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Abstract

Machine learning algorithms are frequently deployed for predictive classification
problems. However, as implied by the No Free Lunch (NFL) theorem, not every algo-
rithm is destined to perform well on a given data set. One is often interested whether
predictive capacity of an algorithm is significantly better than chance level (better
than chance) for a choice of the hyperparameter(s). Machine learning algorithms
generally lack the intrinsic statistical framework of statistical learning algorithms
to make statements about better than chance performance. In supervised binary
classification problems, multiple methods have been proposed to do so. These have
shown to be flawed. Arguably, this can be attributed to the idea that the NFL also
applies to these better than chance methods, or in general to any tests, suggesting
that performance of the test depends on the type of signal.

Therefore, in this current project, we propose novel global test (GT) based
tests that are in accordance with the signal detected by their respective learning
algorithm. To do so, we reformulated two popular machine learning algorithms,
k-nearest neighbors (kNN) and random forest, as empirical Bayesian linear models.
It turned out we can not only construct tests for specific (combinations of) hyper-
parameters but also for sets of hyperparameters. Properties of these tests have been
explored in simulated linearly and nonlinearly separable alternatives as well as in
real world data. Results from our simulation studies indicated that our novel tests
had competitive power characteristics compared to existing methods. Moreover, we
demonstrated their applicability to real world data.

Our finding indicated that our novel tests for kNN and random forest can be
readily used to assess better than chance performance. Equally important, the
exploited GT framework can be applied to construct tests for other learning al-
gorithms. Ultimately, our tests and possible future GT based tests add to list of
existing methods that each serve a niche in the detection of better than chance signal
for a learning algorithm.
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Chapter 1

Introduction

Data modelling has gained large popularity in recent years. Where in the early days
problems mostly came from scientific experiments, were small in size and uncomplicated,
data modelling nowadays happens in virtually all sectors and can be vast and complex.
When it comes to data modelling, one often refers to supervised learning in which a
certain outcome is predicted based on one or more predictor variables. A vast array of
learning algorithms exist to serve this purpose. Initial algorithms were developed from a
statistical perspective. This class of algorithms will be referred to as statistical learning
algorithms. Advancements in computing and storage technology gave rise to a new class
of learning algorithms, machine learning algorithms. In general, statistical learning algo-
rithms are developed to make inference about relationships between variables, whereas
machine learning algorithms are more pragmatic, designed to detect patterns and make
accurate predictions without the statistical framework.

Not all learning algorithms are destined to perform equally well on every data set.
This observation is reflected in the No Free Lunch (NFL) theorem which states that any
two learning algorithms perform equally when their performance is averaged across all
possible problems [1]. Therefore, common practice in supervised learning problems is
to test whether predictive accuracy of a learning algorithm is significantly better than
chance level (better than chance), if applicable, for a choice of the hyperparameter(s).
To do so, statistical learning algorithms often got access to a framework which allows
testing for a relation between individual predictors and the outcome and/or a relation
between at least one of the predictors and the outcome. This framework rarely exists in
machine learning algorithms, hence requires other approaches.

In the case of supervised machine learning for binary classification problems, there
are two widely used groups of tests. Accuracy-tests accomplish this by, as their name
implies, using prediction accuracy as test statistic. Best known are the tests based on
resubstitution accuracy, also known as training accuracy, and k-fold cross-validation
accuracy in conjunction with permutation testing. However, Rosenblatt et al. recently
demonstrated that in high-dimensional problems these approaches can be underpowered
compared to a group of tests known as two-group tests [2].Two-group tests are tailored
towards detecting either differences in multivariate distribution or a shift in mean vectors
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2 CHAPTER 1. INTRODUCTION

between groups. Indeed, these are computationally less demanding than accuracy-tests
as they can be used before fitting a classifier and resampling is not required.

Less known is that the idea of the NFL theorem also applies to hypothesis testing.
Thus, despite two-group tests appearing to be an attractive option for evaluation of a
classifiers performance, they are not optimal in detecting all types of signals. Ideally, we
would like to introduce the testing framework found in statistical learning algorithms
to machine learning algorithms in order to be able to test for the signal detected by a
learning algorithm. These tests are specific to the learning algorithm and signal, thereby
facilitating a Shared Lunch between them.

In this current project we propose methods to assess performance that are in accor-
dance with the signal detected by their respective learning algorithm. These solutions
are based on a generalization of the score test, the global test (GT). Similar to classical
likelihood based tests (equivalently the F-test in linear regression) in the framework of
regression, the GT may be formulated to test whether the coefficients for a set of pre-
dictors is equal to zero. In contrast to these classical tests, the GT requires an empirical
Bayesian model formulation instead of a classical, purely frequentist, one.

Therefore, we will redevelop two machine learning algorithms, k-nearest neighbors
(kNN) and random forest, as empirical Bayesian linear models. Naturally, this alterna-
tive view gives rise to a transformation of the predictor matrix that is specific to the
algorithm and its parameters. Together these provide the tools to construct GT based
tests. Furthermore, we will extend this framework and introduce tests to perform simul-
taneous inference on multiple valid (combinations of) hyperparameters, thereby opening
up possibilities to assess performance over all possible values of the tuning parameters.
We will explore these novel tests and compare their performance in terms of power to
existing methods in simulated as well as in real data.



Chapter 2

Prerequisites

kNN and random forest are non-parametric supervised machine learning algorithms that
can be used for classification tasks as well as regression problems. In this current thesis we
develop better than chance methods for these algorithms for binary classification, hence
we discuss the algorithms in this context. These learning algorithms are discriminative
in the sense that they estimate the conditional probability of some binary outcome y
given the predictors X. In principle, the predictors can be continuous, categorical or a
mixture. These methods can be applied in low-dimensional problems as well as high-
dimensional scenarios.

As discussed in the introduction, (nested) k-fold cross-validation can be deployed to
assess whether kNN and random forest, or in general any fitted algorithm, have better
than chance predictive performance. These approaches were not developed for this
purpose. Instead, cross-validation and its nested variant are best known for assessing
predictive capacity and generalized performance, respectively, of a learning algorithm.
In principle, this cross-validation framework can be applied to any algorithm as long as
some measure of performance (e.g. mean-squared error or accuracy) can be computed.
In the context of evaluation of better than chance performance, we have seen that this
framework is not optimal in terms of power for the detection of all types of signal fitted
by a learning algorithm.

In this current thesis, we propose novel tests based on the GT that correspond with
signal detected by the learning algorithm. The GT is a generalization of the score test on
a hyperparameter in an empirical Bayesian linear model. Therefore, it is often deployed
in high-dimensional problems to test a point null hypothesis against an alternative. It
has to be noted that the GT can also be used in low-dimensional scenarios.

In this chapter we provide a brief introduction to kNN, random forest, nested k-fold
cross-validation and the GT. We expand on or refer to these topics in this current thesis.

2.1 kNN

kNN is one the best known machine learning algorithms due to its simplicity. Given
a training set T of size n and some integer value for k where 1 ≤ k ≤ n, kNN makes
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4 CHAPTER 2. PREREQUISITES

predictions for a new point based on the k closest observations T0 in the training set
according to some distance metric. This metric is often taken to be the Euclidean
distance for continuous variables and the Hamming distance for discrete variables. For
specific applications such as gene expression microarray data, a correlation metric is
often used.

In the context of classification problems, a new observations is classified according
to the highest estimated probability. The estimated probability of class j for a new
observation x0 is equal to the fraction of observations in T0 with label j

Pr(Y = j|X = x0) =
1

K

∑
i∈T0

I(yi = j).

For binary classification problems this can be further simplified to

Pr(Y = 1|X = x0) =
1

K

∑
i∈T0

I(yi = 1)

Pr(Y = 0|X = x0) = 1− Pr(Y = 1|X = x0).

In general kNN is considered to be a low bias, high variance learning algorithm. In
other words, it is able to fit nonlinear structures in the data but its predictions become
unstable as the noise in the data increases. This trade-off, known as the bias-variance
trade-off, can be altered by the choice of k. Smaller values for k tend to have lower bias
and higher variance compared to larger values for k. Accordingly, larger values for k are
known to have more bias but lower variance in comparison to smaller values for k.

The bias-variance trade-off for kNN can be illustrated using a thought experiment.
Consider the situation when the true data generating function is reasonably smooth.
When k = n, the prediction for an observation is equal to the most prominent class
in the training set. This prediction is insensitive to small fluctuations in the training
set (lower variance) but it does not approximate the true data generating function well
(more bias). Now, consider the complete opposite case when k = 1. Predictions are
now equal to the label of the nearest neighbour. On average, predictions are close to
the true label (less bias). However, predictions are unstable as they solely depend on
one observation (higher variance). Thus, in practice the optimal k in terms of bias and
variance lies in between these extremes and is conditional on the data set.

