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Abstract

Efficient single-photon sources based on semiconductor quantum dots typ-
ically rely on resonant excitation schemes with a high degree of control. In
particular, having access to continuous-wave (CW) and pulsed excitation
without changing the center frequency is highly desirable. CW excitation
is useful for alignment and characterization, while pulsed excitation is es-
sential for on-demand single-photon production.
We present a technique based on ultra-fast electro-optic modulation to di-
rectly synthesize optical pulses from a narrow linewidth CW laser. With
custom-built ultra-fast electronics, we demonstrate tunable pulse lengths
down to 50 ps. Pulses longer than 100 ps achieve a typical extinction ratio
of 300, and the 50 ps pulses still show an extinction ratio of 150. We then
use these pulses to excite a single InAs quantum dot in a micropillar cavity
and show the generation of true single photons. This technique allows for
full control over the experiment in the temporal-spectral domain, and is
significantly simpler compared to using conventional Ti:Sa mode-locked
laser oscillators in combination with grating-based pulse shaping.
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Chapter 1
Introduction

Photons are the elementary quantum particles of light. If one can man-
age to control these photons on the single-photon level, a whole world
of applications opens up. In particular, single photons are a key compo-
nent of many quantum information protocols [1–3]. One way to generate
single photons is by resonant excitation of a semiconductor quantum dot
(QD). In the resonant regime, a QD can be pictured as a two-level system
that emits a photon upon spontaneously decaying to its ground state after
being excited. Since the emission is spontaneous, i.e. in all directions, the
collection efficiency of single-photon sources based on bare QDs is limited.
Therefore, the QD is often embedded into an optical microcavity, such as a
micropillar cavity [4–6], allowing near unity coupling of the QD into prop-
agating optical modes and thus enhancing the collection efficiency. This is
the domain of cavity-QED (quantum electrodynamics).

To identify the cavity resonance frequency with high precision, often a
narrow linewidth continuous-wave (CW) tunable laser is used. However,
for applications requiring true single photons on demand, pulsed excita-
tion is necessary. With pulsed excitation using sufficiently short pulses, the
QD can only be excited once within the pulse. This ensures the generation
of at maximum one photon per pulse. The pulses should not be too short,
as due to the Heisenberg spectral-temporal uncertainty principle a shorter
pulse will have a broadened spectrum, leading to a worse coupling with
the cavity-QED system. The pulse length should thus be comparable with
the lifetime of the emitter we want to address. The typical reported life-
times for InAs QDs coupled to micropillar cavities are of order 100 ps [6],
meaning that the pulses should be fine-tunable in the tens of ps range.

In an experimental cavity-QED setup it is thus desired to have highly
wavelength and pulse-length tunable lasers allowing both pulsed and con-
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8 Introduction

tinuous excitation. However, since these lasers do not exist, one typi-
cally switches between multiple lasers, leading to a disruption of opti-
mal excitation settings. A common approach is to use a CW titanium-
sapphire (Ti:sapphire) laser oscillator with mode-lock possibility to gen-
erate ultrashort few-ps pulses. However, fine-tuning the pulse length re-
quires grating-based pulse shaping [7]. Furthermore, these lasers offer
little control over the repetition rate of the pulses. Another approach is to
use phase modulation to manipulate the laser light. A fast phase modula-
tor based on LiNbO3, in combination with a fast programmable electronic
pulse-pattern, can be used to directly modulate a CW laser to a pulsed
laser [8, 9]. This technique allows tuning the central wavelength and pulse
shape without the need for a pulsed laser, where the time domain is only
limited by the electronics and the extinction ratio of the modulator.

In this thesis, we present a similar technique based on ultra-fast electro-
optic intensity modulation in combination with custom-built ultra-fast elec-
tronics to directly modulate optical pulses from a narrow linewidth CW laser.
Measurements of the second-order correlation function of the pulsed light
are used to reconstruct the pulse durations and extinction ratios. The nec-
essary theory behind electro-optic modulation, the fast electronics, and the
second-order correlation function is given in Chapter 2. In Chapter 3 we
show photon correlations simulations. The methods and results of the ex-
perimental characterization of the pulse modulator are given in Chapter 4.
Finally, in Chapter 5 we demonstrate the generation of true single photons
by using the pulse modulator to do pulsed resonance fluorescence with a
single InAs/GaAs quantum dot in an optical microcavity.

8
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Chapter 2
Theory

To directly modulate a continuous-wave laser into a pulsed laser, an electro-
optic intensity modulator is used. The theory needed to understand the
functionality of this modulator is presented in Section 2.1. The custom-
built fast electronics that are needed to generate the ps pulses are ex-
plained in Section 2.2. The principle behind the experiment to characterize
the pulses is explained in Section 2.3. Finally, Section 2.4 explains the the-
ory needed to analyze the single-photon experiments.

2.1 Electro-optic intensity modulator

Figure 2.1: Basic Mach-Zehnder
interferometer.

The continuous wave laser light is mod-
ulated with a Mach-Zehnder type optical
modulator. A basic Mach-Zehnder scheme
is shown in Figure 2.1. In a Mach-Zehnder
interferometer, the input light is split into
two paths, after which a phase difference
is induced between the two paths. The
two paths are then recombined at the out-
put to get constructive or destructive in-
terference, depending on the phase differ-
ence. The interference can be used to mod-
ulate continuous wave laser light to obtain
pulsed laser light, by rapidly changing the phase difference between con-
structive interference and destructive interference. The intensity differ-
ence between the pulse light and the inter-pulse dark is then determined
by the extinction ratio of the interferometer. The extinction ratio ER is
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10 Theory

given by Equation 2.1.

ER(dB) = 10 log10

(Pmax

Pmin

)
, ER =

Pmax

Pmin
(2.1)

Th ER is the ratio between the optical output power of the modulator at
constructive interference Pmax, and the optical output power at destructive
interference Pmin. The maximum repetition rate and shortest pulse length
that can be achieved with the modulator are determined by the pulse rise
time. The pulse rise time is the time it takes the leading edge of a pulse to
rise from 10% to 90% of its maximum value.

The optical modulator used in this thesis is a commercial waveguide
type LiNbO3 Mach-Zehnder optical modulator. This is an electro-optic
intensity modulator (EOM) with a typical ER of 25 dB, or ∼300, and pulse
rise time less than 20 ps. In this device, the input fiber is coupled to a
waveguide, which is then split into two paths using a waveguide splitter.
Between the two paths, a phase difference is induced through the linear
electro-optic effect, also called the Pockels effect. This effect results in a
change of the refractive index of a crystal in response to an electric field.
The EOM consists of a transverse Pockels cell, which is an electro-optic
crystal through which light can propagate [10]. In the EOM used in this
thesis, the electro-optic crystal is lithium niobate (LiNbO3). Since LiNbO3
crystals are naturally birefringent, it is important to only consider linear
polarization along the Z axis of the crystal [11].

Figure 2.2: Schematic view of a LiNbO3 intensity modulator chip. From
iXblue [12]

The electric field which changes the phase of the light is applied with
electrodes. The EOM used in this thesis has two sets of electrodes, as in-
dicated in Figure 2.2 [12]. The bias electrodes, or DC electrodes, are used

10
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2.2 Pulser electronics 11

to set a bias voltage to determine the operating point of the device. The
modulation electrodes, or RF electrodes, are used to then modulate the in-
tensity at very high frequencies. In order to create pulses, the bias is set
to have destructive interference at the output. The RF signal is a periodic
pulse train, to obtain a periodically pulsed laser. The transfer function of
the Mach-Zehnder type EOM is given by Equation 2.2.

Iout = Tmod
Iin

2

[
1 + cos

( π

Vπ
V(t)− ϕ

)]
(2.2)

Here Iin and Iout are the input and output intensity, Tmod is the opti-
cal transmission of the device, Vπ is the half-wave voltage and V(t) is the
applied voltage. The ϕ term is a phase term which arises from small differ-
ences between the two optical paths due to material inhomogeneity and
manufacturing tolerances.

2.2 Pulser electronics

To modulate the continuous wave laser into a pulsed laser, an electrical
periodic pulse train has to be applied to the RF electrodes of the EOM (see
Sec. 2.1). To do this, fast electronics which can generate extremely short
pulses of the order of 30 ps are required. In order to have a flexible sys-
tem with full access to the electronics, the electronics needed to achieve
such fast pulses were developed by the university’s electronics depart-
ment (ELD) by Harry Visser and Arno van Amersfoort. A block diagram
of the full electronic circuit is shown in Figure 2.3. The main part of the
electronics is a fast pulse PCB which is driven by a field-programmable
gate array (FPGA). A microcontroller is responsible for the communica-
tion between the PC and the FPGA.

The FPGA contains the control logic and can be used to set the pulse
pattern. It contains a fast and a slow pulse generator to allow for a broad
range of pulse possibilities. The slow pulse generator can generate pulses
between 20 ns and 650 ms, with repetition rates ranging from 1.5 Hz to
25 MHz. The fast pulse generator creates programmable pulse patterns
with a resolution of 1 ns and a repetition rate between 8.33 MHz and
500 MHz. In our case, the FPGA generates fast long pulses of 1 ns at
the desired repetition rate of around 50 MHz. These 1 ns pulses are then
compressed into short pulses of the desired pulse duration by the pulse
compressor on the pulse PCB.
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Figure 2.3: Schematic block diagram representing the pulser electronics. Long
pulses are created by the FPGA at the desired frequency, which are then com-
pressed to the desired lengths by the pulse compressor on the pulse PCB.
Adapted from the Leiden university ELD.

Figure 2.4: Schematic of how the short pulses are created in the Pulse compressor.
Figure (a) shows the long pulse in delay line 1, (b) shows the inverted long pulse
in delay line 2 and (c) shows the resulting short pulse after the AND gate.

