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Abstract 

Psychological latent class analysis research is based on the Frequentist approach stating that 

conclusions are only based on the data that is used in that particular dataset. In political research the 

Bayesian approach is fairly common, which uses the information from previous research and the 

current dataset to base their conclusions on. Here, the Frequentist and Bayesian approaches are 

compared using a latent class model with a distal outcome in a simulation and application study, based 

on their bias on strength of the predictors and strength of the outcome variable. Multiple software 

programs are available for doing LCA, such as Mplus and LatentGold, which are often used in research. 

Various R-packages also offer the possibility of doing LCA, but with a limited number of approaches 

available. The aim of this study is to use the poLCA- and BayesLCA-packages to compare the Frequentist 

and Bayesian approaches to evaluate the estimations of the strength of the predictors, the strength of 

the distal outcome and the class sizes. Previous research has shown that the distal outcome in the 

naïve three step-approach can influence the class sizes, but it is not yet known if this problem also 

occurs in the Bayesian approaches. The simulation study results show that the Variational Bayes and 

three-step approach from the poLCA- and BayesLCA-packages give very similar results on strengths of 

the predictors, strength of the distal outcome and class size. The Gibbs Sampling method shows a 

better performance in estimating the strength of the distal outcome for smaller sample sizes, but 

performs worse in estimating the strength of the predictors. In the application study, the three step-

approaches from the poLCA- and BayesLCA-packages again perform almost identical, but the 

Variational Bayes shows (very) different estimations on class sizes and multiple indicator variables. The 

Gibbs Sampling method is relatively close to the three-step approach estimations. All four methods 

show the same strength for the distal outcome variable.  
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1. Introduction 

Latent class (LC) analysis is a method widely used in the social and behavioural sciences to group 

individuals based on their responses on a set of observed variables (Goodman, 1974). Often in LC 

analysis applications the interest lies not only in obtaining a clustering, but also in determining whether 

the classes differ with respect to one or more, possibly continuous, distal outcome variables. Examples 

for this can be found in Mulder et al. (2012) where juvenile offender profiles were related to more 

than 80 outcomes and research from Quirk, Nylund-Gibson and Furlong (2013) in which latent classes 

of school readiness were linked to later academic outcomes of children. An example in the political 

science field can be found in Bonikowksi & DiMaggio (2016), where different groups of American 

popular nationalism were linked to attitudes towards ethnic minorities, immigration and national 

sovereignty.  

Many LCA-methods have been created, each with their pros and cons in classifying people into 

groups.  Psychology and Political science research both use LCA methods to group people based on 

their responses, but they have different schools of thought on this. Psychological research is commonly 

based on the frequentist approach, which means that conclusions are based only on the data that the 

researcher is currently using. This approach begins research with the assumption that the null 

hypothesis is true (before even collecting the data) and then deciding if the collected data is unlikely 

based on this null hypothesis. If not likely, the null hypothesis will be rejected since it does not explain 

the data adequately. Hard conclusions can only be made when research has been done repeatedly on 

different datasets. The frequentist approach does not use prior probabilities since it makes the analysis 

subjective and less accurate in their view (Fornacon-Wood et al., 2022). 

In Bayesian statistics the probabilities are based on the data that is currently used and information 

from previous research and/ or historical data, also known as the priors. These probabilities are 

continuously updated as new information is added to the already available prior distribution, creating 

the posterior distribution. Choosing your prior is therefore an important and delicate task, since a 

poorly chosen prior can steer your results in the wrong direction or it can be used to create a falsely 

positive result. Another option is using uninformative priors, which might be preferable when there is 

little prior knowledge and/ or when you do not want to rely on subjective beliefs. Uninformative priors 

are thus used to make the Bayesian inferences as objective as possible. However, even uninformative 

priors still contain some information that might lead the data to a certain direction, so the term 

uninformative prior should not be taken literally. A good uninformative prior has a negligible 

contribution with respect to that provided by the data. There are multiple types of uninformative 

priors, but the most commonly used one is the uniform prior, which gives each value of 𝜃 the same 
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prior probability. Here you can also decide between a closed interval or an infinite number of possible 

𝜃-values (Tobago, 2021). In my simulation study I will use uninformative priors, since these are 

commonly used in Bayesian statistics and provide the most honest way to compare the outcomes to 

that of the frequentist approach, since the frequentist approach does not use priors in their analysis.  

1.1. Defining the LCA-model 

When defining a model, we first create the measurement model, also known as the basic latent 

class model. A measurement model gives the class-specific probability of a pattern of responses to the 

indicators. Here we look for class-specific response patterns and their probabilities that could indicate 

the existence of different groups within the data before adding covariates and/or distal outcome 

variables to the model. LCA assumes that respondents belong to one of the T classes of an underlying 

latent variable X which affects the responses (Goodman, 1974; McCutcheon, 1987).  

 

Figure 1. Measurement model 

 

Note: extracted from Bakk & Kuha (2020). 

 

The number of classes is selected by comparing different goodness of fit models with different 

numbers of classes using model selection. Typically, the Akaike information criterion (AIC) and the 

Bayesian information criterion (BIC) are used for this, choosing the model with the lowest AIC and/or 

BIC values as the best fitting model.  The number of classes in the data is held constant after deciding 

what the optimal number of classes is in the data. If not held constant, the number of classes might 

change when adding covariates or distal outcomes to your model in the next steps (Masyn, 2017). We 

can then add covariates and/or distal outcomes to create the structural model. The structural model 

gives the unconditional probability of belonging to latent class t. There are many different 

combinations of covariates and distal outcomes that are possible in structural models, but most often 

only either covariates or distal outcomes are included. In this research, a latent class model with one 
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distal outcome will be used. Another statistic that is also looked at when checking the AIC and BIC, but 

not used for model selection (Masyn, 2013; Muthén, 2008), is the entropy-value. The entropy 

measures how accurately one could assign individuals to classes, based on the uncertainty in the 

assignments. There is more certainty about the class membership when the probability of belonging 

to a class is near 0 or 1, which implies that there will be few errors of assignment. When the 

probabilities move away from 0 and 1, this means that there is more uncertainty about class 

membership. The entropy summarises this uncertainty of class membership based across all 

individuals, showing how accurately individuals can be assigned in the model (Curran & Bauer, 2021). 