2.2 Random forest

In contrast to kNN, random forest is an ensemble learning method since it uses multiple
learning algorithms, in this case decision trees, to make predictions. An ensemble of
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decision trees often has better predictive performance compared to a single decision
tree. The bias of a single decision tree is relatively low since they can approximate any
arbitrary function reasonably well. However, its variance is large as small fluctuations
in the training set affect the fit. This variance problem can be ameliorated by a tree
ensemble. The general idea is to grow deep trees that have low correlation. The former
implies low bias while the latter decreases variance, thereby improving overall predictive
performance compared to a single decision tree. In an approach known as bagging,
trees are decorrelated by taking a bootstrap sample of the observations for each tree
separately. Trees can be further decorrelated when at each split only a fraction of
the original predictors is considered by sampling. This is known as the random forest
algorithm.

In tree ensemble methods each tree is grown separately using recursive binary split-
ting. This is a top-down approach. Meaning that it starts with all observations and
successively splits the predictors space, giving rise to two new nodes. When a node
marks the end of a branch this is more commonly known as a leaf. It is a greedy algo-
rithm in the sense that it looks for the optimal split at a specific step given some metric.
In other words, it does not pick a split that yields a better tree at some splitting point
later on. For each split the algorithm selects some cutting point c in predictor j that
minimizes a metric L,

P1(j, c) = {X|Xj < c} and P2(j, c) = {X|Xj ≥ c}

where j and c are found by minimizing

∑
i:xi∈P1(j,c)

L(yi, ŷi,P1) +
∑

i:xi∈P2(j,c)

L(yi, ŷi,P2)

and ŷi,P1 and ŷi,P2 depend on the outcomes of training observations in P1(j, c) and
P2(j, c), respectively.

The process of growing trees is governed by multiple parameters. The metric is one
of the most important hyperparameters. In regression it is often taken to be the residual
sum of squares, while Gini index or entropy are commonly used in classification tasks.
Another important hyperparameter concerns the structure of the tree. These often come
in the form of a maximum tree depth, the number of nodes or leaves, minimum number
of observations per leaf or node or a combination of these.

2.3 Nested k-fold cross-validation and permutation
testing

For a given learning algorithm, conventional k-fold cross-validation provides an estimate
of predictive performance for a choice of the hyperparameter(s). This framework does not
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suffice when one wants to simultaneously perform hyperparameter selection and estimate
predictive performance. In these scenario nested k-fold cross-validation is required. The
provided estimate can interpreted as the generalized performance of the algorithm.

There is resemblance between the procedure of nested k-fold cross-validation and its
non-nested variant. The main difference is that nested k-fold cross-validation uses two
loops, an outer an inner loop. The procedure for the nested variant is as follows. First,
data is randomly split into k-folds that are, when possible, of equal size. In the outer
loop one fold serves as test set while the remaining folds constitute the training set.
Of these training folds, the inner loop sets one fold aside as validation set. A learning
algorithm is fitted for a number of (combinations of) parameters on the remaining k− 2
folds. Some metric is computed for the validation set. In this project we decided on
accuracy. This process is repeated such that every of the k− 1 folds served as validation
set. Accuracy is averaged over the validations sets. The parameter corresponding to
the highest accuracy is used to fit the algorithm to the training set of the outer loop.
Accuracy is computed for the test set of the outer loop. This process is repeated such
that all k folds served as outer loop test set once. The average accuracy over all these
folds serves as estimate for the generalized performance.

The (nested) k-fold cross-validation is combined with permutation testing to form the
basis of a selection of accuracy-tests. When we permute outcomes and apply the cross-
validation procedure a (large) number of times, we obtain the empirical null distribution
for no association between predictors and the outcome. This can be used to assess
performance of a fitted learning algorithm. Identical to the use of the cross-validation
framework to provide an estimate performance, the choice of either a nested or non-
nested procedure depends on whether the hyperparameter has to be selected or not,
respectively.

2.4 Global test

Classical test for linear regression either have low power or break down completely when
the number of predictors is close to or exceeds the sample size, respectively. In these high
dimensional problems the GT may serve as an alternative. Among all tests, the locally
most powerful test has optimal power against alternatives close to the null hypothesis.

Consider an empirical Bayesian linear model where the intercept α ∈ R and error
variance σ2 are known and fixed,

yi|β ∼ N (α+Xiβ, σ
2) (2.1)

where Xi is a row vector for observation i and β a random column vector, both of
length p. The latter is defined as β = τb, E[b] = 0 and E[bbT ] = Σ. In this case τ ∈ R
is a fixed but unknown parameter. Also note that no assumptions about the marginal
distribution of b are made.
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Let l(β) denote the likelihood of β given our model in (2.1). Taking the expectation
over an chosen distribution of β for fixed τ2 yields the marginal likelihood of τ2

l̂(τ2) = Eβ|τ2 [l(β)].

This allows to make inference about τ2. By means of the locally most powerful test
we can formulate the hypothesis

H0 : τ
2 = 0

HA : τ2 > 0.

When τ2 = 0 then β = 0, hence this is equivalent to testing

H0 : β = 0

HA : β ̸= 0.

This approach has two major drawbacks. First of all, computation of the marginal
likelihood l̂(τ2) is often intractable as it requires integration over p-dimensions. Second,
the marginal likelihood of τ2 requires specification of the distribution of β. Power against
alternatives depends on this choice, hence it has to be carefully specified. Making an
informed decision is typically difficult in high dimensional problems.

However, Goeman et al. have shown the score test statistic corresponding to l̂(τ2)
to be computable from the likelihood of β, l(β), and the variance-covariance matrix of
b, Σ [3]. The score test statistic for our empirical Bayesian linear model is

SΣ =
yTXΣXT y

yT y
.

The choice of Σ determines the power against certain alternatives. The case when
Σ = I deserves special attention as it implies exchangeability of the elements in β. A
sequence of random variables is said to be exchangeable when all possible permutations
share the same joint distribution. In other words, when the variance-covariance matrix
is chosen to be the identity matrix we do not express a prior belief about the magnitude
of elements from β and covariance among them. We will not be discussing other choices
of Σ as only the exchangeable version of the test is used in this current thesis. The
locally most powerful test statistic reduces to

S =
yTXXT y

yT y
. (2.2)

The GT is not invariant to parametrization of covariates. To demonstrate this we
can write the test statistic as the sum of test statistics over p covariates

S =

p∑
i=1

yTxix
T
i y

yT y
.
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Write

xix
T
i = xTi xi

xix
T
i

xTi xi
.

Taking qi =
xi√
xT
i xi

and λi = xTi xi, we obtain

S =

p∑
i=1

λi
yT qiq

T
i y

yT y
.

By definition the rank of xix
T
i is 1. Here λi is the eigenvalue and qi the corresponding

eigenvector of the inner product matrix of covariate i.
We can observe that λi is either equal or proportional to the variance of a regressor i

depending on whether it is centred or not. Multiplication of xi with a scalar
√
γ not only

increases the variance by a factor γ but also λi. In other words, the GT is a weighted
sum of the test statistics over p predictors where the weight linearly depends on the
variance. This weighted sum of individual GT statistics from (groups of) covariates is
referred to as stacking of the GT.

In linear models one often wants to test for any effect of the predictors of the outcome.
In this scenario the intercept forms a nuisance covariate which is not tested for. The
test in its current form (2.2) does not correct for an intercept, or in general, for nuisance
covariates Z. Correcting is done by orthogonalizing X and y with respect to Z such
that ZT (I − H)X = 0 and ZT (I − H)y = 0 where I is the identity matrix and H a
projection matrix given by Z(ZTZ)−1ZT [4]. Let X̃ and ỹ denote the orthogonalized
matrices. Note that in case the intercept is the only nuisance parameter H = 1

n11
T

where n is the number of observations, which is equivalent to centring the covariates.
Incorporating this adjustment in the score test statistic yields

S =
ỹT X̃X̃T ỹ

ỹT ỹ
.

Since I −H is idempotent, the locally most powerful test statistic, adjusting for general
nuisance covariates Z, can be written as

S =
yT (I −H)XXT (I −H)y

yT (I −H)y
. (2.3)

Computation of the p-value corresponding to a test statistic requires the null distri-
bution of the test statistic. Two approaches are available to generate the null distribution
[5]. The asymptotic distribution can be computed when the sample size is larger than
the number of nuisance parameters. When this is not the case or one or more assump-
tions of linear regression are possibly violated, the null distribution may be generated
via permutations. In this approach null hypotheses are assumed to be exchangeable.
This implies that the joint distribution is invariant under permutations given some null
hypothesis.



