity. For parameters, a full grid-search for
hyperparameters might be useful.

2. For simulations, different ways of training the network might be in-
teresting to look at: how will the performance change when the neu-
ral network is trained at different noise levels individually?

Version of July 23, 2022– Created July 23, 2022 - 13:25

35

Chapter 7
Appendix

We show two more figures: the learning curve of a supervised neural net-
work and the neural networks output to illustrate how the traces look like
before and after denoising.

0 5 10 15 20 25 30 35
epoch

0.02

0.04

0.06

0.08

0.10

0.12

m
ea

n
sq

ua
re

d
er

ro
r (

M
SE

)

overfitting

training
validation

Figure 7.1: Learning curve of supervised training of the neural network. After
epoch ∼ 15, we see validation loss not decreasing anymore. Training further
would overfit the network to the training data.

Version of July 23, 2022– Created July 23, 2022 - 13:25

37

38 Appendix

0 200 400 600 800 1000

0.5

0.0

0.5

1.0

0 200 400 600 800 1000

0.5

0.0

0.5

1.0

rmse = 0.038

1.0 0.5 0.0 0.5 1.0
0

50

100

150

200

250

300 sigma =0.314

0 200 400 600 800 1000
0.5

0.0

0.5

1.0

1.5

Noisy Input

0 200 400 600 800 1000
0.5

0.0

0.5

1.0

1.5

Autoencoder Output
rmse = 0.031

1.0 0.5 0.0 0.5 1.0
0

50

100

150

200

250

300
Autoencoder output - noisy input histogram

sigma =0.305

0 200 400 600 800 1000

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0 200 400 600 800 1000

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75 rmse = 0.030

1.0 0.5 0.0 0.5 1.0
0

50

100

150

200

250
sigma =0.308

Figure 7.2: Here show a plot containing generated noisy time-traces (of three
types), the neural networks denoised output and a histogram showing the distri-
bution of the filtered out signal with a Gaussian fit to them. The autoencoder gets
as input noisy (generated) time traces at noise level amplitude = 0.3. The neural
network here is trained by self-supervision.

38

Version of July 23, 2022– Created July 23, 2022 - 13:25

Bibliography

[1] Argonne National Laboratory: Linda Colin et al. Report on the Depart-
ment of Energy (DOE) Town Halls on Artificial Intelligence (AI) for Sci-
ence. Feb. 2019. URL: https://cs.lbl.gov/assets/AI-Report/AI-
for-Science-Report.pdf.

[2] Koen Bastiaans. Probing quantum materials with novel scanning tunnel-
ing microscopy techniques. Dec. 2019. URL: http://hdl.handle.net/
1887/81815.

[3] Joshua Batson and Loic Royer. Noise2Self: Blind Denoising by Self-
Supervision. 2019. DOI: 10.48550/ARXIV.1901.11365. URL: https:
//arxiv.org/abs/1901.11365.

[4] Bruce Carter. “Chapter 12 - Op Amp Noise Theory and Applica-
tions”. In: Op Amps for Everyone (Third Edition). Ed. by Ron Mancini
and Bruce Carter. Third Edition. Boston: Newnes, 2009, pp. 163–188.
ISBN: 978-1-85617-505-0. DOI: https://doi.org/10.1016/B978-1-
85617-505-0.00012-0. URL: https://www.sciencedirect.com/
science/article/pii/B9781856175050000120.

[5] Damianos Chatzopoulos. Josephson and noise scanning tunneling mi-
croscopy on conventional, unconventional and disordered superconduc-
tors. Nov. 2021. URL: https://hdl.handle.net/1887/3243474.

[6] Arden Dertat. Applied Deep Learning - Part 1: Artificial Neural Net-
works. Aug. 2017. URL: https://towardsdatascience.com/applied-
deep-learning-part-1-artificial-neural-networks-d7834f67a4f6.

[7] Arden Dertat. Applied Deep Learning - Part 3: Autoencoders. Oct. 2017.
URL: https://towardsdatascience.com/applied-deep-learning-
part-3-autoencoders-1c083af4d798.

Version of July 23, 2022– Created July 23, 2022 - 13:25

39

https://cs.lbl.gov/assets/AI-Report/AI-for-Science-Report.pdf
https://cs.lbl.gov/assets/AI-Report/AI-for-Science-Report.pdf
http://hdl.handle.net/1887/81815
http://hdl.handle.net/1887/81815
https://doi.org/10.48550/ARXIV.1901.11365
https://arxiv.org/abs/1901.11365
https://arxiv.org/abs/1901.11365
https://doi.org/https://doi.org/10.1016/B978-1-85617-505-0.00012-0
https://doi.org/https://doi.org/10.1016/B978-1-85617-505-0.00012-0
https://www.sciencedirect.com/science/article/pii/B9781856175050000120
https://www.sciencedirect.com/science/article/pii/B9781856175050000120
https://hdl.handle.net/1887/3243474
https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834f67a4f6
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798

40 BIBLIOGRAPHY

[8] Remi Flamary. “Astronomical image reconstruction with convolu-
tional neural networks”. In: Aug. 2017, pp. 2468–2472. DOI: 10.23919/
EUSIPCO.2017.8081654.