Muthén (2008) indicates that an entropy-value of .8 can be considered as good, but that it is difficult 

to specify which value indicates bad entropy. However, a low entropy value does not necessarily mean 

that the number of classes is bad or that the model does assign all individuals poorly. A lower entropy 

might be caused by certain groups showing less than ideal probabilities for belonging to certain classes 

(e.g., 40% probability group 1, 60% probability group 2), while other groups have probabilities near 0 

or 1 for belonging to a certain group. Next to calculating the entropy-value, it is therefore useful to 

also investigate the classification table to see if the whole model shows class assignment issues or if 

this is only the case for certain groups (Masyn, 2013; Muthén, 2008). Another possible reason for 

having a low entropy-value, might be due to poor selection of indicator variables, with variables not 

differentiating well enough between groups.  If classes show similar values on an indicator variable, it 

might be wise to remove it or replace it with a new indicator variable based on literature (Muthén, 

2008). 

1.2. Frequentist approach 

In the literature, many frequentist methods and overviews can be found for latent class analysis 

(Nylund-Gibson et al., 2019; Bakk & Kuha, 2020; Vermunt, 2010). One of the original approaches is the 

one-step approach by Bandeen-Roche, Miglioretti, Zeger & Rathouz (1997), which fits the whole model 

at once, thus estimating both its measurement and structural model at the same time. This estimation 

of the full model and its standard errors are obtained using the standard maximum likelihood 

estimation. For models with a distal outcome, this results in an analysis where the distal outcome 

variable serves as an indicator variable, since the relationship between the latent class variable, the 

indicator variables and the class-specific distal outcome distributions are estimated simultaneously. 

No separation is thus made between these types of variables in the analysis and because of this, the 

class-specific distribution of the outcome cannot be interpreted as being a direct effect of being in a 

certain class (Nylund-Gibson et al., 2019). Another disadvantage of the one-step approach is that the 

inclusion of the distal outcome in the model can alter the meaning of the classes, since there is no 

separation of measurement and structural model estimation (Bakk & Vermunt, 2016). Alternative 
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methods were created to prevent the problems that are present in the one step approach. An example 

of this, is the LTB approach created by Lanza, Tan & Bray (2013), which is a two-step approach. In the 

first step, a latent class model is estimated in which the distal outcome is included as a covariate 

instead of a response variable. In the second step, the class specific means for the distal outcome are 

calculated, based on the estimates from step one. The LTB approach is able to perform well when the 

distal outcome is normally distributed with different means and equal variances across classes, 

resulting in unbiased estimations of the class-specific means. However, the LTB approach performs 

poorly when the relationship between X and the distal outcome are not linear-logistic, resulting in 

biased estimation of the class-specific means (Asparouhov & Muthén, 2014; Bakk & Vermunt, 2016). 

This approach also does not offer the possibility to use multiple distal outcomes at the same time. It is 

possible to work around this by repeating the analysis for every separate distal outcome, but this does 

not guarantee that the latent class solution will be the same for every analysis (Bakk & Vermunt, 2016) 

Figure 2. One-step approach and LTB approach 

 

Note: Left: one-step approach. Right: LTB approach. 

For the frequentist approach the BCH-method and the two-step approach are the most robust 

methods that can be currently used. The BCH-method is a three-step method for doing latent class 

analysis, first created by Bolck, Croon & Hagenaars (2004). Later on, this method has been modified to 

accommodate continuous covariates (Vermunt, 2010) and distal outcomes (Bakk et al., 2013), still 

using a three-step approach. Step one is building a basic latent class (X) model based on the categorical 

response variables (Y). The second step is assigning individuals to their predicted latent classes (W) and 

step three is estimating the association between X and Z using the assigned class membership, taking 

into account that these contain classification errors (Bakk & Vermunt, 2016). These classification errors 

are computed for each individual and the inverse logits of these individual error rates are used as 

weights in the third step. Advantages of this approach are that it is quite resistant to shifts in latent 

class membership between step one and three and that it can be used when the distal outcome 
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variances are either equal or unequal across latent classes. However, this method is sensitive to low 

entropy-values and small sample sizes, which can cause the weights to take on negative values if the 

distal outcome variances are unequal (Nylund-Gibson, 2019). 

The two-step approach created by Bakk & Kuha (2017) needs only two steps for latent class analysis. 

The first step is exactly the same as for the three-step approaches such as the BCH-method. In the 

second and final step, we then maximize the joint likelihood, but with the parameters of the 

measurement model and of exogenous latent variables fixed at their estimated values from the first 

step, so that only the parameters of the rest of the structural model are estimated in the second step 

(Bakk & Kuha, 2018). By doing this, it avoids the problem of the misclassification error that the three-

step approaches try to solve with their third step.  However, these two methods are not (yet) available 

in software program R and only available in commercial software programs. 

Figure 3. Bias-adjusted three-step approach & Two-step approach with distal outcome 

 

Note: extracted from Bakk & Kuha (2020). 

Currently, only the naïve three-step method is available in R in the poLCA-package (Linzer & Lewis, 

2011) and BayesLCA-package (White & Murphy, 2014). This three-step method is a predecessor of the 

BCH-method and does not account for the classification error that is introduced in step two which can 

lead to biased estimations in step three. This bias comes from the fact that the assigned class W is not 

necessarily equal to the true X, thus creating a misclassification error which can bias the estimations 

in step 3 (Bakk & Kuha, 2020).  