Chapter 3

kNN

In chapter 2 we have seen that the GT requires an empirical Bayesian linear model and
that kNN is not of this form as it is a non-parametric algorithm. Therefore, kNN has
to be redeveloped as empirical Bayesian linear model in order to construct GT based
tests. In this current chapter we introduce a transformation of predictors space that is
appurtenant to such a reformulation. Together these allow for the construction of tests
that allow to make statements about performance of kNN.

3.1 GT for specific k

The most common scenario is that one wants to evaluate whether kNN predicts better
than chance for some value of k on a given data set. In this section we propose multiple
GT based tests to do so. All these tests are based on the same transformation of
predictor space. We first introduce the transformation and subsequently show that this
corresponds to a linear model.

The distance matrix of original data is used in the computation of the kNN predictor
matrix. Consider a training set of size n where for each observation i the outcome is
binary {0, 1} and the regressors reside in p-dimensional space Rp. All pairwise Euclidian
distances can be represented in a n x n distance matrix D. An element from this matrix
dij is defined as the Euclidian norm of the difference between xi and xj

dij = ∥xi − xj∥ =

√√√√ p∑
k=1

(xik − xjk)2.

By definition matrix D is symmetric dij = dji with 0′s on the diagonal dii = 0.
Now, for any valid choice of k we can define the kNN predictor matrix Xk based

on D. An element xij from Xk is equal to 1 when neighbor j belongs to the closest k
neighbors of i, otherwise it is equal to 0.

9
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Example 1. Consider a training set of size 3 with the predictors in R2: n1 = [4.1, 1], n2 =
[5.3, 2.6], n3 = [9.5, 8.2]. The distance matrix is given by

D =

0 2 9
2 0 7
9 7 0

 .

For k = 1, 2, 3 we can compute the predictor matrices

X1 =

1 0 0
0 1 0
0 0 1

 , X2 =

1 1 0
1 1 0
0 1 1

 , X3 =

1 1 1
1 1 1
1 1 1

 .

The predictor matrices for k = 1 and k = n are special cases as they are independent
of the data. The closest neighbor to some training observation i is always i. Hence the
predictor matrix for k = 1 is the identity matrix. When k = n all n training observations
are closest to observation i. The predictor matrix for k = n is a matrix full with ones
J = 11T . For all remaining choices of k the predictor matrix is conditional on the data.
Note that in common kNN terminology the scenario of 1 nearest neighbor refers to the
nearest neighbor that is not the observation itself. In this current thesis this scenario
corresponds to k = 2. Effectively, when we refer to k neighbors this corresponds to k−1
neighbors in widespread kNN nomenclature.

The definition for our new predictor space allows for construction of the kNN esti-
mator. Given our predictor space Xk for some value of k and response vector y, we can
define the kNN estimator µ̂ to be

µ̂ = k−1Xky.

Indeed, the estimator is tantamount to the mean of responses from observations that
belong to the k nearest neighbors. Taking the expectation of this expression yields

E(µ̂) = E(k−1Xky) = k−1XkE(y) = k−1Xkµ. (3.1)

When we take X = Xk and β = k−1µ, our model resembles linear regression.
We can define the linear model for kNN. The model is effectively a factorial ANOVA

with n variables. To aid interpretation and to be able readily test, we orthogonalize Xk

and y with respect to the intercept. Making use of the orthogonalized predictor matrix
X̃k and outcome ỹ we write the linear model as

ỹ = α+ X̃kβ + ϵ, ϵ ∼ N(0, σ2I), σ2 > 0. (3.2)

where α and ϵ are the intercept and error vector, respectively.
In this formulation, the intercept represents the proportion of labels and each element

of β can be thought of the effect of the corresponding neighbor on the outcome. In other
words, when an observation i belongs to the k nearest neighbors and element i from
β is positive, the linear predictor increases. When this element i is negative the linear
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predictor decreases. The opposite is the case when an observation i does not belong to
the k nearest neighbors; the linear predictor increases when β is negative and decreases
when β is positive. Note that in actuality this β vector is never estimated.

We can formulate the alternative hypothesis for any effect of kNN for a choice of k

H0 : ỹ = α

HA : ỹ = α+ X̃kβ.
(3.3)

The effect of kNN is fully captured in β. Thus, when the null hypothesis is rejected,
there is sufficient evidence, according to the specified type I error, to favour an effect of
kNN, at least in this reformulation, over simply the proportion of outcomes as predictor.

In practice it is often infeasible to make a sensible choice for k. Therefore, we propose
two approaches that determine k based on the data: the proportion kNN GT and p-value
kNN GT. The proportion kNN GT takes the number of nearest neighbors equal to the
number of observations in the group of the least prevalent outcome. Let n0 denote the
number of observations with an outcome of 0 and n1 the number of observations with
an outcome of 1 then k = min(n0, n1). The p-value kNN GT randomly splits the data
in two equally sized groups: a training and test set. In the training set, kNN predictor
matrices are generated for a grid of values for k and appurtenant p-values are computed.
The value of k corresponding to the smallest p-value is used for the test set.

Properties

The GT statistic is a constant for the predictor matrices of k = 1 and k = n. When
k = 1 we can write the test statistic as

S =
yT (I −H)IIT (I −H)y

yT (I −H)y
=

yT (I −H)y

yT (I −H)y
= 1.

The GT statistic for k = n is equal to

S =
yT (I −H)JJT (I −H)y

yT (I −H)y
=

yT 00y

yT (I −H)y
= 0.

For illustration purposes, we compute the p-value for these hyperparameters using per-
mutations of y. All possible permutations of y yield the same test statistic, either 1
when k = 1 or 0 when k = n. Hence we never reject the null hypothesis for these choices
of k.

As previously demonstrated, the GT assigns weights proportional to the variance
of variables. Every element from the predictor matrix Xk is by definition {0, 1}. As a
consequence, the variance of a column can be interpreted as the variance of a binomial
proportion. This is known to be equal to np(1−p). The variance is maximized at p = 0.5
and minimized at p = 0 and p = 1. The variance of the latter corresponds to zero. Thus
nearest neighbors may be weighted differently.
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Example 2. Consider the following training set of size 4 with predictors in R2: n1 =
[−1, 1], n2 = [−1, 0], n3 = [2, 1], n4 = [2, 0], n5 = [2,−10]. The data has been plotted for
illustration purposes (Figure 3.1A).

The kNN predictor matrix for k = 2 is equal to

X2 =


1 1 0 0 0
1 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 1 1

 .

The variance of the first four columns can be shown to be equal to 1.2 whereas the last
column has a variance of 0.8. Compared the fifth observation, the remaining observations
are weighed 50% more heavily. In other words, this framework implicitly assigns smaller
weights to isolated neighbors/outliers.

Example 3. Consider the following training set of size 3 with predictors in R2: n1 =
[−1, 0], n2 = [0, 0], n3 = [1, 1]. The data has been plotted for illustration purposes (Figure
3.1B).

The kNN predictor matrix for k = 2 is equal to

X2 =

1 1 0
1 1 0
0 1 1

 .

The second column only contains 1’s resulting in a variance of zero. Therefore, this
predictor is not taken into account when computing the test statistic. A neighbor is
effectively removed when it is nearest to all observations. In the context of linear regres-
sion this can be understood as a constant predictor; it does not contain any information
and can be excluded. This phenomenon occurs more frequently when k approaches n,
saturating the matrix with 1’s.
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Figure 3.1: Observations are weighted differently by our novel k-nearest neighbors
tests. Toy data has been plotted to illustrate (A) an observation with a relatively small weight
and (B) an observation with no weight.

3.2 Stacked GT

In the previous section we introduced a novel testing framework for kNN with specific k.
However, one might be interested in evaluating whether any valid choice of k has better-
than-chance predictive performance. Instead of a n x n predictor matrix, we horizontally
stack all predictor matrices from k = 1, · · · , n. The resulting matrix is given by

Xall = [X1, · · · , Xn]

and has dimensions n x n2. This predictor matrix allows for construction of the overall
kNN GT.

Properties

In this predictor matrix the individual matrices corresponding to a value of k can be
considered variables. As a consequence, every value of k has some weight depending on
the variance of Xk. Since we cannot compute the variance of Xk directly, we use the
variance of the corresponding GT statistic as surrogate. No closed form solution exists
to compute the variance of a ratio of quadratic forms. Instead we use a Taylor series
approximation [6].