12
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2.3 Second-order correlation function 13

Figure 2.4 shows a simplified schematic of how this is done. The 1 ns
pulse is split into two paths by the splitter. The two resulting signals are
then fed through two delay lines with programmable delay times. These
delay times can be set between 0 and 5 ns and have a 5 ps resolution. The
long pulse on delay line 2 is inverted, and added to the long pulse of de-
lay line 1 through an ultra-fast AND gate. An AND gate only produces
a 1 if the value on both inputs is 1. As can be seen in Figure 2.4, this
results in a short pulse at the output of the AND gate, where the length
of the pulse is determined by the difference between the delay lines. In
reality, also the difference in length of the signal paths to delay 1 and de-
lay 2 have to be taken into account, which results in an extra offset in the
“delay 2 - delay 1” metric. The values for delay 1 and delay 2 are key pa-
rameters of the pulser electronics, and form the basis of the experiments
done to characterise the pulse modulator.

The FPGA also produces trigger pulses which can be useful for some
experiments. For this trigger output, the frequency has to be manually set
using the syncdiv parameter. The frequency of the trigger pulses will then
be ftrigger =

25 MHz
syncdiv .

2.3 Second-order correlation function

Figure 2.5: Schematic of a HBT
setup using start-stop operation.
The red arrows indicate the di-
rection of the light and the or-
ange half-circles are the detec-
tors D1 and D2.

The shortest laser pulses produced by the
modulator are, hopefully, around 30 ps
long. For longer pulses, an approach to
characterize the pulses could be to di-
rectly measure them with a detector. How-
ever, for laser pulses this short, this would
require ultrafast ps-scale detectors which
are not readily available. Therefore we
use single-photon detectors with a ps-scale
timing jitter. With single-photon detec-
tors, we have to take into account the de-
tection probability, timing jitter and dead
time. The timing jitter is the fluctuation
in the temporal position of the detection
event. The dead time is the minimum time
it takes the detector to recover after a de-
tection event. No events can be detected
during this dead time. Typical dead times for single photon detectors are
of the order of tens of nanoseconds and typical timing jitters are of the
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14 Theory

order of tens of picoseconds. This means that directly detecting a pulse
shape of ∼30 ps is impossible. A way to bypass the long dead time and
characterize short laser pulses is to use a Hanbury-Brown Twiss setup.

A Hanbury-Brown Twiss (HBT) setup makes use of a beam splitter and
two detectors to measure the second-order correlation function g(2)(τ).
The second-order correlation function quantifies the intensity fluctuations
of a signal, and is generally given by Equation 2.3 [13].

g(2)(τ) =
⟨I1(t)I2(t + τ)⟩
⟨I1(t)⟩⟨I2(t + τ)⟩ (2.3)

Here, I(t) is the intensity of the light at time t. The subscript indi-
cates the detector on which the light is incident. The angled brackets in-
dicate the time average computed by integrating over a long period. This
expression is normalized such that perfect coherent light has a value of
g(2)(τ) = 1 everywhere.

A typical HBT setup for photons, shown in Figure 2.5, works by mea-
suring the time delays τ between clicks on the two detectors (D1 and D2).
These time delays are then binned into a histogram by a counter to obtain
the second-order correlation function. This measurement can typically be
done in two ways. One is to use start-stop operation, where a detection
event on D1 starts the timer and a detection event on D2 stops the timer.
This method only measures time differences of consecutive photon detec-
tion events, and results in a histogram of coincidence counts K(τ). The
other way is to record all timestamps of all detections on D1 and D2, and
then cross-correlate the two signals with each other. This means that for
each event on D1, all time differences τ with all events on D2 are calcu-
lated. This will result in a histogram of coincidence counts J(τ) of all pho-
ton detection combinations.

This thesis uses two different counting cards, of which one uses start-
stop operation and the other full cross-correlation. In both cases the mea-
surement returns a histogram of coincidence counts as function of the time
difference τ. This means that in the photon-counting setup, the intensity
I(t) of Equation 2.3 has to be represented as a discrete number of photons.
This results in Equation 2.4, where ni(t) denotes the number of counts reg-
istered on detector i at time t. Since our detectors are not photon number
resolving, ni(t) will be 0 or 1 for each time bin.

g(2)(τ) =
⟨n1(t)n2(t + τ)⟩
⟨n1(t)⟩⟨n2(t + τ)⟩ (2.4)

Since the coincidence counts are binned into a histogram, time is dis-

14
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2.4 Single photon sources 15

cretized in steps of ∆t. This means the time averages can be written as
discrete Riemann sums:

g(2)(τ) =

1
N

N
∑

i=1
n1(t)n2(t + τ)

1
N2

( N
∑

i=1
n1(t)

)( N
∑

i=1
n2(t + τ)

) = N
J(τ)

SC1 SC2
(2.5)

Here N = Ttot
∆t is the number of bins, or timestamps, of n1 and n2. SCi

represents the total number of individual single counts on detector i. It
can be seen that J(τ) is directly proportional to g(2)(τ). This means that
for the full cross-correlation method, g(2)(τ) can be obtained from J(τ) by
normalizing the coincidence counts with a factor N

SC1 SC2
.

For start-stop operation, the conversion to g(2)(τ) is more complicated.
Firstly, a lot of photon pair-correlations are missed, which results in less
coincidence counts. Secondly, if the time differences τ of interest are of
the same order of magnitude as the times between clicks, then the larger τ
values might never be recorded. A correction consisting of an infinite sum
of self-convolutions would be needed to correct for this [14, 15]. How-
ever, if τ ≪ R−1 with R the photon click rate, then it can be approximated
that K(τ) ∼ J(τ). In our experiments, R is of the order of 106 detection-
s/sec and we are interested in τ of the order of ns. This means the condi-
tion is well satisfied and no correction should be needed for the start-stop
results. The problem of how to formally normalize K(τ) to g(2)(τ), and
g(2)(τ) normalization for pulsed light in general, will be further addressed
in Chapter 3.

2.4 Single photon sources

For coherent light, g(2)(τ) = 1 for all τ. However, for single photon light
a dip around g(2)(0) can be expected. This dip is caused by the finite life-
time τr of the QD. The lifetime is the characteristic time it takes the QD to
be re-excited after emission of a photon. Due to this time, for a pure sin-
gle photon source there will never be two photons generated at the same
time. There will thus always be at least some time delay between two con-
secutive photons. In the HBT setup, this means that at τ = 0, for perfect
detectors without jitter, there should be no photon correlations. A relation
that can be used to describe this dip is given in Equation 2.6.
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16 Theory

g(2)2L (τ) = 1 − exp(−τ/τr) (2.6)

This equation describes photon correlations from a perfect two-level sys-
tem. If g(2) shows bunching, a three-level system with an additional dark
state might be a better model [6]. However, the g(2) measurements in
this thesis do not show significant anti-bunching, so the simple formula
of Eq. 2.6 can be used.

16
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Chapter 3
Simulation of photon correlations
with realistic detectors

To get a feeling for what to expect of the HBT measurement of the laser
pulses, a simple simulation can be done. With the simulation presented
in this chapter, different pulse shapes and detector settings can easily be
tested to help understand the experimental data. The code can also be
easily modified to simulate other experiments which involve a stream of
light and one or more realistic detectors. The simulation assumes photons
are classical particles, and does not support quantum interference effects.

3.1 Methods

The simulation is based on the simulations by Schneider et al. [16], who
simulate a realistic thermal light stream and HBT experiment. To simu-
late the thermal light stream, they discretize time and generate a number
of photons for each time bin (including 0 photons). To simulate a realis-
tic experiment they include numerous detector effects such as dead time
and timing jitter. In this thesis, the code for the realistic experiment fol-
lows the approach by Schneider et al. [16]. The simulation of the photon
stream is modified to simulate coherent (pulsed) light. All code is written
in Python 3.6.12, using the Numpy library.

3.1.1 Stream of pulsed coherent light

In the simulation performed in this thesis, time is discretized in very small
time steps of ∆t (∼ 1 fs). This results in most time bins being empty, i.e.
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18 Simulation of photon correlations with realistic detectors

containing no photons. To save memory space and thus computation time,
the timestamps of the individual photon detection events are stored, in-
stead of the number of photons for each time bin. These timestamps are
stored as integers in units of ∆t, to ensure the simulation has the desired
time resolution. This means the maximum simulation time is the largest
possible integer (for Numpy’s int64, this is 9 · 1018), multiplied with the
time discretization ∆t. The size of the array representing the stream of
light will then be the total number of photons. The simulated timestamps
represent the times on which the photons would be detected by a perfect
detector.

To simulate coherent light, we assume a Poisson process. For a Poisson
process, the average time between detection events is known, but the in-
dividual events are independent of each other and thus randomly spaced.
The Poisson probability distributions for the number of photons and in-
terarrival times are given in Equations 3.1 and 3.2, respectively [13].

Pk(Γ, T) = e−ΓT (ΓT)k

k!
(3.1)

Pt(Γ) = e−Γt (3.2)

Here, Pk represents the probability to observe k photons in a time pe-
riod T, and Pt represents the probability to observe at least a time t be-
tween two photons. Γ is the average rate of photons, which is a measure
of the intensity of the light. This distribution can easily be achieved by ran-
domly distributing the number of photons over the time interval. Pulsed
coherent laser light is simulated by drawing a number of photons for each
pulse from the Poisson distribution shown in Equation 3.1, and randomly
distributing them over the pulse interval. Note that this simulates perfect
block pulses, while in reality the ultrashort ps-pulses are expected to have
a Gaussian shape. To create a Gaussian shape, the timestamps have to
be drawn from a normal distribution with the FWHM equal to the pulse
length. The resulting statistics for the light in the simulated block pulses
are shown in Figure 3.1, which indeed follow the desired distributions of
Equations 3.1 and 3.2.

To simulate a realistic light stream, background light can be added on
top of the pulsed light. This is done by randomly distributing a number of
background photons over the entire simulated light stream.