The poLCA- and BayesLCA-packages do not offer the possibility to do a latent class distal outcome 

model. To create a latent class model with a distal outcome variable Z, the posteriors (probabilities for 

the classes) will be saved and then be used in an ANOVA treating them as observed scores to work 

around this problem.  
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Figure 4. Naive three-step approach  

 

Note: extracted from Bakk & Kuha (2020). 

1.3. Bayesian approach 

Finding and comparing Bayesian methods proved to be more of a challenge, due to the small 

number of articles stating which specific LCA method they used and a lack of overview articles for the 

Bayesian LCA approaches. Some articles can be found using Bayesian approaches in the political 

science field (Alvarez, Katz, Levin & Núñez, 2021; Alvarez, Levin & Núñez, 2017; Katz & Levin, 2018; 

Oser & Jenkins, 2022), but they often focus on basic LCA or with a covariate and not LCA with a distal 

outcome. For the Bayesian approach two Markov Chain Monte Carlo (MCMC) based approaches have 

been selected, named Gibbs Sampling and Variational Bayes. Gibbs Sampling uses iterative sampling 

from each conditional distribution from which samples of the joint posterior distribution are indirectly 

obtained. Gibbs sampling relies on the Markov assumption, which means that samples drawn with 

iteration k +1 depend only on parameter values during the previous iteration k. Samples are repeatedly 

drawn until it is decided that a reasonable representation of the joint posterior distribution has been 

obtained (White & Murphy, 2014). Variational Bayes can be seen as a combination of both maximizing 

the joint posterior and iterative sampling from the conditional distribution. It can be used to obtain 

parameter estimates which maximize a fully factorized posterior approximation to the joint posterior 

(White & Murphy, 2014). It has gained popularity due to its relatively low computational cost and good 

empirical approximation. Both of these methods can be used in R using the BayesLCA-package (White 

& Murphy, 2014), but it does not offer a possibility of using a distal outcome modal. To solve this, the 

posteriors will be saved and then be used in an ANOVA treating them as observed scores.  
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1.4.  Research question 

Quite some research has been done on the differences between the frequentist methods (Bakk & 

Kuha, 2019; Bakk & Vermunt, 2016; Nyland-Gibson, Grimm & Masyn, 2019), but little research has 

been done on the Bayesian methods and their differences. Furthermore, no research has been done 

yet, comparing methods from these two different approaches. For my research I will compare 

Frequentist and Bayesian methods that are available in software program R while using a latent class 

distal outcome model. In the Frequentist approaches we know that stepwise approaches are needed 

in distal outcome models with dependent continuous variables to prevent the distal outcome of 

influencing the latent class solution. In this research I want to compare the Bayesian and Frequentist 

approaches that are available in R to identify if this influencing problem can also occur in the Bayesian 

approaches.  

For this I will compare three methods from two different packages. For the frequentist approach I 

will use the naïve three-step approach from the poLCA- and BayesLCA-packages, combined with 

ANOVA. For the Bayesian methods I will use the partly Bayesian methods Gibbs-sampling and 

Variational Bayes from the BayesLCA-package combined with ANOVA. Comparisons will be made 

based on the prediction precision of each of these methods. This cannot be done when doing latent 

class analysis on real data, but in this simulation study we know all the relationships and their 

strengths, which makes it possible to see how well each method can predict the latent classes. Finally, 

all methods will be used on a real dataset and a comparison will be done based on their estimation of 

the class sizes, strength of Y and strength of Z. Since this is real data, there will be no true values 

available to compare them to, so here I will focus on comparing the methods purely to each other.  

 

1.5. Theoretical framework 

1.5.1 Basic LC model  

Let 𝑌𝑖𝑘  denote the response of individual i on one of K categorical response variables, where 1 ≤ k ≤ 

K and 1 ≤ i ≤ N. A particular latent class is denoted by t, and the model can then be formulated as 

follows: 

                                                                𝑃(𝑌𝑖) = ∑ 𝑃(𝑋 = 𝑡) 𝑃(𝑌𝑖|𝑋 = 𝑡)𝑇
𝑡=1                                                      (1) 

Where 𝑃(𝑋 = 𝑡) represents the unconditional probability of belonging to class t and 𝑃(𝑌𝑖|𝑋 = 𝑡) 

represents the class specific distributions of the responses 𝑌𝑖. The class-specific distributions can be 
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simplified by assuming that the K response variables are independent within classes, also known as the 

local independence assumption (Bakk & Vermunt, 2016). This gives us the following equation: 

                                                          𝑃(𝑌𝑖) = ∑ 𝑃(𝑋 = 𝑡)𝑇
𝑡=1 ∏ 𝑃(𝐾

𝑘=1 𝑌𝑖𝑘|𝑋 = 𝑡)                                          (2) 

1.5.2. One-step approach 

In the one-step approach the measurement and structural model are calculated together. The basic 

latent class model as described in equation 2 can be extended to include a continuous distal outcome 

(𝑍𝑖), creating the one-step approach as seen in Figure 2: 

                                            𝑃(𝑌𝑖 , 𝑍𝑖) =  ∑ 𝑃(𝑋 = 𝑡)𝑇
𝑡=1  ∏ 𝑃𝐾

𝑘=1 (𝑌𝑖𝑘|𝑋 = 𝑡)𝑓(𝑍𝑖|𝑋 = 𝑡)                        (3) 

where 𝑓(𝑍𝑖|𝑋 = 𝑡) denotes the class-specific distribution of 𝑍𝑖. For continuous distal outcome 

variables, this usually is defined to be a normal distribution with mean 𝜇 and variance 𝜎2. In the one-

step approach, the distal outcome is equal to predictors Y, since the measurement and structural 

model are measured simultaneously to estimate the full latent class model. Due to this predictor role 

for the distal outcome in the analysis, the estimation of the full model is sensitive to the distribution 

of this variable. If the distal outcome is not normally distributed, this can lead to misclassification 

problems and thus a distortion of the full model (Bauer & Curran, 2003).   