Conditional on a data set, the variance of S only depends on k through Xk. The
variance of S is proportional to the eigenvalues of (I −H)XXT (I −H) and with that
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proportional to the variance of the columns of X. We know that the variance is maxi-
mized when the number of 0’s is (roughly) equal to the number of 1’s. Hence we expect
the GT to assign largest weights to values of k that are in the neighborhood of 1

2n.
Predictor matrices for values of k close to 1 and n receive smallest weights. Indeed, the
weights for k = 1 and k = n are always equal to zero as their test statistic is a constant.
The overall kNN GT uses this vanilla weighting scheme.

This default weighting scheme might not be appropriate for every data set. The
uniform overall kNN GT makes use of a uniform weighting scheme in which every k has
the same weight. To achieve this, every element of Xall is multiplied by the reciprocal of
the standard deviation of its corresponding test statistic 1√

V̂ar(Sk)
. Given this uniform

weighting, one can apply an alternative weighting scheme according to their believe. This
amounts to multiplication of elements by wk√

V̂ar(Sk)
where wk is the weight for elements

from Xk. From a Bayesian point of view, weighting schemes could be interpreted as
priors, directing power of the test against certain alternatives.

As n grows large, computation of the stacked GT statistic becomes increasingly more
demanding, both memory- and time-wise. First of all, storing the stacked predictor
matrix Xall requires increasingly more memory. Secondly, computation of (reweighted)
inner product matrix XallX

T
all requires increasingly more time. The naive approach has

a space and time complexity of O(n3) and O(n4), respectively. We propose an algorithm
that reduces space complexity to O(n2) and time complexity to O(n3). The following
lemma lies at the basis of this algorithm.

Lemma 1. Given the horizontally stacked predictor matrix Xall that includes all possible
values of k, k = 1, · · · , n. Each value of k has some weight wk. Collecting all weights in
a matrix W allows for computation of the weighted predictor matrix Xall = W ⊙Xall.
Let Z denote the inner product matrix of Xall. An element zij from Z is equal to

zij =
n∑

m=1

n∑
k=n−min(|qim|,|qjm|)+1

w2
k. (3.4)

where qim and qjm denote the column indices of the nonzero elements in xi. and x.j,
respectively, for the mth neighbor.

Proof. Let wh be the weight associated with the hth column of Xall and N be the set
of indices of all columns of Xall, N = {1, 2, · · · , n2}. Then,

zij =
n2∑
h=1

xihxhjw
2
h. (3.5)

Let pm contain the indices over all n partitions of the mth neighbor such that

N =

n⋃
m=1

pm and pi ∩ pj ̸= 0 ∀i ̸= j.
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It follows that

zij =
n2∑
h=1

xihxhjw
2
h =

n∑
m=1

∑
h∈pm

xihxhjw
2
h (3.6)

By definition an element xij is restricted to xij = {0, 1}. We know that xihxhj ̸= 0 if
xih = xhj = 1. Let qim and qjm denote the indices from pm corresponding to nonzero
elements in xi. and x.j , respectively. Then we can write

zij =
n∑

m=1

∑
h∈(qim∩qjm)

xihxhjw
2
h.

As solutions are nested

zij =

n∑
m=1

n∑
k=n−|qim∩qjm|+1

w2
k =

n∑
m=1

n∑
k=n−min(|qim|,|qjm|)+1

w2
k.

A shortcut

Our last variant of the stacked GT circumvents computation of this inner product matrix
in its entirety. Column-wise rank orders are computed from the distance matrix D
where elements are ranked from largest to smallest. This matrix Xrank lies at the basis
of ranked distance kNN GT. The general idea is that this matrix contains roughly the
same information as Xall since the proposed algorithm uses only this matrix for efficient
computation of XallX

T
all.

3.3 Continuous and categorical variables

In practice data sets do not exclusively consist of continuous variable. Often, one or more
categorical variables are included as well. When this is the case, one has to carefully
consider their representation in tandem with the distance measure as it fundamentally
impacts kNN fitting and with that our novel tests.

The least complicated scenario is that the number of categories is restricted to two
as there is no technical distinction between nominal and ordinal variables. When the
categories are coded binary {0, 1}, the Hamming distance and Euclidian distance coin-
cide. Both are equal to 1 when observations differ in their category and equal to 0 when
they are the same. Note that this is not the case anymore when the categories are coded
such that the difference between them is unequal to 1.

Representation of a binary categorical variables also affects relative weighting com-
pared to continuous variables. Continuous variables are commonly standardized as to
give each variable equal weighting. One can show that the expected squared Euclid-
ian distance between two independent standard normal random variables, X and Y ,
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is equal to E[(X − Y )2] = 2. A Bernoulli distribution with success probability p is
appropriate when these two random variables are binary categorical variables. When
its categories are coded as {0, δ}, the expected squared Euclidian distance is given by
E[(X − Y )2] = δ2(2p− 2p2). Using the most common {0, 1} representation (δ = 1), the
squared distance is maximized at p = 0.5 and corresponds to 0.5. In other words, in
this formulation the weight of a categorical variables is at least 4 times smaller than a
standardized continuous variable. Indeed, one can modulate weight by scaling a variable
by a factor δ. A continuous variable with n observations can be discretized in n ways.
Arguably, categorical variables should have smaller weight as they contain a fraction of
the information of a continuous variable.

In case the number of categories is larger than two, the situation is more complicated.
No closed form expression exist to derive their relative weighting instead we focus on
the effect of different distance measures. When a variable has c categories, it is common
to assign each category an integer, 0, 1 · · · , c. In this case the Hamming distance and
Euclidian distance do not always give the same solution. The Hamming distance assigns
the same value to every pair of differing categories. Hence in case of ordinal data
some information is lost. The Euclidian distance preserves this information. However,
one has to think about the scaling to accurately reflect the intercategory distances.
This preservation of information is a drawback when dealing with nominal data as the
Euclidian distance does not assign equal values to all pairs of differing categories. To
solve this, one could dummy code {0, 1} a nominal variable, effectively, putting each
category on a regular simplex in N-dimensional space. This way the distance between
any pair of categories is the same. Emphasising the complicated nature of mixture
data in kNN, Boriah et al. demonstrate that there is no optimal distance measure for
categorical data [7]. A measure has to be chosen taking the characteristics of the data
into account. For simplicity, we decide to use the Hamming distance for all types of
categorical variables.

3.4 Simulations

In the previous sections of this chapter we introduced novel tests for kNN and ex-
plored their theoretical characteristics. In this section we deepen our knowledge of their
properties via a simulation study. This was conducted in order to obtain insights into
performance against certain alternatives.

A performance study that exclusively includes our proposed methods would not pro-
vide the full picture due to a lack of reference frame. To provide context, we included
existing methods for comparison. Our novel tests use the GT to test for nonzero coef-
ficients of a linear model in the redeveloped kNN predictor space. Naturally, we intro-
duced the linear GT which evaluates this in untransformed predictor space. Therefore,
it is expected to perform well in linearly separable data. Furthermore, we introduced
accuracy-tests based on ridge regression and kNN which are named nested 5-fold cross-
validation with ridge regression and nested 5-fold cross-validation with kNN, respectively.
As their names imply, these tests made use of a 5-fold nested cross-validation scheme in
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combination with permutation testing with either kNN or ridge regression as learning
algorithm (see section 2.3). We expected ridge regression to efficiently detect linearly
separable alternatives that are not sparse with regard to the predictors. Moreover, ridge
regression has similarities with the GT, both being shrinkage methods. The kNN based
accuracy-test serves as a common approach to assess better than chance performance
of kNN. Compared to ridge regression, kNN is a more flexible algorithm. Hence we
expected it to perform well in linearly separable data with a larger signal-to-noise ratio
(SNR) as well as in nonlinearly separable data.

Simulated data

In light of Shared Lunch, we expected some approaches to perform better in terms
of power than others depending on the type of signal. Therefore, we evaluated power
properties of these tests in two types of simulated data: linearly and nonlinearly separable
data. To have a signal distinct from the linear approach, our nonlinear sampling method
was chosen such that it could not be approximated well by linearity. Each of these
sampling approaches was constructed such that the amount of signal and/or signal type
could be modulated.

Linearly separable

To generate linearly separable data, we adhere to the idea of Fisher’s linear discriminant
analysis (LDA). We sample from two normal distributions that have mean vector µ1 and
µ2 and share a variance-covariance matrix Σ. The Mahalanobis distance measures the
distance between some distribution on Rd with mean vector m and variance-covariance
matrix S and a point x. It is defined as

dM = ∥m− x∥S =
√

(m− x)TS−1(m− x).

Note that it is equal to the Euclidian distance when each dimension has unit-variance
and the covariances are equal to zero.

This norm can be used as measure of the SNR in our LDA sampling approach. We can
simplify our problem by taking one mean vector to be the zero vector and the variance-
covariance matrix to be the identity matrix Σ = I. In doing so, we reduce the problem
to choosing one mean/shift vector µ. Assuming balanced data with n observations, we
correct for sample size by multiplying the squared Mahalanobis distance by n

2

SNR :=
n

2
∥µ∥2Σ =

n

2
µTΣ−1µ =

n

2
µTµ.