18
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Figure 3.1: The Poissonian statistics of the simulated coherent light. This light
stream consisted of 106 photons, with Γ = 1012 photons/sec and ∆t = 1 fs. The
dots represent the simulation and the solid line the theory from Equations 3.1
and 3.2. Figure (a) shows the photon number distribution for a counting time of
10 ps and (b) shows the interarrival time distribution.

3.1.2 Realistic detectors

To simulate realistic HBT measurements, the beam splitter (BS) is simu-
lated by randomly determining for each photon in the original light stream
which detector it will hit, based on a certain splitting ratio of the BS. The
splitting ratio is taken to be 0.5. This results in two light streams which are
detected by the two realistic detectors. A realistic detector can be simu-
lated by incorporating a number of effects. One is the quantum efficiency
η of the detector, which is the chance that an incident photon on the detec-
tor results in a detection event. A random number r ∈ [0, 1) is generated
for each photon timestamp, and the timestamp is deleted from the array if
r > η. Since for our experiment this effectively just lowers the intensity of
the light, η could be set to 1 to save computation time.

The second effect is the timing jitter tjitter of the detector. This is a tem-
poral uncertainty which is added to each detection event. The timing re-
sponse of a detector typically follows a Gaussian shape, where tjitter is de-
fined as the FWHM of the response. A random time delay is added to each
timestamp, drawn from a Gaussian distribution with standard deviation
tjitter/2.355. The factor 2.355 is due to the definition of tjitter as the FWHM
of the shape. The assumed Gaussian distribution is centered around t = 0,
as adding an offset would not change the time differences between the de-
tected photons. For the simulation we assume a jitter of tjitter = 60 ps.
Note that for the analysis of the experimental data in Chapter 4, a more
realistic timing response is used, which includes an exponential diffusion
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20 Simulation of photon correlations with realistic detectors

tail. However, for this simulation a Gaussian distribution is sufficient.
The third effect is the dead time tdead of the detector. This is the time it

takes the detector to recover after a detection event. During this time, the
detector will not detect any photons. There are two simple dead time mod-
els, depending on if the detector is paralyzable or nonparalyzable [17]. For
a paralyzable detector, a photon hitting the detector during the dead time
leads to an elongation or reset of the dead time period. For a nonpara-
lyzable detector, photons hitting the detector during the dead time do not
influence the dead time period. For the SPADs used in this thesis, we as-
sume nonparalyzable behaviour with a typical dead time of tdead = 50 ns.
This means that after each detection, any photons which hit the detector
within 50 ns are ignored.

A fourth detector effect is after pulsing, which is a small chance to have
a second spurious detection pulse after a real detection pulse. Since this
effect can often be neglected, it is not included in the simulation performed
in this thesis.

To simulate accurate detection conditions, the time-to-digital converter
(TDC) of the setup is also simulated. This is a device which triggers to
the flanks of the pulses produced by the detectors to measure the time
differences between the detection events. The TDC bins the time differ-
ences into bins with a certain time resolution ∆tTDC. This time resolution
has to be taken into account in the simulation when simulating the HBT
measurement. Two different TDCs are used in this thesis; a Chronologic
HPTDC8-PCI with 25 ps resolution and a Becker-Hickl SPC-330 with 3 ps
resolution. In the simulation a resolution of 10 ps is used.

3.2 Results

The simulation can be used to gain understanding of g(2)(τ) for pulsed
light. The results of this are shown in Section 3.2.1. The simulation can also
be used to study the consequences of the different detector effects on the
measured g(2)(τ). The results of this study are presented in Section 3.2.2.
Finally, the simulation is used to study the difference between start-stop
operation and full cross-correlation of the signal, the results of which are
shown in Section 3.2.3.

3.2.1 Second-order correlation function for pulsed light

Section 2.3 explained how to normalize the measured histogram of coin-
cidence counts J(τ) to a proper g(2)(τ). For pulsed light, g(2)(τ) can be

20
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3.2 Results 21

expected to consist of a number of peaks, separated by the period T of
the pulses. One might expect that the peaks are at g(2) = 1. However, as
can be seen in Figure 3.2, this is not the case for a simulation of a prop-
erly normalized g(2)(τ). This can be explained with the general definition
of g(2)(τ) (Eq. 2.3). Formally, g(2)(τ) is normalized with the average in-
tensity of the light. For pulsed light, this average intensity is a lot lower
than the intensity at the pulses. Hence, the peaks of pulsed light in g(2)(τ)
have a value ≫ 1, which depends on the period and length of the pulses.
To have the peaks at g(2) = 1, the function should be normalized with
the average intensity of the pulses. This would be a tedious calculation
involving the pulse shape, pulse duration and period of the pulses, with
the end result being that the peaks have a value of 1. If this is the desired
result, one might as well directly normalize the peaks to 1, as is often done
in experimental work and will also be done in this thesis.
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Figure 3.2: Simulation for three block pulses of different durations, simulated for
1 ms with a period of 10 ns, an intensity of 1010 photons/sec, 1% background
light and perfect detectors.

3.2.2 Different detector effects

In the simulation shown in Figure 3.2, no detector effects were incorpo-
rated. Figure 3.3 shows how the different detector effects affect the mea-
sured g(2)(τ). Here the light was simulated with an intensity of 1010 pho-
tons/sec at the peaks. The background light was set to 107 photons/sec,
so that the pulses have an extinction ratio of 1000. Since the period was
100 ns and the pulse duration 100 ps, this corresponds to a total measured
intensity of 106 photons/sec when the quantum efficiency of 0.05 is in-
cluded. This is a realistic number of counts for the single photon detectors
that are used in this thesis.
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Figure 3.3: Simulation of different detector effects for block pulses and Gaussian
pulses. The pulses were simulated for 0.5 s with a pulse duration of 100 ps, a
period of 100 ns, an intensity of 1010 photons/sec and 0.1% background light.

In Figure 3.3, only one detector effect was simulated at a time. Fig-
ure 3.3b shows that for a low quantum efficiency, less photons are de-
tected, resulting in a more noisy signal. Other than that, the shape of
g(2)(τ) is not affected. In Figure 3.3c it can be seen that the peaks become
a little lower when a dead time is added, indicating that photons which
should have been detected in the pulse are now missed due to the dead
time. This is because, without the quantum efficiency limiting the number
of counts, the photon rate is of the same order as the maximum click rate
of the detectors. In a normal experimental setup, the detectors should not
be detecting at this dead time limit. In the simulation this was done on
purpose, to visualize the effects the dead time would have if a detector is
overexposed.

Figure 3.3a shows that for a perfect detector, the block pulse results
in a triangular shape and the Gaussian pulse results in a Gaussian shape.
Figure 3.3d shows that this measured shape changes if a timing jitter is
added. The block pulse now resembles a Gaussian, and the Gaussian pulse
now results in a wider peak. The timing jitter of the detectors is thus an
important effect which has to be taken into account when analyzing the
HBT measurements, as it has a widening effect on the measured peaks.

22
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3.2 Results 23

3.2.3 Start-stop versus full cross-correlation

The theory of Section 2.3 predicts that if τ ≪ R−1, with R the photon click
rate, then the histograms of coincidence counts for start-stop operation
K(τ) and for full cross-correlation J(τ) should have the same shape. The
simulations of Sections 3.2.1 and 3.2.2 used full cross-correlation, as this
is the formal definition of g(2)(τ). In this section, the HBT measurements
of the laser pulses are also simulated with start-stop operation to compare
the results of the two methods. The start-stop operation is simulated by a
timer that is started when a click is registered on detector 1, and stopped
when a click is registered on detector 2. Extra photons registered on de-
tector 1 before detector 2 has clicked are ignored and do not restart the
timer.
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Figure 3.4: Simulation of full cross-correlation and start-stop operation for block
pulses with perfect detectors and 0.1% background light. The pulses were simu-
lated with three different pulse durations and a period of 100 ns. The pulses of
(a) and (b) were simulated for 10 s with an intensity of 5 · 107 photons/sec, and
pulses of (c) were simulated for 10 ms with an intensity of 5 · 109 photons/sec.

Pulses of different durations were simulated at two different powers to
show the effect of the start-stop operation. Figure 3.4 shows the results of
these simulations. The figure shows that for the higher power, the mea-
surement of the long 1 ns pulse starts to change. This is because for this
power, the click rate R is of the same order as the time difference τ of in-
terest. However, the intensity needed to get this effect is so high that this
will not be a problem in the experiments performed in this thesis.

Furthermore, it can be seen that the number of coincidence counts at
the peak for full cross-correlation (Fig. 3.4a) and for start-stop operation
(Fig. 3.4b) differ by about a factor 2. As explained in Section 3.2.1, all
g(2)(τ) measurements can be normalised to have the peak at 1. As long
as the requirement τ ≪ R−1 is met, start-stop operation should give the
same normalised g(2)(τ) as full cross-correlation.
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Chapter 4
Pulse modulator characterization

In the characterization of the electro-optic modulator (EOM) there are two
important quantities which should be determined. Those quantities are
the pulse duration, which ideally should be shorter than 30 ps, and the
extinction ratio (ER), which should be at least a factor 100. To determine
those quantities, Section 4.1 explains the experimental setup. Section 4.2
discusses the stability of the EOM bias operating point. Section 4.3 ex-
plains the method that is used to fit the g(2)(τ) data, and Section 4.4 presents
and discusses the results. Section 4.5 shows the results of TCSPC measure-
ments done with the trigger output of the pulser electronics. Finally, based
on the results of Section 4.4, the power dependence of the EOM is tested
in an additional experiment presented in Section 4.6.

4.1 Experimental setup and methods

As explained in Chapter 2, a HBT experiment can be used to measure
the g(2)(τ) function, which shows the intensity fluctuations of the pulsed
light. Through these intensity fluctuations, information about the original
pulses can be recovered. The HBT setup consists of a beam splitter and
two detectors. In this thesis, the beam splitter is a fiber splitter and the
detectors are single photon avalanche diodes (SPADs). The full setup is
shown in Figure 4.1, where the HBT part is shown in the green block. The
signals of the two SPADs are correlated by a Time-to-Digital Converter
(TDC).