1.5.3. Naive three-step approach 

In the naive three-step approach, the optimal number of classes is first decided on using equation 2, 

so without yet adding the distal outcome in the model (Bakk & Vermunt, 2016). The assignment of 

respondents to these classes in step 2 is based on: 

                                                               𝑝(𝑋 = 𝑡|𝑌 = 𝑦) =
𝑝(𝑋=𝑡)𝑝(𝑌=𝑦|𝑋=𝑡)

𝑝(𝑌=𝑦)
                                                  (4) 

Which gives us the posterior probabilities that a respondent belongs to each of the classes given the 

respondent’s observed response y, derived from the model in step 1. Commonly, a respondent is 

assigned to the class for which he or she has the highest posterior probability. This assigned class will 

be denoted as W. In step 3 this assigned class W replaces X when estimating the structural model. In 

the naïve three-step approach there is no adjustment for the use of W, giving us: 

                                                             𝑝(𝑊 = 𝑠|𝑌 = 𝑦) =
𝑝(𝑊=𝑠)𝑝(𝑌=𝑦|𝑊=𝑠)

𝑝(𝑌=𝑦)
                                                (5) 

As discussed earlier, without adjustment for the difference between true class membership X and 

assigned class membership W a misclassification error is introduced into the model, since these two 

variables are not necessarily equal to each other. This misclassification error can lead to bias in the 

estimation of step 3 (Bakk & Kuha, 2020). The equations so far only focussed on obtaining the optimal 
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number of classes in our data, but do not yet take in account a distal outcome Z in our model. A distal 

outcome can be added after assigning class membership W and can be described as step 3 of the three-

step approach. In this third step the association between X and the distal outcome Z is estimated, using 

the assigned class memberships W. The poLCA- and BayesLCA-packages do not offer a possibility of 

adding this distal outcome to the model, so the posteriors (probabilities for being assigned to a certain 

class) obtained in step two are needed to complete the three-step approach. Normally, these 

posteriors are used to assign class membership W, but we can also use them as input for an ANOVA to 

test the relationship between these class memberships and the distal outcome.  

1.5.4. EM 

In the BayesLCA-package the EM-algorithm will be used to perform the naïve three-step approach. The 

expected complete-data log-posterior is defined as 

                                               𝑄(𝜃, 𝜏|𝜃𝑘, 𝜏𝑘) ∶=  E[log 𝑝 (𝜃, 𝜏|𝑋, 𝐿)|𝑋, 𝜃𝑘 , 𝜏𝑘]                                               (6) 

Here, 𝜃 (item-probability) and 𝜏 (class-probability) are iteratively maximised, where 𝜃𝑘and  𝜏𝑘 denote 

the values of 𝜃 and 𝜏 at iteration k. At the kth stage of the algorithm the parameter estimates are 

updated in two steps: E-step and M-step. These steps are repeated until the algorithm is deemed to 

converge. The algorithm for these two steps can be written as: 

E- step:                                                 𝐿𝑖𝑔
(𝑘+1)

=
𝜏𝑔

(𝑘)
 𝑝(𝑋𝑖|𝜃𝑔

(𝑘)

Σℎ=1
𝐺  𝜏ℎ

(𝑘)
 𝑝(𝑋𝑖|𝜃ℎ

(𝑘)
)
                                                                    (7) 

M-step:                                                𝜃𝑔𝑚
(𝑘+1)

=
Σ𝑖=1

𝑁  𝑋𝑖𝑚𝐿𝑖𝑔
(𝑘+1)

+ 𝛼𝑔𝑚−1

Σ𝑖=1
𝑁  𝐿

𝑖𝑔
(𝑘+1)

+ 𝛼𝑔𝑚+𝛽𝑔𝑚−2
                                                           (8) 

                                                                𝜏𝑔
(𝑘+1)

=
Σ𝑖=1

𝑁  𝐿𝑖𝑔
(𝑘+1)

+ 𝛿𝑔−1

𝑁+Σℎ=1
𝐺  𝛿ℎ−𝐺

                                                                      (9) 

The 𝐿𝑖 represents the true class membership of 𝑋𝑖. Since the 𝐿𝑖 is not known, the posterior probability 

for the class membership of observation i is given by 

𝑝(𝐿𝑖|𝑋𝑖 , 𝜏, 𝜃) = ∏ [
𝜏𝑔𝑝(𝑋𝑖|𝜃𝑔)

∑ 𝜏ℎ𝑝(𝑋𝑖|𝜃ℎ)𝐺
ℎ=1

] 𝐺
𝑔=1            (10) 

More detailed information on the working of the EM-algorithm can be retrieved from White & Murphy 

(2014). 

1.5.5. Gibbs Sampling 

Sampling is done by iteratively sampling from each conditional distribution in turn. This method uses 

the Markov assumption that samples drawn at iteration k + 1 depend only on the parameters that are 

𝐿𝑖𝑔 
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drawn in the previous iteration k. By drawing many samples and using this assumption, a good 

representation of the joint posterior distribution can be reached (White & Murphy, 2014).   

 

1.5.6. Variational Bayes 

Variational Bayes is an approximate combination of both the EM and Gibbs Sampling techniques, since 

it can be used to obtain parameter estimates which maximize a fully factorized posterior 

approximation to the joint posterior. In this method we introduce the variational distribution with 

several variational parameters, which will then go through multiple updates to attempt to find the true 

posterior, using an arbitrary distribution Q(𝜃). Optimising Q(𝜃) to find the optimal posterior, is 

achieved through iterative optimisation, as also used in the EM algorithm (Marwade, 2021). 