When we take µ = c1, we can write

c =

√
2 · SNR

nd

Typical choices for the SNR are between 1 and 100.
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Nonlinearly separable

Our nonlineary separable data follows a checkerboard pattern with square tiles. In other
words, directly adjacent tiles have differing labels while indirectly adjacent tiles are from
the same class. The board is square and resides in R2. Arguably, this one of the most
complex patterns to separate in 2-dimensional space. The number of observations per
tile ntile and the length of the board lboard can be varied. By definition, the total number
of observations is equal ntile · l2board and data is always unbalanced as one class always has
ntile additional observations over the other class. Observations are uniformly sampled
in their respective tile. For illustration purposes, a sample with ntile = 4 and lboard = 3
has been plotted (Figure 3.2).
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0 1 2 3
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2

Figure 3.2: A sample from our nonlinearly seperable data sampling approach. A
sample was taken with a board length of 3, lboard = 3, with 4 observations per tile, ntile = 4.
The two classes are represented by different colouring.

Performance

In order to gain insights into power properties of our novel tests, samples were drawn
from the previously mentioned simulation approaches under varying parameters. In
linearly separable data, power of the tests was analysed as function of the dimensionality,
p = 2, 10, 25, 50, 100, and effect size, SNR = 1, 2, · · · , 5. The former analysis had a fixed
SNR of 5 and the latter analysis kept the dimensionality constant at a value of 2. Both
experiments used a balanced sample of 40 observations. In case of nonlinearly separable
data, we evaluated the effect of the number of observations per tile ntile = 2, 5, 10 with
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a constant board length lboard = 3. Furthermore, we investigated power properties for
a fixed number of observation per tile ntile = 3 and varying board length lboard = 3, 5.
All code used for this and following chapters is stored in a repository. The link and
instructions can be found in the Appendix.

Power, or rejected fraction, was defined as the proportion of replicates where the
(empirical) p-value is smaller than 0.05. Per parameter we sampled 100 data sets. In
case of the linear GT, proportion and p-value kNN GT we used the asymptotic solution
available in the framework of the GT. For the overall and uniform overall kNN GT,
nested 5-fold cross-validation with kNN and ridge p-values were computed by means
of 1000 permutations under the null. In this scenario standard errors of the estimated
rejected fraction under the null and in general are ≤ 2.2% and ≤ 5.0%, respectively.

Power profiles of our novel ranked distance, overall and uniform overall kNN GT
were competitive in our experiments on linearly separable data (Figure 3.3A-B). The
linear GT performed best over the investigated parameter space. Despite being a linear
predictor by definition, ridge regression appeared to make a compromise in terms of
power compared to the former. Moreover, it was outperformed by the ranked distance
kNN, overall and uniform overall kNN GT. We hypothesized that in our balanced LDA
approach we allow for kNN to have better than chance performance for a large set of
values for k. To be more precise, better than chance performance is most likely for values
of k in the region of 1

2n. This becomes less probable as k approaches 1 or n. This is in
line with the weighting scheme of the overall GT, which assigns largest weights to values
of k in the neighborhood of 1

2n, explaining the subtle difference in power between the
overall and uniform overall GT. The p-value kNN GT had the least desirable properties.
Possible benefits of hyperparameter selection in the training set appeared to be overruled
by the fact that it only uses half the data to compute a p-value.

In nonlinearly separable data, the p-value and uniform overall kNN GT were viable
options when the number of observations per tile increased (Figure 3.3C). These tests
and nested 5-fold cross-validation with kNN had a rejected fraction either close or equal
to 1 for the largest sample size. Remaining tests did not have notable power over the
studied parameters space. Having power for all evaluated ntile, nested 5-fold cross-
validation with kNN had the most desirable power properties. The uniform overall kNN
GT only had substantial power for ntile = 10. The p-value kNN took the middle ground
being able to detect alternatives ntile = 5. In contrast to the previous experiments,
here the benefit of splitting data in half for hyperparameter selection outweighs the
inherent loss of power. In our experiment on the board length none of our novel tests
had considerable power (Figure 3.3D).
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Taken together, these findings indicated that the ranked distance and overall kNN
GT are optimal in terms of power when one is interested in detecting purely linear
effects. Arguably, the former test is preferred due to a substantial advantage in terms
of computational complexity compared to the latter. The p-value kNN GT appeared to
perform best in nonlinear scenarios. Yet, it also had some power in linearly separable
data. When one is equally interested in both types of alternatives, the uniform overall
kNN GT appeared to be the optimal test. Power of this test was comparable to ranked
distance and the overall kNN GT in linear cases while it retained considerable power to
reject nonlinear alternatives.
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Figure 3.3: Our novel k-nearest neighbors (kNN) tests have competitive power char-
acteristics. Power (α = 0.05) for our novel kNN and preexisting tests has been assessed over 100
replications using our linearly and nonlinearly separable data sampling approaches. In linearly
separable data, power was investigated as function of (A) the dimensionality with an effect size
of 5 and (B) the effect size with a dimensionality of 2. In nonlinearly separable data, power was
investigated as function of (C) the number of observations per tile with a constant board length
of 3 and (D) the length of the board with 3 observations per tile.
Abbreviations: GT, global test; Uniform overall, Uniform overall kNN GT; Nested cross-
validation kNN, Nested 5-fold cross-validation with kNN; Nested cross-validation ridge regression,
Nested 5-fold cross-validation with ridge regression; Overall, Overall kNN GT; Ranked distance,
Ranked distance kNN GT; Proportion, Proportion kNN GT; P-value, P-value kNN GT.



Chapter 4

Random forest

Random forest is like kNN a non-parametric algorithm, hence we have to introduce a
transformation of predictor space that coincides with an empirical Bayesian linear model
in order to construct GT based tests. Due to this apparent similarity, many parallels
exists between our approaches for these two learning algorithms. Therefore, this chapter
follows the same structure as the chapter on kNN. We introduce tests for random forest
and explore their properties from a theoretical point of view as well as in a simulation
study.

4.1 GT for specific hyperparameters

Similar to kNN, fitting random forest requires specification of hyperparameters and one
is often interested in predictive performance for a choice of the parameters on a given
data set. In this section we introduce GT based tests that assess better than chance
performance of random forest. However, unlike for kNN, we cannot define the predictor
matrix that is required for the GT directly from a fitted random forest. This is due to
the supervised aspect of growing a forest. Hence, we require another approach.

The random forest predictor matrix consists of independently grown trees where each
tree is constructed according to the hyperparameters and some given data set. Consider
a training set of size n where for each observation i the outcome is binary {0, 1} and the
regressors reside in p-dimensional space Rp. A tree is grown by recursively partitioning
the predictor space, in a random fashion, until some tree-complexity criterion is met or
when all leaves consist of one observations. Observations are dummy coded following a
split. In practice this amounts to sampling a predictor, an observation and an inequality
sign. Observations that satisfy this inequality get assigned a one whereas observations
that do not a zero. Collecting the result in a vector yields a tree. The predictor matrix
is comprised of B such trees where B is a natural number that has to be specified.

22
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Example 4. Consider the following training set of size 4 with predictors in R: n1 =
[−1], n2 = [0], n3 = [1], n4 = [2]. Suppose we partition our predictor space and dummy
code according to this split. All possible trees we can grow can be represented in a matrix

X =


0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

 .

Arguably, the first and last column do not represent a partition. Yet, they do not con-
tribute to the GT statistic as their variance is equal to 0.

The general idea is that observations that are similar in terms of their outcome
lie closer to each other compared to observations with a different outcome. Similar
observations are expected to get assigned the same partition more often. This will be
reflected in some trees. The actual ratio of trees containing signal to trees not containing
any signal depends on the data and choice for the hyperparameters.

When we view each tree as a predictor and we have B of them, the model is a factorial
ANOVA with B variables. Indeed, motivation, formulation and interpretation of random
forest is identical to kNN except for the fact that kNN has n variables. The newly
defined predictors for random forest are often interactions between multiple predictors
in the original space, segmenting predictor space in hypercubes. In a similar manner
to kNN, we can use this predictor matrix define our estimator (3.1) and, accordingly,
formulate a linear model (3.2) with a corresponding hypothesis for any effect of random
forest for a choice of the hyperparameters (3.3).