Directly after the continuous-wave (CW) laser, a small percentage of
the light is split off via a glass window to a photodiode (PD), to keep track
of fluctuations in the laser light. After this, a neutral density filter wheel,
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26 Pulse modulator characterization

lambda/2 plate, and linear polarizer are placed to control the power and
polarization of the laser light (blue block in Fig. 4.1). Polarization is im-
portant in this setup, as the LiNbO3 crystals inside the EOM are naturally
birefringent. For the EOM to work properly, the input light should be
linearly polarized along the Z axis of the crystal. To maintain the linear
polarization of the light after the polzarizer, the light is coupled to a po-
larization maintaining (PM) single mode fiber (SMF). This fiber then feeds
the CW light to the EOM, which then outputs pulsed light into another
PM SMF. The rest of the setup after the EOM is polarization insensitive,
therefore regular non-PM fibers are used.

CW laser λ/2
lin.
pol.

PD1

glass window

modulator

PD2

VDCVGNDRF

PM SMF PM SMF

fiber 
splitter

SMF
SMF

10

90

MMF

fiber 
splitter

50

50

SPAD

SPAD

att.

Pulser 
elec-

tronics

Correlation 
(TDC)

7%

Polarization Modulator + bias control

HBT setup

PC

Figure 4.1: Schematic diagram of the experimental setup used to perform the
HBT measurement of the laser pulses. The blue “Polarization” block shows com-
ponents used to control the intensity and polarization of the light. The yellow
“Modulator + bias control” block shows the EOM, pulser electronics, and the
bias control setup. Finally the green “HBT setup” block shows the HBT part of
the experiment.

Figure 4.1 also schematically shows the electronics which control the
EOM (yellow block in Fig. 4.1). The RF-port is driven by the pulser elec-
tronics, which are in turn driven by the PC. The DC electrodes are con-
nected to the analog outputs of a NI USB-6001 DAQ, which is also used
to record the intensity of the output light measured with with PD2. The
signal of PD2 can be used to determine the operating point of the bias VDC,
and automatically control the DC bias during the experiments. The bias
voltage VDC should be set to the half-wave voltage Vπ, such that the out-
put light is at a minimum. During experiments there can be a slight drift
in Vπ. In order to minimize the drift, the manufacturers of the EOM rec-
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4.2 Stability of the bias operating point 27

ommend to set VDC to the minimum closest to VDC = 0. To further deal
with the drift, an automatic bias control program has been developed.

The laser used in the experiments is a Lion series 920-985 nm laser by
Sacher Lasertechnik. The EOM is the NIR-MX950-LN-20 by iXblue. The
PDs are Thorlabs PDA100A photodiodes, and the SPADs are ID Quan-
tique ID100-MMF50 single-photon detectors. Two different TDCs are used
to do the correlation; a Chronologic HPTDC8-PCI and a Becker-Hickl SPC-
330. For most of the HBT experiments in this research project, the Becker-
Hickl card is used, as this card has a better time resolution.

4.2 Stability of the bias operating point

The transfer function of the EOM tends to drift due to thermal changes,
thermal inhomogeneity, aging, photo refractive effects and static electrical
charge accumulation [12]. This drift is a slow drift compared to the mea-
surement timescale. Measurements of this drift are shown in Section 4.2.1.
Algorithms to maintain the correct operating point are presented in Sec-
tion 4.2.2.

4.2.1 The modulator transfer function

The transmission of the EOM as function of the DC bias voltage was mon-
itored during several measurement days, and during the course of this
thesis, shifted a total of about 2 V. A particularly large shift happened
within one week (Fig. 4.2a). During the different measurements, different
behaviours could be observed. On some days, the transfer function was
extremely stable (Fig. 4.2b). On other days, the transfer function drifted
significantly during the experiments (Fig. 4.2c).

On the days where the transfer function was most stable, the laser
power was kept constant. However, this could also be a coincidence. An
experiment could be done to test if the transfer function of the EOM has
a power or frequency dependence. Perhaps the environmental conditions
(temperature, humidity) could also play a role. The transfer function was
sometimes measured to have a smooth maximum (Fig. 4.2a,b), and other
times to have a noisy maximum (Fig. 4.2c). The reason for the varying be-
haviour of the EOM was not addressed in this thesis. Instead, several ap-
proaches of monitoring the minimum of the EOM transfer function were
tested.
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Figure 4.2: The transfer function of the EOM, plotted in log scale, measured over
the course of 2 months. Figure (a) shows a significant change of the transfer func-
tion. Figure (b) shows a day where the transfer function was extremely stable in
the span of 6 hours. Figure (c) shows a day where the transfer function drifted
significantly in the span of 3 hours.

To minimize the drift, the operating point of the EOM should be set to
the minimum in the transfer function that is closest to VDC = 0. For most
of the experiments shown in this thesis, this was the negative minimum.
Overall, this negative minimum also appeared to be the most stable. On
days where the transfer function showed a drift, it was mostly the positive
minimum which drifted. The negative minimum was also measured to be
lower on most days. The transfer functions of Figure 4.2 show typical ex-
tinction ratios around a factor 400 for the negative minimum. However,
since the curves were measured with a simple photodiode and the mini-
mum was close to the detection limit, this is only a rough estimation.

4.2.2 Automatic bias control algorithms

A simple automatic bias control algorithm was devised and tested in the
unstable positive minimum. To provide feedback to the algorithm, the
output of the EOM is measured with a photodiode, which averages over
one second for each datapoint. The algorithm does 10 small DC bias steps
in one direction, after which it checks if the output light measured by the
photodiode got higher or lower. If the output got higher, the step direction
changes. If the output got lower, the step direction remains the same. This
algorithm works well if the step size and averaging are large enough to be
above the noise. However, it slightly lowers the average extinction ratio,
as the algorithm continuously steps out of the minimum. Because of this,
and the general stability of the negative minimum, it was chosen to manu-
ally monitor the operating point for most of the measurements presented
in Chapter 4 and all the cQED measurements of Chapter 5.

28
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4.3 Fitting models 29

For future applications it would be preferable to design a second bias
control algorithm for these stable minima. Such an algorithm would re-
quire extremely slow updates, on the scale of minutes. If the algorithm
takes small steps out of the minimum, the operating point will not be op-
timal. To minimize the hindrance of this to the experiment, these steps
should not last long. The algorithm should also only take steps if a drift
of the minimum is observed, to prevent unnecessary hindrance of the ex-
periment. An example of an algorithm would be to monitor the output of
the EOM and average it into one data point per minute. As soon as one
of these measurements deviates a certain percentage from the previously
achieved minimum, the algorithm should take steps to find the new mini-
mum. These steps should consist of two quick, small steps of 1 second into
both bias directions. If one of these steps results in a lower power, more
steps in that direction should be taken to find the new minimum. After
this, the bias should again be kept constant until a data point is recorded
which deviates too much from the minimum.

4.3 Fitting models

The goal of the experiments is to extract the pulse duration and extinction
ratio of the generated pulses, and ideally say something about the shape of
the pulses. In order to do this, good understanding of the g(2)(τ) function
is required. An accurate model for g(2)(τ) is based on two convolutions,
which involve a pulse ansatz and the detector response function. The first
step in fitting the data is thus obtaining the detector response function,
which is done in Section 4.3.1. After this, the data can be fitted with a
model consisting of the pulse ansatz and numerical convolutions, which
is explained in Section 4.3.2. The pulse duration can be directly fitted as
parameter, but extracting the extinction ratio from the g(2)(τ) data is more
difficult. The method to estimate the extinction ratio is explained in Sec-
tion 4.3.3.

4.3.1 SPAD Detector response

For the g(2)(τ) model to be accurate, it is important to know the detec-
tor response function. The response of a single photon avalanche diode
(SPAD) typically consists of a Gaussian with an exponential diffusion tail [18–
20]. The FWHM of the Gaussian is defined as the timing jitter of the detec-
tor. For estimation purposes the detector response can often be assumed
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30 Pulse modulator characterization

to be a Gaussian, but for the model in this thesis the exponential tail is in-
cluded to achieve an accurate fit. To be able to calculate the convolutions
of the model, a function of this detector response is needed. Such a func-
tion can be obtained by using a model or by interpolation. Both methods
require experimental data of the detector response, which can be obtained
with a Time-Correlated Single Photon Counting (TCSPC) measurement.
TCSPC is a technique which measures arrival times of photons in respect
to a reference signal provided by the light source. If the light source is a
pulsed laser with sufficiently short pulses (<1 ps), and the pulses are di-
rectly measured by the detector, the result of the TCSPC measurement will
be the detector response function.
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Figure 4.3: Interpolations of the timing
response of the ID100 SPADs. The y-
axis shows normalized counts on a log
scale and the x-axis time in ns, where
the peaks are shifted to t=0. The blue
line the extracted data from the ID100
datasheet and the red line shows the
TCSPC measurement interpolation.

The SPADs used in the HBT mea-
surements of the laser pulses are
ID100-MMF50 single-photon detec-
tors, which according to their spec-
ifications have a jitter of 40 ps.
The specifications also show the re-
sponse function of the detectors,
which can be extracted from the
datasheet by using a data-extracting
tool. Upon further inspection of
the extracted data, the jitter ap-
pears to be 66 ps. We also per-
formed our own TCSPC measure-
ment, which shows a jitter of 60 ps.
Both the datasheet response and the
measured reponse are shown in Fig-
ure 4.3. In this figure, a small offset
of 0.004 was added to the datasheet
curve to match the slopes of the dif-
fusion tails. The TCSPC measurements showed no change in detector
response if the power of the light incident on the detectors was varied.
The measured response will be used as detector response function in the
model.