 

2. Simulation study 

2.1. Methodology 

A simulation study will be done where the naive three-step approach, 

Gibbs-sampling and Variational Bayes with distal outcome models from 

different R-packages will be compared to each other. The model will have two 

classes and weights set to be unequal at .4 and .6. There will be four indicator 

variables with different strengths to the two classes. In the first condition, 

class one will have a strength of .8 and class two a strength of .2 related to 

each of the four indicator variables. In the second condition the strengths are 

.9 and .1 respectively. So, in both conditions class one will score high on all 

indicator variables and class two will score low on all four indicator variables 

(Bakk, Di Mari, Oser & Kuha, 2022; Bakk & Vermunt, 2016). The distal 

outcome will have a class specific normal distribution and I will manipulate 

the strength of the latent class model with sample sizes of 250, 500 and 1000 

(Bakk, et al., 2022; Bakk & Vermunt, 2016).  and strengths of association with 

the distal outcome. For this I will use the strong and weak set up for the distal 

outcome- latent class relationship of a regression coefficient equal to .2 and 

-.2 in the weak condition and .8 and -.8 in the strong condition (Bakk & Vermunt, 2016). Furthermore, 

I will compare the different approaches and R-packages when used on real data. The R-package 

BayesLCA will be used for the Bayesian analyses Gibbs sampling and Variational Bayes together with 

S ample   size   Strength    Y     Strength    Z   

250   .8   .8   

500   .8   .8   

1000   .8   .8   

250   .8   .2   

500   .8   .2   

1000   .8   .2   

250   .9   .8   

500   .9   .8   

1000   .9   .8   

250   .9   .2   

500   .9   .2 

  

1000   .9   .2   

  
Table 1. Simulation conditions 
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ANOVA. For the Frequentist approach I will use the poLCA- and BayesLCA-packages (EM), also used in 

combination with ANOVA.  

 

2.2. Results simulation study  

2.2.1. Label Switching 

Before presenting the results, it should be mentioned that label switching was prevented as much 

as possible using the options offered in the corresponding R-packages. However, even with these 

measures, there were still a few rows that show signs of label switching (see Table 2). For example, in 

one of the poLCA-columns measuring the strength of Y, there were five rows that showed a strength 

of approximately .06 to .25 instead of the correct .8 or .9 strengths in these conditions. When label 

switching occurs for a certain row, it tends to occur for all four LCA-methods as well. Considering that 

there were a total of 1200 rows in this dataset, five rows showing different results will not influence 

the results that much. For this reason, it was decided to keep all rows in the dataset, so that all 

conditions would have the same number of cases that the results would be based on.  

 

Table 2. Overview of the label switching rows in the dataset, with corresponding Y-values.  

2.2.2. Comparing LCA-methods 

In the simulation study, the four different methods are compared based on multiple variables such 

as group sizes, the strength of Y and strength of Z. When looking at the group sizes over the different 

conditions, we can see that the distribution of the cases strongly resembles the true sample 

distribution of 40% in group 1, and 60% in group 2. The only condition where this clearly deviates is for 

a sample size of 250 and strengths of Y and Z being .8, for all four methods. Here, group one in poLCA, 

EM and Variational Bayes has a size of 39.1% and group two is 60.9%, for Gibbs Sampling group one is 

39.5% and group two is 60.5%.  

The strength of the relationship between Y and X is very similar for poLCA, EM and Variational 

Bayes, with estimations of the strength only deviating .002 from each other or being exactly the same 

in most conditions. These three methods all estimate the strength of the relationship quite well, in 

Row poLCA EM Gibbs Variational Bayes 

41 .280 .158 .168 .161 

203 .249 .167 .169 .167 

424 .277 .168 - - 

501 .210 .187 .190 .187 

952 .109 .080 .088 .081 
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most conditions measuring the exact strength as set in the simulation or only deviating .002 from the 

real strength of Y when Y= .9. The estimations are still quite well when Y= .8, with deviations up to .005 

in most conditions. The estimations of the relationship between Y and X with Gibbs Sampling generally 

perform worse compared to the other methods. Especially when the sample size is relatively small 

(N=250), Gibbs sampling struggles to get near the true strength of Y, with deviations that are bigger 

than .010 from the true strength. Gibbs Sampling tends to improve quite well when the sample size 

increases, but its estimates still perform a bit worse when compared to poLCA, EM and Variational 

Bayes. The methods all tend to underestimate the strength of Y when the sample size is small, but this 

effect is more visible when the strength of Y is set to be .8 than for strength .9 in the simulation.   

The estimations of Z by poLCA, EM and Variational Bayes are almost identical copies of each other, 

with only a couple conditions showing a very small difference between them. The estimations of Gibbs 

Sampling are structurally lower than the other methods when the sample size is small, but gets very 

close or even equal to the other methods when the sample size is N=1000. Table 3 and Figure 5 also 

shows that the strength of Z is overestimated in every condition, but that this overestimation is larger 

when the strength of Y is .8 than in conditions where the strength of Y=.9. The lower limit of the 95% 

confidence intervals of Z is often larger than the true value of Z, which indicates that only a very small 

number of simulations get near the true value.  

Figure 5. Estimations of the strength of Z by poLCA, EM, Gibbs Sampling and Variational Bayes      

 Note: Left: estimations when the true value of Z is .8. Right: estimations when the true value of Z is .2.  

To test whether the four methods are indeed different or similar to each other, an ANOVA was 

done using the residuals of the Z estimations. This test showed that there is indeed a difference 

between the methods, with F(3)= 3.598 and p=.013, which indicates that there is at least one method 

that is different from the other methods. The Tukey post hoc test was used to test which methods 

might be significantly different from each other and to control for the multiple comparisons.  
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Table 3. Summary of simulation output. Class sizes, strength of Y, strength of Z, 95% CI of Z and standard error of Z are shown 

per method and per simulation condition. 
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This analysis shows that the poLCA, EM and Variational Bayes methods are indeed not significantly 

different from each other with p-values greater than .900. However, Gibbs Sampling is significantly 

different from EM (p=.024) and Variational Bayes (p=.026), but not from poLCA (p=.112). These results 

are also visualized in Figure 6 with the 95% confidence intervals. 