To make statements about the performance of random forest on a given data set, one
has to make a choice for the hyperparameters: maximum number of nodes, maximum
tree depth (tree depth), minimum number of observations per leaf (leaf size) and node
(node size). We propose two tests that take care of this process. Analogous to the
p-value kNN GT, we introduce the p-value RF GT. An equally sized training and test
set are generated by randomly assigning observations to one of these sets. P-values are
computed for forests that originate from different choices of the hyperparameters. The
parameter combination corresponding to the smallest p-value is used in the test set. The
fixed RF GT uses, as the name implies, a fixed combination of hyperparameters, grows
a forest on the full data set and computes the corresponding p-value. We decided to
centre both approaches around one hyperparameter, tree depth, and leave the remaining
parameters unbounded.

Properties

Not all trees are weighted equally by the GT. The weight of a tree depends on the
partition. Since a tree consists of elements that are by definition {0, 1}, we can interpret
its variance as the variance of a binomial proportion. For instance, in example 4 the
third tree has the largest weight, followed by the second and fourth. The tree with
the largest weight has roughly as much 0’s as 1’s. This weighting might not always be
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appropriate, for instance when data is unbalanced. In these scenarios one might prefer
to apply a different weighting scheme. To do so, one multiplies with wi√

V̂ar(xi)
where wi

and V̂ar(xi) is the weight and variance, respectively, of the ith tree.
So far we have only considered trees with a maximum depth of 1. When the number

of observations is small it is possible to write down all partitions. As we allow for
more complex trees and/or increase the number of predictors the number of possible
trees grows extremely quickly. Thus, in practice writing down all possible partitions is
unfeasible and trees have to sampled.

The process of sampling trees introduces an additional source of variability, auxiliary
randomness. Both the GT statistic for random forest and kNN tests have variability
due to inherent randomness of the data. Yet, when conditioning on the data, the GT
statistic for the kNN tests is a constant where the GT statistic for our novel random
forest tests remains a random variable. To obtain consistent results, the variability of
the random forest GT has to be as low as possible. Trees are grown independently and
since the GT statistic is the sum of the test statistics over all individual predictors, the
law of large numbers (LLN) applies. This implies that, conditional on the data, as the
number of trees increases the distribution of the GT statistic converges to its expected
value, at least in probability. Depending on the distributional shape of the individual
GT statistics, it might take a larger number of trees to converge.

We suspect that when trees are grown deep the test will have suboptimal power.
When this is the case, only few contain signal as the majority of trees will be more or
less random. On average, a large number of trees have to be sampled to obtain a tree
containing signal. The effect is effectively diluted by all trees and power will be low.

In a given data set, a binary tree representation does not exclusively correspond to
one partition, and vice versa. It is often the case that different partitions yield identical
trees. Furthermore, identical partitions can yield mirrored trees. In the latter scenario
both trees detect the same signal. In this case one tree has a coefficient β and the other
one a coefficient −β. In the current formulation of the GT we are interested in detecting
the alternative

∑p
i=1 β

2
i ̸= 0. In other words, both trees are equally interesting when it

comes to detecting alternatives.

Example 5. Consider the following training set of size 3 with predictors in R2: n1 =
[−1, 1], n2 = [0, 0], n3 = [1, 1]. A selection of trees that can be build, given this data, were
depicted (Figure 4.1).
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Figure 4.1: A binary tree representation does not exclusively correspond to one par-
tition, and vice versa. Trees have been constructed based on the same data set to illustrate
that (A, B) different partitions of the same tree depth may yield identical trees, (C) identical
partitions can yield mirrored trees and (D) trees of differing depth may have identical trees.

Trees A, B and D are given by [1, 0, 0] and tree C by [0, 1, 1]. Tree A and B are identical
in their layout except for the fact the former is split on x1 and the latter is split on x2.
Tree D has a depth of 1. In contrast to A and B, which both have a depth of 2. Tree
C is comprised of the same splits as tree A but it is mirrored. Tree A and C detect the
same signal.

4.2 Stacked sampling GT

Our previously introduced tests require specific choices for the hyperparameters. Ideally,
we would like to a introduce a test that is similar to the stacked GT for kNN in the sense
that is able to simultaneously make inference about all valid parameters combinations.
This quickly becomes infeasible as the sample size grows. Instead, we propose a sampling
approach in which parameters are sampled for each tree. As B → ∞, the GT statistic
for all parameters combinations converges to a single point. In our implementation of
this sampling approach, the sampling overall RF GT, we only sampled the parameter
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regarding maximum tree depth. The remaining hyperparameters were unbounded.

4.3 Simulations

Power of our novel random forest tests depend on the tree parameters as well as the
number of trees. We have seen that convergence of their GT statistic depends on the
number of trees used in its computation. As a consequence, when too few trees are con-
structed, there is large variability in the p-value which, in turn, leads to reduced power.
Therefore, we investigated power as a function of the number of trees. Furthermore,
since all our random forest approaches are centred around maximum tree depth, we ex-
plored power as a function of this parameter. Together these results allowed for efficient
calibration of the random forest approaches. Power properties of these calibrated tests
were studied to obtain insight into performance against certain alternatives.

Calibrating the number of trees

As previously discussed, the LLN applies to the GT statistic for random forest. Ideally,
forests are grown extremely large to have a large probability to obtain an estimate close
to its expected value. However, computational complexity increases as the number of
trees grows. To make computation of our novel tests feasible, we aimed to identify the
number of trees required to obtain a stable GT statistic estimate.

We suspected that distributional shapes of individual trees’ test statistics may vary
between data with different types of separation complexity. This in turn could severely
affect the number of trees required for a stable estimate. To verify this and to make
recommendations accordingly, we studied stability in linearly and nonlinearly separable
data.

To investigate stability, we generated forests of predetermined sizes and computed
corresponding p-values in 100 data sets. P-values were computed using 1000 permuta-
tions of the response. For a given data set, identical permutations were used between
different forests to reduce noise. Power (α = 0.05) over these data sets is a function of
the number of trees. Once GT statistic estimates stabilizes, the p-value also stabilizes.
Thus, we expect that after a certain number of trees, power more or less becomes a
constant. We define this minimum value to be the number of trees required for a stable
estimate.

The experiments relied on the same linear and nonlinear sampling approaches as
introduced in chapter 2. Linearly separable data consisted of 20 observations with a
dimensionality of 2 and effect size of 2.5. Data sampled from our nonlinear approach
had ntile = 3 and lboard = 3. Trees built for the linearly and nonlinearly separable data
had a minimum leaf size of 3 and 2, respectively.

Results indicated a substantial difference in number of trees required to obtain a
stable GT statistic estimate between our linear and nonlinear approach (Figure 4.2A-
B). In case of linear separability, power seemed to be stable for forests consisting of
more than 10000 trees. This number was markedly increased for nonlinearly separable
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data. When using 25000 and 50000 trees power was equal to 0.81 and 0.88, respectively.
We argue that the GT statistic stabilized for forest larger than 25000 trees. Equally
important, these findings highlight considerable distributional differences between data
with different types of separation complexity.
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Figure 4.2: The number of trees required for a stable global test statistic estimate
depends on the data. We investigated power (α = 0.05) as function of the number of trees
using our (A) linearly and (B) nonlinearly separable data sampling approaches. Trees for the
former and latter approach had a minimum leaf size of 3 and 2, respectively. The remaining tree
hyperparameters were unbounded. Linearly separable data consisted of 20 observations with an
effect size of 2.5 and dimensionality of 2. Nonlinearly separable data had a board size of 3 with
3 observations per tile. P-values were computed using 1000 permutations. Power was computed
over 100 replications.

Calibrating the maximum tree depth

We argued that a forest consisting of deeply grown trees is expected to have less signal
compared to its shallow counterpart. Moreover, growing deep trees is computationally
complex. Gaining insights into power properties of forest as function of the tree depth
deepens our understanding but, equally important, provided the opportunity to calibrate
our novel test random forest tests to be more efficient in terms of power and computation

The forests’ power characteristics were investigated in both our linear and nonlinear
approaches for a range of values for the maximum tree depth. The former sampled 20
observations with an effect size of 5 in 2 dimensions. We set the latter to ntile = 15 and
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lboard = 3. P-values were computed using forests consisting of 250 trees in tandem with
1000 permutations. Power was based on 100 replications.

Results indicated that exclusively trees with a depth of at most 10 display consid-
erable power (Figure 4.3A-B). In case of our experiment on linearly separable data,
extremely shallow trees had largest power. Trees grown deeper than a depth of 4 did
not appear to have any power. When it comes to nonlinear separability, trees had to
be grown deeper. The power curved displayed a sharp peak centred around a maximum
depth of 4. Stumps or trees with maximum depth larger than 9 appeared to be un-
favourable. These findings support our hypothesis that when forests are grown taller,
trees containing signal do not outweigh trees that are more or less random in terms of
weighted effect size.