4.3.2 A numerical model for the HBT measurements

The g(2)(τ) data is fitted with a numerical model. The model assumes a
pulse shape Ppulse(t), and first generates this shape using the pulse du-
ration t f whm as parameter for the FWHM of the pulse. Assumed pulse

30

Version of August 23, 2022– Created August 23, 2022 - 16:39



4.3 Fitting models 31

shapes in this thesis are Gaussian pulses and block pulses. The time dis-
cretization is chosen a factor 100 smaller than the time resolution of the
data. The detector response function Pdet(t) is sampled with the same time
discretization. We then obtain g(2)(t) by the following calculation:

g(2)(t) =
(

Ppulse(t) ∗ Pdet(t)
)
⋆
(

Ppulse(t) ∗ Pdet(t)
)

(4.1)

Note that cross-correlation (⋆) is the same as convolution (∗) with the
reversed function (t → −t). Due to the commutative and associative prop-
erties of the convolution operation, this can also be written as:

g(2)(t) =
(

Ppulse(t) ⋆ Ppulse(t)
)
∗
(

Pdet(t) ⋆ Pdet(t)
)

(4.2)

= g(2)pulse(t) ∗ g(2)det(t) (4.3)

In other words, g(2)(t) is the convolution of the perfect non-jitter-limited
g(2)pulse(t), and the detector response g(2)det(t). The model performs the con-

volutions in this order, and scales g(2)pulse(t) to have height A and offset b.
This allows a calculation of the extinction ratio using the derivation in Sec-
tion 4.3.3. The resulting shape is then given the correct position τ0 for the
fit. This numerically calculated g(2)(τ) is then interpolated, after which
the interpolation is sampled at the desired points. This model thus fits the
duration of the original pulse t f whm, the non-jitter-limited g(2)(τ)pulse peak
height A and offset b, and the position of the peak τ0.

4.3.3 Estimating the extinction ratio

The extinction ratio is the ratio between the light at the pulse peaks and
the background light. Naively one would think the extinction ratio can
then be easily extracted from the peak-to-background ratio of the g(2)(τ)
data. However, this ratio of the g(2)(τ) data depends on the pulse shape,
pulse width and repetition rate of the pulses. To calculate how to convert
the peak-to-background ratio to the original extinction ratio, we assume
the pulse signal I(t) consists of a periodic pulse signal Ip(t) and a constant
background Ibg:

I(t) = Ip(t) + Ibg (4.4)

The pulse signal Ip(t) has an intensity of Ipeak at the peak, as is shown
in Figure 4.4. Since we are interested in the ratio between peak and back-
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ground, and the denominator of g(2)(τ) (Eq. 2.3) is constant, we only need
to evaluate the numerator:

g(2)(τ) ∼
〈

I(t)I(t + τ)
〉

(4.5)

=
〈(

Ip(t) + Ibg
)(

Ip(t + τ) + Ibg
)〉

(4.6)

=
〈

Ip(t)Ip(t + τ)
〉
+ 2Ibg

〈
Ip
〉
+ I2

bg (4.7)

Figure 4.4: Drawing showing the
definitions of the different param-
eters in (a) time domain and (b)
g(2)(τ).

Since the background light Ibg is
constant and time-independent, it can
be taken outside of the angled brack-
ets, which indicate a time average. The
last step to Eq. 4.7 also uses the fact
that the time average of Ip is constant,
⟨Ip(t)⟩ = ⟨Ip(t + τ)⟩ = ⟨Ip⟩. The
value of the peak in g(2)(τ), which will
be referred to as A (see Fig. 4.4), is
found at τ = 0. For τ = 0, we can
write

〈
Ip(t)Ip(t + τ)

〉
= ⟨I2

p⟩, which
is the time average of the pulse signal
squared. The value of the background
in g(2)(τ), which will be referred to as
b, is given for some τ for which the
peaks of Ip(t) and Ip(t + τ) have zero
overlap. There,

〈
Ip(t)Ip(t + τ)

〉
= 0.

This means that the relations between the peak A and background b in
g(2)(τ) and the original signal Ip(t) with background Ibg are given by:

A =
〈

I2
p
〉
, b = 2Ibg

〈
Ip
〉
+ I2

bg (4.8)

Here the relation for b can be solved for Ibg to obtain:

Ibg = −⟨Ip⟩+
√
⟨Ip⟩2 + b (4.9)

The last step then consists of assuming a pulse shape and writing ⟨Ip⟩
and ⟨I2

p⟩ in terms of Ipeak. The pulses are assumed to have a duration t f whm
and period T. For a block pulse it can then be shown that:

⟨Ip⟩ = Ipeak
t f whm

T
, ⟨I2

p⟩ = I2
peak

t f whm

T
(4.10)

32

Version of August 23, 2022– Created August 23, 2022 - 16:39



4.4 Second-order correlation function results 33

For a Gaussian pulse with standard deviation σ ≈ t f whm/2.355 it can
be shown that:

⟨Ip⟩ = Ipeak
√

2π
σ

T
, ⟨I2

p⟩ = I2
peak

√
π

σ

T
(4.11)

To make the equations more clear, they can be written in terms of the
duty cycle D. The duty cycle represents the fraction of one period in which
the pulse is on. For the Gaussian pulse this is Dg =

√
2π σ

T and for the

block pulse this is Db =
t f whm

T . The following expressions for the extinction
ratios can then be derived, using equations 4.8, 4.9, 4.10 and 4.11:

ER =
Ipeak + Ibg

Ibg
(4.12)

ERblock =
1 − Db +

√
D2

b + Db
b
A

−Db +
√

D2
b + Db

b
A

(4.13)

ERGauss =

1 − Dg +

√
D2

g +
Dg√

2
b
A

−Dg +

√
D2

g +
Dg√

2
b
A

(4.14)

This derivation makes the assumption that the intensity is the same on
both detectors. It is also assumed that the measurement is not affected by
detector jitter. In the actual experiments performed in this thesis, this as-
sumption does not hold. However, the model as presented in Section 4.3.2
circumvents this problem by directly fitting A and b.

4.4 Second-order correlation function results

The results of the HBT measurements done to characterize the pulse mod-
ulator are presented and discussed in this section. First we show the mea-
sured g(2)(τ) shapes and the fitted curves in Section 4.4.1. Then, in Sec-
tion 4.4.2, we present the fitted pulse durations, and in Section 4.4.3 we
present the calculated extinction ratios. Further implications of the results
for single photon generation will be discussed in Chapter 5.
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4.4.1 Pulse shape for short versus long pulses

Figure 4.5 shows the measured g(2)(τ) data and fits for two different pulses.
For one pulse (delay1, delay2) = (0 ps, 0 ps), and for the other the delays
were (0 ps, 500 ps). Multiple settings for the delays were tried, and the
pulses could be observed to disappear into the background at (70 ps, 0 ps).
From that point, increasing the difference delay2-delay1 increases the pulse
duration. The (0 ps, 0 ps) pulse is a short pulse of estimated duration
68 ± 1 ps. The (0 ps, 500 ps) pulse is a long pulse of estimated duration
391 ± 4 ps. For these estimations, a Gaussian pulse ansatz was used.
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Figure 4.5: Measured g(2)(τ) for (a) a pulse with (delay1, delay2) = (0 ps, 0 ps)
and (b) a pulse with (delay1, delay2) = (0 ps, 500 ps). The red lines show fits to
the data assuming a Gaussian pulse. The blue line in (b) shows a fit assuming a
block pulse.

As can be seen in the figure, the fit matches the data for the short pulse
quite well. For the long pulse there appears to be a slight deviation (green
arrow). For longer pulses one might expect a block pulse instead of the
assumed Gaussian pulse. A fit with a block pulse ansatz is shown in Fig-
ure 4.5 in blue. It can be seen that this does not explain the deviation.
The differences between Gaussian and block pulse shapes in the g(2)(τ)
measurement can be studied with the model. For short pulses, both pulse
shapes give the same result, as this regime is heavily limited by the de-
tector response. Therefore, for short pulses the pulse shape can not be
recovered from g(2)(τ). For the longer pulses, the block pulse results in a
more triangular g(2)(τ) shape. This is illustrated in Figure 4.6, and mainly
results in a difference in g(2)(τ) width for the two pulse shapes. This ex-
plains why the block pulse fit in Figure 4.5 obtains a pulse duration of
529 ± 1 ps.
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4.4 Second-order correlation function results 35

Figure 4.6: The difference in the model between a Gaussian (orange line) and
block pulse (blue line) assumption, for long pulses. Shown is the original pulse,
the convolution with detector response, and the autocorrelation. Both original
pulses have a FWHM of 500 ps. The time axes of the three figures are equal.

The slight deviations from the fit in Figure 4.5b increase with the du-
ration of the pulse. These deviations could be caused by the EOM not
immediately fully returning to the operating point Vπ after the long pulse.
However, from this data, a clear origin of the deviations can not be con-
cluded. This data also gives no conclusion on the shape of the long pulses,
although the block pulse seems to be a slightly better fit at the peak. Sec-
tion 4.5 will present TCSPC measurements using a trigger output of the
EOM. These TCSPC measurements allow further discussion on the shape
of the pulses.

4.4.2 Pulse duration

The original durations of the pulses can be reconstructed from the fits. The
results of these reconstructions are shown in Figure 4.7. This figure shows
data that was measured on four different days, using the negative DC bias
minimum of the EOM. See Appendix I for additional data which was mea-
sured in the noisy positive minimum. Between those days, the laser power
slightly varied due to different attenuation and coupling into the fiber.
The figure shows two linear fits; y = (0.64 ± 0.02)x + (74 ± 2) ps for the
model assuming a Gaussian pulse, and y = (0.81 ± 0.02)x + (109 ± 5) ps
for the model assuming a block pulse. In reality the short pulses can be
expected to be Gaussian and the long pulses can be expected to be more
block-shaped. The actual relation might thus be something in between the
two fits.