Figure 6 

 

Note: 95% Confidence Interval for ANOVAs between the four methods with Tukey post hoc analysis. 

3. Application study 

3.1. Methodology 

Next to a simulation study, I will also compare the four methods to each other based on a real-life 

dataset. For this I will use data that was obtained in a survey of students’ math course in secondary 

school in Portugal (Banerjee, n.d.). This dataset contains 34 variables, of which thirteen were binary 

variables that could be used in an LCA. The dataset also has three outcome variables, which are the 

math grades in the first, second and final period, with a range from zero to twenty. Variables were 

selected based on Evans & Field (2020) and intuition (e.g., extra help in a subject can improve your 

grades). LCA will be performed based on the students’ home address (urban or rural), parent’s 

cohabitation status (living together or apart), extra educational support (yes or no), extra paid classes 

within course subject (yes or no) and if they have internet access at home (yes or no). Weekly study 

time was also added as a binary variable, where a study time up to five hours is considered low and 

five hours or more as high. Finally, the final math grade was selected as a distal outcome for the LCA.  

3.2. Results 

In this part of the study, the different packages and methods are tested on more realistic data. First, 

the number of classes was determined based on the six predictor variables using the poLCA-package. 

Six different models were tested, each with a different number of classes. The model selected based 
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on the Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC) is the two-class 

model (BIC= 2363 and AIC= 2311). The entropy for this model is entropy-based 𝑅2 = .59, which 

indicates that the model cannot distinguish very well between the classes, as the ideal entropy would 

be around .8 or higher (Muthén, 2008). The classification table (Table 4) shows that the model has 

difficulty correctly predicting who will be in class 2, with one-third of the individuals being predicted 

to be in class 1. The predictions for class 1 are much better, with all individuals correctly assigned to 

class 1 and zero assigned to class 2. The analysis will be continued using this model, since the entropy 

is not part of the model selection and a model can still statistically perform well with a less than ideal 

entropy (Muthén, 2008). 

 

Table 4. Classification table, with correctly predicted classes in bold.  

First, the classes and their characteristics will be explained, to get an idea of what the classes look 

like (see Table 6), since the methods are very alike in their characterisation of these classes. After this 

short description, the focus will lay on the differences between the methods. Class one in this model 

can be characterized by multiple variables, such as their high scores on extra paid classes in 

mathematics, high scores on internet availability and almost all students living in an urban area. The 

students in class two score relatively low on having extra paid classes in mathematics and score low 

on their internet availability as well. This second class also consists of a close to equal mix of students 

from rural and urban areas. The two classes do not differ a lot based on the amount of time that they 

study per week, with most students studying less than 5 hours a week. They also do not differ a lot 

based on the parental cohabitation status, with many parents living together and only a small number 

living apart.  

 

Table 5. Summary of output non-simulated dataset, with class sizes, strength of Z and standard error of Z shown per LCA-

method. 

 Predicted class 

O
b

se
rv

ed
 

cl
as

s 

 1 2 

1 300.5 0.0 

2 28.5 66.0 

 

 

 Class 1 Class 2 Strength Z Std. Error 

poLCA .239 .761 -1.208 .616 
EM .238 .762 -1.208 .616 

Gibbs .255 .745 -1.208 .616 
Variational Bayes .179 .821 -1.208 .616 
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Table 6. Summary of output non-simulated dataset, with the strengths of Y for each variable per class and LCA-method. 

When comparing the methods, the three-step approach from poLCA and EM give very similar 

results on all fronts of this analysis: class sizes, strength of Z and the strengths of Y are all exactly the 

same or only differ by .001 from each other. The Gibbs Sampling method is quite similar to poLCA and 

EM on class sizes and on most of the estimating variables. However, Gibbs Sampling does deviate quite 

a bit from poLCA and EM on the predictors ‘paid tutoring’ and ‘having internet’. The Variational Bayes 

method stands out from the other methods, with results such as the class sizes being very different 

when compared to the results from poLCA, EM and Gibbs Sampling. Table 5 shows that Variational 

Bayes gives estimations that are either close to the poLCA and EM estimations or to the Gibbs sampling 

estimation, with exception of the ‘having internet’ variable where it has an estimation for class 2 that 

is completely different from the other methods.  

 

4. Discussion 

For the simulated part of this research, it can be concluded that the three-step approaches from 

the poLCA- and BayesLCA-package (EM), are very similar to each other based on sample size, 

estimation of Y and estimation of Z, but not exactly the same. Regarding their estimation ability, it can 

be found that the estimation of Y is very close to the true value of Y when the sample size is 500 or 

1000, but that the methods tend to underestimate the value of Y when the sample size is small 

(N=250). The estimation of Z on the other hand tends to be overestimated by quite a bit in certain 

conditions, especially when the sample size is large. An interesting find in this simulation is that the 

Variational Bayes method is almost identical in its estimations for class size, strength of Y and strength 

of Z when compared to two different three-step approaches (poLCA-package and BayesLCA-package). 