[9] Kerstin Hammernik and Florian Knoll. “Chapter 2 - Machine learn-
ing for image reconstruction”. In: Handbook of Medical Image Comput-
ing and Computer Assisted Intervention. Ed. by S. Kevin Zhou, Daniel
Rueckert, and Gabor Fichtinger. The Elsevier and MICCAI Society
Book Series. Academic Press, 2020, pp. 25–64. ISBN: 978-0-12-816176-
0. DOI: https://doi.org/10.1016/B978-0-12-816176-0.00007-7.
URL: https://www.sciencedirect.com/science/article/pii/
B9780128161760000077.

[10] Edward Higson et al. “Bayesian sparse reconstruction: a brute-force
approach to astronomical imaging and machine learning”. In: Monthly
Notices of the Royal Astronomical Society 483.4 (Dec. 2018), pp. 4828–
4846. ISSN: 0035-8711. DOI: 10.1093/mnras/sty3307. eprint: https:
//academic.oup.com/mnras/article-pdf/483/4/4828/27441042/

sty3307.pdf. URL: https://doi.org/10.1093/mnras/sty3307.

[11] John Jumper et al. “Highly accurate protein structure prediction with
AlphaFold”. In: Nature 596.7873 (Aug. 2021), pp. 583–589. ISSN: 1476-
4687. DOI: 10.1038/s41586-021-03819-2. URL: https://doi.org/
10.1038/s41586-021-03819-2.

[12] Stefan Leijnen and Fjodor Veen. “The Neural Network Zoo”. In: Pro-
ceedings 47 (May 2020), p. 9. DOI: 10.3390/proceedings47010009.

[13] Fjodor van Veen. The Neural Network Zoo. Apr. 2019. URL: https:
//www.asimovinstitute.org/neural-network-zoo/.

[14] Zhi- Qin John Xu. Suggested Notation for Machine Learning. 2020. URL:
http://ctan.math.utah.edu/ctan/tex-archive/macros/latex/

contrib/mlmath/mlmath.pdf.

40

Version of July 23, 2022– Created July 23, 2022 - 13:25

https://doi.org/10.23919/EUSIPCO.2017.8081654
https://doi.org/10.23919/EUSIPCO.2017.8081654
https://doi.org/https://doi.org/10.1016/B978-0-12-816176-0.00007-7
https://www.sciencedirect.com/science/article/pii/B9780128161760000077
https://www.sciencedirect.com/science/article/pii/B9780128161760000077
https://doi.org/10.1093/mnras/sty3307
https://academic.oup.com/mnras/article-pdf/483/4/4828/27441042/sty3307.pdf
https://academic.oup.com/mnras/article-pdf/483/4/4828/27441042/sty3307.pdf
https://academic.oup.com/mnras/article-pdf/483/4/4828/27441042/sty3307.pdf
https://doi.org/10.1093/mnras/sty3307
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.3390/proceedings47010009
https://www.asimovinstitute.org/neural-network-zoo/
https://www.asimovinstitute.org/neural-network-zoo/
http://ctan.math.utah.edu/ctan/tex-archive/macros/latex/contrib/mlmath/mlmath.pdf
http://ctan.math.utah.edu/ctan/tex-archive/macros/latex/contrib/mlmath/mlmath.pdf

	Introduction
	Theory
	Neural networks: the basics
	The learning process
	Neural network architectures

	Shot noise and its significance in STM measurements
	Cooper-pairs in Josephson junctions and shot noise doubling
	Other noise sources in STM
	High frequency noise scanning tunnelling microscopy (NSTM)

	Methods
	Neural network architecture, learning processes and training data
	The denoising autoencoder
	Supervised learning
	Self-supervised learning
	Generating data, splitting the data and cross-validation

	Modelling a high frequency STM setup

	Results
	Hyperparameter search
	Performance on artificial dataset
	Benchmark on a STM model
	Circuit analysis
	Testing the neural network on physical data

	Discussion
	The neural network and its simulation on artificial data
	Remarks regarding the neural network parameters and architecture
	Remark about the method of measuring neural network performance
	Performance results on artificial dataset

	The neural network in combination with physical system
	The STM-model circuit
	Performance neural network on circuit data

	Conclusions and outlook
	Appendix