Naturally, we implemented the p-value, fixed and sampling overall RF GT in such a
way that power was directed most efficient. In case of the p-value RF GT this amounted
to limiting the grid search for the forest’s tree depth to a depth of 10. Trees were grown
to a maximum depth of 3 for the fixed RF GT. For the sampling overall RF GT these
findings implied uniform sampling of the maximum tree depth over a range of integer
values from 1 to 5.
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Figure 4.3: Power profiles as a function of the tree depth differ depending on the
data. We investigated power (α = 0.05) as a function of the tree depth using our (A) linearly
and (B) nonlinearly separable data sampling approaches. The remaining tree hyperparameters
were unbounded. Linearly separable data consisted of 20 observations with an effect size of 5
and dimensionality of 2. Nonlinearly separable data had a board size of 3 with 15 observations
per tile. P-values were computed using 250 trees in combination with 1000 permutations. Power
was computed over 100 replications.



4.3. SIMULATIONS 29

Performance

Since we calibrated all hyperparameters of our novel tests for random forest, we decided
to explore their power properties. To do so, we used a similar approach as described in
the power experiments for kNN tests. This includes the linear and nonlinear sampling
method and its parameter choices. P-values of our novel tests were computed using
1000 permutations under the null. In terms of tests, we adopted the linear GT and
5-fold cross-validation with ridge regression for performance comparison. In addition,
we introduced 4-fold cross-validation with RF. This is a commonly deployed accuracy-
test for random forest with a fixed combination of hyperparameters. Due to the fixed
hyperparameters, the test used an ordinary (4-fold) cross-validation scheme instead of a
nested one. The remainder of the procedure is identical to nested cross-validation (see
section 2.3). The leaf size and number of trees was fixed at 1 and 250, respectively. At
each split ⌊√p⌋ were sampled where p is the number of predictors. Due to the flexibility
of random forest, we expected it to perform well in linearly separable data with a larger
SNR as well as in nonlinearly separable data.

The sampling overall RF GT and fixed RF GT belonged to the best performing tests
in experiments on linearly separable data (Figure 4.4A-B). The sampling overall RF
GT and the fixed RF GT appeared to have comparable power properties, being on par
with 5-fold cross-validation with ridge but having less power than the linear GT. The
former seemingly performed best out of the two. In both simulations, the p-value RF
GT had the least desirable power properties.

In nonlinearly separable data, 4-fold cross-validation with RF had vastly superior
characteristics compared to our novel tests (Figure 4.4C). Arguably, this test was only
outperformed by the p-value RF GT on the smallest sample size ntile = 2. Note that
the latter test did not demonstrate any power at ntile = 5. For the largest sample size
ntile = 10, the sampling overall and the fixed RF GT displayed notable power, appearing
to surpass power of the p-value RF GT. None of the tests had considerable power in the
experiment on the board size (Figure 4.4D).

Thus, from our novel tests, the sampling overall and fixed RF GT had most desirable
properties for detecting linear as well as nonlinear separability. Compared to these test,
the p-value RF GT approached their power in scenarios of nonlinear separability while
having markedly reduced power in linearly separable data, making it the preferred tests
when one is only interested in detecting nonlinear alternatives.
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Figure 4.4: Our novel random forest (RF) tests are viable options in terms of power.
Power (α = 0.05) for our novel RF and preexisting tests has been assessed over 100 replications
using our linearly and nonlinearly separable data sampling approaches. In linearly separable
data, power was investigated as function of (A) the dimensionality with an effect size of 5
and (B) the effect size with a dimensionality of 2. In nonlinearly separable data, power was
investigated as a function of (C) the number of observations per tile with a constant board
length of 3 and (D) the length of the board with 3 observations per tile.
Abbreviations: GT, global test; Fixed, Fixed RF GT; Fixed cross-validation RF, Fixed 4-fold
cross-validation with RF; Nested cross-validation ridge regression, Nested 5-fold cross-validation
with ridge regression; Sampling overall, Sampling overall RF GT, P-value, P-value RF GT.
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Real data analysis

In the previous chapters we proposed novel methods for kNN and random forest for
the detection of better than chance predictive performance and explored their power
properties in simulated data. In this current chapter we demonstrate their applicability
to real world data and highlight practicalities when doing so. Furthermore, we illustrate
the concept of Shared Lunch.

The IMPACT II data as introduced by Steyerberg et al. formed the basis for our
analysis [8]. This data set belongs to the IMPACT project which aims to advance clinical
trial methodology for traumatic brain injury (TBI). IMPACT II is an agglomeration of
fifteen studies, eleven randomized controlled trials and four observational studies, on pa-
tients with moderate to severe TBI as established by the Glasgow Coma Scale score. All
studies recorded 6-month survival alongside ten baseline patient characteristics. Three
continuous predictors: age, glucose and hemoglobin. Seven categorical variables: motor
score, pupillary reactivity, Marshall Computerized Tomography classification, hypoxia,
hypotension, traumatic subarachnoid hemorrhage and epidural hematoma. The first
three variables are ordinal in nature with either three or four categories whereas the
remaining four are dichotomous. Missing values were present in the data.

Steyerberg et al. performed imputation of the missing values in the original data
for their analysis. The authors used multiple imputation in which the study also was
included as fixed effect. This was done using the mice package in R. Subsequently, the
authors used this data to illustrate their novel approaches for the detection of hetero-
geneity in predictor effects and predictions from models that were trained on different
sources. The models aimed to predict 6-month mortality based on all introduced pre-
dictors.

For our analysis we computed p-values for all previously introduced tests using the
full data set. We considered 6-month survival the outcome and did not include the
glucose and hemoglobin predictors for practical reasons. The characteristics for both
outcomes have been summarized (Table 5.1).
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Table 5.1: Summary of baseline characteristics of IMPACT-II by outcome.
Abbreviations: IQR, interquartile range; CT, Computerized Tomography.

Variable Alive (N = 8148) Deceased (N = 2874)

Age (median [IQR]) 29 [21, 42] 38 [24, 55]

Hypoxia (%) 1527 (18.7) 848 (29.5)

Hypotension (%) 1042 (12.8) 833 (29.0)

Traumatic subarachnoid hemorrhage (%) 3222 (39.5) 1790 (62.3)

Epidural hematoma (%) 1179 (14.5) 285 (9.9)

Motor score (%)

1/2 1586 (19.5) 1264 (44.0)

3 1629 (20.0) 656 (22.8)

4 1945 (23.9) 493 (17.2)

5/6 2988 (36.7) 461 (16.0)

Pupillary reactivity (%)

Both 6127 (75.2) 1198 (41.7)

None 1087 (13.3) 1209 (42.1)

One 934 (11.5) 467 (16.2)

Marshall CT classification (%)

I/II 3852 (47.3) 627 (21.8)

III 1566 (19.2) 673 (23.4)

IV/V 2730 (33.5) 1574 (54.8)

When evaluating our novel kNN tests, we observed that distance ties can occur. In
this scenario it is unclear how to define the predictor matrix for some values of k. In
theory it can occur in any data set, yet it most frequently arises in data set lacking
truly continuous variables. Namely, in the latter type of data sets it is possible for two
or more observations to have identical predictor values resulting in these observations
being equidistant to any observation. To illustrate the definition problem, consider the
scenario when two observations are closest but equidistant to some observation. We
cannot define the predictor matrix for k = 2. One solution would to be to add a small
amount of noise to one predictor. This ensures that, in practice, distance ties cannot
occur and predictor matrices can always be defined for some valid of k. In our current
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analysis we added noise that was normally distributed with µ = 0 and σ = 10−4. Note
that absence of at least one truly continuous variable also impacts random forest tests.
As observation space cannot always be partitioned, a tree cannot always be grown to
their maximum complexity according to the specified hyperparameters. This results in
a more parsimonious tree than expected based on the parameters.

When using the full data set, p-values for all introduced tests turned out to be
extremely small such that all tests were significant (α = 0.05). Instead, we decided
to sample subsets of observations and investigate power. Each sample consisted of 30
observations and was approximately representative with respect to the proportion of
outcomes of the full data set. Power over 100 replications was computed.

In light of shared lunch, the results indicated nonlinear separability that borders on
linearity (Table 5.2). From our novel kNN tests the proportion, overall, uniform overall
and the ranked distance kNN GT had largest power. The p-value kNN GT performed
substantially worse compared to the previous. This power profile corresponds to our
experiments on linearly separable data. Results from our random forest tests also point
towards this class of alternatives. Power of the fixed and sampling overall RF GT was
roughly 3 times larger than the p-value RF GT. Yet, the linear GT had markedly in-
creased power compared to all other tests in our experiments on linear separability. This
suggested that the data is not truly linearly separable but it can serve as a reasonable
approximation.