While the poLCA and EM methods are Frequentist, the Variational Bayes method is Bayesian, but they 

still are very similar in their estimations. The Gibbs Sampling method however, produces very different 

estimations for some conditions for Y and Z when compared to the other three methods. The Gibbs 

Sampling method underestimates the values of Y quite a bit more for the small samples when 

compared to the other three methods, but the estimations improve very well when the sample size 

increases. The estimations of Z are all overestimated, but they are closer to the real value of Z when 

Class Method Address Pstatus Studytime Schoolsup Paid Internet 

1 poLCA .839 .911 .257 .126 .514 1.000 
1 EM .839 .911 .257 .126 .513 .999 
1 Gibbs .844 .910 .260 .127 .529 .959 
1 VB .826 .908 .251 .127 .501 .976 

2 poLCA .581 .850 .155 .138 .282 .301 
2 EM .580 .850 .156 .138 .281 .301 
2 Gibbs .561 .840 .167 .147 .261 .391 
2 VB .553 .843 .150 .139 .262 .178 
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compared to the other methods, when the sample sizes are small (N=250). The estimations for Z are 

very close between the different methods (but still overestimated) when the sample size increases. An 

extra analysis, comparing the residuals of Z for the different methods confirms that the Gibbs Sampling 

method is significantly different from EM and Variational Bayes, but not from the three-step approach 

used in poLCA.  

For the application latent class analysis, it was found that the three-step approaches from poLCA 

and BayesLCA (EM) are again very similar to each other. However, in contrast to the simulated data, 

the Variational Bayes shows different results for the estimation of class sizes and of the strength of Y 

for some of the predicting variables. The Gibbs Sampling method is relatively similar to poLCA and EM 

in class size estimation and for most of the predicting variables, but not as similar as the three-step 

approaches are to each other. The estimations of Z and its standard error are exactly the same for all 

four LCA methods.  

Label switching was prevented as much as possible using the options offered in the corresponding 

R-packages. However, label switching can still occur using the poLCA- and BayesLCA-packages even 

when prevention measures have been taken, but the effects of this are minimal. A limitation of this 

simulation study is that there is no R-package available for creating a complete latent class with distal 

outcome model. Because of this, the data had to be created in two separate steps, which is not ideal.  

A dataset was created for latent classes with 0-1-data, after which poLCA was used to decide which 

combinations on the Y variables belong to each group. Based on this grouping, the distal outcome was 

added with the rnorm-function. So, the results of the BayesLCA methods are in a way influenced by 

the poLCA grouping method.  
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Appendix A. R-code Simulation study 

#Loading packages 

library("BayesLCA"); library(“poLCA”); library("readr"); library("Rmisc") 

 

#Generate data conditions 

nrep <-100  #number of simulations 

sampsize <- c(250, 500, 1000) 

weights <- c(.4, .6) 

strength_Z <- c(.8,.2) 

strength_y <- c(.8,.9) 

conds <- expand.grid(sampsize, strength_Z, strength_y) 

names(conds) <- c(“sample size”, “strength_Z”, "strength_y") 

 

###########1. Generate Data-function 

MAKE_DATA <- function(sampsize, strength_Z, strength_y){ 

  #generating 0|1-data based on item-probability and sample weights 

  strength_Y <- c(strength_y, strength_y, strength_y, strength_y) 

  x <- as.data.frame(rlca(sampsize, rbind(strength_Y, 1-strength_Y), weights)) 

  x$sum <- rowSums(x[,1:4], na.rm = TRUE) 

  #changing y-variables to 1-2 data, since poLCA does not work on 0-1-data 

  x[, 1:4] <- ifelse(x[,1:4] == 0, 1, 2) 

  f <- cbind(V1, V2, V3, V4) ~ 1 #formula 

  model_poLCA <- poLCA(f, x, nclass= 2, probs.start = 1) 

  posteriors <- data.frame(model_poLCA$posterior, predclass = model_poLCA$predclass) 

  #dataset + posteriors 

  x_complete <- cbind(x, posteriors) 

  x_complete$predclass <- as.factor(x_complete$predclass) 

  Group1 <- x_complete[x_complete$predclass == 1,] 

  error <- rnorm(nrow(Group1)) 

  Group1$z <- 10 + strength_Z * Group1$sum + error 

  Group2 <- x_complete[x_complete$predclass == 2,] 

  error2 <- rnorm(nrow(Group2)) 

  Group2$z <- 10 -strength_Z * Group2$sum + error2 

   

  x_complete <- rbind(Group1, Group2) 

  #extra code to change it back to 0-1code for Bayes-analyses. 

  x_complete[, 1:4] <- ifelse(x_complete[,1:4] == 1, 0, 1)  

  return(x_complete) 

  return(model_poLCA) 

} 

########### 2. Analyses  ######################## 

############ POLCA ################# 

POLCA <- function(x_complete){ 

  x_complete[, 1:4] <- as.data.frame(ifelse(x_complete[,1:4] == 0, 1, 2)) #extra code for poLCA, since it 
does not work with 0-1-data, I change it to 1-2 data 

  #running regression using GLM with posterior class membership as multinomial predictor 

  f <- cbind(V1, V2, V3, V4) ~ 1 #formula 
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  model_poLCA <- poLCA(f, x_complete[,1:4], nclass= 2, probs.start = 1) 

  probs.start.new <- poLCA.reorder(model_poLCA$probs.start,order(model_poLCA$P,decreasing = TRUE)) 

  model_poLCA <- poLCA(f, x_complete, nclass= 2, probs.start= probs.start.new) 

  model_poLCA_dis <- glm(z ~ predclass , data = x_complete) 

  output_p1 <- summary(model_poLCA_dis)$coefficients[2,1:2] 

  output_p2 <- c(min(model_poLCA$P),max(model_poLCA$P)) 

  output_p3<- c(model_poLCA$probs$V1[2,1],model_poLCA$probs$V2[2,1],model_poLCA$probs$V3[2,1],  
model_poLCA$probs$V4[2,1], 
model_poLCA$probs$V1[1,1],model_poLCA$probs$V2[1,1],model_poLCA$probs$V3[1,1], 
model_poLCA$probs$V4[1,1]) 

  output1 <- c(output_p1,output_p2, output_p3) 

} 

############ BayesLCA ~ EM ################# 

EM <- function(x_complete){ 

  fit_em <- blca.em(x_complete[,1:4], 2, restarts = 20) 