It should be noted that the reconstructed pulse duration heavily de-
pends on the detector jitter assumption. Assuming a Gaussian detector
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Figure 4.7: The reconstructed pulse durations for Gaussian pulse assumptions
(circles) and block pulse assumptions (squares). The colors indicate data taken
at different days. The solid black line indicates a linear fit through the Gaussian-
ansatz data, and the dashed black line indicates a linear fit through the block-
ansatz data. The figure on the right shows a zoomed-in plot of the short pulse
region.

jitter tjit and Gaussian pulse with duration t f whm, the relation between the
jitter and reconstructed pulse duration is:

∆τ =
√

2
√

t2
jit + t2

f whm =⇒ t f whm =

√
∆τ2

2
− t2

jit (4.15)

Here ∆τ is the FWHM of the measured g(2)(τ) peak. This relation
shows that the jitter affects shorter pulses more than longer pulses. This
means that if the actual jitter were to differ, the slope of the linear fit in
Figure 4.7 would also differ. From the way the electronics generate the
pulses, one would expect the pulse duration to increase on a 1:1 ratio with
the difference between delay1 and delay2. This would mean the slope of
the linear fit should be 1. Even with a linear fit starting at the Gaussian
pulses and ending at the block pulses, this data does not produce a slope
of 1. This could indicate that the assumed detector response is too narrow.
This means the reconstructed pulse durations are likely overestimates, and
the actual pulse durations are shorter.

In data measured with the trigger output of the EOM (Sec. 4.5), the
pulses could still be observed at (delay1, delay2) = (75 ps, 0 ps). By ex-
trapolating the linear fits of Figure 4.7 to this setting, we can find an es-
timate for the shortest pulses that should be possible, assuming the rela-
tion remains linear in the short-pulse regime. The Gaussian ansatz gives a
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4.4 Second-order correlation function results 37

pulse duration of 26 ± 3 ps and the block pulse ansatz gives a duration of
48 ± 5 ps. It is reasonable to assume that the shortest pulses have a Gaus-
sian shape. Due to the uncertainties caused by the detector response and
pulse shape it is difficult to conclude a definite shortest pulse duration, but
based on Figure 4.7 it may be concluded that the shortest pulses are of the
order of ∼ 50 ps. Due to the large time span between the different mea-
surements of Figure 4.7 (months), it can also be concluded that the pulse
modulator is stable over time.

4.4.3 Pulse extinction ratio

An important characteristic for the performance of the EOM is the extinc-
tion ratio (ER) that can be achieved. The extinction ratio can be calculated
from the parameters which are fitted by the model, using Equation 4.14.
Since the results for block and Gaussian shapes are similar, the choice is
made to assume Gaussian pulses in this section. The calculated extinc-
tion ratios are shown in Figure 4.8, and show extinction ratios up to al-
most 30 dB. The figure also includes data from the TCSPC measurements
(Sec. 4.5), respresented as crosses. The color of the plotted points shows a
measure of the intensity at the peaks of the pulses. For the TCSPC mea-
surements this intensity can be directly determined as:

Itrig
peak =

Ttrig

Tpulse

A + b
b

(4.16)

.
Here A and b are the fitted non-jitter-limited peak and background,

and Ttrig, Tpulse are the periods of the trigger and pulses. The factor
Ttrig

Tpulse

accounts for different trigger rates used. For the HBT measurements, this
intensity value is estimated with:

IHBT
peak = CĨHBT

peak = C

√
A

Dg
(4.17)

This expression is based on Equation 4.11. The constant C brings the
trigger and HBT measurements to the same scale, and is calculated by
comparing the calculated ĨHBT

peak and Itrig
peak for measurements where the op-

tical power was equal. C was determined to be ∼ 750. The measurements
used for the estimation of C are the high-ER measurements of values be-
low a delay difference of 0. It can be seen that the reconstructed extinction
ratios for these HBT and TCSPC measurements of equal optical power
were similar.
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Figure 4.8: The reconstructed extinction ratios for different pulse durations and
different laser powers. The color indicates an estimate of the intensity at the peaks
of the pulses. The dots represent HBT measurements and the crosses TCSPC
measurements (Sec. 4.5). The arrow indicates a decrease of a factor ∼ 10 in optical
power.

Figure 4.8 shows a clear power dependence of the reconstructed ex-
tinction ratio. In all measurements, the laser power was varied in front of
the EOM, as indicated in Figure 4.1. The two measurements indicated by
the arrow (delay2-delay1 = 200) were taken sequentially, where the laser
power was lowered by a factor 10 in between. To find out if the power
dependence is caused by the EOM or by the detectors, additional mea-
surements were done. The results of these measurements and further con-
clusions about the power dependence of the EOM are presented in Sec-
tion 4.6.

Figure 4.8 also shows that for delay differences below 0 the pulses start
to collapse, completely disappearing at delay2-delay1 = -80 ps. This agrees
with earlier measurements done by the ELD with a spectrum analyzer,
which found that the electrical pulses disappear at a delay difference of
-80 ps. Furthermore, the ELD found that for a delay difference of -65 ps
the pulses were already collapsing, with an estimated FWHM of 40 ps.

Finally, Figure 4.8 shows extinction ratios up to 30 dB, with most of the
points exceeding the typical 25 dB provided by the specifications of the
EOM. The specifications do not mention a maximal extinction ratio, but
do show a figure where a static extinction ratio of ∼ 32 dB is achieved.
The high extinction ratios shown in Figure 4.8 thus agree with the speci-
fications of the EOM. Since the amplitude of the electrical pulses is likely
not yet optimal, an additional experiment can be done to increase the ex-
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4.5 Triggered TCSPC 39

tinction ratio. If the amplitude of the electrical pulses can be varied, the
extinction ratio can be measured as function of electrical pulse height. The
electronics do currently have a parameter which should slightly vary the
amplitude of the pulses (VR), but this parameter also likely slightly varies
the durations of the pulses, so it was chosen to keep this value constant in
the experiments done in this thesis.

In the measurements of Figure 4.8, the pulse repetition frequency for
most points was 50 MHz. Measurements which had a slightly different
repetition frequency (10 MHz - 50 MHz) did not deviate from the other
measurements. A dependence of the extinction ratio on the wavelength of
the laser light was not investigated, but could be present.

4.5 Triggered TCSPC

The fast pulser electronics developed by the ELD also have a trigger out-
put. This trigger is derived from the same clock that generates the elec-
trical pulses and can be used for Time-Correlated Single Photon Counting
(TCSPC) measurements. TCSPC is a technique which measures arrival
times of photons in respect to a trigger signal. This can for example be
used to do time-resolved resonant fluorescence spectroscopy, to measure
the lifetime of a quantum dot. The trigger output can also be used for
synchronization purposes such as heralding events.

In this section, the trigger output is used to do TCSPC with the optical
pulses generated with the EOM. In order to do this, one of the detectors
in the measurement setup is replaced by the trigger signal. The result of
the measurement will then be the convolution of the original pulse with
the detector response. This measurement can thus be deconvoluted with
the detector response to reconstruct the shape of the original pulse. How-
ever, to extract the duration and extinction ratio of the pulses, it is easier to
assume a Gaussian pulse and directly fit the convolution to the measured
data. The results of this are presented in Section 4.5.1, followed by a dis-
cussion on pulse shape reconstruction by deconvolution in Section 4.5.2.

4.5.1 Pulse duration and trigger jitter

To measure a TCSPC curve, the period of the trigger should be an integer
multiple of the period of the pulses. Different repetition rates for the trig-
ger were tested (1 MHz, 12.5 MHz, 25 MHz), for a pulse repetition rate of
50 MHz. The results show no dependence on the trigger rate, so this will
further be ignored in this section. The reconstructed extinction ratios were

Version of August 23, 2022– Created August 23, 2022 - 16:39

39



40 Pulse modulator characterization

already shown in Section 4.3.3, and matched the HBT measurements well.
The reconstructed pulse durations are shown in Figure 4.9.
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Figure 4.9: Reconstructed pulse durations for the TCSPC measurements. The
black dots and grey squares show the results of the HBT measurements (Sec. 4.4.2)
for a Gaussian and block pulse ansatz respectively. The red line through the trig-
ger data shows a fit where a Gaussian jitter of 142 ps was added to the fit of the
black line.

The reconstructed pulse durations for the TCSPC measurements are
consistently longer than the pulse durations reconstructed from the HBT
measurements, and appear to plateau for short delay differences. Since the
setup used the same measurement equipment, this indicates that there is a
jitter in the trigger signal. If the trigger pulses have a significant temporal
uncertainty, the measured response will widen. For a simple estimation of
this jitter, we can assume the original pulse, detector response, and trigger
jitter are all Gaussian. The measured width of the TCSPC peak ∆tmeas is
then given by:

∆tmeas =
√

t2
f whm + t2

det + t2
jitter (4.18)

Here t f whm is the duration of the pulse, tdet is the FWHM of the detector
response and tjitter is the jitter of the trigger. The jitter can thus be added
to the linear fit ax + c through the following equation:

treconstructed =
√
(ax + c)2 + t2

jitter (4.19)
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4.5 Triggered TCSPC 41

Here x is the delay difference delay2-delay1. Equation 4.19 is fitted to
the data, see Fig. 4.9, and fits a jitter of 142 ± 3 ps. This low uncertainty
follows from the fit, but in reality this is a rough estimate due to the as-
sumptions made. It can be concluded that the trigger likely has a jitter of
order 140 ps. Possible elements of the electronics which can cause this jit-
ter are the voltage controlled oscillator (VCO) and the slow CMOS-output
of the FPGA. It is unlikely that the jitter originates from the VCO, since the
jitter would then propagate also to the optical pulses, which has not been
observed. This leaves the CMOS-output as likely culprit. In this case, a so-
lution could be to use a different type output of the FPGA. A more detailed
schematic of this part of the electronics is given in Appendix II.