These findings regarding approximate linear separability are in line with literature.
The full IMPACT II data set has been recently explored in the context of prognostic
performance of learning algorithms [9, 10]. Both studies provided a comparison of clas-
sical logistic regression to flexible modern learning algorithms when modelling 6-month
survival based on all predictors, including the glucose and hemoglobin predictors. The
idea is that these modern algorithms should have better predictive performance once the
outcome is nonlinearly related to the original predictors. These studies seemed to indi-
cate that both classes of learning algorithms performed equally well. Thus the regressors
appear to be roughly linearly related to the outcome.
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Table 5.2: IMPACT II appears to be linearly separable. Power (α = 0.05) for all intro-
duced tests has been computed over 100 replications. Each replicate consisted of a sample of
30 observations from IMPACT II data in which the proportion of outcomes was approximately
equal to the full data set.
Abbreviations: GT, global test; kNN, k-nearest neighbors; RF, random forest.

Test Power

Linear GT 0.55

Nested 5-fold cross-validation with ridge regression 0.25

Nested 5-fold cross-validation with kNN 0.14

Proportion kNN GT 0.31

P-value kNN GT 0.14

Overall kNN GT 0.25

Uniform overall kNN GT 0.28

Ranked distance kNN GT 0.32

Fixed 4-fold cross-validation with RF 0.25

Fixed RF GT 0.54

P-value RF GT 0.18

Sampling overall RF GT 0.55
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Discussion

Current methods for assessing whether predictive performance of a classifier is better
than chance are not optimal for every type of signal. In this current thesis, we provided
novel approaches to detect better than chance performance of kNN and random forest
that are in accordance with the signal detected. Redevelopment of these machine learning
algorithms as empirical Bayesian models lied at these basis of these tests. Not only did
this reformulation provide the framework to develop tests for specific (combinations of)
hyperparameters but also for sets of hyperparameters. Simulation studies revealed that
our novel tests had competitive power characteristics under linearly as well as nonlinearly
separable alternatives compared to existing approaches. Moreover, we demonstrated
their applicability to real word data sets.

Our novel tests distribute power differently compared to linear regression based tests.
The explicit separating hyperplane from linear regression and the implicit hyperplane
from kNN and random forest can be written as Taylor approximations. Linear regression
is restricted to first order Taylor polynomials. Compared to the former, kNN and random
forest gain flexibility by also including higher order terms. Where linear regression
allocates all power to these first order terms, kNN and random forest have to distribute
power over these as well as higher order terms. Often when one is interested in linearly
separable alternatives, one is also interested in nonlinear alternatives that slightly deviate
from linearity; alternatives that could be reasonably well approximated by linearity. In
practice linear regression based tests are able to detect such patterns as long as a general
predictive trend exists. More complex patterns that do not follow this trend can be picked
up by kNN and random forest. A fitting example is our nonlinear sampling approach.
Being supported by our results, a linear approach that yields reasonable separation does
not appear to be possible. Thus, whether the power sacrifices made by our novel tests
are worth it or not depends on ones interest in detecting certain alternatives.

Current simulation experiments were centred around balanced data. This is often not
representative for real world scenarios. Based on theory, we hypothesize that some of our
tests will have substantially hampered performance in these settings. The overall kNN
GT implicitly assigns largest weights to values of k in the neighborhood of 1

2n. While
this weighting scheme appears to be appropriate in balanced data from a theoretical
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point of view as well as in practice, we do not expect it to perform well in unbalanced
data. We suggest a scheme where largest weights are shifted towards the number of
observations for the least common outcome instead. As the values of k grows larger
we expect a lack of signal as predictions will be increasingly more biased towards the
most prevalent outcome. Similar weighting issues arise for the random forest based
GT. These tests implicitly assign largest weights to trees that partition observations
in roughly equally sized groups. By definition these trees cannot perfectly partition
predictor space of unbalanced data. This is only accomplished by trees that partition
observations in groups sizes from which the ratio is identical to that of the outcome.
Thus in case of (highly) imbalanced data we argue that the weight as function of the
variance has to resemble a bimodal function; weights are largest at the lower and upper
bound of the domain. Future research has to evaluate the effect of imbalanced data on
power of our novel test and asses performance of the suggested adaptations.

For kNN and random forest we proposed tests that evaluate performance for specific
(combinations of) hyperparameters. In case of kNN, the value of k directly corresponds
to a fitted algorithm. This is not the case for our random forest tests. Results indicated
that power properties of tests based on random forest were optimal for relatively shallow
trees. This observations is at odds with random forest. As previously discussed, random
forest stems from the philosophy of ensembling decision trees that individually are unbi-
ased. In other words, trees for random forest are grown to a large depth. Consequently,
one can argue that our proposed tests are not valid for detecting better than chance
performance of the random forest algorithm as they do not directly assess performance
of the fitted algorithm. We believe that our test is valid. Our tests asses whether it
is possible to construct decision trees for specific combination of hyperparameter that
capture better than chance signal. When it is possible to construct such a tree then,
by definition, it is possible to construct a random forest with this characteristic. In
some sense a significant test for some combinations of hyperparameters marks the lower
bound for tree complexity to have better than chance performance. Albeit redundant,
trees can be grown deeper and retain this property. Thus, despite our random forest tests
not being directly representative for a combination of hyperparameters, a significant test
indirectly implies better than chance performance of less parsimonious forests.

Our proposed tests for both kNN and random forest have their own computational
pros and cons. All tests for kNN require computation of the inner product matrix
XXT resulting in a time complexity of at least O(n3). While this does not cause any
problems for small sample sizes, computation quickly becomes infeasible as the number of
observations grows. The tests for random forest do not suffer from increasing sample size.
For a given tree-depth, time complexity is independent of the number of observations;
time complexity is a constant. Here the main drawback is that the process of growing
trees is computationally expensive. We have seen that it is preferable for random forests
based tests to use a large number of trees as convergence of the GT statistic, and with
that the p-value, to a singularity is generally slow. Thus from a computational point of
view, kNN based tests are preferred over tests for random forest when the number of
observations is relatively small and the other way round when the sample size is large.
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Power of the fixed RF GT, and to a lesser degree the p-value and sampling overall
RF GT, may be overestimated. Hyperparamaters of these tests were decided upon by
means of the same sampling approaches as used for the power analyses. This can be
seen as a (light) variant of ”double-dipping”. The parameters were calibrated based on
their performance in terms of power. Naturally, we expect these tests to overperform in
our power experiments. In light of the raised expectations by our current results, their
characteristics may be underwhelming against other alternatives.

Computational power was a limiting factor throughout this current thesis. For all
experiments the number of replications (per parameter) have been limited to 100. This
number of replications is on the low side and an increase benefits stability of estimates.
Furthermore, the stability experiment for nonlinearly separable data did not provide a
truly decisive number of trees for obtaining stable estimates. Nonetheless, the results
from the stability experiments for random forest indicated that for linearly and nonlin-
early separable a minimum of 10000 and 25000, respectively, trees should be used for
optimal power. Our implementation used forests consisting of 2500 trees. The novel tests
are expected to have better performance than our results implied. A similar argument
can be made for 4-fold cross-validation with RF. The lack of parameter selection most
likely resulted in reduced power. A nested cross-validation scheme with RF is expected
to have more power. Thus, upscaling these experiments would make results more robust.

To summarize, we introduced novel approaches that could effectively evaluate bet-
ter than chance performance of the widely-used machine learning algorithms kNN and
random forest. Equally important, the GT framework underlying these tests can be
extended to other learning algorithms. Ultimately, approaches stemming from this phi-
losophy further add to list of existing methods, each facilitating a Shared Lunch between
learning algorithm and better than chance alternative.



Appendix

This repository contains all source code used for this current project. It is structured in
such a way that the content of the chapters on kNN (chapter 3), Random forest (chapter
4) and Real data analysis (chapter 5) each have their separate rmd file. These rmd files
require support R scripts to be executed. Running these rmd files yields all the results
presented in this thesis. The required files have been listed per chapter. Additionally,
we included the workspace images we obtained from the analyses. These are printed
italic. These instructions can also be found in the repository itself.

kNN (chapter 3)

• KNNSimSynthData.Rmd

• corefuncs knntests.R

• aux funcs.R

• sampling funcs.R

• wsKNNSynthData.RData

Random forest (chapter 4)

• RFSimSynthData.Rmd

• corefuncs rftests.R

• aux funcs.R

• sampling funcs.R

• wsRFSynthData.RData

Real data analysis (chapter 5)

• RealDataAnalysis.Rmd

• corefuncs knntests.R
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• corefuncs rftests.R

• aux funcs.R

• wsRealDataAnalysis.RData
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