  # setting probabilities for unique datapoints as seperate dataframe  

  Z1 <- as.data.frame(fit_em$Z)                               

  #if the probability for being in group1 is >.5, person is set in group 1, else in group 2 

  Z1$class <- as.factor(ifelse(Z1$`Group 1`>.5, 1, 2))      

  #to set the unique datapoints as a seperate column in the dataset so that I can link them to the other 
other dataset  

  Z1$code <- rownames(Z1)                                     

  #creating a variable consisting of the answers of the participant (same set up as the unique datapoints 
from the row above) 

  x_complete$code <- apply(x_complete[,1:4], 1, paste, collapse= "")  

  #linking the datapoints to their classes  

  x_complete2 <- merge(x_complete, Z1[, c("code", "class")], by= "code")  

  model_EM_dis<- glm(z ~ 1+class , data = x_complete2) 

  output_EM1 <- summary(model_EM_dis)$coefficients[2,1:2] 

  output_EM2 <- c(min(fit_em$classprob),max(fit_em$classprob)) 

  output_EM3 <- c(fit_em$itemprob[1,], fit_em$itemprob[2,]) 

  output2 <-  c(output_EM1,output_EM2, output_EM3) 

} 

############ BayesLCA ~ GIBBS ################# 

Gibbs <- function(x_complete){ 

  fit_gibbs <- blca.gibbs(x_complete[,1:4], 2, relabel = TRUE) 

  Z_gibbs <- as.data.frame(fit_gibbs$Z) 

  #if the probability for being in group1 is >.5, person is set in group 1, else in group 2 

  Z_gibbs$class <- as.factor(ifelse(Z_gibbs$`Group 1`> 0.5, 1, 2))           

  #to set the unique datapoints as a seperate column in the dataset so that I can link them to the other 
other dataset 

  Z_gibbs$code <- rownames(Z_gibbs)                                          

  #creating a variable consisting of the answers of the participant (same set up as the unique datapoints 
from the row above) 

  x_complete$code <- apply(x_complete[,1:4], 1, paste, collapse= "")                 

  #linking the datapoints to their classes   

  x_complete2 <- merge(x_complete, Z_gibbs[, c("code", "class")], by= "code")  

  model_gibbs_dis<- glm(z ~ 1+class , data = x_complete2) 

  summary(model_gibbs_dis) 

  output_G1 <-summary(model_gibbs_dis)$coefficients[2,1:2] 
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  output_G2 <- c(min(fit_gibbs$classprob),max(fit_gibbs$classprob)) 

  output_G3 <- c(fit_gibbs$itemprob[1,], fit_gibbs$itemprob[2,]) 

  output3 <- c(output_G1,output_G2, output_G3) 

} 

############ BayesLCA ~ Variational Bayes ################# 

VB <- function(x_complete){ 

  fit_vb <- blca.vb(x_complete[,1:4], 2, restarts = 20) 

  Z_vb <- as.data.frame(fit_vb$Z) 

  #if the probability for being in group1 is >.5, person is set in group 1, else in group 2 Z_vb$class <- 
as.factor(ifelse(Z_vb$`Group 1`> 0.5, 1, 2))              

  #to set the unique datapoints as a seperate column in the dataset so that I can link them to the other 
other dataset  

  Z_vb$code <- rownames(Z_vb)                                             

  #creating a variable consisting of the answers of the participant (same set up as the unique datapoints 
from the row above) 

  x_complete$code <- apply(x_complete[,1:4], 1, paste, collapse= "")              

  #linking the datapoints to their classes  

  x_complete2 <- merge(x_complete, Z_vb[, c("code", "class")], by= "code")  

  model_vb_dis<- glm(z ~ 1+class , data = x_complete2) 

  output_vb1 <- summary(model_vb_dis)$coefficients[2,1:2] 

  output_vb2 <- c(min(fit_vb$classprob),max(fit_vb$classprob)) 

  output_vb3 <- c(fit_vb$itemprob[1,], fit_vb$itemprob[2,]) 

  output4 <- c(output_vb1,output_vb2, output_vb3) 

} 

########### 3. GENERATE DATA MATRIX PER CELL AND WRITE TO FILE ########### 

cellData <- NULL 

############### Complete run ################ 

for (r in 1:12){ 

  for (k in 1:nrep){ 

    set.seed(1000*r+k) 

    output0 <- c(r, k, conds[r,1], conds[r,2], conds[r,3]) 

    x_complete <- MAKE_DATA(conds[r,1], conds[r,2], conds[r,3]) 

    output1 <- POLCA(x_complete) 

    output2 <- EM(x_complete) 

    output3 <- Gibbs(x_complete) 

    output4 <- VB(x_complete) 

    output  <- c(output0, output1, output2, output3,output4) 

    cellData <- rbind(cellData, output) 

  } 

  rownames(cellData) <- NULL 

  colnames(cellData) <- c("r", "k", "sampsize", "strength_Z", "strength_y","estimatePOLCA", "std.errPOLCA", 
"Group1POLCA","Group2POLCA","y1_1", "y1_2", "y1_3", "y1_4", "y2_1", "y2_2", "y2_3", "y2_4", 
"estimateEM", "std.errEM", "Group1EM","Group2EM","y1_1", "y1_2", "y1_3", "y1_4", "y2_1", "y2_2", "y2_3", 
"y2_4","estimateGibbs", "std.errGibbs", "Group1Gibbs", "Group2Gibbs","y1_1", "y1_2", "y1_3", "y1_4", 
"y2_1", "y2_2", "y2_3", "y2_4","estimateVB", "std.errVB", "Group1VB","Group2VB","y1_1", "y1_2", "y1_3", 
"y1_4", "y2_1", "y2_2", "y2_3", "y2_4") 

  outfile <- paste("MP2022output",r,".csv",sep="") 

  write.csv(cellData, file = outfile) 

} 