4.5.2 Reconstructing the pulse shape

The HBT measurements can not be deconvoluted, since deconvolution of
two shapes requires knowing one of the two shapes, and the measured
peak is an autocorrelation. With TCSPC, the measured peaks can be de-
convoluted, because this includes only a single convolution and the detec-
tor response is known. Because the data is noisy, a Wiener deconvolution
is used. This is a deconvolution which is performed in the frequency do-
main, to minimize the impact of deconvolved noise.
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Figure 4.10: Deconvoluted TCSPC measurements. The grey lines show the orig-
inal measurements and the black lines the deconvolutions with the detector re-
sponse. Figure (a) shows a long pulse of ∼ 520 ps and (b) a shorter pulse of
∼ 160 ps.

The results of the deconvolution are shown in Figure 4.10. This figure
shows that the longer (0 ps, 500 ps) pulse indeed appears to be a block
pulse, and the shorter (0 ps, 0 ps) pulse a Gaussian pulse. The TCSPC
measurement was deconvoluted with only the detector response, so the
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42 Pulse modulator characterization

shapes of Figure 4.10 still include the convolution of the ∼ 140 ps jit-
ter. The widths of these deconvoluted peaks, through quick estimation
by hand, are ∼ 520 ps and ∼ 160 ps. The widths fitted with the Gaussian
ansatz in Figure 4.9 for these pulses were 440 ps and 150 ps. The 80 ps dif-
ference for the long pulse can be explained by the different shape. It can
thus be concluded that the longer pulses converge to a block-like shape,
while the shorter pulses appear to be Gaussian.

4.6 Power dependence of the EOM

5.0 2.5 0.0 2.5 5.0
DC Bias (V)

10 3

10 2

10 1

100

M
od

ul
at

or
 o

ut
pu

t (
P/

P m
ax

)

12-08-2022
t=0
t=4.5h

Figure 4.11: DC bias sweeps of
EOM during power dependence
measurements.

Section 4.4.3 indicated that the extinction
ratio might be power dependent. In this
section, an experiment is performed to
investigate this power dependence. The
setup is adjusted so that the power can be
varied both in front of and after the EOM.
This way, the power on the detectors can
be kept constant while the power through
the EOM is varied, and vice versa. Fig-
ure 4.11 shows two bias sweeps taken at
the start and towards the end of the ex-
periment. The negative minimum at −3.3
V was selected as operating point, and the automatic bias control algo-
rithm of Section 4.2.2 was used to maintain this operating point.
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Figure 4.12: Reconstructed extinction ratios for different pulse durations. Figure
(a) shows the extinction ratios for various different powers through the EOM (de-
tector count rate 0.1 MHz), and (b) shows the extinction ratios for various powers
on the detectors (EOM power 925 µW).
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4.6 Power dependence of the EOM 43

The input power through the EOM was varied between 25 µW and
2.65 mW. The power on the SPADs and clicks counted by the TDC were
kept low, at around 0.1 MHz, to rule out card and detector effects. Since
only short pulses are measured for the results presented in this section,
a Gaussian pulse assumption is used to fit the data. The reconstructed
extinction ratios are shown in Figure 4.12. Here, a power dependence
could not be reproduced. The measurements seem to be independent of
the power through the EOM and the power on the SPADs. To further in-
vestigate the cause for the apparent power dependence of Figure 4.8, more
research is needed.

A difference between this experiment and the one shown in Figure 4.8
is the DC voltage bias minimum that was used. The previous experiment
was performed on 03-08-2022 and used the positive minimum shown in
Figure 4.2c. The experiment presented here was performed on 12-08-2022
and used the negative minimum shown in Figure 4.11. It could be that
the positive minimum behaves differently from the negative minimum,
which was generally observed to be more stable. Due to the change of the
EOM transfer function over time, the bias sweeps of the two experiments
look very different. This difference could also explain the difference in
extinction ratios that were reached. Figure 4.12 shows extinction ratios up
to 300, while the results presented in Figure 4.8 showed extinction ratios
up to 1000. More research could be done to investigate the stability of the
achievable extinction ratio over long time periods.
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Figure 4.13: (a) Averaged extinction ratio and (b) reconstructed pulse duration
as function of delay difference. The red dotted line shows a linear fit of (0.53 ±
0.01)x + (76.5 ± 0.3)ps.

The fits performed to reconstruct the extinction ratios of Figure 4.12
also automatically produce more data on the pulse durations. Since both
the extinction ratios and pulse durations show no power dependence, all
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data points can be averaged to obtain a mean value and standard deviation
for each point. The results of this are shown in Figure 4.13. Figure 4.13a
shows that the extinction ratio is not a linear function of the delay differ-
ence, but instead is slightly curved. This can be explained by a nonlinear
rise time of the electronics. The rise time determines the collapse of the
pulse, as the electrical pulses stop reaching their maximum height when
the pulse duration is shorter than the rise time. Figure 4.13b shows that
the reconstructed pulse duration is a linear function of the delay differ-
ence, where a curve of (0.53 ± 0.01)x + (76.5 ± 0.3)ps can be fitted to the
data. This curve is slightly different from the (0.64 ± 0.02)x + (74 ± 2) that
was fitted in Section 4.4.2. The difference can be explained by the absence
of longer pulses in this data, which dominated the fit of Section 4.4.2. Ex-
trapolating the linear fit to the settings for which the shortest pulses can be
measured ((delay1, delay2) = (75, 0)) produces a shortest pulse duration of
37 ± 1 ps.
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Chapter 5
Single-photon source experiments

In Chapter 4, the EOM was characterized to have high extinction ratios
of typically 25 dB and up to 30 dB, and tunable pulse durations down to
50 ps. In this chapter, the pulses created by the EOM are used to gener-
ate single photons on demand. In order to do this, we first select a bright
single quantum dot (QD) in Section 5.1, and address it with a continuous-
wave (CW) laser light to verify its single photon emission character in Sec-
tion 5.2. Finally, in Section 5.3, we present and discuss the results of EOM
pulsed excitation of the QD in the context of single photon purity for var-
ious pulse durations.

5.1 Selection of the quantum dot

We use an InAs/GaAs microcavity-QD device which we don’t describe
here, see [21] for details. The cavity device used in this thesis has a shape
and strain induced birefringence which results in a frequency splitting
between two linear orthogonal polarization modes of the fundamental
mode. We unify the reference polarization frame with the cavity polarization-
splitted modes. In this reference frame, the horizontal H (vertical V) cavity
mode transmits H- (V-) polarized light. The polarization-splitted cavity
modes can be easily revealed by scanning the laser frequency (not shown,
for reference we recommend [5, 21–23]).

To reveal and select a QD to use as single photon source, we apply a
gate voltage VG along the Z-direction of the device. This allows tuning
the quantum dot exciton transition into resonance with the optical cavity
mode by the quantum-confined Stark effect. This situation is presented in
Figure 5.1, where we excite the structure with V-polarized light, i.e. the
polarization aligned to the V cavity mode represented as white dashed
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line. Because the reflected laser light exceeds the emission intensity of the
QD by several orders, the presented voltage scan is measured in a cross-
polarization scheme, where the V polarized laser light reflected from the
sample is filtered out by a linear polarizer. Due to this detection scheme,
we mostly observe light originating from the QD. A good QD appears as
a bright line, as can be seen in Figure 5.1, fitted by the solid black line.
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Figure 5.1: Voltage scan of a single quantum dot, measured in cross-polarization.
The H- and V-modes are determined by Lorentzian fits of scans in co-polarization
and are indicated here with a black and white dashed line, respectively. The inset
shows a cross-section of the scan for a voltage of 1.31V.

For our experiments, we choose the operation point where the QD is
in resonance with the V cavity mode. This is the point in Figure 5.1 at
VG = 1.31 V and a laser frequency corresponding to ∼ −12 GHz. Here,
the QD emission is Purcell enhanced and therefore the brightest. Note
that Figure 5.1 also shows emission or scattering from a contamination of
the H cavity mode. However, since this is separated more than 22 GHz
spectrally from our chosen point of operation, this will not be an issue
for the generated single photon stream. The lifetime of the QD can be
estimated from the width of the resonance peak [24]. For this QD, the
width extracted from Figure 5.1 by Lorentzian fit is Γ = 1.8 ± 0.1 GHz.
This gives an estimated lifetime of τr = 1/Γ = 560 ± 30 ps.
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5.2 Continuous-wave single photon correlations 47

5.2 Continuous-wave single photon correlations

To verify the single-photon character of the QD emission, we measure the
second-order correlation function g(2)(τ) under resonant CW excitation.
Due to the quantum nature of single photon light, a dip around g(2)(0) is
expected. The width and measured depth of this dip depend on the life-
time of the QD, the jitter of the detectors, and the single-photon purity. A
typical CW g(2)(τ) measurement showing a characteristic dip with g(2)(0)
of 0.34 ± 0.02 is shown in Figure 5.2. This value is limited by the 532 ps
jitter of the used detectors.
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Figure 5.2: Result of a CW HBT measurement of the QD light, for 3.2 nW. The fit
shows a dip of 0.34 ± 0.02.

The depth of this dip would be a direct measure of the purity of the sin-
gle photon source, for jitter-free detectors. The purity of the single photon
source can be studied as function of the excitation power to determine the
optimum for high purity and high brightness of the single photon source.
The excitation power is measured with a power meter in remote detec-
tion and converted to an estimate of the power in front of the objective.
Figure 5.3a shows the fitted g(2)(0) as function of the excitation power in
front of the objective. This measurement was done for both CW excitation
configurations without and with the EOM in the setup. These two mea-
surements were done on two different days and show different results.
For both measurements, the laser was not locked. This can cause the QD
to drift, reducing the contrast between between the single photon source
and the background. The setup was realigned at the start of the second
measurement day. The measurement where the EOM was included in the
setup shows in general a higher purity, which suggests that the EOM does
not limit the CW excitation.
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Figure 5.3: (a) Measurement of g(2)(0) versus excitation power under CW exci-
tation. (b) Single photon contrast versus excitation power. The blue dots were
measured without the EOM in the setup, on 20-07-2022. The orange dots were
measured through the EOM, operating at the maximum around VDC = 0, on 21-
07-2022.
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Figure 5.4: The maximally mea-
sured dip depths in CW g(2)(τ) ver-
sus the actual non-jitter-limited dip
depths for detector jitters ranging
from 532 ps to 650 ps, for three dif-
ferent lifetimes.

Figure 5.3a shows that the purity of
the single photon source decreases for
higher excitation powers. This result
agrees with earlier measurements, and
can be explained by imperfect laser
extinction, as also suggested by the
single-photon vs background contrast
in Figure 5.3b decreasing for high ex-
citation powers [5, 23]. The minimal
measured g(2)(0) ∼ 0.34 ± 0.02 is lim-
ited by the timing jitter of the detec-
tors. The timing jitter limits the depth
of the dip, as is illustrated in Figure 5.4.
An old TCSPC measurement of the de-
tectors which were used showed a jit-
ter of approximately 532 ps. A more
recent TCSPC measurement showed a
jitter of 650 ps. However, it is unclear
if this recent measurement can be fully trusted. It can be determined that
the detection limit for a photon source with a linewidth-estimated lifetime
of 0.56 ns is g(2)(0) ∼ 0.26 for a 532 ps jitter, and g(2)(0) ∼ 0.30 for a 650
ps jitter. This indicates that the photon source used in this thesis has an
even higher purity than 1-0.34, because the measured g(2)(0) is close to
the detection limit.
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5.3 Pulsed single photon correlations

With the single photon source confirmed, the EOM can be switched to
pulsing mode. If the QD is addressed with sufficiently short pulses, we
should detect at most one photon per pulse. This means that the second-
order correlation function g(2)(τ) will show peaks at intervals of the pulse
period, except for g(2)(0), where the peak should be missing. This is be-
cause in the autocorrelation measurement in HBT setup, a single photon
can only go to one of the detectors, meaning that if there is only one photon
per pulse the detectors can never click at a 0 time difference. The height of
the peak measured at g(2)(0) can thus be used to estimate the purity of the
source.
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Figure 5.5: Measurements of g(2)(τ) for pulsed excitation. Data taken on 21-07-
2022, for three different pulse durations. (a) has (delay1, delay2) = (0 ps, 0 ps), (b)
has shorter pulses of (25 ps, 0 ps), and (c) even shorter pulses of (35 ps, 0 ps).

Figure 5.5 shows the g(2)(τ) measurements and fits for three different
excitation pulse durations. It can be seen that with the decrease in pulse
duration, the offset of g(2)(τ) significantly increases. Since the measured
light mostly contains photons emitted by the QD, this offset can not be
caused by the slightly different duty cycle of the pulses. Instead, the offset
is a direct measure for the amount of background light, which in this case
is a significant amount. To be able to make conclusions about the purity of
the single photon source, there should be little to no background light. As
can be seen in Figure 5.5b,c, for the shortest pulses a dip can be measured
at g(2)(0). This confirms a significant amount of background light, as the
measured g(2)(τ) is now a superposition of the CW dip and the pulsed
peaks. Since this superposition is also likely present in Figure 5.5a, the
actual g(2)(0) peak for a measurement without background light would
be higher. This implies there is significant re-excitation of the QD.
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50 Single-photon source experiments

The fitted g(2)(0) values for different delay settings of the EOM elec-
tronics are visualized in Figure 5.6 for two different analysis approaches:
(i) In panel (a), the values are as shown in Figure 5.5, where we normal-
ized the side peaks to 1. This gives the measured g(2)(0) values which
are limited by the significant g(2)(τ) offset. (ii) Panel (b), where the off-
set in g(2)(τ) is subtracted before the normalization. This figure visualizes
whether the measured g(2)(0) was a peak or a dip.
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Figure 5.6: Measurements of g(2)(0) for pulsed excitation, as function of the delay
difference of the EOM electronics. Data taken on 21-07-2022. (a) shows the g(2)(0)
for peaks normalized to 1, (b) shows g(2)(0) for offset subtracted and peaks nor-
malized to 1.

In Figure 5.6a it can be seen that g(2)(0) appears to plateau for short
pulses, and even increase for the shortest pulses (small delay difference).
Normally one would expect g(2)(0) to decrease for shorter pulses, as the
re-excitation probability of the single photon source decreases. Here, due
to the increasing background light, g(2)(0) increases for shorter pulses.
This is because in the superposition of the CW dip and pulsed peaks, the
CW dip is jitter-limited. If normally the peak of the pulsed excitation at
g(2)(0) would be 0, the measured result will now show a g(2)(0) > 0 due
to the nonzero g(2)(0) of the jitter-limited dip.

The high background light of the measurements presented in this sec-
tion can have multiple causes. One explanation could be that the extinc-
tion of the reflected laser light was not optimal, causing the measured light
to contain background laser photons. However, this would add a uni-
form background to g(2)(τ) and can not explain the measured dips. Fur-
thermore, in the previous section, CW g(2)(τ) dips with detection-limited
depths were measured, indicating that the purity of the single photon light
is at least ∼ 0.7. Another explanation could be that the extinction ratio of
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the EOM was not sufficient. This would cause the QD to get excited in
between the laser pulses, meaning that the background light would con-
sist of single photons. This would explain the measured dips. Based on
the EOM bias sweeps done during the measurements (Fig. 4.2b) and the
minimum that was selected, the extinction ratios can be expected to be at
least 100, based on the experiments of Chapter 4.

The simulations of Chapter 3 could be adapted to simulate the genera-
tion of single photon light with pulsed laser light with an extinction ratio
of 100. These simulations could then assist in determining a minimum ex-
tinction ratio needed to do good pulsed excitation. The simulations could
also help estimate the extinction ratio of the EOM based on the results pre-
sented in this section. Furthermore, additional experiments are required
to investigate ways to improve the pulsed excitation of the QD with the
EOM.
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Chapter 6
Conclusions and outlook

The switching between continuous and pulsed excitation in conventional
cavity-QED setups can lead to a disruption of optimal excitation settings,
and often offers limited pulse tuning possibilities. A combination of a
highly wavelength tunable continuous-wave laser and an electro-optic in-
tensity modulator (EOM) allows tuning the central wavelength and pulse
shape without the need for a pulsed laser. An EOM in combination with
custom-built ultra-fast electronics was shown to produce tunable pulse
durations in the few-hundred-ps-range, down to below 50 ps. Typical
extinction ratios (ERs) of 300 (25 dB), and even up to 1000 (30 dB) were
achieved. The extinction ratio collapses for pulse durations below 100 ps,
but still a typical extinction ratio of 150 is achieved for the short 50 ps
pulses. Further research could be done to investigate the stability of the
extinction ratio over long time periods. The longer (400 ps) pulses are
likely block-shaped, and further research could be done to use the fast
electronics to achieve other pulse shapes. An automatic bias control was
developed to lock the operating point of the EOM. A working trigger out-
put was also developed, which at the moment of writing this thesis had
a 140 ps jitter. This jitter can likely be resolved and further testing will be
needed to improve the trigger output.

The EOM was incorporated in the cavity-QED setup to allow easy
switching between CW and pulsed excitation. Through CW excitation
of an InAs QD in a micropillar cavity, a QD with estimated lifetime of
560 ps and good purity was selected. Upon switching to pulsed excita-
tion, second-order correlation function measurements showed both a CW
dip and pulsed peaks, indicating that the single photon light contained a
significant amount of background photons. A likely cause of this is that
the extinction ratio of the EOM was not sufficient during the experiment.

Version of August 23, 2022– Created August 23, 2022 - 16:39

53



54 Conclusions and outlook

Simulations of photon correlations were performed and proved a useful
tool that can aid the understanding of the experiments. These simulations
could be adapted to better understand the single photon experiments and
estimate a minimal required extinction ratio. The extinction ratio of the
EOM can be increased by optimizing the height of the electrical pulses.
Furthermore, the possibility of placing two EOMs in series to increase the
extinction ratio can also be explored, and could potentially offer great re-
duction of the background light.

Overall, the use of EOMs in cavity-QED setups present a promising
route to more flexibility. High control over the pulses allows matching
the spectral properties of the laser to the produced single photons, which
opens up new possibilities for engineering of artificial photonic quantum
states by quantum interference.
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Kuhlmann, Martina Renggli, Yongheng Huo, Fei Ding, Rinaldo
Trotta, Marcus Reindl, Oliver G Schmidt, et al. An artificial rb atom
in a semiconductor with lifetime-limited linewidth. Physical Review
B, 92(24):245439, 2015.

Version of August 23, 2022– Created August 23, 2022 - 16:39

59





Appendix I
Pulse durations for the unstable
positive bias minimum
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Figure I.1: The reconstructed pulse durations for Gaussian pulse assumptions.
The colors indicate data taken at different dates. The solid black line indicates
a linear fit through the Gaussian-ansatz data. The purple data was measured
in the positive DC bias minimum, which showed significant drifting during the
measurements. Because of this, it was decided not to include this data in the main
text, and limit the study to the more stable negative bias minimum.
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Appendix II
Possible causes for the trigger jitter

The TCSPC measurements of Section 4.5 appeared to show a significant
140 ps jitter in the trigger signal of the fast pulser electronics. Since these
measurements, the ELD has now also measured the jitter by using an os-
cilloscope, and has estimated the jitter to be around 200 ps.

Figure II.1: A detailed schematic of the electronics surrounding the trigger pulse.
The red 1 and 2 indicate possible sources of jitter. Figure provided by Harry Visser
from the ELD.
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